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Abstract

Open quantum systems have drawn attention over decades due to its applicability in
the foundation of theoretical physics, e.g. statistical mechanics, quantum mechanics
and condensed matter physics. The dynamics of open quantum systems has been
described as separate entities from their surrounding environment that consists of
a very large number of modes, somehow coupled to the mode of the system. Even
though the exact solution of the dynamical behavior of the system is impossible to
calculate, we obtain a tentative solution using the crucial Markov approximation. The
input-output formalism of the quantum Langevin equation (QLE) has been considered
as a useful tool which provides a semi-classical description of the dynamics of the
system, whereas the master equation provides a complete picture of the dynamics
of the system expressed in terms of density matrix. While studying the dynamics
of nonlinear system/environment coupling using QLE, we see, for a small value of
external �eld, that the steady state system �eld does not change much from the steady
state �eld obtained in the absence of nonlinear dissipation. However, in a case where
a stronger external �eld is applied, we see that the deviation becomes substantial
from the solution of linear system. We also see that the nonlinear coupling introduces
signi�cant di�erence in the cavity �uctuation spectrum. The description, therefore,
provides a potential explanation of parametric e�ects in terms of nonlinear dissipation
phenomena associated with the nonlinear coupling.

Even though the theories developed in the context of open quantum systems have
proven to be powerful tools, they do not provide a satisfactory platform to be im-
plemented on non-linear Hamiltonians. We often approximate it by linearizing over
nonlinear steady state �eld amplitude, and therefore, the interesting e�ects are often
overlooked. The limitation of the analytics provokes us to simulate open quantum
dynamics numerically. The numerical method consists of transformation of the envi-
ronmental degrees of freedom to a one-dimensional many-body chain, and the com-
putational technique includes numerical diagonalization and renormalization process.

The time-adaptive density matrix renormalisation group (t-DMRG) is known as one
of the most powerful techniques for the simulation of strongly-correlated many-body
quantum systems. In this thesis, along with the theoretical modeling, we implement
DMRG numerical scheme for the simulation of canonical S/B model by mapping it
to one-dimensional harmonic chain with nearest neighbor interactions, and use the
method to investigate the dynamics of the free dissipative system. The thermalization
of open quantum systems is also studied by generating minimally entangled typical
thermal states (METTS) through imaginary time evolution, and real-time evolving
an empty system in the presence of the thermal bath. Further, we simulate coher-
ently driven free dissipative Kerr nonlinear system numerically using Euler's method
by solving Heisenberg equation of motion and t-DMRG algorithm, and demonstrate
how the numerical results are analogous to classical bistability. By comparing with
analytics, we see that the DMRG numerics is analogous to the quantum-mechanical
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exact solution obtained by mapping the equation of motion of the density matrix of
the system to a Fokker-Plank equation. The comparison between two di�erent numer-
ical techniques shows that the semi-classical Euler's method determines the dynamics
of the system �eld of one among two coherent branches, whereas DMRG numerics
gives the superposition of both of them. Hence, DMRG-determined time dynamics
undergoes generating non-classical states. Our approach of dealing with nonlinearity
represents an important contribution in the developments of technique to study the
dynamical and steady-state behavior of open quantum systems, which is a fundamen-
tal aspect of quantum physics.
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1 Introduction

1.1 Brief Overview of Open Quantum Systems

An open quantum system is obtained by separating certain degrees of freedom from
their surrounding environment. The theory of open quantum systems has been for-
mulated in terms of well-established master equation, where the time evolution of the
reduced density matrix is expressed by a �rst-order di�erential equation. The gener-
ator of this master equation has a very speci�c mathematical and physical structure,
known as Lindblad structure which was proposed by Gorini, Kossakowski, and Sudar-
shan in 1976 [1], and independently by Lindblad in 1976 [2]. Considering a microscopic
system-environment approach, the derivation of the master equation is done with the
help of the Born-Markov approximation. The Markov process was �rst proposed by
the Russian mathematician Andrey Markov in 1954 [3]. The process assumes that the
future state of a stochastic process is dependent only on the present state, not on the
sequence of past events, and therefore, assumes time locality by neglecting the past
history of the system. The master equation approach is analogous to the Fokker-Plank
equation for the Brownian motion in case of a classical system. In statistical mechan-
ics, the Fokker-Planck equation is de�ned by a partial di�erential equation for the
probability density function of the velocity of a particle under the in�uence random
driving force. The equation was proposed �rst by Adriaan Fokker (1914) [4] and Max
Planck (1917) [5], and it is also known as the Kolmogorov forward equation, after the
independent discovery by Andrey Kolmogorov in 1931 [6]. The quantum-mechanical
counterpart of the Fokker-Planck equation has been derived consistently by Bogoli-
ubov and Krylov (1939) [7], and it is applicable for any microscopic system. The
dissipative dynamics of the macroscopic variable of the system and the noise interfer-
ence due to the coupling to the environment have been described by the input-output
formalism of quantum Langevin equations (QLEs) [8, 9], which was derived using
Heisenberg's equation of motion introduced in 1925 [10]. The QLE is an extension
of the classical Langevin equation to the quantum regime [11]. The traditional clas-
sical Langevin equation was �rst introduced by Paul Langevin in 1908 [12]. It is a
stochastic di�erential equation describing the time evolution of macroscopic variables
of the system. The connection between the QLE and the stochastic di�erential quan-
tum master equation have been established by Gardiner and Collett (1985) [13]. The
description of the generalized QLE is given by Ford, Lewis and O'connell (1988) [14].
There the system su�ers Markovian/non-Markovian random force due to the coupling
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2 Introduction

to an arbitrary heat bath, and therefore, it provides a complete macroscopic quantum
description.

The techniques developed in the context of open quantum systems have remained
useful in the establishment of the theory of quantum optics [8, 9], quantum statistical
mechanics [15, 16], quantum information science [17, 18] and quantum cosmology
[19, 20]. For instance, in the case of quantum information science, the theory has
proven a powerful tool to study the interference in entanglement assisted quantum
data processing [21, 22], information transmission, and quantum communication [23].
Besides, the theory of stochasticity in cosmological perturbations is formulated by
using quantum master equation [19, 20, 24, 25], which has opened a window to study
cosmological in�ation [26�29] and the dynamics of black holes [30, 31].

Within this framework, nonlinear coupling between the system and environment has
also been employed widely to model ultracold atomic systems [32�34], laser cooled
trapped ion systems [35�37], and to study light matter interaction, especially in mi-
cro/nanomechanical or optomechanical systems [38, 39]. Further, strong coupling of
mechanical motion to individual spin qubit [40, 41] and collective atomic spins [42�
44] have drawn attention for having applications in spin control [45] and detection of
mechanical motion [46�49].

For all nonlinear Hamiltonians discussed above, the theory of open quantum systems
has been implemented with a linearized approximation. However, even though the
model is simple, the method is not satisfactory to determine the exact dynamical be-
havior. We often overlook interesting e�ects when we cannot treat system/bath (S/B)
interaction in a perturbative manner. Apart from the nonlinear S/B coupling, also,
this analytical model exhibits limitation while determining the exact non-Markovian
dynamics. The limitation of analytical methods provoke us for the numerical simula-
tion of the time evolution, which is the main motivation of this work.

