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Organisms use photo-receptors to react to light. The first step

is usually the absorption of a photon by a prosthetic group

embedded inside the photo-receptor, often a conjugated

chromophore. The electronic changes in the chromophore

induced by photo-absorption can trigger a cascade of

structural or chemical transformations that culminate into a

response to light. Understanding how these proteins have

evolved to mediate their activation process has remained

challenging because the required time and spacial resolutions

are notoriously difficult to achieve experimentally. Therefore,

mechanistic insights into photoreceptor activation have been

predominantly obtained with computer simulations. Here we

briefly outline the challenges associated with such

computations and review the progress made in this field.
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Introduction
Life on earth is powered by the sun. To harness its power,

organisms have developed a wide range of mechanisms

for collecting and storing solar energy. In addition, many

organisms have also evolved photo-sensory proteins

to detect and respond to light. While the various

photo-response mechanisms may be highly diverse, they

share the common feature that the first step consists of the

absorption of a photon by a chromophore co-factor inside

the protein matrix. The sudden electronic response of

that chromophore to photo-absorption can subsequently

trigger a series of chemical or conformational changes that
Current Opinion in Structural Biology 2020, 61:106–112 
ultimately leads to the capture of the photon’s energy into

a covalent bond or to the activation of a signaling cascade.

High-resolution structures of photoactive proteins have

been obtained with X-ray crystallography and NMR

spectroscopy, but these techniques can only capture static

snapshots of what is essentially a dynamic process. While

the dynamical response to photon absorption can be

probed accurately with transient spectroscopy methods,

these techniques are only sensitive to molecular energy

levels and thus do not provide atomistic information

about the photo-induced structural changes. Therefore,

experimentally it remains challenging to simultaneously

access the time and spacial resolutions required for under-

standing the activation mechanism of photoactive pro-

teins in atomic detail. In contrast, computationally the

relevant time and spacial resolution can both be accessed

routinely, and molecular dynamics (MD) computer simu-

lations have become the method of choice to advance our

understanding of how these proteins have evolved to

mediate their photochemistry. Indeed, since MD trajec-

tories contain information about the time-evolution of

both atomic positions and energies, simulations provide a

link between static structure determination and transient

spectroscopy. Here, we outline the main challenges asso-

ciated with modeling the ultra-fast dynamics when photo-

active proteins absorb light, and illustrate the progress

made in this field with recent applications. We conclude

this review with an outlook on how we expect this field to

develop further.

Challenges
Photon absorption induces a transition from the electronic

ground state (S0) into an electronic state of higher energy,

usually the first singlet excited state (S1). Because the

potential energy surface associated with an electronic

excited state differs from that of the electronic ground

state, photo-absorption can trigger an immediate dynamic

response (Figure 1). However, due to the over-damped

and highly dissipative molecular surroundings of proteins,

part of the energy released during the initial structural

relaxation is quickly lost. Furthermore, the total excited

state lifetime is limited due to spontaneous emission.

Therefore, to make sufficient energy available for the

downstream chemistry under these constraints, it is

imperative to decay rapidly from the excited state into

a metastable product on the electronic ground state that is

chemically or structurally different from the initial con-

figuration (Figure 1). Such decay occurs most efficiently
www.sciencedirect.com
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Figure 1
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Schematic representation of the potential energy surfaces involved in

a photo-chemical reaction. The photo-isomerization in Photoactive

Yellow Protein is used as an example [2]: upon photon absorption, the

covalently bound para-coumaric acid chromophore (pCA) undergoes

rapid rotation around the central double bond from the trans

configuration into a 90� twisted configuration. In this twisted geometry,

the electronic ground (S0) and excited (S1) states are nearly

degenerate, and radiationless deactivation to S0 occurs. After decay,

the system relaxes into a new local minimum on the S0 potential

energy surface, associated with a strained cis chromophore that

stores sufficient energy for subsequent conformational changes [3].
at or near so-called conical intersections between the ground

and excited state potential energy surfaces [1]. Thus,

modeling photo-induced chemistry in photoactive pro-

teins requires, in addition to a structural model, an accu-

rate description of the excited-state electronic wave

function, as well as an approach to deal with the radia-

tionless deactivation at conical intersections.

