
Ville Ravaska

 THE ESSENCE OF SOFTWARE STARTUP : AN EMPIR-
ICAL STUDY ON THE APPLICATION OF ESSENCE

FRAMEWORK

UNIVERSITY OF JYVÄSKYLÄ

FACULTY OF INFORMATION TECHNOLOGY
2020

ABSTRACT

Ravaska, Ville
Name of the publication: The Essence of Software Startup : an Empirical Study
on the Application of Essence Framework
Jyväskylä: University of Jyväskylä, 2020, 84 pp.
Information Systems, Master’s Thesis
Supervisors: Pekka, Abrahamsson; Kai-Kristian Kemell

Software startups are still a scarcely studied subject even though success stories
of the companies like Facebook and Twitter have boosted the popularity of new
software startup companies. The impact of successful startups for the economy
is massive by creation of new jobs and wealth. The Essence framework is rela-
tively new approach for modelling software development in the companies. It
has not been extensively tested in the unique case of software startups. Software
startup practices have been studied and acknowledged in the academia but fur-
ther research is still needed to comprehensively understand how these compa-
nies work and conduct their work.

This thesis studied software startup practices regarding software devel-
opment and other vital activities performed by these companies. The Essence
framework was also introduced to software startups’ working practices. The
basis of the thesis was the list of software startup practices derived from previ-
ous studies that was categorized following the alphas of the Essence framework.
The empirical study was conducted as a multiple case study with thirteen dif-
ferent cases.

Three new alphas (funding, marketing and business model) were suggest-
ed to the Essence in order to revise the framework to support software startups
whole endeavour. Thirteen additional practices were also found from the em-
pirical material. The Essence was found to support software startups software
development efforts but lacking the business aspects that cannot be separated
from the software development in small new companies working with limited
resources.

Keywords: startup, software startup, essence, practice, software development
practice, software startup practice

FIGURES

FIGURE 1 Startup Life Cycles (Wang et al., 2016) .. 13

FIGURE 2 Relations between Terms ... 15

FIGURE 3 Activity Spaces (Submitters, 2012) ... 24

FIGURE 4 Competencies (Submitters, 2012) ... 25

FIGURE 5 Alphas (Submitters, 2012) .. 26

FIGURE 6 Scrum Essentialization (Jacobson et al., 2019.) 28

FIGURE 7 Framework ... 34

TABLES

TABLE 1 Software Startup Practices ... 18

TABLE 2 Opportunity Related Practices .. 35

TABLE 3 Stakeholders Related Practices ... 35

TABLE 4 Requirements Related Practices.. 36

TABLE 5 Software System Related Practices ... 37

TABLE 6 Work Related Practices .. 37

TABLE 7 Team Related Practices .. 38

TABLE 8 Way of Working Related Practices ... 39

TABLE 9 Other Practices .. 40

TABLE 10 Studied Cases .. 44

TABLE 11 New Practices .. 49

TABLE 12 Results of Practices Related to Opportunity ... 50

TABLE 13 Results of Practices Related to Stakeholders .. 52

TABLE 14 Results of Practices Related to Requirements 54

TABLE 15 Results of Practices Related to Software System 55

TABLE 16 Results of Practices Related to Work ... 57

TABLE 17 Results of Practices Related to Team ... 58

TABLE 18 Results of Practices Related to Way of Working 60

TABLE 19 Results of Other Practices .. 62

TABLE 20 Primary empirical conclusions ... 64

TABLE OF CONTENTS

ABSTRACT .. 2

FIGURES .. 3

TABLES .. 3

TABLE OF CONTENTS .. 4

1 INTRODUCTION .. 6

1.1 Motivation ... 6

1.2 Research Problem .. 7

1.3 Scope of the Research .. 8

1.4 Structure of the Thesis ... 8

2 SOFTWARE STARTUP AND STARTUP PRACTICES 10

2.1 Definition of Software Startup ... 10

2.2 Startup Life Cycle Stages .. 12

2.3 Definition of Practice ... 14

2.4 Software Startup Practices .. 15

3 ESSENCE FRAMEWORK ... 22

3.1 Background ... 22

3.2 The Kernel ... 23

3.3 Essence in Practice ... 26

3.4 Essentializing Practices ... 27

3.5 Criticism .. 29

3.6 Competing Frameworks ... 31

4 THEORETICAL FRAMEWORK .. 33

4.1 Opportunity .. 34

4.2 Stakeholders ... 35

4.3 Requirements .. 35

4.4 Software system ... 36

4.5 Work .. 37

4.6 Team .. 37

4.7 Way of Working ... 38

4.8 Other Practices ... 39

5 RESEARCH DESIGN AND METHODOLOGY 41

5.1 Research Methodology and Data Collection ... 41

5.2 Participants ... 42

5.3 Data Analysis ... 44

5.4 Research Validity and Reliability .. 45

5.5 Research Ethics ... 47

6 EMPIRICAL RESULTS .. 48

6.1 Opportunity .. 49

6.2 Stakeholders ... 51

6.3 Requirements .. 52

6.4 Software system ... 55

6.5 Work .. 56

6.6 Team .. 57

6.7 Way of Working ... 59

6.8 Other Practices ... 61

6.9 Summary of Results... 63

7 DISCUSSION .. 64

7.1 Theoretical Implications ... 64

7.2 Practical Implications .. 67

8 CONCLUSION ... 69

8.1 Answer to Research Questions .. 69

8.2 Limitations .. 70

8.3 Future Research .. 71

REFERENCES ... 72

APPENDIX 1 LIST OF THE STARTUP PRACTICES 78

APPENDIX 2 LIST OF ABBREVIATIONS ... 82

APPENDIX 3 THE FRAME OF THE INTERVIEWS 83

1 INTRODUCTION

Everyday many new software startups are born and success stories like Twitter
and Facebook only boost their popularity. However other side of these success
stories is that most of the startups fail during their first two years (Crowne,
2002). Increasing the percentage of successful startups could have huge positive
impact in the economy by creating new jobs and wealth (Kane, 2010).

Software startup practices are a scarcely studied subject while general
software development methods and practices have been subject to extensive
studies. Majority of these studies concentrate on established and mature com-
panies rather than startups working with limited resources under immense
pressure. (Giardino et al., 2016.)

Software Engineering Method and Theory (SEMAT) community has cre-
ated a framework called the Essence. It described a common ground for all
software development endeavours (Submitters, 2012). This framework was se-
lected as a foundation of this thesis because of its two usages, its extensibility
and its comprehensive approach to software endeavour management (Jacobson
et al., 2012). These two usages allow the kernel to be used to describe software
startup practices from numerous different sources under one model.

1.1 Motivation

Klotins et al. (2015) and Paternoster et al. (2014) have argued that mainstream
software research lacks studies focusing on startups. For example Klotins et al.
(2015) indicated that only 28 of 62 knowledge areas of IEEE Computer Society’s
Guide to the Software Engineering Body of Knowledge were covered in studies
focusing on startups in 2015 (Bourque & Fairley, 2014).

Unterkalmsteiner et al. (2016) have expressed in their software startup re-
search agenda that research on this topic already provides snapshots of startups’
software development practices but more comprehensive studies are needed.
Startups have been subject to studies of numerous fields, for example business,

7

software development methods and user experience. Still academia has not
reached unanimous conclusions for any major topics related to startups starting
from the definition of startup. More studies of startup related topics are needed
to provide comprehensive empirical knowledge of this phenomenon. (Unter-
kalmsteiner et al., 2016.)

Recent software startup studies have been centering on the core
knowledge of software development and software engineering challenges in
startups (Unterkalmsteiner et al., 2016). A network of researchers interested in
startup phenomenon created a mind map of different research areas regarding
startups, which need to be studied more comprehensively, in December 2015.
These research tracks were grouped into six clusters (Unterkalmsteiner et al.,
2016.):

 Supporting Startup Engineering Activities

 Startup Evolution Models and Patterns

 Human Aspects in Software Startups

 Applying Startup Concepts in Non-Startup Environments

 Startup Ecosystems and Innovation Hubs

 Methodologies and Theories for Startup Research

There are also other research areas that authors find interesting and may be
added to research agenda in the future. For example Marketing and Business
and Economic Development are directions that will most likely be relevant for
startups’ performance. Other research areas might also rise while the
knowledge of the phenomenon increases. (Unterkalmsteiner et al., 2016.)

1.2 Research Problem

Purpose of this thesis is to study essential universal practices of software
startup companies. The practices are discovered through empirical research.
From the found practices those that are present and requisite for every software
startup form the essence of software startups. The results will be presented fol-
lowing SEMAT Essence kernel framework. The Essence kernel so far presents
the essence of software development but it does not focus on uniqueness of
startups thus revising it considering startups’ universal aspects will provide
valuable practical tool for startups.

Research question of this thesis is: How software startups’ working practices
fit under the alphas of the Essence framework? The main question is divided into
sub-questions:

1. How to define a software startup?
2. What practices are universal for all software startups?

8

3. What aspects of the essence of software development are not universal
for all software startups?

Sub-question 1 is answered through literature review while sub-questions 2 and
3 are answered through literature review and empirical findings of this thesis
study.

1.3 Scope of the Research

Since there are massive amount of startups found around the globe every year
this thesis was focused only to those that produce software or whose product
includes software as a major part alongside the physical product or a service.
This thesis was also focused to early stage startups working in Finland and
Nordic countries. This was chosen since most of the recent software startup
studies focus on startups that have already managed to succeed in the market.
Focusing on small early stage software startups gives a fresh aspect to startup
research.

Software development is a widely studied subject in the academia and
immense amount of different theories, frameworks and models have been de-
veloped to describe different software development practices and methods. In
this thesis the framework on top of which the study is based was chosen to be
the Essence. This framework was chosen due to its ability to describe different
practices under one comprehensive framework.

Data for this study was collected through thematic interviews and later
analysed following qualitative methods. These interviews were expanded by
interviews obtained from another study of software startups practices that were
analysed together with the original interviews. More precisely thematic synthe-
sis was used to analyse the data. Study included thirteen early stage software
startups as studied cases. Eleven of them were active startups and two were
recently discontinued.

1.4 Structure of the Thesis

This thesis has eight chapters: Introduction, Software Startup, Essence Frame-
work, Theoretical Framework, Research Design and Methodology, Empirical
Results, Discussion and Conclusion.

Chapter 1 presents an introduction to the topic and reasons for this study.
Research problem and Scope of the study are also discussed in this chapter.

Chapter 2 discusses the definition of software startup used in this thesis.
This chapter also includes software startup practices from the literature.

Chapter 3 introduces the Essence framework and discusses its usage, criti-
cism and other competing frameworks.

9

Chapter 4 presents the theoretical framework that is used as bases of the
empirical study of this thesis. It is based on the Essence framework presented in
the chapter 3 and software startup practices presented in the chapter 2.

Chapter 5 introduces empirical design and methodology of this thesis and
presents how empirical study was conducted.

Chapter 6 presents empirical findings and summarizes the key findings as
primary empirical conclusions (PEC).

Chapter 7 discusses about the PECs presented in the previous chapter. In
this chapter the findings are compared with literature.

Chapter 8 concludes this thesis. In this chapter the research question is an-
swered, limitations of the study are discussed and potential future research as-
pects are presented.

10

2 SOFTWARE STARTUP AND STARTUP PRACTICES

This section concentrates on what is known of software startups in the literature.
In the first subsection software startup in this context is defined. In the second
subsection startup life cycles are introduced. In the third subsection the concept
of practice is defined and in the last subsection and its subsections the software
startup practices are presented.

In the literature defining a startup has not been simple task and several
different definitions can be found. These definitions focus on totally different
characteristics that make company a startup (Paternoster et al., 2014). Especially
in the grey literature and in informal situations inside startup community the
definition of startup varies a lot. Some informal definitions focus on number of
employees, some focus on length of a company’s history while some focus on
set of characteristics of a company (Robehmed, 2013).

Most of the startups fail during the first years of their existence. Quite of-
ten failure comes from lacking ability to pivot when situation changes. It has
been widely acknowledged that startups, whose one main feature is working
with uncertainty and rapidly changing new markets, need to be agile in their
endeavours. Blank & Dorf (2012) developed a Lean Startup method to address
this issue and it has been widely accepted in startup community. Of course
most of the startups do not follow any textbook methods rigorously but com-
bine and tailor methods to suit their endeavour. (Paternoster et al., 2014.)

2.1 Definition of Software Startup

Software startups are new companies working under pressure and limited re-
sources creating new innovations. Innovations can be for example new prod-
ucts or new way to do something existent or bringing some existing product to
a new market from other context. Startup is a temporary phase in company’s
life cycle that ends when company either fails or evolves into mature company

11

or entrepreneurs perform an exit by sale. (Wennberg et al., 2010; DeTienne et al.,
2012.)

Ries (2011) defines startup as a human institution designed to develop a
new product or service under extreme uncertainty. Blank & Dorf (2012) use
similar definition that it is a temporary organization with no or limited operat-
ing history creating high-tech innovative products. These definitions differenti-
ate startups from established companies that have more resources and already a
mature market. Blank (2007) identifies startups from small businesses by their
intention to grow and develop a scalable business model which differs from
other small enterprises.

A looped evolution path is proposed Ries’ The Lean Startup (2011). It con-
sists of the steps of idea, build, product, measure, data, and learn. This model
indicates the non-linear progress that is typical for software startups by defin-
ing a restart, pivoting, and the loop from learning to a refined idea. The Lean
Startup has been widely acknowledged and used by academia and startups.
Research evidence suggests that development activities in startups need to be
tailored to fit unique situations of these companies in order to support flexibil-
ity and reactiveness of development workflow. (Giardino, C., Unterkalmsteiner,
M., Paternoster, N., Gorschek, T., & Abrahamsson, P. 2014.)

Startups usually use different metrics to measure their progress than ma-
ture companies due to uniqueness of the situation, for example lack of resources
demands metrics for how long can development be done with the current fund-
ing. Financial progress metrics that are used in mature companies such as in-
come statement, balance sheet and cash flow are not convenient for startups.
Usually they are adopted because they are traditional metrics. In startups these
metrics are not tracking progress against a goal to find a repeatable and scalable
business model.

Valuable metrics for startups are: cash burn rate and number of months’
worth cash left in the bank. Amount of time until the company reaches cash-
flow break-even is also widely used metric for startups. Customer acquisition
cost is useful metric as well as an estimated per-user cost and any incremental
costs when new user is added. Startups should also consider the costs of selling
through the channel: payments to app stores, marketplace sites like Ama-
zon.com, or related sites referring customers to you. Useful question to ask in
startups are: What are the average selling price? What is total achievable reve-
nue and number of customers a year? And how long or how often will custom-
ers spend? (Blank & Dorf, 2012)

Startups also should use non-financial metrics like: Have the customer
problem and product features been validated? Does minimum feature set reso-
nate with customers? Who in fact is the customer, and have initial customer-
related hypotheses on likes of value proposition, customer segments, and chan-
nels been validated through face-to-face customer interaction? (Blank & Dorf,
2012)

In this thesis software startups are defined following the characterization
created by Paternoster et al. (2014). This definition was chosen because it’s the

12

most widely used in resent startup research. They extend the startup definition
created by Sutton (2000). Sutton’s definition focuses on the characteristics:
scarce resources, multiple influences, little or no operating history and dynamic
technologies and markets. Paternoster et al. (2014) expanded this definition by
adding the characteristics: creating innovative products, fast growth, flat organ-
ization structures, focusing on one product, third party dependency and time
pressure. Therefore not all newly founded companies are startups but those
working under high-uncertainty and rapidly evolving. Startups may be found
on various domains. Software startup is a company following characteristics
created by Paternoster et al. (2014) whose product is software system or combi-
nation of software system and physical product or a service.

Software startup characteristics:

 Scarce resources

 Multiple influences

 Little or no operating history

 Dynamic technologies and markets

 Creating innovative products

 Fast growth

 Flat organization structures

 Focusing on one product

 Third party dependency

 Time pressure

 Software as a product or a major part of it

2.2 Startup Life Cycle Stages

There are multiple ways to describe life cycles of startups. These different defi-
nitions are presented in this sub-section and the definition used in this thesis is
presented in the end of the sub-section.

Crowne (2002) represents startup’s life-cycle as a three-plus-one stage
model including startup phase, stabilization phase, growth phase and maturity.
The other way to present evolutionary stages of an early state startup is to di-
vide them to two: the exploration stage and the validation stage. (Giardino et al.,
2016) The stages are further divided into four dimensions: market, product,
team and business. These dimensions were originally proposed by MacMillan
et al. (1987).

In their study Klotins et al. (2018a) have used startup milestones to point
out certain stages of software startups. They have used a model with three
phases. Phase one is: build the first version of the product. Phase two is: attract cus-
tomer interest to the product. Phase three is: grow into new markets. As can be seen
these phases are highly connected to the marketing and business growth of a
company.

13

According to Wang et al. (2016) startups life cycle can be divided into dif-
ferent stages. They consider startups’ life cycle two-dimensional having learn-
ing stages and product development stages. Learning stages are based on Ries
(2011) Lean Startup methodology which argues that startups exits to “learn how
to build a sustainable business” rather than to “make stuff”. Wang et al. (2016)
divided the learning process into four stages according to the customer devel-
opment process. Learning process stages are: defining or observing a problem,
evaluating the problem, defining a solution, and evaluating the solution. These stages
are not linear process but startups go through multiple build-measure-learn
loops to find a sustainable business model.

Concurrently with business model learning process startups go through
product development process. Product development process stages are: concept,
in development, working prototype, functional product with limited users, functional
product with high growth, and mature product. According to Blank (2007) to suc-
ceed startups need to keep these two processes synchronized and worked sim-
ultaneously.

In this thesis both learning and product development process stages
(Wang et al., 2016.) are used to define startup life cycles. Startup life cycle stages
are presented in a figure bellow. Processes are presented as linear progress in
the figure but in practice they are iterated multiple times.

FIGURE 1 Startup Life Cycles (Wang et al., 2016)

14

2.3 Definition of Practice

In this sub-section the term practice is defined. Definition is widely based on
Tolvanen’s (1998) definition but also influenced and supported by other defini-
tions of the term practice. Tolvanen was selected as a basis since he is one of the
few researchers who have defined term practice in information systems context
and this thesis focuses on software startups working practices on their software
development endeavours.

Tolvanen (1998) defines information system development as “a change
process taken with respect to object systems in a set of environments by a de-
velopment group using tools and an organized collection of techniques collec-
tively referred to as a method to achieve or maintain some objectives”. He de-
scribes technique as a set of steps and rules that define how a representation of
information system is derived and handled using conceptual structure and re-
lated notation. By a tool he means a computer-based application supporting the
use of a technique.

Oxford dictionary defines practice as “The actual application or use of an
idea, belief, or method, as opposed to theories relating to it or the customary,
habitual, or expected procedure or way of doing of something.” (Oxford dic-
tionary) This implies that practice is a method or technique brought to actual
practical use. Bourdieu’s (1973) definition of practices is similar to Oxford Dic-
tionary’s: “the recognizable patterned actions in which both individuals and
groups engage”. Even though these are not information system science specific
definitions they are on line with Tolvanen’s (1998) definition of methods and
techniques. Practice is widely used construct in information system science but
not comprehensively defined one. It is usually referred to something practical
that is done repetitively to result in something desired goal.

