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ABSTRACT 

Kolari, Kalle 
Metal-metal contacts in late transition metal polymers 
Jyväskylä: University of Jyväskylä, 2020, 6  p. 
(JYU Dissertations 
ISSN ) 
ISBN

This thesis titled ‘Metal-metal contacts in late transition metal polymers’ contains 
two main parts: the introductory section, and a section presenting and discussing 
the key results of the study. A concluding section, summarising the study’s find-
ings, is also provided. The introduction gives a classification of metallopolymers 
based on parameters such as structure, metal-ion bonding interaction with the 
polymeric framework, and electronic interactions that polymers may express. 
Additionally, structural and crystal-packing features of metallopolymers—
namely, extended metal atom chains (EMACs)—are presented. Moreover, first 
section of the thesis contains a brief introduction to metal-metal interactions. It 
also describes the solid state structure of  compounds in which group 11 (Cu, Ag 
and Au), Rh, and Pt contacts with aromatic N, S-, or N-donor ligands are present. 
Finally, properties and applications of metal-metal contact containing com-
pounds are presented. 

The second main part of thesis presents the results of the syntheses and 
characterisation of group 11, Rh, and Pt polymers. Either ditopic bridging ligands 
or chelating polypyridines were utilised to promote polymeric structures with 
close metal-metal contacts. Nine compouds were synthesized and characterized 
with single crystal x-ray diffraction. Metal-metal contacts were analysed with 
computational chemistry, distance criteria, or spectroscopy. Metal-metal dis-
tances with a sub sum of Bondi’s Van der Waals radii were present in 8 of ob-
tained structures. In addition to Pt-Pt contacts, platinum polymer were found to 
be luminescent and act as a metallogelator. Fluorophilic interactions were found 
to impact on gelation behaviour of metallogelator. Mechanical and thermal sta-
bility and self-healing properties of obtained gel were investigated with rheology. 

In sum, the results presented highlight the great importance of ligand selec-
tion for the formation of structural and chemical features of one-dimensional pol-
ymeric materials that contain close metal-metal separations and interactions.  

Keywords: Metallopolymers, metal-metal contacts, metal-metal interaction. 



TIIVISTELMÄ 

Kolari, Kalle 
Metalli-metalli kontaktit siirtymämetalli polymeereissä 
Jyväskylä: University of Jyväskylä, 2020, 6  p. 
(JYU Dissertations 
ISSN ) 
ISBN

Väitöskirja Metalli-metalli kontaktit siirtymämetalli polymeereissä jakautuu kah-
teen osaan: Johdantoon sekä tuloksiin ja johtopäätöksiin. Johdanto-osiossa käy-
dään läpi väitöskirjatyön kannalta keskeisimpiä aihealueita, joihin kuuluvat me-
tallopolymeerit sekä metalli-metalli vuorovaikutukset. Metallopolymeerit kap-
paleessa havainnollistetaan yhdisteryhmille keskeisimmät luokittelutavat sekä 
rakenteelliset ominaisuudet.  Metalli-metalli vuorovaikutusten muodostumis-
mekanismia käsitellään lyhyesti yhdisteille tyypillisimpien ominaisuuksien sekä 
sovelluskohteiden ohessa. 

Tulokset ja johtopäätökset kappale sisältää väitöskirjatyön keskeisimmät 
tulokset. Ryhmän 11, Rh sekä Pt metallopolymeerejä syntetisoitiin käyttäen joko 
ditooppista metalleja silloittavaa pyridiini-4-tiolia tai kelatoivia polypyridiini li-
gandeja. Yhdeksän yhdistettä syntetisoitiin sekä karakterisoitiin muun muassa 
röntgenkristallografian avulla. Metalli-metallikontakteja analysoitiin laskennal-
lisella kemialla, etäisyyskriteerillä tai spektroskooppisesti. Kahdeksalla yhdis-
teistä, metalli-metalli kontaktien havaittiin olevan lyhyempiä kuin Bondin Van 
der Waals säteiden summat. Platina polymeeri havaittiin olevan myös lumi-
nesoiva sekä metallogelaattori. Fluorofiiliset vuorovaikutukset havaittiin vaikut-
tavan metallogelaattorin geelinmuodostamiskykyyn. Geelin mekaaniset, termi-
set sekä itsestään korjautuvuus ominaisuudet tutkittiin reologia menetelmällä.  

Tulokset korostavat ligandin valitsemisen tärkeyttä rakenteen sekä kemial-
listen ominaisuuksien räätälöinnin näkökulmasta metalli-metallikontakteja sisäl-
tävissä yhdisteissä.   

Avainsanat: Metallopolymeerit, metalli-metalli kontaktit, metalli-metalli 
vuorovaikutus. 
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Compounds that are polymeric in nature and contain metal ions incorporated 
into their structure are called metal-containing polymers or metallopolymers.1,2,3 
One of the earliest examples of metallopolymers was published by Arimoto et. 
al. in the mid-1950s. Poly(vinylferrocene) (1), the backbone of the polymeric 
structure, was formed via polymerisation of the ferrocene side group.4 The sche-
matic structure of this metallopolymer is presented in Figure 1. Since this devel-
opment, the synthesis and characterisation of metallopolymers has faced chal-
lenges. Several contributing factors, such as the lack of synthetic methods, were 
among the issues that affected the development of these materials, in addition to 
the poor solubility of metallopolymers combined with the low molecular weight 
of the compounds.5 Improvements and advances of synthesis techniques such as 
electropolymerisation and characterisation methods (NMR and gel-permeation 
chromatography) in the 1990s accelerated the research on metallopolymers.6

Figure 1 Schematic structure of poly(vinylferrocene) (1).4 

The metallopolymer concept, which functions as a general category for metal-
containing polymers, can be divided into subclasses. Several compounds exem-
plify the structural variety of metallopolymers. For instance, a coordination pol-
ymer (CP), defined by IUPAC in 2013, is a compound in which a coordination 
entity (a monomeric unit) extends from 1D to 3D. Metal-organic frameworks 

1 METALLOPOLYMERS 
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(MOFs) can be considered as coordination polymers, since the definition of CPs 
applies to MOFs. Additionally, the structure of MOF should contain voids.7 Ex-
tended metal atom chains (EMACs)8 are compounds that contain linearly ar-
ranged metal centres connected by bridging ligands which typically are oli-
gopyridylamides9. 

The classification of metal-containing polymers into types I-III was pro-
posed by Rehahn10 in the 1990s. In this framework, polymers are classified into 
types depending on the location and/or the interactions of metal ions in the pol-
ymeric backbone. In types I and II, the main bonding interactions of metal ions 
are covalent bonding and metal-ligand coordination. Additionally, type I can 
contain electrostatic interactions between metal ions and the polymer chain. In 
type III, metal ions are incorporated to the framework by non-covalent interac-
tions. Type III metallopolymers may be called metallosupramolecular polymers, 
due to reversible interactions of metallic and organic components.  

Defining types of interactions between metal centers and the organic poly-
mer framework may be difficult. Hence, the location of the metal ion in the struc-
ture of the compound can instead be used to categorise materials. Type I has 
metal ions in the side group of the polymer framework, whereas in type II the
metal ion is embedded in the main polymer backbone. The variability of struc-
tures due to the different locations of metal ions in polymeric structures yields a 
variety of dimensionalities for these compounds—from 1D polymers to 3D net-
works. In addition to the structural variety of compounds, various metals from 
main group or transition metals (including lanthanides and actinides) can be 
used to manufacture functional metallopolymers. Schematic representations of 
types I-III are presented in figure 2. Table 1 Summarises the observed interaction 
types of metal centres and polymeric frameworks of types I-III.11 
 

 
Figure 2 Schematic presentation of metallopolymer classes. 
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Table 1. Classification of metallopolymers to I-III 
 

Type Ion location Bonding interactions 

I Sidechain Electrostatic 

Covalent 

II Main backbone Covalent 

 

III Embedded Non-covalent 

 
 
 
An alternative classification of these materials was proposed by Hardy et. al. In 
this classification polymers are divided into two main groups, with subsets based 
on the location of metals (type I and II) or the overall topology of metal-contain-
ing polymers (type III and IV).12 Type I contain metal ions in main polymer 
framework, whereas in type II metal ions are located in side chains of polymeric 
backbones. Type III polymers are typically described as star shaped; in type IV, 
the polymeric structure is dendritic.12  

Classification of metallopolymers can be also based on conductivity. In 
Wolf type I, polymers contain metals with insulating organic linkers. By contrast, 
in Wolf type II, polymers express electronic properties of metal centres and link-
ers. These materials can be further divided into conducting and non-conducting 
materials.13 

 
Compounds classified as coordination polymers have been known since the 
1950s.4 Coordination polymers are materials which consist of ligands as the link-
ing unit and metals in the form of nodes.14 Structural variability among coordi-
nation polymers is the result of the selection of materials used to prepare com-
pounds. Topological features (dimensionality and pore size), especially in metal-
organic frameworks, is affected by many factors. In selecting the proper node—
i.e. a metal with desired oxidation state—the coordination number may vary 
from 2 to 10 or even more. Similarly, ionic or neutral ligands with various num-
bers of donor atoms, the solvent used, reaction conditions, and possible counter 
ions all have an impact on the formed structures.15 
 

1.1 Extended metal atom chains and molecular strings 

Compounds wherein closely spaced metal atoms form a one-dimensional linear 
backbone are extended metal atom chains (EMACs)16,17.  This type of compound 
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contains a minimum of three metal ions.18,19 Metals in in these complexes are typ-
ically from d-block.20,21 Heteronuclear22  metal string complexes have also been 
reported. EMACs may be separated into classes depending on the coordination 
mode of ligands. In traditional metal wire compounds, ligands may bring metal 
atoms into close proximity by bridging23,24 coordination mode to form extended 
arrays with monomeric units of varying nuclearity. Ligands of this type may vary 
from simple halogens25,26 to multidentate derivatives of -(poly)pyridyla-
mide.27,28 Additionally, cyclic polydentate ligands such as azoles29–31 have been 
used in the synthesis of EMACs. Moreover ligands may form extended systems 
via supporting  -interactions, as in the case of olefin-type ligands.32  

Direct metal-metal contact is often formed when a square-planar metal 
complex is self-assembled via non-covalent interactions into extended structures 
in solid state.33 Typical non-covalent interactions in this process are -interactions 
and hydrogen bonding, which will support formed metal-metal interactions.34,35 
For example, in a study conducted by Inoki et al., a monomeric square-planar 
rhodium terpyridine complex with labile acetonitrile ligand 
([Rh(Trpy)(CH3CN)](CF3SO3)) (2) (figure 3) was prepared.36 In solid state, these 
units were packed in a linear array with non-covalent Rh-Rh interactions sup-
ported by non-covalent interactions. Additionally, Inoki et al. tuned the strength 
of Rh-Rh interaction by synthesizing polymeric Rh compound via reductive elim-
ination of hydrides from square-planar Rhodium terpyridine hydride complexe 
in acetonitrile .  

 
Figure 3 Representation of tetranuclear ([Rh(Trpy)(CH3CN)](CF3SO3)) (2) pub-
lished by Inoki et. al. Solvent of crystallisation and counter ion have been omitted 
for clarity. 36 

 
 

Chain structures with metal-metal interactions have been obtained via electro-
chemical polymerisation. Octahedral metal carbonyl chlorides with the general 
formula of [M(L)(CO)2Cl2]37,38 have been successfully polymerised as thin films 
in the surface of electrodes when the central metal was either osmium39 or ruthe-
nium38 and ligand 2,2’-bipyridine, reported by Caix-Cecillon et. al. and Chardon-
Noblat et al. In both cases, the compounds were active towards reduction of CO2. 
The ruthenium compound was active in reverse water-gas shift reaction.37–39 
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1.1.1 Non-covalent metal atom chains without ligand support 

One of the first one-dimensional compounds with an aligned metal atom back-
bone in solid state and without bridging ligands was synthesised already in the 
1800s by Gustav Magnus. Deep green salt of [Pt(NH3)4][PtCl4] (3) (figure 4a) 
could be regarded as one of the first coordination compounds synthesised along 
with Vauquelin’s pink salt (4) (figure 4b).40 [M(NH3)4]2+ and [MCl4]2- (M=Pt2+ or 
Pd2+) alter to form a one-dimensional neutral polymer. Solid state structure of 3 
was confirmed by x-ray crystallography in 1950s.41 Polymeric materials with lig-
and-unsupported metal atom backbones may consist of purely anionic or cationic 
units. One of the most well-known compounds with an anionic, partially oxi-
dised chain with metal-metal interactions is Krogmann’s salt (K2[Pt(CN)4X0.3] (5), 
figure 4c, where X=halogen).42 In these types of compounds, square-planar ionic 
metal complexes are packed linearly, and thus an aligned metal backbone is 
formed. Chain structure may also consist of cationic units instead of anions. This 
is the case in, for example, [Rh(MeCN)4](BF4)1.5 (6), where square-planar cationic 
units of [Rh(MeCN)4] (figure 4d) are arranged linearly with an outlying charge-
balancing (BF4)- counter ion.43 In addition to simple monodentate ligands, chelat-
ing N44- and O45-donors containing ligands may be used for the generation of 
ionic square-planar complexes, which may self-assemble to form polymeric one-
dimensional compounds. 

 

 
Figure 4 Schematic representations of A) Magnus’s Green salt, [Pt(NH3)4][PtCl4] 
(3)46, B) Vauquelin’s salt, [Pd(NH3)4] [PdCl4] (4)47, C) Kromann’s salt, 
K2[Pt(CN)4X0.3] (5)(X= halogen and counter ions omitted for clarity)42 and D) 
[Rh(MeCN)4]+ polymer (counter ion omitted for clarity) (6)43.  
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1.1.2 Ligand-supported metal chains 

The earliest examples of extended metal atom systems where ligands bring metal 
atoms in close proximity to form metal backbones were published in the 20th cen-
tury, and based on the utilisation of the di-(2-pyridyl)amide (DPA) ligand.48 
[Ni3(DPA)4Cl2] (7) was the first extended system, synthesised in 1968 by Hurley 
et. al.;49 however, the structure50 was not correctly solved until the 1990s. DPA 
ligands wrapped Ni-atoms helically to form linear Ni backbones with terminal 
chlorides. Additionally, solvents used for crystallisations were present (Figure 5). 
Several other metals, such as Co51, Ru52, Rh21, and Cu53 yielded similar trimeric 
metal complexes with the general formula of [M3( 3-DPA)4X2]. It has been shown 
that DPA-ligand can bind metal ions in different ways, as first presented by Berry 
in 2004. For example, in the synthesis of [Ru3(DPA)4Cl2] (8), DPA acted as a bridg-
ing and chelating ligand simultaneously (figure 6).18 

 
 
 

 
Figure 5 Crystal structure of [Ni3(DPA)4Cl2] (7) with solvents used for crystalli-
sations.50 

 
 

 
Figure 6 Partial schematic representation of [Ru3(DPA)4Cl2] (8), in which both a 
bridging and chelating coordination mode of DPA is present.18  

 
 

The design of polydentate ligands has been carried out since due to the fact that 
the size of the ligands and the number of donor atoms in the structure limits the 
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length of molecular wires. To extend the length of metal backbone, the structure 
of the DPA ligand was modified by extending the ligand framework such that it 
contained more donor atoms.17 This type of ligand is called oligo- -pyridyla-
mines.9 Currently this approach has yielded molecular wires containing, for ex-
ample, 11 Ni atoms by using bis[2-(1,8-naphthyridin-7-yl-amido)-1,8-naphth-
yridin-7-yl]amido (tentra) ligands (Figure 7) (9).54 A similar approach has been 
used in the manufacture of heterometallic chains using DPA or its analogues. 
These heterometallic compounds may be called next generation EMACs.16  

 
 

 
 

Figure 7 Crystal structure of [Ni11(TENTRA)4Cl2](9), without the solvent of crys-
tallisation or counterions.54 

 
 

 Extended metal atom systems with partial ligand-support may also be 
generated from dinuclear units. These structures may be homo-55 (figure 8) or 
heterometallic56 (figure 9) in nature. For example [Rh2(Et2Biim)Cl2(CO)4] (10) self-
assembles via non-covalent interactions into homometallic chain. The 
[{Rh2(ACAM)4}3{Pt2(OPIV)2(NH3)4}4](ClO4)8 heterometallic chain consists of self-
assembled [Rh2(ACAM)4]3 and [Pt2(OPIV)2(NH3)4]4 units (11). 

 

 
 

Figure 8  Extended homometallic chain of [Rh2(Et2Biim)Cl2(CO)4] (10).55  
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Figure 9 Heterometallic one-dimensional chain structure of 
[{Rh2(ACAM)4}3{Pt2(OPIV)2(NH3)4}4](ClO4)8 (11). 56 

 
 

In addition to chain structures containing -donor ligands, there are published 
examples of sandwich-type compounds with -coordinating ligands, such as ar-
omatic and highly conjugated olefins.57 Again the topology and length of metallic 
backbone is influenced  by the sterical and conformational factors of the ligands 
and the number of -donors (double bonds). 58 

In summary, depending of the number of donor atoms, substituents in 
ligands, and chosen metal, different EMACs with varying nuclearities are 
achieved. Nuclearities range from tri- to polynuclear compounds. As with coor-
dination polymers, due to stability and solubility factors, the synthesis and char-
acterisation of these compounds present challenges for research on extended 
metal systems. 