Excited-State Quantum Chemistry

While quantum chemistry has matured to the point that

chemical accuracy can be achieved for processes that

occur in the electronic ground state, the possibilities to

model excited states are still limited as reliable methods

that can provide a balanced description of both ground

and excited states, are available only for small molecules

and at high computational expense [4]. Owing to their

typical size and complexity, modeling the excited states

of photo-receptors therefore requires additional approx-

imations, ranging from using isolated molecular cluster

models [5] to hybrid quantum mechanics/molecular
www.sciencedirect.com 
mechanics (QM/MM) treatments [6], in which the atoms

involved in the photo-chemistry are described at a suit-

able level of ab initio theory or time-dependent density

functional theory (TDDFT), while the remainder of the

system, including the rest of the protein, solvent and ions,

is modeled with a computationally cheaper molecular

mechanics force field [7].

Non-adiabatic molecular dynamics

At a conical intersection between electronic potential

energy surfaces, the adiabatic, or Born-Oppenheimer

picture, in which molecular dynamics evolve on a single
potential energy surface, breaks down [8]. Instead, near

the intersection the electronic states are coupled and

nuclear motion can induce so called non-adiabatic transi-

tions between these electronic states. Although the

break-down of the Born-Oppenheimer approximation

implies that also the nuclear dynamics can no longer

be described with Newton’s equations of motion, the

non-adiabatic effects can be satisfactorily modeled with

so-called semi-classical MD methods [9]. A popular

approach to include non-adiabatic transitions in classical

MD simulations is Surface Hopping. Introduced by Tully

over three decades ago [10], the trajectory can hop

between two potential energy surfaces. The hops are

instantaneous and triggered by changes in the quantum

mechanical populations of the electronic states due to

their non-adiabatic coupling with nuclear degrees of

freedom [9]. A promising alternative to surface hopping

is the full multiple spawning (FMS) method of Martı́nez

and co-workers [11], which solves the electronic and

nuclear Schrödinger equations simultaneously and has

been adapted to QM/MM simulations [12].

Exciton dynamics in multi-chromophoric systems

Inorder tocapture photonsunder the lowlight intensities in

some habitats on earth, photosynthetic organisms evolved

elaborate strategies for increasing the absorption cross-

section of their photosynthesis apparatus. Thus, in addition

to reaction centers, in which photons are transformed into

chemical free energies through photo-induced redox

chemistry, these organisms express light-harvesting pro-

teins that self-organize into large complexes around the

reaction centers [13]. Because these proteins contain one or

more chromophores, the likelihood of absorbing a photon

increases, while the absorbed photon is quickly channeled

into the reaction center through the excitonic couplings

between the chromophores.

Simulating these processes on a computer would in

principle require that all chromophores are included

inside the QM region. However, since excited state

quantum chemistry is challenging even for a single chro-

mophore [4], calculating the excited state dynamics of a

multi-chromophore system would be computationally

prohibitive unless additional approximations to the ones

already introduced above, are made. In the exciton model
Current Opinion in Structural Biology 2020, 61:106–112
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[14��, 16,17�,18] rather than including all chromophores in

a single quantum chemistry calculation, the excited state

wave functions are computed for each of the chromo-

phores separately instead. The excitonic Hamiltonian,

containing the excitation energies of the chromophores

on the diagonal and the dipole–dipole excitonic couplings

between the chromophores as off-diagonal elements, is

diagonalized to yield the multi-chromophore wave func-

tions, energies, gradients and non-adiabatic couplings,

required for semi-classical MD simulations of multi-

chromophore complexes [15,17�] (Figure 2).

Applications
While the first semi-empirical excited-state MD simula-

tion of retinal in a Rhodopsin model dates back more than

four decades [19], the field did not mature until the early

2000s, when crystal structures of several photoreceptors

were available and computer technology had advanced

enough for fully atomistic QM/MM simulations of Bacte-

riorhodopsin [20,21] and Photoactive Yellow Protein [2].