Jacobson et al. (2019) suggest that a set of practices form a method. They
point out that huge variety (over 100 000) software development methods can
be identified in the world but only a few hundred reusable practices. They treat
practice as a mini-method guiding one specific aspect of the team’s work. Prac-
tice in this context could be for example create software architecture which will
not alone produce working software but is important part of the process. There-
fore a team needs a set of these mini practices. Tolvanen (1998) uses the term
technique to describe these components of methods. Relation between method-
ology, method, practice, technique and tool are illustrated in the figure below.

15

FIGURE 2 Relations between Terms

In this thesis practice is defined as an established way of working used by
startup’s team. Compounded with Tolvanen (1998) definition practice is a com-
ponent of a method that is less abstract and more practical than technique and
may require use of tools. A method may include a set of practices. In this thesis
practices are not limited to software development practices but startups are ad-
dressed more comprehensively including organizational practices concerning
funding and customer relationships for example. This arises from the startups’
characteristics of a small team working with limited resources under high pres-
sure. It is more beneficial to study the entity of startup rather than a small as-
pect of their endeavour because usually startup’s core team needs to be work-
ing with software development and business aspects concurrently.

2.4 Software Startup Practices

Practices used by the software startups are described in this sub-section. The
basis of the practices utilized in this thesis is the list of practices found by Dan-
de et al. (2014). First other current literature of the subject is introduced. Later in
the subsection the list of practices by Dande et al. (2014) is provided with the
additional information of what other literature supports a practice.

Usually startups do not follow any software development method strictly.
Instead they combine practices from different methods that suit their needs at
the moment or use ad hoc working practices. (Melegati et al., 2016.) Starting
point for startup practices considered in this report is Dande et al. (2014) study.
They observed 63 practices by studying startups from Finland and Switzerland.
Not all of these practices are focused solely on software development but they
provided also practices considering customers and business goals.

Kamulegeya et al. (2017) have studied some of the practices found by
Dande et al. (2014) in Ugandan startup context. Their findings indicate that
startup practices observed in Finland and Switzerland apply widely in Uganda
also. They suggest that most of the startup practices are universal while some of
them might vary in different geographical areas or cultures.

16

In their study of software engineering anti-patterns in startups Klotins et
al. (2018a) have identified some software startup practices. They focused on
why software startups fail so often and identified potential challenges for these
companies. They had studied reports of 88 software startups to search scenarios
for potential failures. Their key findings include overscoping, failure to estab-
lish a feedback loop early enough, difficulties to scale product and focusing on
more engineering rather than better engineering. They have found that many
challenges that appear to be market or business related are in fact rooted par-
tially or entirely to the software engineering. Klotins et al. (2018b) have also cre-
ated a new map for categorizing software startup practices that differs from the
one used by Dande et al. (2014).

Giardino et al. (2016) conducted a study to develop the Greenfield Startup
Model that explains software development in early state startups. They focused
on the aspects of structure, planning and control of software projects in startups
based on 13 cases. In the study they found practices used by early state startups
that supplement and confirm the founding of Dande et al. (2014) study.

In the systematic mapping study Paternoster et al. (2014) discovered total
of 213 software development practices used in startups. They categorized prac-
tices in 4 topics: software development, managerial, process management and
Tools and technologies. They discovered that startups rely on light-weight
methods to pick and tailor practices that suit their situation in rapidly changing
environment. For example minimum viable product (MVP) has been seen suit-
able for startups to fast develop a light-weight product to test and plan modifi-
cations according to the customer’s needs. They didn’t list all of the found prac-
tices in their paper but the practices discussed in their paper mostly support the
findings of the study conducted by Dande et al. (2014).

Klotins et al. (2019) have studied software startup practices in the context
of how software engineering is applied in startup context in their multi-vocal
exploratory study of 88 startups experience reports. They used different catego-
ries of practices than Dande et al. (2014) as they based their research on the
SWEBOK (Software Engineering Body of Knowledge) and business aspects.
They found that the most frequently reported software engineering aspects
were requirements engineering, software design and quality, and the most fre-
quent business aspects were vision and strategy development. One of their
main findings was that process of identifying product value proposition works
as a bridge between marketing and engineering aspects of a product.

None of the considered studies had any major contradictions with the oth-
er studies. Only practices get venture capital and push your product (Dande et
al., 2014; Giardino et al., 2016; Kamulegeya et al., 2017.) and fund it yourself
(Dande et al., 2014; Kamulegeya et al., 2017; Yu et al., 2012) are in contradiction
since they suggest completely different approach for funding. Even so they are
not exclusive practices since they both might be right choice for startups in dif-
ferent stage of company’s growth.

Rafiq et al. (2017) focused on requirements elicitation techniques of
startups in their study. They also pointed out that MVP and learning from cus-

17

tomer’s feedback are crucial for startups as well as Bajwa et al. (2017) study. All
of the studies were unanimous that startups need to consider customer’s needs
and form good relations with their customers. These same focus areas are pre-
sented in the practices found by Dande et al. (2014).

Bajwa et al. (2017) among others propose that startups need to be prepared
to change their focus since they are working with high uncertainty with innova-
tive products. They suggest that failures should be allowed and learning from
mistakes should guide the future of the endeavour. Dande et al. (2014) propose
that on way to achieve agile changes in focus is to let anyone in development
team to release or stop release. This results in faster releases and faster feedback.

Swenson et al. (2014) have approached subject of startup practices from
marketing point of view. They suggest following practices to be necessity for a
startup company: Unleash the Power of Product Advocates, Empower Early-Adopter
Customers, Land an Anchor Customer, Work with Benefactors and Build an Advisory
Board.

Understanding competence needs is seen as crucial factor for the startups’
success. Creation of the first product requires substantial knowledge and skills
from startup’s founder team. Seppänen et al. (2017) found that capabilities
needed in startups can be divided into three categories regarding the way they
are brought to team. These categories are capabilities brought by founders, ca-
pabilities of hired or subcontracted team members and capabilities developed
through learning.

Hallen, Bingham and Cohen (2014) compared startups graduated from ac-
celerator programs in the USA with startups that didn’t participate in any ac-
celerator program. They found that startups participating in top accelerator
programs reached their key milestones, such as raising venture capital or gain-
ing customer traction, faster. However participation in many of the programs
was not helpful or could even be harmful for startup’s development.

 The formal definition of a start-up accelerator, first offered by Cohen
(2013) and Cohen and Hochberg (2014), is a fixed-term, cohort-based program,
including mentorship and educational components, that culminates in a public
pitch event. Other somewhat similar early stage startup groups or programs or
other aids are referred as startup hubs and incubators.

Winston-Smith and Hannigan (2015) suggest that participating in top ac-
celerator programs can be even more beneficial than getting angel funding.
They found that comparable startups graduated from top accelerator program
received their next round of financing sooner than ones that raised angel fund-
ing from leading angel investment groups instead.

Pitching can be used as a tool for imagination and design rather than only
a sales tool. Pitching to other startups, customers, investors, mentors etc. helps
startups to iterate their idea and business model according to the feedback from
the stakeholders. It may also lead to funding or customer acquisition as a by-
product.

Software startup practices found by Dande et al. (2014) are presented in
the table 1 below with additional notes of other studies supporting the same

18

practice. The practices are categorized according to the original paper. Descrip-
tions presented in the table are shortened version of ones presented in the orig-
inal paper. The last column in the table is marking other studies that support a
certain practice.

It’s notable that these supporting studies don’t necessarily use same terms
or names of the practice but they have presented the same meaning in their
own words and terminology. The list is not meant to be comprehensive listing
of all software startup practices but the basis of startup practices considered by
this study. This list will be later elaborated and extended by the findings of the
empirical part of this study.

TABLE 1 Software Startup Practices
Identifier Practice Category Description Supporting literature

P1 Focus your product Goals Focus on the most potential customer seg-
ment. Be prepared to change the focus

Dande et al., 2014;
Paternoster et al., 2014;
Deakins & Dillon, 2005;
Bajwa et al., 2017;
Klotins et al., 2018a.

P2 Find your value proposition
and stick to it on all levels

Goals Create a valid value proposition. Discuss with
experts from strategic and operational levels
at customer's organization.

Dande et al., 2014;
Giardino et al., 2016;
Kamulegeya et al., 2017;
Giardino et al., 2014;
Cho et al., 2017; Klotins
et al., 2019.

P3 Present the product as
facilitating rather than
competing to the competi-
tors

Goals Develop a product that can co-operate rather
than compete with competitors

Dande et al., 2014;
Assyne, 2017;

P4 Focus on goals, whys Goals Find real motivations behind customers’
wishes by asking why they want something
rather than just what they want. This way you
understand customers’ needs deeper and can
address them in other situations as well.

Dande et al., 2014;
Klotins et al.,2019.

P5 Use proven UX methods Goals Use proven UX development methods from
the beginning. Validate ideas quickly by using
prototypes.

Dande et al., 2014;
Paternoster et al., 2014;
Giardino et al., 2014;
Klotins et al.,2019

P6 Do something spectacular Goals Create WOW effects and feelings to the
customer to stand out in the competition.

Dande et al., 2014; Cho
et al., 2017;

P7 Have a single product, no
per customer variants

Goals Have a modular and flexible single product
rather than multiple per customer variants.

Dande et al., 2014;
Paternoster et al., 2014

P8 Restrict the number of
platforms that your product
works on

Goals Make business decisions on what platforms
you want to support. Focus on the most
important ones. For example the most used
browsers and operating systems.

Dande et al., 2014

P9 Use enabling specifications Goals Enable specification to guide work efficiently.
Let team work independently without con-
stant intervene from the owner or customer.

Dande et al., 2014;
Klotins et al.,2019

P10 Design and conduct exper-
iments to find out about
user preferences

Goals Use experiments and communication with
user to determinate in which directions
product should be developed.

Dande et al., 2014;
Paternoster et al., 2014;
Deakins & Dillon, 2005;
Rafiq et al., 2017; Björk
et al., 2013; Klotins et
al.,2019; Klotins et al.,
2018a.

P11 Use tools to collect data
about user behaviour

Goals Use data to acknowledge user behaviour and
choose best marketing channels.

Dande et al., 2014;
Klotins et al.,2019;
Klotins et al., 2018a.

19

P12 Make your idea into a
product

Goals Turn your ideas into products rather than
projects. Projects are not easily scaled.

Dande et al., 2014;
Giardino et al., 2016

P13 Outsource your growth Culture Use outsourcing to keep your focus on the
product.

Dande et al., 2014

P14 Anyone can release and
stop release

Culture Allow anyone to make a release or stop it.
Fast releases allow quick feedback from
users.

Dande et al., 2014;
Paternoster et al., 2014;
Giardino et al., 2016

P15 Create the development
culture before processes

Culture In the beginning develop a culture that sup-
ports what you want to be. Processes are
likely to change as company evolves so focus
first on building the culture that fits your
goals and future processes.

Dande et al., 2014

P16 Get venture capital and
push your product

Culture Try to get your product profitable fast with
venture capital rather than develop it slowly
in silence with low resources.

Dande et al., 2014;
Giardino et al., 2016;
Kamulegeya et al., 2017;

P17 Fund it yourself Culture Getting funding with proof of concept is not
easy. Fund first yourself and get investment
later.

Dande et al., 2014;
Kamulegeya et al., 2017;
Yu et al., 2012; Cho et
al., 2017;

P18 Validate that your product
sells

Culture Validate your idea before starting develop-
ment or try to get a few customers before
you start developing.

Dande et al., 2014;
Giardino et al., 2016;
Klotins et al.,2019

P19 Focus early on those people
who will give you income in
the long run

Customer Try to get your business model running from
the start, even in small scale. Focus on paying
customers to ensure that the company is
profitable.

Dande et al., 2014;
Klotins et al.,2019;
Klotins et al., 2018a.

P20 Form deep relations with
first customers to really
understand their needs

Customer To understand the customers and the busi-
ness develop as deep relations as you can
with the first customers.

Dande et al., 2014;
Paternoster et al., 2014;
Giardino et al., 2016;
Giardino et al., 2014;
Björk et al., 2013; Cho et
al., 2017; Klotins et
al.,2019

P21 Use planning tools that
really show value provided
to customer

Customer Choose tools that allow mapping the value
customer gets from what is done and
planned.

Dande et al., 2014

P22 Start locally grow globally Customer Target local customers in the beginning but
make all decisions considering the global
growth.

Dande et al., 2014

P23 Adapt your release cycles to
the culture of your users

Customer Depending on your customers choose how
fast releases are and how much can be
changed at once.

Dande et al., 2014;
Klotins et al.,2019;

P24 Keep customer communica-
tions simple and natural

Customer A startup needs quick and good feedback
from customers for development decisions.
Try to encourage direct contacts by email or
through integrated feedback mechanisms.

Dande et al., 2014;
Kamulegeya et al., 2017;
Giardino et al., 2014; da
Rosa et al., 2017;

P25 Help customers create a
great showcase for you with
support

Customer The first customers can provide a visible
showcase to attract other customers.

Dande et al., 2014

P26 Flat organization Organization In flat organization people are committed to
a common good and communications are
easy as they don't require intermediates.

Dande et al., 2014;
Giardino et al., 2016;
Klotins et al.,2019

P27 Consider career expecta-
tions of good people

Organization Keep team happy by offering opportunities to
build up their skills. They can raise their
market value as an insurance for the case
that startup fails.

Dande et al., 2014

P28 Don't grow in personnel Organization If you don't need more resources or compe-
tence don't grow in personnel.

Dande et al., 2014

P29 Bind key people Organization Most important people should be sharehold-
ers, partners or founders because critical
information is easily lost.

Dande et al., 2014;
Kamulegeya et al., 2017;

P30 Form partnerships and
bonds with other startups

Competence Focus on developing your product and on
your core business. For other issues find
partnering startup. Startups are usually keen
to co-operate.

Dande et al., 2014;
Assyne, 2017; Tripathi et
al., 2017; Chesbrough,
2003;

P31 Make your own strength as
a “brand”

Competence All startups should have exceptional skills or
product. Turn this strength into a brand in the

Dande et al., 2014

20

market.

P32 Showing alternatives is the
highest proof of expertise

Competence Finding different alternatives for a solution is
expertise. Explore alternatives to find a good
solution.

Dande et al., 2014

P33 In the development of
customer solutions, find a
unique value proposition in
your way of acting

Competence Find the way of acting that differs from your
competitors. For example super-fast or
people centric.

Dande et al., 2014

P34 Follow communities Competence Everyone should follow communities to know
what is happening and to find new values for
customer.

Dande et al., 2014

P35 Share ideas and get more
back

Competence Sharing ideas will help you get valuable
feedback.

Dande et al., 2014;
Chesbrough, 2003;

P36 Small co-located teams Team Small teams with scarce resources need good
communication to survive. Speaking in the
same room is the most effective way to
communicate.

Dande et al., 2014;
Giardino et al., 2016;
Kamulegeya et al., 2017;

P37 Have multi-skilled develop-
ers

Team Startups have usually small teams, yet there
are lots of different things to do. Multi-skilled
developers are needed to address all the
issues in startup without growing in person-
nel.

Dande et al., 2014;
Paternoster et al., 2014;
Giardino et al., 2016;
Kamulegeya et al., 2017;
Giardino et al., 2014;

P38 Keep teams stable in
growth mode

Team While growing as a company try to keep
teams and individual roles stable.

Dande et al., 2014

P39 Let teams self-select Team Teams should be allowed to self-organize. Dande et al., 2014

P40 Sharing competence in
team

Team In team everyone has slightly different exper-
tise. Since startups need skilled developers
sharing competence inside the team is neces-
sary.

Dande et al., 2014;
Paternoster et al., 2014;
Giardino et al., 2016;
Seppänen et al., 2017;

P41 Start with a competence
focus and expand as need-
ed

Team In the beginning focus on specific compe-
tence with a small group of people. Expand
team and competences later.

Dande et al., 2014;
Kamulegeya et al., 2017;
Seppänen et al., 2017;

P42 Start with small and experi-
enced team and expand as
needed

Team Start with small and experienced team that
has efficient ways to communicate. Anticipat-
ing all needed skills beforehand is hard.

Dande et al., 2014;
Kamulegeya et al., 2017;
Seppänen et al., 2017;
Klotins et al.,2019

P43 Have different processes for
different goals

Process Choose different practices for different tasks
if needed.

Dande et al., 2014

P44 Tailored gates and done
criteria

Process Process phases leading to something being
done or assessed or accepted should reflect
the overall process and business.

Dande et al., 2014;
Klotins et al.,2019

P45 Time process improvements
right

Process Improve and change processes only when it is
absolutely needed. At some point of the
growth startup might need to change its
preliminary processes.

Dande et al., 2014;
Paternoster et al., 2014;
Kamulegeya et al., 2017

P46 Find the overall develop-
ment approach that fits
your company and its
business

Process Find the best approach for your business.
Don't follow latest trends if it's not best fit for
you.

Dande et al., 2014

P47 Tailor common agile prac-
tices for your culture and
needs

Process Most textbook practices are highly general.
Tailor them to fit your needs and culture.

Dande et al., 2014;
Paternoster et al., 2014;
Klotins et al., 2018b.

P48 Fail fast, stop and fix Process Allow developers to do things quickly and
freely and stop if something goes wrong.
They will then fix the problem and process in
the team.

Dande et al., 2014;
Paternoster et al., 2014;
Giardino et al., 2016;
Bajwa et al., 2017;

P49 Move fast and break things Process Prefer culture with fast development and
where failing is acceptable.

Dande et al., 2014;
Giardino et al., 2016;
Bajwa et al., 2017;

P50 Forget Software Engineer-
ing

Process Software development may be ad hoc and
unorganized if it us good enough with the
physical product.

Dande et al., 2014;
Klotins et al., 2018b.

P51 Anything goes in product
planning

Design Startup needs to figure out new features,
system concepts and new projects.

Dande et al., 2014

P52 To minimize problems with
changes and variations,

Design Develop a validated and focused concept to
minimize risks with changes. Be still ready to

Dande et al., 2014

21

develop a very focused
concept

do changes if needed.

P53 Develop only what is need-
ed now

Design Be efficient by developing only what is need-
ed now.

Dande et al., 2014;
Paternoster et al., 2014;
Klotins et al.,2019

P54 Make features easy to
remove

Design Use techniques and architecture that make
features easy to remove if needed.

Dande et al., 2014;
Giardino et al., 2016

P55 Use extendable product
architecture

Design Use architecture and techniques that allow to
extent design easily.

Dande et al., 2014;
Paternoster et al., 2014

P56 Only use reliable metrics Testing Use reliable metrics to validate things. Wrong
metrics might do harm for validation.

Dande et al., 2014;
Giardino et al., 2016

P57 Bughunt Testing During fast development of new features
arrange days for bughunt. Make bughunt fun
occasion when everyone is searching for
bugs.

Dande et al., 2014

P58 Test APIs automatically, UIs
manually

Testing APIs can be tested by tools that are easy to
find and cheap. Test UI manually in the
beginning.

Dande et al., 2014

P59 Use generic, non-
proprietary technologies

Technology Use platform independent technologies to
avoid re-implementing features.

Dande et al., 2014;
Paternoster et al., 2014;
Giardino et al., 2016

P60 Create a solid platform Technology Keep scaling in mind while developing a
platform.

Dande et al., 2014;
Paternoster et al., 2014

P61 Choose scalable technolo-
gies

Technology Favour development techniques that scale
easily.

Dande et al., 2014;
Paternoster et al., 2014;
Giardino et al., 2016;
Wall, 2001; Giardino et
al., 2014;

P62 Use the most efficient
programming languages
and platforms

Technology With a small team choose the most efficient
programming languages and development
platforms.