Interactions of metal atoms in which the distance of two metal centres is 
shorter than Van der Waals radii in extended arrays59 are affected by valence 
shell electron configuration. Transition metal cations with open valence d- shell 
configurations are typically systems where the interaction of metal centres has a 
noticeably or substantially covalent character.60 Approaching pseudo-closed or 
closed shell configurations (d8, d10, and s2),61–63 the nature of bonding interactions 
of transition metal cations converges with attractive non-covalent interactions. 
Pseudo shell configuration d8 express metal-metal interactions in square-planar 
complexes. This is influenced by strong field ligand which effect on the splitting 
of d-orbitals.64 The most common geometries in monomeric units that will self-
assemble and form direct ligand un-supported metal-metal interactions are lin-
ear65 and square-planar.66 Moreover, multinuclear units such as dimers may crys-
tallise to form extended metal-metal interactions, as presented previously in fig-
ure 8. In this thesis, the focus is pseudo- or closed shell interactions.  

The origins of the research on attractive interactions of closed shell species 
are under discussions. The earliest suggestion about the mechanism was pro-
posed by Hoffmann in the late 1970s, based on computations of Cu(I)-Cu(I) di-
mers in which hybridisation interactions of higher non-occupied (n+1)s and dz2 
orbitals occurred.67 Different views were developed later on. In the 1990s, com-
putational studies conducted by Pyykkö et. al. concluded that attractive metal-
metal interaction is heavily influenced by electron correlation with relativistic ef-
fects without a hybridisation component. The attractive interaction can be de-
scribed in terms of dispersion interactions as well.68 It was shown that this expla-
nation applies especially for group 11 transition metal species with a closed shell 
configuration.69 

A feature commonly observed in transition metals, in particular, is relativ-
istic effects. The most important fact to be considered in formation of metallo-
philic interactions is orbital contraction. Due to relativistic effects, the radial orbit 
of the electron is contracted and relative orbital energies are affected. The strong-
est contraction is observed in s-orbitals; it lowers the relative energies of s- and 
also p- orbitals.70 This results in smaller energy differences between bonding 
HOMO d-orbitals and non-bonding LUMO s-orbitals. Thus, relativistic effects 

2 METAL-METAL INTERACTIONS 



 

 

20 

will impact the formation and strength of metal-metal interactions. Other factors 
such as orbital interactions and Pauli repulsion will also have an impact on the 
generation of metal-metal interactions.71  

In short, the formation of metal-metal interactions is a complex phenome-
non with several contributing factors. In general, interaction is formed when 
metal centres approach a sub sum of Van der Waals distance, and initially formed 
occupied bonding and antibonding orbitals interact with low-lying valence or-
bitals. This results in a stabilisation of unoccupied orbitals, which in turn stabi-
lises the whole system. Thus attractive metallophilic attraction is formed.64 Illus-
tration of the valence electron structure of generic homometallic dinuclear metal-
metal interaction is shown in figure 10b. Figure 10a represents a situation in 
which no metal-metal interactions are present.  

 
 

 
Figure 10 Schematic representations of the valence shell interactions of homome-
tallic dinuclear metal-metal interactions. a) Schematic valence shell structure 
without metal-metal interactions. b) Valence shell orbital interactions when 
metal-metal interactions are present. Note that the relative orbital energies are 
not scaled.64 

 
 

Experimental and theoretical methods are used for analysing non-covalent inter-
actions. One of the most utilised experimental methods for solid state structures 
is the determination of intermolecular distance from single crystal x-ray structure. 
Generally, if the distance of metal centres in monomeric units in the solid state 
structure is sub sum of the Waals radii, metal-metal interactions may exist.72,73 
The concept of the Van der Waals radius is not straightforward, however. Radii 
may be defined in several ways, resulting in varying values. For instance Bondi’s 
Van der Waals radii for Cu is stated as 1.4Å, compared to Alliger’s 2.26Å.74  
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Spectroscopical methods such as uv-vis33, Raman75, or NMR76 may also be 
utilised to confirm the presence and nature of intermetallic interactions. QTAIM 
has been also been used to interpret non-covalent interaction in descriptions of 
the electron-density topology of the systems in question.77 Another method used 
to interpret actual electron density distribution is NCIPLOT, in which the identi-
fication of non-covalent interaction is based on a reduced electron-density gradi-
ent.78 

2.1 Optical properties  

Metal-metal interactions can be detected by optical experiments. For example, 
monomeric Pt(II) square-planar transition metal complexes, with terdentate lig-
ands may express triplet state ligand-centred (3LC), ligand-to-metal (3LM), and 
metal-to-ligand (3ML) charge transfer states. Additionally, ligand-to-ligand-
charge-transfer (LLCT) may occur.79 Polymerization of  monomeric complexes 
via self-assembly into larger aggregates in co-operation with non-covalent metal-
metal interaction may result in spin forbidden metal-to-metal-to-ligand charge 
transfer phosphorescence (MMLCT). As stated previously, MMLCT can be de-
scribed as an interaction in which adjacent metal centres’ dz2orbitals overlap, 
forming bonding and antibonding -orbitals. The energy gap between formed 
orbitals correlates strongly with intermetallic metal-metal separation.80 Typically, 
emissions are located in the red region of the emission spectra.81 Emission ener-
gies can be modified through the tuning of previously mentioned metal-metal 
interactions; this is seen, for example, in polymorphic structures.82 For instance, 
a one-dimensional diamine bis( -acetylide) complex containing Pt-Pt interac-
tions was published by Kang et al. in 2016. Depending on the solvent of crystal-
lisation, either metal-  (dimethylsulfoxide or acetonitrile) or Pt-Pt interactions 
(dichloromethane) were achieved which affected the photophysical behaviour of 
the complexes. This was seen especially in solid state. According to the authors, 
the dimethylsulfoxide adduct expressed low-energy MLCT due to strong -  
stacking interactions around 510-800 nm. When comparing the emission proper-
ties of DCM adduct, the authors observed similar emissions of 670 and 761 nm 
and attributed them to MMLCT, due resulted from infinite platinum metal chain 
structure.83   

 

2.2 Tuning optical properties by modifying metal-metal interac-
tions 

Ligand substitution has an effect on metal-metal interactions and optical 
properties, such as the emissions and color of the compound. The substitution 
effect may be divided into two aspects: electronic effects and steric effects. Elec-
tronic effects of metal-metal interactions may be examined by adding electron- 
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withdrawing or -donating substituents to ligand structures, as presented in work 
published Sluch et. al. in 2012. It was found that in [Pt(CNR)Cl2] complexes, with 
R either being either an electron donor or an -acceptor substituent, electron-do-
nating groups yielded shorter intermetallic Pt-Pt contacts and red-shifted emis-
sions compared to compounds with electron-withdrawing substituents. Sterical 
effects were investigated by utilising a bulky p-tolyl ligand, which yielded elon-
gated stacks of monomeric complexes without any signifying intermetallic con-
tacs.34  
The electronic effects of electron- withdrawing substituents may decrease the 
coulombic repulsion of metal centres; this leads to shorter metal-metal distances 
and increases the strength of metal-metal interactions, as seen in a study pub-
lished in 2018. In that particular study, in Rh(I) complexes with an electron-with-
drawing substituent, decorated terpyridine ligands were prepared. It was found 
that electron-withdrawing units may have affected the self-assembly process of 
monomeric units by inducing -stacking of ligand and substituent moieties and 
reducing the coulombic repulsion of metal centres. Thus, intermetallic metal-
metal separation was affected, and the lowest energy emission signal appeared 
in the red area of the VIS-spectrum.84 Moreover, other crystal packing factors, 
such as counter ions85 and secondary non-covalent interactions,86,87 affect the for-
mation of metal-metal contacts and the MMLCT properties in polymeric struc-
tures as well. 

 

2.3 Copper, silver and gold metallopolymers 

Metal-metal contacts of group 11 transition metals are called cuprophilic88 
(Cu), argentophilic89 (Ag), and aurophilic65 (Au) interactions; these are com-
monly termed metallophilic interactions. As mentioned previously the strength 
of metallophilic interaction is associated with relativistic effects. Thus, the inter-
action strength is said to be increased going from copper to gold.90 

One of the first papers on a compound characterised with x-ray crystallog-
raphy containing ligand-supported copper-copper interactions was published as 
early as the 1960s.91 An extensive mini-review article on inter- and intramolecular 
interactions focusing on ligand-supported systems was presented in Chemistry: 
A European Journal in 2019.  This review states that cuprophilic interactions can 
occur when intermetallic Cu-Cu contact is sub sum of the Van der Waals radii of 
1.96 Å.62 The value of 1.96 Å for Cu is obtained from Hu et. al. and derived from 
single covalent radii of the atom in question.74 Attractive cuprophilic interaction, 
which counters coulombic repulsion, is argued to form by hybridisation. 4s and 
4p orbitals form admixtures to 3d orbitals92, which, in turn, transform repulsion 
to attraction interaction.93 

  It is stated that Cu(I) monomeric complexes aggregate via formation of cu-
prophilic interactions, typically with ligand-bridging metal centres.94 This pro-
cess is affected by ligands’ steric and electronic factors as well as additional donor 
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ligands.35 Most ligand-supported structures are polydentate nitrogen or phos-
phorus donor ligands.62 There are a plethora of structures containing sulphur do-
nor ligands, in which linear extended structures are sparce.95 Utilising thiourea 
as a ligand, Taylor, Jr., et al. synthesised a dinuclear thiourea bridged compound 
with Cu-Cu separation of 2.839 Å, presented in figure 11:[Cu2(N,N-dimethylthi-
ourea)6][BF4]2 (12). Similar structures have been obtained with dimethylthiourea 
as well.96 Additionally a N,S donor ligand97 and mixed-ligand approach with S-
donor ligands and a halide ion98 have been applied in the synthesis of dinuclear 
Cu species. 

 

 
Figure 11 Dinuclear [Cu2(N,N-dimethylthiourea)6][BF4]2 (12) containing metal-
metal contact obtained with the utilisation of bridging ligand. Counter ions (BF4-) 
have been omitted for clarity.96 

 
 

Ligand-unsupported structures, i.e., structures without ligands in a bridging co-
ordination mode, are infrequent. Often, secondary non-covalent interactions 
such as -interactions and hydrogen bonding support copper-copper interac-
tions.99  

Van der Waals contact distance for silver has been estimated to be 3.44 Å by 
Bondi.100 One of the latest reviews on this topic was published by Schmidbaur in 
2015. Argentophilic interactions are shown to exist with various coordination ge-
ometries due to the flexible coordination geometries of silver. Assessment of ar-
gentophilicity and metal-metal interactions in general is challenging in ligand-
supported structures. The review states that argentophilic interaction may be 
present in structures with metal contacts with sub sum of the Van der waals radii 
of 3.44 Å. It is stated that unsupported metal centres often yield shorter contacts 
than ligand-supported ones. Additionally, the effect of ligand to Ag-Ag distances 
is often challenging to predict; hence, assessing whether argentiphilic interaction 
is present is problematic. The reason why this interaction is counterintuitive is 
that cationic centres in close proximity should express coulombic repulsion, even 
if the charge distribution is localised towards ligands. As in the case of cuproph-
ilic interactions, aggregation in ligand-unsupported silver complexes may self-
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assemble into supramolecular structures via formation of argentophilic interac-
tions.101 Linear extended structures are sparse. One-dimensional structures with 
Ag-Ag contacts have been achieved, for example, by the utilisation of multiden-
tate N-donor atoms containing ligands. In [Ag2(μ-TPP)2][BF4]2· 0.3MeNO2 
(13)(figure 12.), the arrangement of the ligand is helical; i.e., the ligand wraps Ag 
atoms to form a linear chain.102,103, silver-silver intermetallic contact values vary 
from 2.909 Å to 3.066 Å.  

 

 
Figure 12 Continuous Ag-Ag chain in [Ag2(μ-TPP)2][BF4]2· 0.3MeNO2 (13). Coun-
ter ions have been omitted for clarity.102 

 
 

A one-dimensional chain structure with S-donor containing ligand was pub-
lished in 2002 by Su et. al.; in this structure, pyridine-2-thiol was utilised as the 
ligand. In the structure of ([Ag(SPyH)2]BF4)n (14), silver atoms had tetrahedral 
coordination sphere and coordinated with the S-donor of the ligand, producing 
cationic polymeric structure. Intermetallic Ag-Ag separation was found to vary 
from 2.799 Å to 2.989 Å in solid state structures, measured at room temperature 
(figure 13.)104 

 

 
Figure 13 Continuous one-dimensional Ag polymer ([Ag(SPyH)2]BF4)n (14). 
Counter ions have been omitted for clarity.104 
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The literature states that if Au-Au separation in solid state structure is in the 
range of 2.5-3.5 Å, there is a possibility of aurophilic interactions.105 Aurophilic 
interaction is regarded as a d10- d10 dispersion106 interaction, in which relativistic 
effects strengthen the interaction of ionic Au-centres.107 This interaction strength 
can be comparable to a hydrogen bond.108 It can be utilised as a tool in crystal 
engineering, producing 3D crystalline assemblies from one-dimensional struc-
tures.109 It is known that secondary non-covalent interactions co-operate with au-
rophilic interactions in the self-assembly process.110 [Au(2-SPyH)2]ClO4- (15) , a 
pentanuclear complex (figure 14), was published in 1990. In this complex, hydro-
gen bonding to counter ion (ClO4-) and - interactions cause steric hinderance. 
The hinderance prevents the formation of a continuous polymeric structure.111  

 
Figure 14 [Au(2-SPyH)2]ClO4- (15) complex with aurophilic interactions co-oper-
ating with secondary non-covalent interactions. Au-Au intermetallic contacts of 
3.3 Å.111 

 
 

Aurophilicity has been observed in ligand-supported as well as ligand-unsup-
ported chain- or cluster structures.105 Additionally, aurophilicity has been used 
in the fabrication of functional soft materials, metallogels.112,86 It has been ob-
served that there is an inverse relation between the strength of aurophilic inter-
action and intermetallic Au-Au separation. In 2004, Coker et. al. published a 
study in which ligand-unsupported  [Au(SCN)2]- structures with several counter 
ions and decreasing Au-Au separation yielded blue-shifted lowest energy emis-
sion signals.113 Polymorphs with varying Au-Au separation may be distin-
guished by emission spectroscopy.114  

2.4 Rhodium metallopolymers

One-dimensional polymers with direct Rh···Rh interactions are obtained via the 
self-assembly of mononuclear44 square planar d8 Rh(I) complexes or dinu-
clear115,116 ligand-supported complexes. Ligand-unsupported structures typically 
contain -acceptor ligands such as carbonyl117 to stabilise the low-oxidation state 
and prevent oxidative addition reactions. In mononuclear complexes, square-
planar geometry is often obtained by using chelating aromatic ligands, typically 
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contain N84 or O45 donor atoms,  in addition to monodentate nitriles118 and isocy-
anides.119 Some examples from the literature that are related to the experimental 
work of this thesis are presented in the next paragraphs. (The examples were ob-
tained via structure searches via The Cambridge Crystallographic Data Centre, 
CCDC.) The main focus here is on one-dimensional structures with metal-metal 
contact distances and possible metal-metal-metal angles, for purposes of compar-
ison later on in the experimental part of the thesis.  

