
This is a self-archived version of an original article. This version 
may differ from the original in pagination and typographic details. 

Author(s): 

Title: 

Year: 

Version:

Copyright:

Rights:

Rights url: 

Please cite the original version:

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Computational Thinking in Programming with Scratch in Primary Schools : A Systematic
Review

© 2020 The Authors. Computer Applications in Engineering Education published by Wiley Periodicals LLC

Published version

Fagerlund, Janne; Häkkinen, Päivi; Vesisenaho, Mikko; Viiri, Jouni

Fagerlund, J., Häkkinen, P., Vesisenaho, M., & Viiri, J. (2021). Computational Thinking in
Programming with Scratch in Primary Schools : A Systematic Review. Computer Applications in
Engineering Education, 29(1), 12-28. https://doi.org/10.1002/cae.22255

2021



Comput Appl Eng Educ. 2020;1–17. wileyonlinelibrary.com/journal/cae | 1

Received: 19 December 2019 | Accepted: 19 April 2020

DOI: 10.1002/cae.22255

S P EC I A L I S SUE ART I C L E

Computational thinking in programming with scratch in
primary schools: A systematic review

Janne Fagerlund1 | Päivi Häkkinen2 | Mikko Vesisenaho1 | Jouni Viiri1

1Department of Teacher Education,
University of Jyväskylä, Jyväskylä, Finland
2Finnish Institute for Educational
Research, University of Jyväskylä,
Jyväskylä, Finland

Correspondence
Janne Fagerlund, Department of Teacher
Education, University of Jyväskylä,
Ruusupuisto, P.O. Box 35, 40014
Jyväskylä, Finland.
Email: janne.fagerlund@jyu.fi

Funding information
Emil Aaltosen Säätiö,
Grant/Award Number: 170028 N1;
Keski‐Suomen Rahasto,
Grant/Award Number: 30161702

Abstract

Computer programming is being introduced in educational curricula, even at

the primary school level. One goal of this implementation is to teach compu-

tational thinking (CT), which is potentially applicable in various computational

problem‐solving situations. However, the educational objective of CT in primary

schools is somewhat unclear: curricula in various countries define learning

objectives for topics, such as computer science, computing, programming or

digital literacy but not for CT specifically. Additionally, there has been confusion

in concretely and comprehensively defining and operationalising what to teach,

learn and assess about CT in primary education even with popular programming

akin to Scratch. In response to the growing demands of CT, by conducting a

literature review on studies utilising Scratch in K–9, this study investigates what
kind of CT has been assessed in Scratch at the primary education level. As a

theoretical background for the review, we define a tangible educational objective

for introducing CT comprehensively in primary education and concretise the

fundamental skills and areas of understanding involved in CT as its “core
educational principles”. The results of the review summarise Scratch program-

ming contents that students can manipulate and activities in which they can

engage that foster CT. Moreover, methods for formatively assessing CT via

students' Scratch projects and programming processes are explored. The results

underpin that the summarised “CT‐fostering” programming contents and ac-

tivities in Scratch are vast and multidimensional. The next steps for this study

are to refine pedagogically meaningful ways to assess CT in students' Scratch

projects and programming processes.
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1 | INTRODUCTION

The ubiquity of computing and computer science (CS)
has expanded rapidly in modern society [1]. Meanwhile,

countries such as Finland, England and Estonia have
incorporated computer programming as a compulsory
topic in primary education (K–9) [27,39]. Programming
with Scratch, a graphical, block‐based programming
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language, is especially popular in this age group, thus
providing a potentially impactful context for educational
research. However, several scholars regard programming
education not as an end in itself but essential—though
nonexclusive—for fostering computational thinking (CT)
(i.e., supporting the cognitive tasks involved in it) [23].
CT is an umbrella term that embodies an intellectual
foundation necessary to understand the computational
world and employ multidimensional problem‐solving
skills within and across disciplines [56,61].

Despite its popularity, there has been some short-
comings and uncertainty surrounding CT in terms of, for
instance, teacher training needs concerning the aims and
intents of CT education. In fact, curricula in different
countries pose various educational objectives for such
topics as CS, computing, programming or digital literacy
but not for CT specifically [27]. Relatedly, there have
been shortcomings in concretising what to teach, learn
and assess regarding CT in schools, although previous
literature portrays particular concepts and practices (e.g.,
“Algorithms”, “Problem decomposition”) that can shape
students' skills and understanding in CT and contribute
to its educational objective [8,34]. However, CT poten-
tially learnt while programming with tools as Scratch has
been typically perceived as, for instance, the code con-
structs that students use in their projects, which can be
asserted to represent mere programming competence
instead of the predictably higher level CT. When using
such tools as Scratch, various programming contents that
students manipulate and programming activities in
which they engage can foster the skills and areas of un-
derstanding involved with CT in different ways. Previous
literature has not systematically and thoroughly in-
vestigated how the practical programmatic affordances in
Scratch can represent and foster the manifold skills and
areas of understanding associated with CT as described in
its core concepts and practices.

The aims of this study are to contextualise CT com-
prehensively in the Scratch programming environment
for teaching and learning in primary school classrooms
and explore the assessment of CT through Scratch in this
context. In practice, a literature review for studies in-
volving assessments in Scratch in K–9 is conducted. As a
theoretical background, we define a tangible educational
objective for CT in the context of programming in pri-
mary education based on previous literature. Moreover,
as a springboard for investigating the skills and areas of
understanding included in CT in Scratch, we concretise
CT's core educational principles (CEPs)—fundamental
computational facts, conceptual ideas, and techniques
that students can learn—from CT concepts and practices
presented in earlier research. The goals of the review are
to gather Scratch programming contents and activities,

use the CEPs as a lens to view them specifically as
“CT‐fostering” contents and activities, and explore ways
in which they could be formatively assessed in classroom
settings.

2 | COMPUTATIONAL THINKING
THROUGH PROGRAMMING IN
PRIMARY EDUCATION

2.1 | An educational objective

Wing [61,62] originally defined CT as “the thought
processes involved in formulating problems and their
solutions so that the solutions are represented in a form
that can effectively be carried out by an information‐
processing agent”. Michaelson [43] underlined that CT is
a way of understanding problems whereas CS provides
concepts for CT in search of a praxis. Aho [1] revisited
Wing's original definition and emphasised that solutions
pertinent to CT are namely algorithmic. However, CT
still has no solid core definition [24]. It has been viewed
as a competence [58], a thought process [1,62], a set of
skills [61] and a problem‐solving process [54]. However,
the consensus is that it draws on disciplinary concepts
and models central to CS and utilises the power of
computing [56].

