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Weighted Bounded Mean Oscillation applied to Backward Stochastic
Differential Equations

Stefan Geiss!, Juha Ylinen'2

Department of Mathematics and Statistics, University of Jyvdskyld, P.O. Box 35, FIN-40014 University of Jyviskyld, Finland.

Abstract

We deduce conditional L,-estimates for the variation of a solution of a BSDE. Both quadratic and sub-
quadratic types of BSDEs are considered, and using the theory of weighted bounded mean oscillation we
deduce new tail estimates for the solution (Y, Z) on subintervals of [0, T]. Some new results for the de-
coupling technique introduced in [18] are obtained as well and some applications of the tail estimates are
given.

Keywords: BSDEs, Weighted Bounded Mean Oscillation, John-Nirenberg Theorem, Tail Estimates,
Decoupling
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1. Introduction

In this article we study backward stochastic differential equations (BSDEs from now on) of type

T T
Y:=§+f f(S’Ys’Zs)ds_f Z,dWy, te[0,T], (1.1)
t t

where T > 0 is a fixed number and (W;)0.r] is a d-dimensional Brownian motion. Roughly speaking, a
BSDE is a map (¢, f) — (Y, Z), so that (¢, f) is the data, and (Y, Z) is the solution. Here the terminal value
& € L, is a given random variable that is measurable with respect to the o-algebra generated by the Brownian
motion. In the present article, the generator f : [0, T] X Q X R X R? - R is assumed to be such that

(1) (t,w) — f(t,w,y,7) is predictable for all (y,z) € R X R?, and

(2) there are Ly, L, > 0 and a 6 € [0, 1] such that for all (¢, w, yo, y1,Z20,z1) one has
1f(t, . y0,20) = f(t,w,y1,20] < Lylyo = y1l + Lo[1 + lzol + |z111°lz0 — z1.

This means that the generator f can be random, is assumed to be uniformly Lipschitz in the y-variable, and
locally Lipschitz in the z-variable. We will consider the uniformly Lipschitz case (6 = 0), the quadratic
case (0 = 1), and the sub-quadratic case (6 € (0, 1)) at the same time. We say that (Y, Z) is a solution of
BSDE (1.1) if Y is a continuous adapted process with E sup,¢(o 7 |Y,[> < o0, if Z is a predictable process with

EfOT |Z,|>dr < oo, and if (1.1) is satisfied almost surely.

BSDEs were first introduced by Bismut in [4], and the amount of research increased significantly after
Pardoux and Peng showed in [24] that a BSDE with square-integrable terminal value ¢ and a uniformly
Lipschitz generator f has a unique solution. Concerning the Lipschitz-case, see also for example [25], [15],
and [7]. More recently, the theory of BSDEs with a generator that grows quadratically in the z-variable
has been developed, see for example [22], [19], [23], [8], [12], and the references therein. The original
motivation of studying BSDEs comes from stochastic optimal control theory. In general, BSDEs have
applications in stochastic differential games, stochastic finance in connection to option pricing and utility
maximization, and they are closely connected to partial differential equations (PDEs).



The present article is a continuation of [18] and an application of [17], where [18] itself is a continuation
of [16]. The main results of this article are

— Tueorem 3.7, that provides conditional variational estimates for the processes (Y, Z), i.e. we bound the
mean oscillation of the processes (Y, Z) from above by natural weights derived from the initial data
(&, f) of the BSDE,

— Tueorem 3.8, that deduces from Theorem 3.7 conditional tail estimates of John-Nirenberg type,
— Tueorem 3.12, that is the version of Theorem 3.7 for decoupled FBSDEs,
— Tueorewms 3.13 anp 3.14, that are versions of Theorem 3.8 for decoupled FBSDEs.

Our strategy to prove the basic Theorems 3.7 and 3.8 consists in the following steps:

— SteP 1: We prove a conditional decoupling inequality for BSDEs in Proposition 5.3.
— Step 2: We deduce conditional variational inequalities for (¥, Z) in Theorem 3.7.

— StEP 3: We deduce conditional tail estimates for (Y, Z) in Theorem 3.8.

In Steps 1 and 2 we extend and apply methods from [18], in Step 3 we use a result from [17]. To
explain the role of [17] and [18] for the present article let us assume a stochastic basis (Q, ¥, P, (F;)e0.17)
as in Section 2.

Relation to [17]: In [17] a class of weighted BMO spaces BMO? has been introduced. For a positive
cadlag and adapted weight process @ = (®;).0,r] and p € (0, c0) we say that a continuous and adapted
process A = (A;)ef0.r] With Ag = 0 belongs to BMO;? provided that

ﬁ)”

Lo (P)

A — AP

@,

||A||BM0§ = sup {HE( 7:Q — [0, T] stopping time} < oo, (1.2)

In the present article it is essential to use the concept of BMO? locally in time. To explain this let us look at
Theorem 3.7 where we have weight processes (W, s u.1)ue[s,] and (wf;’{,u’t)ue[s,,] forfixedO < s<t<T.If we

consider the special case [s,#] = [0,T] and set @, := w, o, 7 V € and @, := wf)”'g wr VE for any £ > 0 (the

parameter € > 0 is only formal, to get the weights strictly positive to be in accordance with [17]), then part
of Theorem 3.7 reads as

IA

I(Y; = Yo)eto.m1llpmop €@3.7)s (1.3)

i3
(e
0 1€[0,T]

However, this "global" setting, i.e. [s,#] = [0, T], would not give us estimates on the distribution of ¥; — Y,
that take the size of ¢ — s into the account. Therefore Theorem 3.7 provides local versions of (1.3) and
(1.4) in the following sense: for an arbitrary sub-interval [s, #] € [0, T'] we show that, for any stopping time
7T:Q > [s5,1],

IA

dis . (1.4)

(@2
BMO'),

1
(1Y, = Y)" < canWpsan (1.5)
/ z ’
[Eﬁ ( f |z,|2dr)] < danwil.,. (1.6)
T



The "main" weight process (wf,’qf,u,,)uqs,” is obtained in Assumption 3.5. Because our approach requires a
localization in [s, ] the spaces BMO? could not be used in the form they have been defined in [17] and we
extracted the results from [17] in a form needed in Section 9. This made it possible to perform Step 2, i.e.
to deduce Theorem 3.8 from Theorem 3.7.

The Assumption 3.5 measures the sensitivity of the initial data (¢, f) of our BSDE with respect to a
class of conditional expectations in a natural way that might be interpreted as a property related to directional
Malliavin derivatives. But to prove Theorem 3.7 we have to translate Assumption 3.5 into the decoupling
context and obtain the equivalent condition Assumption 5.1. So Assumption 3.5 and Theorem 3.7 combine
[18] and [17]: the weights originate from the decoupling techniques in [18] and are used in a context that
localizes the BMO spaces from [17]. It should be mentioned that Assumption 3.5 might be seen also from
the point of view that we start with the initial data (¢, f) of the BSDE and then look for good or even best
possible weight processes (Wf;,s,u,x)uels,tj and (wf[’;sm)uqm.

Let us explain the importance of the localized approach, i.e. to consider subintervals [s, ] € [0, T], by
the example of decoupled Forward Backward SDEs (FBSDEs) treated in Section 3.2. There we consider

X

i3 !
X+ f b(r,X,)dr + f o(r,X,)dw,,
0 0

T T
Yt g(XT) + f h(r, Xr» Yr»Zr)dr - f ZrdWr:

t t
for ¢t € [0, T], where x € R? is fixed and the main assumption is that the functions b, o, g, h are uniformly
Lipschitz in the state variables (see Assumption 3.9 below). A consequence of Theorem 3.13 is, that there
exists an absolute constant ¢y > 0 and constants ¢, C > 0, depending on the parameters of the FBSDE, such
that forany 0 < s < ¢ < T we have

IP( sup M > cuy
uels,f] VE—§

for all u, v > 0. In the case that o~ is bounded, this improves to

7—') <el 4 C()P( sup |X, > > -1 ‘ 7—;) (1.7)

u€ls,r|

|Yu - YT| ) 1- ( 2 2
Pl sup ——— > cuv| Fs| < e+ coP| su IXul(t—u)>v—1’7: . (1.8)
(ue[sl,)z] Vi—§ * y uE[sl,)l] '

Similar results are obtained for the process Z of the FBSDE in Theorem 3.14, and for the solution (¥, Z)
to the general non-Markovian BSDE in Theorem 3.8. The idea behind the inequalities (1.7) and (1.8) is to
minimize for a given A4 > 0 the right hand sides over all decompositions A = uv. This is used in Sections
6.1 and 6.2. Even though (1.7) and (1.8) concern a well-studied family of FBSDEs, the tail estimates we
obtain in (1.7) and (1.8) (Theorems 3.13 and 3.14) seem to be new. Coming back to moment estimates there
is another application that shows how the conditional approach can be used. Let s € [0, T) and n; > 1 such

that s + % < T for n > ny. Then Fatou’s Lemma, the right-hand side continuity of the filtration, and Theorem
3.12 for p = 2 give

s+ﬁ
liminf |n f \Z.|2dr
n—0o0,n=ng s

s+1
E(nmigf n f \Z,*dr T]
n—oo,n>n, 5

s+ 1
lim inf E[n f \Z,*dr ?]
n—00,n>nNg s
{Cé_lz)[l +1X,/*]  under condition (Ap,)

2
D(3.12)

IA

under conditions (4, ,) and (A, ),



cf. [27, 11]. The above idea can also be applied directly to Theorem 3.7 instead of to Theorem 3.12.

Relation to [18]: To prove our basic Theorem 3.7 we use the decoupling technique from [18]. This
technique has to be extended into two directions:

— Similarly as the concept of the expected value is extended to the conditional expectation, some results
from [18] has to be extended to a conditional context, see Section 4.4 and Proposition 5.3.

— The above mentioned Assumption 3.5 we need to translate into Assumption 5.1 to apply the decou-
pling technique. This translation is based on Proposition 8.6. Having in mind that every separable
Banach space can be isometrically embedded into C([0, 1]) by the Banach-Mazur Theorem and that
X = [0, 1] is locally o-compact, then Proposition 8.6 is also a statement about the conditional decou-
pling of random variables with values in separable Banach spaces. Therefore, Proposition 8.6 is an
infinite-dimensional version of Lemma 4.6, where Lemma 4.6 is a conditional version of [18, Lemma
4.20].

The article is organized as follows. The main results are formulated in Section 3. We also include proofs
in Section 3 as long as the decoupling technique from [18] is not required. This technique is introduced in
Section 4. In Section 5 we complete the proofs of the results in Section 3 with the methods from Section
4. Some applications of the estimates we obtained are illustrated in Section 6. The Appendices A,B, and C
contain some technical tools that were needed throughout the article.

2. Preliminaries

A constant with a subindex of the form (3.12) is a constant from the result that is numbered 3.12. For
example, c(3.12), d(3.12), C(3.12) and D(3 12 are constants from Theorem 3.12. We fix a finite number 7" > 0 and
work on the stochastic basis

(Q,F, P, (Fr)rero,11)

satisfying the usual assumptions. In particular, (Q, ¥, P) is complete and in our case F := (F,),¢[0.7] is the
augmented filtration of a d-dimensional Brownian motion W, ¥ = ¥, and we assume that all paths of W are
continuous. If we give a statement or a definition that involves a filtration, but the filtration is not mentioned
explicitly, then F is used. Moreover, the following notation will be used:

2.1 Notation.

(1) The Lebesgue-measure on [0, 7] is denoted by A, and

(€0, Zo, Po) Q,7,P),

Q7. 57, Pr) ([o, T x Q.B8(0.T]) ® F. % ® P).