Few one-dimensional rhodium polymers with 2,2’-bipyridine are found in 
the literature. Unsubstituted 2,2’-bipyridine yielded a neutral one-dimensional 
chain via reductive carbonylation of RhCl3, reported by Laurila et al. A chain 
structure of [Rh(bpy)(CO)2][Rh(CO)2Cl2]n (16) is presented in figure 15; it consists 
of cationic [Rh(bpy)(CO)2]+ and anionic [Rh(CO)2Cl2]- units with Rh-Rh distance 
of 3.317 Å in between monomeric units. Rh-Rh distance of 3.412 Å was found 
amid intermolecular units. The presence of non-covalent Rh-Rh interaction was 
confirmed by QTAIM analysis.44 As shown by Conifer et al., substitution of the 
2,2’-bipyridine ligand may affect the charge state of monomeric unit, thus affect-
ing the charge state of the polymeric framework. In that study, 6,6’-dihydroxy-
2,2’-bipyridine produced a cationic chain structure with Rh-Rh distances varying 
from 3.329 Å to 3.282 Å.120  

 
 
 

 
Figure 15 Neutral one-dimensional chain structure [Rh(bpy)(CO)2][Rh(CO)2Cl2]n 
(16) polymer.44  

 
 

One-dimensional rhodium bi-imidazole carbonyl compounds containing Rh-Rh 
interactions have been prepared with methods similar to those used for unsub-
stituted 2,2’-bipyridine, as presented by Laurila et. al. Reductive carbonylation of 
RhCl3 with dimethyl-2,2’-biimidazole yielded cationic 1D stacks of 
[Rh2(Me2Biim)(CO)4Cl2]+ ·EtOH (17). Rh-Rh distances was found to vary from 
3.388 Å to 3.441 Å in two crystallographically independent chains. Cl- and 
[Rh(CO)2Cl2]- balanced the charge of the polymeric chain. Introduction of addi-
tional counterions such as NO3- and BF4- produced similar chain structures with 
Rh-Rh distances of 3.238 Å (NO3-) and 3.272 Å (BF4-), respectively. It is concluded 
by the authors that the geometry of the counter ion affected the packing of the 
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cationic unit, causing differences between the Rh-Rh distances in the chain struc-
tures.115 It is also possible to form one-dimensional structures from dinuclear 
monomeric units, as shown in a further study conducted by Laurila. The study 
revealed that alkyl (methyl, ethyl and propyl) substituted 2,2’-biimidazoles 
yielded polymers via self-assembly from dinuclear units (figure 16) with intra-
molecular Rh-Rh distances ranging from 3.209 Å (methyl), to 3.147 Å (ethyl), to 
3.178 Å (propyl). Intermolecular distances of 3.604 Å (methyl), 3.435 Å (ethyl), 
and 3.440 Å (propyl) were observed in the study. Rh-Rh-Rh angles were found 
to range from 163.2 ° (methyl) to 179.5 ° (propyl).55  

 

 
Figure 16 [Rh2(Me2Biim)(CO)4Cl2]+ ·EtOH (17) chain structure consisting of self-
assembled dinuclear monomers. Solvent of crystallisations and counterions have 
been omitted for clarity.55  

 
 

Computational studies showed the relation between intramolecular Rh-Rh dis-
tance and attractive metallophilic interactions via the optical behaviour of the 
compound. In this case, which involves the reduction of intermetallic Rh-Rh dis-
tances of [Rh(biim)CO2] and similar complexes containing substituted bi-imidaz-
oles, it was found that attractive interaction of Rh-centers appeared as a red shift 
of the absorption signal. The red shift of the lowest energy-absorption signal was 
explained as a decrease of HOMO (metal center dz2) and LUMO (bi-imidazole 
orbitals) gaps in complexes containing unsubstituted bi-imidazoles.  

Square-planar rhodium complexes with linear arrangement have also been 
achieved by using substituted or unsubstituted terdentate terpyridines contain-
ing acetonitrile36, halide121, or carbonyl122 ligands. A rhodium terpyridine halide 
complex, with and without 4’- substituents, was reported by de Pater et al. in 
2004. It was found by the authors that in rhodium complexes with unsubstituted 
terpyridine and chloro-ligand, with no observable contacts was found. Substitu-
tion of 4’-position with t-butyldimethylsilyl-o-carboranyl was found to affect the 
packing of monomeric complexes into dimeric units, with hydrophobic car-
borane and hydrophilic solvated chloride phases forming Rh-Rh contacts. Rh-Rh 
distance within the dimer was observed to be 3.150 Å.121  

Inoki et. al. published in 2012 a dinuclear rhodium terpyridine complex 
with terminal acetonitrile ligands and trifluoromethanesulfonate as a counter ion. 
Later, the same authors pubished a compound with formula of 
[Rh4(Trpy)4(MeCN)4](CF3SO3)4·MeCN (18) and Rh-Rh distances ranging from 
3.070 Å to 3.152 Å. The Rh-Rh-Rh angle was found to be 172.2 °. The structure 
was found to contain the solvent of crystallisation (acetonitrile) as well as two 
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charge-balancing trifluoromethanesulfonate ions.36 The solid state structure 
[Rh4(Trpy)4(MeCN)4](CF3SO3)4·MeCN (18) is shown in figure 17. 

 
 

 
Figure 17 Solid state structure of [Rh4(Trpy)4(MeCN)4](CF3SO3)4·MeCN (18), 
where co-crystallants have been omitted for clarity.36  

 
 

Polymeric one-dimensional stacks [Rh(Trpy)CO]CF3SO3·MeCN (19) (figure 18), 
with Rh-Rh contacts in solid state, was published by Kwun-Wa Chan et al. in 
2016. It was found by the authors that monomeric square-planar carbonyl units 
formed two crystallographically independent chains with the solvent of crystal-
lisation and trifluoromethanesulfonate counter ions. Rh-Rh distances and angles 
in the solid state structure was observed to be nearly identical in both chain struc-
tures (chain 1: 3.349-3.326 Å, 160.42 °; chain 2: 3.348-3.326 Å, 160.09 °).122  

 

 
Figure 18 Solid state structure of [Rh(Trpy)CO]CF3SO3·MeCN (19). Left: chain 2; 
right: chain 1. The solvents used for crystallisations and counter ions have been 
omitted for clarity.122  
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2.5 Platinum metallopolymers 

Platinum-platinum interactions have been known since the 1800s due to the dis-
covery of Magnus green salt.40 Magnus salts are examples of polymeric material 
with monodentate ligands. The crystal structure reveals that closely spaced plat-
inum centre distances are 3.25 Å41; these distances allow for the formation of 
metal-metal interactions and aggregation into polymeric compounds.46 The 
properties of green salt, such as deep green color, are altered when the metal-
metal interactions are modified. Such modification can be seen as a change in 
intermetallic platinum-platinum distances.41 The effect of tuning metal-metal in-
teractions can be seen in Magnus’s pink salt, which is an isomer consisting of 
square-planar [Pt(NH3)4] and [PtCl4] units. Single-crystal x-ray data from pink 
salt are not available due to instability and the conversion of pink salt material to 
green salt. However, from powder x-ray crystallography, it is concluded that the 
intermetallic platinum-platinum separation in the solid state is 5 Å.47 

In addition to monodentate ligands, chelating polydentate ligands are uti-
lised to form square-planar platinum complexes, which further self-assemble 
into one-dimensional chain structures containing Pt-Pt contacts. For example, 
terpyridines have been utilised in the formation of square-planar monomeric 
complexes that self-assemble into structures containing dinuclear or polymeric 
Pt-Pt contacts.123,124,125 One of the shortest contact distances is found in dimeric 
[Pt(Trpy)Cl]ClO4 (20), with a Pt-Pt distance of 3.269 Å; further, optical studies 
revealed metal-metal interaction (3MMLCT) in the dimeric product.126 A com-
pound with a one-dimensional chain structure [Pt(Trpy)Cl]PF6· MeCN (21), and 
continuous Pt-Pt contacts was synthesised by Zhang et al. in 2014. [Pt(Trpy)Cl] 
cation was self-assembled  into continuous chains containing an outlying PF6- 
anion and the acetonitrile solvent of crystallisation. In this case it was found that 
chain structure was pseudolinear. Pt-Pt contact was found to be 3.362 Å with 
contact angle of 157.18 °.82 (figure 19). The presence of Pt-Pt interactions in both 
compounds was studied with TD-DFT. It was found that the increase of absorp-
tion in visible light in the acetonitrile adduct was caused by MMLCT, in which 
antibonding dz2 and the terpyridyl -orbital energy gap was reduced; the com-
pound expressed a red-shifted absorption signal compared with a compound 
without the acetonitrile solvent. 
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Figure 19 Chain of [Pt(Trpy)Cl]PF6· MeCN (21). The solvent of crystallisation and 
counter ion have been omitted for clarity.82  

  
 

Janzen et. al. published the solid state structure of red [Pt(Trpy)Cl]Cl·2H2O (22). 
The polymeric structure contained a pseudolinear Pt-Pt chain with a typical 
‘head-to-tail’ arrangement of chlorido ligand and terpyridine ligand (figure 20). 
In this case, the crystal packing is affected by the formation of hydrogen bonding 
between the solvent of crystallisation and the outlying counter ion, Cl-. Pt-Pt dis-
tances were shown to be 3.328 Å and 3.444Å124. Additionally, an orange poly-
morph existed without Pt-Pt contacts. Hence compounds containing Pt-Pt dis-
tances in either dinuclear or polynuclear arrays affect the color of the compound 
in question. Color change is related to intermetallic distances and thus interac-
tions of metal centres in solid state structures. 

 

 
 

Figure 20 ‘Head-to-tail’ chain structure of [Pt(Trpy)Cl]Cl·2H2O (22), which is a 
red crystalline material and a polymorphic structure containing continuous Pt-Pt 
interactions. The solvent of crystallisation and counter ion have been omitted for 
clarity.124 
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2.6 Applications 

Compounds with metal-metal backbone express intriguing properties due to the 
metal-metal interactions. Properties are influenced by modification of these 
metal-metal interactions in the backbone. Potential properties such as conductiv-
ity127, magnetism128, photoluminescence65, and catalytic activity129 can be utilised 
in molecular electronics130 and vapochromic sensors.131 In addition, compounds 
with metal-metal contacts have shown to have biological activity vis-à-vis cancer 
cells. These are typically dinuclear Rh,Re and Ru compounds with rather strong 
bonding interactions.132   

Structurally extended metal atom chains are analogous to electric wire. The 
core consisting of closely spaced metal atoms is surrounded by insulating ligands, 
which guide the direction of possible conduction.133 Tuning the conductive prop-
erties is performed by modifying the interactions of metal ions of the backbone 
via axial ligands and the selection of transition metals. Kai-Neng Shih et al. show-
cased the effect of ligands on conductivity through the tuning of d-electron cou-
pling in [Ru3(DPA)4X2] complexes, where x corresponds to thiocyanate or cya-
nate terminal ligands. It was shown that single-molecule conductivity clearly in-
creased when terminal thiocyanates were changed to cyanate ligands. This find-
ing was reached through calculations of the result of a stronger ligand field effect, 
which affected the relative energies of frontier molecular orbitals and the 
strengths of axial-ligand–dependent metal-metal interactions.20 It is established 
that bond orders of metal centres indicate the degree of delocalisation of electrons 
and the strength of electron transport in the direction of the M-M backbone. This 
was shown, for example, in a study conducted by Ting et. al., where oligo- -pyri-
dylamine complexes of Co, Ni, and Cr ([MxL4(NCS)2] where x=3-7) with different 
bond orders ranging from 0 to 1.5 were synthesised and the conductivity was 
measured.  Conductivity was found to increase when the bond order decreased 
from 1.5 in the Cr-containing complex to 0.5 with a Co backbone and 0 with a Ni-
core.134  

In a way that is similar to these conduction properties, compounds with 
closely spaced metal atoms in linear arrays can express photophysical properties 
such as luminescence. In the literature, there are examples of structures that 
range from smaller discrete ligand-supported dinuclear135 units to extended lig-
and-unsupported polymers.136 Typical metals in homometallic compounds are 
from d-block, and in the heterometallic case d- and f-block metals have been used 
to form functional emitting material.137 The tuning of emissive properties in solid 
state has been accomplished by modifying the coordinating ligands. In a study 
by Sluch et. al., the emission energy of platinum aryl isocyanide complexes was 
found to shift according to substituent changes in the aryl fragment of the ligand. 
Adding methyl substituents resulted in red shift, and electron- acceptor groups 
resulted in a opposite shift of the lowest energy-emission signal.34    

It has been shown that extended systems with metal backbone are able to 
participate in catalytic reactions, such as hydroformylation and the reverse wa-
ter-gas shift reaction, among others. [Ru(CO)4]n was shown to catalyse a one-pot 
reverse water-gas shift reaction, coupled with hydroformylation, in a study by 
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Laurila et. al. According to this study, the Ru catalyst did not retain an extended 
framework; it thus acted as a precursor complex in catalysis.138 

These complexes are typically stimuli-responsive optical materials (VOCs 
and mechanical stress, for example), which change the photophysical behaviour 
and color of the compounds. For example, a change in the photophysical proper-
ties of polymeric Pt(II) complexes containing metal-metal interactions arises from 
changes in interactions of metal centres. This can be seen as a bathochromic shift 
of the lowest energy signal that is affected by the strength of metal-metal inter-
actions. Thus, it is possible to perform a differentiation, in the aggregation state, 
of Pt complexes with metallophilic interactions.139 Similar photophysical behav-
iour has been observed in other polymeric compounds containing metal-metal 
interactions or bonds. Mochida and Tominaga, for example, reported square pla-
nar Rh(I) isocyanide complexes with bulky counter ions that expressed similar 
photophysical behaviour, which was affected by the aggregation of monomeric 
units.119  



3.1 Aims of the work 

The focus of this thesis was the development and fine-tuning of synthetical 
procedures to obtain linear and one-dimensional polymeric compounds 
containing a sub sum of Bondi’s Van der Waals radii intermetallic contacts. Two 
approaches were utilised. In the first approach, a bridging ligand was used to 
bring metal centres into close proximity and allow the formation of metal-metal 
interactions. The second approach utilised the self-assembly of square planar 
units via non-covalent interactions, such as hydrogen bonding and - and 
fluorine interactions, to enable close packing of monomeric units to form metal-
metal contacts in polymeric structure. 

In the first paper, the aim was to produce polymers with metal-metal 
interactions via the self-assembly of bridging pyridine-4-thiol and group 11 
transition metals. Pyridine-4-thiol was selected due to its ditopic nature as well 
as its polarisability. One-dimensional and continuous compounds were of special 
interest, because, according to the CSD, such structures are scarce. 

In the second paper, the effect of 4,4’-disubstitution of 2,2’-bipyridine with 
an electron-donating and poor-hydrogen bonding methyl substituent for solid 
state structures, versus a hydrogen-bonding amine substituent, were investi-
gated. Additionally, crystallisation conditions impact on the self-assembly pro-
cess was of interest, as was the formation of intermetallic metal-metal contacts in 
rhodium carbonyl polymers. Previous research on this topic utilising 2,2’-bipyr-
idine presented polymeric structures with only 6,6’-disubstituted groups. The ef-
fect of non-covalent interaction on the self-assembly of polymeric structures was 
thus investigated. 

Finally, in the third publication, the goal was to synthesise luminescent 
polymeric materials with Pt-Pt contacts. The aim was to synthesise square-planar 
monomeric units that would self-assemble, in co-operation with non-covalent 
interactions, into infinite one-dimensional structures. Fluorinated terpyridine 
was chosen as a ligand to promote the formation of square-planar geometry as 
well as fluorine-fluorine interactions.  

3 RESULTS AND DISCUSSION 
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3.2 Metal-metal contacts in polymeric copper, silver and gold thi-
ols 

Pyridine-4-thiol was chosen as a ligand due to its ditopic and tautomeric nature 
as well as its anionic (figure 21) form. It contains exocyclic sulphur and 
endocyclic nitrogen donors. Anionic form of pyridine-4-thiol was employed to 
control the charge state of obtained compounds. This was performed by 
modification of reaction conditions. The S-donor was particularly of interest due 
to the softness of the donor and its potential bridging coordination mode with 
Cu(I) and Ag(I) metals. Soft group 11 transition metals were utilised as metals 
because of the known formation of metallophilic interactions.  

 There are one-dimensional structures containing pyridine-2-thiol as a lig-
and; thus, a similar pyridine-4-thiol was used as the ligand. As a ligand, pyridine-
4-thiol has been previously utilised with several metals (Cu, Ag, Rh and Ru), with 
the charge state varying from neutral to anionic. Additionally, oxidation that 
forms disulphide bonds occurs. The main structure types are cages and clusters, 
and cyclic and dimer structures have also been known to occur.  

  

 
 

Figure 21 Schematic presentation of pyridine-4-thiol and its forms. A and B are 
tautomeric stuctures and C deprotonated form.147 

 
  
Three polymeric compounds were prepared: [Cu2(SpyH)4]2+n with a ZnCl42- 

anion (23), [Ag2(SpyH)2(Spy)2]n (24), and [Au(SpyH)2]n+ with a Cl- counter ion 
(25). In general the syntheses of these polymeric compounds with metal oxida-
tion of (I) can be described as follows: the ligand and metal salt are dissolved 
separately in chosen solvents. The solution containing the ligand is combined 
with the metal salt solution dropwise, with vigorous stirring. The silver polymer 
is obtained as a crystalline material through evaporation of the reaction solvent 
(24). In the case of copper polymer (23), product form crystalline material when 
counterion (ZnCl42-) is formed via solvent diffusion of ZnCl2 containing solution 
and reaction mixture. Similarly, Au polymer form crystals via solvent diffusion 
method by layering the metal salt and ligand solutions (25).  
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The reaction conditions had an influence on the charge state of the formed 
polymeric compounds. In the case of compounds [Cu2(SpyH)4]2+n (23) and 
[Au(SpyH)2]n+ (25), cationic polymers were produced without any addition po-
tassium hydroxide. Addition of potassium hydroxide to the reaction mixture 
produced a neutral polymer [Ag2(SpyH)2(Spy)2]n (24), due to the partial deproto-
nation of pyridine-4-thiol ligands that yielded anionic moieties. 