The purpose of primary education is to learn about
the world and to prepare for subsequent studies and
working life. Although CT's transferability across
problem‐solving contexts has been questioned [14], Wing
[61] posited that CT as a collection of transversal skills
and knowledge is necessary for everyone. Lonka et al [33]
underlined that students, regardless of their future pro-
fession, should learn to identify the central principles and
practices of programming and understand how they in-
fluence everyday life.

To include CT's such essential characteristics and
purposes [33,53,56,61] tangibly in primary education, we
define the following educational objective for it: students
learn to understand what computing can/cannot do,
understand how computers do the things that they do
and apply computational tools, models and ideas to solve
problems in various contexts. According to recent
reviews of curricula in various countries, such educa-
tional ideas are relevant in schools via CS education,
programming or embedded within different subjects, but
not for CT specifically [27,39]. By exploring computing,
students should also gain certain attitudes and perspec-
tives, such as understanding computational ethics [33].
However, this study limits its scope by focusing on CT's
key concepts and practices, which have been often
highlighted in previous literature to characterise
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fundamental areas of understanding in computing and
skills in computational problem‐solving.

Definitions for the key concepts and practices in CT
have varied throughout previous literature. For instance,
in the context of Scratch, Brennan and Resnick [9] pre-
sented a concrete CT framework that comprised concepts
(e.g., loop, variable), practices (e.g., debugging, iteration)
and perspectives (e.g., expressing, questioning).
Although meaningful for CT, such context‐specific
frameworks may be unsuitable for framing CT across
programming contexts and promoting deeper learning.
[24] Therefore, based on prior research framing CT
concepts and practices in a broader fashion, we con-
cretise the fundamental skills and areas of understanding
involved in CT as its core educational principles (CEPs) as
a background.

2.2 | Core educational principles

Several studies have framed CT's key concepts and
practices more generally in programming, computing or
CS in various ways. CT is an elusive term that continues
finding clear borders, and it involves areas that could be
interpreted to be more in its “central” or “peripheral
zones”. Concise views of CT can be rather programming‐
centric and omit potentially essential areas in the
general‐level CT. In turn, generous views may overlap
with other competence areas, such as math. By framing
our view of CT based on several previous works, we strive
to adopt a relatively generous rather than a concise view.
The motivation is that the more generous views have
been adopted less often, and they can expand our
understanding of the potentially meaningful borders of
CT assessment through Scratch in K–9 and be feasibly
reduced to the extent, as needed.

Settle and Perkovic [51] developed a conceptual fra-
mework to implement CT across the curriculum in un-
dergraduate education. In 2009, the International Society
for Technology in Education and the Computer Science
Teachers Association [3] devised an operational defini-
tion for CT concepts and capabilities to promote their
incorporation in K–12 classrooms. In the aftermath of
computing having been introduced in British schools in
2014, Czismadia et al [13] developed a framework for
guiding teachers in teaching CT‐related concepts,
approaches and techniques in computing classrooms.
Relatedly, Angeli et al [2] designed a K–6 CT curriculum
comprising CT skills and implications for teacher
knowledge. To demystify CT's ill‐structured nature, Shute
et al [53] reviewed CT literature and showed examples of
its definitions, interventions and assessments in K–12.
Similarly, Hsu et al [28] reviewed prior literature and

discussed how CT could be taught and learned in K–12.
To further illuminate CT's application in different con-
texts, Grover and Pea [24] elaborated what concepts and
practices CT encompasses.

To concretise the skills and areas of understanding
associated with CT concepts and practices in these works
as atomic elements to enable their systematic con-
textualisation in Scratch, the definitions of the concepts
and practices can be summarised to include CT's CEPs
for teaching and learning at the primary school level.

• Abstraction. A range of digital devices can be compu-
ters that run programmes [13,24]. Programming
languages, algorithms and data are abstractions of real‐
world phenomena [13,24,28]. Solving complex
problems becomes easier by reducing unnecessary de-
tail and by focusing on parts that matter (via, e.g., using
data structures and an appropriate notation)
[2,13,24,28].

• Algorithms. Programmers solve problems with sets of
instructions starting from an initial state, going
through a sequence of intermediate states and reaching
a final goal state [2,3,13,24,28,51,53]. Sequencing, se-
lection and repetition are the basic building blocks of
algorithms [2,3,13,24]. Recursive solutions solve sim-
pler versions of the same problem [3,13,24].

• Automation. Automated computation can solve pro-
blems [13,24,28]. Programmers design programmes
with computer code for computers to execute
[13,24,51]. Computers can use a range of input and
output devices [13].

• Collaboration. Programmers divide tasks and alternate
in roles [24]. Programmers build on one another's
projects [2,24]. Programmers distribute solutions to
others [24].

• Coordination and Parallelism. Computers can execute
divided sets of instructions in parallel [3,13,28,53]. The
timing of computation at participating processes re-
quires control [51].

• Creativity. Programmers employ alternate approaches
to solving problems and “out‐of‐the‐box thinking” [24].
Creating projects is a form of creative expression [24].

• Data. Programmers find and collect data from various
sources and multilayered datasets that are related to
each other [3,28,53]. Programmes work with various
data types (e.g., text, numbers) [3,13,28]. Programmes
store, move and perform calculations on data
[2,3,13,51]. Programmes store data in various data
structures (e.g., variable, table, list, graph) [2,3,13].

• Efficiency. Algorithms have no redundant or un-
necessary steps [13,53]. Designed solutions are easy
for people to use [13]. Designed solutions work ef-
fectively and promote positive user experience [13,24].
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Designed solutions function correctly under all
circumstances [13,24].

• Iteration. Programmers refine solutions through de-
sign, testing and debugging until the ideal result is
achieved [24,53].

• Logic. Programmers analyse situations and check facts
to make and verify predictions, make decisions and
reach conclusions [2,13,24]. Formulated instructions
comprise conditional logic, Boolean logic, arithmetic
operations and other logical frameworks [2,13,24,28].

• Modelling and design. Programmers design human‐
readable representations and models of an algorithmic
design, which could later be programmed [13,24,28,53].
Programmers organise the structure, appearance and
functionality of a system well [13,51]. Visual models,
simulations and animations represent how a system
operates [2,3,13,28].