(2) Given a g-algebra G C ¥ and X € L(Q, ¥, P), the conditional expectation of X given G is denoted by
ESX :=E[X]| G|

(3) For any B € ¥ of positive measure and any A € F we let

P(B N A)

PB(A) = W



(4) ForO0 < s <t<T welet
Gi=oW,r<s)VoW,-W,t<r<T) and H,:=8(0,T])R®G.. 2.1)
(5) The (predictable) o-algebra on Qr generated by (F;).cf0.r1-adapted left-continuous processes is denoted
by P.

In general, inequalities concerning random variables, for example E9X < c¢Y, where ¢ > 0 is a constant,
hold only almost surely. If it is obvious what measure is used, we will just write ESX < cY. If A is a subset
of a metric space, then we denote the interior of A by A and the closure of A by A.

2.2 Definition. A complete metric space X + 0 is locally o-compact, if there exist compact subsets
0+K CK,C...,suchthat K, = K, and X = U;"ZIIO(,,.

2.3 Proposition. A locally o-compact X is separable. Moreover, if (K,),>1 are compact subsets as in
Definition 2.2, and A C X is a dense countable subset, then for any n > 1 the set A, := A N K,, is dense in
K,.

2.4 Definition. For S € {0, T} we use
Lo(Qs,Xg,Ps; C(X))

to denote the equivalence-classes® of f : Qg x X — R that satisfy:
(1) n f(n,y)is s-measurable for all y € X,
(2) yv f(n,y) is continuous for all n € Q.

We will need the Burkholder-Davis-Gundy-inequalities:

2.5 Proposition ([26, p.160], [3, Proposition 4.2]). Let p € (0, 00). Then there exists ap,8, > 0 such that
for all (continuous) martingales (M,)sc0,r) with My = 0 we have:
<

(M) My}

sup | Ml
5€[0,7]

a, <Bp
L L,

P L

p

forall t € [0,T], where ({M);)sci0,1] is the quadratic variation process of M. For p € [2, o) the constant
By > 0 can be chosen such that 3, < ¢ +/p for some some absolute ¢ > 0.

Next we introduce the sliceable numbers.

2.6 Definition (cf. [18, Definition 5.2]). Assume that (c,)rco,1] is predictable, d-dimensional and such that

T
E( f |cx|2ds|ﬁ)
t

Then we say ¢ € BMO(S ). This is quantified using, for any N > 1, slx(c) := inf g where the infimum is
taken over all € > 0 such that there are stopping times 0 = 19 <71 < --- <7y =T with

llcllBmogs,) := sup < 00,

1
2
1€[0,T] L.

sup (e micliBMOGS,) < &
N

Moreover, we let sl (c) 1= limy_e SIn(C).

3We identify f and g if f(,-) = g(n,-) for Ps-a.e. n € Qg.



For our main application of sliceable numbers we introduce the function

1 | 172
D :(1,0) > (0,00), D(q) = (1 += log(l + )) -1, 2.2)
q 2q -2
so that @ is continuous and decreasing, with lim,_,., ®(g) = 0 and lim,_,; ®(g) = co. Furthermore, we let
Yo {9 €10.00) x (1,00) 1 0 < y < D(g) < 0} = [0, 00),
1
2 q
‘I”(% Q) = {—1 ~ Meqz[y2+2‘y]) .
2g-1

The concept of sliceable numbers is motivated by Proposition 2.8 below. To formulate this statement we
need the following definition:

2.7 Definition. Let M = (M,)ci0r) be a martingale with My = 0 such that EM) = (E(M)i)epo.r) =

(eMI_%<M>I)fE[O,T] is a martingale as well, and let q € (1, 00). If

EM)r
E(M)-

q

BT

RH (EM))? := sup

where the supremum is taken over all stopping times T : Q — [0, T], we say* E(M) € RH,.
2.8 Proposition ([18, Theorem 5.25]). Assume that c € BMO(S ) is d-dimensional, and that for some N > 1
it holds that sln(c) < ®(q). Then, putting (M;)c0.1] = (fot crdW,)seio,1), we have

RH(EM)) < [P(sIn(0), ™.
In particular, if M is sliceable, i.e. slo(c) = O, then for all ¢ > 1 there exists an N > 1 such that
sin(c) < D(q), so that EM) € Mye(1,00) RH g
We end with an extension of Fefferman’s inequality, which was proven in [18, Corollary 5.19] (see also [13,
Lemma 1.6] and [2, Theorem 1.1(iii)]). Note that here both X and ¥ may be multidimensional.

2.9 Proposition. Assume that X € BMO(S,) and that Y = (Y,),e[0,r] is predictable and such that

T p/2
¥l s, = E(f |Y,|2dr) <o
0

T
for some p € [1,00). Then || [T [XI¥,ldy| < \2pIIY 050 XTIsviors. -

L,

In this article we deduce conditional estimates on subintervals [s,7] C [0, T], and for this we need the
following conditional version of Proposition 2.9:

2.10 Proposition. Assume that X € BMO(S,) and that Y = (Y.)e01) is predictable and such that
IYllz1,(s,) < oo for some p € [1,00), and let ¢, = (/2p)P. Then we have for all 0 < s <t < T that

/ p f 4 /
E‘F (f |Xr”Yr|dr) < Cp (ETt (f |Yr|2dr) ) sup Eﬁ f |Xu|2dl/l
K K rels,t] r

4RH stands for Reverse Holder.

L
2
3]




3. Weighted BMO-estimates for BSDEs

First we present our results in the general non-Markovian context in Section 3.1. Then the results are
illustrated for decoupled FBSDEs in Section 3.2 where we also discuss their sharpness in Examples 3.15
and 3.16.

3.1. Non-Markovian BSDEs
We consider BSDEs of type

T T
Y, =¢ +f f(s, Y, Zs)ds —f ZdWy, 1€[0,7T], (3.1
t t

where ¢ is Fr-measurable, and f € Ly(Qr, P, Pr; CRHH). Our strategy is to assume that (¥,Z) is a
solution of (3.1), and assume some further conditions on Z in order to get an L,-solution for p € [2, o). In
Example 3.4 we present some cases when these conditions are satisfied. For p € [2,00) and 6 € [0, 1], we
consider the conditions:

(C1) There are Ly, L, > 0 such that for all (¢, w, yo, y1, Z0, 21) one has

Lf(t, @, Y0, 20) = f(t, w,y1.20)] < Lylyo = 1l + L:[1 + lzol + lz111%l20 — z11.
(€2) [ 1f(5.0,0)ds € £,
SN
(C3) ( 1z ds) €L,

(C€3) [ 1Z,[*ds € £,

Assumptions (C1) and (C2) are conditions on the data of the BSDE, implicit conditions on the Z-process are
(C3) and (C3).

3.1 Lemma ([18, Lemma 6.2]). Assume that (C1)-(C3) and (C3’) hold for some p € [2,00) and 6 € [0, 1].
Then
T
| v zoids + swp wie £,
0

t€[0,7T]

Another implicit condition is the following "fractional BMO-assumption":

T
E( f |Zs|2"ds|¢,)
t

and fix a non-increasing sequence s = (sy)y>1 C [0, o) such that

(C4) We assume that

11Z|%|lBmocs,) = sup < o0

t€[0,7T]

s

1
2
0

sIn(IZI%) < sw,

SThis means that i — f(1, x) is PP-measurable for all x € R4*!.



and put Se := limy_e Sy. If 500 = 0, then we let p(cq) = %, and if s, > 0, then we let

O ' (2V2L.500)
O '2V2L,50) — 1

pca =
where the function @ is defined in (2.2).

First we show that using (C4) we may drop the assumption (C3’):
3.2 Lemma. For all p € [2, 00) we have the following relations:
(1) If 6 = 0, then (C4) holds, and (C3) = (C3’).
(i) If6 =1, then (C4) = (C3*) = (C3).
(iii) If0 € (0, 1) and (C4) holds, then (C3) = (C3’).

Proof. (i) is obvious and (ii) follows immediately from John-Nirenberg inequality [21, Theorem 2.1]. Propo-
sition 2.9 applied to X = |Z| and Y = |Z| implies (iii). O

3.3 Remark. In addition to Lemma 3.2, the condition (C4) has an even more important role that we describe
now. In our results, conditions (C4) and (C1) are assumed to hold for the same 6 € [0, 1]. Then, applying
Proposition 2.8, we have that a certain martingale satisfies the reverse Holder inequality. This martingale
is used to handle the quadratic or sub-quadratic nature of the generator f in the z-variable. If the number
Se 1n (C4) equals zero, then the reverse Holder inequalities are satisfied for all indices ¢ € (1, 00). On the
other hand, if s, > 0, then there exists gyp € (1, o0) such that the reverse Holder inequalities are satisfied
for all ¢ € (1, go). From this it follows that in the case s > 0 we need to assume more integrability than
in the case s, = 0, and this is the reason for introducing the constant pc4). Note that in the uniformly
Lipschitz case, i.e. 8 = 0, the condition (C4) is satisfied and s = 0. In the sub-quadratic case, i.e.
0 € (0, 1), a sufficient condition for s, = 0 is, that there exists an € (6, 1] such that |[|Z|"|[smos,) < o
(see [18, Remark 6.4]).

3.4 Example.

(i) Assume that f satisfies (C1) and (C2) with § = 0 and p > 1, and that £ € L,. Then there exists a
unique solution (¥, Z) of (3.1), and (C3)-(C4) are satisfied with 8 = 0. This follows for example from
[7, Theorem 4.2]. Note that since # = 0, we have 5o, = 0.

(i) Assume that f satisfies (C1) and (C2) with & = 1 and p = oo, and that £ € L. Then there exists a
solution (Y, Z) of (3.1) such that (C3)-(C4) are satisfied with 8 = 1 and all p € [2, c0). This follows for
example from [23, Theorem 2.6 and Lemma 3.1] (see also [9]).

(iii) Assume that f satisfies (C1) with 6y € (0, 1), and is such that SUP(;. 1) |f(r,w,0,0)] < co. Also, assume
that ¢ € cExp, which means that there exists some u € (0, co) such that
sup (T - 1) ”E [e“‘a ‘ ﬁ]” < oo.

t€[0,T)

Then there exists a solution (Y, Z) of (3.1) such that (C3)-(C4) are satisfied with p =2 and all 8 € (0, 1),
so that s, = 0 (see [18, Theorem 6.13]).



Our final assumption is a weighted BMO-condition on ¢ and f on a subinterval [s, ¢] € [0, T]. This is used
in the following way: if (C1)-(C4) are satisfied and Assumption 3.5 holds on an interval [s, ¢], then on this
interval we have a weighted BMO-estimate and a tail estimate of (Y, Z).

3.5 Assumption. Let p € [2,00) and 0 < s <t < T. There are non-negative cadlag processes (Wi,:,u,r)uem]

and (wgssu’[)ue[&f] such that ((wi,w’t)p Juels.) and ((wi,x’u’t)p)ue[s,f] are supermartingales and which satisfy, for
any u € [s,1t],

(C5) (B¢~ BGLep)” < w

= Vp.sur

(©6) (7 ([ supy. U300 = @3, 00 ) ) <0

where G', and H], are given in (2.1) and EMf) : Qr — C(R X RY) is the® H'-measurable process with
Pr (M (f(x)) = B f)(x)) =1forall xe Rx R

To shorten the notation, we use

Wf,f - ((Wi,s,u,l‘)p + (W};,s,u,t)p)li .

pissut

&

1
3.6 Remark. For a fixed u € (s,1], the weight w', ., is an upper bound for (ET" & - ]ngflp)” , SO we expect

wf,’wt to depend on u and ¢, but not on s. We use a notation where the s is included, since we want to

emphasize the fact that Assumption 3.5 is an assumption on the behaviour of (¢, f) on the interval [s, t].
We are ready to give our main result.

3.7 Theorem. Assume (C1)-(C6) for 6 € [0,1], p € [2,00) N (pcay, ), and 0 < s < t < T. Then the
following assertions hold true:

(i) There exists c37) > 0 depending at most on (T, d, p, Ly, L, (sy)nen) such that for any stopping time
7:Q > [s,1] we have

1
(BT, = Yol?)" < canWpsmas (32)

where
T )4
BT (|§| " f £(r.0, 0)|dr) ] .