The total number of trajectories in those early studies

was relatively low, but nevertheless yielded a consistent

picture of the photo-isomerization process and the role of

the protein environment. Since then, excited state

dynamics simulations have been used to investigate reti-

nal photo-isomerization in other proteins as well, includ-

ing bovine Rhodopsin [22–24], squid Rhodopsin [25],

Melanopsin [26], channel Rhodopsin [27�], and Halorho-

dopsin [28,29]. Furthermore, non-adiabatic QM/MM

trajectories have also been computed for chromophore

photo-isomerization and excited-state proton transfer in

various fluorescent proteins [30,31,32,33�,34].

Comparison to time-resolved spectroscopy

The accuracy of the QM/MM simulation models, which

often rely on a minimal QM region embedded within a

non-polarizable MM environment, remains a matter of

concern. Because experimental data on ultra-fast
Figure 2

(a) LH2 complex

B8

B8

Panel (a): The light harvesting complex II (LH2) from Rhodoblastus acidophi

9 B800) that are excitonically coupled (reprinted with permission from [14��]
a non-adiabatic MD trajectory that show how the excitation, initially localize

(reproduced from Ref. [15�] with permission from the PCCP Owner Societie
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structural dynamics are still very rare, the validity of

the simulations can only be verified indirectly by comput-

ing and comparing spectroscopic observables. While

quantum yields and excited-state lifetimes are relatively

straightforward to compute and compare, it is also possi-

ble to compute the time-evolution of spectral signals, and

compare to data from fluorescence up-conversion or tran-

sient absorption experiments [23]. For example, the

agreement between the fluorescence decay calculated

from 60 FMS trajectories of retinal photo-isomerization

in Channelrhodopsin-2 [27�] and experiment [35] sug-

gests that despite the approximations, the QM/MM

simulations can capture the non-adiabatic dynamics in

this system rather accurately (Figure 3a).

Comparison to two-dimensional electronic

spectroscopy

The energy flow inside coupled multi-chromophoric sys-

tems, such as light harvesting complexes, is conveniently

probed with two-dimensional electronic spectroscopy, a

technique that correlates excitation and emission ener-

gies as a function of time delay between absorption and

emission [37,38]. Thus, the validity of simulations of a

multi-chromophore system can verified by computing the

2D electronic spectra. In Figure 3b, the calculated [14��]
and measured 2D electronic spectra of Light Harvesting

complex II are compared [36]. The good agreement also

here suggests that the underlying simulation model is

sufficiently accurate and that the simulations can be used

to guide the interpretation of the measured 2D signals

[14��].

Comparison to time-resolved serial femtosecond X-ray

crystallography

Time-resolved crystallography at free electron lasers has

opened up a new experimental window into the regime

of ultra-fast molecular dynamics [39]. Thanks to femto-

second pulses of extreme brilliance (i.e. 1012 hard X-ray
(b) Exciton evolution

50 ring

00 ring

Current Opinion in Structural Biology

lus, containing 27 Bacteriochlorophyll-a chromophores (18 B850,

. Copyright 2017 American Chemical Society). Panel (b): Snapshots of

d on one of the chromophores, evolves through the LH2 complex

s).
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Figure 3

(a) (b)Simulated transient fluorescence spectrum
of Channelrhodopsin-2

Comparison of LH2 2DES maps at 300K
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Panel (a): time-resolved emission (top) and fluorescence up-conversion signal at a single wavelength (bottom) of Channelrhodopsin-2 computed

from 60 FMS trajectories (red) [27�], compared to experiment (blue) [35] (reprinted with permission from [27�]. Copyright 2019 American Chemical

Society). Panel (b): Simulated [14��] and measured [36] two-dimensional electronic spectroscopy pump-probe maps of Light Harvesting complex II

(LH2) (reprinted with permission from [14��]. Copyright 2017 American Chemical Society).
photons per pulse [40]) it has become possible to perform

pump–probe experiments with X-rays on photoreceptor

micro-crystals or nano-crystals. A short optical pump

pulse initiates the photo-chemistry, while a femtosecond

X-ray pulse probes the diffraction after a time delay [41].

Because the probe pulse captures a single protein crystal

in a random orientation, a large series of diffraction

patterns needs to be collected for each pump–probe

delay, indexed and merged before the changes in electron

density due to photon absorption can be calculated.