Dande et al., 2014;
Paternoster et al., 2014;
Giardino et al., 2016;
Wall, 2001;

P63 Start with familiar technol-
ogies and processes

Technology Save the time of learning new technologies
and processes by using those that team is
familiar with.

Dande et al., 2014

22

3 ESSENCE FRAMEWORK

Software Engineering Methods and Theory’s (SEMAT) Essence framework is
introduced in this section of the thesis. The background of SEMAT is provided
first followed by more detailed definition of the Essence framework’s kernel.
The use cases of the Essence are provided in the sub-section 3.3 and 3.4. Criti-
cism of the framework and SEMAT is provided in the sub-section 3.5 and com-
peting frameworks are introduced in the sub-section 3.6.

3.1 Background

The Essence was introduced by a group of people who founded SEMAT com-
munity. They felt that it is time to fundamentally change how people see soft-
ware engineering methods. Goal was to redefine software engineering as a rig-
orous discipline according to the problems they identified for the current state
of the subject. (Jacobson et al., 2012) They wrote The SEMAT Call for Action
Statement (Jacobson, Meyer & Soley, 2009) to describe the current problems and
issues they wish to improve with their work. The SEMAT call for action gained
wide support with academia and industry while the number of supporters and
signatories of SEMAT are still growing. Some critique has been raised after the
SEMAT Call for Action, addressed in the subsection 3.5.

SEMAT community identified the specific problems in software engineer-
ing as following (Jacobson et al., 2009):

 The prevalence of fads more typical of fashion industry than of an engi-
neering discipline.

 The lack of a sound, widely accepted theoretical basis.

 The huge number of methods and method variants, with differences little
understood and artificially magnified.

 The lack of credible experimental evaluation and validation.

 The split between industry practice and academic research.

23

They also described the key principles for the process of redefining software
engineering based on a solid theory, proven principles, and best practices that:

 Includes a kernel of widely-agreed elements, extensible for specific uses.

 Addresses both technology and people issues.

 Is supported by industry, academia, researchers and users.

 Supports extension in the face of changing requirements and technology.

SEMAT community’s answer to redefined software engineering is Essence.
It is a framework providing the common ground for the creation, use and im-
provement of software development methods. The Essence consists of two parts,
kernel and language. The Essence allows people to examine the essential parts
of their current and future methods and practices for comparison, evaluation,
tailoring and use of these methods. It also allows teams to continuously evalu-
ate the progress and health of the software development endeavours. (Jacobson
et al., 2012; Submitters, 2012.)

The kernel is the core of the Essence describing the commonalities of soft-
ware development practices. It consists of the fundamental elements that are
prevalent in all software development endeavours including for example team,
requirements and stakeholders. Those elements have states that represent pro-
gress and health of the element. The kernel allows practitioners to compare dif-
ferent methods and make considered decisions about practices they use. (Sub-
mitters, 2012; Striewe, 2012.)

The language defines abstract syntax, dynamic semantics, graphic syntax,
and textual syntax to describe the kernel. The language allows composing two
or more practices to form a new practice. The kernel and the language together
form the Essence. (Submitters, 2012.)

This theory was chosen to be a foundation of this thesis because of its uni-
versal functionality. Software development has numerous different methods
and the Essence does not bind you with just one or a few of them (Dwolatzky,
2012). The Essence rather allows comparing different methods and their suita-
bility to the issue at hand. It also enables mixing two or more methods to suit
specific development situation. (Jacobson et al., 2012)

3.2 The Kernel

Object Management Group (OMG) standard (Submitters, 2012) defines the ker-
nel as a simple stripped-down set of definitions of the essence of software de-
velopment methods and practices. The kernel focuses on defining the common
ground for the software development methods that allows comparing and tai-
loring of different methods. One benefit of the kernel is that it allows people to
start software development endeavours with a minimal method adding practic-

24

es as needed in the future. In this section the kernel is introduced as it is defined
in the OMG standard. (Submitters, 2012.)

The kernel is organized into three areas of concern that focus on a specific
aspect of software development. These areas are: customer, solution and endeav-
our. The customer area of concern includes everything to do with the actual use
and exploitation of the software system to be produced. The solution area of
concern includes everything to do the specification and development of soft-
ware system. The endeavour area of concern includes everything to do with the
team, and the way that they approach their work.

Each area of concern contains a small number of alphas, activity spaces
and competencies. Since the Essence is independent from other software devel-
opment methods, that can expand it, it does not include any other elements that
only make sense within the context of a specific method. (Submitters, 2012; Ja-
cobson et al., 2019; Jacobson et al., 2012.)

The alphas represent the fundamental things to work with in software de-
velopment. The alphas describe things that are needed to manage, produce and
use in the process of developing, maintaining and supporting software. This
means they are necessary for assessing he progress and health of a software en-
deavour. The alphas also work as an anchor for additional sub-alphas required
by the software development methods used by the team. (Submitters, 2012; Ja-
cobson et al., 2019; Jacobson et al., 2012.)

The activity spaces represent the essential things to do in software devel-
opment. They describe the challenges that team faces while developing, main-
taining and supporting software systems. They also describe the things that
team needs to do to meet its objects. (Submitters, 2012; Jacobson et al., 2012.)

FIGURE 3 Activity Spaces (Submitters, 2012)

25

Competencies represent the capabilities required for software development en-
deavours. The competencies complete the alphas and the activity spaces by in-
troducing the necessary capabilities to success in the endeavour carried out by
following the alphas and the activity spaces. (Submitters, 2012; Jacobson et al.,
2012.)

FIGURE 4 Competencies (Submitters, 2012)

The alphas in the kernel describe the key concepts in the software development.
Each of the alphas has a small set of pre-defined states. The states are used to
monitor progress and health of that alpha. This means that teams can use the
states to analyse and deal with the risks and challenges for the alpha. Each state
has also a set of pre-defined checklists that are used to define the state of the
alpha.

States are not one-way linear progression but a tool for continuous review
of the progress of that alpha. Depending on the chosen practices iteration
through the states can be done multiple times. Rather than seeing the alphas as
physical partitioning or abstract work products they should be considered as
indicators of the most important monitored things in the software development
endeavour. For example team members can be both part of the team alpha and
part of the stakeholders alpha. (Submitters, 2012; Ng & Huang, 2013; Jacobson
et al., 2012.)

26

FIGURE 5 Alphas (Submitters, 2012)

3.3 Essence in Practice

The Essence is designed as an abstract model of the most important monitored
things related to software system development. This means while it has many
purposes for monitoring the health and progress of software development en-
deavours it can be too abstract to actually conduct the software development
work. For this reason it is designed to be used in conjunction with other select-
ed methods and practices. For example while every software development en-
deavour has requirement items types of those items may vary in different pro-
jects. Some projects might use user stories while some user cases or both of
them. (Jacobson et al., 2012; Submitters, 2012.)

The first use of the Essence is the project management. It allows teams to
monitor their work and plan next steps regardless of chosen methods and prac-
tices as a whole. With the Essence a team can plan their actions with all of the
most important aspects of development process simultaneously. By evaluating
the process of all the alphas at the same time the team can choose next steps so
that all of the alphas are balanced. This allows teams to progress at the same
rate in all of the most important aspects of their endeavour without overlooking
anything. With the Essence teams can continuously add and remove practices if
endeavour situation requires it or if they come up with better fitting practices
while working on a project. For example in everyday life the Essence can be
used to run an iteration and entire development endeavour from idea to prod-
uct. (Jacobson et al., 2012.)

27

The second use of the Essence is to present different software develop-
ment methods and practices. Its abstract nature allows adding practices from
development methods and mixing different methods. With the kernel practices
are presented as distinct modular units that can be used or not or changed at
any given moment. Traditionally methods are seen as indistinguishable pack-
age of practices that works only as a whole. (Jacobson et al., 2012. Jacobson et al.,
2019)

Jacobson (Jacobson et al., 2019) points out that developers typically don’t
have time or interest to study detailed methods or practices. They learn the es-
sentials to get team working as fast as possible rather than first learning “all”
the things about subject. Jacobson (Jacobson et al., 2019) has identified that
about 5% what experts know about the subject forms the essentials. In some
cases team needs to focus on more than just the essentials, so they have made
the Essence modular and applicable for different levels of details. See section 3.4
for more information about the modification of the Essence.

The third use case for the Essence is teaching. The Essence has been
adopted by some universities to teach new software engineering students basic
principles of software development endeavour. For example Gil et al. (2014)
have had good preliminary experiences after adopting the Essence alongside
agile methods to teach software development for bachelor students. Huang and
Ng (2014) have suggested that the Essence could also be used in the software
engineering research as a common framework for reporting empirical findings.

3.4 Essentializing Practices

The Essence kernel and language can be used to make different practices explic-
it. This process of describing practices using the Essence framework is referred
as essentialization. (Jacobson et al., 2019) The idea of essentialization is to make
practices from different sources compatible and also to help introducing new
practices to team. Practices used by team can originate from various sources
with various ways to describe them or even practices that are not described
previously. This means that combining them is difficult and understanding
them can be hard for a new team member. The way essentialization supports
these efforts is a coherent way to describe all the practices used by the team us-
ing consistent language and symbols. Essentialization also helps researchers to
describe practices for different sources explicitly in consistent way. (Jacobson et
al., 2019)

Making a practice explicit and reusable through the essentialization pro-
cess means ensuring that practice is a proven practice and the elements de-
scribed are essential elements only. Usually teams need many practices that are
designed to be used together in so called practice architecture. Even though
practices can be seen as separate elements they are not usually independent.
Thus the practice architecture is useful to describe the relation of practices. The
practice architecture can be constructed for example in a layered form with

28

more generic practices at the bottom and more specialized practices at the top.
(Jacobson et al., 2019)

The core idea of essentialization process is to take chosen practice and
gather the essential elements of that practice describing them with the kernel
and the Essence language. The essential elements of a practice are things that
need to be done (activity), abilities and capabilities needed to conduct the prac-
tice (competency), the tangible things produced using that practice (work prod-
uct) and things that need to be monitored regarding their progression (alpha).

Some practices also include other essential elements (patterns). In the Es-
sence context pattern refers to other essential elements of a practice that are not
activities, competencies, work products or alphas. Pattern can be for example a
role in a team or checkpoints that synchronize alpha state progression.

In a figure below is shown an example of simple essentialization of
SCRUM practice added to the Essence. In the figure scrum team, product owner
and scrum master roles are presented as patterns. Sprint planning, daily scrum,
sprint review, and sprint retrospective are activities. Product backlog, sprint
backlog, and increment are work products and sprint and product backlog Item
are alphas. (Jacobson et al., 2019; Elvesæter, 2013.)

FIGURE 6 Scrum Essentialization (Jacobson et al., 2019.)

As presented in figure above, a particular method can be plugged into the Es-
sence to extend the framework according to the needs of the team. The added
alphas or sub-alphas also have their own states like alpha elements in the kernel.
For practical use of the kernel the states of added alphas and sub-alphas are

29

necessary to monitor the progress of added practices. The language is designed
to support definition of different views that are suitable for different practition-
ers. For example some teams might prefer using the checkpoints of the alpha
states to guide the work or some might decide to use list of activities to do for
monitoring progress from one state to another. (Striewe et al., 2012.)

Evensen et al. (2018) have developed a tool called Essencery which allows
professionals and academics to present different software development practic-
es and methods using the Essence language’s graphical syntax. This tool can
also support software startup practices by introducing them in an established
manner following the Essence language. The tool can be used to add informal
software startup practices to the agile methods and modify those methods to
meet the reality of startup’s endeavour. Combining of different formal or in-
formal practices can be done using the tool. In their study Evensen et al. (2018)
have argued that Essence lacks practical adoption and they intended to create a
tool that can be used for essentialization of practices and methods. Their study
suggests that the tool Essencery is easy to learn and use and can be utilized for
practical use of the framework.

3.5 Criticism

SEMAT has numerous signatories and supporters for their process to refine
software engineering. However it has also raised some criticism in academic
community. For example one of the initiators of the agile movement Alistair
Cockburn (2010) has been criticizing SEMAT initiative not to be able to produce
what they pursue. Most of the critique for SEMAT has been published in grey
literature rather than in academic sources and they have been done during the
initiative state of the process. The Essence framework is relatively new which
might be a factor why only a little criticism has been raised after its publication.
This subsection points out some critique SEMAT initiative and the Essence
framework have generated.

Smolander and Päivärinta (2013) have proposed a model for theorizing
development practices called Coat Hanger. They also point some critique for
the Essence and propose some complementary elements to the Essence. They
don’t suggest their model to be direct rival for the Essence since they aim for a
different goal. They use concepts of technical rationality and reflection in action
(Schön, 2017.) to compare different mindsets behind the Essence and the Coat
Hanger.

Smolander and Päivärinta (2013) argue that the goal of theorizing for
SEMAT is to improve practices by evaluating and choosing best practices for
the given context. In contradiction their own goal is to refine understanding
and theories through learning and reflection. They criticize the Essence for hav-
ing its ontology fixed and based on either previous experiences, conventional
views or a best guess. They suggest that ontological difference with the Coat
Hanger allows more freedom to theory creation.

30

The Coat Hanger does not make specific assumptions on the ontology of
professional software development practices. They criticize the Essence of its
one-time view and argue that theorizing software engineering should be seen as
continuous dialect process between experience and theory. According to Smo-
lander and Päivärinta (2013) SEMAT has focused on standardization angle
where concepts are based on consensus. They claim that SEMAT doesn’t take
into account that theories should evolve. Even though the authors criticize the
Essence they see it as a legitimate initiative and their main critique deals with
the concepts of theories and theorizing.

The critique of the Essence raised by Smolander and Päivärinta (2013) in-
cludes a claim that the purposes of the Work alpha and the Way-of-working
alphas are unclear and should be better defined. They also suggest that the al-
phas describing the solution and endeavour should be checked again against
the literature concerning contextual issues having an impact on software engi-
neering success. They suggest additions to the Essence in form of new alphas to
describe rationale, deviations from intended practices, actual impacts, and les-
sons learned. They also address that the Essence should stay reflective for fu-
ture theoretical advancements and that especially in organizational theory re-
lated to software development. Park et al. (n.d.) have answered to this critique
that the Essence is expected to be stable but not static as it will continue to
evolve while going through real applications in the field and through feedback.

Cockburn (2010) has pointed out some criticism of SEMAT initiative. His
critique doesn’t focus on the Essence framework but the early stages of its de-
velopment and ideas behind the process. His main points of critique are:

1. The call-for-action was inflammatory, poorly researched and logically bro-
ken; it uses the very hype-for-fashion language that it decries, it is inter-
nally contradictory, the problems it deplores it cannot fix, and its proposed
solutions do not address the problems named. It sets a direction in tone
and content that does not do the topic justice. It is a red herring, intended
to generate support through appeal-to-authority, hype, and ambition.

2. They are unlikely to discuss either engineering or engineering theory – a
more accurate name for the initiative would be the Meta-Process-Kernel
initiative.

3. Whatever they produce is unlikely to affect topics that matter to the indus-
try.

He argues that even though Jacobson and Meyer (2009) see software develop-
ment methodology as fashion or politics being prevalent with fads they are cor-
rect but unable to change that due to nature of human beings and our tendency
of being attracted to new popular trends. He even suggests that SEMAT is do-
ing this same thing with their initiative even though they criticize software en-
gineering of it. In his opinion SEMAT call-for-action is factually and logically
broken and he suggests that people who are not really versed in the field
should look for critique and alternatives also. He also thinks that initiative

31

should be named Meta-Method-Kernel initiative to reflect its actual goal rather
than engineering theory.

Fowler (2010) widely agrees with Cockburn’s (2010) critique on the Es-
sence framework and SEMAT initiative. His main point of critique is that since
people are the central element of software engineering and they are inherently
non-linear and unpredictable effort to produce a software meta-method-kernel
is doomed. This is especially because people are not predictable agents that can
be described with tractable mathematics. Zalewski (2013) has reviewed a book
“The essence of software engineering : applying the SEMAT kernel” (Jacobson
et al., 2013.) his focus is on book review but he also points out that the Essence
is not focusing enough on the aspect of design in software development, or at
least not in the case of this book.

Aranda (2009) agrees with Cockburn’s (2010) and Fowler’s (2010) critique
on the Essence framework and SEMAT initiative. He adds to the critique that
software development has little to do with most established engineering disci-
plines and disagrees with initiative’s aim to pull software engineering disci-
pline closer to other engineering disciplines. He also points out that fads are not
necessarily bad thing for discipline since many fads have turned out to be good
ideas that have evolved to mainstream practices. For example object orientation
was seen as a fad but it’s now widely accepted and used. In Aranda’s opinion
SEMAT is right that software engineering lacks a sound and widely accepted
theoretical basis but he disagrees that it is possible to create universal methods
for software development since different settings in software development will
always require different methods. For example developing an operating system
is not the same as developing videogames. He also agrees with SEMAT initia-
tive that there is too much split between industry practices and academic re-
search in this field.

Ibargüengoitia and Oktaba (2014) have studied the Essence in context of
teaching and inexperienced practitioners. They argue that the Essence works
well as a tool for software industry for measuring the progress of projects with
experienced teams. On contrary they suggest the activity spaces are too general
to serve as a guide of what to do for inexperienced practitioners and students
while they don’t necessarily know how to get from one alpha state to another.

3.6 Competing Frameworks

Software and Systems Process Engineering Metamodel (SPEM) is another pro-
posal for methods and practices presentation that addresses roughly the same
issues than the Essence. Its aim is to provide a common framework for repre-
sent practices, methods and software development models. OMG standard
(2008) describes SPEM as “a process engineering meta-model as well as concep-
tual framework, which can provide the necessary concepts for modelling, doc-
umenting, presenting, managing, interchanging, and enacting development
methods and processes. An implementation of this meta-model would be tar-

32

geted at process engineers, project leads, project and program managers who
are responsible for maintaining and implementing processes for their develop-
ment organizations or individual projects."

SPEM’s downside is that it is more complex and it doesn’t provide the
support for monitoring projects progress as the kernel. Even though SPEM is
older alternative than the Essence it has not been widely recognized or adopted.
It focuses on organizations with separate group of individuals that are in charge
of maintaining processes. Its main focus is on process engineers, project leaders
and managers. (González-Pérez et al., 2014; Striewe et al., 2012.) In this thesis
the Essence has been chosen as underlying framework because of these issues
and the fact that the Essence supports enactment better while also being easier
to learn and use in practice.
Smolander and Päivärintä (2013) have created Coat Hanger framework for the-
orizing development practices. The main difference between the Essence and
the Coat Hanger is that the Coat Hanger focuses more on learning and reflec-
tion rather than providing common ground for all software development en-
deavours. It doesn’t provide any tangible way to describe practices used by an
organization but it focuses on how new theories should be created in the aca-
demia. This is the reason why the Essence fits better for the purpose of this the-
sis.

33

4 THEORETICAL FRAMEWORK

This section provides summary of theoretical framework of this thesis. This
theoretical framework was used as a basis of interviews for empirical data col-
lection (chapter 5). Theoretical framework is based on the literature review pre-
sented in the sections 2 and 3. Theoretical framework was later used as a basis
for empirical part of this thesis. First the alphas from the Essence kernel are in-
troduced. These will be used as categories for the studied practices. Later the
practices found by Dande et al. (2014) will be re-categorized by replacing origi-
nal categories with the alphas.

 The Essence provides a framework describing the ubiquitous parts of
software development. It can also be used as a tool for presenting different
software development practices and methods using same syntax and language.
Third usage of the Essence is evaluation of software development progress in
all of the most important aspects of endeavour. (Submitters, 2012.)