(ii) There exists d;37) > 0 depending at most on (T, d, p, Ly, L, (sy)new) such that for any stopping time
T7:Q — [s,1] we have
‘ 5 ’
[ET’ ( f |z,|2dr) ] < daaywi .-
T

SExistence and uniqueness of such a process is proven in Lemma 7.1 below.

. ! V4
W0 s = (W5l) +E ( f If(r,0,0)Idr) +(t—uy
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Theorem 3.7 is proved in Section 5.1 below. The main application of Theorem 3.7 are the following tail
estimates:

3.8 Theorem. Under the assumptions of Theorem 3.7 there exists an absolute constant ¢y > 0 such that for
any stopping time 7 : Q — [s,t] we have

Y,-Y Y,-Y

@) Pp ( sup Y = ¥l > A+ co,uv) < el Py ( sup Y = ¥l > /1) + coPp ( SUp Wy sur > v),
uelr,/]  C@3.7) uelr,l  €@3.7) uelt,t]

[ Z,dw,

I

A+ < el™Mp fTu ZrdWr
> couv| < e #Pg| sup [F——
uelral | A3 1By el | danBp

\Z,2dr) \ZRdr)
—(fT 2 r) > A+ couv| < e FPg —(L i r)
da di7

(i) Pp [ sup

> /l] + coPr ( sup w’f;’?u’, > v),

ue(r,t]

(iii) P > 4|+ coPs ( sup wtl > v),

PS,ust
ue(r,t] B

forall 4,1, v > 0 and any B € ¥, of positive measure, and where 3, is the constant from Proposition 2.5.

Proof. As the tail estimates follow from Theorem 9.1 below in Appendix C, we show that the assumptions
of Theorem 9.1 follow from Theorem 3.7. Assume (C1)-(C6) for 6 € [0, 1], p € [2,00) N (pc4y, ©0), and
0<s<t<T. Lete>O,a/e(O,%),andR::t—s.

(i) Define, for r € [0, R],

Gr = Triss
Yo — Yoal/?
Ar — ( r+s S) ,
C(3.7)
Y, = Wpsrist V E,

where (W s.u1)uels 1S the weight process from Theorem 3.7. For 0 < a < b and a filtration (H,),e(q,51 We
introduce the notation

SH = {TZQ—> [a. D]

7 18 & (H,)re[ap)-StOpPPINg time} ,

so that in particular Sﬁ gt s = S’it. Then the assumptions of Theorem 9.1 are fulfilled. As the other
assumptions are obvious, we will only show that equation (9.1) holds. Using Theorem 3.7 we deduce

|AR _AT|17 |Yt - YT+S|p a
sup ||E [T G- = sup ||E 7 v Frrs -
eS8, T 00 e85, Wy sars ¥ € © €37
|Y; — Yz|P a
= sup|E pl—Tp F= — < a.
eS|l [ Wpsrs V€ w €67

Hence we have by Chebyshev’s inequality that for any v > 0, 7 € Sg z» and B € G; of positive measure:

Py(lAg — A:] > v) < PplAg — Adl > ¥o) + Pp(¥, > v) < @ + Pp(¥, > v).

Letting € — 0 implies the claim.

11



(ii) The claim follows analogously as (i), when we choose

Gr = Fris
e Z,dW,a'P
A, s
dinBp
._ &f
\Ilr T wp,s,rJrs,t V€,

where f3, is the constant from Proposition 2.5, as then we have by Theorem 3.7 that

" zaw,|
Ag — Al 1 ZudW, N
sup E[TT G = sup E ‘;fs—p Fres Y
TES%,R T e TES%,R (Wp;s,r+s,t) Ver - (d(3.7)ﬁp)
t P
3 Jp ZPant | o«
< sup — | %2 —— <
resy || | (W5s,) Ve _dan)

(iii) The claim follows analogously, when we choose

Gr = Fres
(" 1zLdv)rar
A= day ’
Y, = wi’fﬁx’t Ve
O
3.2. Decoupled FBSDEs
We fix x € R? and consider the decoupled FBSDE
X, = x+ ft b(r, X, )dr + ft o(r,X)dw,, te€][0,T],
0 . 0 .
Y, = g(Xr) +fl h(r, X, Y,,Z,)dr—fl Z,dw,, te[0,T]. (3.3)

3.9 Assumption. The functions b : [0, TIXR? = R% o : [0, TIXR? = R™? and h : [0, TIXRIXRxR? — R
are continuous, and furthermore we assume:

(Ap) There exists Ly, > 0 such that for all0 <t < T and x,y € R? one has
|b(t, x) = b(t, Y| + |o(t, x) — o (t, )| < Ly olx = Y.
(Ag) There exists Ly > 0 such that for all x,y € R? one has
g(x) =8I < Lglx — yl.
(Ap) There exists Ly > 0 such that for all0 <t < T and x;,z; € R%, y; € R, i = 1,2, one has

|h(t, x1,y1,21) = h(t, X2, ¥2, 22)| < Ly(Ix1 — x| + [y1 — yal + |21 — 220).

12



3.10 Remark.

(1) In particular it follows from Assumption 3.9, that there exist constants Ly, Kj,, Kj, » > 0 such that we
have

Ih(t, %3, < Ky + L(lal + Dyl + 2,
|b(t, )| + o (t, 0)] < Kpe(1+|x]),
for all (¢, x,y,2) € [0,T] x R? x R x R%.
(2) Under Assumption 3.9, there exists a unique solution (X, Y, Z) to FBSDE (3.3) and it holds

< o0

,

T 2

E| sup X, + sup |Y,|P+( f |z,|2dr)
rel0,T] re(0,T] 0

for all p > 2 (see for example [7, Theorem 4.2]).

Assumption (Ap) is a classical assumption for the forward equation. If (A,.) holds, then we have a
weighted BMO-estimate for the forward process X (see Lemma 5.6). Using this together with (A,) and
(Ap) we receive a weighted BMO-estimate for (Y, Z), which gives us a tail-estimate for (¥, Z). If we assume
in addition to (A; ) that o is bounded, then the BMO-estimates for (X, Y, Z) are improved.

(Ay) There exists Ky > 0 such that for all 0 < t < T and x € R? one has

lo(z, ) < Kor.

First let us give the weights from Assumption 3.5 for the FBSDE case:

3.11 Example. Assume that Assumption 3.9 holds. Then assumptions (C1)-(C6) hold true for 6 = 0, all
p € [2,0), and all 0 < s < t < T. Moreover, there exists c311y > 0 depending at most on
(T.d, p, Ly, Ly, L&, Ky ) such that we may choose

1

)

forall0 < s <u <t <T. Ifadditionally (A,) holds, then there exists di311y > 0 depending at most on
(T,d, p,Lg, Ly, Ly, K) such that we may choose

sup |X,|?

posat = Wposaut
relu,t)

W/ Wf =4 C(3‘11)(t - I/l)l/z (1 +E

f —wf _ 1/2
Wp,s,u,l - Wp,s,u,t - d(3<11)(t - M) / .

Example 3.11 is proved in Section 5.2 below. Now our first result is a consequence of Theorem 3.7:

3.12 Theorem. Assume that Assumption 3.9 holds and let p € [2,0). Then the following assertions hold
true:

(1)y There exists cz12) > 0, depending at most on (T,d,p,Ly, Ly, Ly s, Ky, Kp,), such that for any
0 < s <t < T and any stopping time T : Q — [s,t] we have

E(m a

ﬁ) < gyt = DL+ 1XA7].

13



()7 There exists C(3.12) > 0 depending at most on (T,d, p, Ly, Ly, Ly, -, K}, ) sSuch that forany0 < s <t < T
and any stopping time T : Q — [, t] we have

E(( f l |Z,|2dr)g

If additionally (A, ) holds, then we have:

72) < Chy )t =D)7 [1+ X7,

(ii)y There exists dz.12) > 0, depending at most on (T,d, p, Ly, Ly, Ly o, K}, -, Ky, K7), such that for any
0 < s <t < T and any stopping time T : Q — [s,t] we have

E(|Y, — Y.

Te) < dl ot = 0P+ X G- 1)

(ii); There exists D.12) > 0 depending at most on (T,d, p, Ly, Ly, Ly, -, K7) such that forany 0 < s <t < T
and any stopping time T : Q — [s, t] we have

1 5
P
B ( f |z,|2dr) < DJ ) (1= 1)2.
T

Proof. (i)y Because of Example 3.11 we may use Theorem 3.7 to obtain for any 0 < s < r < T and any

stopping time 7 € [s, #] that
! P
) +EB ( f |h(r, X, 0, 0)|dr)

T p
+(t - TPE (g(xT)f’ + ( f |h(r, X,, 0, O)Idr) )

sup X,

re[r.1]

1
——FE"Y, -Y. ) < 2cf3'11)(t—7')”/2(1+]E F.

€3

Using (Ag), (Ap) and the fact
E™ sup X, < CP(1 + X, I"), (3.4)
<r<T

where C depends at most on (7', p, K, ), we may deduce

BTN, = Yol < cfy 1y (0= D72 [T+ X)),

where c(3.12) > 0 depends at most on (7,d, p, Ly, Ly, Ly, -, Kp, -, Kj,). Assertions (i); and (ii)y follow anal-
ogously by applying Example 3.11, Theorem 3.7, and inequality (3.4). Assertion (ii),, on the other hand,
follows directly from Example 3.11 and Theorem 3.7. O

One application of Theorem 3.12 are tail estimates of exponential type for (¥, Z). In Theorem 3.13 we treat
the process Y and in Theorem 3.14 the process Z. These theorems follow from Theorem 3.12 using Theorem
9.1 analogous to the proof of Theorem 3.8.
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3.13 Theorem. Assume that Assumption 3.9 holds. Then there exists an absolute constant ¢y > 0 such that
the following holds:

(i) Forany 0 < s <t < T and any stopping time 7 : Q — [s,t] we have

Y,-Y Y,-Y
Py ( sup M=Vl > A+ couv) < e Py ( sup Mz Vil > /l) + coPp ( sup |X, > >v* -1
uelrt] €3.12) VE— § uelrt] €3.12) VE— § uelr,t]

forall A, u,v > 0and all B € T of positive measure.
(i) If additionally (A, ) holds, then we have

Y,-Y
PB(Sup | il

— >+ CO/JV)
uelr,t] d(3.12) VE—s§

Y, - Y|

1-u | u T

<e "Pg ( sup ——mm—
uelr,t] d(3_12) Vt—s§

forall A, u,v > 0 and all B € F; of positive measure.

> /1) +coPs ( sup |X,[2(t —u) >v* -1

uelr,t]

3.14 Theorem. Assume that Assumption 3.9 holds. Then there exists an absolute constant ¢y > 0 such that
the following holds:

(i) Forany (0 < s <t < T and any stopping time 7 : Q — [s,t] we have

“ 7, dW,

i

CaipfaNt—s

P [ sup > A+ coyv]

ue(t,t)

I-pp Tu Zrd
<e "Pp{sup | —————
uelts] [Cainf2 VE = s

> /l] + co]P’B(sup 1X,[> > v* - 1)

uelr,t]

Sfor all A, u,v > 0 and all B € F; of positive measure, and where 3, is the constant from Proposition
(ii) If additionally (A.) holds, then
[ Z,aw, [ z,dw,

2.5.
i — L I>A
Dianfa NVt —s Dgiifa Vit — s

forall A, u > 0 and all B € T, of positive measure, and where 3, is the constant from Proposition 2.5.