1.2 Quantum Simulation of 1D Lattice Systems

Over the years, many numerical techniques have been developed to simulate many-
body quantum systems. For example, Monte Carlo method has remained popular
to study the dynamical behavior and phase transition problems of Ising chain [50],
Hubbard [51] and Bose-Hubbard model [52, 53]. The time-adaptive density matrix
renormalisation group (t-DMRG) is known as one of the strongest techniques to in-
vestigate strongly-correlated many-body quantum system. The technique has often
been used for some well-known models, e.g. Ising model [54, 55], Bose-Hubbard model
[34, 52, 56] and Hubbard model [51, 57, 58], especially aiming to investigate quenching
dynamics, magnetization, and properties associated with phase transitions. However,
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in this thesis, we use the numerical scheme to simulate the dynamics of open quantum
systems.

The DMRG technique was introduced �rst by S. R. White in 1992 [59] to determine the
ground state of a many body system. Afterwards, a slightly di�erent method has been
attempted for the simulations at �nite temperature, which is the puri�cation of the
density matrix, used successfully to study �nite-temperature properties of quantum
spin chains [60]. However, this simulation is often limited due to a subsequent growth
of entanglement and the computational cost associated with it. In order to get rid of
those problems, a complementary approach was introduced by S. R. White, where one
generates a large number of sample pure states through imaginary time evolution, and
calculates observables by taking average over them; this ensemble altogether generates
an impact of a thermal state. This is typically known as minimally entangled typical
thermal states (METTS) [61]. In this thesis, we use the algorithm for the �rst time for
the generation of thermal bath and parameterize it to investigate their consequences
in the determination of the thermalization of open quantum system.

Even though several attempts have been taken to generalize the DMRG technique to
be used for time dependent calculations, the major step forward was taken by Vidal
in 2003 [62] with certain crucial optimization and modi�cation. The method makes
the state able to be represented with a su�ciently small number of retained basis
set which is referred to as "slightly entangled". The details of the modi�cation of
the algorithm will be explained in section 4.1. The method is known as time-evolving
block decimation algorithm (TEBD) and we use the algorithm here to simulate the
time dynamics of open quantum systems.



2 Theoretical Methods

The theory of open quantum systems has been formulated in terms of master equa-
tion, expressed in Lindblad form where the time evolution of the reduced density
matrix is expressed by a �rst order di�erential equation. In this section, we establish
a theoretical framework and discuss how to study the dynamical behavior of open
quantum systems.

2.1 Theoretical Methods for Open Quantum Sys-

tems

We introduce a simple model of open quantum system and discuss the theoretical
techniques to study its dynamics. We start by approaching master equation technique
to determine the time evolution of the reduced density matrix in the interaction
picture. After that, we derive quantum Langevin equation in the Heisenberg picture,
which gives the equation of motion of the system �eld operator.

The following section is arranged by starting with the investigation of the behavior
of the time evolution of a part of a bipartite quantum system without having full
knowledge of the rest of others. Hereafter, we study the time dynamics of the density
matrix of an individual system with the help of the master equation expressed in the
Lindblad form. This is followed by establishing the quantum Langevin equation which
gives the equation of motion of a system operator, and compare the two methods.

2.1.1 Evolution of the Reduced Density Operator

The time evolution of any system is represented by a map which connects the time
evolved density matrix to the initial one ρS(t) =MρS(0). The operatorM is known
as a superoperator which has the following properties: Linear, Trace preserving, Her-
miticity preserving, and Positive (Completely positive) [63]. The time dynamics of
the density matrix of the system (ρS) can also be expressed in terms of a �rst-order
di�erential equation: ρ̇S(t) = L̂ρS(t) where L̂ is a time-independent linear superopera-
tor. The formulation satis�es both the linearity and the absence of memory preservity
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2.1 Theoretical Methods for Open Quantum Systems 5

condition of the system. The time evolved density matrix at time t can be deduced as

ρS(t) = eL̂tρS(0). (2.1)

The entire system and the environment undergo a unitary time evolution, which can
be mapped, ideally, as

ρ(t) =Mρ(0) = USE(t)ρ(0)U †SE(t)

U †SEUSE = 1,

where ρ is the density matrix of the combination of the system and environment and
USE is the unitary time evolution operator. Since our interest is the time evolution of
the system alone, we trace out the environmental part of the total density matrix to
deal with the reduced density matrix of the system, which leads to see non-unitarity
in the time-evolution of an individual system. We assume that the system and the
environment are not entangled initially at time t = 0, meaning that the state of the
whole system can be factorized, i.e. written as a tensor product of the state of the
system and the environment. Therefore, the total density matrix can also be written as
a product of the density matrices of the system and the environment, which we denote
by saying ρ(0) = ρS(0)⊗ρE(0), where ρE are the density operators of the environment.
After taking trace over the environment in order to determine the density matrix of
the system, we obtain

ρS(t) = TrE{ρ(t)} = TrE{USE(t)ρS(0)⊗ |ψE(0)〉〈ψE(0)|U †SE(t)} (2.2)

=
∑
µ

〈µE|USE(t)|ψE(0)〉ρS(0)〈ψE(0)|U †SE(t)|µE〉,

where |µE〉 is the basis vector of the environment. Hereafter, we introduce a time-
evolution operator for the system for each basis of the environment, named as Kraus
operator [64]

M̂µ(t) = 〈µE|USE(t)|ψE(0)〉. (2.3)

The Kraus operator is constructed by tracing out over the environmental degrees of
freedom and therefore, leaving it as an operator of the system. The time evolution of
ρS can be written using the Kraus representation as

ρS(t) =
∑
µ

M̂µ(t)ρS(0)M̂ †
µ(t). (2.4)

It is worth noting that from the unitarity of the evolution operator USE(t) one can
see that ∑

µ

M̂ †
µM̂µ = 1̂S. (2.5)
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One can establish the link between linear superoperator and the Kraus operator as

MρS = eL̂tρS =
∑
µ

M̂µ(t)ρSM̂
†
µ(t). (2.6)

The state of the individual system evolves from pure to mixed through a non unitary
time-evolution known as decoherence. Typically, the mixed state is a statistical en-
semble of pure states which cannot be represented by a ket vector. Hence, unlike the
pure state, the trace of the square of the density matrix of a mixed state always gives
less than 1, even though the trace is always 1. The time evolution of the subsystem
is considered to be a random process, which is treated by stochastic calculus. We
determine the time evolution of the reduced density matrix in the following section.

2.1.2 Master Equation

The time evolution of the probability of a system occupying a certain state which is
described by a set of �rst order di�erential equations, known as a classical master
equation. The time variable is continuous here, and the rate of change of probability
is expressed by a transition rate matrix, which is given by

dPn
dt

=
∑
m>n

(Anm +Bn
mr̄)Pm +

∑
m<n

Bn
mr̄Pm−

∑
m<n

(Amn +Bm
n r̄)Pn−

∑
m>n

Bm
n r̄Pn, (2.7)

where Pn is the probability of occupying nth state, A and B are the matrix of coef-
�cients of spontaneous transition and stimulated transition respectively, and r̄ is the
energy density. It is often called the Pauli master equation, after being introduced
by Pauli [65]. The quantum master equation extends to a quantum context of the
classical master equation, where the dynamics of the full density matrix is taken for
time-homogeneous and Markovian time evolution rather than considering just a set
of probabilities.