The Essence isn’t only suitable framework to categorize practices used by
software startups as for example Klotins et al. (2019) have conducted a study on
software startup practices using categorization from SWEBOK knowledge areas.
The Essence was chosen as framework for its multiple usages for academia and
professionals and since it hasn’t been widely tested in the startup environment.
Klotins et al. (2018b) have also formed a startup context map to categorize
startup practices under different goals and environmental factors.

 For this thesis the central part of the Essence is the kernel. The kernel was
chosen as a framework because it presents the most important sectors of soft-
ware development called alphas (Submitters, 2012). These alphas present the
areas of startup’s activities that are significant for this study. Under the alphas
can be included different practices a certain team uses for their development
endeavour (Submitters, 2012). The following figure 7 is the basis of theoretical
framework and empirical study of this thesis.

34

FIGURE 7 Framework

These alphas presented in this section and following subsections provide the
theoretical framework that guides the empirical study of this thesis. They work
as a basis for interviews conducted to gain empirical material. Results of the
empirical study are also presented and categorized following the kernel and its
alphas. In the following subsections the alphas are described and software
startup practices found by Dande et al. (2014) are re-categorised under the al-
phas. Those practices not distinctly fitting under an alpha are presented in the
subsection 4.8.

4.1 Opportunity

Opportunity alpha is described as “The set of circumstances that makes it ap-
propriate to develop or change a software system.” by Submitters (2012). The
opportunity deals with the reasons to develop or change software system. It
also includes the teams understanding of the needs stakeholders have. These
needs should guide the requirements and provide the justification of the devel-
opment endeavour. (Jacobson et al., 2012; Submitters, 2012.) In the table 2 the
practices focusing on the aspects that are associated with the opportunity alpha
are listed.

35

TABLE 2 Opportunity Related Practices
Identifier Practice Description Alpha

P1 Focus your product Focus on the most potential customer segment. Be prepared
to change the focus

Opportunity

P2 Find your value proposition and stick
to it on all levels

Create a valid value proposition. Discuss with experts from
strategic and operational levels at customer's organization.

Opportunity

P4 Focus on goals, whys Find real motivations behind customers’ wishes by asking why
they want something rather than just what they want. This
way you understand customers’ needs deeper and can address
them in other situations as well.

Opportunity

P18 Validate that your product sells Validate your idea before starting development or try to get a
few customers before you start developing.

Opportunity

P20 Form deep relations with first cus-
tomers to really understand their
needs

To understand the customers and the business develop as
deep relations as you can with the first customers.

Opportunity

P33 In the development of customer
solutions, find a unique value propo-
sition in your way of acting

Find the way of acting that differs from your competitors. For
example super-fast or people centric.

Opportunity

P34 Follow communities Everyone should follow communities to know what is happen-
ing and to find new values for customer.

Opportunity

4.2 Stakeholders

Stakeholders alpha embodies the people and organizations affecting or affected
by a software system. They can be groups of people or a single person who’s
somehow connected to a software system that is developed. One part of the
stakeholder alpha is always a customer or a user of the software system. It also
includes people who will make software system development possible. Stake-
holders provide the opportunity by supporting the team and ensuring that ac-
ceptable software system is being developed. (Jacobson et al., 2012; Submitters,
2012.) The practices concerning the stakeholders alpha are listed in the table 3
bellow.

TABLE 3 Stakeholders Related Practices
Identifier Practice Description Alpha

P24 Keep customer communications
simple and natural

A startup needs quick and good feedback from customers for
development decisions. Try to encourage direct contacts by
email or through integrated feedback mechanisms.

Stakeholders

P32 Showing alternatives is the highest
proof of expertise

Finding different alternatives for a solution is expertise. Ex-
plore alternatives to find a good solution.

Stakeholders

P35 Share ideas and get more back Sharing ideas will help you get valuable feedback. Stakeholders

4.3 Requirements

Requirements alpha includes the features software system has to have to ad-
dress the opportunity and satisfy stakeholders. Requirements of the software
system need to be addressed to share the knowledge among the team what

36

software must do to respond to the opportunity. Requirements are what drive
the development and testing of a new system. (Jacobson et al., 2012; Submitters,
2012.) The following table 4 presents the practices related to the requirements
alpha.

TABLE 4 Requirements Related Practices
Identifier Practice Description Alpha

P3 Present the product as facilitating
rather than competing to the
competitors

Develop a product that can co-operate rather than compete
with competitors

Requirements

P5 Use proven UX methods Use proven UX development methods from the beginning.
Validate ideas quickly by using prototypes.

Requirements

P10 Design and conduct experiments
to find out about user preferences

Use experiments and communication with user to determinate
in which directions product should be developed.

Requirements

P21 Use planning tools that really
show value provided to customer

Choose tools that allow mapping the value customer gets from
what is done and planned.

Requirements

P51 Anything goes in product planning Startup needs to figure out new features, system concepts and
new projects.

Requirements

P52 To minimize problems with
changes and variations, develop a
very focused concept

Develop a validated and focused concept to minimize risks
with changes. Be still ready to do changes if needed.

Requirements

P53 Develop only what is needed now Be efficient by developing only what is needed now. Requirements

4.4 Software system

The alpha called software system considers a system that is being developed or
changed. It includes software, hardware and data used to create a software sys-
tem. It is the product the team is working on and it can be also used to describe
a part of a bigger software, hardware, business or social solution. (Jacobson et
al., 2012; Submitters, 2012.) The practices associated with the software system
alpha are presented in the table 5.

37

TABLE 5 Software System Related Practices
Identifier Practice Description Alpha

P7 Have a single product, no per
customer variants

Have a modular and flexible single product rather than
multiple per customer variants.

Software System

P8 Restrict the number of platforms
that your product works on

Make business decisions on what platforms you want to
support. Focus on the most important ones. For example
the most used browsers and operating systems.

Software System

P14 Anyone can release and stop
release

Allow anyone to make a release or stop it. Fast releases
allow quick feedback from users.

Software System

P23 Adapt your release cycles to the
culture of your users

Depending on your customers choose how fast releases
are and how much can be changed at once.

Software System

P54 Make features easy to remove Use techniques and architecture that make features easy
to remove if needed.

Software System

P55 Use extendable product architec-
ture

Use architecture and techniques that allow to extent
design easily.

Software System

P57 Bughunt During fast development of new features arrange days for
bughunt. Make bughunt fun occasion when everyone is
searching for bugs.

Software System

P58 Test APIs automatically, UIs man-
ually

APIs can be tested by tools that are easy to find and
cheap. Test UI manually in the beginning.

Software System

P59 Use generic, non-proprietary
technologies

Use platform independent technologies to avoid re-
implementing features.

Software System

P60 Create a solid platform Keep scaling in mind while developing a platform. Software System

4.5 Work

Work alpha describes all the mental and physical work done to develop or
change a software system. It is everything that the team needs to do to achieve
the goals of endeavour matching the requirements and addressing the oppor-
tunity presented by stakeholders. (Jacobson et al., 2012; Submitters, 2012.) The
practices concerning the work alpha are presented in the following table 6.

TABLE 6 Work Related Practices
Identifier Practice Description Alpha

P44 Tailored gates and done
criteria

Process phases leading to something being done or assessed or
accepted should reflect the overall process and business.

Work

P48 Fail fast, stop and fix Allow developers to do things quickly and freely and stop if some-
thing goes wrong. They will then fix the problem and process in the
team.

Work

P62 Use the most efficient
programming languages
and platforms

With a small team choose the most efficient programming lan-
guages and development platforms.

Work

4.6 Team

Team alpha is a group of people who are actively part of the development en-
deavour. They can work with development itself or maintenance, delivery, or

38

support of a software system for example. In bigger projects multiple teams
might be working together to achieve the goal of a working software system.
Team plans and performs all the work needed for the endeavour. (Jacobson et
al., 2012; Submitters, 2012.) The following table 7 introduces the practices con-
cerning the team alpha.

TABLE 7 Team Related Practices
Identifier Practice Description Alpha

P26 Flat organization In flat organization people are committed to a common good and
communications are easy as they don't require intermediates.

Team

P27 Consider career expectations
of good people

Keep team happy by offering opportunities to build up their
skills. They can raise their market value as an insurance for the
case that startup fails.

Team

P28 Don't grow in personnel If you don't need more resources or competence don't grow in
personnel.

Team

P29 Bind key people Most important people should be shareholders, partners or
founders because critical information is easily lost.

Team

P36 Small co-located teams Small teams with scarce resources need good communication to
survive. Speaking in the same room is the most effective way to
communicate.

Team

P37 Have multi-skilled developers Startups have usually small teams, yet there are lots of different
things to do. Multi-skilled developers are needed to address all
the issues in startup without growing in personnel.

Team

P38 Keep teams stable in growth
mode

While growing as a company try to keep teams and individual
roles stable.

Team

P40 Sharing competence in team In team everyone has slightly different expertise. Since startups
need skilled developers sharing competence inside the team is
necessary.

Team

P41 Start with a competence focus
and expand as needed

In the beginning focus on specific competence with a small group
of people. Expand team and competences later.

Team

P42 Start with small and experi-
enced team and expand as
needed

Start with small and experienced team that has efficient ways to
communicate. Anticipating all needed skills beforehand is hard.

Team

4.7 Way of Working

Way-of-working is the alpha that describes working practices that guide the
work. It is closely connected to work alpha since it includes all the tools and
practices that guide work itself. Way of working evolves while team performs
work and learns new better ways to conduct the work. (Jacobson et al., 2012;
Submitters, 2012.)In the following table 8 the practices associated with the way
of working alpha are introduced.

39

TABLE 8 Way of Working Related Practices
Identifier Practice Description Alpha

P9 Use enabling specifications Enable specification to guide work efficiently. Let team work
independently without constant intervene from the owner or
customer.

Way of Working

P15 Create the development
culture before processes

In the beginning develop a culture that supports what you
want to be. Processes are likely to change as company evolves
so focus first on building the culture that fits your goals and
future processes.

Way of Working

P39 Let teams self-select Teams should be allowed to self-organize. Way of Working

P43 Have different processes for
different goals

Choose different practices for different tasks if needed. Way of Working

P45 Time process improvements
right

Improve and change processes only when it is absolutely
needed. At some point of the growth startup might need to
change its preliminary processes.

Way of Working

P46 Find the overall development
approach that fits your com-
pany and its business

Find the best approach for your business. Don't follow latest
trends if it's not best fit for you.

Way of Working

P47 Tailor common agile practices
for your culture and needs

Most textbook practices are highly general. Tailor them to fit
your needs and culture.

Way of Working

P49 Move fast and break things Prefer culture with fast development and where failing is
acceptable.

Way of Working

P50 Forget Software Engineering Software development may be ad hoc and unorganized if it us
good enough with the physical product.

Way of Working

P61 Choose scalable technologies Favour development techniques that scale easily. Way of Working

P63 Start with familiar technolo-
gies and processes

Save the time of learning new technologies and processes by
using those that team is familiar with.

Way of Working

4.8 Other Practices

In this subsection the practices found by Dande et al. (2014) that do not fit dis-
tinctly under any alpha from the Essence are presented. The practices are dis-

played in the table 9. Most of the practices that do not fit distinctively under
any of the alphas from the Essence kernel deal with business related issues such
as branding, marketing or business model development. It is natural that these
do not find clear category in the Essence framework since the framework was
designed considering software development and practices found by Dande et al.
are studied from startup companies that develop software systems as their
product or part of it and also have to design their business and perform busi-
ness related tasks simultaneously. Klotins et al. (2019) have also discovered in
their study that software startup practices are not limited to the software engi-
neering practices but rather joint together with business aspects.

40

TABLE 9 Other Practices
Identifier Practice Description Area related to

P6 Do something spectacular Create WOW effects and feelings to the customer to stand
out in the competition.

 Marketing

P11 Use tools to collect data about
user behaviour

Use data to acknowledge user behaviour and choose best
marketing channels.

Business metrics

P12 Make your idea into a product Turn your ideas into products rather than projects. Projects
are not easily scaled.

Business process

P13 Outsource your growth Use outsourcing to keep your focus on the product. Business process

P16 Get venture capital and push
your product

Try to get your product profitable fast with venture capital
rather than develop it slowly in silence with low resources.

Funding

P17 Fund it yourself Getting funding with proof of concept is not easy. Fund first
yourself and get investment later.

Funding

P19 Focus early on those people
who will give you income in
the long run

Try to get your business model running from the start, even
in small scale. Focus on paying customers to ensure that the
company is profitable.

 Business / Revenue
streams

P22 Start locally grow globally Target local customers in the beginning but make all deci-
sions considering the global growth.

Business / Market-
ing

P25 Help customers create a great
showcase for you with sup-
port

The first customers can provide a visible showcase to attract
other customers.

 Marketing

P30 Form partnerships and bonds
with other startups

Focus on developing your product and on your core busi-
ness. For other issues find partnering startup. Startups are
usually keen to co-operate.

Business process

P31 Make your own strength as a
“brand”

All startups should have exceptional skills or product. Turn
this strength into a brand in the market.

Marketing

P56 Only use reliable metrics Use reliable metrics to validate things. Wrong metrics might
do harm for validation.

Business metrics

41

5 RESEARCH DESIGN AND METHODOLOGY

This section describes the research methodologies and the data collection meth-
ods used in this thesis. This section also describes how research process was
conducted in practice. The purpose of the empirical section of the thesis is to
validate and improve theoretical framework. Considering the essence of re-
searching software startups, a qualitative research approach in form of a multi-
ple case-study has been chosen as the method for the empirical research.

5.1 Research Methodology and Data Collection

The empirical section of the thesis consists of thirteen case studies. Case studies
can include only quantitative data, only qualitative data or both of them (Yin,
2013). A qualitative method was chosen in order to understand the practices
software startups adopt in their endeavours. The study aims to create under-
standing of practices used by software startups which can be further tested with
quantitative studies to generate solid knowledge in the future. Qualitative anal-
ysis can be used to find patterns or often reappearing themes inside the field of
interest (Caracelli and Greene, 1993).

In qualitative research data collection can be done through interviews, ar-
chival research or observational techniques. Written data sources may include
published or unpublished documents, reports, memos, letters and so forth.
Meyers and Newman (2006) suggest interviews as a sufficient way of conduct-
ing qualitative research. Interviews can be structured, semi-structured or un-
structured.

Structured interviews typically have a rigid order and form of the ques-
tions without any room for improvisation. Thematic and other semi-structured
interviews have a set of themes that are considered in all of the interviews but
order and form of the questions are less rigid leaving room for more detailed
questions if needed. Unstructured interviews have no script while it is conduct-

42

ed in a conversational manner. Group interviews include two or more people
interviewed at once in a structured or unstructured approach.

Thematic interviews were chosen as a data collection method of this thesis
because its suitability for the context. Thematic interviews work well for situa-
tion where researcher wants to know why and how some phenomenon happens.
The purpose of this thesis is to find out how software startups work with their
endeavours. Thematic interview also secures that all the necessary topics are
addressed during the interview.

Structured interview would not work in this context since most startups
don’t follow any information system development methods but develop their
software ad hoc and they tend to use different terminology than academia.
Thematic interview leaves room for discussion and lets the interviewee describe
his or hers own experiences without strict script. This will provide more com-
prehensive understanding of practices used in case startups.

Interviews were recorded and transcribed. Recording was be done by re-
cording applications of mobile phone and laptop. Dual recording was used to
ensure at least one working recording of the interview. Recordings were tran-
scribed as soon as possible after the interview. Themes of interviews were de-
rived from theoretical framework of this study. Chosen themes were alphas
from the Essence framework. Frame of the interviews can be found from ap-
pendix 2.

Themes for interviews in this research were the alphas from the Essence
kernel: Opportunity, Stakeholders, Requirements, Software Systems, Team,
Work and Way of working. These themes are introduced in section 4. Inter-
views were conducted during between April 2018 and September 2018. Inter-
views were 35-85 minutes long.

Five interviews were conducted by the researcher himself and eight were
obtained from the earlier study conducted by different team of researchers.
These eight interviews were conducted in the similar manner. Thematic inter-
view process was used and they were transcribed shortly after the interviews.
These interviews were also 35-90 minutes long.

5.2 Participants

Runeson et al. (2008) suggest that the number of cases and criteria of case selec-
tion should be defined early on in the process. The criteria for these cases in re-
search process were defined as following:

1. The case is a software startup. See section 2.1 for definition.
2. The unit of analysis is someone who has extensive understanding about

the practices used in a startup, such as a founder or CEO.
3. Availability to the researcher.

Sampling was done by selecting cases available to the researcher that match
sampling criteria above. Patton (2002) has introduced eight different sampling

43

strategies for case study. Strategy applied in this study is a mix of typical case
sampling and sampling by convenience according to the Patton’s descriptions.
Selected cases were typical early stage software startups available for the re-
searcher.

Holistic approach for this study was chosen considering the nature of
software startups and underlying phenomenon of the study. Also no logical
subunits can be identified from the cases. In the holistic approach of case study
only one unit of analysis is studied from the case compared to embedded ap-
proach where multiple units of analysis are considered inside a case. (Yin, 2013.)

Myers and Newman (2007) suggest that so-called elite bias could be one of
the problems for qualitative interviews. This means interviewing only certain
high status people inside a case therefore failing to understand the broader sit-
uation. This bias is easily avoided while studying startups since startups usual-
ly have a small team and flat organization (Paternoster et al., 2014.) which natu-
rally eliminates the elite bias. The multiple-case study will consist of several
separate holistic cases and the cases should be conducted in consistent manner
in order to obtain ecological validity.

Usually in multiple-case study adding of new cases stops when theoretical
saturation is reached. Theoretical saturation means the point at which incre-
mental learning is minimal while researcher has seen observed phenomena be-
fore. (Pare, 2004.) In this thesis cases were chosen at the same time and planned
to extend to new cases if needed after the primary five cases. Eight already con-
ducted and transcribed interviews were added after the primary five interviews.
Whit these additional interviews saturation was reached.

Cases studied were early stage startups from Finland. The interviews were
conducted in finish which was the language of all of the participants and inter-
viewer himself for the minimum risk of misunderstanding between interviewee
and interviewer. Eight external interviews were conducted in English since
some of the interviewers and interviewees were not Finnish persons.

Interviews with startups 1, 4 and 5 were done with one person of the
startup attending the interview. Interview with startups 3 had two persons
from the startup participating and with startup 2 three people participated in
the interview. All of the participants were either CEOs or founders of the
startup. The external interviews were conducted with only one participant from
every startup.

The external empirical material originally included interviews of eleven
startups. Some of the companies didn’t match the definition of software startup
used in this theses and were excluded from the analysis resulting in the eight
additional interviews. For example these startups were producing only physical
products or they were new companies founded by engineers who made cus-
tomer projects as consulting and didn’t have any own software they were de-
veloping or selling. All of the studied cases are presented in the following table
10.

44

TABLE 10 Studied Cases

Case Company size (Persons) Company domain

#1 6 Software / Physical product

#2 5 Software

#3 3 Software / Physical product

#4 5 Software

#5 7 Software / Consulting

#6 3 Software / Physical product

#7 8 Software

#8 12 Software

#9 6 Software

#10 5 Software

#11 85 Software / Physical product

#12 5 Software / Physical product

#13 6 Software

As can be seen two of the startups had already been discontinued and one of
the companies had matured. These companies focused on their interviews on
startup phases of the company rather than their current situation.