 The oxidation state of (I) in [Cu2(SpyH)4]2+n (23) was obtained via an in situ 
reaction of Cu(II)Cl2 and pyridine-4-thiol. The oxidation of pyridine-4-thiol 
yielded 4,4’-dipyridyldisulfide, and Cu(II) was reduced to Cu(I) ions. This 
method was utilised due to the low solubility of Cu(I)Cl salt with respect to var-
ious organic solvents. The yield of [Cu2(SpyH)4]2+n (23)  was found to be at 44%.  
The solid state structure of 23 is presented in figure 22. In the obtained structure, 
the metal centres were coordinated with bridging pyridine-4-thiol. Intrametallic 
Cu··· Cu (23) separation was measured at 2.6241 (6) Å - 2.6283(6) Å. In compari-
son with the example studied in literature item 12, the obtained metal-metal dis-
tance is clearly contracted (in item 12, the Cu-Cu distance was found to be 2.839 
Å). The polymeric chain in compound 23 is cationic. The ligand is tautomerised 
via the migration of the proton from S- to the N-donor. Compensating for the 
charge of cationic polymer, the ratio of monoanions and Cu centres was found to 
be 1:1. The ZnCl42- anion was found to be hydrogen-bonded to the dangling pyr-
idine-4-thiol ligand and the solvent of crystallisation. 

 

 
Figure 22 The solid state structure of [Cu2(SpyH)4]n2+ (23). Solvent of crystallisa-
tion and counter ion ZnCl42- have been omitted for clarity. 

 
The MS-QTOF CID experiment confirmed the polymeric nature of the compound, 
showing fragments of Cu+Cun(Spy)n in which n ranges from 3 to 6. The spectrum 
is presented in figure 23.   
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Figure 23 MS-QTOF CID spectrum for compound 23 where the polymeric nature 
of the structure is seen as increasing fragment sizes. Reproduced with permission 
of Elsevier Masson SAS. 

 
 

Compound 24 contains a neutral polymeric isostructural solid state structure 
(figure 24) versus compound 23’s chain structure, which is the result of a reaction 
condition modification with a strong mineral base. Every other ligand in the solid 
state structure is deprotonated and thus anionic, balancing the charge of the 
metal centres. The absence of a charge-countering ion due to partial ligand depro-
tonation in compound 2 enables more efficient packing, i.e. a linear polymeric 
chain instead of a pseudolinear structure as in compound 23. Ag···Ag contacts 
were found to be 3.1939(2) Å- 3.1940(2) Å. As stated in section 2.3, when metal-
metal separation is less than 3.44 Å, there are potentially metallophilic interac-
tions. In compound 14, with a similar structure and containing pyridine-2-thiol, 
Ag-Ag distance was found to vary from 2.799 Å to 2.989 Å. No solvent of crystal-
lisation was present in the solid state structure. 

 

 
Figure 24 Structure of [Ag2(SpyH)2(Spy)2]n 24. Every other nitrogen ion is 
deprotonated in the structure, yielding neutral metallopolymers.  

 
 

The bridging coordination mode of pyridine-4-thiol ligand is not present in the 
solid state structure of compound 25 (figure 25); this is result from oxidation state 
of Au(I). Au(I) complexes follow 14 electron rule and is 2-coordinate in contrast 
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to Cu(I) and Ag(I). Cationic [Au(SpyH)2]+ forms a one-dimensional linear stack 
with charge-balancing chloride ions. The contact distance of Au was found to be 
3.4277(2) Å. Examples of structure (15) in the literature containing pyridine-2-
thiol had Au-Au contacts of 3.3 Å and were tetranuclear in nature. The mono-
meric unit was characterised via a positive polarisation MS-QTOF experiment 
(figure 26). In all, the structure’s secondary bonding interactions, such as -stack-
ing, support the polymeric structure and metal-metal contacts. 

 
 

 
 

Figure 25 Chain structure of [Au(SpyH)2]n+ 25 with Au-Au contacts. Counter ions 
have been omitted for clarity.  

 

 
Figure 26 MS-QTOF positive polarisation exact mass spectrum for compound 25. 
Reproduced with permission of ELSEVIER.

 
 

All structures contained aligned metal centres with contact distances below the 
sum of Van der Waals radii. This usually is a good indication of metal-metal in-
teractions in ligand-unsupported structures. In the case of polymeric structures 
where the ligand brings metal atoms in close proximity, assessing the possibility 
of metal-metal interaction using only intermetallic distance is challenging. Hence 
additional experimental measurements, such as measurements of conductivity, 
and theoretical tools from computational chemistry are needed. 

Computational chemistry was utilised to gain information about metal-
metal interactions and electron-density distribution in polymeric systems. Mod-
els for the calculation were obtained from experimental solid state structures.  
Computations were performed by DFT with the M06 functional.140 Basis sets for 
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all atoms were set as DZP-DKH.141–143 Electron-density topology analyses were 
performed via the QTAIM144 method. Bond critical points were found in struc-
tures 23 and 25; such points have been used as an indication of metal-metal in-
teractions between metal centres in polymeric structures. No BCPs were found 
in structure 24, even though the distance of Ag centres is below the sum of Van 
der Waals radii. These results showcase the challenges of relying on bond length 
criteria (sub sum of Bondi’s Van der Waals radii), the impact of bridging coordi-
nating ligand on metallophilicity, and QTAIM analysis for characterisation of the 
presence of metal-metal interactions. Computations suggested that there are no 
interactions between Ag centres in compound 24, despite the Ag-Ag distance 
begin a sub sum of Bondi’s Van der Waals radii. This can be regarded as a good 
example of contradictory results from computational chemistry versus the anal-
ysis of solid state structure and distance criteria, when it comes to the possibility 
of metal-metal interactions.   

In copper-based polymers, the metal-metal contacts have a considerably co-
valent nature, given the|G(r)|/V(r) parameter derived from computational re-
sults. This parameter is ratio of potential energy density and kinetic energy den-
sity. Using this formulation, non-covalent interactions(r)|/V(r)>1 and for con-
siderable covalent character in bonding interactions(r)|/V(r)< 1. Metal-metal 
contacts in compound 25 are typical interactions of a non-covalent nature, where 
|G(r)|/V(r) equals to 1. These findings are confirmed by the interaction energies 
of the metal-metal contacts in compounds 23 versus 25, those energies having 
been derived via two different approaches (Espinosa and Vener). The interaction 
energies of the metal-metal contacts in compounds 23 and 25 are in good corre-
lation with the computational data: 5.7-10.7 kcal/mol in compound 23 and 3.0-
3.5 kcal/mol in compound 25.145,146 

   
 

3.3 Rhodium-Rhodium contacts of self-assembled of square pla-
nar rhodium carbonyl complexes 

The effects of 4,4’-disubstitution in 2,2’-bipyridine on the self-assembly and for-
mation of metal-metal contacts in square-planar rhodium bipyridine carbonyl 
polymers were investigated. Substituents were chosen according to hydrogen-
bonding ability and electronic effect. Rhodium bipyridine carbonyl compounds 
were synthesised in accordance with procedures outlined in the literature: 
namely, with one-pot reductive carbonylation of RhCl3·xH2O with varying reac-
tion times and cooling rates. Slow cooling of the reaction vessel produced crys-
talline material from the products. The ligands used in this project were 4,4’-di-
methyl-2,2’-bipyridine (LMe) and 4,4-diamino-2,2’-bipyridine (LNH2). 

Polymeric structures with close metal-metal contacts were obtained in three 
products consisting of either altering cationic ([Rh(L)(CO)2]+) and anionic 
([Rh(CO)2Cl2]-) or purely cationic complexes: neutral 
([Rh(LMe)(CO)2][Rh(CO)2Cl2])n (26), trinuclear chain 
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([Rh(LMe)(CO)2][Rh(CO)2Cl2][Rh(LMe)(CO)2]n)([Rh(CO)2(Cl)2])n) (27), and cati-
onic stacks (  [Rh(CO)2Cl2])n EtOH (28). Additionally, a product 
containing metal-  contacts in a cationic polymeric structure of 
([Rh( )(CO)2])n([Rh(CO)2Cl2])n (29) was achieved.  

The solid state structure of compound 26 (figure 27) shows a packing of 
square-planar units into one-dimensional stacks. Two crystallographically inde-
pendent chains are present due to differences in the packing of stacks. Chain A 
is packed more efficiently than chain B; this is seen in difference between Rh-Rh 
distances and Rh··· Rh··· Rh angles in 1D stacks. In chain A, Rh-Rh contacts are 
3.3581(2) – 3.4038(2) Å and Rh··· Rh··· Rh angle 169.98(1) °. Differences in packing 
efficiency are seen in the elongation of Rh-Rh distances; for chain B, these dis-
tances are 3.3692(2) – 3.4172(2) Å. Simultaneously, the Rh··· Rh··· Rh angle is de-
creased to 166.03(1). Close Rh-Rh contacts implicates potential metal-metal inter-
actions in this structure. A one-dimensional rhodium chain44 has been previously 
published utilising unsubstituted 2,2’-bipyridine. This chain was presented in the 
introductory section as compound 16. The Rh-Rh distances in compound 16 vary 
from 3.317 Å to 3.412 Å; compared to compound 26’s metal-metal separations, 
these measurements are very similar. The Rh··· Rh··· Rh angle of 16 was observed 
to be 170.93 °, which is closer to the Rh-Rh angles in chain A. The deviation of the 
Rh-Rh angle in chain B as compared with the value of 16 is due to less efficient 
crystal packing. 

 
 

 
 

Figure 27 Solid state structure of compound 26 with two crystallographically in-
dependent chains.  

 
 

Compound 27 (figure 28) consists of trinuclear units which pack to form a chain 
structure. Intermetallic Rh-Rh contacts in trinuclear unit range from 
Rh··· Rh··· Rh 3.2299(12) to Rh··· Rh··· Rh 3.2798(11) Å, and intermetallic 
Rh··· Rh distance was found to be 3.9690(13) Å. Additionally, counter ion 
[Rh(CO)2Cl2]- formed a linearly assembled stack adjacent to the trinuclear chain 
with a Rh··· Rh contact of 3.6198(17) Å. The Rh-Rh angles of the intrametallic 
metal centres ranged from 162.36(4) to 166.97(4) °. Further, adjacent trinuclear 
cationic units were tilted with respect to each other, having an Rh··· Rh··· Rh 
angle of 149.44(4) °. The interactions of trinuclear units and linearly assembled 
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counter ions are weak. As in compound 26, the close contacts of Rh1, Rh2, and 
Rh3 in the trinuclear units enable potential metal-metal interactions of metal cen-
tres. In this case, the Rh-Rh contacts are contracted slightly compared to the ex-
ample discussed in literature item 16. Compared with compound 16, the angle of 
the intermetallic metal centres is increased, whereas, due to the tilt of cationic 
units, the angles of the metal centres are decreased. 

 
Figure 28 Chain structure of compound 27 with counter ions stacking with each 
other adjacent to the polymeric chain.  

 
 

The cationic polymer structure of compound 28 (figure 29) contained Rh··· Rh 
contacts with a distance of 3.5216(10) Å with Rh··· Rh··· Rh angle of 155.76(3). 
Counter ions were located adjacent to the chain structure. Compared to com-
pound 26, the Rh-Rh distances are elongated, and the monomeric units were 
packed less efficiently. This was seen in the decrease of the Rh··· Rh··· Rh angle, 
since the value of this angle was found to be 155.76(3) °. Metal-metal contacts in 
the polymeric framework were due to the formation of hydrogen bonding of the 
amino substituent to the solvent of crystallisation, with donor-acceptor distances 
from 2.80(2) to 2.83(3) Å. This strong interaction affected the self-assembly pro-
cess by directing anionic units further away from the cationic centres, enabling 
the formation of metal-metal contacts and potential metal-metal interactions. It 
is expected that these possible metal-metal interactions will be weak, due to the 
elongated Rh-Rh distances.  

Metal-metal contacts in the polymeric structure are typically supported by 
secondary bonding interactions. This situation was found to apply in all of the 
cases where metal-metal contacts were present.  
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Figure 29 One-dimensional chain structure of compound 28 containing metal-
metal contacts due to hydrogen bonding of the amino substituent to the solvent 
of crystallisation. 

 
 

A cationic polymeric structure with metal-  contacts was obtained when hydro-
gen bonding of the amino substituents to the solvent of crystallisation was not 
present, as seen in compound 29 (figure 30). Here, only hydrogen bonding to the 
counter ion located adjacent to the polymeric chain was observed. Hydrogen-
bonding distances were found to vary from 3.272(2) Å to 3.669(3) Å. These dom-
inating directional bonding interactions affected self-assembly via sterical effects, 
hindering close packing of the metal centres. Thus the monomeric units self-as-
sembled into a chain structure via metal-  interactions. Interaction distances of 
metal-  contacts were found to vary from 3.392(2) Å to 3.601(2) Å. 

 

 
 

Figure 30 Chain structure of compound 29, with metal-  interactions forming a 
cationic polymer.  

 
 

To conclude, as seen from the structures 26 and 27-29, the self-assembly of 
square-planar rhodium carbonyl monomers may be influenced by the selection 
of substituents. If a poor hydrogen-bonding substituent is chosen, it is more likely 
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to obtain structures with metal-metal contacts containing cationic and anionic 
counterparts in the polymeric framework. If a good hydrogen-bonding substitu-
ent is part of the ligand structure, a competition between hydrogen bonding and 
other non-covalent interactions, such as metal-metal interactions, will affect self-
assembly. Here, it is challenging to predict outcomes, but it seems that cationic 
polymers will be produced. In any case, it is difficult to control the self-assembly 
so that metal-metal contacts will form. The strength of the potential metal-metal 
interactions thereby formed is also difficult to assess based only on intermetallic 
distances. 

 

3.4 Pt-Pt contacts of square-planar platinum  perfluoroterpyridine 
complexes  

 
The formation metal-metal contacts in the self-assembly of square-planar plati-
num chloride based complexes with perfluorinated and alkylated terpyridines 
was investigated. Platinum was chosen due to optimal square planar geometry 
with d8-configuration, luminescent properties expressed complexes of platinum, 
and the potential for formation of metal-metal interactions. Two compounds 
were synthesised: compound 30 containing a perfluorinated alkyl chain, and 
compound 31 with the alkyl chain as a substituent.  

Both compounds crystallised as yellow needles. Single crystal x-ray diffrac-
tion revealed that compounds 30 and 31 contain square planar dimeric units with 
platinum-platinum contacts. For 30 (figure 31), Pt-Pt distance is 3.4096(5) Å; for 
31 (figure 32), it is 3.3031(2) Å. -interactions are supporting non-covalent Pt···Pt 
contacts. The charge of the monomeric units is compensated for with solvated 
chloride-ion in both structures. In comparison with examples in the literature of 
similar assemblies, the Pt-Pt contacts of 31 are close to the intermetallic distances 
of 21 (Pt-Pt distance of 3.362 Å), in which the presence of Pt-Pt interactions was 
confimed by DFT calculations. The Pt-Pt distances of compound 30 are compara-
ble with those of compound 22, presented in the introductory part of this thesis.  

 

 
Figure 31 Solid state structure of compound 30. Disordered fluorine-atoms have 
been omitted for clarity.  
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Figure 32 Structure of compound 31.  

 
 

Dinuclear units formed polymeric structures via metal- - contacts with adjacent 
units’ terpyridine moieties. The packing of polymeric chains formed fluorous 
(compound 30) or hydrophobic (compound 31) phases due to the formation of 
non-covalent interactions of sidechains. Additionally, channels filled with solv-
ated counter ions formed (figure 33). Crystalline yellow material transformed 
into red amorphous powder, as was confirmed by powder x-ray crystallography. 
This was a consequence of ethanol evaporation from the crystal structure. No 
definite structure for red powder was determined. However, there are reported 
cases of platinum terpyridine compounds in which an isomorphic structure cor-
relates with different arrangement of platinum-platinum contacts and col-
our.123,124 
 

 
Figure 33 Top: packing of compound 30; bottom: packing of compound 31. Sol-
vent accessible channels are filled with the solvent of crystallisation—namely, 
ethanol. Reproduced with permission from the Royal Society of Chemistry. 
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In order to gain more insight into the intramolecular metal-metal interac-
tions, optical studies were performed. Both compounds 30 and 31 were found to 
express intriguing photophysical properties in the solid (30 and 31) and gel (30) 
states.  Solid state measurement of reflectance (figure 34b) of the transformation 
from yellow crystalline material to air-dried red amorphous powder (figure 34a) 
revealed a red shift from ≈515 nm to ≈530 nm in both compounds 30 and 31. 
Additionally, an even stronger red shift was observed with the vacuum-dried red 
material. A yet more drastic shift was observed in the reflectance of compound 
30. Similarly, a red shift of emissions (figure 34c) in the transformation from yel-
low crystals to red amorphous powder was observed. It is known that the for-
mation of metal-metal interactions alters photophysical behaviour. This may be 
seen as a change of MLCT to MMLCT bands. In the case of compound 30, the 
photophysical behaviour, i.e. red shift reflectance, may be accounted for by 
MMLCT bands. 