In order to derive the quantum master equation, we start with the total Hamiltonian
which is essentially given by

H = HS +HE +Hint, (2.8)

where HS, HE, Hint are the system, bath and interaction Hamiltonians, respectively.
Usually, the quantum master equation is derived in interaction picture and for that
we express the interaction Hamiltonian as

H
[new]
int = ei(HS+HE)tH

[old]
int e

−i(HS+HE)t. (2.9)
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The transformation of the Hamiltonian modi�es the equation of motion of the total
density matrix as ρ̇(t) = −i[Hint, ρ(t)], which simpli�es to

ρ(t) = ρ(0)− i
∫ t

0

dt′[Hint(t
′), ρ(t′)]. (2.10)

Now, we replace the expression of the density matrix and iterate couple of times. The
week perturbation allows us to neglect higher order integrals. Essentially, we get

ρ(t) =ρ(0)− i
∫ t

0

dt′[Hint(t
′), ρ(0)]−

[ ∫ t

0

dt′
∫ t′

0

dt′′
(
Hint(t

′)Hint(t
′′)ρ(0)

+ ρ(0)Hint(t
′′)Hint(t

′)−Hint(t
′)ρ(0)Hint(t

′′)−Hint(t
′′)ρ(0)Hint(t

′)

)]
=ρ(0)− i

∫ t

0

dt′[Hint(t
′), ρ(0)]− 1

2
T

[
(

∫ t

0

dt′Hint(t
′))2ρ(0)

+ ρ(0)(

∫ t

0

dt′Hint(t
′))2 − 2(

∫ t

0

dt′Hint(t
′))ρ(0)(

∫ t

0

dt′Hint(t
′))

]
, (2.11)

where T refers time ordering of the operators. By taking the partial trace over envi-
ronmental degrees of freedom we obtain

ρS(dt) = ρS(0) + [L, ρS(0)]dBt −
1

2

[(
LL†ρS(0) + ρS(0)LL† − 2LρS(0)L†

)
dt
]
,

(2.12)

which is the master equation expressed in the interaction picture in Lindblad form,
where

LdBt = −iTrE{
∫ dt

0

dt′Hint(t
′)ρ(0)}. (2.13)

L is known as the Lindblad operator which describes quantum jump between di�er-
ent states of the system [8, 9] and dBt refers to the Wiener process (N (0, dt)) that
comes from the Brownian motion of the system. One can easily determine the rela-
tion L† = −L from the expression of L given in Eq. (2.13). The part L̂ρS(0)L̂† in Eq.
(2.12) indicates a possible quantum jump between the states of the system, the terms
ρS(0)L̂L̂† and L̂L̂†ρS(0) are there to normalize the density matrix if no jump occurs,
and the term [L̂, ρS(0)]dBt generates stochastic �uctuation in the quantum jump.

In order to draw an analogy between classical and quantum master equations, we
drop the second term in Eq. (2.12), which is associated with the stochastic �uctuation
dBt for the mean 0. Apparently, the positive terms of the last term represent gain of
probability of a certain state due to the transitions from the other states in that state,
and the negative terms represent loss of probability due to the transitions to other
state from that state. One can visualize the similar phenomenon from the classical
master equation given in Eq. (2.7) by choosing A and B matrices properly.
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2.1.3 Quantum Langevin Equation

The classical Langevin equation is a stochastic di�erential equation that describes the
motion of a particle which moves under the presence of an arbitrary external potential.
The two-variable (x, p) Langevin equation is useful to model the Brownian motion of
a particle moving in a potential �eld V (x), as

ẋ = p/m (2.14a)

ṗ = −V ′(x)− γp+ η, (2.14b)

where η(x, ẋ, t) is the Brownian force which follows the correlation function 〈η(t)η(t′)〉 =
δ(t − t′). Quantum Langevin equation is a quantum-mechanical analogy of classical
Langevin equation, in which the variables are expressed as operator quantities. In the
following part, we derive the quantum Langevin equation from the operator commu-
tation relation of quantum mechanics.

We consider a system that is coupled linearly with a multimode bath by the ex-
change of energy. The total Hamiltonian spanning the system, its environment, and
the interaction between them is given in the Eq. (2.8), where the Hamiltonian of the
isolated system given by HS = HS(a, a†) exhibits a generic dependence on the anni-
hilation (creation) operators a (a†) associated with the system. The Hamiltonian for
the thermal bath is represented by a set of bosonic oscillators:

HE =
∑
k

ωkb
†
kbk, (2.15)

where b†k and bk are the creation and annihilation operators of the kth bosonic mode,
respectively. Note that we use a unit convention with ~ = 1. Now consider the following
coupling between the system and the environment

Hint =
∑

k

gk

[
F (a, a†)b†k + F †(a, a†)bk

]
, (2.16)

where F (a, a†) is a generic function of the creation and annihilation operators of the
system and gk is the coupling constant of the kth mode. The bosonic commutation
relations of the �eld operators is

[a, a] = [a†, a†] = [bk, bk′ ] = [b†k, b
†
k′ ] = 0,

[a, a†] = 1 ; [bk, b
†
k′ ] = δkk′ . (2.17)

The system operators naturally commute with the bath operators. The equation of
motion of the annihilation operator of the bath in the Heisenberg picture is given by
ḃk = i[H, bk] = i([HE, bk] + [Hint, bk]). Since bk commutes with HS, we get
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ḃk(t) = −iωkbk(t)− igkF (a, a†). (2.18)

Similarly, the equation of motion for any arbitrary system operator is ċ = i([HS, c] +
[Hint, c]), which can be simpli�ed as

ċ(t) = i[HS , c(t)] + i
∑

k

gk

(
[F, c]b†k + [F †, c]bk

)
. (2.19)

In order to obtain an equation of motion for the system �eld operator, we solve bk(t)
formally from Eq. (2.18) and plug that expression in Eq. (2.19). Depending on initial
or �nal condition, we can have two di�erent solutions. For a given initial condition at
the time t0 < t, the solution is

bk(t) = e−iωk(t−t0)bk(t0)− igk

∫ t

t0

e−iωk(t−t′)F
(
a(t′), a†(t′)

)
dt′. (2.20)

By substituting Eq. (2.20) and its Hermitian conjugate into Eq. (2.19) we obtain

ċ(t) = i[HS , c(t)] + i
∑

k

gk

{
[F, c]

[
eiωk(t−t0)b†k(t0) + igk

∫ t

t0

eiωk(t−t′)F †(t′) dt′
]

(2.21)

+ [F †, c]

[
e−iωk(t−t0)bk(t0)− igk

∫ t

t0

e−iωk(t−t′)F (t′) dt′
]}

.