5.3 Data Analysis

The goal of qualitative data analysis is to develop an understanding or interpre-
tation of the phenomenon. This is done by an iterative process starting by de-
veloping an initial understanding of the setting. The next step is testing and
modifying the initial understanding through cycles of additional data collection
and analysis until an adequately coherent interpretation is reached. (Kaplan &
Maxwell, 2005.) Coding and categorizing strategy were used for analysing the
transcripts of the interviews in this thesis.

Data analysis in qualitative research can be done through various ap-
proaches. However qualitative data analysis always uses some basic principles:
extract data, data coding and forming an interpretation. There is not one uni-
versal right or superior technique to execute data analysis. Kvale (1996) has in-
troduced different techniques for data analysis. Data analysis starts by reading
the text. Reading cannot be passive but it must be done to comprehend. (Dey,
2003.) One way to conduct a data analysis is through thematic synthesis (Cruz-
es et al., 2011). They suggest 5 steps for data analysis: extract data, code data,
translate code into themes, create a model of higher-order themes and at last
assess the trustworthiness of the synthesis.

Data collection, data analysis, interpretation, and even research design are
linked and dependable on each other. Kaplan and Maxwell (2005) have identi-
fied four basic techniques of qualitative data analysis: coding, analytical memos,
displays, and contextual and narrative analysis. They can be used separately or

45

in combination to identify themes, develop categories, and explore similarities
and differences in the data.

Coding in qualitative research is done by selecting particular segments of
data and sorting these into categories that facilitate insight, comparison, and the
development of theory. Most of the categories are developed inductively by the
researcher during the analysis while some categories might rise from the exist-
ing theory or prior knowledge. Some categories might also be taken from the
language and conceptual structure of the people studied. The most important
aspect of qualitative coding is that it is grounded in the data. (Kaplan & Max-
well, 2005.)

Researchers can use memos as a tool alongside direct field notes and tran-
scripts. The most important use of memos is to get ideas down on a paper.
Maxwell and Kaplan (2005) suggest memos to be an important analysis tech-
nique since they help researchers to convert their perceptions and thoughts into
a visible form allowing reflection and further processing.

The analysis of the empirical material in this thesis was conducted follow-
ing the thematic synthesis (Cruzes et al., 2011). The material was first tran-
scribed. The external interviews were transcribed by the original researchers.
Second the material was read through thoroughly and some notes were made
from the material. After this step the interviews were coded and the codes were
categorized under different themes. The original themes were then fitted to the
theoretical framework of this thesis and those themes that didn’t fit under the
categories of the framework were analysed by creating additions to the original
theoretical framework.

5.4 Research Validity and Reliability

In qualitative research researcher is the instrument for collecting and analysing
data. This means that with the same research question different researcher may
collect different data or interpret the same data differently and all researcher’s
biases, interests, perceptions, observations and knowledge play a role in the
research. As a result qualitative research is always to some extent subjective. To
address these issues researchers should acknowledge their role as research in-
struments by making it an explicit part of data collection, analysis, and report-
ing. (Kaplan & Maxwell, 2005.)

In qualitative research it is important to include reports of researchers’
background to participants and research community for evaluation of potential
influence in research results. Researchers must also recognize how their per-
sonal experiences and theoretical tendency influence their choice of evaluation
questions, data, and interpretation. As a result researchers have to constantly
doubt every observation and every interpretation to help avoid being blinded
or misdirected by how they influence the study themselves. (Kaplan & Maxwell,
2005.)

46

Kaplan and Maxwell (2005) suggest that reliability is usually weaker in
qualitative that in quantitative studies but validity is stronger because of flexi-
bility and individual judgment. These issues mean closer attention to meaning,
context, and processes while making researchers less likely to ask the wrong
questions or overlook or exclude important data (Kirk & Miller, 1986).

Kaplan and Maxwell (2005) have identified strategies to ensure validity in
qualitative research. They discussed five following strategies:

 Collecting rich data

 Paying attention to puzzles

 Triangulation

 Feedback or member checking

 Searching for discrepant evidence and negative cases

Rich data is data that is detailed and varied enough for providing a com-
prehensive description of what is going on. Collection of rich data provides a
basis for developing theories rather than only supporting researchers’ own
prejudices and expectations. (Kaplan & Maxwell, 2005.)

Paying attention to puzzles deals with the underlying assumption of qual-
itative research that things make sense. Usually things make sense only to the
people involved. If researcher cannot understand how situation makes sense he
or she has not yet achieved an adequate interpretation. This may result from
not having collected enough data or approaching the problem from the wrong
angle or theoretical framework. As a result researcher must focus on resolving
puzzles to develop a valid interpretation. (Kaplan & Maxwell, 2005.)

In qualitative research data is typically collected from a set of individuals
and settings. Multiple sources and methods affect the robustness of results by
allowing findings to be strengthened by cross-validation or in other words tri-
angulation. If different kinds of data from different sources are found congruent
the results have stronger credibility than basing only on one method and source.
(Kaplan & Maxwell, 2005; Jick, 1979; Yin, 2013;)

Feedback and member checking mean systematically gathering feedback
about conclusions made by researcher from others who are familiar with the
setting. Kaplan and Maxwell (2005) consider this to be the most important way
of ruling out possible misinterpretations. This is also an important way to iden-
tify researcher’s biases. (Kaplan & Maxwell, 2005.)

Identifying and analysing discrepant data and negative cases plays im-
portant part in validity testing in qualitative research. Researchers might feel
strong pressure to ignore data that does not support prior theories or conclu-
sions they are making. But examining of both discrepant and supporting data is
important for the research to point out possible defects. Good solution is to in-
clude reporting of the discrepant evidence and allowing readers to form their
own conclusions. (Kaplan & Maxwell, 2005.)

47

5.5 Research Ethics

All researched companies will be informed about their rights to be anonymous
and possibility to read through the thesis before publication. Interviewees have
also a right to quit the interview anytime they wish. The research is conducted
following the guidelines of The Finnish Advisory Board on Research Integrity
(Varantola et al., 2013).

48

6 EMPIRICAL RESULTS

In this section results of the study are presented based on the empirical material.
The results are categorized following the theoretical framework of this study.
Most important findings are presented as primary empirical conclusions (PEC).
PECs are further discussed in the section 7. Empirical conclusions (EC) are also
used as a tool to point at certain empirical findings from the study’s material
that form primary empirical conclusions.

The results are presented following the empirical framework. Categories
according to which the results are divided are alphas from the Essence frame-
work. Which case has stated certain information has been introduced as a
startup or case following the identifying number of said case. Case startups and
identifying numbers are presented in the table 10 in the section 5.2. It is notable
that startups interviewed didn’t discuss all of the listed practices so there might
be more supporting or conflicting startups.

Thirteen new practices were found from the empirical material that were
absent from the original list from Dande et al. (2014). These added practices
were those that at least two different cases clearly stated. Some of the startups
also described other new practices. These were excluded from the study if they
were only address by one startup. These new practices are presented in the fol-
lowing table 11.

49

TABLE 11 New Practices
Identifier Practice Description Alpha

P64 Study subjects that support
startup

Studying while working on a startup gains competence in the team
without growing in personnel.

Team

P65 Attend startup events Startup events provide opportunity for feedback from experts and
allows you to meet potential investors

 N/A

P66 Create an MVP in the beginning MVP helps you to focus on the most important features in the begin-
ning

Require-
ments

P67 Test features with customers Testing features with real customers gets you the best feedback Require-
ments

P68 Get advisors Experienced professionals or investors can help startup to grow in
advisor or mentor role

Stakehold-
ers

P69 Use efficient tools to plan your
business model

Business model canvas, pitch deck etc. help you to focus your busi-
ness idea and are easy to change if needed

 N/A

P70 Test different tools Start with tools team is familiar with and test different ones to find
those that work the best for you

Way of
Working

P71 Conduct market research Research the markets and competitors to focus your idea and to find
your unique value proposition.

 N/A

P72 Have frequent meetings with
whole team

Use meetings to organize and plan your work at least once a week Way of
Working

P73 Don't have strict roles Let the team co-operate in all of the tasks way of
working

P74 Create prototype Create prototype to validate your product or features Require-
ments

P75 Use efficient communication
tools

Use tools that allow natural communication inside the team when
not working in the same space.

Way of
Working

P76 Prioritize features Choose which features are needed now and plan others for future
releases.

Require-
ments

In the following subsections the practices found by Dande et al. (2014) are pre-
sented with additional information of which cases studied in this thesis support
or conflict with those practices. Also the practices presented above are added to
the lists.

PEC 1: The list of practices found by Dande et al. (2014) is not comprehensive
enough. Startups have more working practices than presented in their study.

6.1 Opportunity

The Opportunity alpha deals with the circumstances that make software devel-
opment or changes appropriate and the team understanding of the stakehold-
er’s needs. There were no cases conflicting with any of the practices considering
the opportunity alpha. No new practices were derived from the cases consider-
ing the opportunity alpha neither. The practices of opportunity alpha are pre-
sented in the table 12 below.

50

TABLE 12 Results of Practices Related to Opportunity
Identifier Practice Description Alpha Case

supporting
Case
conflicting

P1 Focus your product Focus on the most potential customer segment.
Be prepared to change the focus

Opportunity 1,2,6,7,8,9,1
1,12,13

P2 Find your value
proposition and
stick to it on all
levels

Create a valid value proposition. Discuss with
experts from strategic and operational levels at
customer's organization.

Opportunity 9,13

P4 Focus on goals,
whys

Find real motivations behind customers’ wishes
by asking why they want something rather than
just what they want. This way you understand
customers’ needs deeper and can address them
in other situations as well.

Opportunity 9

P18 Validate that your
product sells

Validate your idea before starting development or
try to get a few customers before you start de-
veloping.

Opportunity 1,2,4,5,7,8,1
1

P20 Form deep rela-
tions with first
customers to really
understand their
needs

To understand the customers and the business
develop as deep relations as you can with the first
customers.

Opportunity 1,6,9,11,13

P33 In the develop-
ment of customer
solutions, find a
unique value
proposition in your
way of acting

Find the way of acting that differs from your
competitors. For example super-fast or people
centric.

Opportunity 1,2,3,5,6,8,9

P34 Follow communi-
ties

Everyone should follow communities to know
what is happening and to find new values for
customer.

Opportunity 1,2

Practice P1 was especially supported practice in this category alongside P18,
P20 and P33. These practices deal with focusing the product to suit a certain
customer segment and validating that the focus and the product are set right.
Startup 13 discussed practice P13 as following.

We have a second customer and they are operating in a completely different business
but still they are really similar. Because our main target in those customers, it’s on
their technical services side. On their maintenance, repair and overhaul departments.
Even if they are maintaining and operating different things the maintenance process-
es, they are similar and have similar needs. This kind of maintenance services are
what we can improve. (Case #13)

Practice P33 deals with the idea to create something unique that is missing from
the market or to have a company that creates something in a unique way. Seven
of the startups studied discussed this idea and thought their product or compa-
ny is doing this. This was not confirmed by any further analysis of their com-
petitors by researcher as startup’s own insight of this was sufficient for this
study. Even if their insight was proven wrong their effort to create something
unique for the market means that they follow this practice. Startup 2 discussed
this effort to find unique value proposition as following:

Yes there was some competitors making similar products but they were still a bit dif-
ferent. We had a completely new point of view on these kinds of services. Most of the

51

competitors we found were really in general. They offered something for everyone
and we had focused on this only. We were also only ones in the market that but
companies and customers to the same platform. All of existing services were only for
consumers. (Case #2)

Seven of the studied startups discussed how important it is to form deep rela-
tionships with the first customers in their opinion. This idea of involving cus-
tomers to validate and improve the business idea and product lines with the
practice P18 found by Dande et al. (2014). Startup 1 discussed their relationship
with the first customer as following:

We had talks with some customers before we started the development and they gave
us green light that this is something they want to use. We also got some ideas to
which kind of companies could use our product and got some new ideas. We found a
couple customers with whom we could test the product as soon as we had one. (Case
#1)

PEC 2: The most important practices regarding the opportunity alpha are relat-
ed to the customer relationship and focus of the product.

Interestingly it seems that startups subject to this study hadn’t followed the
practice P4 or didn’t mention that aspect in the interviews. It seems that they
were focused on what their customers want or need and not so much on the
aspect of why people want something. It seems that startups ware basing their
product to suit a certain need or want of the customers but weren’t so eager on
finding the deeper meanings of these wants to enhance their product or service
according to the deeper needs of customers. They used some tools and market
research to validate customers wants. These tools or techniques are further de-
scribed in the section 6.3.

6.2 Stakeholders

Stakeholders provide the opportunity for startup to produce software and build
business. The most notable stakeholders for usual case of a startup are investors
and customers. Investors provide resources for startup to keep up their work
and customers are the goal for whose needs startup’s product aims to fulfil.
This means that together they provide the opportunity for a startup. Additional
practice concerning stakeholders was added after the analysis of empirical ma-
terial. This new practice P68 concerns stakeholder group called advisors. These
advisors were experienced entrepreneurs or professionals who helped startup
to achieve their goal by mentoring the team. In some cases advisors were also
startups investors.

None of the cases studied had practices conflicting with Dande et al.’s
(2014) practices regarding the stakeholders alpha. Neither did they support a lot
of those practices except the newly added P68. Only startups 1 and 2 backed up

52

practice P35 and startup 6 backed up practice P24. Practices from this category
and cases supporting them are presented in the table 13.

TABLE 13 Results of Practices Related to Stakeholders
Identifier Practice Description Alpha Case

supporting
Case
conflicting

P24 Keep customer communica-
tions simple and natural

A startup needs quick and good feedback
from customers for development decisions.
Try to encourage direct contacts by email or
through integrated feedback mechanisms.

Stakeholders 6

P32 Showing alternatives is the
highest proof of expertise

Finding different alternatives for a solution is
expertise. Explore alternatives to find a good
solution.

Stakeholders

P35 Share ideas and get more
back

Sharing ideas will help you get valuable feed-
back.

Stakeholders 1,2

P68 Get advisors Experienced professionals or investors can
help startup to grow in advisor or mentor role

Stakeholders 1,4,5,6,8,9

PEC 3: Startups usually use advisors or mentors to guide their work in the early
stages. This is one of the major stakeholder groups along the customers and in-
vestors.

The practice P35 concerns startups sharing their ideas. This sharing was done
and discussed by startups 1 and 2. They had shared their ideas in the startup
events or communities with other startup teams and coaches to get new ideas
for their work. They didn’t indicate that they had been afraid of others stealing
their ideas but rather find it useful to get feedback from outside of the relatively
small team. Startup 2 discussed their idea sharing as following:

We went to pitching competition and shared our ideas with investors there and got a
lot of feedback. We also had working spaces in Jyväskylän Yritystehdas where we at-
tended events with our idea and talked with investors and such. From them we got
validation that this is idea is working. (Case #2)

6.3 Requirements

Requirements scope the work. They guide what team does and what the soft-
ware system should include. In the category of requirements alpha most of the
practices were well supported. For example practice P52 was confirmed by
startups 1, 2, 3, 4, 5, 6, 7, 12 and 13. Only practice that had conflict with the re-
sults was P3. P3 was described by Dande et al. (2014) that startups should pre-
sent their product as facilitating rather than competing to the competitors.
Startups 1, 2 and 6 stated in the interviews that they had been focusing on how
to compete with other products on the market. None of the cases studied dis-
cussed about the opportunity to facilitate products of competitors. It’s notable
that this practice is highly dependent on a company’s product and not so much

53

on a company’s stage. For example startup 6 stated their intensions on the mar-
ket as following.

It is business to business market. It’s by no means consumer product. What our idea
in this business was to make it cheaper. Make it simply cheaper and technically bet-
ter than the existing competitor to get the market. (Case #6)

All of the practices concerning requirements alpha are listed in the table 14 be-
low. Four new practices were added to this category after the interviews (P66,
P67, P74 and P76). Practice P74 was added as a new practice even though Dan-
de et al.’s (2014) practice P5 also suggests creating the prototype. Dande et al.
focus on UX in their practice involving the prototype. They suggest that proto-
type should be used to test UX. After the analysis of empirical material it was
clear that startups use prototype also for testing other features than just UX.
This was the reason for the new practice to be added to the list.

Practices P52 and P74 were also particularly well supported practices. It
seems that startups are focusing highly on their core product and validating
that it’s working and what their customers want. This results in a very focused
concept of business and product. It seems that main tool to validate the busi-
ness idea and product as well as its features is a prototype. Prototypes were
widely used to test the preliminary product and its different features with pilot
or potential customers. Startup 3 discussed this practice as following.

We made a proof of concept kind of prototype. To test which kinds of technologies
could be used for this. We found quite many and tested them. We also chose some
features we thought would be good and made a very basic version of it to see how
it’s working and how the data flows and such. Basically we tested that it can be done
and what features we need and now we just have to focus on creating a first real ver-
sion of it. (Case #3)

54

TABLE 14 Results of Practices Related to Requirements
Identifier Practice Description Alpha Case supporting Case

conflicting

P3 Present the product as
facilitating rather than
competing to the com-
petitors

Develop a product that can co-operate
rather than compete with competitors

Requirements 1,2,6

P5 Use proven UX methods Use proven UX development methods
from the beginning. Validate ideas
quickly by using prototypes.

Requirements 12

P10 Design and conduct
experiments to find out
about user preferences

Use experiments and communication
with user to determinate in which
directions product should be devel-
oped.

Requirements 1,2,4,6,9,12,13

P21 Use planning tools that
really show value pro-
vided to customer

Choose tools that allow mapping the
value customer gets from what is done
and planned.

Requirements 2

P51 Anything goes in product
planning

Startup needs to figure out new fea-
tures, system concepts and new pro-
jects.

Requirements 1,2,11

P52 To minimize problems
with changes and varia-
tions, develop a very
focused concept

Develop a validated and focused con-
cept to minimize risks with changes. Be
still ready to do changes if needed.

Requirements 1,2,3,4,5,6,7,12,1
3

P53 Develop only what is
needed now

Be efficient by developing only what is
needed now.

Requirements 1,2,3,12

P66 Create an MVP in the
beginning

MVP helps you to focus on the most
important features in the beginning

Requirements 1,2,4,13

P67 Test features with cus-
tomers

Testing features with real customers
gets you the best feedback

Requirements 1,3,4,5,6,7,8,9,11

P74 Create prototype Create prototype to validate your
product or features

Requirements 1,2,3,4,5,6,9,12

P76 Prioritize features Choose which features are needed now
and plan others for future releases.

Requirements 1,2,3,9,11

Newly added practice P76 describes the practice of prioritizing product features.
This is closely connected to the practice P51 which suggest that startup team
should always be open for new ideas for their product but as seen in the prac-
tice P52 concept should be focused. This leads to the need of prioritizing fea-
tures in order to keep the concept focused and team’s focus on most important
features in the beginning. Startup 2 discussed this process of prioritizing the
features as following:

Basically we had thought what kind of functionalities we will create. After that we
sat down and gave each functionality a priority and made a list arranged by those
priorities and made groups of functionalities to form logic entities. Then we started
working on those groups in order to make most important ones in the beginning and
so on. (Case #2)

PEC 4: Software startup’s most used practices regarding the requirements are
focused on prioritizing the product features that are the most needed now and
focusing the concept. These both are tested and validated.