> A+ co,u] <e' Py { sup

ue(t,t)

Pp [ sup

ue[t,t]

One might ask if it is necessary to use the theory of weighted BMO instead of non-weighted BMO. The
following example shows that the weight processes of Theorem 3.12 (i)y and (i), are sharp:

3.15 Example. Consider the FBSDE
8
X, = f \des + X2dW, t€[0,T],
0
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T
Y, = Xrp- f Z.dW,, te[0,T].
t

This FBSDE is of the same form as (3.3) withd = 1, b = 0, o(t,x) = Vde '+ x%, h = 0 and g(x) = x, so
that Assumption 3.9 holds. Now we have for all p € [2,00) and all 0 < s <t < T that

ﬁ] S (t—s)? (T1P+ IXsI"),

e

E[m L

1 5
( f |z,|2dr)

where f3,, is the constant from Proposition 2.5.

as well as
P
L a=9f A+ IX)

Bre®

Proof. First note that Y, = X;, and that X, = ZSinh(W,)e’é = ¢W~1 — ¢Wi~3_ Furthermore, we have the
equalities:

L A I O KGR O
ENle ™ s —e i = e TP - D,
N My e i el = o1 -,
X2 +2e7 = (MR e MR,
so that
; N
E™ly, -v) = E& |ve% — Wi — (e = M)

= VP =D+ eV = 1) = 2e7(1 - )
= (@ -D(XL+2e7 +e)

(t— s)(|x5|2 + 1)) e T

\%

Since £ > 1, we also have

P
2

L
BN, -Vl 2 (BRY, - V) 2 (TG - 9 +IXP)° 2 e -5 A +1XP).

The result for the Z-process follows now immediately from

13
f Z.dW, =Y, - Y.
s

The following example shows that the weight processes of Theorem 3.12 (i), and (ii), are sharp:

3.16 Example. Consider the FBSDE

!
X, = fldWS, te[0,T],
0
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T T
Y, = XT+f Xsds—f Z,dW,, t€][0,T],
t t

This FBSDE is of the same form as (3.3) withd = 1,b = 0,0 = 1, h(t,x,y,z) = x, and g(x) = x, so that
Assumptions 3.9 and (A, ) hold. Now we have for all p € [2,00), and all 0 < s <t < T that

E[m L

?] > (1= 9P2(1 + X7t - 5)"'?)

as well as )

1 2
ET*( f |Z,|2dr) > (t—s)t.

Proof. We have for all r € [0, T] that

Y, =E"

T
Wr +f Wudu] =W,(1+T-r),

and therefore

ECW(1+T —1) - W,(1+T - s)
=1 +T =02+ Wt - 5)?

(t = )1 + W1 = 9)).

E"Y, - v,

v

Since £ > 1, we deduce

/2 /2
E7NY, = VP 2[R0 = VP 2 [ - 91+ IWPa— )] 2 (= PP+ Wl - sy,

The result for the Z-process follows immediately from the fact that Z, = 1 + (T — r). O

4. Decoupling operators

We now recall the decoupling operators introduced in [18], as well as some of their properties proven there.
These operators are defined for random objects based on ﬁ, see Section 4.1 below, but we will use them to
deduce conditional estimates in the original probability space (Q, ¥, P). These results are crucial in proving
Theorem 3.7.

4.1. Setting

Recall the stochastic basis (2, 7, P, (F1)se[0,r7) that was fixed in the beginning of Section 2. Our fundamental
random object is the Brownian motion W = (W,)(o,r;, but for our decoupling technique we also need to
have a Brownian motion W’ that is independent of W. Thus we proceed as follows:

Step 1. Fix another stochastic basis (', ', P’, (] )ie0,r7) and a standard d-dimensional Brownian motion
W’ = (W/)sepo,) that satisfy the same assumptions as imposed on (Q, F, P, (F1)re(0.71, (Worero.r]) in
Section 2.

Step 2. Let
Q:=0xQ, P:=PxP, F:=FQF .
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Step 3. Extend the Brownian motions W and W’ canonically to 5, that is,

W, o) = Ww),
Ww, ') = W().

The 22gmented7 natural filtration of the 2d-dimensional Brownian motion (W, W’) is denoted by
F= (¢z)ze[0,T}~

Hence, on the probability space (€, F,P), there are two independent d-dimensional Brownian motions W
and W’. Fix a Borel-measurable function ¢ : (0,7] — [0, 1]. We define another standard d-dimensional

Brownian motion on (Q, ¥, P) by

! !
w¢ :=]; w/l—cp(u)deu+j0‘<p(u)dW;, t€[0,T],

and assume again continuity of all trajectories. The augmented natural filtration of W¥ is denoted by F¥ =
(F7)iet0.r) and we obtain another stochastic basis

(Q.FL B (F o)
and can define, as in Notation 2.1,
(Q.77.B) 1§ =0,

(10,7T1x Q. B8(10, Th @ Ff, 4 ®F) :§=T. @D

(Qs, 28, Py) = {

Furthermore, we denote the predictable o-algebra on the stochastic basis (5, a ‘p,ﬁ, (T,‘”),E[O,T]) by #¢. De-
noting the function ¢ = 0 simply by 0, we have that W° and (the extension of) W are indistinguishable. Since
9 contains all P-nullsets, it follows that (ﬁo)te[o,ﬂ and the augmentation of o(W,, r € [0, t]).0,r] coincide.
Thus, we may agree to use W for the extension of W, and similarly we use W' for the extension of W’.

4.2. Decoupling operators
Given a random variable &, whose randomness is given by W, we wish to define a random variable &% with
the following two properties:

(1) & is acopy of &,
(2) The randomness of &7 is given by W¥.

We accomplish this at the level of equivalence classes. The fact that our procedure is well-defined is not
proven here; all the proofs can be found in [18].

Step 1. For & € Ly(Q, ¥, P) take the canonical extension & € Lo(Q, ¥, P), and let [£] € Ly(Q, F°, P) be the

equivalence-class that contains all 7 °-measurable random variables that are P-a.s. the same as &.

Step 2. We let (hy)ren be the (L,([0, T'])-normalized) Haar-functions on [0, T'], and denote by ng the i:th
component of the Brownian motion W° for i = 1,...,d. Now, letting (g,)nen : Q — R be the
family of random variables fOT hk(s)dei wherei = 1,...,d and k € N, there exists a (g, n € N)-
measurable & € [£].

"Whenever we augment a filtration that is based on Q, we augment it by P-nullsets.
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Step 3. Defining J : Q- RY,  J@) = (g,())ne, there exists a random Variableé" : RY — R such that fo
can be factorized through RN:

£ alrV SR
Step 4. Define (g%),ay analogously as (g,)ne, using W% instead of WP, and let J* : Q — RY, J#(p) =

(g2(7))nen. Then it follows that é(]‘p) is a well-defined o(g?, n € N)-measurable random variable.

Step 5. Finally, we let [f]‘ie Lo(ﬁ, Fé, ﬁ) be the equivalence-class that contains all ¥ “-measurable random
variables that are P-a.s. the same as £(J¥).

4.1 Remark.
(1) Steps 2-5 yield the decoupling operator C : Lo(Q, F°,P) — Lo(Q, ¢, P) defined by
C(€D = [€)°.

In the following we will identify &, £, and [¢], and denote all of them simply by £. Similarly, we will
use the notation &% for both the equivalence class [£]¢, and any representative of it.

(2) The factorization and the approach used here is distributional, and does not require continuous paths
or a gaussian distribution. As such, the approach might be useful also in other situations.

(3) We can define X¥ for X € Ly(Qr, X7, Pr) analogously as above. The idea is that we change the
randomness, but leave the time component unchanged. The point of defining this separately is to
emphasize that X¥ € Ly(Qp, Z‘;, Pr), i.e. that representatives of X¥ are jointly measurable.

(4) Our approach preserves continuity: Assume that X is locally o-compact, S € {0,T}, and
f € Lo(Qg,%s,Ps; C(X)). Then we may define f¥ € LO(QS,Z?PS;C(X)) by taking the continu-
ous modification® of (f(x)#)yex.

4.3. Basic properties
Predictability and adaptedness are transferred in the following sense:

4.2 Proposition ([18, Lemma 3.1 and Proposition 2.12]). Let X locally o-compact. Then the following
holds true:

() Ifé € Lo(Q, F1, P) for some t € [0, T, then all representatives of ¥ € Lo(ﬁ, F¢,P) are ¥ -measurable.
(i) If f € Lo(Qr, P, Pr; C(X))°, then there is a P?-measurable'® representative of

f# € Ly(Qr. 28, Pr; C(X).
(i) IfY € Lo(Q, F,P; C([0, T'])) is (F1)iero.11-adapted, then all representatives of
Y¢ € Lo(Q, F¢.P; C([0, T]))

are (F \ejo.r-adapted.

8Existence of such modification was proven in [18, Proposition A.1].
9This means that i — f(1, x) is PP-measurable for all x € X.
10This means that 77 = f¥(z, x) is P¥-measurable for all x € X.
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We summarize some further properties proven in [18]:

4.3 Proposition ([18, Propositions 2.5, 2.13, and Lemma 3.2]). Let N > 1, § € {0,T}, X, X;,.... Xy €
Ly(Qs,%5,Ps), Y € L1(Qr,Z7,Pr), g : RV — R be a Borel function, f € Ly(Qs,Zs,Ps; CRY)), and
Z € Ly(Q7,P,Pr). Then the following holds true:

(i) X < xe.
Gi) (2(X1,..., Xn))¢ = g(X%,..., X%).
Gii) (f(X1, ..., X)P = fEXE,.. ., XE).

. T ¢ T
) (YO, 7y ant) = B T 7 et
@
) (foT Z(t)th) = fOT Z¢(t)dWY? for any predictable representative of Z¢.'!

(vi) Let X € Lo(Qr,27,Pr)and Y € .Eo(ﬁT,Z‘;,@T). If there is a null-set N C [0, T] with Y(t) € X(¢)? for
allt € [0, T]\ N, then Y € X¥.

Our next result can be interpreted as follows: if (¥, Z) is a solution of an SDE, then (Y¥,Z¥) is a solution
of another SDE. Note that we do not assume the SDEs to have unique solutions, we only assume that (Y, Z)
satisfies the equation.

4.4 Proposition ([18, Theorem 3.3]). Assume that f,g; € Lo(Qr,P,Pr;CR™)), Z; € Lo(Qr, P, Pr),
i=1,....d that Y € Lo(Q,F,P; C([0, T])) is (Fr)eef0,r1-adapted, and that

T T
B [ [ v zars gy, 2P| <o
0 0
Furthermore, assume that & € Ly(Q, F,P), and that equation
T T
Yu = é‘: + f f(r9 YraZr)dr - f g(’", YI‘QZr)dWh u € [O’ T]a (4'2)

holds P-almost surely. If we fix any predictable representatives of %, gf,Zf , and an (F)ej0.11-adapted
(continuous) representative of Y¥, we have

T T
B [ [ ez [ vezptar] <o,
0 0
and we have that the equation

T T
YE =g 1 f PR Y Z0Vdr — f (r, Y8, Z5)dW? . u € [0. T, @.3)

u

holds P-almost surely.

1By Proposition 4.2(ii) there exists such a representative.
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4.4. Conditional results

From now on we will exclusively use functions ¢ of the form

1, if r € (s,1],

s.t - O,T O,l ’ S, =
Xsa - ( 1=100,11,  x(a() {O, ifr ¢ (s,1,

where 0 < s < ¢t < T. ' To keep the notation light, we let

MY

| AT

-1

—w
[ WY
Q9 — WA(s]
T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Figure 1: Brownian motions W,W’ and W/l. Here s = 0.3,/ = 0.6 and T = 1.
Xt .= Xea 4.4

Recall that the random object X*/! is obtained by changing the underlying Brownian motion W to an
independent one on the interval (s,#]. If X is independent of o-(W? - W?,r € (s,1t]), we ought to have
X1 = X, Precisely in what sense this holds, is answered by the following proposition:

4.5 Proposition. Let 0 < s <t < T, and define the sigma-algebras
G =W, rel0,sDVoW? =W re[, TDVN and H::=B(0,T)®G, (4.5)
where N are the P-nullsets. Then
(i) EHX = E™EXS for any X € L1 (Qr, 2%, Pr),
(ii) ES'q = B9 o] for any a € Ly(Q, F°,P),
(iii) @ = & for any @ € Lo(Q, G.P),
(iv) X € XS for any X € Lo(Qr, H!,Pr),

) f e fo forany f € LoQr, H.,Pr; C(X)).