Now, suppose that the discrete modes of the bath is dense enough so that it forms
a continuous spectrum. Therefore, in case of a purely linear case, we introduce the
density of states D = ∂k/∂ωk. Note that D is independent of the mode index k, which
allows us use the �rst Markov approximation by assuming the coupling constant gk is
independent of frequency [14]. We de�ne

g2
k =

γ

2πD
, (2.22)

where γ is a the mode-independent constant. This helps us in simplifying the equation
of motion of a. Namely, we �nd the identity∑

k

g2
ne
−iωk(t−t′) =

γ

2πD

∑
k

e−ik(t−t′)/D

=
γ

2πD
2πδ((t− t′)/D) =

γ|D|
D

δ(t− t′).
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If we de�ne the input �eld as [11, 13]

ain(t) = −i
√

1

2πD

∑
k

e−iωk(t−t0)bk(t0), (2.23)

we can write the Eq. (2.21) as

ċ(t) = i[HS , c(t)] + i
∑

k

√
γ

2πD

{
[F, c]

(
eiωk(t−t0)b†k(t0) + i

√
γ

2πD

∫ t

t0

eiωk(t−t′)F †(t′) dt′
)

+ [F †, c]

(
e−iωk(t−t0)bk(t0)− i

√
γ

2πD

∫ t

t0

e−iωk(t−t′)F (t′) dt′
)}

(2.24)

= i[HS , c(t)] +
√
γ

{
[F, c]

(
a†in(t)−

√
γ

2
F †(t)

)
+ [F †, c]

(
− ain(t) +

√
γ

2
F (t)

)}
,

which �nally gives us the quantum Langevin equation of motion for an arbitrary
system operator. Note that all the operators in this formulation are local in time,
meaning that the system has no memory, which reminds that the system has Markov
property. Eq. (2.24) indicates that the time evolution is caused by three separate
dynamics.

In case of simple harmonic motion, where the system Hamiltonian is given by HS =
ωsa

†a, one can establish links between classical and quantum Langevin equation as-
suming that the system is coupled to the environment in such a way that the generic
function becomes F = (a† + a) and i(a† − a). Essentially, we arrive the quantum
Langevin equation for the quadrature [x = a† + a, p = i(a† − a)] as

ẋ = ωsp and (2.25a)

ṗ = −ωsx− γp− 2i
√
γ(ain − a†in). (2.25b)

Now, assuming the harmonic oscillator having a quadratic potential well (V (x) =
1
2
kx2), we can compare classical and quantum Langevin equation by choosing k = mω2

s

and η = −2i
√
γ(ain − a†in).

Input and output �eld

We have already presented the quantum Langevin equation in terms of the input noise
caused by the initial condition of the bath. One can also de�ne a similar equation using
the output spectrum. This is done by substituting the �nal condition instead of the
initial condition in the derivation of Eq. (2.20). Using this formalism and following
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a similar procedure as here, one ends up with a time-reversed quantum Langevin
equation,

ċ(t) = i[HS , c(t)] +
√
γ

{
[F, c]

(
− a†out(t) +

√
γ

2
F †(t)

)
+ [F †, c]

(
aout(t)−

√
γ

2
F (t)

)}
,

(2.26)

where

aout(t) = i

√
1

2πD

∑
k

eiωk(t−tf )bk(tf ), (2.27)

where tf > t is the �nal state of the bath. The input �eld tells about the noise
interference on the system generated by the environment which always has a positive
contribution to the system �eld, whereas output �eld gives an idea about the amount
of �eld coming out from the system. By choosing the generic function F = a and
c = a and comparing between Eq. (2.24) and the (2.26), one gets

aout(t) + ain(t) =
√
γa(t), (2.28)

which determines the relation between output and input �eld. It is also referred as
the boundary condition that relates the internal and external cavity �elds [8].

2.1.4 Connection Between QLE and Master Equation

We derived the quantum Langevin equation derived for an arbitrary �eld operator of
the system in Eq. (2.24), which is expressed in the Heisenberg picture while the master
equation given in Eq. (2.12), is derived to represent the time dynamics of the density
matrix in the interaction picture. In this section, we establish a link between these
two representations and discuss about the consequences of two formalisms. Following
master equation given in Eq. (2.12), one can deduce the time-evolution of the system
operator a in Heisenberg picture as

a(dt) = a(0) + i[HS, a(0)]dt

− 1

2
(a(0)L̂†L̂+ L̂†L̂a(0)− 2L̂†a(0)L̂)dt

+ (L̂†a(0) + a(0)L̂)dBt. (2.29)

Now, considering a special case for the generic function in the interaction Hamiltonian

F (a, a†) = a, (2.30)

we construct the Lindblad operator from Eq. (2.13) as [8, 9]
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LdBt =
√
γ[a†(0)ain − a(0)a†in]dt. (2.31)

One can check whether it satis�es the relation L† = −L. The expression of Lindblad
operator allows us to rewrite Eq. (2.29) as

ȧ(t) = i([HS, a(t)]− γ

2
a(t) +

√
γain(t), (2.32)

which is the Quantum Langevin equation for the annihilation operator in case of
linear coupling between the system and environment which can be derived from the
Eq. (2.24) by considering c = a. From left to right, they are the time evolution of
the isolated system, the decay of the �eld amplitude, and the noise interference on
the system caused by the environment. Substituting the expression of the Lindblad
superoperator given in the Eq. (2.31) into Eq. (2.12), we reproduce the master equation
in Schrödinger picture as

ρ̇S = −i[HS, ρS] +
√
γ([a†(0), ρS(0)]ain − [a(0), ρS(0)]a†in)

− γ

2
[(N + 1)(a†aρS + ρSa

†a− 2aρSa
†)

+N(aa†ρS + ρSaa
† − 2a†ρSa)

+M(a†a†ρS + ρSa
†a† − 2a†ρSa

†) (2.33)

+M∗(aaρS + ρSaa− 2aρSa)],

where N = dt〈a†inain〉 and M = dt〈ainain〉. The terms proportional to M and M∗

describe dephasing whereas the terms proportional to N and N + 1 illustrate dissipa-
tion. The terms on the top row correspond to isolated time evolution of the system
and the �uctuation due to external noise interference caused by bath, respectively.
Since the system is coupled to a thermal bath, the action of random external noise
and the dephasing terms vanish, leaving

ρ̇S = −i[HS, ρS]− γ

2
[(Nth + 1)(a†aρS + ρSa

†a− 2aρSa
†)

+Nth(aa
†ρS + ρSaa

† − 2a†ρSa)], (2.34)

where Nth is the thermal population of bath. For normalized ρS at temperature T,
Nth becomes

Nth(ωk) = (e
~ωk
kBT − 1)−1, (2.35)

where kB is the Boltzmann constant.

2.2 Decoherence and Dephasing

We introduce two important features of the evolution of open quantum systems cou-
pled to a thermal bath at zero temperature. The di�erence in the coupling Hamiltonian
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gives di�erent features in the time evolution of the system. The features are ampli-
tude and phase decay, and those are well explained by using master equation. The
amplitude decay of a channel is a schematic model where we see spontaneous emission
of photons from the system, whereas phase damping describes the transformation of
the state of the system from pure to mixed, keeping the population unchanged.

2.2.1 Amplitude Decoherence

As an example to demonstrate the amplitude damping, we consider the case where
a harmonic oscillator interacts with an empty bath with the exchange of photon,
making the generic function F (a, a†) = a in the interaction Hamiltonian. Such kind
of system/reservoir coupling is often observed in the physics of quantum transport
[66], photosynthetic complexes [67] and ultracold gases [68]. The coupling between
the system and the bath determines the Lindblad jump operator as

L = −√γa, (2.36)

which makes the equation of motion of the density matrix of the system in interaction
picture as

ρ̇S = −γ
2

(a†aρS + ρSa
†a− 2aρSa

†). (2.37)

Essentially, one can determine the decay equation of the �eld operator as

〈ȧ(t)〉 = Tr{aρ̇S} = −γ
2
〈a(t)〉. (2.38)

One can obtain the same expression from the quantum Langevin equation given in
the Eq. (2.32) by considering ain(t) = 0. The occupation number (n = a†a) of the
oscillator reduces as

dn

dt
= a†ȧ+ ȧ†a = −γn, (2.39)

which integrates to
n(t) = e−γtn(0). (2.40)

Here, we see system population decays exponentially with time at the dissipation rate
γ. The master equation indicates amplitude decoherence due to the transformation of
particle from system to bath spontaneously over time.