 
 

 
Figure 34 Top: compound 30; bottom: compound 31. a) Images of compounds in 
solid state forms; b) reflectance spectra; and c) normalized emission spectra. Re-
produced with permission from the Royal Society of Chemistry. 

 
 

It was found that compound 30 acted as a metallogelator in polar organic solvents. 
DMSO in higher weight/volume % concentrations than 0.6. 1 w/v% gel was 
found to produce a gel to sol (figure 35) transformation (from red gel to yellow 
solution) at 69 °C. Compound 31, by contrast, formed an unstable gel in ethanol 
with 1.5 w/v%. This difference in gel stabilities indicated that the main driving 
force of gelation can be the formation of these fluorine-fluorine interactions in co-
operation with other non-covalent interactions such as metallophilic attraction, 
versus the formation of hydrophobic interactions.  
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The absorption spectrum (figure 35, solid lines) of 0.6 w/v% gel was ex-
pressed as a abs=500 nm band at 25 °C, whose intensity decreased with increas-
ing temperatures. Correspondingly, in the emission spectra (figure 34, dashed 
lines), the lowest energy-emission band of em=640 nm blue shifted upon heating 
to 25 °C, and reached a value of em=600 nm. Thus, both the absorption and the 
emission behaviour correlate well with results from the solid state measurements. 
Hence, the bands at abs=500nm and em=600 nm are due to MMLCT, which is, in 
turn, dependent on temperature and the aggregation of complexes.  In short, ab-
sorption and emission spectroscopy is useful method for analysing the potential 
presence of metal-metal interactions. To conclude, results indicate presence of 
metal-metal interactions. 

 

 
Figure 35 Left: images of solution and 0.6 w/v% gel from compound 30. Right: 
absorption (solid lines) and emission spectra (dashed lines) of 0.6 w/v% gel from 
compound 30. Reproduced with permission from the Royal Society of Chemistry. 

 
To further elaborate the impact of fluorophilic interactions to gelation of com-
pound 30, variable temperature 19F NMR of 1 w/v%  gel and IR spectroscopy of 
1 w/v% gel, 0.4 w/v% solution as well as solid forms were performed. 19F NMR 
revealed changes in fluorophilic interactions upon heating gel sample from 30 ° 
C up to 90 ° C which was seen as chemical shift value changes ranging from 0.15 
ppm to 1.61 ppm. Additionally signal appearance turned from broad and fea-
tureless (30 ° C) to sharp (90 ° C). Moreover, comparison of chemical shift values 
of dilute and concentrated solution revealed similar fluorine environments. This 
suggests that in gel state, the observed 19F signals are from moieties which are 
not incorporated in supramolecular gel structure.  
The presence and strength of fluorophilic interactions was estimated with IR 
spectroscopy experiments which revealed that strength of interactions decrease 
gradually from solid (1144 cm-1) to gel (1148 cm-1) and solution (1153 cm-1). 
The colour of the gel obtained from compound 30 corresponded to that of the 
solid amorphous powder. Thus absorption and emission studies were conducted 
with the intention of analysis on platinum-platinum interactions in the gel state 
as well. 

Surface studies with electron microscopy (SEM and TEM) were also per-
formed to get more insight into the morphological features of the supramolecu-
larly arranged fibres. SEM studies of aerogel obtained from compound 30 in 
DMSO by a freeze-drying method revealed helical fibres with right- and left- 
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handedness (figure 36). Both types of handedness are present due to the achiral 
gelator. TEM (figure 37) imaging of 1 w/v% gel showed that these fibres formed 
interconnected fibril structures.  

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 36 SEM image of 1 w/v% gel obtained from compound 30 in DMSO. Re-
produced with permission from the Royal Society of Chemistry. 

 
 
 

 
 

Figure 37 TEM image of 1 w/v% gel showing interconnected fibrils. Reproduced 
with permission from the Royal Society of Chemistry. 

 
 
The rheological (figure 38), i.e. mechanical, properties of the 1 w/v% gel prepared 
from compound 30 in DMSO were also investigated. These measurements con-
cluded that compound 30 indeed formed gel material with DMSO (figure 38a). 
The presence of junctioned networks was confirmed by the frequency sweep 
method together with the SEM results. A sweep strain experiment was per-
formed to determine the critical-strain value, that is, the point at which gel struc-
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ture breaks (figure 38b). The rapid-self-healing property of the material was con-
firmed by the step-strain method (figure 38b). Robustness and thermoreversibil-
ity (figure 38d) were confirmed by a temperature sweep cycle experiment.  

 

 
Figure 38 Summary of rheological experiments performed on 1 w/v% gel de-
rived from DMSO. a) frequency sweep, b) strain sweep, c) step-strain and d) tem-
perature sweep experiments. Reproduced with permission from the Royal Soci-
ety of Chemistry. 
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SUMMARY AND CONCLUSIONS 
 

In this thesis, the synthesis and structural characterisations of metallopolymers 
(compounds 23-28 and 30-31) containing close metal-metal contacts were inves-
tigated. Computational studies (QTAIM) of 23-25 provided information about 
the bonding interactions in closely spaced metal centres in the polymeric struc-
ture. In addition to solid state studies, gas phase mass spectrometry (collision 
induced dissociation spectrum) was utilised to determine the polymeric nature 
of compound 23 as well as accurate masses for compounds 25, 30, and 31. The 
coordination mode of carbonyl ligands and the presence of moisture in the sam-
ples were investigated with IR spectroscopy in the case of compounds 26 and 27. 
The reflectivity of the solid state samples of 30 and 31, coupled with absorption 
and emission spectroscopy of obtained gel from compound 30 in DMSO, was 
utilised to obtain information about non-covalent Pt-Pt interactions in these 
states. Electron microscopy, in addition to rheological measures of gel material 
obtained with compound 30, afforded insight into the fiber structure and me-
chanical properties of the material in question. 

The purpose of this study was to synthesise metallopolymers with close 
metal-metal contacts in solid-state structures containing group 11, Rh, and Pt 
transition metals. In each project, close meta-metal contacts were achieved. In 
copper and gold thiols as well as platinum terpyridine chloride complexes, the 
existence of metal-metal interactions was proved, whether computationally (23, 
25) or spectroscopically (30 and 31). Spectroscopy was found to be a useful 
method for the revealing of metal-metal interactions in platinum terpyridine 
chloride complexes in solid and gel states. 

Regarding the remaining compounds, the presence of metal-metal interac-
tions is speculative. According to the solid state structure, intermetallic separa-
tions are a sub sum of Van der waals radii, suggesting metal-metal interactions. 
Other methods should be applied to confirm the existence of these non-covalent 
interactions, as was done in the case of polymeric pyridine-4-thiols. Computa-
tions suggested that no metal-metal interactions were present in compound 24, 
which is very similar in structure to 23 and features a sub sum of Van der waals 
radii. These results highlight the challenge of relying on only the solid state char-
acterisation and the bond length criteria for detection of the presence of metal-
metal interactions. Thus in the case of rhodium bipyridine carbonyl polymers, it 
is assumed that potential metal-metal interactions are present. 

As the study demonstrates, rational ligand choice for the synthesis  and tun-
ing of compounds containing metal-metal contacts is crucial. The importance of 
the choice of ligands for synthesis purposes is especially apparent in polymeric 
metal thiols. The utilisation of ligands with ditopic and tautomeric properties in 
addition to a soft bridging donor atom is justified. The bridging coordination 
mode is particularly important in the synthesis of copper and silver thiols. As 
with the group 11 thiols, the use of fluorinated terpyridine ligands to prepare 
metal-metal contact containing platinum based polymers is an example of ra-
tional ligand choice. The formation of secondary non-covalent fluorine-fluorine 
interactions of ligand substituent yielded Pt-Pt contacts in the solid state struc-
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ture, even though interaction is dinuclear in single crystal form. However spec-
troscopical studies of these complexes (especially 30) suggested potential poly-
nuclear metal-metal contacts and interactions in bulk powder and gel state.   

The tuning of metal-metal contact distances, potential metal-metal interac-
tions, and the overall structure of metallopolymers is affected by ligand structure. 
This is seen in the synthesis of rhodium bipyridine carbonyl polymers. Small 
changes in ligand substituent properties, such as the replacement of non-hydro-
gen-bonding by hydrogen-bonding substituents, will have an impact on the over-
all structure (cation-anion versus cationic stacks) and metal-metal contact dis-
tances in the polymer. In this case, the tuning of metal-metal contacts is achieved 
by affecting the formation of potential secondary non-covalent interactions. In 
the absence of a hydrogen-bonding substituent, cation-anion arrangements with 
metal-metal contacts are observed. If the substituent is replaced with a hydrogen-
bonding one, cationic stacks with metal-metal contacts and hydrogen bonding to 
the solvent of crystallisation were observed. Without hydrogen bonding to the 
solvent of crystallisation, no metal-metal contacts were observed.  

Overall, the thesis has demonstrated the importance of rational ligand 
choice and design for the synthesis and tuning of metal-metal contacts containing 
late transition metal polymers. It has been shown that from a synthesis point of 
view, properties of metals such as available coordination geometries and oxida-
tion states have to be considered carefully—in order for products containing 
metal-metal contacts to be obtained. Additionally, the ligand substituent influ-
ence on competing secondary non-covalent interactions has to take into concid-
eration. This was shown especially in the case of self-assembly process in rho-
dium bipyridine carbonyl polymers. Moreover, it was demonstrated that the uti-
lisation of self-assembly strategies for the construction of compounds with metal 
contacts is highly influenced by the competition among individual non-covalent 
interactions. Hence, rational ligand choice and design, with a view towards min-
imising competing secondary non-covalent interactions in the self-assembly pro-
cess, could provide one path towards the creation of functional polymeric mate-
rials with metal contacts. 
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a b s t r a c t

Three polymeric group 11 transition metal polymers featuring metallophilic interactions were obtained
directly via self-assembly of metal ions and 4-pyridinethiol ligands. In the cationic [Cu2(S-pyH)4]n2þ with
[ZnCl4]n

2� counterion (1) and in the neutral [Ag(S-py) (S-pyH)]n (2) 4-pyridinethiol (S-pyH) and its
deprotonated form (S-py) are coordinated through the sulfur atom. Both ligands are acting as bridging
ligands linking the metal centers together. In the solid state, the gold(I) polymer [Au(S-pyH)2]Cl (3)
consists of the repeating cationic [Au(S-pyH)2]

þ units held together by aurophilic interactions. Com-
pound 1 is a zig-zag chain, whereas the metal chains in the structures of 2 and 3 are linear. The pro-
tonation level of the thiol ligand had an impact on the crystallization of polymers. Both nature of the
metal center and reaction conditions affected the polymerization. QTAIM analysis confirmed direct
metal-metal contacts only in polymers 1 and 3. In polymer 2, no theoretical evidence of argentophilic
contacts was obtained even though the Ag,,,Ag distance was found to be less than sum of the Bondi's
van der Waals radius of silver.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Metallopolymers is a class of compounds that covers a wide
range of metal containing polymeric systems [1]. The structures
vary from mainly organic polymers with metal centers in the main
or side chain, to systems with direct covalent metal-metal bonds
[2a,b,c,d], and non-covalent metallophilic assemblies of metal
species [2e,f,g,h]. The motivation for preparation of metal-
lopolymers lie in their versatile properties, such as conductivity [2i]
and photophysical properties [3] as well as their magnetic [4] and
catalytic [5] behavior. These properties determined applications of
metallopolymers such as photovoltaic cells, catalysts and light
emitting devices [1e5].

In most cases, the key properties arise from the interactions
between metal centers [6a,b,c]. These interactions can be achieved
by linking metal centers together with a suitable (usually conju-
gated) ligands and building coordination polymers [6d]. Another
approach is to exploit direct metal-metal contacts. These contacts
can either be covalent metal-metal bonds or non-covalent metal-
lophilic contacts [6e]. Polymeric transition metal systems that have

only covalent metal-metal bonds between the repeating units are
relatively rare [2b,d]. More commonly, metal-metal contacts are
further supported by suitable multidentate ligands that can force
metal centers close to each other. Multidentate nitrogen ligands are
widely used supporters [6f, g,h,2h]. However, metals can also be
brought together by single atom bridges. Simple bridging ligands
such as halides, pseudo halides or sulfur containing ligands can be
used in this type of systems [7]. In metal thiols and closely related
coordination compounds, the soft sulfur atom is readily available
for coordination and capable to act as bridging atom through its
free electron pairs [8a-d]. Usually, thiol ligands can be relatively
easily modified to adjust their electronic and steric properties.
Because of this adjustability, thiols are excellent components for
coordination chemistry [8e-i]. Heterocyclic thiols provide particu-
larly versatile group of thiol ligands [9e12].

The 4-pyridine thiol is one of the commonly used heterocyclic
thiol ligand. It can exist in different tautomeric forms, thiol (A),
thione (B) and zwitterionic (C) forms (Fig. 1).

Removal of the NH proton from 4-pyridinethiol opens up a
possibility to use both of softer sulfur and harder nitrogen for co-
ordination. Therefore, pyridinethiols have drawn attention as po-
tential ambidentate ligands [13] exhibiting interesting
spectroscopic [14a] and electrochemical [14b] behavior. Due to
exocyclic sulfur and heterocyclic nitrogen donor, pyridine thiols
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have also been successfully exploited as ditopic ligands [15] for
oligomeric and polymeric metal systems. Polynuclear species
combining different metals by thiols have been used for example in
catalytic [16a], pharmaceutical [16b], biochemical [16c], lumines-
cent [16d], and magnetic [16e] materials and also as precursors for
silver chalconides [16f]. One of the potential applications of thiols is
to use them as supporting single-atom linking ligands in metal-
lophilic polymers.

Metallophilicity can be described as attraction between closed
shell or pseudo closed shell d10 or d8 transition metal cations [17a].
Strength of a metallophilic interaction is typically comparable to
hydrogen bonds and it is clearly stronger than van der Waals in-
teractions [17a]. Metallophilic interactions have been widely
studied by the means of spectroscopic techniques [17a,6c],
computational chemistry [17b-e] and structural studies [17f,g].
Metallophilicity is considered to be mainly a dispersion force with
electron correlation effects [18]. Structurally metallophilicity can
favor formation of various extended polynuclear structures
including dimers, 1D chains, 2D sheets, 3D networks or molecular
aggregates [19].

In this paper, we describe generation of linear and pseudolinear
group 11 metallopolymers supported by sulfur coordinated 4-
pyridinethiols. The primary goal was generation of novel metal-
lophilic interactions due to application of the thiols that serve as

molecular staples bringing together twometal atoms. The impact of
the metal center and reaction conditions to the formation of
polymers and their solid state structures are also briefly discussed.

2. Materials and methods

2.1. General remarks

Reagents were used as received. Acetonitrile andmethanol were
HPLC grade. Purity of ethanol and dichlromethane were 99.5%.
NMR spectra were recorded with a Bruker 500 MHz NMR with
BBFO probe under ambient conditions. Mass spectra were
measured on an ABSciex QSTAR Elite ESI-Q-TOF MS.

2.2. X-ray structure determinations

The crystals of [Cu2(S-pyH)4]n [ZnCl4]n (1), [Ag(S-py) (S-pyH)]n
(2), and [Au(S-pyH)2]Cl (3) were immersed in cryo-oil, mounted in
a MiTeGen loop and measured at 120e170 K. The X-ray diffraction
data were collected on an Agilent Technologies Supernova or an
Bruker AXS KappaApex diffractometers using Cu Ka (l¼ 1.54184 Å)
or Mo Ka radiation (l ¼ 0.70173 Å). The CrysAlisPro [20] or Denzo/
Scalepack [21] program packages were used for cell refinements
and data reductions. The structures were solved by charge flipping
method using the SUPERFLIP [22] program or by direct methods
using SHELXS-2014 [23] program. An empirical absorption
correction based on equivalent reflections (CrysAlisPro [20] or
SADABS [24]) was applied to all data. Structural refinements were
carried out using SHELXL-2014 [23] with the Olex2 [25] and
SHELXLE [26] graphical user interfaces. In 1, the NH and OH
hydrogen atoms were located from the difference Fourier map but
constrained to ride on their parent atoms, with Uiso ¼ 1.5 Ueq
(parent atom). In 3, the NH hydrogens were located from the dif-
ference Fourier map and refined isotropically. All other hydrogens
were positioned geometrically and constrained to ride on their
parent atoms, with CeH ¼ 0.98e1.00 Å, NeH ¼ 0.88 Å, and
Uiso ¼ 1.2e1.5 Ueq (parent atom). The crystallographic details are
summarized in Table 1.

Fig. 1. Schematic representation of tautomeric forms of 4-pyridinethiol.

Table 1
Crystal data for 1e3.