• Patterns and Generalisation. Data and information
structures comprise repeating patterns based on simi-
larities and differences in them [2,13,24,28,53].
Repeating patterns form general‐level solutions that
apply to a class of similar problems [3,13,24,28,53].
General‐level ideas and solutions solve problems in
new situations and domains [13,24,28,53].

• Problem decomposition. Large problems and artefacts
decompose into smaller and simpler parts that can be
solved separately [2,13,24,28,53]. Large systems are
composed of smaller meaningful parts [2,24]. Pro-
grammes comprise objects, the main programme and
functions [3].

• Testing and debugging. Programmers evaluate and
verify solutions for appropriateness according to their
desired result, goal or set criteria [2,13,24,28]. Pro-
grammers evaluate solutions for functional accuracy
and detect flaws using methods involving observation
of artefacts in use and comparing similar artefacts
[2,13,24,28,53]. Programmers trace code, design and
run test plans and test cases and apply heuristics to
isolate errors and fix them [2,13,24,28,53]. Pro-
grammers make fair and honest judgements in com-
plex situations that are not free of values and
constraints [13].

In practice, various programming tasks can foster
skills and understanding in the ways of thinking and
doing involved in CT as described in the CEPs. In
Scratch, students manipulate programmatic contents,
that is, the objects and logic structures that establish
computational processes in their projects, and engage in
certain programming activities while designing said
contents [9]. Hence, it is meaningful to examine how
various Scratch programming contents and activities
contextualise the CEPs in practice.

2.3 | Assessment in scratch

Scratch is a free web‐based programming tool that al-
lows the creation of media projects, such as games, in-
teractive stories and animations, connected to young
peoples’ personal interests and experiences. Projects are
designed by combining graphical blocks to produce be-
haviours for digital characters (“sprites”). Block‐based
languages typically have a “low floor”: students cannot
make syntactic mistakes because only co‐applicable
blocks combine into algorithmic sets of instructions
(“scripts”) [9,38].

Despite the affordances of graphical tools, pro-
gramming is cognitively complex, and rich conceptual
mental models may not emerge spontaneously [4,40].
An “in time” pedagogy in which new knowledge is
presented whenever necessary through various project‐
based activities is a popular approach; however, it
requires the careful formulation of authentic problems
and selection of projects (i.e., ways to introduce CT
appropriately via programming contents and activities)
[20,34]. Moreover, learning can be supported with a
formative assessment that determines “where the lear-
ner is going”, “where the learner is right now” and “how
to get there”. In practice, instructors should clarify the
intentions and criteria for success, elicit evidence of
students’ understanding and provide appropriate feed-
back that moves learning forward [6]. Programming is a
potentially fruitful platform for enabling these processes
because it demonstrates students’ CT and provides a
potential accommodation for timely and targeted
learning support [23,34].

Several previous empirical studies have shown in part
how specific programming contents and activities in
Scratch could be assessed. However, the contents and
activities have been scarcely contextualised in CT. To
examine how CT could be thoroughly introduced and
respectively assessed in Scratch in K–9 (primary educa-
tion), this study reviews prior literature focused on as-
sessing Scratch contents and activities in K–9 and aligns
them to CT concepts and practices according to the
summarised CEPs (see Section 2.2). The purpose is to
derive elementary CT‐fostering learning contents and
activities and to explore appropriate methods for their
formative assessment in primary schools. Hence, the re-
search questions are:

What Scratch programming contents and activities
have been assessed in K–9?

How have Scratch programming contents and activ-
ities been assessed?

How do different Scratch programming contents and
activities contextualise CT concepts and practices via
the CEPs?

4 | FAGERLUND ET AL.



3 | METHODS

3.1 | Search procedures

To begin answering the research questions, literature sear-
ches were performed for peer‐reviewed studies focusing on
the assessment of Scratch programming contents and ac-
tivities in K–9 (Figure 1). First, searches were conducted
with the terms “computational thinking” and “Scratch” in
the ScienceDirect, ERIC, SCOPUS and ACM databases.
Publications were sought as far back as 2007 when Scratch
was released [9]. The searches resulted in 432 studies (98 in
ScienceDirect, 27 in ERIC, 217 in SCOPUS and 90 in ACM)
on November 27th, 2019. Duplicate and inaccessible pub-
lications were excluded from this collection.

The abstracts of the remaining studies were screened,
and both empirical and nonempirical studies were in-
cluded if they addressed assessment in Scratch (or highly
similar programming languages) in K–9. Publications
conceptualising generic assessment frameworks were
included if Scratch and primary education were men-
tioned as potential application domains. Studies set in
other or unclear educational levels were excluded to
maintain a focus on primary schools. Studies written in
other languages than English were excluded.

The remaining 50 studies was not presumed to cover
all potentially relevant work. Further searches were
conducted similarly with the terms “computational
thinking” and “Scratch” on Google Scholar, which pro-
vided a running list of publications in decreasing order of

relevance. These publications were accessed individually
until the search results concluded to no longer provide
relevant studies. Simultaneously, the reference lists of all
included studies were examined for discovering other
potentially relevant publications.

Altogether 81 obtained studies were then screened for
the assessment instruments that they employed. Studies
analysing students’ Scratch project contents or their
programming activities in Scratch were included. Studies
analysing the learning of other subject domain contents
or addressing other theoretical areas such as motivation,
attitudes and misconceptions were excluded. Assessment
instruments that were defined in insufficient detail or
were adapted in an unaltered form from prior studies
were excluded since they provided no additional
information for the RQs. For example, we found that
several articles employed the assessment instrument
called “Dr. Scratch” (see results). To attain information
regarding what Scratch programming contents and ac-
tivities have been assessed in K–9 and how said contents
and activities have been assessed altogether, we only in-
cluded the paper that originally introduced said contents
and activities, granted that the work was attainable.
Finally, 30 publications were selected for review.

3.2 | Analysis of studies

The Scratch programming contents and activities assessed
in the studies were described based on their type (RQ1)

FIGURE 1 Literature search protocol
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and the employed assessment method and taxonomy or
rubric (RQ2). Simultaneously, by employing content
analysis, the contents and activities were aligned to CT
concepts and practices according to the CT's CEPs (see
Section 2.2) that they contextualised (RQ3) (indicated in
results by CT concepts and practices highlighted in par-
entheses). The analysis was carried out by the first author.