2.2.2 Phase Decoherence

In order to understand phase decoherence, let us take an example where the mechan-
ical object interacts with photons. For example, one can consider the interaction of
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dust particle with light in the atmosphere. Collision of the particle with photon will
not change the intensity of the �eld, but the state of the particle changes. We visualize
the process from the formulation of open quantum system, explicitly from the master
equation by considering that the bath is at zero temperature, and the generic function
in the interaction Hamiltonian is F (a, a†) = a†a, giving the Lindblad operator

L =
√
γa†a. (2.41)

Such kind of situation generally appears in the case of electron-phonon coupling or
optomechanical coupling, e.g. superconducting qubits [69�71], mechanical mode cou-
pled to atomic spins [42�44] and spin boson systems [45, 48]. The Lindblad operator
given in Eq. (2.41), determines the master equation in interaction picture as

ρ̇S = −γ
2

[(a†a)2ρS + ρS(a†a)2 − 2(a†a)ρS(a†a)]. (2.42)

Here γ is interpreted as the scattering rate of reservoir photons when the system is
singly occupied. To determine the state of the system, we express its density matrix
in number basis

ρS =
∑
n,m

ρnm|n〉〈m|, (2.43)

which gives the EOM of the elements of density matrix as

ρ̇nm = −γ
2

(n−m)2ρnm, (2.44)

and which integrates to

ρnm(t) = exp

(
−γt

2
(n−m)2

)
ρnm(0). (2.45)

However, the population of the system remains unchanged in this process, which can
be derived from the Eq. (2.42) as

d〈a†a〉
dt

= Tr{a†aρ̇S} = 0. (2.46)

Here, we cannot see the amplitude decoherence, leaving us to investigate on the phase
decoherence. To understand the phenomenon, let us start with a state

|c〉 =
√
p|0〉+

√
1− p|n〉, (2.47)

where p is the probability of occupying state |0〉. The initial density matrix of the
system is constructed as

ρS(0) = |c〉〈c| = p|0〉〈0|+
√
p(1− p)|0〉〈n|+

√
p(1− p)|n〉〈0|+ (1− p)|n〉〈n|. (2.48)
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We see that the diagonal terms hardly change, but the o�-diagonal terms in the
density matrix dissipate like exp(−γn2t/2). Hence, we lose the phase information of
the initial cat state, and after in�nite time the o�-diagonal terms become zero, leaving
the density matrix as

ρS(∞) = p|0〉〈0|+ (1− p)|n〉〈n|. (2.49)

Note that the initially prepared pure state of the system becomes mixed without
changing the system population. The same behavior is found when the phase damping
for a single qubit is studied [72]. The rate of decoherence is γn2/2. One can also
consider a system coupled to a thermal reservoir which has a �nite temperature, and
in that case, the same phenomenon can be observed with much faster rate.



3 Nonlinear Coupling Between

System and Environment

The linear S/B coupling given by the Hamiltonian

HS−B =
∑

gB
k

(
a†bk + ab†k

)
(3.1)

is not the most general situation. For example, the TLS bath which is modeled as a
collection of spins Jk and the Hamiltonian of isolated TLS bath is HTLS

E =
∑

k ΩkJ
z
k .

TLS modes are coupled collectively to the mode of the system. Therefore, we write
the coupling Hamiltonian between system and TLS as

HS−TLS =
∑

k

gTLS
k

(
Jk

+a
2 + Jk

−a
†2
)
. (3.2)

3.1 Holstein-Primako� Transformation

The Holstein-Primako� realization allows us to substitute the spin operators with
bosonic operators. The spin operators obey commutation relations[

Jk
z , J

k
±
]

= ±Jk
±,

[
Jk

+, J
k
−
]

= 2Jk
z . (3.3)

The bosonic operators dk, d
†
k follow the commutation relation[

dk, d
†
k

]
= 1. (3.4)

The spin operators which obeys Eq. (3.3) are mapped to the bosonic operators dk,
d†k, considering two possibilities, based on the physical situation that we want to
describe. If the situation appears as the TLSs is mostly staying in ground state, we
write Jk

z ' −jk where jk is the index of representation which is associated with the
spin Jk. This allows us to accept the following transformation:

Jk
z = n̂k − jk, Jk

+ = d†k
√

2jk − n̂k, Jk
− =

√
2jk − n̂k dk, (3.5)

16
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where n̂k = d†kdk.

We name this choice as HP−. The operators Jk
z , J

k
± can be shown to ful�ll the SU(2)

commutation relations[
Jk
z , J

k
+

]
=
[
n̂k, d

†
k

]√
2jk − n̂k = Jk

+,
[
Jk
z , J

k
−
]

=
√

2jk − n̂k [n̂k, dk] = −Jk
−,

(3.6a)[
Jk

+, J
k
−
]

= d†k

(√
2jk − n̂k

)2

dk −
√

2jk − n̂k n̂k

√
2jk − n̂k

= n̂k (2jk − n̂k + 1)− 2jk + n̂k − n̂k (2jk − n̂k) = 2Jk
z . (3.6b)

In the limit jk →∞, we have

Jk
+√
2jk

= d†k

√
2jk − n̂k

2jk

= d†k

(
1− n̂k

4jk

+ . . .

)
' d†k, (3.7a)

Jk
−√
2jk

' dk, (3.7b)

Jk
z

jk

=
n̂k

jk
− 1 ' −1. (3.7c)

Hence, the bosonic excitations those are described by dk and d
†
k, correspond to (small)

excitations around the Jk
z = −jk state. One can approximate system/TLS bath cou-

pling as

HS−HP− =
∑

k

gHP
k

(
d†ka

2 + dka
†2
)

(3.8)

with gHP
k =

√
2jkg

TLS
k . Similarly, if the TLSs mainly belong to their excited state, one

can write the mapping as

Jk
z = jk − n̂k, Jk

− = d†k
√

2jk − n̂k, Jk
+ =

√
2jk − n̂k dk. (3.9)

so that when jk →∞

Jk
+√
2jk

' dk,

√
2

jk

Jk
− ' d†k,

Jk
z

jk

= 1− n̂k

jk

' 1. (3.10)

This corresponds to the description of small �uctuations around Jk
z = jk state. We

indicate the condition as HP+ which gives

HS−HP+ =
∑

k

gTLS
k

(
dka

2 + d†ka
†2
)
. (3.11)
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3.2 Linearization of the Quantum Langevin Equa-

tions

We therefore linearize the system accepting the presence of a strong coherent pump
αp = αine

−iωpt. Here, we derive the equations to describe the stationary state in
a rotating frame of frequency ωp and the �uctuations around the stationary state.
Focusing on Eq. (2.24), we obtain

ȧ = −i [a,HS ]−
(κ

2
+ κNa

†a
)
a+
√
κain + 2

√
κNa

†aTLS
in (3.12a)