1 2 3

empirical formula C22H26Cl4Cu2N4O1S4Zn C10H9AgN2S2 C10H10AuClN2S2
Fw 824.96 329.18 454.74
temp (K) 123 (2) 170 (2) 120 (2)
l(Å) 1.54184 0.71073 1.54184
cryst syst Monoclinic Orthorhombic Monoclinic
space group P21/n Ibam P21/c
a (Å) 10.0163 (3) 12.1624 (6) 16.9203 (6)
b (Å) 10.0845 (3) 13.7874 (10) 11.3649 (5)
c (Å) 29.8809 (13) 6.3879 (4) 6.7730 (3)
a (deg) 90 90 90
b (deg) 95.051 (3) 90 99.647 (4)
g (deg) 90 90 90
V (Å3) 3006.54 (19) 1071.17 (12) 1284.02 (10)
Z 4 4 4
rcalc (Mg/m3) 1.823 2.041 2.352
m(Mo Ka) (mm�1) 8.656 2.234 26.271
No. reflns. 12623 7680 5014
Unique reflns. 6128 849 2585
GOOF (F2) 1.022 1.126 1.072
Rint 0.0926 0.0640 0.0961
R1a (I � 2s) 0.0347 0.0253 0.0381
wR2b (I � 2s) 0.0878 0.0615 0.0918
Largest diff. peak and hole eÅ�3 0.589/-0.633 0.457/�0.517 1.811/�1.340

a R1 ¼ SjjFoj e jFcjj/SjFoj.
b wR2 ¼ [S[w (Fo2 e Fc2)2]/S[w (Fo2)2]]1/2.
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2.3. Mass spectrometry

Mass spectrometry experiments were performed on ABSciex
QSTAR Elite ESI-Q-TOF mass spectrometer equipped with an API
200 TurboIonSpray ESI source from AB Sciex (former MDS Sciex) in
Concord, Ontario (Canada). The samples for the MS measurements
were prepared either by dilution in MeCN (1, 12.9 mM) or MeOH (3,
concentration unknown due to low solubility). The samples were

injected into the ESI source with a flow rate of 5 ml/min. The pa-
rameters were optimized to get maximum abundance of the ions
under study. Room-temperature nitrogenwas used as nebulization.
The measurement and data handling was accomplished with An-
alyst® QS 2.0 Software. Mass spectra were externally calibrated by
ESI Tuningmix (Agilent Technologies). The compositions of the ions
were verified by comparing experimental m/z values and isotopic
patterns with the theoretically calculated. In CID experiments, low
resolution isolation in quadrupole Q1 was performed and the iso-
lated ions were activated by CE-values from 10 to 40. nitrogen was
used as a collision gas in the Q2 quadrupole (5.0 psi) and the
product ions were detected by TOF scans.

2.4. Computational details

The single point calculations for model clusters has been carried
out at the DFT level of theory using the M06 functional [27] (this
functional describes reasonably weak dispersion forces and non-
covalent interactions) with the help of the Gaussian-09 [28] pro-
gram package. The experimental X-ray geometries were used as
starting points. The calculations were carried out using DZP-DKH
basis sets [29] for all atoms. No symmetry operations have been
applied. The topological analysis of the electron density distribu-
tion with the help of the atoms in molecules (QTAIM) method
developed by Bader [30] has been performed by using theMultiwfn
program (version 3.3.4) [31]. The Cartesian atomic coordinates of
the used model structures presented in the supporting material.

2.5. Syntheses

The aim of this study was to study possibilities to obtain met-
allopolymers that contain metallophilic contacts via self-assembly
of metal-ions and the ligand. Thus, reactions were not optimized
for maximum yields and purities. According to the 1HNMR (Figs. 1
and 2 in ESI), the crude products of 1 and 3 contained unreacted 4-
pyridylthiol, 4,4’-dipyridyldisulfide, and 4-pyridylsulfide as the
main impurities. 1H NMR spectra also revealed presence of residual
solvents in the crude product. 1H NMR spectrum of product 3 shows
second order 1H coupling and differ from previously reported
chemical shifts due to solvent effects. Because of decomposition of
3 in DMSO the 1H NMR was measured in 4-d MeOH. The silver
polymer 2was insoluble in most common solvents and no 1H NMR
spectrum in solution could be obtained. ATR-IR analysis was
performed for polymer 2 (Fig. 4 in ESI).

2.6. [Cu2(S-pyH)4]n [ZnCl4]n (1)

A solution of CuCl2$2H2O (0.06 mmol, 10 mg) in MeCN/EtOH
mixture (3:1 ratio, 3 mL) was added to a solution of 4-pyridinethiol
(0.3 mmol, 33 mg) in 3 mL of same solvent mixture. The reaction

Fig. 2. Top: The asymmetric unit of [Cu2(S-pyH)4]n [ZnCl4]n. The thermal ellipsoids are
drawn at the 50% probability level. Bottom: The chain structure of 1. The solvent of
crystallization and the courter anions have been omitted for clarity. Color codes for
atoms in the figure are: H (white), C (gray), N (blue), O (red), Cl (green), S (yellow), Cu
(Orange), and Zn (violet). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Scheme 1. Synthetic routes to 1e3.
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mixture was stirred for 5 min. Additional 5 mL of solvent mixture
was added to the reaction flask cautiously without mixing until two
distinct layers of solutions was formed. ZnCl2 (0.12 mmol, 16 mg)
was dissolved in 9mL of 3:1 solventmixture of acetonitrile/ethanol.
Solution containing zinc chloride was then carefully added to the
reaction mixture and the flask was closed with a rubber septa and
the solution was left to stand at room temperature. X-ray quality

yellow orange crystals were obtained within three days directly
from the reaction mixture. Crystals were filtered and washed 3
times with 1 mL of 3:1 acetonitrile/ethanol mixture and dried
under vacuum overnight. The crude solid product of complex 1
contained residues crystallization solvents EtOH, MeCN, and water.
Several crystals of 1 were analyzed by single-crystal X-ray diffrac-
tion and in these structures the ratio of solvents of crystallization
varied depending on the drying time. The best structure solution
was obtained from a crystal that incorporated only disordered
EtOH. The sample used for the elemental analysis, in turn, con-
tained only MeCN. That was confirmed by 1H NMR. The yield of 1
was 44% (20.4mg). 1H NMR (MeOD): 8.54 (d, 2H, J¼ 6.6 Hz), 8.62 (d,
2H, J ¼ 6.4 Hz). Elemental analyses calc. for [Cu2(S-pyH)4]n2þ

[ZnCl4]n2� ∙ 0.5 MeCN C: 31.55%, H: 2.71% and N: 7.88% found C:
31.35%, H: 2.88% and N: 7.55%.

2.7. [Ag(S-py) (S-pyH)]n (2)

AgNO3 (0.09 mmol, 15 mg) was dissolved separately in 3 mL of
acetonitrile and 4-pyridinethiol (0.3 mmol, 33 mg) in 5 mL of
ethanol. Concentrated KOH solution was prepared by weighing
0.538 g of KOH in 5 mL of water. Concentrated KOH solution (4 mL)
was added into ligand solution to make the solution clearly basic.
The Ag containing solution was then added rapidly to the basic
ligand solution and the mixture was stirred overnight at room
temperature. During this time the color of the reaction mixture
turned from colorless to orange yellow. Small amount of precipitate
formed during stirringwas removed by filtering and the filtrate was
left standing in a vessel closed with septa. The crystalline yellow
orange product was obtained from the filtrate at room temperature
within aweek. The yield of 2was 83% (24.6mg). Elemental analyses
calculated for [Ag(S-py) (S-pyH)]n C: 36.48%, H: 2.76% and N 8.51%
found C: 36.45%, H: 2.97% and N 8.64%.

2.8. [Au(S-pyH)2]Cl (3)

The organic ligand, 4-pyridinethiol (0.09 mmol, 10 mg), was
introduced in 8 mL of dichloromethane and stirred for 1 h until it
was completely dissolved. AuCl (0.02 mmol, 5 mg) was dissolved in
2 mL of acetonitrile and the metal solution was carefully layered
onto the ligand solution after which the reaction vial was closed
with septa. X-ray quality yellow crystals were formed within two
weeks. Crystals were filtered, washed three times with 2 mL of
acetonitrile and dried under vacuum overnight. The crude product
of 3 contained always traces of water even if the X-ray structure did
not contain water of crystallization. NMR spectrum of compound 2
confirms presence of water in the sample. The product was not
stable enough to be heated in vacuum. The yield of the product 3
was 30% (2.7 mg). 1H NMR (MeOD) 8.03 (d, 4H, J ¼ 7.1 Hz), 7.97 (d,
4H, J ¼ 7.1 Hz). MS þ TOF 418.99m/z. Elemental analyses calculated
for [Au(S-pyH)2]Cl$H2O C: 25.41%, H: 2.56% and N: 5.93% found C:
25.66%, H: 2.24% and N: 5.94%.

3. Results and discussion

The general syntheses routes to compounds 1e3 are summa-
rized in Scheme 1. Complexes [Cu2(S-pyH)4]n [ZnCl4]n (1) and
[Ag(S-py) (S-pyH)]n (2) were prepared by dissolving metal salt and
ligand separately in different solvents and then adding the metal
complex solution into the solutions of the ligand (Scheme 1). The
crystalline [Au(S-pyH)2]Cl (3) was obtained by the layering metal
containing acetonitrile solution onto the dichloromethane solution
of the ligand. In the case of the Au complex, the product was ob-
tained when the solutions were slowly mixed.

In the synthesis of silver system, 2, additional KOH was needed

Fig. 3. The ESI-QTOF MS spectrum of 1 in MeCN. Inset showing the comparison be-
tween experimental and theoretical (red dotted lines) isotopic distribution for the [(S-
Py)4Cu4 þ Cu]þ (C20H16N4S4Cu5

þ). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 4. Top: The repeating unit of 2. The thermal ellipsoids are drawn at the 50%
probability level. Bottom: The polymeric chain structure of 2. Color codes for atoms in
the figure are: H (white), C (gray), N (blue), S (yellow), and Ag (gray). (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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for deprotonation of 4-pyridinethiol ligand. The positive charges of
the metal centers were balanced by the deprotonated S-py�ligands.
To obtain crystalline neutral polymer, half of the thiol ligands had to
be deprotonated. With copper (1) and gold (3), high quality crystals
of the cationic products could be obtained without any deproto-
nation of the ligands. In these cases the positive charges of the
metals were balanced by counter anions [ZnCl4]2� (1) and Cl� (3).

3.1. Cationic copper polymer [Cu2(S-pyH)4]n
2þ (1)

Several counterions including PF6�, trifluoromethanesulfonate
and lithium tetrakis (pentafluorophenyl)borate ethyl etherate
were tested for crystallization of positively charged polymeric
[Cu2(S-pyH)4]n2þ (1) but high quality crystals were obtained only
by using [ZnCl4]2� anion. Similar dinuclear Cu structure with
chloride ion balancing the charge of the complex has been pre-
viously reported [32] but polymeric chain has remained unknown

until now. In the polymeric structure of 1, the copper(I) centers
are linked together by two S-coordinated 4-pyridinethiol ligands
(S-pyH) (Fig. 2). The structure also incorporates slightly disor-
dered ethanol of crystallization, which is hydrogen bonded to the
nitrogen of the S-pyH ligand (N2,,,O1i: 2.994 (5) Å, i ¼ x�1/
2,�y þ 1/2,z�1/2). The sulfur atoms are arranged tetrahedrally
around the copper atoms in the polymeric chain. These sulfur
bridges pull metal centers closely together forming a 1D poly-
meric zig-zag chain (Fig. 2) with direct metal-metal contacts. The
distances between the copper atoms are nearly identical
throughout the chain varying from 2.6241 (6) Å to 2.6283 (6) Å.
Weak p-p interactions between the pyridine rings support the
chain structure further. Short metal-metal distances between
copper atoms indicate relatively strong cuprophilic interactions.
The [ZnCl4]2� anion is interacting with the cationic polymer
primarily through hydrogen bonds between the NH hydrogens of
the S-PyH ligand and chlorides of the anionic zinc complex
(N3,,,Cl4: 3.147 (3) Å, N3,,,Cl1: 3.286 (3), N4,,,Cl2: 3.373 (3) Å,
N2,,,Cl4i: 3.201 (3) Å, i ¼ x�1/2,�y þ 1/2,z�1/2).

The polymeric character of 1 can also be seen from the mass
spectrometric study. The ESI-TOF mass spectrum of 1 (Fig. 3)
shows distribution of polymeric singly charged ions
[(S-Py)nCun þ Cu]þ, [(S-Py)nCun þ H]þ, and [(S-Py)nCun þ NH4]þ

(n ¼ 3e6). The base peak of the spectrum is [(S-py)4Cu5]þ at m/z
758.68, which agrees well with the theoretical value ofm/z 758.67
(for detailed analysis of mass accuracies see Table 2) and shows a
nice fit to calculated isotopic distribution pattern. This ion also
displays a structure related dissociation pattern in a CID (collision
induced dissociation) experiment, in which the polymer frag-
ments through consecutive eliminations of S-Py and (S-Py)Cu
units (ESI, Fig. S3).

Table 2
Experimental and theoretical m/z values and mass accuracies for ions observed in mass spectra for 1 and 3.

Sample Ion Composition m/z exp m/z theor Mass accuracy (m/z)

1 [(S-Py)3Cu3 þ Cu]þ C15H12N3S3Cu4 583.7365 583.7353 �0.001
[(S-Py)4Cu4 þ H]þ C20H17N4S4Cu4 694.7445 694.7495 0.005
[(S-Py)4Cu4 þ Cu]þ C20H16N4S4Cu5 758.6782 758.6694 �0.009
[(S-Py)5Cu5 þ Cu]þ C25H20N5S5Cu6 931.6010 931.6055 0.005
[(S-Py)6Cu6 þ Cu]þ C30H24N6S6Cu7 1104.5379 1104.5416 0.004

3 [(S-PyH)2Au]þ C10H10N2S2Au 418.9944 418.9945 0.0001

Fig. 5. Top: The molecular unit of 3. The thermal ellipsoids are drawn at the 50%
probability level. Bottom: The chain structure of 3. The counterions were omitted for
clarity.

Fig. 6. The ESI-QTOF MS spectrum of 3 in MeOH. Inset showing the comparison be-
tween experimental and calculated (red dotted lines) isotopic distribution for the [(S-
PyH)2Au]þ (C10H10AuN2S2þ) ion. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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3.2. Neutral silver polymer [Ag(S-py) (S-pyH)]n (2)

The polymeric [Ag(S-py)(S-pyH)]n (2) was crystallized in an
orthorhombic space group Ibam. The asymmetric unit consists of
one S-PyH or S-py� ligand coordinated to a silver center via sulfur
atoms. This give a repeating unit with two Ag atoms and one S-pyH
and one S-py ligands (Fig. 4). In other words, every second pyridyl
ring in the chain is deprotonated compensating the charge of the
silver centers. As in the case of copper polymer 1, the thiol ligands
act as molecular staples bringing metal centers to close proximity.
The silver-silver distances are practically identical throughout the
chain varying from 3.1939 (2) Å to 3.1940 (2) Å (Ag1,,,Ag1i,
Ag1,,,Ag1ii, i ¼ �x þ 1,�y,�z, ii ¼ �x þ 1,�y,�z þ 1). The AgeAg
distances are clearly shorter than the sum of Bondi's van der Waals
radii of silver atoms (3.44 Å) bond. Just like in the case of the copper
polymer, the chain structure is again further supported by weak p-
p interactions between the pyridyl rings. By contrast to the copper
polymer, the Ag polymer is linear and the Ag,,,Ag,,,Ag angle is
180�. The sulfur ligands are again tetrahedrally arranged around the
metal atoms in the polymeric structure. The neighboring chains are
connected via hydrogen bonds between the protonated and
deprotonated pyridyl nitrogens (N1,,,N1iii: 2.675 (4) Å,
iii ¼ x þ 1,�y þ 1,z).

3.3. Cationic non-covalent polymer [Au(S-pyH)2]n
þ (3)

The structure of 3 has been reported earlier [33]. However, the
current structure is based on higher quality data and therefore
includes also the hydrogen atoms that were previously not detec-
ted. Because of the restricted coordination geometry of Au(I), the
structure of the Au polymer [Au(S-pyH)2]nCl (3) differs from the Cu
and Ag structures described above. The Au(I) favors linear coordi-
nation geometry and therefore, S-pyHs are not bridging but acting
as terminal ligands (Fig. 5). In the crystal structure of 3, the cationic
[Au(S-pyH)2]þ units are stacked together forming a linear chains
with weak aurophilic contacts (Au,,,Aui: 3.4277 (2) Å, i ¼ x,
�yþ 1/2, zþ 1/2, Fig. 5). The chain structure is further supported by
weak p-p-interactions between the pyridyl rings. Despite the
aurophilic and p-p interactions the chains of gold atoms are not
perfectly linear (Aui,,,Au,,,Auii: 162.21 (2)◦, i¼ x,�yþ 1/2, zþ 1/
2, ii ¼ x, �y þ 1/2, z�1/2). The asymmetric unit of 3 (Fig. 5) consist
of two neutral S-pyH ligated to the Au center via the sulfur atom.
The positive charge is compensated by the Cl� anion, which is
hydrogen bonded to the NH hydrogens of the pyridyl rings
(N2,,,Cl1iii: 3.054 (5) Å, N1,,,Cl1iv: 3.057 (6) Å, iii¼�xþ 1, y�1/2,
�z þ 1/2, �z, iv ¼ �x, �y þ 1, �z). The cationic nature of the gold
complex is evident also according to positive polarization ESI-MS
mass spectra, which display [Au(S-PyH)2]þ ion at m/z 419 as a
single peak (Fig. 6).