Due to the complexity of CT, however, there is an
immense level of detail to which the contextualisation in
RQ3 could potentially reach. For instance, reducing un-
necessary detail (Abstraction) can involve various
broader programming tasks and detailed subtasks.
However, Voogt et al [58] stated that it is important to
discover “what matters” for CT. Therefore, as our first
step, we settled on merely describing what the assessed
contents and activities that contextualised CT were in-
stead of attempting to further analyse how they could
foster CT in different ways.

The analysis resulted in rubrics to Scratch contents
and activities that foster skills and understanding in CT
concepts and practices. The discovered assessment
methods were examined according to how they poten-
tially enabled formative assessment processes as pre-
sented by Black and Wiliam [6].

Potential limitations in reviews especially concern the
definition of the RQs, search procedure, selection of articles,
bias in the source material and its quality and the ways of
presenting the results [26]. Therefore, we wish to make the
following remarks concerning the repeatability, objectivity
and transparency herein. By describing the procedure
comprehensively and in detail, we aimed to reveal any bias
(e.g., concerning the use of appropriate search strings in
representative databases) [12,26]. Additionally, we strived to
describe the inferences made and the logic behind them
clearly and give equal weight to all reviewed work, though
spotlighting evidence that stands out in the process and
potentially suggests subjectivity in the source material [26].
Furthermore, we aimed to reinforce consistency in the
analysis by iteratively evaluating the contents of the articles,
ensuring that we interpreted them the same way at different
times [35]. By externally checking the research process and
debriefing the results among the authors, we aimed to
verify further that the meanings and interpretations re-
sonated among different researchers [12].

4 | FINDINGS

4.1 | Scratch contents and activities and
their assessment

Prior studies utilising Scratch in K–9 involved the as-
sessment of various programming contents and activities

with diverse assessment methods and taxonomies or
rubrics (RQ1, RQ2) (Table 1). Four distinct programming
substance categories were found and were named as
“code constructs”, “coding patterns”, “programming ac-
tivities” and “other programming contents”. Altogether,
20 studies assessed code constructs as the logic structures
(e.g., sequence of blocks, “repeat” [44]) that programmers
use to establish algorithmic sets of instructions in Scratch
projects. Ten studies assessed coding patterns, combina-
tions of code constructs that act as larger programmatic
units for specific semantical purposes (e.g., “Animate
Motion” [50]). Eleven studies examined students’ pro-
gramming activities (e.g., “script analyew sis” [30]),
whereas six studies examined other programming
contents (e.g., “project genres” [19]). Only six studies
considered the direct assessment of CT, and the
remaining studies assessed the contents or activities with
or without presenting CT as a motivational theme.

Structured with the aforementioned four substance
categories, the following subsections describe the nature
of the discovered contents and activities and their as-
sessment methods more completely and elaborate their
relationships with the CEPs (RQ3).

4.2 | CT's CEPs in Scratch

4.2.1 | Code constructs

Three studies assessing code constructs examined CT
specifically. “Dr. Scratch”, a web‐based automatic ana-
lysis tool, assessed the use of blocks in Scratch projects
(Table 2) [44]. Relatedly, Wangenheim et al [59] used
“CodeMaster”, a similar yet more extensive rubric for
projects made in the Snap! programming environment.
In terms of CEPs contextualised in Scratch by these tools,
for instance, “if” blocks and logic operations con-
textualise conditional logic and Boolean logic (Logic),
and the rubrics to “flow control” contextualise the basic
building blocks of algorithms (Algorithms). Moreover,
the rubrics to “data representation” contextualise work-
ing with different data types, performing operations on
data and using various data structures (Data) in addition
to abstracting real‐world phenomena as data (Abstrac-
tion). Moreover, the “ANTLR” tool presented by Chang
et al [11] expanded the rubrics of Dr. Scratch to include
recursion (Algorithms).

Two other automated tools, “Ninja Code Village”
(NCV) presented by Ota et al [46] and “Scrape” by used
by Ke [30], examine similar code constructs to
Dr. Scratch without aligning them to CT. However, si-
milar to Dr. Scratch's rubrics in “Abstraction and Pro-
blem decomposition”, NCV's rubrics for the “procedure”

6 | FAGERLUND ET AL.



TABLE 1 A summary of studies involving the assessment of Scratch programming contents and activities in K–9

# Authors

Assessment in Scratch

Contents/activities Method Taxonomy/rubric

1 Benton et al [5] Coding patterns (CT) Self‐evaluation Difficulty rating

2 Blau et al [7] Other programming contents Artefact analysis Presence/frequency

3 Brennan and Resnick [9] Code constructs + programming
activities (CT)

Artefact analysis Presence/frequency

Performance evaluation Skill description

Interview

4 Burke [10] Code constructs Artefact analysis Presence/frequency

Programming activities Observation Description, data‐driven
Interview

5 Chang et al [11] Code constructs (CT) Artefact analysis Presence/frequency

6 Ericson and McKlin [15] Code constructs Test Correct answer

Coding patterns Correct drawing

7 Franklin et al [16] Coding patterns Observation Correctness level

Code constructs Test Correct answer

Programming activities Observation Behaviour type

8 Franklin et al [17] Code constructs Artefact analysis Content completion
(percentage)Coding patterns

9 Funke et al [19] Coding patterns Artefact analysis Progression level

Code constructs Presence/frequency

Other programming contents

10 Funke and Geldreich [18] Code constructs Log data analysis Description

11 Grover and Basu [21] Code constructs Test Correct response

Coding patterns Think‐aloud

12 Gutierrez et al [25] Other programming contents Artefact analysis Presence/frequency

13 Israel et al [29] Programming activities Observation + discourse analysis Behaviour type

14 Ke [30] Code constructs Artefact analysis Presence/frequency

Programming activities Observation Behaviour type

15 Lewis [31] Code constructs Test Correct answer

Self‐evaluation Likert

16 Lewis and Shah [32] Programming activities Discourse analysis Behaviour type

Hypotheses, data‐driven

17 Mako Hill et al [36] Programming activities Artefact analysis Presence/frequency

Other programming contents

18 Maloney et al [37] Code constructs Artefact analysis Presence/frequency

19 Meerbaum‐Salant et al [41] Programming activities Observation Behaviour type

20 Meerbaum‐Salant et al [42] Code constructs Test Correct response

Coding patterns

21 Moreno‐León et al [44] Code constructs (CT) Artefact analysis Presence

22 Ota et al [46] Coding patterns Artefact analysis Presence

Code constructs

23 Sáez‐López et al [55] Code constructs Test N/A

Programming activities + other
programming contents

Self‐evaluation Performance level

Observation

(Continues)
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code construct contextualise different kinds of functions
and procedures that act as separate instruction sets to
solve specific problems (Algorithms). Moreover, Scrape
and Dr. Scratch examined external device usage via
various input/output devices (e.g., keyboard, mouse)
(Automation).