ȧ = −i [a,HS ]−
(κ

2
− κNa†a

)
a+
√
κain + 2

√
κNa

†aTLS
in

†
(3.12b)

in the presence of a strong, coherent pump αp = αine
−iωpt. The �rst equation corre-

sponds to HP− and the second equation is for HP+. We seek a solution by splitting up
the cavity �eld in terms of steady state coherent �eld and thermal �uctuation around
it in the form a[old] = α + a[new], which gives

−iωpα + ȧ = −iωc (α + a)−
[κ

2
+ κN

(
α∗ + a†

)
(α + a)

]
(α + a)

+
√
κ (αin + ain) + 2

√
κN
(
α∗ + a†

)
aTLS

in (3.13a)

−iωpα + ȧ = −iωc (α + a)−
[κ

2
− κN

(
α∗ + a†

)
(α + a)

]
(α + a)

+
√
κ (αin + ain) + 2

√
κN
(
α∗ + a†

)
aTLS

in

†
, (3.13b)

where without loss of generality we have assumed that HS = ωca
†a. Neglecting the

�uctuation terms, we obtain the equation for the steady-state solutions

0 = i∆α− κ

2
α− κNα |α|2 +

√
καin (3.14a)

0 = i∆α− κ

2
α + κNα |α|2 +

√
καin, (3.14b)

where ∆ = ωp − ωc.

In Fig. 3.1 we plot the stationary value of the cavity �eld obtained from the Eq. (3.14a).
As anticipated, when the driving �eld αin is weak, the stationary solution does not
deviate much from the solution obtained in the absence of nonlinear dissipation, for
both the choices of the HP mapping (HP±). However, when we increase the strength
of the external drive, the stationary solution starts deviating from the solution we
obtained in linear system. For the parameters chosen here, the amplitude di�erence is
negligible, even though the phase di�erence noticeable, as it is seen in between HP±
cases.
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(a) (b)

Figure 3.1: Amplitude (a) and phase (b), for the stationary value (in a frame rotating
at ωp, see text) of the cavity �eld α in the presence of a driving αin. Parameters: κN =
1.5 × 10−4, ∆ = 20 (all quantities are expressed in units of κ). [Pub.- I] reproduced
with permission.

From Eq. (3.13) the equation for the �uctuation around the steady-state solution
value of α is expressed as

ȧ =
[
i∆−

(κ
2

+ 2κN |α|2
)]
a− κNα2a† +

√
κain + 2

√
κNα

∗aTLS
in (3.15a)

ȧ =
[
i∆−

(κ
2
− 2κN |α|2

)]
a+ κNα

2a† +
√
κain + 2

√
κNα

∗aTLS
in

†
. (3.15b)

The change in the e�ective damping rate κeff = κ ± 4κN |α|2 in the presence of
nonlinear (HP±) coupling should be noted from Eq. (3.15). The ratio of the nonlinear
e�ective damping rate to that linear one is plotted with the variation of input �eld,
in Fig. 3.2, and it is seen that the nonlinear dissipative terms ∓2κN |α|2 a in Eq.
(3.15) lead to the broadening/narrowing of the linewidth associated with the linearized
response of the cavity �eld �uctuations, respectively.

3.3 Fluctuation Spectrum of the Nonlinear Model

In the presence of a strong, coherent pump, the system dynamics are a�ected by ther-
mal �uctuations provided by the bosonic and the TLS baths. As hinted by Eqs. (3.15a,
3.15b), the existence of a parametric term introduces squeezing in the spectrum of
the cavity for both cases. Here, we evaluate the spectrum of these �uctuations for the
HP− case. One can also do a similar kind of derivation for the HP+ mapping. One
can obtained the �uctuation spectrum

Sθω =
1

2
〈
{
Xθ
ω, X

θ
−ω
}
〉, (3.16)
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Figure 3.2: The total e�ective dissipation of the linearized models Eq. (3.15a) (red)
and Eq. (3.15b) (dashed green) that correspond to the cases, where the majority of
the TLSs are in the ground state/excited state, respectively. They are compared to
the case of pure linear dissipation (black dots). Here we assume the system to be a
simple cavity with HS = ωcc

†c. In the units of κ, the parameters are ∆ = ωp−ωc = 20
and κN = 1.5× 10−4. [Pub.- I] reproduced with permission.

(a) (b)

Figure 3.3: Noise spectrum for the cavity �eld in the presence of an external drive αin =

700, for (a) HP− and (b) HP+ for 〈a†inain〉 = 〈aTLS
in
†
aTLS

in 〉 = 1 (all other parameters as
in Fig. 3.1). [Pub.- I] reproduced with permission.

with Xθ
ω = 1/

√
2
(
a†−ωe

iθ + aωe
−iθ
)
, from the Fourier transformation of the QLE

which is given in the Eq. (3.15a) and its Hermitian conjugate[
−i (ω + ∆) +

κ

2
+ 2κN |α|2

]
aω + κNα

2a†−ω =
√
κain,ω + 2

√
κNα

∗aTLS
in,ω (3.17a)[

−i (ω −∆) +
κ

2
+ 2κN |α|2

]
a†−ω + κNα

∗2aω =
√
κa†in,−ω + 2

√
κNαa

TLS†
in,−ω. (3.17b)
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Figure 3.4: The cavity spectra related to the Holstein-Primako� couplings (a) HP−
and (b) HP+ for the largest uncertainty quadrature (θ = π/2 and θ = 0, respectively).
Here the thermal populations of the bosonic and TLS baths are nth = nTLS

th = 1, and
in the units of κ, the other parameters are ∆ = 20 and κN = 1.5 × 10−4. [Pub.- I]
reproduced with permission.

The usual convention of the Fourier transformation is used here, according to which

at =

∫ ∞
−∞

dω exp (−iωt)aω and a†t =

∫ ∞
−∞

dω exp (−iωt)a†−ω. (3.18)

De�ning

A = −i (ω + ∆) +
κ

2
+ 2κN |α|2 , (3.19a)

B = κNα
2, and (3.19b)

C = −i (ω −∆) +
κ

2
+ 2κN |α|2 , (3.19c)

we express the QLE for the system as(
aω
a†−ω

)
=

1

AC − |B|2

(
C −B
−B∗ A

)( √
κain,ω + 2

√
κNα

∗aTLS
in,ω√

κa†in,−ω + 2
√
κNαa

TLS†
in,−ω.