3.4. Computational results

Computational QTAIM analysis [30] of the crystal structures
suggested presence of the non-covalent M,,,M interactions only in

Cu(I) (1) and Au(I) (3) polymers. The computational results are
summarized in Table 3.

The QTAIM analysis of (1) confirmed the presence of nine bond
critical points (BCPs) (3, e1) for Cu,,,Cu contacts in the copper
polymer and the presence of four BCPs for Au,,,Au contacts in the
gold chain (3), indicating attractive interactions between the metal
centers. Surprisingly, no BCPs for Ag,,,Ag contacts could be found
in Ag(I) polymer (2). In the case of 3, low electron density, positive
value of the Laplacian, and zero energy density at BCPs indicate
typical non-covalent interactions, whereas in 1, Cu,,,Cu metal-
lophilic interactions already posses a noticeable degree covalent
component (relatively high r(r), noticeably negative Hb value,
eG(r)/V(r) < 1 at the appropriate BCPs). We also estimated the
interactions energies of the metal-metal contacts according to the
procedures proposed by Espinosa et al. [34] and Vener et al. [35]
The energies are in line with the QTAIM parameters indicating
weak interactions in gold polymers (3.0e3.5 kcal/mol) and rela-
tively stronger contacts in copper polymer (5.7e10.7 kcal/mol).

4. Summary

The 4-pyridinethiol was found to support linear chain structures
of Cu(I) and Ag(I) and to serve as useful bridging ligand bringing
metal centers to close proximity. Owing the restricted coordination
geometry of Au(I), 4-pyridinethiol does not favor bridging coordi-
nation with gold. Instead, the cationic gold(I) complexes were
stacked together forming non-covalent metallopolymer with weak
aurophilic contacts. According to the QTAIM analysis, metal-metal
interactions appear only in the Cu(I) and Au(I) polymers. No bond
critical points were observed in the Ag(I) polymer despite the fact
that the Ag,,,Ag distance is shorter than the sum of Bondi's van der
Waals radii. One of the main advantages of 4-pyridinethiol ligand is
possibility to change its protonation level by removal of the NH
hydrogen. This allows adjusting the charge of the ligand that can be
used to compensate the positive charge of metal centers. This, in
turn, allows design of neutral or charged metallopolymers.
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Self-healing, luminescent metallogelation driven
by synergistic metallophilic and fluorine–fluorine
interactions†

Kalle Kolari,a Evgeny Bulatov, a Rajendhraprasad Tatikonda, a Kia Bertula,b

Elina Kalenius, a Nonappa *bc and Matti Haukka *a

Square planar platinum(II) complexes are attractive building blocks for multifunctional soft materials due to

their unique optoelectronic properties. However, for soft materials derived from synthetically simple discrete

metal complexes, achieving a combination of optical properties, thermoresponsiveness and excellent

mechanical properties is a major challenge. Here, we report the rapid self-recovery of luminescent metallogels

derived from platinum(II) complexes of perfluoroalkyl and alkyl derivatives of terpyridine ligands. Using single

crystal X-ray diffraction studies, we show that the presence of synergistic platinum–platinum (Pt� � �Pt) metallo-

polymerization and fluorine–fluorine (F� � �F) interactions are the major driving forces in achieving hierarchical

superstructures. The resulting bright red gels showed the presence of highly entangled three-dimensional

networks and helical nanofibres with both (P and M) handedness. The gels recover up to 87% of their original

storage modulus even after several cycles under oscillatory step-strain rheological measurements showing

rapid self-healing. The luminescence properties, along with thermo- and mechanoresponsive gelation,

provide the potential to utilize synthetically simple discrete complexes in advanced optical materials.

Introduction

Supramolecular chemistry involving metal–ligand (M–L)
coordination-induced self-assembly has opened new avenues
in the field of stimulus-responsive soft materials.1–3 This is
attributed to the possibilities to access a diverse range of metal
components (metal ions, clusters, and nanoparticles) and
rationally designed organic ligands with well-defined coordina-
tion sites.4,5 Among the metal components containing soft
materials, self-healing and stimulus-responsive metallogels
have gained considerable attention recently.6,7 The presence
of metal components alters the gelation process, gel strength,
mechanical properties, and morphological features.8–11 More
importantly, metal components also impart properties such as
conductivity, redox activity, magnetism, photophysical properties,

antimicrobial properties, and thixotropic behaviour.12–18 Further-
more, certain metal ions also serve as a source for in situ metal
nanoparticle formation.19–22 Therefore, metallogels find potential
applications in chiral recognition, light-emitting materials, soft
conductive materials, wearable electronics, energy storage, self-
healing devices, catalysis, and antimicrobial systems, and can act
as artificial enzyme mimics.23–27 Metallogels contain metal com-
ponents and organic components with appropriate binding sites.
Lowmolecular weight organic ligands, biopolymers and synthetic
polymers having functional groups such as carboxylic acid,
amines, thiols and alkynes have been used as coordination
sites for a diverse range of mono-, di-, and trivalent metal ions
(Ag+, Fe2+, Cu2+, Zn2+, Co2+, Ni2+, Pd2+, Pt2+, Fe3+, and Au3+),
metal clusters or nanoparticles,28–31 wherein a combination
of metal chelation and other non-covalent interactions such as
H-bonding, van der Waals interaction, electrostatic interaction,
p-stacking and metallophilic interactions has been explored
to achieve hierarchical self-assembly.32–34 Metallogels involving
low molecular weight organic ligands result in discrete
coordination complexes or coordination polymerization upon
complexation.19–22 When the gelation consists of the self-
assembly of discrete complexes, the supramolecular interac-
tions between the organic ligands act as the primary driving
force, whereas, for coordination polymerization-induced
gelation, the metal–ligand interaction forms the main driving
force.35,36 For supramolecular metallogels, the gelation can be

a Department of Chemistry, University of Jyväskylä, P. O. Box 35, FI-40014
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induced by adding metal salt into a solution containing organic
ligands with appropriate binding sites or by dissolving a pre-
made metal complex. In the latter case, the main driving forces
are metallophilic (metallopolymerization) interactions along
with other supramolecular interactions of organic moieties.

Gold(III) and platinum(II) complexes are known to undergo
metallophilic interaction-induced self-assembly.37,38 Au(III) and
square planar Pt(II) complexes also offer unique optoelectronic
properties.39,40 The ability to undergo a dramatic colour change
upon self-assembly of Pt(II) complexes is attributed to the presence of
Pt� � �Pt interaction.41 Therefore, self-assembly of various mononuc-
lear and binuclear Pt(II) polypyridine complexes has been explored.
Examples include alkynylplatinum(II) complexes with terpyridine
ligands.42–44 Such complexes due to strong s-donating alkynyl
ligands have been shown to possess interesting aggregation
behaviour. Depending on the substituents, chiral and helical
morphologies, substitution dependent colour change, luminescence,
vapochromism, and vapoluminescence have been reported.45,46 Such
properties occur due to changes in weak metal–metal interactions,
p-stacking or hydrogen bonding upon exposure to vapour (analyte).47

Furthermore, features such as self-assembly-induced luminescence
provide promising applications in optoelectronics and in developing
vapochromic sensors. Platinum(II) complexes have also been shown
to form metallogels showing significant changes in the colour and
spectroscopic properties upon sol 3 gel transition.48 Though such
systems are known to form various superstructures, metallogelation
using Pt� � �Pt interactions is limited in the literature.

Another important non-covalent interaction is fluorine–fluorine
interaction. Fluorinated analogues of hydrocarbons have been
shown to exhibit simultaneous hydro- and lipophobicities, altered
aggregation behaviour, steric bulk, stiffness, stability, and lower
critical aggregation concentration.49 Therefore, organic ligands
containing fluorinated analogues of hydrocarbons offer a unique
opportunity to design materials with excellent material properties.
Recently, it has been shown that perfluoroalkyl substituted
4-aminophenyl-2,20,6,20-terpyridine can act as a metallosupramole-
cular gelator resulting in rapid self-healing and anion selectivity.50

The F� � �F interactions have been shown to affect the rheological
and mechanical properties of the metallogels. In this work, we
show that Pt(II) complexes of alkyl and fluoroalkyl containing
terpyridine derivatives undergo a synergistic Pt� � �Pt and F� � �F
interaction-driven self-assembly leading to rapid gelation. The
compounds also exhibit luminescence properties in their solid
state, gel state, and solution state. We demonstrate the rapid self-
healing of gels containing low solid contents with recovery up to
87% of their storage modulus values even after several cycles.
Morphologically, the gels contain a highly entangled 3D network
of helical fibres with both handedness.

Results and discussion
Crystal structures and transformations in the solid state

First, we discuss the synthesis and solid state properties of the
complexes studied in this work. The synthesis of ligands L1
and L2 and their platinum complexes {[Pt(L1)Cl]Cl} (1) and

{[Pt(L2)Cl]Cl} (2) was carried out following a reported literature
procedure (see Fig. 1 and ESI† for details and characterization
data).51,52 Yellowish plate-like single crystals suitable for X-ray
diffraction were obtained upon recrystallization of both the
metal complexes from hot ethanol. In their solid state struc-
tures, the complexes 1 and 2 show cationic square-planar units
self-assembled to form dimers (Fig. 1b and c) via Pt� � �Pt inter-
actions with a distance of 3.4096(5) Å for 1 and 3.3031(2) Å for 2,
respectively. These dimer units are further extended to form
supramolecular polymeric structures facilitated by p� � �p con-
tacts of terpyridine core. The cationic charges in both the
complexes are compensated by the presence of chloride anions.
The chloride counter ions are involved in hydrogen bonding
with ethanol molecules (i.e. solvate) thus filling voids in crystal
packing (Fig. S7 and S8, ESI†). Additionally, terpyridine sub-
stituents form lipophilic fluorine and hydrophobic phases in
the crystal packing of complexes 1 and 2, respectively. Due to a
severe disorder of perfluorinated substituents, the determina-
tion of the definite fluorine–fluorine distances remained a
challenge. However, the sphere-packing model for the solid
state structure of 1 indicates the presence of intermolecular
fluorine–fluorine contacts (Fig. 1d), forming lipophilic phases
in the crystal structures. In the case of complex 2, a similar
arrangement is observed, i.e. hydrophobic phases are formed
due to close packing of substituent chains between adjacent
molecules (Fig. 1e).

The yellow crystals of complexes 1 and 2 recrystallized from
ethanol underwent a colour change to orange when exposed to
air, presumably due to the evaporation of solvent molecules,
the crystals of 1 being noticeably less stable (Fig. 2a and Movies
S1, S2, ESI†). In both cases, the resulting orange solids are
amorphous, as confirmed by powder X-ray diffraction studies
(Fig. S9, ESI†). Upon drying under vacuum, a further colour
change to dark purple was observed for complex 1, whereas
complex 2 remained orange.

Fig. 1 Chemical structures and single crystal X-ray structures. (a) Chemical
structures of gelator molecules {[Pt(L1)Cl]Cl} (1) and {[Pt(L2)Cl]Cl} (2).
(b) X-ray single crystal diffraction-based dimeric structure of gelator 1
showing Pt� � �Pt interaction and (d) showing higher-order packing driven
by F� � �F interactions. (c and e) X-ray single crystal diffraction-based
dimeric structure of complex 2 indicating Pt� � �Pt interaction and higher-
order packing in the solid state.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
Fe

br
ua

ry
 2

02
0.

 D
ow

nl
oa

de
d 

on
 4

/2
7/

20
20

 9
:0

5:
20

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online



This journal is©The Royal Society of Chemistry 2020 Soft Matter, 2020, 16, 2795--2802 | 2797

Fig. 2 shows the photographs and corresponding reflectance
and normalized emission spectra of solids of 1 and 2 in
different forms. The visual colour changes of the solids are
manifested in their reflectance spectra by the appearance of
shoulders at l E 515 nm and 530 nm upon transformations
from the yellow to air-dried orange forms of 1 and 2, respec-
tively. At the same time, luminescence emission bands of 1 and
2 decrease in intensity and undergo a redshift (lem = 590- 650
and 525 - 630 nm, respectively). Vacuum drying results in a
further redshift of reflectance, with a broad reflectance band
being formed between l E 500 and 650 nm in the case of dark
purple 1. However, only a subtle band at l E 600 nm was
observed in the case of orange 2. The effect of vacuum drying
on the luminescence is also much stronger for 1, which dis-
plays no detectable emission, whereas the emission of 2 is only
slightly red-shifted compared to the air-dried form (Fig. 2b
and c). Intermolecular p� � �p and Pt� � �Pt interactions in stacked
terpyridine complexes of platinum(II) (Fig. 1) are known to alter
the photophysical properties of the complexes. Particularly,
metal to ligand charge transfer (MLCT) absorption and emis-
sion bands of single molecules change to more red-shifted
metal–metal to ligand charge transfer (MMLCT) bands within
the stacks. Therefore, the observed redshifts in reflectance and
emission spectra of 1 and 2 in the solid state upon drying are
attributed to the MMLCT bands. While the amorphous nature

of the orange forms prevents direct determination of their
molecular arrangements by X-ray diffraction methods, the
MMLCT bands indicate the presence of continuous Pt� � �Pt
interactions, in contrast with the dimeric units in the yellow
crystalline forms. Similar transformations between yellow and
red forms have previously been observed for other terpyridine
complexes.47,53

Aggregation in solution and gelation

After solid state characterization of complexes 1 and 2, we
studied the self-assembly behaviour in polar organic solvents. A
bright yellow solution of complex 1 was obtained in dimethyl
sulfoxide (DMSO) at lower concentrations (C r 1 mM). How-
ever, heating was required to dissolve the complex at higher
concentrations. Importantly, allowing a supersaturated DMSO
solution of complex 1 to attain room temperature resulted in a
change of colour to bright red, accompanied by the gelation,
which showed resistance to flow upon inversion (Fig. 3a and
Movie S3, ESI†). The gelation was observed for a concentration
as low as 0.6 w/v% (note: from hereafter, all gelator/solvent
w/v% ratios are denoted as %). Similar results were also obtained
in N,N-dimethylformamide (DMF). Complex 1 remained insolu-
ble in water and partially soluble when a mixture of DMSO/water
(9 : 1 v/v) was used for gelation. Importantly, no such colour
change was observed in ethanol, and the attempts to form gels

Fig. 2 Solid state forms of 1 (top) and 2 (bottom). (a) Photographs of samples of the three forms used for spectroscopic measurements. (b) Reflectance
spectra (transition from yellow to orange forms is shown in dashed lines; spectra of the vacuum dried powders are adjusted to match the scale, and the
original spectra are presented in the ESI,† Fig. S10 and S11). (c) Normalized emission spectra (the decrease in emission intensity along with the red shift is
demonstrated in ESI,† Fig. S12).
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produced an unstable gelatinous precipitate. On the other hand,
complex 2 only formed an unstable gel in ethanol at concentra-
tions above 1.5% and no gelation or colour change was observed
either in DMSO or DMF. Such a difference in the behaviours of 1
and 2 is attributed to their different aggregation capabilities.
Apart from the intermolecular p� � �p interactions between the
terpyridine units and Pt� � �Pt interactions, the aliphatic chains in
1 and 2 further promote aggregation via lipophilic stacking, as
observed in the crystal structures (Fig. 1d and e). The perfluoro-
alkyl chain in 1 is expected to cause stronger aggregation due to
F� � �F interactions, as previously reported in the literature.51

Therefore, the change of colour for complex 1 from yellow to
red in solution at higher concentrations and upon gelation is
attributed to the appearance of the MMLCT band, associated
with the stacking of the terpyridine units assisted by F� � �F
interactions. On the other hand, complex 2 demonstrates much
less capability for aggregation.54–56

Nuclear magnetic resonance (NMR) spectroscopy has been
utilized extensively to study gels.57–59 In the literature, it has
often been shown that the 1H NMR resonance peaks of gels at
room temperature show similar chemical shift values to that
of the solution state (after gel melting).60–62 It has been
hypothesized that for gels at room temperature, the observed
1H resonance peaks predominantly originate from the free
molecules that are not bound to the gel network, whereas the
molecules in the aggregated state remain NMR silent.60,61 We
have performed variable temperature (VT) 1H and 19F NMR
spectroscopy measurements of the DMSO-d6 gel of 1 to inves-
tigate the sol 3 gel transition and interactions involved in the
gelation. The 1H NMR resonance signals remained invisible
and featureless in temperature range of 30–50 1C, a property
that is typical for low molecular weight gels below their melting
temperature. This is attributed to increased viscosity and
reduced molecular tumbling in the gel state. However, above
60 1C, the signal to noise ratio improved and the aliphatic and
aromatic region displayed a clear splitting pattern at 90 1C (see
ESI,† Fig. S13a and b). The signals at the same time underwent
a slight downfield shift (Dd between 0.01 to 0.09 ppm) (see ESI,†
Table S2). The gel 3 sol transition observed in VT 1H NMR

experiments is in agreement with the gel melting temperature
(Tgel = 69 1C) of the 0.6% DMSO gel of 1 determined using an
inverted test tube method. Variable temperature 19F NMR
spectroscopy measurements displayed broad peaks at 30 1C.
A downfield shift in the 19F resonance peaks was revealed upon
heating the gel from 30 1C to 90 1C. Furthermore, upon heating,
the 19F signals also became sharp and showed an apparent
splitting, indicating changes in F� � �F interactions in the trans-
formation from gel to solution state (ESI,† Fig. S13b). Unlike
the VT 1H NMR spectra, the VT 19F NMR spectra showed a clear
change in chemical shift values with Dd between 0.15 and
1.61 ppm (see ESI,† Table S3). Fourier transformed infrared
(FT-IR) spectroscopy of complex 1 in its synthetic solid, gel (1%)
and solution states (0.4%) was performed to further probe
the fluorine–fluorine interactions by monitoring the ns(CF2)
stretching frequencies. The FT-IR spectra of solid powder form
revealed the C–F stretching frequency at 1144 cm�1 (ESI,†
Fig. S14). The gel of complex 1 showed an increased stretching
frequency at 1148 cm�1. Finally, further shifting was detected
in solution (1153 cm�1). Thus, it can be concluded that
fluorine–fluorine interactions are present in solid, gel and
solution with decreasing strength, affecting the self-assembly
of monomeric units and gelation.