2For a picture of the different Brownian motions W, W’, and W gee Figure 1.
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Proof. First of all we note that
G, = oW rel0,s]) VoW - W rer, T]) VN.

Hence, similarly as in Propo_sition 4.2(i) (i.e. [18, Lemma 3.1]), we have that if @ € J:o(ﬁ, ?@, @), then all
representatives of o/ are G',-measurable.

fXd@T =fX(s’t]d@T
A A

forall A € (f_{é By linearity of the decoupling operator we may assume that X > 0, and it is enough to
consider a generating m-system, so that we assume A to be of the form

(i) We need to prove that

W)= W, ... W

s1° Sn

where n,m € N,0 < 5, < s <t <t; <T,0<r <T,and By € B(0,T]), B, € BR"™™). Letting
Y(r,w) = x5,x5,(r, W(w)) we have Y € Lo(Qr, H!,Pr), and Y € Y because of Proposition 4.3(ii) and
(vi). Thus, again using Proposition 4.3,

f XdPr f XYdPr = f XY)dpy = | xS1yidpy
A (o a o

Qr
f X1ydpy = f XedPr.
Qr A

(i) Can be shown similarly as (i).

(iii) First let @ € L, @g_’s, P). Then we have that ES* a1 = o>, but from (ii) we have that ES*a = o as
well. For a € Ly(Q, G, P) the claim follows from the fact that for all N € N

WY =W, W) - W) € By X B,

(NAaV (NN =N A oSy (=N).

(iv) If X € Lo(Qr, HL, Pr). then by Fubini’s theorem X(r) € Lo(Q. G5, P) for all r € [0,7], so that (iii)
implies that X(r) € X(r)* for all € [0, T]. Since H! C T, we have that X € Lo(Qr, 2", Pr) so that
the claim follows from Proposition 4.3(vi).

(v) Follows directly from (iv) and the definition of £, m]

We want to deduce conditional estimates for random variables based on the probability space (€, ¥, P) from
estimates obtained using the decoupling operators. Recall, that 7 and F? were defined in Section 4.1, G
and G', by equations (4.5), G'. and G by (2.1), and £*! by (4.4). The following result is vital:
4.6 Lemma. Letpe[l,0),0<s<t<T,andé¢ e Lp(ﬁ, FO,P). Then

1 _& o o o
2_pEGJIé: _ g(s,f]lp < Eg"f > EG;ap < EGAE _ g(s,tllp. (4.6)
Proof. We know from [18, Lemma 4.23] that for any X € Lp(ﬁ, To,ﬁ)

1 ‘ o s
31X - XS, < IX = B9 X]|, < IX - X)), 4.7

Let A € G. such that P(A) > 0. Using Propositions 4.3(ii) and 4.5(iii) we have (&x.)™" = y,£“! and
E% (£xa) = x4E9"¢, so that applying equation (4.7) with X = £y, implies the claim. O
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4.7 Corollary. Let p € [1100), 0<s<t<T, ¢ée L,(Q,F,P)and ¥ € Lo(Q,F,P), and denote their
canonical extensions by &, P, respectively. Then

BV <8 = ETE-ES <y = ERE- 0P <2nd

Proof. We have that._’,E € Lp(ﬁ, FO, @), and that the canonical extension of E” € — Egﬁ'flp is P-a.s. equal to
E7V|E - B9 &P. Applying B on equation (4.6), we have P-a.s.

1 - - - -
?Ef? & — £50p < BTV |E — BOEP < BFV|E — e, (4.8)
and the claim follows. O

The same idea applies also for the generator of a BSDE. However, the result corresponding to Lemma 4.6
being technically involved, is proven in the appendix.

4.8 Corollary. Assume that f € Lo(Qr,29,Pr; C(R'*%) satisfies (C1) with § = 1 and (C2) with p = 1, let
ge[l,0)and0 < s <t <T. Moreover, let ¥ € Li(Q, F,P), and denote its canonical extension by Y. Then

T q T q
E" ( f sup |f(r, x) — B f)(r, x)|dr) <Y = EY ( f sup |f(r, x) — fEN(r, x)|dr) <299,

X€R! xeRd+

and conversely,
o (T a T f q
E”: ( f sup |f(r,x) = f*(r, x)ldr) <¥=pg" ( f sup |f(r,x) = B f)(r, x)ldr) <Y
s xeRdH! s xeRd+l

, a  _
Proof. The canonical extension of E” ( fs ! sup, e | f(7, x) — (B¥ £)(r, x)ldr) is P-a.s. equal to

ER (f

s

T 4 . .
! Sup gt |f(r, x) — (B”6 f)(r, x)|dr ) , so that the result follows by applying E” to the conclusion
of Proposition 8.6 with u; = s and u; = T. To apply Proposition 8.6, we show that for all R > 0 it holds
fg SUP, Bo.R) |f(X)|dPr < oo, where B(0,R) C R4 is the closed ball of radius R. Indeed, it follows from
(C2) and (C3) that

A

f sup |f(r,w,y, DdPr(r,w) < f sup |f(r,w,0,0)[ + Ly|yl + L(1 + [zD)|z|dP7(r, w)
Q Q

T (v,2)€B(0,R) T (v,2)€B(0,R)

IA

T
]E(f I£(r,0, O)Idr) + LR+ L,(1 + R)R < co.
0

5. Proof of Theorem 3.7 and Example 3.11

Again we use 7, from Section 4.1 and £@*! from (4.4). The following is the counterpart to Assumption 3.5:

5.1 Assqmption. Let pe[2,00)and 0 < s<t<T. There are non-negative cadlag processes (Wf;,s,u,t)uels,rj
and (W}p(,s,u,l)ue[&ﬂ’ such that ((W‘I’C,Mm)”)ue[s,,] and ((wgs’u,,)P)uE[S,t] are (F;)rejo.r1-Supermartingales, whose

canonical extensions (Wi,&u’t)ue[s,[] and (Wﬁquu’t)ue[s,[] satisfy, for any u € [s, 1],
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S,

(C5) (B¢ — )" < ws,

— P\»
@) (&7 ([ supy 13,2 = £y, 20dr) ) < )

5.2 Remark. It is immediate from Corollaries 4.7 and 4.8 that Assumptions 3.5 and 5.1 are equivalent in
the sense, that when passing from one assumption to the other one can use the same weights multiplied by
the factor 2.

5.1. Proof of Theorem 3.7

oI

In this Section we deduce upper bounds for E'+|Y, — Y.|? and E”+ ( fT ' |Z,|2dr) , where 7 : Q — [s,1] is any
stopping time, and 0 < s < ¢ < T are such that Assumption 3.5 is satisfied.

Our procedure consists of the following steps:

Step 1: LetO < s<t<T,u e [s,t], and consider the decomposition
1/p 1/p 1/p 1 1/p
(BT, - vr) " < (B, By ) "+ (B, - By ) = P ) 5.1

Step 2: With the assumptions of Theorem 3.7, Proposition 5.3 together with Corollary 4.7 implies

p

i3 2
7 SN
I +E™ ( f |Z,|2dr) <l 27 (wil,.)
u
where ¢(53) > 0 depends at most on (7, d, p, Ly, L., (sn)n).

Step 3: With the assumptions of Theorem 3.7, Proposition 5.5 implies that

PP
I < C5.5)Wp.sas
where c(5.5) > 0 depends at most on (7, d, p, Ly, L, (sy)n).

Step 4: In the end we extend the result from all deterministic times u € [s,f] to all stopping times
7:Q > [s5,1].

The next Proposition is a conditional version of [18, Theorem 6.3]. Note that Assumption 3.5 is not needed
for this result.

5.3 Proposition. Assume (C1)-(C4) for 6 € [0, 1] and p € [2,0) N (p(ca), o), and fix 0 < u < t < T. Then
there exists cs3) > 0 depending at most on (T, d, p, Ly, L., (sy)n) such that

f g T 5
( f |Z,|2dr) +( f |z§"»’1—z,|2dr)

T )2
< B (lf“"”—§|+ f lf(n Y. Z) - f“"r, Y,,Z,>|) :
u

0
E7 sup Y&~ v,|P + B
refu,T]
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Proof. Let A® € 7-_”0 such that P(A%) > 0. Since the o-algebras 7—'“0 and F, ® {0, Q'} differ only by null-sets,
it follows that there exists A € ¥, with P(A) > 0 such that P (1(axa) = 140) = 1. Now we define

& = (E-Yola,
fry,2) = frny+ Y, Dlalen (),
Y, = (¥, —=Y)lalun(),
Z, = Zdalen ().

Note that f is designed to satisfy for all r € [0, T] the equation
F.Y0Z0) = [ Y Z) sl ().

It is straight-forward to check that since (f, ¥, Z) satisfy (C1)-(C4), also (?, )_/,Z_) s_atisfy (C1)-(C4). More-
over, (t,w) — f(t,w,y,z) is predictable for all (y, z) € R!*4. Now we have that (Y, Z) is a solution to

T T
?f = E + f f(r’ Yr’zr)dr - f ZrdWr.
t t

Since (]_“, Y.Z) satisfy conditions (C1)-(C4), and because of Lemma 3.1, it follows that they also satisfy the
assumptions of [18, Theorem 6.3]. Applying [18, Theorem 6.3] with ¢ := 0, and ¢ := 1, implies that
there exists ¢(.3) > 0 depending at most on (7, d, p, Ly, L, (sy)y) such that

f % T —uf = %
( f |Z,|2dr) ( f z" —Z,|2dr)

T
f |7(”’ﬂ(r, 7ra Zr) - _?(I‘, ?r, Z,)Idr } .
" p

By definitions of (£,Y,Z, f) and using properties of the decoupling operators, in particular note that

IX’O”] = 10 since A® € F2, this reads as
1 1
i 3 T 2
( f |Z,|2dr) 10 ( f |z — z,|2dr) L a0
u u

St <=
sup Y, -7,
re(u,T]

+ +
P p

P

—(u.t] =
< C<6,3)[”§ —§Hp+

sup YU — ¥, 10| + +
relu,T] p
r P
T
< ced lll(é"’” — Oy, + f f Y Z) = (Y Z)ldr Lo }
u p
which immediately implies the claim. O

Next we try to find an upper bound for I, = E*|Y, — E™«Y,|”. We accomplish this by upper bounding
Ey| fu ' f(, Y., Z)dr|P. First we have a simple upper bound for the Y-term, given in terms of the data (¢, f).

5.4 Lemma. Assume (C1)-(C4) for 8 € [0, 1] and p € [2,0) N (pca), ). Then we have for any u € [0, T]

that
T A T P
Eﬂ[:[up;]mu( f |z,|2dr)] < cfs 4B (|§|+ f If(r,0,0)Idr) :

where c(s4) > 0 depends at most on (T, d, p, Ly, L;, (sy)n).
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Proof. Let A € ¥, and put

& = (E-Y)la,

Loy = [y + Y dlalun (),
Y = (Y, - Yolalun®),
70 = ZAulun(r),

as well as &' = 0, fl(r,y,2) = 0, Y! = 0,Z' = 0. As in the proof of Proposition 5.3, we have that
(f°, Y9, %) satisfy (C1)-(C4). This yields the assumptions of [18, Lemma 5.26], which immediately implies
the claim. o

Next we deduce the desired upper bound for /5.