)
(3.20)

Now, one can simplify the equation as

aω = χd (ω) ain,ω + χx (ω) a†in,−ω + χTLS
d (ω) aTLS

in,ω + χTLS
x (ω) aTLS†

in,−ω, (3.21a)

a†−ω = χ∗x (−ω) ain,ω + χ∗d (−ω) a†in,−ω + χTLS∗
x (−ω) aTLS

in,ω + χTLS∗
d (−ω) aTLS†

in,−ω, (3.21b)

where

χd (ω) =
√
κC(AC − |B|2)−1, (3.22a)

χx (ω) = −
√
κB(AC − |B|2)−1, (3.22b)

χTLS
d (ω) = 2

√
κNα

∗C(AC − |B|2)−1, and (3.22c)

χTLS
x (ω) = −2

√
κNαB(AC − |B|2)−1. (3.22d)
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If the thermal populations of the baths are given by 〈ain,ωa
†
in,ω′〉 = (nth + 1) δ (ω − ω′)

and 〈aTLS
in,ω a

TLS†
in,ω′ 〉 =

(
nTLS

th + 1
)
δ (ω − ω′), the cavity spectrum can be written as

Sθω =
1

4

[(
|χd (ω)|2 + |χx (−ω)|2

)
〈
{
ain,ω, a

†
in,ω

}
〉+

(
|χd (−ω)|2 + |χx (ω)|2

)
〈
{
a†in,−ω, ain,−ω

}
〉
]

+
1

4

[ (
χd (ω)χx (−ω) e−i2θ + χ∗d (ω)χ∗x (−ω) ei2θ

)
〈
{
ain,ω, a

†
in,ω

}
〉

+
(
χd (−ω)χx (ω) e−i2θ + χ∗d (−ω)χ∗x (ω) ei2θ

)
〈
{
a†in,−ω, ain,−ω

}
〉
]

+
1

4

[ (∣∣χTLS
d (ω)

∣∣2 +
∣∣χTLS

x (−ω)
∣∣2) 〈{aTLS

in,ω , a
TLS†
in,ω

}
〉

+
(∣∣χTLS

d (−ω)
∣∣2 +

∣∣χTLS
x (ω)

∣∣2) 〈{aTLS†
in,−ω, a

TLS
in,−ω

}
〉
]

+
1

4

[ (
χTLS

d (ω)χTLS
x (−ω) e−i2θ + χTLS∗

d (ω)χTLS∗
x (−ω) ei2θ

)
〈
{
aTLS

in,ω , a
TLS†
in,ω

}
〉

+
(
χTLS

d (−ω)χTLS
x (ω) e−i2θ + χTLS∗

d (−ω)χTLS∗
x (ω) ei2θ

)
〈
{
aTLS†

in,−ω, a
TLS
in,−ω

}
〉
]

=
1

2

[
|χd (ω)|2 + |χd (−ω)|2 + |χx (ω)|2 + |χx (−ω)|2

+ 2 cos (2θ + φ) |χd (ω)χx (−ω) + χd (−ω)χx (ω)|
](

nth +
1

2

)
+

1

2

[ ∣∣χTLS
d (ω)

∣∣2 +
∣∣χTLS

d (−ω)
∣∣2 +

∣∣χTLS
x (ω)

∣∣2 +
∣∣χTLS

x (−ω)
∣∣2

+ 2 cos
(
2θ + φTLS

) ∣∣χTLS
d (ω)χTLS

x (−ω) + χTLS
d (−ω)χTLS

x (ω)
∣∣ ](nTLS

th +
1

2

)
,

(3.23)

where φ(TLS) = Arg
[
χ

(TLS)
d (ω)χ

(TLS)
x (−ω) + χ

(TLS)
d (−ω)χ

(TLS)
x (ω)

]
.

The Eq. (3.23) shows squeezing in the cavity spectrum for HP− mapping and it is also
possible to draw a parallel picture for HP+ mapping starting from Eq. (3.15b). From
Fig. 3.3, we see how the cavity �uctuation spectrum exhibits a clear dependence on the
phase θ for both the cases. In Fig. 3.4(a) we have plotted the cavity spectrum for the
HP− and Fig. 3.4(b) presents the spectrum related to HP+ coupling. Both the cases
the plots are given for the largest uncertainty quadrature [(a)θ = π/2 for HP− and
(b) θ = 0 for HP+]. The interesting feature that we see is the linewidth broadening in
(a) as the driving �eld αin increases, whereas in (b) the linewidth becomes narrower.
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As we see in the previous chapter, the linear S/B coupling is not the most general
situation. The linearization technique implemented before is not a satisfactory method
to study exact dynamical behavior. Apart from nonlinear S/B coupling, this method
is also limited to provide exact solution of non-Markovian dynamics. These limitations
of analytical methods motivates for the numerical simulation of the time evolution,
which includes transformation of the S/B coupling model to a many-body chain and
the computational method consists of numerical diagonalization and renormalization
process. In the following section, we provide an explanation in detail describing the
computational technique, and followed by the mapping of S/B coupling model to a
one-dimensional chain.

4.1 Time-evolving Block Decimation Algorithm

The simulation of a many-body quantum system having a large number of lattice sites
is a di�cult task due to the rapid increase in the number of parameters associated
with the size of the Hilbert space. For example, one can consider the Hubbard model
with N lattice sites, N↓ spin-down, and N↑ spin-up fermions, the dimension of the
corresponding Hilbert space is

WH(N,N↑, N↓) =
(N !)2

(N −N↑)!N↑!(N −N↓)!N↓!
, (4.1)

which is a very large number and increases almost exponentially with the number of
lattice sites N. In case of Bose-Hubbard model with N lattice sites and N ′ bosons, the
associated Hilbert space is

WBH(N,N ′) =
(N ′ +N − 1)!

(N − 1)!N ′!
, (4.2)

which also becomes huge when the size of the system increases. For the calculation of
the ground-state properties and the simulation of the time-evolution of a many body
quantum system of feasible sizes, one has to invest a huge e�ort into the development
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of numerical methods. The linear growth of the size of the system causes exponen-
tial increase in the size of the Hilbert space which also costs exponential increase in
computational resources.

Over last few decades, many numerical approaches have been developed to calcu-
late the time evolution and the ground states of many-body quantum systems which
bypasses the trouble of storing the coe�cients of the entire Hilbert space. The ap-
proaches include sampling in Quantum Monte-Carlo methods [50�53], performing in
Density Matrix Renormalisation Group (DMRG) methods [34, 51, 52, 54�58]. The
DMRG method was �rst introduced by S. R. White in 1992 [59] to determine the
ground state of a one dimensional system, keeping in mind that the system is large.
Even though several attempts have been attempted to generalize the basic DMRG
methods to apply on time dependent calculations [73], the major step forward was
taken by Vidal in 2003 [62] where he proposed a method in which the truncated
Hilbert space was modi�ed at each time step so that the representation of the state
satis�ed some optimal criteria. The method is often referred to as the Time Evolving
Block Decimation Algorithm (TEBD), which has been used for the treatment of Ising
chain model [74], Hubbard model [68], master equations in case of dissipative systems,
and systems at �nite temperatures [75].

4.1.1 State Representation

The state of an N site 1-D lattice system is expressed in terms of local Hilbert space
of each lattice site which consists MN -dimensional basis

|ψ〉 =
M∑
in=1

ci1i2..iN |i1, i2, .., iN−1, iN〉, (4.3)

where M is the dimension of local Hilbert space and |in〉 is the basis states in the
local Hilbert space at site n. The trick of the algorithm is the representation of this
state as a convenient decomposition into a series of tensors:

ci1i2..iN =

χ∑
α1,.,αN−1=0

λ[1]
α1

Γ[1]i1
α1α2

λ[2]
α2

Γ[2]i2
α2α3
· ... · λ[N ]

αN
Γ[N ]iN
αNαN+1

λ[N+1]
αN+1

(4.4)

The representation of the state is known as matrix product states (MPS). The de-
composition of the pair of sites is performed by singular value decomposition (SVD),
which generates bipartite splitting between any two local Hilbert spaces in the chain.
The details of the decomposition procedure are explained in the following section.
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However, the Γ tensor has dimension N ×M × χ× χ, where χ is the predetermined
Schmidt number. The index n within square brackets stands for the corresponding
site. The λ tensor keeps the Schmidt values for the partition between two consecutive
bond. After analyzing the computational complexity, one can conclude by saying that
rather than treating MN coe�cients of the initial term, it is always e�cient to deal
with MNχ2 + (N + 1)χ terms, which are obtained after the decomposition of the
state.