55

6.4 Software system

Software system category addresses the product a startup is selling to its cus-
tomers. It can be either a software system or a mix of a software system and
physical product or another service. Practices regarding the software system
alpha were somewhat divided. Practice P7 had eight startups supporting the
practice and two cases against it. P7 indicates that a startup should have a sin-
gle product rather than per customer variants. This is something that is also
domain dependent and that might cause some startups to oppose it if their
product just cannot be as general as mediocre startup’s. None of the other prac-
tices were conflicting by any of the startups studied.

Practices P23, P54 and P57 weren’t discussed by startups in the interviews.
This doesn’t necessarily mean that they are absent in the startups’ endeavours
but just not mentioned in the interview. Interviewed persons from the startups
didn’t have the main responsibility of programming which might affect that
they didn’t provide information on such things as release cycles. All the practic-
es concerning the software system alpha are presented in the table 15 below. No
new practices were added to this category.

TABLE 15 Results of Practices Related to Software System
Identifier Practice Description Alpha Case

supporting
Case
conflicting

P7 Have a single product, no
per customer variants

Have a modular and flexible single product rather
than multiple per customer variants.

Software
System

1,2,3,5,7,8,
11,12

6,13

P8 Restrict the number of
platforms that your
product works on

Make business decisions on what platforms you
want to support. Focus on the most important
ones. For example the most used browsers and
operating systems.

Software
System

1,2,3,4,7,12

P14 Anyone can release and
stop release

Allow anyone to make a release or stop it. Fast
releases allow quick feedback from users.

Software
System

2

P23 Adapt your release cycles
to the culture of your
users

Depending on your customers choose how fast
releases are and how much can be changed at
once.

Software
System

P54 Make features easy to
remove

Use techniques and architecture that make
features easy to remove if needed.

Software
System

P55 Use extendable product
architecture

Use architecture and techniques that allow to
extent design easily.

Software
System

1,2,3,9,11

P57 Bughunt During fast development of new features arrange
days for bughunt. Make bughunt fun occasion
when everyone is searching for bugs.

Software
System

P58 Test APIs automatically,
UIs manually

APIs can be tested by tools that are easy to find
and cheap. Test UI manually in the beginning.

Software
System

2,13

P59 Use generic, non-
proprietary technologies

Use platform independent technologies to avoid
re-implementing features.

Software
System

2,7

P60 Create a solid platform Keep scaling in mind while developing a platform. Software
System

3,8,9,11

The most endorsed practices concerning the software system alpha were P7, P8,
P55 and P60. P7 suggests that a startup should have a single product with pos-

56

sibility to modify it slightly. Most of the startups wee following this idea as
startup 11 discussed their opinion

It was IOT product. The hardware is a bit expensive but then the software configura-
tion should be so easy that anyone can do it. This way we have one hardware we de-
veloped for this particular use case but it can be used to all the different use cases just
by configuring it differently. (Case #11)

The practice P8 discusses the potential of focusing on a single platform for the
product in the market entry phase. Originally Dande et al. (2014) thought that
this should be chosen according to which platform is the most used in the mar-
ket. Some of the startups made their choice also according to which platform is
easiest or cheapest for them to start with.

P60 is closely connected to the practices P7, P8, P55 and P59. It suggests
that the product should be developed with scaling in mind. These other practic-
es also implicate the same or guide the product towards scalable result. P55 im-
plies that product architecture should be scalable and P60 confirms that with
the aspect of platform.

6.5 Work

The Essence describes work as software system development. As startup’s
unique characteristic is that a small team does both the software development
and business model development a work alpha in startup circumstances should
include work towards healthy business model and revenue streams or an exit
for owners. With software startups software development and business model
development cannot be separated. This simultaneous work on product and
business model was noticed during the analysis of empirical material.

Work alpha related practices were least found from the Dande et al.’s
(2014) study compared to other alphas alongside the stakeholders alpha. These
two were also the least backed up by the results of this study. None of the
startups conflicted with any of these practices. All of the practices were slightly
supported by the interviews but not as clearly as some of the other categories’
practices. There were no new practices that emerged from the empirical materi-
al that fit under this category.
Practices concerning the work alpha are presented in the following table 16. As

can be seen from the table these practices were not well supported by this study.
It’s notable that most of the persons interviewed didn’t have main responsible
on programming in their startup which can affect that they didn’t talk a so
much about these practices or were unable to answer in the detail when asked.
This means that these practices might have be found more from the startups if
the interviewed person had been more programming oriented person.

57

TABLE 16 Results of Practices Related to Work
Identifier Practice Description Alpha Case

supporting
Case
conflicting

P44 Tailored gates and done crite-
ria

Process phases leading to something being done
or assessed or accepted should reflect the
overall process and business.

Work 8

P48 Fail fast, stop and fix Allow developers to do things quickly and freely
and stop if something goes wrong. They will
then fix the problem and process in the team.

Work 1

P62 Use the most efficient pro-
gramming languages and
platforms

With a small team choose the most efficient
programming languages and development
platforms.

Work 2,3,7

The most supported practice in this category was P62 that was found from the
work of three studied startups. They described efficient as efficient for them-
selves as chosen languages and development platforms were known to them
before and fastest for them to start working with. They didn’t discuss overall
efficiency of different programming languages in general. For example startup
7 discussed how they chose development platforms as following

We just made a website, standard website of course. Completely coded by ourselves
because boys didn’t believe anything else but what they can code. So we coded a
standard HTML, CSS, PHP platform and we were in a super hurry. (Case #7)

6.6 Team

Team is the group of people who work on a startup. They can be founders,
owners or paid workers of the startup. From the table 17 can be seen team sizes
of all the startups subject to this study. As can be seen startup 11 had already 85
people working for them. They had already grown out of the startup phase
which is the reason for so high number of workers. In the interview they dis-
cussed their work in the early stages but didn’t mention the original team size
in numbers or when the team had had its biggest growth. One new practice
(P64) was added from the empirical material to this category. Startups 1, 2, 3, 4,
8 and 9 discussed the practice P64 as their team members or some of them were
students while working on a startup and had benefitted from their studies.

Interviews supported well all of the practices categorized to the team al-
pha despite a few conflicting interviews. Startup’s original teams form from
were different basis depending on where and by whom the idea of the startup
comes from. It’s quite natural that all of the practices cannot suit every startup
since the teams experience for example might not always be optimal if the idea
comes from the student group for example. This might also effect on how fast
and on what basis team growth is based on.

Practice P41 was one of the practices that were highly supported. It was
clear from the empirical material that startups need to focus their recruits on
certain competences they are lacking. Also P26 was clearly supported practice

58

which suggests having a flat organizational structure. For example startup 1
stated following:

Even though I was the founder and I had 51% of the shares and I had the official de-
cision making power we made all the decisions with democracy so that we follow a
shared vision and nobody starts to make solo decisions or bossing around. We had
active conversations and we made sure that we don’t have too strict roles. (Case #1)

As seen from the quote startups feel that flat organization suits small and coop-
erative teams well. Some of the other startups also indicated that their organiza-
tional structure is quite flat but didn’t clearly state that or describe structure in
detail.

TABLE 17 Results of Practices Related to Team
Identifier

Practice Description Alpha Case

supporting
Case
conflicting

P26 Flat organization In flat organization people are committed to a com-
mon good and communications are easy as they don't
require intermediates.

Team 1,2,3,5,9

P27 Consider career expec-
tations of good people

Keep team happy by offering opportunities to build up
their skills. They can raise their market value as an
insurance for the case that startup fails.

Team 4,9

P28 Don't grow in personnel If you don't need more resources or competence
don't grow in personnel.

Team 1,2,3,12

P29 Bind key people Most important people should be shareholders,
partners or founders because critical information is
easily lost.

Team 2,3,6,7

P36 Small co-located teams Small teams with scarce resources need good com-
munication to survive. Speaking in the same room is
the most effective way to communicate.

Team 1,2,3,4,5,6 12

P37 Have multi-skilled
developers

Startups have usually small teams, yet there are lots
of different things to do. Multi-skilled developers are
needed to address all the issues in startup without
growing in personnel.

Team 1,2,3,12

P38 Keep teams stable in
growth mode

While growing as a company try to keep teams and
individual roles stable.

Team 1,2,3,4,6,7,
13

9

P40 Sharing competence in
team

In team everyone has slightly different expertise.
Since startups need skilled developers sharing compe-
tence inside the team is necessary.

Team 4,5

P41 Start with a compe-
tence focus and expand
as needed

In the beginning focus on specific competence with a
small group of people. Expand team and competences
later.

Team 1,2,3,4,6,8,
9,13

P42 Start with small and
experienced team and
expand as needed

Start with small and experienced team that has effi-
cient ways to communicate. Anticipating all needed
skills beforehand is hard.

Team 1,2,3,4,7,8,
12,13

1,2,3

P64 Study subjects that
support startup

Studying while working on a startup gains compe-
tence in the team without growing in personnel.

Team 1,2,3,4,8,9

The practice P42 was conflicted by the interviews of startups 1, 2 and 3. This
doesn’t mean that they didn’t want to start with a small and experienced team
but they rather started the startup by group of friends who were students at the
moment. All of them described their biggest challenge as their inexperience in
the field. They and a few other studied startups were fixing the lack of compe-

59

tence by studying in the university subjects that are helpful for their endeavour.
This simultaneously studying and working on a startup was found in so many
cases that a new practice was derived from that.

Seven of the studied startups indicated that they wanted to keep the team
stable in the early stages of the startup and recruited new members only when
absolutely necessary. This practice was also noticed by Dande et al. (2014) in
their study and presented in this thesis as the practice P38. One startup was do-
ing the opposite as they changed the team many times during the first two
years of the company.

The practice p36 implies that startups work the most efficiently with a
small co-located team. Six of the studied startups indicated the same and a cou-
ple discussed during the interview that a chance to work in the same space
could have helped them succeed. Only one startup discussed how they had
managed to create an efficiently working environment with the team that only
met in the same room occasionally.

PEC 5: Flat and self-organizing teams are the most used organization structure
by software startups.

6.7 Way of Working

Way of working alpha in the Essence includes practices and tools a team uses to
support their work. It also includes processes how a team improves their work-
ing practices. Basic tools used in the cases were quite similar. They included
instant messaging software such as Slack and Whatsapp for daily communica-
tion and Google Drive for file sharing for example.

The practices concerning the way of working alpha had some dispersion.
Only one case conflicted with one practice but some of the practices were not
clearly supported either. Still most of the practices had clear support from the
empirical material. Four new practices were also found from this category (P70,
P72, P73 and P75). The practices from this category are presented in the table 18.

60

TABLE 18 Results of Practices Related to Way of Working
Identifier Practice Description Alpha Case

supporting
Case
conflicting

P9 Use enabling specifica-
tions

Enable specification to guide work efficiently.
Let team work independently without constant
intervene from the owner or customer.

Way of
Working

1,2,3

P15 Create the development
culture before processes

In the beginning develop a culture that sup-
ports what you want to be. Processes are likely
to change as company evolves so focus first on
building the culture that fits your goals and
future processes.

Way of
Working

1,8,11

P39 Let teams self-select Team should be allowed to self-organize. Way of
Working

1,2,3,5,8

P43 Have different processes
for different goals

Choose different practices for different tasks if
needed.

Way of
Working

P45 Time process improve-
ments right

Improve and change processes only when it is
absolutely needed. At some point of the growth
startup might need to change its preliminary
processes.

Way of
Working

3

P46 Find the overall develop-
ment approach that fits
your company and its
business

Find the best approach for your business. Don't
follow latest trends if it's not best fit for you.

Way of
Working

P47 Tailor common agile
practices for your culture
and needs

Most textbook practices are highly general.
Tailor them to fit your needs and culture.

Way of
Working

1,2,3,4,6,7,8,
13

P49 Move fast and break
things

Prefer culture with fast development and
where failing is acceptable.

Way of
Working

4,7

P50 Forget Software Engineer-
ing

Software development may be ad hoc and
unorganized if it us good enough with the
physical product.

Way of
Working

1

P61 Choose scalable technol-
ogies

Favour development techniques that scale
easily.

Way of
Working

2,3,9,11

P63 Start with familiar tech-
nologies and processes

Save the time of learning new technologies and
processes by using those that team is familiar
with.

Way of
Working

1,2,3,7

P70 Test different tools Start with tools team is familiar with and test
different ones to find those that work the best
for you

Way of
Working

1,3

P72 Have frequent meetings
with whole team

Use meetings to organize and plan your work at
least once a week

Way of
Working

1,2,3,4,5,8,1
2

P73 Don't have strict roles Let the team co-operate in all of the tasks way of
working

1,2,3 9

P75 Use efficient communica-
tion tools

Use tools that allow natural communication
inside the team when not working in the same
space.

Way of
Working

2,3,5

The most supported practice concerning way of working alpha was P47 which
suggest tailoring common agile methods to suit a particular startup’s work.
Most of the cases had chosen some agile methods as basis of their work but
didn’t apply them in the textbook way but rather tailoring them to suit their
team and work. For example the startup 6 discussed this as following.

We are sitting in the same room and we are, having a kind of agile, we have had a
kind of an agile process which is very practice-oriented in such a way that it fits to
that, I would say that we have done plenty of agile principles. We have followed
plenty of agile principles without much formalism. We divide the work in such a
way like a typical scrum team is doing. You are doing this and I am doing this and
then we check how it works. We have a kind of continuous integration and continu-
ous testing. It is not automatic testing is not automatic because of the embedded na-

61

ture of the product it is difficult to make any automatic software testing on digital
signal processing. Then we have done refactoring and even some parts programming
and such stuff. But we haven’t had let's say that the paradigm has been kind of agile,
but without formalism. (Case #6)

The practice P72 was also well supported. It was added after the analysis of the
empirical material. It suggests that frequent meetings with the whole team help
to achieve startups goals. The most used schedule for meetings was weekly
meetings. Also the programming part of the team usually had own daily meet-
ings.
The practice P39 was also well supported in this category. It is closely connect-
ed to the practice P26 as flat organization and self-organizing team seems to be
linked since in the flat organization there isn’t usually supervisor to guide the
work or assign tasks. The startup 2 discussed their views of self-organizing
team as following.

So we had weekly meetings every Monday and in those meetings we thought what
should be done next and who wants to focus on what and so on. Like he said the
Monday meeting was kind of round up meeting. Then in between the meetings eve-
ryone did what was agreed as they wanted and then we met again to check the pro-
gress. (Case #2)

PEC 6: Startups tend to tailor common agile methods to form their own work-
ing practices.

6.8 Other Practices

All of the startup practices used as basis of this thesis or ones that were derived
from the empirical material don’t fit into existing alphas from the Essence ker-
nel. Most of the practices that didn’t fit for any of the alphas dealt with clearly
business aspects. They considered such things as marketing, business model
development or funding. The Essence was developed as a tool for the software
system development which causes this problem in the software startups case
since they can’t only develop the software system but also business model in
the close co-operation. These practices that don’t fit under any of the existing
alphas are presented in the following table 19.

62

TABLE 19 Results of Other Practices
Identifier Practice Description Case

supporting
Case
conflicting

P6 Do something spec-
tacular

Create WOW effects and feelings to the customer
to stand out in the competition.

P11 Use tools to collect
data about user behav-
iour

Use data to acknowledge user behaviour and
choose best marketing channels.

1,2,7

P12 Make your idea into a
product

Turn your ideas into products rather than projects.
Projects are not easily scaled.

1,2,3,4,5,6,7,8,
12,13

11

P13 Outsource your growth Use outsourcing to keep your focus on the product. 5,9,11,12,13 3

P16 Get venture capital and
push your product

Try to get your product profitable fast with venture
capital rather than develop it slowly in silence with
low resources.

1,2,4,5,8,9 3

P17 Fund it yourself Getting funding with proof of concept is not easy.
Fund first yourself and get investment later.

1,2,3,7,9

P19 Focus early on those
people who will give
you income in the long
run

Try to get your business model running from the
start, even in small scale. Focus on paying custom-
ers to ensure that the company is profitable.

5,6,7,8,11,13

P22 Start locally grow
globally

Target local customers in the beginning but make all
decisions considering the global growth.

1,2,3,6,7,8,9,1
3

P25 Help customers create
a great showcase for
you with support

The first customers can provide a visible showcase
to attract other customers.

1,6,8,9

P30 Form partnerships and
bonds with other
startups

Focus on developing your product and on your core
business. For other issues find partnering startup.
Startups are usually keen to co-operate.

1,3,4,5,13

P31 Make your own
strength as a “brand”

All startups should have exceptional skills or prod-
uct. Turn this strength into a brand in the market.

8

P56 Only use reliable met-
rics

Use reliable metrics to validate things. Wrong
metrics might do harm for validation.

5,6,7

P65 Attend startup events Startup events provide opportunity for feedback
from experts and allows you to meet potential
investors

1,2,3,4,8

P69 Use efficient tools to
plan your business
model

Business model canvas, pitch deck etc. help you to
focus your business idea and are easy to change if
needed

1,2,3

P71 Conduct market re-
search

Research the markets and competitors to focus
your idea and to find your unique value proposition.

1,2,6,12

The practices P6, P11, P25, P31 and P71 concern marketing activities. They im-
ply practices startups could use for their marketing efforts and to find their
place in the market. For example P25 describes the idea to gain first few cus-
tomers as pilot customers with whom to form deep relationships and who can
be used as reference customers in the marketing. They also help to test and val-
idate ideas if the relationships are good and the customer is involved in the de-
velopment. For example startup 6 discussed this following

We have two kinds of customers. We have customers who had understanding of that
phenomenon and we have customers who were unhappy and were not willing to
cooperate. Now we have got the first order of that unfriendly customer too because
we were able to show that customer we were piloting with. We could make them be-
lieve we can make it with that pilot. (Case #6)

63

EC: There is no current alpha that can be used to monitor the progress of mar-
keting activities.

The practices P16 and P17 consider funding of the startup. They are essentially
opposites of each other but don’t necessarily mean that startup should choose
one of them since they might be justified in the same startup in different states.
Only startup 3 was marked as conflicting case since they stated that they didn’t
want to search for the external funding in the point they were. Even so they
kept the option open that they might search investors later.

EC: There is no current alpha that can be used to monitor the progress of fund-
ing.

Others practices in this category dealt with overall business planning and busi-
ness model development. For example practice P19 discusses that s startup
should get their business running as soon as possible even in the small scale.
This will help securing funding and validating that the idea works in the mar-
ket. P13 suggest that sometimes outsourcing of some sector can help to focus on
the core of the startup. For example this was done to outsource the production
of physical product and focus on the software that the product uses.

EC: There is no current alpha that can be used to monitor the progress of busi-
ness model development.

PEC 7: Current alphas don’t take business aspects into consideration well
enough to cover software startups’ work.

6.9 Summary of Results

Dande et al.’s (2014) startup practices are widely supported by the results of
this study. Some conflicts were found but they seem to be minor ones. Some
new practices were also added due to incompleteness of the original list of the
practices. Other new practices also emerged from the interviews but were ex-
cluded from this analysis since only one case startup discussed them. It also
seems that the Essence kernel supports software startups work well but some
modification might be needed. These recommended modifications are further
discussed in the chapter 7.

The most conflicting practices were found under the team alpha where
three practices had conflicting evidence from the empirical material. The most
supported alpha was opportunity where all of the practices under that category
were supported by at least one startup and none had conflicting evidence from
the empiric material.

64

7 DISCUSSION

In this section the results based on the analysis will be discussed. The discus-
sion is done through primary empirical conclusions founded in the section 6
and its subsections. Primary empirical conclusions (PECs) are listed below:

TABLE 20 Primary empirical conclusions

PEC Description

#1 The list of practices found by Dande et al. (2014) is not comprehensive
enough. Startups have a lot more working practices.