5.5 Proposition. Assume (C1)-(C4) for 6 € [0, 1] and p € [2,00) N (p(cay, ), and let 0 < s < t < T such
that (C5) and (C6) are satisfied. Then we have for any u € [s, t] that

p
Y, —E7Y,)P <c(55)[(wm, ) +E” (f £ (r,0, 0)|dr) + (t — u)"E" (|g|+f 1£(r,0, ())Idr) ]

where c(s 5y > 0 depends at most on (T, d, p, Ly, L., (sn)n).

Proof. We have directly

Y, —-E" v

t P
£ f £ Yo Zy)dr

IA

t p
B f 0,00 + L1Y,| + L1+ |Z1\Z \dr
u

A

‘ p
< CPEﬂ[( f If(r,0,0)Idr) + L2(t - uy? sup [Y, P

relu,t]

! P t )4
+L! ( f IZ,Idr) +L§’( f |z,|1+9dr) ]

Lemma 5.4 gives us an upper bound for the second term. For the third term we may apply Proposition 5.3
and Assumption 5.1 with Remark 5.2 to deduce

p/2
E™ ( f \Z, |dr) < (t—uy?E" ( f \Z, |2dr) < Q) —w? (w5l ,,)

For the last term we use also Proposition 2.10 and Assumptlon (C4) to deduce

t p
E” (f |Zr|l+9d}’) < ¢, sup |[ET f \Z,[*dv ET (f 1| dr)
u relu,t]

olwnlZl’ ||BMO(SZ)(20(5%)) (wil)-

A

IA
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Proof of Theorem 3.7:
Assume that (C1)-(C6) hold for 6 € [0, 1], p € [2,00) N (p(c4), ), and 0 < s <t < T.

(i) It follows from Propositions 5.3 and 5.5 that there exists a constant C > 0 depending at most on
(T.d, p, Ly, L, (sy)n), such that for all u € [s, 1]
EMY, - Y,IP < Cw!,

P>S;ust*

Since ((wi’s’u,,)P)uE[S,,] and ((w;’s,u’,)l’)ue[s,,] are supermartingales, it follows that (Wﬁ,S,u,z)uE[s,z] as well is a

supermartingale. Applying [20, Theorem 3.13, page 16] on E fu ' |f(r,0,0)|dr, we deduce that (Wﬁ,s,u,t)lle[&t]
has a cadlag modification, to which we will switch without changing the notation. Applying Lemma 7.2
with a, := Y, = Y,|’ and w, := Cwﬁ’m, implies the claim.

(i) It follows from Proposition 5.3 that there exists C > 0 depending at most on (T, d, p, L, L, (sy)n), such
that for all u € [s, t] we have

-
p
o[ ety

Hence, the claim follows by applying Lemma 7.2 with o, := ( fu ' |Z,|2dr)

S

14
2

and w, := CP (w’f’f )p. m|

P.Siut

5.2. Proof of Example 3.11
We start with an inequality, which proof is the same as that of [16, Theorem 2.5]. To do so, recall that
(F 1)refo, 1s the natural augmented filtration of (W, W’).

5.6 Lemma. Assume (Apy), let 0 < s <t < T and p € [2,00). Then there exists Cs56) > 0 depending at
moston (T,d, p, Ly &, Kp ) such that
9?])

If additionally (Ay) holds, then there exists Ds¢) > 0 depending at most on (T,d, p, Ly, K) such that

sup |X,”

rels,t]

]E[ sup X1 — x,|P
rels,T]

?S] <Ol (=) (1 +E

E[ sup |X =X, |P
rels,T]

_ -
TS] < Df o (1= 5)"2.
Proof. Using Proposition 4.4 we have
T T T
D f (b, X = b(u, X,,)) du + f o (u, XN 1 g (w)d W,y — f o, X)) (50 (W)dW,
s . | s s
- f (o, X5 = . X)) (1 = 1 (s (w)d Wy

for all r € [, T, P-a.s. Next we let A € F, with P(A) > 0, and define g : [, 7] — [0, o) by

g(v) = E( sup |X“ — X,|1’1A) = f sup [XI — X, |PdP.
A

SSr<v S<ry

Using basic inequalities, we have for all v € [s, T'] that

gv) = Esup

SSry

f (b, X5 = b, X)) 1adu + f o (1, XM 1 s 1 () Lo d W)

N
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P

- f oty X ) (5.1 () 14 d WP + f (0, X3 = 0, X)) s () 1ad W (5.2)

< C(t-s)P? f 1 + sup |X,|PdP + C f g(uw)du,
A s

s<rt
where the constant C depends at most on (7, d, p, Ly », Kp ). Then it follows from Gronwall’s lemma that
f sup |XU — X, |PdP = g(T) < Cli )t = syP? f 1 + sup |X,|PdP,
A s<r<T A s<r<t

where the constant C(s¢), depends at most on (7, d, p, Ly, K ). If (A,) holds, then we can deduce from
Equation (5.2) that

g(v) < C(t - s’ *P(A) + C f ' g(uwdu,

where the constant C now depends at most on (7, d, p, Ly, K). The result again follows from Gronwall’s
lemma. O

Proof of Example 3.11:
(C1)-(C4): Follow from [7, Theorem 4.2], since (A;) implies that (C1) holds with 6 = 0, (4, ) together

p
with (A,) implies E|g(X7)|? < oo, and (A-) together with (Aj,) implies E (fOT |h(r, X,, 0, O)Idr) < oo,

(E): Let 0 < s <u <t <T. Using Proposition 4.3(ii) we have that

(g = (X",
and Proposition 4.4 implies that X®! is the solution of
X¢ = x + f b(v, X\ ydy + f o, X"Haw,  rel0,T].

0 0
It follows from (A,) that

0

E7Vg(Xr) ~ (X5 < LLET X7 - X p.

Finally, Lemma 5.6 implies

sup X,

relu,t]

E7Y X7 — X8 < Cly gt —u)? (1 +E

7))

and if (A, ) holds, then Lemma 5.6 implies
B Xp - X3 < D ¢ (e - w2,
(C6): Let 0 < s < u < t < T. We notice that Proposition 4.3 implies
(h(r, X, y, )™ = h(r, X1, y, 2).

The result again follows from Lemma 5.6, since (A4) implies

T d ’ ’
7 [ om0 - x| <27 ([ L <)
A 0

.z
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For all u € [s, t] we let

sup X,

relu,t]

Wi 2= Wy s = (t = u)P? (1 +E

7))

and get that the process (Wy),es, 1S a supermartingale. Since u — Ew, is continuous, there exists a cadlag
modification of the process (w,),e[s,- This modification is a cadlag supermartingale, and for any fixed
u € [, t] its canonical extension coincides P-a.s. with

0

Hence, there exists C > 0 depending at most on (7, d, p, Ly, Ly, Ly -, K}, -) such that Assumption 5.1 holds
forall0 < s <t < T with
7)

If additionally (A, ) holds, then there exists D > 0 depending at most on (7, d, p, L,, Ly, Ly, -, K,-) such that
we may choose

sup |X,|P

relu,t]

(t—u)p/2(1 +E

(~f )p — (wg )p = Cp([— u)p/2 (1 +E[Sup |Xr|[7

Wp,s,u,t P.S,ut
refu,t]

~ f

_=f _ 1/2
W st = W = D(r—u)"%.

P.siut

6. Some Applications

In this section we discuss some applications of the tail estimates obtained in Theorem 3.13. We can use
them in two different ways: Firstly, we can exploit the tail estimates (Sections 6.1 and 6.2), secondly we
may exploit the fact that we can control all conditional moments which might allow us for a change of the
underlying measure (Section 6.3).

6.1. Uniform spline approximation of the process Y
To get a path-dependent approximation of the process ¥ = (¥;)0,r; based on a method that provides ap-

" ,0=ty<---<t,=T,one can consider a

proximations Y;, of Y¥;, for some deterministic time-net = = (1;)_,

linear spline
YF:=(1-6)Y,, +6Y, for tel":=[ty,4] with 1= (1 -0, +0r.
We get that

sup Y7 =Y | < IIYT = Ylicqory < sup [V = Y7+ 1Y = Ylicqory,

i=0,...,n i=0,...,n
where, as above,
Y :=(1-0)Y, +0Y, for tel’ with t=(1-6)t,; + 6.

The process Y™ is a piece-wise linear and continuous process, but fails to be adapted in general. In this
section we provide in Propositions 6.4 and 6.5 below large deviation type estimates for [|[Y" — Y]|¢c(o,r7). We
start with the following simple observation that links the distribution of the spline to our results:
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6.1 Lemma. Assume that there is a Ay > 0 and a function G : [y, 00) X [0, T] — [0, o), non-decreasing in
its second component, such that

IP( sup ORI /1) <G,t—s) for 1> A.
uels,f] VE—§

Then one has that

Pl
P| sup |Y, - Y7| >/l)§nG( ,Inl) for A= 2+/|xlAy.
(ze[o,% b 2 Vx| ’

Proof. We have that

sup [Y, = ¥7| = sup sup |Ya-gy e — (1= O)Y,, +06Y,)|
1€[0,T] i=1,...,n 6€[0,1]
< sup maxisup|Y, =Y, |, supl|Y; —Y,]
i=l,n el el
< sup [sup Y, =Y, | +1Y, — Y,ill)
i=1,..,n tel’

A
&}
) w2
=
o
w2
=
58
=
|
=
>

For A > 24, this implies our statement because

P| sup |Y,—Y,"|>«/HA) < ZP(Zsupw,—lem/Ha]

te[0,7] i1 el

d IHE
ZP sup|Y,— Yt,;ll > T

=1 \felf

A

IA

$oftr)

i=1

1
< nc(§,|n|). o

IA

In order to apply Theorem 3.13 we let, for A >0and 0 < s <t < T,

FQ) := P( sup |Xu|>/l),
uel0,7T]
G = inf{e‘”+F(VVQ—I):/lzﬂvwith,u>0,v>1},
. L v:—1 )
Gy(A,t—s) := infle*+F ; :A=puvwithuy >0,v>1;.
-5

The subscript ¢ stands for a linear growth of o, the subscript b for a bounded o. For the function F we get
the following upper bounds:
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6.2 Lemma.

(i) Under the condition (Ap) there exist @ > 0 and Ay > 1 depending at most on (x,b, o, T) such that,
Jor A > Ay,

F() < e g’

(ii) Under the conditions (Ap,) and (Ay) there is a ¢ > 0 depending at most on (x,b, o, T) such that, for
120,

F(1) < ce MO,
Proof. For p € [2, c0) one has the estimates

< e and
P

<c+p

P

sup |X;|
€l0,7]

sup |
1€[0,T]

under (4, ) and (4, , A, ), respectively, for constants ¢ > 0 depending at most on (x, b, o, T). Both estimates
are known. They can be proved by the standard Gronwall argument (cf. [1, Lemma A.2]) but one has to use
the estimate 3, < ¢ +/p for p € [2, c0) from Proposition 2.5.

(i) Forall 2 > 0,

1 1 2
% - * 1P = cp
BOXG > 1) < L BIX P < e
Y 2
We set Ay := e* and getford > Apap €[2,00) with p = l%ﬂ, so that %e”’z = e‘(] 5 .
(ii) Again, for all 4 > 0,
. | |
P(X; > ) < EIXGI < Fcpp’z.
Assume A > V2ce and set p := (1/(ce))? € [2, ). Then
P(X; > A) < eV,
Consequently, P(X; > 1) < 2/’ forall A > 0. o

We derive the following bounds for G, and Gp:

6.3 Lemma.

(i) Under the condition (Ap ) there exist @ > 0 and Ay > 1 depending at most on (x,b, 0, T) such that,
for A > A,

Go() < ™oz’

(ii) Under the conditions (Ap ) and (Ay) there is a ¢ > 0 depending at most on (x,b, 0, T) such that, for
0<s<t<T,

1
ce” At 0</l§ﬁ

!
ce =93 s ﬁ

Gpy(A,t =) < {
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Under the conditions (A, A,) we let A := 0 and G(0, t — ) := lim, g G(4, t — 5) so that G(0,7 - 5) < c.