Regarding other assessment methods, Lewis [31]
asked students to describe the output of example scripts
comprising certain code constructs and evaluate how
hard it was to learn them. Meerbaum‐Salant et al [42]
conducted summative tests with a revised Bloom/
SOLO taxonomy on students’ understanding in parallel

execution within and across different sprites, which
was underlined to often require the synchronisation
of different scripts. Relatedly, several other studies
[10,19,37,60] manually examined students’ projects for
the “synchronisation” code construct, which was juxta-
posed with the “coordination” or “communication” code
constructs. The implementation of synchronisation, co-
ordination and communication contextualises controlling
the timing of computation in participating processes
(Coordination and Parallelism). In Scratch, coordination
and synchronisation of parallel processes can occur with
timing (e.g., the “wait” block), state‐sync (e.g., the “wait

TABLE 1 (Continued)

# Authors

Assessment in Scratch

Contents/activities Method Taxonomy/rubric

24 Seiter [49] Coding patterns Artefact analysis Presence

25 Seiter and Foreman [50] Code constructs + coding patterns (CT) Artefact analysis Presence

26 Shah et al [52] Programming activities Discourse analysis Behaviour type

27 Tsan et al [57] Programming activities Discourse analysis Behaviour type

Observation

28 Wangenheim et al [59] Code constructs (CT) Artefact analysis Presence

29 Wilson et al [60] Code constructs Artefact analysis Presence

Other programming contents

30 Zur‐Bargury et al [63] Code constructs Test Correct response

TABLE 2 Evidence for CT as examined by Dr. Scratch [26]

Competence level

CT concept Basic Developing Proficient

Abstraction and Problem
decomposition

More than one script and
more than one sprite

Make‐a‐blocks Cloning

Parallelism Two scripts start on
“green flag”

Two scripts start on when key is
pressed/when sprite is clicked on
the same sprite

Two scripts start on “when I receive
message”, “create clone”, “when %s is
>%s” or “when backdrop change to”
blocks

Logical thinking “If” block “If‐else” block Logic operations

Synchronisation “Wait” block “Broadcast”, “when I receive
message”, “stop all”, “stop
program” or “stop programs
sprite” blocks

“Wait until”, “when backdrop change to”
or “broadcast and wait” blocks

Flow control Sequence of blocks “Repeat” or “forever” blocks “Repeat until” block

User interactivity “Green flag” block “Key pressed”, “sprite clicked”, “ask
and wait” or mouse blocks

“When %s is >%s”, video or audio blocks

Data representation Modifiers of sprite
properties

Operations on variables Operations on lists

8 | FAGERLUND ET AL.



until” block) or event‐sync (e.g., the “when I receive”
block) and by blocking or stopping further script execu-
tion [44,50]. Moreover, Franklin et al [16,17] manually
assessed the use of the “initialisation” code construct,
that is, setting initial state values (Algorithms) for sprite
properties such as location or size.

4.2.2 | Coding patterns

Seiter and Foreman [50] developed the “Progression for
Early Computational Thinking” (PECT) model to
manually examine CT through project‐wide design pat-
tern variables: “Animate Looks”, “Animate Motion”,
“Conversate”, “Collide”, “Maintain Score” and “User
Interaction”. The design pattern variables are assessed
with rubrics to specific code construct combinations,
whereas students’ understanding in CT is indicated by
the presence of specific level variables in a Scratch pro-
ject. In addition to the relationships between CT and
programming contents disclosed directly in PECT (see
Seiter and Foreman [50] for detailed rubrics), in Scratch,
coding patterns and code constructs themselves
contextualise repeating patterns and generalisable com-
putational solutions (Patterns and Generalisation). The
implementation of coding patterns and code constructs
also contextualises breaking complex projects into smal-
ler, manageable parts that establish the larger system.
Coding patterns could also be considered as the functions
of different objects (i.e., sprites) (both Problem decom-
position). Moreover, each coding pattern can be inter-
preted as a separate solution to a problem (Algorithms),
which, in turn, is an abstraction of a real‐world phe-
nomenon (Abstraction).

Benton et al [5] asked students to rate the difficulty of
different kinds of algorithms, which resembled PECT's
“Animate Motion” coding pattern. Franklin et al [17]

examined the “Breaking down actions” coding pattern,
which resembled a combination of PECT's “Collision”
and “Animate Motion”. However, unlike in PECT, this
coding pattern required parametric precision (e.g., an
exact number in a “move” block), which can be essential
in ensuring that designed solutions achieve the desired
results (Efficiency). Similarly, test questions employed by
Meerbaum‐Salant et al [42] and Grover and Basu [21]
concerning coding patterns, which resembled PECT's
“Animate Motion” and “Maintain Score”, necessitated
distinguishing between separate overlapping coding
patterns (see example in Figure 2). These solutions
spotlighted the option of examining individually in-
stantiated rather than project‐wide coding patterns in
students’ projects.

Ericson and McKlin [15] asked students to draw the
outputs of scripts comprising a coding pattern, which
resembled PECT's “Animate Motion” with the “pen”
code construct. In Scratch, pen is used to draw visual
lines as sprites move and, therefore, visualise algorithms
(Modelling and design), although several other pro-
grammed features (e.g., conversations, animations) also
manifest visually or vocally in Scratch. The authors also
introduced a coding pattern for reading keyboard inputs
and storing them in the “answer” variable (Automation)
in addition to using conditional structures and Boolean
expressions to evaluate the value stored in the variable
(Logic).