#2 The most important practices regarding the opportunity alpha are re-
lated to the customer relationship and focus of the product.

#3 Startups usually use advisors or mentors to guide their work in the ear-
ly stages. This is one of the major stakeholder groups along the custom-
ers and investors.

#4 Software startup’s most used practices regarding the requirements are
focused on prioritizing the product features that are the most needed
now and focusing the concept. These both are tested and validated.

#5 Flat and self-organizing teams are the most suitable structure for soft-
ware startups.

#6 Startups tend to tailor common agile methods to form their own work-
ing practices.

#7 Current alphas don’t take business aspects into consideration well
enough to cover software startups’ work.

7.1 Theoretical Implications

In this subsection the theoretical implications of this thesis are presented. The
theoretical framework of this thesis is based on literature concerning the Es-

65

sence framework and software startup practices. For example Paternoster et al.
(2014) have already studied software startup practices but this study goes to
more detailed level of practices as they focused on higher level groups of prac-
tices on their results. Klotins et al. (2019) have also studied software startup
practices following different categorization.

The basis for the software startup practices was Dande et al. (2014) study
of software startup practices. These practices were validated by the other litera-
ture concerning the same issue. The theoretical framework was developed
combining those practices with the Essence framework and categorizing the
practices under the Essence alphas. Unterkalmsteiner et al. (2016) have created
a research agenda regarding software startup studies. This thesis aimed to ad-
dress software startups’ practices in general level of their work not focusing
solely on their software development work or business activities which ex-
panded this study to concern multiple sections of their research agenda.

The opportunity alpha takes some business aspects into consideration
since it focuses on the aspects that make software development endeavour fea-
sible (Submitters, 2012). It was clear after the analysis of the empirical material
that even though some business aspects can be seen in the opportunity alpha it
is not comprehensive enough to describe startups work. It is understandable
since the Essence framework was designed as a tool for software development
projects and startups are more than just that. It seems that some new alphas
need to be added to the Essence for it to support whole endeavour of software
startup companies as stated in PEC 7.

Findings of the study conducted by Klotins et al. (2019) support this sug-
gestion. They have concluded in their study that software startups software en-
gineering and business development practices are tightly connected. Most of
the Essence kernel’s alphas seem to suit software startups’ work satisfyingly as
it is. This seems to originate from the fact that software development is the key
aspect of the endeavours of these startups. In their study Klotins et al. (2018a)
have pointed that most cases where software startups fail due to issues that first
seem to concern business aspects originate in fact to software engineering pro-
cesses. This indicates that business and software development practices of soft-
ware startups should be presented in the same framework since they are not
separable.

Alphas that should be added to the Essence are funding, marketing and
business model. These are things that all startups have to address somehow.
For example funding can be searched from investors outside the team or the
startup could be funded by its founders or by the combination of these. No mat-
ter which approach is chosen it’s necessary to monitor that source of funding
has been found, funding is secured and the funding is adequate for them to en-
ter the market with profitable business. Marketing and sales in the other hand
are the main work by company to acquire its customers and if not considered in
the company there’s change for the startup to become a project that develops a
prototype or a product but not profitable business. Business model should be
developed and measured in deep co-operation with the actual product to make

66

sure that revenue streams are gained and startup provides income for its
founders and employees.

The importance of the funding for startups has already been acknowl-
edged in the literature (Chang, 2004). This aspect seems to be missing from the
Essence framework and should be addressed in order to support the whole en-
deavour of software startup. Even though stakeholder alpha is concerning
stakeholders that provide the opportunity for software endeavour and funding
for the startup is provided by these stakeholders i.e. investors it doesn’t take
into consideration the funding itself but the relationships with the people who
provides the funding. The search for investors and securing the funding is such
major part of startups early stages that adding a new alpha considering funding
should be considered. Submitters (2012) stated that the alphas are the most im-
portant aspects of software development endeavour whose progress should
always be tracked. Funding is one of these things in a software startup case as it
could be broken into states that can be progressed. For example potential inves-
tors found, talks with investors, primary funding secured, sufficient funds ac-
quired for startup to run on own revenue streams. This process doesn’t fit into
the sates of Stakeholder alpha as they deal with more generalized states of iden-
tification and involving of stakeholders.

The importance of the Marketing is widely studied subject in the academia.
For example Weerawardena (2003) has pointed out its importance for the com-
panies’ success. The startups are not exception on this as Crowne (2002) has
stated. In the Essence framework opportunity addresses the situation that
makes software development feasible (Submitters, 2012). This way marketing
activities might be seen to fit under that category but it’s reasonable to argue
that since the opportunity alpha considers the circumstances that provide op-
portunity for software development the marketing activities should be extract-
ed from the opportunity alpha and presented under their own alpha because
marketing doesn’t only provide opportunity but it also is vital part of making
the product successful in the market. Klotins et al. (2018a) have pointed that
difficulty to find potential customers and convert them into paying customers is
one of the biggest challenges for software startups. Even superior products can
be hard to sell if they are not marketed correctly and the market segment is cho-
sen incorrect. Marketing is also closely linked up with business model devel-
opment. Sales and marketing activities could be tied together under this new
alpha.

Business model is seen as one of the most important aspects of early stage
startups in the current literature (Lueg, Malinauskaite, & Marinova, 2014).
Many startups design their preliminary business model using tools like busi-
ness model canvas or lean canvas. As the Essence framework was designed to
cover all the ubiquitous aspects of software development these kinds of busi-
ness aspects are missing from it. In order to cover the ubiquitous aspects of
software startups’ work the business model development should be added as a
new alpha. The business model and the business decisions on startup affect the
requirements and opportunity as they deal with the issues such as will the

67

product be profitable for the company when it’s on the market and what kind
of technologies should be used to make profit with the product. It also effects
on the marketing since the decisions like whether to start locally and grow later
or to go straight to global markets change the way the marketing is done. The
business model is also presented to the potential investors while searching the
funding for the startup. This is so critical and broad part of the startups’ work
that it should be monitored and addressed as its own, not part of other existing
alphas.

The list of the startup practices found by Dande et al. (2014) was support-
ed well by the empirical material of this thesis but still thirteen new practices
were added because of the minor limitations of the original list as stated in PEC
1. The most supported categories of practices were opportunity, requirements,
team and way of working. Software system category was also quite well sup-
ported alongside with the practices that didn’t fit into any existing alphas. From
the thirteen new practices four fitted into the requirements alpha, one under the
stakeholders, one to the team, four under the way of working alpha while three
were considering business aspects that didn’t fit under the existing Essence
framework’s alphas.

Overall the Essence framework seems to support the software startups’
practices well. With additional alphas of marketing, funding and business
model startup practices found by Dande et al. (2014) fit into the Essence frame-
work. Some of the practices might be case-by-case practices since they are not
ubiquitous on software startup but may differ by basis of startup and the fact of
which kind of product or service they are offering. For example team related
practices seem to differ with startups whose preliminary teams are found from
different backgrounds. It was notable that most of the practices also fitted to the
Ries (2011) lean startup method as most of the cases described their work to
focus on only the necessary things at the moment and they tended to use the
process of doing fast, testing, learning and improving.

7.2 Practical Implications

Based on the empirical material some practical suggestions can also be made for
software startups. Software startups should have advisors as advisor board or
by involving more experienced people from the field, for example their funders,
to discuss their business model and work (PEC 3). This way they get new ideas,
validate their ideas by more experienced view and get help for their work in
general. Advisors also can be helpful while networking with customers and
other startups.

Flat organization and self-organizing team seem to be effective way to
construct the initial team for the startup stages of the company as stated in PEC
5. In many cases the startup is formed by the people who also work elsewhere
or study while performing the initial activities of the startup such as developing
a prototype and validating the idea. This leads to the fact that self-organizing

68

teams that are not strictly divided into different roles is effective as people’s
allocation of time for the startup might change. Initial team members are also
usually co-partners so flat organization might result in more committed team.

The empirical material of this thesis suggests that focusing the product
features to what is needed at the given moment and focusing the product to
serve the most important customer segment helps the startup to succeed, stated
in PEC 4. The startup works with the limited resources which means that they
cannot do everything they want simultaneously so keeping tight focus on the
most important things for the moment they can succeed on those and change or
expand the focus later. Koltins et al. (2018a) have also pointed out that over-
scoping the product or MVP is one of the most frequent reasons for failure of
software startup. They suggest that scope of the product, especially in the early
stage, should be chosen carefully to avoid adding too much features in the ini-
tial versions of product.

Usually startups have to start their work by funding from the founders or
with small funding sources in the beginning. With this preliminary funding
they can design their product and business and sometimes develop a prototype
of the product. From the empirical material it is clear that securing investments
from outside the team are usually the best way to make sure that the team has
needed resources to develop profitable product and business model.

Forming deep relationship with the first customers is suggested by the
empirical material. This will help startups to validate their product features
with actual customers rather than just testing them inside the team (PEC 2).
First customers can also be involved in the marketing activities if they agree to
be references for the company which helps convincing others to buy the prod-
uct or the service.

As PEC 6 stated it’s notable that software startups tend to use common ag-
ile methods as the basis of their working methods but they tailor those methods
to better suit their work. For example some of the interviewed startups told that
they had implemented daily meetings from scrum but had left other parts of
that method unimplemented because they didn’t find those relevant for their
current work.

Even though the Essence is a framework discussing the ubiquitous parts
of software development it has also practical use. Especially after the suggested
new alphas this framework could be used as a tool for software startups to
monitor their progress in the most important areas of their work. Even without
suggested modification the Essence could be used as a tool to monitor the pro-
gress of the software development and for documenting the working practices
in a simple manner.

69

8 CONCLUSION

This thesis studied what is the essence of software startup. The list of software
startup practices was used as a tool to point out the most crucial areas of soft-
ware startups’ endeavour to find the ubiquitous areas that always have to be
addressed and progress measured. In the theoretical framework the practices
were categorized under the Essence framework alphas to see how well they fit
under those areas that are always present in the software development accord-
ing to the Essence framework. Later thirteen new practices were added after the
analysis of the empirical material and three new alphas (marketing, funding
and business model) were suggested to be added to the Essence framework for
it to support the whole endeavour of software startups.

The study was conducted following the qualitative case study method.
The participants for the interviews were founders or CEOs of software startups.
Five of the interviews were conducted by the researcher himself and eight of
them were acquired from the previous s1tudy concerning early stage startups
pivots and prototype development. These eight interviews were conducted and
transcribed by the researchers of the original study.

The data collection method along with the research methods were pre-
sented in the section 5. The empirical results were presented in the section 6 and
further discussed in the section 7 with the practical and theoretical implications
of this study. In this section 8 the thesis is concluded. First the research question
is answered in the subsection 8.1 and the limitations and future research possi-
bilities are presented in the subsections 8.2 and 8.3.

8.1 Answer to Research Questions

This thesis aimed to answer the question: How software startups’ working practices
fit under the alphas of the Essence framework? The main question is divided into
sub-questions:

1. How to define a software startup?

70

2. What practices are universal for all software startups?

3. What aspects of the essence of software development are not universal
for all software startups?

The first sub-question was answered through the literature. Software
startups were defined following the characterization created by Paternoster et al.
(2014). This was chosen since it’s the most widely used in resent startup re-
search. They extend the startup definition created by Sutton (2000). Sutton’s
definition focuses on the characteristics: scarce resources, multiple influences,
little or no operating history and dynamic technologies and markets. Paternos-
ter et al. (2014) expanded this definition by adding the characteristics: creating
innovative products, fast growth, flat organization structures, focusing on one
product, third party dependency and time pressure. Therefore not all newly
founded companies are startups but those fitting under this characterizing.
Software startup is a company following characteristics created by Paternoster
et al. (2014) whose product is software system or combination of software sys-
tem and physical product or a service.

The answer for the second sub-question started with the list of startup
practices found by Dande et al. (2014) that was later extended by thirteen prac-
tices emerging from the empirical material of this study. These practices are
listed in the table ?? in the section ??.

According to this thesis the answer for the sub-question three is that all of
the aspects of the Essence framework are universal for all software startups.
The Essence framework describes universal aspects of software development
and since the major part of software startups is software development these
same universal aspects apply to the software startups also. The work practices
differ between software startups and more mature software companies but the
universal areas that need to be addressed and measured are the same.

The answer to the research question is that the essence of software startup
can be defined using the Essence framework and adding three new alphas that
are universal for all software startups and need to be addressed and whose
progress should be measured. These alphas that need to be added to capture
the essence of software startup are funding, marketing and business model. All
the existing alphas are universal for all software startups but they lack the busi-
ness aspects that are also universal for all software startups. These universal
business related aspects can be fitted under the alphas marketing, funding and
business model.

8.2 Limitations

When discussing the limitations of this study there are some features that need
to be considered. All of the startups subject to this study where from the Fin-
land or Norway. This raises the question if the practices studied in this thesis
are indeed practices that startups use or rather practices that small companies

71

tend to use in the Nordic countries. Kamulegeya et al. (2017) study indicates
that this risk is minimal since they have already tested the practices found by
Dande et al. (2014) in the Ugandan startup context.

Another noticeable thing is that eight of the cases studied had been inter-
viewed and transcribed by another research and they hadn’t used the exact
same interview themes since the original study had been focusing on the early
stage startups’ pivots and prototype development. The risk of missing crucial
information because the interviews were conducted for another study is mini-
mal since the original interviews themes were highly related to the ones of this
study and the interviews had been conducted following the same thematic in-
terview procedures.

8.3 Future Research

This study considers software startup’s practices. The basis of these practices
was the study by Dande et al. (2014) to which thirteen new practices was added.
These practices could be further studied and the list should be expanded since
there are many more working practices used by software startups and these
could be studied to see which ones are the most beneficial in the practice. Prac-
tices should also be tested in the different geographical and cultural environ-
ment.

This study proposes three new alphas for the Essence framework to create
a new framework for software startups’ work. This opens an opportunity to test
these suggestions and develop alternative changes for the framework for it to
work in this context. The interactions between the new alphas introduced in
this study and the existing alphas should be tested and formalized by another
study.

The practices studied in this thesis and new practices emerging from fu-
ture studies could also be mapped following categorization of Klotins et al.
(2018b) startup context map. They have created a new categorization for soft-
ware startups’ practices that differ from the one used in this thesis. The model is
relatively new and could be further tested by categorizing new practices follow-
ing their map.

Unterkalmsteiner et al. (2016) have suggested a research agenda for soft-
ware startup studies that includes areas that should be further studied. This
thesis studied software startup practices that fit under multiple sections of their
agenda. Future studies regarding the software startup practices could address
practices more precisely on certain sector of that agenda to generate deeper
knowledge on particular aspect of software startups’ work.

72

REFERENCES

Aranda, J. (2009). Against SEMAT. Accessed 19 July 2013. Available:
http://catenary.wordpress.com/2009/11/29/against-semat/.

Assyne, N. (2017, May). Collaborative-startup (co-startup): the role of
communities of practices. In Proceedings of the 1st International
Workshop on Software Engineering for Startups (pp. 6-9). IEEE Press.

Bajwa, S. S., Wang, X., Duc, A. N., & Abrahamsson, P. (2017). “Failures” to be
celebrated: an analysis of major pivots of software startups. Empirical
Software Engineering, 22(5), 2373-2408.

Björk, J., Ljungblad, J., & Bosch, J. (2013, June). Lean Product Development in
Early Stage Startups. In IW-LCSP@ ICSOB (pp. 19-32).

Blank, S. (2007). The four steps to the epiphany: successful strategies for
products that win. BookBaby.

Blank, S., & Dorf, B. (2012). The Startup Owners Manual, vol. 1. K&S Ranch Inc.
Bourdieu, P. (1973). The three forms of theoretical knowledge. Information

(International Social Science Council), 12(1), 53-80.
Bourque, P., & Fairley, R. E. (2014). Guide to the software engineering body of

knowledge (SWEBOK (R)): Version 3.0. IEEE Computer Society Press.
Chang, S. J. (2004). Venture capital financing, strategic alliances, and the initial

public offerings of Internet startups. Journal of Business Venturing, 19(5),
721-741.

Cho, S. T., Chomina-Chavez, A., & Bronowitz, J. (2017, June). A map of
technology entrepreneurship: Aha to Exit. In Technology & Engineering
Management Conference (TEMSCON), 2017 IEEE (pp. 148-154). IEEE.

Cockburn, A. (2010). A Detailed Critique of the SEMAT Initiative. Humans and
Technology Technical Report HaT TR 201002. Accessed 19 July 2013.
Available:
http://alistair.cockburn.us/A+Detailed+Critique+of+the+SEMAT+Initiat
ive.

Crowne, M. (2002). Why software product startups fail and what to do about it.
Evolution of software product development in startup companies. In
Engineering Management Conference, 2002. IEMC'02. 2002 IEEE
International (Vol. 1, pp. 338-343). IEEE.

Cruzes, D. S., & Dyba, T. (2011, September). Recommended steps for thematic
synthesis in software engineering. In Empirical Software Engineering and
Measurement (ESEM), 2011 International Symposium on (pp. 275-284).
IEEE.

da Rosa, S. C., Schreiber, D., Schmidt, S., & Junior, N. K. (2017).
MANAGEMENT PRACTICES THAT COMBINE VALUE COCREATION
AND USER EXPERIENCE An Analysis of the Nubank Startup in the
Brazilian Market. Revista de Gestão, Finanças e Contabilidade, 7(2), 22.

73

Dande, A., Eloranta, V. P., Kovalainen, A. J., Lehtonen, T., Leppänen, M.,
Salmimaa, T., ... & Koskimies, K. (2014). Software startup patterns-an
empirical study. Tampereen teknillinen yliopisto. Tietotekniikan laitos.
Raportti-Tampere University of Technology. Department of Pervasive
Computing. Report; 4.

DeTienne, D. R., & Cardon, M. S. (2012). Impact of founder experience on exit
intentions. Small Business Economics, 38(4), 351-374.

Dey, I. (2003). Qualitative data analysis: A user friendly guide for social
scientists. Routledge.

Dwolatzky, B. (2012, May). Re-founding software engineering practice-The
SEMAT initiative. In Software Engineering Colloquium (SE), 2012 4th (pp.
1-3). IEEE.

Elvesæter, B. (2013, June). Extending the Kernel with Practices to Create
Methods. In Essence Workshop. Berlin, Germany.

Evensen, A., Kemell, K. K., Wang, X., Risku, J., & Abrahamsson, P. (2018).
Essencery-A Tool for Essentializing Software Engineering Practices. arXiv
preprint arXiv:1808.02723.

Fowler, M. (2010). Semat. Accessed 19 July 2013. Available:
http://martinfowler.com/bliki/Semat.html.

Giardino, C., Paternoster, N., Unterkalmsteiner, M., Gorschek, T., &
Abrahamsson, P. (2016). Software development in startup companies: The
greenfield startup model. IEEE Transactions on Software Engineering,
42(6), 585-604.

Giardino, C., Unterkalmsteiner, M., Paternoster, N., Gorschek, T., &
Abrahamsson, P. (2014). What do we know about software development
in startups?. IEEE software, 31(5), 28-32.

Giardino, C., Wang, X., & Abrahamsson, P. (2014, June). Why early-stage
software startups fail: a behavioral framework. In International
Conference of Software Business (pp. 27-41). Springer, Cham.

Gil, D. C., Serrato, J. H., & Melo, J. A. (2014). On the use of the SEMAT kernel
within a software engineering course. METHODS, MODELING, AND
TEACHING, VOL. 3, 77.