To gain more insights, variable temperature absorption and
emission spectroscopic analyses of solution and gel states of
complex 1were carried out (Fig. 3). The absorption spectrum of the
DMSO gel (0.6%) of complex 1 shows a peak at labs = 500 nm
at 25 1C. Importantly, the intensity decreases upon increasing
temperature. Similarly, the corresponding emission also decreases
in intensity with increasing temperature and shows a blue shift
upon heating from lem = 640 nm at 25 1C to lem = 600 nm at 80 1C.
These observations match well with the changes in photophysical
properties of solid 1 upon the transformation from yellow to
orange form (Fig. 2b and c). Thus, the absorption and emission
bands at labs = 500 nm and lem = 640 nm are accordingly assigned
to the MMLCT transitions, which are expected to depend on
aggregation and, consequently, temperature. The emission life-
time at room temperature t = 51 ns suggests the fluorescence
nature of the complex. Though such a short excited-state life-
time is not very common for transitions involving Pt(II) centres,
previously, it has been reported for a limited number of
terpyridine platinum(II) complexes.55

Preliminary studies of absorption and emission spectra of
the solution of complex 1 in DMSO at various concentrations
and various temperatures indicated the formation of more than
one type of aggregate. Therefore, an unambiguous interpretation
of the spectra remained a challenge. However, the correlation of
photophysical properties of 1 in solid and gel states indicates
similarities in intermolecular arrangements, namely the formation
of continuous chains with stacked terpyridine units and close
Pt� � �Pt contacts within the gel structure. The F� � �F interactions
and packing of the perfluoroalkyl chains also appear to take place,
based on the NMR and FT-IR spectra, as well as the non-gelling
behaviour of complex 2. A detailed study of the aggregation
behaviour of complex 1 in solution is beyond the scope of this
work and will be the subject of a separate study.

Fig. 3 (a) The photographs of the DMSO gel of complex 1 under ambient
light and under UV-radiation. (b) Absorption (solid lines) and emission
(dashed lines) spectra of DMSO gel of 1 (0.6%) at various temperatures.
Excitation wavelengths lex = 550 and 530 nm were used for temperatures
25–60 1C and 70–80 1C accordingly.
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Gelation and morphology

The morphological features of self-assembled superstructures in
the gel were studied using electron microscopy imaging. First, the
scanning electron microscopy (SEM) imaging of DMSO and DMF
gels of complex 1 was performed. For SEM imaging, aerogels were
prepared using a liquid propane freeze-drying method.63 Freeze-
drying allows minimum drying artefacts during specimen pre-
paration. The representative SEM micrographs of aerogels from
DMSO and DMF gels of 1 are shown in Fig. 4.

Interestingly, the SEM micrographs show the presence of
helical screw-like fibres with both handedness (P and M) in
DMSO (Fig. 4b and c). Similarly, in DMF, helical fibres with
both handedness are observed (Fig. 4e and f; see ESI† for
additional SEM images, Fig. S15 and S16). It is well documented
in the literature that achiral gelators tend to form helical struc-
tures with both handedness.64,65 Importantly, triazine-containing
alkynylplatinum(II) terpyridine complexes with appropriate sub-
stituents on terpyridine units have been shown to assemble into a
mixture of right- and left-handed helical fibres in DMSO–water
mixtures.66 It has been hypothesized that in such complexes, the
terpyridine units are bent with respect to the alkynyl ligand,
inducing directional Pt� � �Pt interactions and p-stacking. Further-
more, such assemblies are also due to dominant hydrophobic–
hydrophobic interactions in polar solvents. Based on the X-ray
crystal structure of the solids, VT NMR spectroscopy and FT-IR
studies of complex 1, it is evident that there exists a strong F� � �F
interaction in the gel and solid states. Therefore, the presence
of Pt� � �Pt, p� � �p and F� � �F interactions results in minimized
unfavourable interactions in polar DMSO and drives the for-
mation of helical nanostructures.

From SEM imaging, it is evidenced that the helical fibres
with lateral dimensions varying from 100 to 500 nm are
composed of smaller fibrils. To further evaluate the nature
of the fibrillar structures, a TEM specimen was prepared by

drop-casting the freshly prepared hot sol onto holey-carbon
film (Fig. 5). TEM micrographs of DMSO gels of 1 clearly show
highly entangled fibrillar structures. The fibril diameters varied
from 15 to 30 nm with indefinite length. It is important to note
that the sample preparation methods for SEM and TEM are
different. For SEM, premade gels are freeze-dried to obtain
aerogels, whereas TEM studied a drop casted thin film of hot
sol. TEM, therefore, allowed the smaller fibrillar structures to
be observed. Similarly, the DMF gel of 1 also showed structural
features that undergo higher-order assembly into fibres as
indicated in the SEM micrographs.

Fibrillar structures were also observed when non-gelling
complex 2 was dispersed in DMSO or DMF with fibre diameters
ranging from 15 to 50 nm.

Rheological properties

Metallogels exhibit unique mechanical properties in rheological
experiments such as self-healing and thixotropy.6,50 The mechan-
ical properties of DMSO and DMF gels of complex 1 were studied
using dynamic oscillatory rheological measurements on the 1.0%
gels. In all experiments, premade gels were used to study the
rheological properties. First, the time sweep experiments were
performed to evaluate the stability of the gels and in both cases,
the storage modulus (G0) is close to an order of magnitude higher
than the loss modulus (G00), suggesting that the systems under
investigation are indeed gels and remained stable under experi-
mental conditions (see ESI,† Fig. S19). It is also evident that DMF
gels of 1 displayed higher stiffness than that of DMSO gels. The
average storage modulus (G0) values were found to be 90 Pa and
2.0 kPa for DMSO and DMF gels of 1, respectively.

The rheological properties of soft materials display non-
linear behaviour with a rapid decline in their storage modulus
above certain strain levels, known as critical strain. Critical
strain allows understanding the linearity of a material under

Fig. 4 Scanning electron microscopy. (a and b) SEM micrographs of aero-
gels from the DMSO gel of 1 (1.0%) showing helical screw-like structures.
(c) Schematic illustration of helical screw-like fibres in the DMSO gel of 1.
(d and e) SEMmicrographs of aerogels from the DMF gels of 1 (1.0%) showing
helical fibre bundles. (f) Schematic illustration of helical fibres in the DMF gel
of 1. For additional SEM images, see ESI† (Fig. S15 and S16).

Fig. 5 Transmission electron microscopy. (a and b) TEM micrographs of
the dried DMSO gel of 1 (0.6%). (c and d) TEMmicrographs of the dried DMF
gel of 1 (1.0%). For additional TEM micrographs, see ESI,† Fig. S17 and S18.
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investigation. Below critical strain, the structure of the gels
remains intact and applying strain levels above critical strain
will disrupt the gel structure. This information is useful in
understanding the linear viscoelastic regime of the materials.
In our experiments, the DMSO and DMF gels of complex 1 show
that the structure remains intact until 32% and 40% strain
levels, respectively, above which the materials behaved non-
linearly and a cross-over between G0 and G00 was observed.

The frequency sweep measurements provide insights about the
junction networks and temporary bonds that hold the networks
together. This information can be extracted using frequency-
dependent storage and loss moduli (Fig. 6b). The rheological and
SEM studies suggest the presence of junction networks. Another
interesting property of metallogels is self-healing. Rheologically, self-
healing can be studied by using step-strain experiments. In the case
of step-strain tests, recovery of the gel is observed after shearing. The
step-strain rheological measurements were performed to investigate
the reversible gel 3 sol transition and self-recovery, upon several
cycles. For the step strain experiments, controlled strains of 0.1%
and 150% were applied for 60 s, respectively (Fig. 6c). The gels
showed an immediate response to increased strain by turning into
viscoelastic liquids as indicated by the rapid decrease in G0 well
below that of G00. The application of increased strain also appears to
break the structure further during the 60 s experiment, as shown by
the slight decreasing elastic modulus values on subsequent cycles.
The gels recovered almost instantaneously upon switching to lower
strain (0.1%), i.e. rapid self-recovery. Importantly, the process can be
repeated for several cycles. However, slightly lower elastic moduli
after the first high–low strain cycle and gradual build-up are
observed, therefore indicating that the structure build-up to the
equilibrium state would require longer periods of ‘‘rest’’ (low strain).
Importantly, the DMSO gels recovered up to 87% of their original
storage modulus values even after four cycles. On the other hand,

DMF gels recovered up to 61% of the initial storage modulus upon
repeated step-strain cycles. Finally, we studied the thermal properties
using temperature sweep experiments. First, the premade gel was
heated, and the moduli were followed. Temperature ramps from
20 1C to 90 1C and from 90 1C to 20 1C were measured with 0.1%
strain amplitude and 5 1C min�1 heating rate. Temperature ramps
and step-strain experiments present the average of two measure-
ments. Above 70 1C, a rapid decline in the storage modulus was
observed when the 1.0% DMSO and DMF gels begin to melt, in
agreement with the visual and variable temperature NMR tests
described above. However, the thermoreversibility under rheological
measurement is prominent for DMSO gels as they are rather robust.
Further, unlike DMSO gels, DMF gels were not robust to transfer
and scoop processes, and the solvent was often expelled, which
might also explain the observed high modulus.

Conclusions

Self-assembly of discrete metal complexes offers a range of
opportunities to construct structurally and functionally unique
soft materials using simple synthetic design. More importantly,
simple chemical modification of functional units allows a remark-
able change in their structure, function, and interactions. These
changes also affect the self-assembly behaviour, morphology, and
rheological properties at extremely low solid contents. In this work,
we have demonstrated that replacement of the alkyl derivative with
a fluoroalkyl derivative in terpyridine ligand allows control over the
solid state assembly, luminescence properties, and gelation ability
of complexes 1 and 2. Our results show that the presence of
synergistic Pt� � �Pt and F� � �F interactions is responsible for the
rapid gelation of complex 1. This combination of interactions is
also responsible for self-assembly-induced luminescence, rapid
gelation, and self-healing. Therefore, this study demonstrates
how the influence of metallophilic interactions on luminescence
properties can provide insight on intermolecular arrangements and
thus potentially allow investigation of supramolecular structures of
the gels. The SEM of the cryo-frozen gel of complex 1 displayed an
enantiomeric mixture of fibres with screw rotation to left and right.
Fibres were up to 200 nm in diameter. The topology of fibres is
stabilized with non-covalent interactions including intermolecular
platinum–platinum interactions. Additionally, changing the solvent
from ethanol to DMSO affects the formation of helical polymeric
structures and enables the formation of fibres with screw rotation
by affecting the packing of monomeric units.
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8 M. Häring and D. D. Dı́az, Chem. Commun., 2016, 52,

13068–13081.
9 C. D. Jones and J. W. Steed, Chem. Soc. Rev., 2016, 45, 6546–6596.
10 E. Degtyar, M. J. Harrington, Y. Politi and P. Fratzl, Angew.

Chem., Int. Ed., 2014, 53, 12026–12044.
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J. W. Bacon, J. A. Golen, A. L. Rheingold and L. H. Doerrer,
Inorganica Chimica Acta, Elsevier B.V., 2010, vol. 364,
pp. 195–204.

39 A. Sathyanarayana, S. Nakamura, K. Hisano, O. Tsutsumi,
K. Srinivas and G. Prabusankar, Sci. China: Chem., 2018, 61,
957–965.

40 M. H. Y. Chan, M. Ng, S. Y. L. Leung, W. H. Lam and
V. W. W. Yam, J. Am. Chem. Soc., 2017, 139, 8639–8645.

41 A. Aliprandi, M. Mauro and L. De Cola, Nat. Chem., 2016, 8,
10–15.

42 C. Yu, K. M. C. Wong, K. H. Y. Chan and V. W. W. Yam,
Angew. Chem., Int. Ed., 2005, 44, 791–794.

43 A. Y. Y. Tam, K. M. C. Wong, N. Zhu, G. Wang and
V. W. W. Yam, Langmuir, 2009, 25, 8685–8695.

44 C. Po, Z. Ke, A. Y. Y. Tam, H. F. Chow and V. W. W. Yam,
Chem. – Eur. J., 2013, 19, 15735–15744.

45 T. J. Wadas, Q.-M. Wang, Y. Kim, C. Flaschenreim, T. N.
Blanton and R. Eisenberg, J. Am. Chem. Soc., 2004, 126,
16841–16849.

46 M. J. Bryant, J. M. Skelton, L. E. Hatcher, C. Stubbs,
E. Madrid, A. R. Pallipurath, L. H. Thomas, C. H. Woodall,
J. Christensen, S. Fuertes, T. P. Robinson, C. M. Beavers,
S. J. Teat, M. R. Warren, F. Pradaux-Caggiano, A. Walsh,
F. Marken, D. R. Carbery, S. C. Parker, N. B. McKeown,
R. Malpass-Evans, M. Carta and P. R. Raithby, Nat. Commun.,
2017, 8, 1800.

47 R. Zhang, Z. Liang, A. Han, H. Wu, P. Du, W. Lai and R. Cao,
CrystEngComm, 2014, 16, 5531–5542.

48 L. Ao, T.-F. Fu, Z.-C. Gao, X.-L. Zhang and F. Wang, Chin.
Chem. Lett., 2016, 27, 1147–1154.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
Fe

br
ua

ry
 2

02
0.

 D
ow

nl
oa

de
d 

on
 4

/2
7/

20
20

 9
:0

5:
20

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online



2802 | Soft Matter, 2020, 16, 2795--2802 This journal is©The Royal Society of Chemistry 2020

49 R. J. Baker, P. E. Colavita, D. M. Murphy, J. A. Platts and
J. D. Wallis, J. Phys. Chem. A, 2012, 116, 1435–1444.

50 L. Arnedo-Sánchez, Nonappa, S. Bhowmik, S. Hietala,
R. Puttreddy, M. Lahtinen, L. De Cola and K. Rissanen,
Dalton Trans., 2017, 46, 7309–7316.

51 P. Du, Inorg. Chim. Acta, 2010, 363, 1355–1358.
52 R. Tatikonda, S. Bhowmik, K. Rissanen, M. Haukka and

M. Cametti, Dalton Trans., 2016, 45, 12756–12762.
53 V. C. H. Wong, C. Po, S. Y. L. Leung, A. K. W. Chan, S. Yang,

B. Zhu, X. Cui and V. W. W. Yam, J. Am. Chem. Soc., 2018,
140, 657–666.

54 S. W. Lai, M. C. W. Chan, K. K. Cheung and C. M. Che, Inorg.
Chem., 1999, 38, 4262–4267.

55 S. E. Hobert, J. T. Carney and S. D. Cummings, Inorg. Chim.
Acta, 2001, 318, 89–96.

56 J. A. Bailey, M. G. Hill, R. E. Marsh, V. M. Miskowski, W. P.
Schaefer and H. B. Gray, Inorg. Chem., 1995, 34, 4591–4599.

57 B. Escuder, M. Llusar and J. F. Miravet, J. Org. Chem., 2006,
71, 7747–7752.

58 Nonappa, M. Lahtinen, B. Behera, E. Kolehmainen and
U. Maitra., Soft Matter, 2010, 6, 1748–1757.

59 Nonappa and E. Kolehmainen, Soft Matter, 2016, 12,
6015–6026.
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