Franklin et al [16] adopted a mixed methods ap-
proach with the “Hairball” plugin and a qualitative
coding scheme to additionally examine the “Complex
Animation” coding pattern, which resembled PECT's
“Animate Motion” and “Animate Looks” with a “loop”
code construct. Similarly, Seiter [49] used a three‐level
SOLO taxonomy to assess a “Synchronising costume with
motion” coding pattern, which resembled the parallel
execution of the same two coding patterns. Additionally,

FIGURE 2 Questions that necessitate distinguishing two independent motion parameters: facing direction and location
(supplementary materials by Meerbaum‐Salant et al 2013)
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the “Multi‐sprite conversation” coding pattern en-
compassed a synchronised dialogue‐animation. The syn-
chronisation of coding patterns themselves also
contextualises controlling the timing of participating
processes (Coordination and Parallelism).

4.2.3 | Other programming contents

Blau et al [7] and Mako Hill et al [36] examined the
amount of scripts and sprites in students’ projects.
Similarly with Dr. Scratch, Moreno‐León et al [44]
examined “more than one script and one sprite” aligned
to Abstraction, which encompasses solving complex
problems, and Problem decomposition, which en-
compasses decomposing a complex system into man-
ageable parts. Relatedly, Gutierrez et al [25] examined
“documentation” (i.e., code comments) in projects
whereas Wilson et al [60] and Funke et al [19] examined
the “custom naming of sprites”, “meaningful naming of
variables” and “no extraneous blocks”, all of which can
make complex artefacts more understandable and man-
ageable (Abstraction) and organise their structure and
appearance (Modelling and design). Additionally, these
studies examined the “functionality of projects”, which
contributes to ensuring that a project is correct with re-
spect to the desired goals (Efficiency). A “clearly defined
goal” and “instructions” as also examined by these stu-
dies are key features in projects that are easy to use and
trigger appropriate user experiences (Efficiency). Then
again, “customised sprites”, “customised stages”, “ori-
ginality of a project” and the “ability to communicate and
express through artefacts”, as examined by Sáez‐López
et al [55], can promote creative expression (Creativity).

Lastly, Blau et al [7] examined how many projects
students had created and remixed while Funke et al [19]
categorised projects’ genres. Gutierrez et al [25] examined
the extent to which students had made only superficial
changes with respect to sample projects. Designing and
remixing a number of projects contributes to creating
different kinds of computerised solutions that each have
a specific purpose (Automation).

4.2.4 | Programming activities

None of the 11 studies that examined programming ac-
tivities focused directly on CT apart from Brennan and
Resnick [9], who described four practices – “being in-
cremental and iterative”, “testing and debugging”, “re-
using and remixing” and “abstracting and modularising”
– which largely aligned with the broader CT concepts and
practices as examined in the current work. They also

proposed two methods for examining said practices: in-
terviews and design scenarios. Similar to Brennan and
Resnick's “reusing and remixing”, Blau et al [7] examined
students’ social participation (e.g., friends, comments and
favourited projects), whereas Mako Hill et al [36]
examined students’ credit‐giving habits. These activities
relate to building on other programmers’ work and dis-
tributing one's own work (Collaboration).

Focusing on project design phases, Burke [10]
categorised students’ programming processes into
“brainstorming and outlining” and “drafting, feedback
and revising”. Ke [30] categorised students’ game devel-
opment acts more elaborately (e.g., “Off‐task”, “Script
analysis”, “Test play”). Funke and Geldreich [18] con-
ceptualised a visualisation technique to describe script
design processes. Meerbaum‐Salant et al [41] identified
two programming habits: bottom‐up programming (bri-
colage) and extremely fine‐grained programming. These
activities demonstrate different ways to plan (Modelling
and design) and refine solutions (Iteration) and evaluate
them, detect flaws, isolate errors and fix bugs (Testing
and debugging).

Focusing on human‐to‐human interactions, Franklin
et al [16] recorded the help levels students required when
programming. Israel et al [29] developed the C‐COI in-
strument for coding students’ behaviours as steps in
collaborative problem‐solving processes. Shah et al [52]
and Lewis and Shah [32] examined students’ equity,
quality of collaboration, task focus and speech during
programming. Sáez‐López et al [55] questioned and
observed students’ sharing and playing with their pro-
grammes, active participation and clear communication.
Tsan et al [57] analysed students’ collaborative dialogue.
Such manifold aspects of interaction affect task division
and role alternating (Collaboration).

5 | DISCUSSION

5.1 | Typifying elementary CT in
Scratch

By conducting a literature review, we explored the
assessments of programming contents and activities in
Scratch and aligned them to CT concepts and practices
according to CT's CEPs (in Section 2.2), which were
derived from previous contemporary literature as a
background to enable the systematic contextualisation of
CT in Scratch. The view of CT adopted in this study is
relatively broad, and it can encompass areas that can be
positioned in a more “central” or “peripheral zones” of
CT and get included or excluded as needed. In the fol-
lowing sections, we provide summaries that include the
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reviewed CT‐fostering Scratch programming contents
and activities. As encouraged by prior studies [23,34], we
also discuss the formative assessment of the contents and
activities in students’ authentic programming projects
and processes rather than, for instance, ranking or cer-
tifying students’ competence or regarding them with tests
to highlight potentially meaningful ways to support
learning.

The summaries should not be regarded as complete
since CT is a developing body of broad and complex
ideas. Hence, we also discuss which CEPs were not
straightforwardly contextualised in Scratch. Additionally,
as CT is a collection of holistic skills and understanding
in computational problem‐solving [56,61], the contents
and activities could be interpreted to contextualise dif-
ferent areas in CT in various ways. Therefore, we recap
and capsulise the results mainly as Scratch contents and
activities contextualising the CT concepts and practices
more generally rather than the single CEPs. Moreover,
the contents and activities should not be viewed as iso-
lated gimmicks but as components that conjoin mean-
ingfully while, for instance, designing games, creating
storytelling projects or animating while processing
learning contents in other curricular areas [20,45].
Scratch can promote self‐expression, interest and fun in
learning programming in settings that are built on such
pedagogical underpinnings as constructionism and co‐
creation [9,47]. Meaningful learning thereby includes
authentic problems and meaningful selections of projects.
In terms of CT in such settings, it is important to focus
especially on how students are thinking as they are pro-
gramming [34].