González-Pérez, M. E., Zapata-Jaramillo, C. M., & González-Palacio, L. (2014).
Toward a standardized representation of RUP best practices of project
management in the SEMAT kernel. METHODS, MODELING, AND
TEACHING, VOL. 3, 47.

Hallen, B. L., Bingham, C. B., & Cohen, S. (2014, January). Do accelerators
accelerate? A study of venture accelerators as a path to success?. In
Academy of management proceedings (Vol. 2014, No. 1, p. 12955).
Academy of Management.

Huang, S., & Ng, P. W. (2014). Essence as a Framework for Conducting
Empirical Studies. METHODS, MODELING, AND TEACHING, VOL. 3, 9.

Ibargüengoitia, G., & Oktaba, H. (2014). Identifying the scope of Software
Engineering for Beginners course using ESSENCE. METHODS,
MODELING, AND TEACHING, VOL. 3, 67.

74

Jacobson, I., & Meyer, B. (2009). Methods need theory. Dr. Dobb's Journal.
Jacobson, I., Meyer, B., & Soley, R. (2009). Call for action: The SEMAT initiative.

Dr. Dobb’s Journal, 10.
Jacobson, I., Ng, P. W., McMahon, P. E., & Goedicke, M. (2019). The Essentials

of Modern Software Engineering: Free the Practices from the Method
Prisons!. Morgan & Claypool.

Jacobson, I., Ng, P. W., McMahon, P. E., Spence, I., & Lidman, S. (2013). The
essence of software Engineering: applying the SEMAT kernel. Addison-
Wesley.

Jacobson, I., Ng, P. W., McMahon, P., Spence, I., & Lidman, S. (2012). The
essence of software engineering: the SEMAT kernel. Queue, 10(10), 40.

Jacobson, I., Ng, P. W., McMahon, P., Spence, I., & Lidman, S. (2012). The
essence of software engineering: the SEMAT kernel. Queue, 10(10), 40.

Jacobson, I., Spence, I., & Ng, P. W. (2013). Agile and SEMAT: perfect partners.
Communications of the ACM, 56(11), 53-59.

Jick, T. D. (1979). Mixing qualitative and quantitative methods: Triangulation in
action. Administrative science quarterly, 24(4), 602-611.

Kamulegeya, G., Hebig, R., Hammouda, I., Chaudron, M., & Mugwanya, R.
(2017, August). Exploring the Applicability of Software Startup Patterns in
the Ugandan Context. In Software Engineering and Advanced
Applications (SEAA), 2017 43rd Euromicro Conference on (pp. 116-124).
IEEE.

Kane, T. J. (2010). The importance of startups in job creation and job destruction.
Available at SSRN 1646934.

Kaplan, B., & Maxwell, J. A. (2005). Qualitative research methods for evaluating
computer information systems. In Evaluating the organizational impact of
healthcare information systems (pp. 30-55). Springer, New York, NY.

Kirk, J., & Miller, M. L. (1986). Reliability and validity in qualitative research.
Sage.

Klotins, E., Unterkalmsteiner, M., & Gorschek, T. (2015, June). Software
engineering knowledge areas in startup companies: a mapping study. In
International Conference of Software Business (pp. 245-257). Springer,
Cham.

Klotins, E., Unterkalmsteiner, M., & Gorschek, T. (2018a). Software Engineering
Antipatterns in start-ups. IEEE Software, 36(2), 118-126.

Klotins, E., Unterkalmsteiner, M., & Gorschek, T. (2018b). Software-intensive
product engineering in start-ups: a taxonomy. IEEE Software, 35(4), 44-52.

Klotins, E., Unterkalmsteiner, M., & Gorschek, T. (2019). Software engineering
in start-up companies: An analysis of 88 experience reports. Empirical
Software Engineering, 24(1), 68-102.

Lueg, R., Malinauskaite, L., & Marinova, I. (2014). The vital role of business
processes for a business model: the case of a startup company. Problems
and Perspectives in Management, (12, Iss. 4 (contin.)), 213-220.

75

MacMillan, I. C., Zemann, L., & Subbanarasimha, P. N. (1987). Criteria
distinguishing successful from unsuccessful ventures in the venture
screening process. Journal of business venturing, 2(2), 123-137.

Melegati, J., Goldman, A., & Paulo, S. (2016). Requirements Engineering in
Software Startups: a Grounded Theory approach. 2nd Int. Work. Softw.
Startups, Trondheim, Norw.

Myers, M. D., & Newman, M. (2007). The qualitative interview in IS research:
Examining the craft. Information and organization, 17(1), 2-26.

Ng, P. W., & Huang, S. (2013). Essence: A framework to help bridge the gap
between software engineering education and industry needs. In Software
Engineering Education and Training (CSEE&T), 2013 IEEE 26th
Conference on (pp. 304-308). IEEE.

Object Management Group (OMG). 2008. Software Process Engineering
Metamodel (SPEM). Available: http://www.omg.org/spec/SPEM/2.0/

Park, J. S., Jacobson, I., Myburgh, B., Johnson, P., & McMahon, P. E. (n.d.)
SEMAT Yesterday, Today and Tomorrow An Industry Perspective.
Available:
https://pdfs.semanticscholar.org/100e/dda4f5306cfb9cb8383110b23fe617
5de41f.pdf

Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., &
Abrahamsson, P. (2014). Software development in startup companies: A
systematic mapping study. Information and Software Technology, 56(10),
1200-1218.

Patton, M. Q. (1990). Qualitative evaluation and research methods. SAGE
Publications, inc.

Rafiq, U., Bajwa, S. S., Wang, X., & Lunesu, I. (2017, August). Requirements
Elicitation Techniques Applied in Software Startups. In Software
Engineering and Advanced Applications (SEAA), 2017 43rd Euromicro
Conference on (pp. 141-144). IEEE.

Ries, E. (2011). The Lean Start-up. How Constant Innovation Creates Radically
Successful Business. Lloc de publicació: Londres. Portfolio Penguin.

Ries, E. (2011). The lean startup: How today's entrepreneurs use continuous
innovation to create radically successful businesses. Crown Books.

Robehmed, N. (2013) What is A Startup?. Forbes.
Schön, D. A. (2017). The reflective practitioner: How professionals think in

action. Routledge.
Seppänen, P., Liukkunen, K., & Oivo, M. (2015, December). On the feasibility of

startup models as a framework for research on competence needs in
software startups. In International Conference on Product-Focused
Software Process Improvement (pp. 569-576). Springer, Cham.

Seppänen, P., Liukkunen, K., & Oivo, M. (2017, November). Little Big Team:
Acquiring Human Capital in Software Startups. In International
Conference on Product-Focused Software Process Improvement (pp. 280-
296). Springer, Cham.

76

Smolander, K., & Päivärinta, T. (2013, May). Forming theories of practices for
software engineering. In Software Engineering (GTSE), 2013 2nd SEMAT
Workshop on a General Theory of (pp. 27-34). IEEE.

Striewe, M., Mcneile, A. T., & Berre, A. J. (2012). Towards an Agile Foundation
for the Creation and Enactment of Software Engineering Methods: The
SEMAT Approach.

Striewe, M., Mcneile, A. T., & Berre, A. J. (2012). Towards an Agile Foundation
for the Creation and Enactment of Software Engineering Methods: The
SEMAT Approach.

Submitters, O. (2012). Essence–Kernel and Language for Software Engineering
Methods.

Sutton, S. M. (2000). The role of process in software start-up. IEEE software,
17(4), 33-39.

Swenson, M. J., Rhoads, G. K., & Whitlark, D. B. (2014). Startup marketing:
Leveraging leverage. The Journal of Applied Business and Economics,
16(6), 56.

Tolvanen, J. P. (1998). Incremental method engineering with modeling tools:
theoretical principles and empirical evidence. Ph. D. Thesis, University of
Jyvaskyla.

Tripathi, N., Seppänen, P., Oivo, M., Similä, J., & Liukkunen, K. (2017, August).
The Effect of Competitor Interaction on Startup’s Product Development. In
Software Engineering and Advanced Applications (SEAA), 2017 43rd
Euromicro Conference on (pp. 125-132). IEEE.

Unterkalmsteiner, M., Abrahamsson, P., Wang, X., Nguyen-Duc, A., Shah, S.,
Bajwa, S. S., ... & Edison, H. (2016). Software startups–a research agenda.
e-Informatica Software Engineering Journal, 10(1).

Varantola, K., Launis, V., Helin, M., Spoof, S. K., & Jäppinen, S. (2013). Hyvä
tieteellinen käytäntö ja sen loukkausepäilyjen käsitteleminen Suomessa.
Helsinki: Tutkimuseettinen neuvottelukunta.

Wall, D. A. (2001). Using open source for a profitable startup. Computer, 34(12),
158-160.

Wang, X., Edison, H., Bajwa, S. S., Giardino, C., & Abrahamsson, P. (2016, May).
Key challenges in software startups across life cycle stages. In
International Conference on Agile Software Development (pp. 169-182).
Springer, Cham.

Weerawardena, J. (2003). The role of marketing capability in innovation-based
competitive strategy. Journal of strategic marketing, 11(1), 15-35.

Wennberg, K., Wiklund, J., DeTienne, D. R., & Cardon, M. S. (2010).
Reconceptualizing entrepreneurial exit: Divergent exit routes and their
drivers. Journal of Business Venturing, 25(4), 361-375.

Yin, R. K. (2013). Case study research and applications: Design and methods.
Sage publications.

Yu, Y. W., Chang, Y. S., Chen, Y. F., & Chu, L. S. (2012, July). Entrepreneurial
Success for High-Tech Start-Ups--Case Study of Taiwan High-Tech
Companies. In Innovative Mobile and Internet Services in Ubiquitous

77

Computing (IMIS), 2012 Sixth International Conference on (pp. 933-937).
IEEE.

Zalewski, J. (2013). Review, The essence of software engineering : applying the
SEMAT kernel. Computing Reviews. Available:
http://www.computingreviews.com/review/review_review.cfm?review
_id=141474

78

APPENDIX 1 LIST OF THE STARTUP PRACTICES

Practice Description

Focus your product Focus on the most potential customer segment. Be prepared to change the focus

Find your value proposition
and stick to it on all levels

Create a valid value proposition. Discuss with experts from strategic and operational levels at
customer's organization.

Present the product as facilitat-
ing rather than competing to
the competitors

Develop a product that can co-operate rather than compete with competitors

Focus on goals, whys Find real motivations behind customers’ wishes by asking why they want something rather than
just what they want. This way you understand customers’ needs deeper and can address them in
other situations as well.

Use proven UX methods Use proven UX development methods from the beginning. Validate ideas quickly by using proto-
types.

Do something spectacular Create WOW effects and feelings to the customer to stand out in the competition.

Have a single product, no per
customer variants

Have a modular and flexible single product rather than multiple per customer variants.

Restrict the number of plat-
forms that your product works
on

Make business decisions on what platforms you want to support. Focus on the most important
ones. For example the most used browsers and operating systems.

Use enabling specifications Enable specification to guide work efficiently. Let team work independently without constant
intervene from the owner or customer.

Design and conduct experi-
ments to find out about user
preferences

Use experiments and communication with user to determinate in which directions product
should be developed.

Use tools to collect data about
user behaviour

Use data to acknowledge user behaviour and choose best marketing channels.

Make your idea into a product Turn your ideas into products rather than projects. Projects are not easily scaled.

Outsource your growth Use outsourcing to keep your focus on the product.

Anyone can release and stop
release

Allow anyone to make a release or stop it. Fast releases allow quick feedback from users.

Create the development cul-
ture before processes

In the beginning develop a culture that supports what you want to be. Processes are likely to
change as company evolves so focus first on building the culture that fits your goals and future
processes.

Get venture capital and push
your product

Try to get your product profitable fast with venture capital rather than develop it slowly in
silence with low resources.

Fund it yourself Getting funding with proof of concept is not easy. Fund first yourself and get investment later.

Validate that your product sells Validate your idea before starting development or try to get a few customers before you start
developing.

Focus early on those people
who will give you income in the
long run

Try to get your business model running from the start, even in small scale. Focus on paying
customers to ensure that the company is profitable.

79

Form deep relations with first
customers to really understand
their needs

To understand the customers and the business develop as deep relations as you can with the
first customers.

Use planning tools that really
show value provided to cus-
tomer

Choose tools that allow mapping the value customer gets from what is done and planned.

Start locally grow globally Target local customers in the beginning but make all decisions considering the global growth.

Adapt your release cycles to
the culture of your users

Depending on your customers choose how fast releases are and how much can be changed at
once.

Keep customer communica-
tions simple and natural

A startup needs quick and good feedback from customers for development decisions. Try to
encourage direct contacts by email or through integrated feedback mechanisms.

Help customers create a great
showcase for you with support

The first customers can provide a visible showcase to attract other customers.

Flat organization In flat organization people are committed to a common good and communications are easy as
they don't require intermediates.

Consider career expectations
of good people

Keep team happy by offering opportunities to build up their skills. They can raise their market
value as an insurance for the case that startup fails.

Don't grow in personnel If you don't need more resources or competence don't grow in personnel.

Bind key people Most important people should be shareholders, partners or founders because critical infor-
mation is easily lost.

Form partnerships and bonds
with other startups

Focus on developing your product and on your core business. For other issues find partnering
startup. Startups are usually keen to co-operate.

Make your own strength as a
“brand”

All startups should have exceptional skills or product. Turn this strength into a brand in the
market.

Showing alternatives is the
highest proof of expertise

Finding different alternatives for a solution is expertise. Explore alternatives to find a good
solution.

In the development of custom-
er solutions, find a unique
value proposition in your way
of acting

Find the way of acting that differs from your competitors. For example super-fast or people
centric.

Follow communities Everyone should follow communities to know what is happening and to find new values for
customer.

Share ideas and get more back Sharing ideas will help you get valuable feedback.

Small co-located teams Small teams with scarce resources need good communication to survive. Speaking in the same
room is the most effective way to communicate.

Have multi-skilled developers Startups have usually small teams, yet there are lots of different things to do. Multi-skilled
developers are needed to address all the issues in startup without growing in personnel.

Keep teams stable in growth
mode

While growing as a company try to keep teams and individual roles stable.

Let teams self-select Teams should be allowed to self-organize.

Sharing competence in team In team everyone has slightly different expertise. Since startups need skilled developers sharing
competence inside the team is necessary.

Start with a competence focus
and expand as needed

In the beginning focus on specific competence with a small group of people. Expand team and
competences later.

Start with small and experi-
enced team and expand as
needed

Start with small and experienced team that has efficient ways to communicate. Anticipating all
needed skills beforehand is hard.

Have different processes for
different goals

Choose different practices for different tasks if needed.

80

Tailored gates and done crite-
ria

Process phases leading to something being done or assessed or accepted should reflect the
overall process and business.

Time process improvements
right

Improve and change processes only when it is absolutely needed. At some point of the growth
startup might need to change its preliminary processes.

Find the overall development
approach that fits your compa-
ny and its business

Find the best approach for your business. Don't follow latest trends if it's not best fit for you.

Tailor common agile practices
for your culture and needs

Most textbook practices are highly general. Tailor them to fit your needs and culture.

Fail fast, stop and fix Allow developers to do things quickly and freely and stop if something goes wrong. They will
then fix the problem and process in the team.

Move fast and break things Prefer culture with fast development and where failing is acceptable.

Forget Software Engineering Software development may be ad hoc and unorganized if it us good enough with the physical
product.

Anything goes in product
planning

Startup needs to figure out new features, system concepts and new projects.

To minimize problems with
changes and variations, devel-
op a very focused concept

Develop a validated and focused concept to minimize risks with changes. Be still ready to do
changes if needed.

Develop only what is needed
now

Be efficient by developing only what is needed now.

Make features easy to remove Use techniques and architecture that make features easy to remove if needed.

Use extendable product archi-
tecture

Use architecture and techniques that allow to extent design easily.

Only use reliable metrics Use reliable metrics to validate things. Wrong metrics might do harm for validation.

Bughunt During fast development of new features arrange days for bughunt. Make bughunt fun occasion
when everyone is searching for bugs.

Test APIs automatically, UIs
manually

APIs can be tested by tools that are easy to find and cheap. Test UI manually in the beginning.

Use generic, non-proprietary
technologies

Use platform independent technologies to avoid re-implementing features.

Create a solid platform Keep scaling in mind while developing a platform.

Choose scalable technologies Favour development techniques that scale easily.

Use the most efficient pro-
gramming languages and
platforms

With a small team choose the most efficient programming languages and development plat-
forms.

Start with familiar technologies
and processes

Save the time of learning new technologies and processes by using those that team is familiar
with.

Study subjects that support
startup

Studying while working on a startup gains competence in the team without growing in person-
nel.

Attend startup events Startup events provide opportunity for feedback from experts and allows you to meet potential
investors

Create an MVP in the begin-
ning

MVP helps you to focus on the most important features in the beginning

Test features with customers Testing features with real customers gets you the best feedback

Get advisors Experienced professionals or investors can help startup to grow in advisor or mentor role

Use efficient tools to plan your
business model

Business model canvas, pitch deck etc. help you to focus your business idea and are easy to
change if needed

Test different tools Start with tools team is familiar with and test different ones to find those that work the best for
you

81

Conduct market research Research the markets and competitors to focus your idea and to find your unique value proposi-
tion.

Have frequent meetings with
whole team

Use meetings to organize and plan your work at least once a week

Don't have strict roles Let the team co-operate in all of the tasks

Create prototype Create prototype to validate your product or features

Use efficient communication
tools

Use tools that allow natural communication inside the team when not working in the same
space.

Prioritize features Choose which features are needed now and plan others for future releases.

82

APPENDIX 2 LIST OF ABBREVIATIONS

EC: Empirical conclusion
MVP: Minimum viable product
OMG: Object Management Group
PEC: Primary empirical conclusion
SEMAT: Software Engineering Methods and Theory
SPEM: Software and Systems Process Engineering Metamodel
SWEBOK: Software Engineering Body of Knowledge
UX: User Experience

83

APPENDIX 3 THE FRAME OF THE INTERVIEWS

Basic information about the interview

 The purpose of the study (I’m studying software startups. Goal is to
find out more information how startups work and provide help for
future startups), the interview process (takes around an hour), and
how results are dealt in the thesis.

 Confidentiality, anonymity.

 Permission to record the interview.

Interviewee’s background

 Job title and responsibilities in the startup.

 How long has been involved in the startup.

 Startup’s domain.

 When the startup was found.

 Team size.

 Other background information.

Startup’s story

 How the idea was born?

 What is the current situation?

 How have they got to this point?

 What are the most important milestones?
o What led to these? What was done to achieve a milestone?

 What have been the challenges?

 What has been important for the success?

Themes

 Opportunity: Customer’s needs? Revenue streams? Funding?

 Stakeholder: What kind of stakeholders? How have they taken cus-
tomers in to consideration while planning the business/product?
Have they had a prototype?

 Requirements: How the work has been guided and planned? Have
they validated the idea?

 Software System: What is the product? Have they used MVP? How
is the architecture?

 Work

84

 Team: How big is the team? What kind of know-how do they have?
Have they expanded the team? When and why?

 Way-of-working: How they work? Have they certain methods or
practices they follow? Have these changed?

 Metrics: What they measure on their work?

 Business model: How they composed their business model? Do
they have a model? Has it changed?

Other possible questions

 Can you tell how you have organized your work?

 How have you managed the communications?

 What have you found to be important for your product? What
about your working?

 How have the working practices changed?