Recently Schmidt and co-workers have applied this time-

resolved Serial Femtosecond X-ray crystallography tech-

nique (tr-SFX) to Photoactive Yellow Protein [42]. Figure 4

shows how the electron density difference in the chromo-

phore binding pocket evolves as a function of time

after photo-excitation with a 140 fs laser pulse at 450 nm.

Comparing the transient structures obtained by refining

extrapolated difference structure factor amplitudes, to the
www.sciencedirect.com 
structures of a non-adiabatic multi-configurational QM/

MM trajectory, suggests a remarkably good agreement

between simulation and experiment. Similarly, also for

rsEGFP2, a photo-chromic variant of the Aequorea victoria
Green Fluorescent Protein, agreement was found between

semi-empirical QM/MM simulations and tr-SFX experi-

ments [33�].

However, due to the very high power of the optical pump

laser, it remains unclear whether these early experiments

probed the biologically relevant photo-isomerization

mechanism. Indeed, a recent power titration of Bacterio-

rhodopsin suggest that with the laser powers used in those

tr-SFX experiments, the initial dynamics is dominated

by multi-photon absorption rather than the biologically

relevant single photon process [43��]. This finding not

only raises questions about the interpretation of a pre-

ceding SFX study on Bacteriorhodopsin [44], but of all

femtosecond time-resolved SFX results on photoactive
Current Opinion in Structural Biology 2020, 61:106–112
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Figure 4
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Comparison between time-resolved crystallography (upper panel) and non-adiabatic MD simulation (bottom panel) of Photoactive Yellow Protein.

Each panel shows a front and side view of the chrompohore pocket as a function of pump-probe delay. In the top panels, the experimental

electron difference densities with respect to the unactivated resting state of the protein are shown. Red contours indicate loss of electron density

whereas blue contours indicate gain. In all panels the X-ray structure of the resting state is shown in yellow, while the structures refined against

the extrapolated difference structure factor amplitudes, are shown in pink and green [42].
proteins so far. Although very challenging, it is possible to

simulate the dynamics after multi-photon absorption.

Therefore, this issue could in principle be addressed with

non-adiabatic MD simulations as well.

A further limitation of SFX is that dynamics can only be

probed inside crystals. Because crystal packing could

restrict the conformational movements of the protein,

the structural changes might be different in solution.

Indeed, comparing X-ray scattering from phytochrome

photoreceptor proteins in solution on the one hand, and

X-ray diffraction from these proteins in crystal on the

other hand, suggests that the photo-induced structural

changes are much larger in solution than in the crystal

[45]. However, because large-scale conformational

changes typically occur on timescales that are much

longer than the excited state lifetime, the effects of

crystal packing are probably negligible on such ultra-fast

timescales. Nevertheless, also here, MD simulations

can be used to systematically investigate the differences

between the conformational dynamics in crystals and in

solution.

Summary and outlook
Nature has evolved various strategies for harvesting,

converting and storing solar energy. Understanding these
Current Opinion in Structural Biology 2020, 61:106–112 
strategies might be the key to new solar technologies.

While tr-SFX at free electron lasers will most certainly

lead to new and unprecedented insights into the inner

workings of Nature’s photoactive protein machinery, this

technique is still in its infancy and access to free electron

facilities is limited. However, the agreement between

simulations and SFX experiments suggest that despite

limited accuracy, non-adiabatic molecular dynamics are

a good alternative to SFX. Future developments will

undoubtedly lead to more accurate QM/MM models

with, for example, a multi-reference rather than multi-

configurational description of the QM region, as recently

demonstrated for an isolated GFP chromophore [46��], or

with a polarizable MM environment rather than static

point charges [47]. Furthermore, in contrast to experi-

mental data, trajectories can be analyzed at the atomistic

level and thus provide insights beyond the reach of

experiment. For example, information about the interac-

tions between chromophore and protein environment,

which is essential to understand the catalytic effect of

the protein, can be obtained much easier from simulations

than experiment and hence lead to new testable hy-

potheses. Because these insights can be crucial also for

designing new systems, combining experiment and com-

putation, in particular with a high-throughput strategy

[48�], might be a promising avenue towards new
www.sciencedirect.com
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discoveries in photobiology, as well as future technologies

for harnessing the power of the sun.
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