5.1.1 | Contents in Scratch projects

Students’ CT can be evaluated based on the code con-
structs (e.g., “loop”, “variable”), coding patterns (e.g.,
“change location”) and other programming contents
(e.g., sprite naming) (Table 3) they have implemented in
different kinds of Scratch projects. The PECT model
presented by Seiter and Foreman [50] proposed a com-
paratively comprehensive rubric for coding patterns and
code constructs. However, parametric precision high-
lighted the importance of examining individually in-
stantiated patterns rather than project‐wide coding
patterns: for instance, each property (e.g., size, position)
of each sprite has an independent state, which necessi-
tates paying attention to, for instance, initialising them
separately (e.g., “change location for Sprite1”) [16,17].
The presence, frequency, correct implementation or
completion rate of particular contents as evaluated in
several prior studies can demonstrate students’ CT.

Although particular studies [5,19,42] additionally pro-
posed progression levels or difficulty ratings for particular
contents, fully congruent and thus conclusive learning
progressions for CT in Scratch were not explicit in the
reviewed studies. Therefore, applying a learning tax-
onomy (e.g., Bloom/SOLO [42]) systematically to the
contents gathered herein would require further
investigation.

5.1.2 | Activities in Scratch

CT‐fostering Scratch programming activities may leave
traceable evidence in projects as static contents but may
be more thoroughly identified in students’ programming
processes. For example, Standl [54] framed CT as a
problem‐solving process that includes phases, such as
describing the problem, abstracting the problem, de-
composing the problem, designing the algorithm and
testing the solution. The CT‐fostering activities in Scratch
described in the reviewed studies can be similarly sum-
marised as a model of a CT problem‐solving process
(Figure 3). As demonstrated by several studies, students’
CT‐fostering activities can be evaluated by means of ob-
servation, interviewing or self‐evaluation next to a de-
sired skill description or performance level.

In particular, project planning can include, for in-
stance, algorithmic flowcharts, pseudo‐code, drawings
and lists (Modelling and design) [10]. Decomposition of
planned or programmed solutions into smaller, man-
ageable parts (Problem decomposition) could be ex-
amined with a rubric to coding patterns and code
constructs, such as with the one presented by Seiter and
Foreman [50]. The actual code‐writing can resemble
“bricolage” or decomposition into logically coherent
units, and it can comprise repeating cycles of designing,
analysing scripts and testing play (Iteration, Testing and
debugging) [30,41]. However, due to lack of empirical
demonstration, it is somewhat unclear what kinds of
activities in Scratch lead to effective and fair evaluation
and verification of programmed solutions (testing and
debugging) and removing redundant and unnecessary
steps in scripts (Efficiency). Meanwhile, solutions can be
shared and remixed (Collaboration) to gain feedback and
new ideas [9]. Additionally, during programming, stu-
dents may recognise how previously designed coding
patterns or code constructs could be reused (Patterns and
Generalisation), although it remains somewhat unclear
how such events occur in practice. Furthermore, task
division and role alternating (Collaboration), which may
be influenced by factors concerning equity, task focus,
talk, active participation and clear communication, are
present during all activities [32].
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TABLE 3 CT‐fostering programming contents in Scratch projects

CT concept/
practice Scratch contents (and source studies, see Table 1)

Abstraction • Sprite properties, variables and lists (abstractions of properties)
[1,3,4,6,8,9,11,14,15,18,20,22,24,25,29,30]

• Coding patterns, make‐a‐blocks and cloning (abstractions of
behaviours) [1,5–9,11,14,20–22,24,25,28,30]

• Continuous events (repeat until), discrete events (wait until) and
initialisation (abstractions of states) [1,7,8,11,20,22,24,25,28,30]

• Complex projects with several scripts and sprites [3,5,9,21,28]

Algorithms • Coding patterns, make‐a‐blocks and cloning (coding separate
procedures as specific functionalities)
[1,6–9,11,14,20,22,24,25,28,30]

• Initialisation [1,7,8,20,24,25]
• Sequencing, looping and selection in coding patterns (algorithm
control) [1,3–6,8,9,11,14,15,18,20–25,28–30]

• Self‐calling (recursive) make‐a‐blocks [5,22]

Automation • Green flag, key press, sprite click, keyboard input, mouse,
sensing, video and audio events (I/O device use)
[3–7,9,14,18,21,22,24,25,28–30]

• Animations, games, art, stories and simulations (project
genres) [3,9]

Collaboration • Publishing projects [2]
• Remixing and credit‐giving [3,17]
• Commenting, requesting friends, favouriting, “love‐its” [2,3]

Coordination and
Parallelism

• Synchronised parallel code constructs and coding patterns within
a sprite and across sprites [3–5,9,12,18,20–25,28,29]

• Coordinated parallel code constructs and coding patterns with
timing, states, events, blocking (ask and wait) and stopping script
execution [3–9,18,20–22,24,25,28,29]

Creativity • Customised sprites and stages [9,12,23]
• Modifying a remixed project [3,12,29]
• Expressing personal interest areas [3,23]

Data • Sprite properties, Scratch variables, custom variables, lists and
cloud variables (storing and manipulating data in data types)
[1,3,4,6,8,9,11,14,15,18,20,22,24,25,28–30]

Efficiency • Precise data manipulation [1,6,8,15,20,24,30]
• Defined project goal [29]
• Use instructions [9,29]
• Functionality [9,29]

Logic • If, if‐else, nested conditionals [3,4,6,9,11,14,15,18,20–22,28–30]
• And, or, not (Boolean logic) [3–5,9,11,14,15,18,21,28,29]
• Arithmetic operations [3,9,15,18,29,30]
• Absolute and relational operations [1,3]

Modelling and
design

• Looks and motion animation, pen drawing and sounds
(algorithm animation) [1,3–9,11,14,15,22,24,28,30]

• No extraneous blocks [9,12,29]
• Meaningful names for sprites and variables [9,11,12,29,30]
• Code comments [12]

Patterns and
Generalisation

• Reinstantiated code constructs [4,7,9,25]
• Reinstantiated coding patterns [7,11,20,30]

Problem
decomposition

• Coding patterns and code constructs (decomposition)
[1,3–11,14–16,18,20–25,28–30]

• Separately scripted behaviours or actions (modularisation) [3,25]

Note: The concepts and practices may not be entirely mutually exclusive in terms of the contents.
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5.2 | Formative assessment of CT in
Scratch

In this study, we lean on the following notion on for-
mative assessment: its processes involve (1) clarifying
learning intentions and criteria for success, (2) eliciting
evidence of students’ current understanding and (3)
providing feedback to move learning forward [6].