Proof of Lemma 6.3. For both cases we can replace v > 1 in the definitions of G, and G, by v > V4/3 to
replace the term W2 -1 by v/2 to simplify the computation.

(i) We use the decomposition A = uv = VAV and Lemma 6.2(i) (where @, 1y > 0 might change).

(ii) In the case 1 < _Ls we use the decomposition = V3741 and v = v4/3, and in the case A > i we use
= 37423t - s)"'3 and v = VA/31'3(t — 5)'/3. Then we apply Lemma 6.2(ii). u]

From Theorem 3.13 we know that

1Yy = Y Ge() F(Apo)

Gb(}-a [ S) : (Ah,[)" AU’)

P| sup

ue(s,t] t—s

> A(3<13)/l) < A{ (61)

ford>Apand 0 < s <t <T.Here A :=cypV e with ¢y > 0 taken from Theorem 3.13, A(3.13) := coc3.12) in
the case (A, ), and A3 13) 1= cod(3.12) in the case (A, -, A,). To provide the large deviation type inequalities,
we let m, = (iT /n)}_, be the equidistant net with n + 1 knots and denote Y" := Y™,

6.4 Proposition. Under the condition (Ap ) one has for n > 2 and A > Ay that
log 1)*
]P)(”Y - Yn”C([(),T]) > a/,,/l) < 2A€_a( 08 ) .
where a, := 2 \/TA(3,13)n‘1/2e Valoes and a, Ay are taken from Lemma 6.3(i).
Proof. Forn > 2 and A > Ay we get from Lemmas 6.1 and 6.3(i) that

a,A\n
PAIY = Y'llcqo,rpy > and) < nAG, [n—]
2VTAg 13
= nAG, (Ae\’i"’g )

2
1 n
—a[log(Ae Valoes )]

IA

nAe

2
—allog A+ V1 log ﬂ)
nAe ( 2

nAe—ar(]og *-log §

7 A p—log /1)2.

IA

Using (6.1) for (A, A,) gives the following large deviation estimate:

6.5 Proposition. Under the conditions (A, ) and (A, ) there is a constant ¢ > 0 such that

logP(IY = Y"llcqo,rp > D

lim sup = < —cn’ for n>1,
A—00 A3
logP(J|lY — Y" > A
lim sup g Bl l”C([O'T]) ) —cAd  for A>0.
n—oo nz

Proof. For the first inequality we use the case 4 > ﬁ = 7 in inequality (6.1), for the second inequality the
case 0 < A < ﬁ = # in inequality (6.1). O
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6.2. Confidence interval for direct simulation

Assume that we are interested in the computation of E(Y; — Y;) for fixed 0 < s < ¢ < T and that we can
simulate independent copies Dy, ..., D, of Y, —Y,. Below we give an estimate on the confidence interval that
is based on our tail-estimates. We start with a general lemma, that should be folklore. To this end, assume
an i.i.d. sequence of random variables Dy, D>, ... : Q — R such that D, € ﬁpe(oww) Lp(ﬁ, 7?,@), and let

1
Spi=—-(Dy+---+D,) and u:=ED;.
n
6.6 Lemma. For e > 0 one has

= : 2p-1 !
P(S,—ul >¢e) < inf | ———=|ID .
ISy —ul > &) pel[z,oo)( N 1D1 ]
Proof. For p € [2, c0) we have

n

DD - )

P
i=1 n

1
”Sn _/lllp = ;

|D~—uI2] s—”( |ID<—/1||2] = ~Z||Dy - ull

where from [10, Theorem 3.3] we know that we can take 3, = p — 1. Therefore, for & > 0,

p

—~ 1 1 (p-1Y 2(p - DY
P(lS, - < —|I8y —ullb € —=[—=] D1 —ully < [—=—=—=] Dll5.
( ul>e) gpll Hll sp( W) 1Dy — ply ( N 1Dl

O

Now let us assume that condition (A,,) is satisfied and fix 0 < s <7 < T. Let S, be a direct simulation of
Y, = Y,. From Lemma 6.3(i) we can deduce

oY <e?
Vi—si,

for some ¢ > 0 and all p € [2, o). By Lemma 6.6,

_— 2p-1) — (.p)” ( \/t—sap)p
P(S . ,u|>s)$( Ve Vt — se <l|a \/ﬁge

for some a = a(c) > 0 and all p € [2, o). Define Y(6) := inf pepn,00) (@0e™”)? for § > 0. Then

Vi—s
\an)'

It is not difficult to check that

. P(9)
1;{1015—M:0 forall M >0

P(S, —ul > &) < ¢(

(consider § € (0,e™**) and choose p € [2,00) with § = ¢ 297 50 that ¥(5) < (@26)7). For example, this
implies

lim nMy

n—o0

(vrfs

=0 forall M>0.
V)
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6.3. Change of measure

We describe a consequence of the BMO-estimates with respect to a change of the underlying measure. Let
Q be a probability measure that is absolutely continuous with respect to P and such that for L := dQ/dP > 0
there are ¢ > 0 and v € (1, o0) such that

E [L"

7] selee] A

for all stopping times 7 : Q — [0,7T] (i.e. Q satisfies a reverse Holder inequality with exponent v, cf.
Definition 2.7). Assume a positive cadlag and adapted process @ = (®,)c0,r7, p € (0, ), and a continuous
and adapted process A = (A;)e(0,r] With Ag = 0 with ”A”BMOf < oo (see equation (1.2)). Let7: Q — [0, T]
be a stopping time, B € F; be of positive measure, and &, v > 0. If Qp is the normalized restriction of Q to
Band1 = £+ %,then

Qs (A1 — A > (1 + &)v)
< Qp(A7 = Ac] > (1 + )@r) + Qp(Pr > v)

1
= B fB Ljar-a,>(1+6)0,) LdP + Qp(Dr > v)

) i
) fBE »1[|AT—AT|><1+8>®,»L‘ Tr] dP + Qp(®; > v)

1 ' i
@LEMAT—A»(H@@,} 7'?] E[U

¢ ’ i
E (1, a ctse0, ﬁ] E[LIF P + Qp(®D: >
Q(B)jl; | Liar-ac>ee0,) [LIF] Qs( v)

= cf]E[lHATfA,p(He)(D,]
B

IA

ﬁ]; dP + Qu(®; > v)

IA

72| dQs + 0p(@: > v)

1

1 u
P

< ¢ fB (Hg),,uAnBMog] dQp + Qu(@; > V)

c r
= m”A||BM0;‘}+QB(q)T>V)

< Al Q( ® )
< ——AllY L+ su > v].

(1+e)f " emop B BB P

As a consequence we can apply Theorem 9.1, but now for the measure Q instead of P. Let us come back to
our setting and recall the inequality (1.3), i.e.

I(Y; = Yo)eo.rillpmop < ¢i9)-

So we can apply this change of measure technique in our context. A careful investigation of local settings
(i.e. the consideration of fixed general sub-intervals [s, 7] C [0, T']) is not yet done.

6.4. Outlook

The methodology to use weighted BMO spaces in stochastic problems, in order to replace L, spaces, is
exploited in the context of approximation problems for stochastic integrals in [17] and in the context of
variational problems for BSDEs in this article. The natural question is, to which other problems this general
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technique might be applied. A natural candidate for such a problem would be the investigation of existing
approximation schemes for BSDEs from the literature (for example, [6],[5], [30], [29]). It might be that the
partial backward structure of these schemes helps to apply weighted BMO techniques where one could use
existing L, results.

7. Appendix A: General tools

The following lemmas have been used before, Lemma 7.1 to justify assumption (C6), and Lemma 7.2 in the
proof of Theorem 3.7.

7.1 Lemma. Assume that X is locally o-compact. Let (f(x))iex be a continuous stochastic process de-
fined on a probability space (€, F,B), such that Esup, g [f(X)| < oo foralln € N. If G C F isao-
algebra, then there exists a unique'> continuous stochastic process (B9 HX))xex = (g(x))rex such that
P (]Eg(f(x)) = g(x)) =1 forall x € X, and such that g(x) is G-measurable for every x € X.

Proof. (i) Let K be one of the sets K, as in Definition 2.2, and consider f as the Banach-space valued random
variable f : Q — C(K), where C(K) is the space of continuous functions on K equipped with the sup-norm.
This space is separable, so that applying [14, Theorem V.1.4] and properties of the Bochner integral we find
a g : Q — C(K) with the required properties.

(i) Defining (g% (x))rex, and (g5*1(x))sex,., as in step (i), we have that g&» and g% are indistinguishable

oo

in K,,. Hence, we can consistently define one process in |, K, = X. m]

7.2 Lemma. Let 0 < s <t < T, and assume that (a,)e(s,) is a process with cadlag paths, and such that
Esup,¢, 4 la,| < co. If for all u € [s,t] we have E*|a,| < w,, where Wiwuers. i a supermartingale with
cadlag paths, then E™|a,| < w, holds for all stopping times T : Q — [s,1].

Proof. (i) Assume that 7 : Q — {sy,...,s,} is a stopping time for somen e N, s < §; < --- <5, <t. We
have foralli = 1,...,n that B las;,| < ws,. Now we have for any A € ¥ that

n n
f |a/T|dIP=Z f Iaxl.IdPSZ f wy,dP = f W dP.
A i=1 ANf{r=s;} i=1 AN{r=s;} A

(ii) Let 7 : Q — [s,7] be a stopping time, and let (7,),en be a sequence of stopping times such that
T(w) | T(w) for all w € Q, and 7, : Q — [s,7] has a finite range. By step (i) we know that for all
n > 1 we have

E o, | < we, . (7.1)

Consider now the martingale

(M)resn = (E [Iozr,,l ﬁ]) .
rels,t]

By optional stopping, and the fact that 7 < 7, < ¢ forall n > 1, we have

5|

7| = Mz

13Unique up to indistinguishability.
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Moreover, using optional stopping and the fact that w is a right-continuous supermartingale, we deduce
ETTWTH < wr.
Now, applying E* on both sides of equation (7.1), we have that

E™ o, | < wr.

Since « is right-continuous, we may apply dominated convergence to deduce that we have for any A € 7

f E[|O/T| ﬁ]cnpznm f g, |dP < lim f wdP.
A noJa noJA

8. Appendix B: Tools related to decoupling

The aim of the section is the proof of Proposition 8.6 below that was used in the proof of Corollary 4.8. We
start with some preparations before we turn to Proposition 8.6.

Given a probability space (€, ¥, P), the space of equivalence classes Lo(€, #,P) can be equipped with the
metric v S
dX,X') = f XX
o 1+|X =X
It is proven in [18, Proposition 2.5] that the decoupling operators defined in Section 4 are isometries.

In particular, giveE a Borel-measurable function ¢ : (0,7] — [0,1] and S € {0, T}, it follows for any
X,Y € Lo(Qs, %0, Ps) that d(X, Y) = d(X?, Y¥).

8.1 Lemma. Assume that X is locally o-compact, and let A C X dense and countable. If h : X — R is
continuous, then sup,.x h(x) = sup,., h(x). Furthermore, if fi, f» € [f] € Lo(Qr,B([0,T]) ® F,P; C(X)),
then

T T
Ef sup | f>(r, x)|dr = Ef sup | f1(r, x)|dr.
0 0

xeX xeX

For the following recall that (55 , Z? , @S) was introduced in equation (4.1).