In CT, holistic assessment should recognise the
diversity of problem‐solving situations and align con-
textualised, task‐specific assessment rubrics to the focal
areas of CT (1) [22,45]. Educators could utilise concrete
and contextualised CT‐fostering Scratch project
functionality rubrics (e.g., coding patterns and their un-
derlying code constructs) or performance descriptions as
indirect CT learning intentions and criteria.

Since programming is a demonstration of CT [23], the
contents that students can implement in Scratch projects
as summarised in Table 1 can be elicited as evidence of
their CT (2). However, programming projects are not
direct measurements of thinking, and there has been
justified questioning concerning students’ learning of
computational concepts while working with such tools as
Scratch [47]. However, signs of validity in assessing CT in
the context of programming have begun appearing [48].

The examination of code constructs within semantically
meaningful coding patterns could further improve the
validity of the assessment [50]. Comprehensive rubrics
for such contents could be adopted in future empirical
research assessing students’ CT in a wide‐ranging and
systematic manner attempting to, for instance, examine
the issue of validity further, gain rich empirical insight, or
weigh the usefulness of such rubrics in classroom
practice.

It is crucial to complement the assessment by
examining programming processes. [22] Prior studies
examined students’ programming activities via, for in-
stance, observation, discourse analysis and interviewing
(see Table 1). In schools, complicated research‐
designated tools are time‐consuming. Additionally, prior
studies assessed only certain CEPs and not CT compre-
hensively. Hence, an extensive and a pedagogically
meaningful programming process assessment tool or
rubric would also require further development. In future
research, project content implementation could be
examined alongside both peer‐to‐peer [29,32,52,57] and
student‐project [18,30] interactions. In‐depth empirical
examinations of interactions resulting in different kinds
of contents could surface diverse desirable and undesir-
able programming activities. Such in‐depth investigations

FIGURE 3 CT‐fostering activities in Scratch (and source studies, see Table 1)

FAGERLUND ET AL. | 13



could also focus on discussing pedagogically meaningful
assessment instruments for schools.

Lastly, the instantiation of CT‐fostering contents
could be supported in real time by providing targeted
timely feedback for specific code segments in the stu-
dents’ projects (3) [34]. Although the feedback can be
generated by teachers or peers, existing automated as-
sessment tools (e.g., Dr. Scratch [44], NCV [46], Scrape
[30]) that cover some areas of CT could be revisited to
better satisfy this need.

5.3 | Fostering CT beyond the rubrics

Some CEPs were not straightforwardly contextualised in
Scratch. First, removing redundant or unnecessary steps
in algorithms (Efficiency) was not assessed beyond ex-
amining unscripted blocks as shown by Wilson et al [60].
Similarly, project functionality in general may not alone
ensure positive user experience or functionality under all
circumstances (Efficiency). Second, finding and collect-
ing data from various sources and multilayered datasets
(Data) may be problematic to effectuate in Scratch be-
cause it is primarily a media design tool and not a
general‐purpose programming language [38]. However,
the domain of simulation‐genre projects and the use of a
range of I/O devices could potentially provide opportu-
nities for data collection [9,13]. Thirdly, it is essential for
students to understand that computers, operating sys-
tems, applications and programming languages are high‐
level abstractions of computations occurring in circuits
and wires, how various digital devices could be used as a
computer and identify real‐world applications of CT
(Abstraction and Automation). These CEPs could be
meaningfully explored and assessed in the contexts of
other programming tools and environments that can
promote engaging learning activities for novice pro-
grammers (e.g., Lego Mindstorms [20], the App Inventor
[47]) throughout compulsory education.

Then again, some CEPs were not contextualised in an
in‐depth manner. For instance, designing projects with
several scripts and sprites as examined by Funke et al [19]
contextualises managing complexity (Abstraction), but this
task is likely very multilayered [24]. Similarly, the CEPs
in Patterns and Generalisation and Problem decomposi-
tion [24] likely involve intricate cognitive tasks when
instantiating code constructs and coding patterns as ex-
amined by, for instance, Seiter and Foreman [50] and
Grover and Basu [21]. Moreover, alternate approaches to
solving problems and “out‐of‐the‐box thinking” (Creativ-
ity) are vague ideas that may only hold meaning in prac-
tical educational contexts. Then again, making fair and
honest judgements in complex situations that are not free

of values and constraints (Testing and debugging) and
analysing situations and checking facts to make and verify
predictions, making decisions and reaching conclusions
(Logic) are very broad ideas that could relate to nearly all
aspects of computational problem‐solving. Furthermore,
as the CEPs and the programming contents contextualis-
ing them emerged from previous works in this nascent
research area, there can be relevant CT beyond what is
currently known.

6 | CONCLUSIONS

Building on our current understanding of the key skills
and areas of understanding associated with CT—often
represented as its core concepts and practices and ato-
mised here concretely as CT's CEPs—this study placed a
particular focus on CT in the context of Scratch in K–9
(primary education). We summarised “CT‐fostering”
Scratch programming contents and activities from 30
studies into operational rubrics for teaching, learning and
assessment at the primary school level. The results are
applicable in educational practice, but the rubrics can be
developed in future investigations. That said, the rubrics
should not be regarded as complete or all‐inclusive as CT
is a developing research topic. However, by shedding
light into its CEPs fostered via Scratch we also managed
to raise some important areas that would benefit from
further investigations. Some dimensions in CT could be
meaningfully examined through quantitative metrics
(e.g., code construct segments), whereas others may be
more qualitative in nature (e.g., creative expression). The
next aspiration could be applying a learning progression
taxonomy to the contents and activities systematically.

Moreover, methods of formative assessment for con-
tents and activities were explored. With this study as a
springboard, our next steps are to refine pedagogically
meaningful ways to assess CT in students' Scratch pro-
jects and programming processes. Validated assessment
frameworks could potentially be extended into auto-
mated, formative learning‐support systems that students
can benefit from when programming.

What still gravely requires attention in CT is the
quality of understanding that students develop while
programming. Additionally, as CT is an interdisciplinary
collection of skills and knowledge, it can develop through
various tasks in different kinds of problem‐solving con-
texts. To unify theories in CT education, the contents and
activities in other programming environments (e.g., ro-
botics, digital game‐play) and nonprogramming domains
should be reviewed in a similar fashion. Operational
methods of assessing CT similarly in different contexts
could be used to tackle the notorious transfer problem.
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