8.2 Lemma. Assume that X is locally o-compact. Let S € {0,T}, f € Lo(ﬁs s 22 ,ﬁs ; C(X)), and put for all
neQsandall x € X
g(TI, x) = f(77, x>1{f76§5| SUp,x f.Y)ER)"

Then it holds that g € Lo(ﬁs,Eg,@s;C(X)), and any representative g¥ € Lo(ﬁs,xﬁ,@s;C(X)) satisfies
Pg(sup .y g°(x) € R) = 1, and

(4
sup g‘p(x)l{sup‘.EX g°(y)eR} € (Sllp g(x)) .
xeX : xeX

Consequently, there exists a representative h* of g% € Lo(ﬁs R 2?,@ ; C(X)) such that

@
sup h¥(x) € (sup g(x)) .
xeX xeX
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Proof. The claim g € Lo(ﬁs,Eg,ﬁg;C(X)) follows from Lemma 8.1. Since sup,., g(i7,x) € R for all

ne ﬁs, we have that sup, ., g(x) € _Eo(ﬁs, Zg,@g). Since A is countable, we can fix finite sets A; C A, C
.-+ C A such that |,y A, = A. Using Proposition 4.3(ii) and the isometry-property, we have

(" @ ("2
d ((Sup g(x)) , sup gw(x)) =d ((SUP g(x)) , (SUP g(x)) ) =d (SUP g(x), sup g(x)) -0,

xeA xehy xeA xehy xeA xehy

as k — oo. From this, and from the fact that (sup,,, g1, X))e is monotone for all 77 € ﬁs, we deduce that
SUp,4, 87(x) converges Pg-as. to (Sup,c4 &(x))¥. On the other hand, the monotonicity also implies that

lim sup g*(7, x) = sup g% (1, x)

k—0o yep, xeA

foralln e ﬁs. Hence, it follows from continuity that sup,.x g%(x) is @s -a.s. finite and

(4
sup gw(x)l{sup‘.éx g°(y)eR} € (Sllp g(x)) .
xeX : xeX

O

8.3 Remark. Lemma 8.2 implies that if the assumptions of Lemma 7.1 are satisfied by
f e .LO(QT,E(},PT; C(X)), then they are also satisfied by f¥. This holds, since applying Lemma 8.2 re-
stricted to a compact K C X, we notice that if E sup g |f(x)| < oo, then E sup, ¢ | f#(x)| = Esup,cx | f(X)I.

8.4 Lemma ([18, Remark 2.14]). Let X € Lo(Qr, %2, By) such that [ |X(t, w)ldt < oo for all w € Q. Then
for any representative X?¥ € Lo(ﬁT, Z‘;, @T) we have that p(foT [X?(0)|dt < oo) =1, and

T T ¢
X401, 1 siods)
fo 01, b eods<eo 91 € ( fo (t)dt)

8.5 Lemma. Let X be locally o-compact and let f € .Eo(ﬁy-, Zg,@T; C(X)) such that

T
ﬁ(f sup | f(t, w, x)|dt < oo) =1.
0

xeX

Then there exists a representative h? of |f¥| € Lo(ﬁT, E?ﬁ,PT; C(X)) such that

7 T ¢
f sup [h?(¢, x)|dt € (f sup |f (¢, x)ldt) .
0 xeX 0 xeX

Proof. First note that
T
P(f sup | f(r, w, x)|dr < oo) =1
0

xeX
implies
Pr (sup If(t, w, x)| < oo) =1.
xeX

37



We may redefine f such that sup, . |f(f, w, x)| < oo for all (t,w) € 57, and fOT Sup,ex If(r, w, x)ldr < oo

for all w € Q. It is a direct consequence of Proposition 4.3(ii) that [f|* = [f¥|, so that we may look for
a representative of |f|” that satisfies the claim. Applying Lemma 8.2 to |f| gives us a representative h¥ of
|f1* € Lo(ﬁT,Z‘;,ﬁT;C(X)) such that sup,x A%(x) € (sup,ex |f(X)D¥. Letting X(f, w) := sup,x |f(t, w, x)|
for (f,w) € 57, we then have that sup, . h?(x) is a representative of X¥. Hence, Lemma 8.4 implies that

T
F(f sup |9 (¢, x)|dt < oo) =1,
0 xeX

and

T T ¢
j(; sup |h¢(t’x)u{f(,TsupxexIh¢(r,x)ldr<ooldte (fo sup | f(t, x)Idt) .

xeX xeX

The representative of |f|? € Lo(Qr, E’}, P7; C(X)) that satisfies the claim, is |7¢|1 (7 supye I (ro0ldr<so)”

We are ready to prove the desired result. Recall that Eg and ‘]Tf were defined in (4.5) and £@%1 in (4.4).
8.6 Proposition. Assume that X is locally o-compact. Let p € [1,0), 0 < s <t <T,0<u; <up <T, and

fe Lo(ﬁr, Z(}, Pr;C (X)) such that fﬁr SUpP i | f(x)ld@r < oo for every compact K € X. If

< 0o,
P

f Sup (1) = B ) x)ldr

then P-a.s.
— Uy p — Uy — p
E% ( f sup If(r,x)—f(“’”(r,X)Idr) < 2PES: ( f sup £ (r, x) = ("¢ f)(r, 0)ldr|
u;  xeX u  xeX
Conversely, if

< 00,
p

fuz sup | £(r, x) — fS(r, x)|dr

1 xeX

then P-a.s.

— o) ) A 14 _ Uy )4
ESY: ( f sup |f(r, x) — (B*S f)(r, x)|dr) < EY ( f sup |f(r, x) = fS(r, x)ldr| .
xeX u xeX

uy 1

8.7 Remark.

(1) To define Eﬁi fe ;Eo(ﬁr, ﬁj, @T; C(X)) we apply Lemma 7.1, and this is why we need to assume that
fﬁr SUp,ex | f(0IdPr < oo for every compact K C X.

(2) The conclusion of Proposition 8.6 with p = 1 implies that

boszrr T T a7
EEﬂ‘Hf = o Nicr < BN = B fllcar < BN = £“Nlee).

Hence, Proposition 8.6 generalizes Lemma 4.6 from random variables ¢ : Q — R to function-space
valued stochastic processes f : Qr — C(X).
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Proof of Proposition 8.6. We will use || - ||, for || - || L@ and A for a fixed dense countable subset of X. Note
that sup,.x h(x) = sup,., A(x) whenever h is continuous, so that we may replace X by A in the proof below.
To simplify the notation in the proof, we assume thatu; =0 and u, = T.

Step 1: We will first show that if g € .Lo(ﬁT, 7_{§ Pr; C(X)) is such that

< 00,
P

T
fo sup |g(r, x) — f(r, 0)ldr

xeA

then
<2

p

T
fo sup |f(r, x) — g(r, x)|dr

xeA

T
f supf(r, ) — FN(r, ldr
0

xeA

P
Fixing g as described above, Lemma 4.5(v) implies that g € g/, so Lemma 8.5 applied to g — f in particular
implies
T P T P
E(f sup |g(r, x) — fSI(r, x)ldr) =E (f sup |g(r, x) — f(r, x)ldr) .
0 xeA 0 xeA
From this we deduce

T
f sup [ £(r, x) = fS0r, x)ldr
0

xeA

P

+
P

IN

xeA xeA

T T
f sup |f(r, x) — g(r, x)|dr f sup |g(r, x) — S, x)\dr
0 0

P

2

T
fo‘ sup | f(r, x) — g(r, )ldr

xeA

p

Step 2: We assume that || fOT Sup,ep If(r, x) — £, x)|drl|, < oo, and will show that

<
p

T
f sup |f(r, x) — (@, x)\dr
0

xeA

T _
fo sup L (r, ) — (EPE £)(r, 0l

xeA

p

We use W°, W! to denote the canonical extensions of W, W’, respectively, and for 0 < a < b < T we work
with the o-algebras

HY, = B0, T ® (W~ WO, r € [a,b]),
HY, = B0, T)®(W, ~ WL relabl),
H = {0,[0,T}@ (W’ — W, re [s,1]).

Note that these are o-algebras in 57, and we have the inclusions

wo 0
7'{0.7 c Iy
wo w! wo (s.t]
Hoy VHs, VHF < I,
wo wo 1
Hy VH < H.
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Moreover, the inclusions are "up to nullsets", which in this context means that we have for example
0 —
) = Hyp v (BU0.TD @ N).
— —_— ] 0
where N are the P-nullsets. From this it follows that f and EHor f given by Lemma 7.1 are indistinguishable.

To keep the notations as light as possible, we simply say that using Lemma 8.1 and Lemma 7.1, we may
assume that

g
(1) fis ?{O’T-measurable,
@) folis HY ‘v 7-{?:1 % ‘HZ‘;O-measurable,
3) E* Filis ‘Ho‘f v (Ht"’?o-measurable.
Then the facts that for all x € A
“Hg,v;) % ‘H%J v (£ (x)) is independent of H,

f(x)is ‘Hg}f \% 7{:‘;0 V H-measurable,
are immediate. Hence, it follows from [28, 9.7(k)] that
Eﬁ\/‘h’f(&t](x) — Eﬁf(s’l](x)
for all x € A. Since f(x) € Ll(ﬁT,Z(;,@T) for all x € A, it follows from Proposition 4.5(i) that
E%G f(x) = E™¢ £ (x) for all x € A. Thus we have

T _
f sup £ (r, x) — (E7% 5, ldr
0

xeA

T _
fo sup |f(r, x) — (B™ f)(r, x)\dr

xeA

p p

/N —
) f sup |f(r, x) — B £ x))ldr
0

x€A P

T _
= f sup [V (f(r, x) — fS9(r, x))ldr
0

xeA P

IA

T _
f sup EXVH | £(r, x) — £ (r, x)ldr
0

xehA

P

IA

T
f P (sup £ = £, x>|) dr
0 xeA

p

T
= |g” (f sup |f(r, x) — I, x)Idr)
0

xeA

P

T
< f sup |f(r, x) = fE0(r, x)|dr
0

x€A p

Step 3: The conditional claim follows from the result with the full expectation as in Lemma 4.6: assume
that f € LO(QT,Z(},FT; C(X)) is such that fﬁr SUP, ek If(x)ldﬁr < oo for every compact K C X. Let B € G
with P(B) > 0, and define

Fe Lo(Qr, 25, Pr; C(X)) by f(r,w,x) = f(r,w, x)1p(w).
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Fixing any representative of f(*1, we have that
(1) fﬁr SUpP i | f(x)ldﬁr < oo for every compact K € X,
@1 B(Eﬁ f) is a representative of (Eﬁ .
(3) 1pf“" is a representative of f*/1,

so the claim follows by applying steps 1 and 2 with £. O

9. Appendic C: A John-Nirenberg type theorem

We recall the result [17] (Theorem 9.1). Whereas in [17] cadlag processes are considered, we only need the
case of continuous processes. Fix R > 0, let (Q, Gr, P, (G/)[0,r]) be a stochastic basis such that (Q2, Gg, P) is
complete, (G,)repo.x] 18 right-continuous, and G, contains all nullsets, and let A = (A,),¢[o.r] be a continuous,
adapted stochastic process with Ay = 0. Moreover, we assume that (‘V',),¢[o.z) is a cadlag (G,),[o,r-adapted
stochastic process such that W,(w) > 0 for all (r, w) € Qg. Put

SgR = {T:Q—>[(),R]

T is a (G,)rejo,r] — Stopping time}

and define
We(B,v; 1) := P(B N { sup ¥, > v})

ue[n,R]

forv>0,7€e Sg r» and B € G;. Recall that for B € G, of positive measure
P(BN )
Pg(-) =
B () 5B

9.1 Theorem ([17, Theorem 1]). Assume that there is an a € (0, %) such that

Wy (B, v;
PplAg—Ad > V) <a+ % ©.1

orall v > 0, T € S 5 and B € 0 "positive measure. Then there are constants a,c > 0, depending on «
0.R P P 8
Only, such that

Wy (B, v,
Pg| sup |A, — A > A+ a,uv) < el”PB( sup |A, — Al > A+ CM
ueltR] uelrR] P(B)

forall L, u,v>0,71e SﬁR, and B € G, of positive measure.
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