Schmidt decomposition

The state of any bipartite system (|ψ〉 ∈ HA ⊗HB) can be decomposed into two
subsystems such as

|ψ〉 =
∑
α

λα|φAα 〉 ⊗ |φBα 〉, (4.5)

where the states |φAα 〉 and |φBα 〉 are orthonormal states of HA and HB, respectively.
The representation is obtained from the Schmidt decomposition, and the real and
positive Schmidt coe�cients λα satisfy

∑
α

λ2
α = 1 and

〈φAα |ψ〉 = λα|φBα 〉.

To derive Schmidt decomposition, we start with two orthonormal bases |jA〉 and |kB〉
of HA and HB, respectively. Let the dimension of HA and HB be MA and MB, re-
spectively, so that the state |ψ〉 can be expanded in terms of bases vectors

|ψ〉 =

MA,MB∑
j,k

cj,k|jA〉 ⊗ |kB〉, (4.6)

where the complex numbers cj,k are the elements of the matrix C of dimensions MA×
MB. The singular value decomposition generates two unitary matrices U and V of
dimensions MA×MA and MB ×MB, respectively, and an MA×MB diagonal matrix
D with real and non-negative entities, such that C = UDV . Using the SVD we can
re-express the state as

|ψ〉 =

MA,MB∑
j,k

χ∑
α

uj,αdα,αvk,α|jA〉 ⊗ |kB〉 =

χ∑
α

λα|φAα 〉 ⊗ |φBα 〉, (4.7)



26 Numerical Methods

where |φAα 〉 =
∑

j uj,α|jA〉, |φBα 〉 =
∑

k vk,α|kB〉, and λα = dα,α. The orthonormality of
|φAα 〉 and |φBα 〉 is ensured by the unitarity of U and V.

The Schmidt rank, χ ≤ min(MA,MB), is used to measure the entanglement between
two subsystems A and B in quantum information theory. Larger values of χ correspond
to more entanglement, and when χ = 1, the system is in a product state.

To obtain matrix product state for the full chain, we consider the �rst bipartite split-
ting between site 1 and the rest of the chain: [1] : [2..N ]:

|ψ〉 =

M,χ∑
i1,α2=1

Γ[1]i1
α2

λ[2]
α2
|i1〉|φ[2..N ]

α2
〉. (4.8)

In the next step, we split the rest of the chain separating in between site 2 and the
rest of the others: [2] : [3..N ] giving us

|φ[2..N ]
α2
〉 =

M,χ∑
i2,α3=1

Γ[2]i2
α2α3

λ[3]
α3
|i2〉|φ[3..N ]

α3
〉 (4.9)

Substituting it into the Eq. (4.8), we get

|ψ〉 =

M,χ∑
i1,α2=1

Γ[1]i1
α2

λ[2]
α2

Γ[2]i2
α2α3

λ[3]
α3
|i1〉|i2〉|φ[3..N ]

α3
〉. (4.10)

By repeating this process until the end of the chain, we obtain the decomposed form
of the coe�cient ci1i2..iN which is expressed in the Eq. (4.4). The construction of the
MPS ensures that the vectors λ[1]

α1 and λ
[N+1]
αN+1 are nonzero only when α1 = αN+1 = 1.

Validity of truncated decomposition

The physical signi�cance of the Schmidt decomposition is understood from the reduced
density operator of the subsystem A obtained by tracing out the subsystem B from the
full density matrix: ρA = TrB[ρ] =

∑
α λα|ψAα 〉〈ψAα |. In quantum information theory,

the entanglement between two subsystems A and B is identi�ed by the von Neumann
entropy, which is determined from the eigenvalues of the reduced density operators:
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SA = −Tr[ρA log2 ρA] = −
∑
α

λ2
α log2 λ

2
α. (4.11)

The fact that the eigenvalues of the reduced density operators are same for both
subspaces, ensures that the von Neumann entropy of the two subsystems A and B are
same for the pure state of a composite system.

The von Neumann entropy provides a theoretical lower bound on the number of qubits
required to express the information of the subsystem A (or B). The cuto� limit of the
dimension of the Schmidt vector (χ) comes from the fact that the eigenvalues of the
reduced density matrix decay exponentially with the increment of α(λα ≈ exp(−Kα),
where K > 0), and beyond the cuto� limit, it is expected that λα becomes reasonably
low to be neglected. The lower bound of the Schmidt rank is given by χ ≥ 2SA . In case
of 1D systems, the von Neumann entropy diverges logarithmically at a critical point.
However, in the case of higher dimensional systems the decay of the eigenvalues is too
slow, and therefore, it demands a large value of χ which makes the TEBD simulation
ine�cient. In another way, one can say that due to low entanglement or smaller
value of the von Neumann entropy, in case of one dimensional systems truncation
of Hilbert space is a good and e�cient approximation, but the higher-dimensional
systems demands a large number of states to achieve accuracy, and hence, the TEBD
simulation has poor performance [76].

4.1.2 Operator on Lattice Chain

Single-Site Gate

A single site operator updates the Γ tensor of a particular site

Γ
′[k]ik
αkαk+1

=
M∑
j

U ik
jk

Γ[k]jk
αkαk+1

, (4.12)

which is performed in the order of χ2M2 operations.

Two-Site Gate

The implementation of a two-site gate on an MPS is dependent on SVD, which plays
a crucial role in the time evolution and measurements. The implementation is based
upon updating the tensors of two neighboring sites n and n + 1. The double site
operator U acting on the two sites changes the basis of these sites and entanglement.
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In order to apply the gate operator, �rst we write the state expressing in terms of
Schmidt eigenvectors to the left and the right of the pair of the sites:

|α〉 = |φ[1....(n−1)]
α 〉 (4.13a)

|γ〉 = |φ[(n+2)....N ]
γ 〉, (4.13b)

with tensor product symbols |αinin+1γ〉 = |α〉 ⊗ |in〉 ⊗ |in+1〉 ⊗ |γ〉. By expressing it
as a sum of matrix product, we can construct a fourth order tensor Θ as

|ψ〉 =

M,χ∑
in,in+1=1
α,β,γ=1

λ[n]
α Γ

[n]in
αβ λ

[n+1]
β Γ

[n+1]in+1

βγ λ[n+2]
γ︸ ︷︷ ︸

Θ
inin+1
αγ

|αinin+1γ〉. (4.14)

Next, we apply the operator to update the tensor

Θ̃jnjn+1
αγ =

χ∑
β=1

M∑
in,in+1=1

U
jnjn+1

inin+1
λ[n]
α Γ

[n]in
αβ λ

[n+1]
β Γ

[n+1]in+1

βγ λ[n+2]
γ , (4.15)

which has M2χ2 basis states in total, which is then reduced to χ2 states by taking
SVD on newly constructed Θ tensor. The SVD generates the diagonal matrix with
magnitudes arranged in an exponentially reducing manner. We truncate the λ tensor
for the highest χ values to �nalize the updated state.

Figure 4.1: The quantum circuit for simulating a time evolution: alternating operation
on odd and even pair. [Pub.- II,III] reproduced with permission.
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4.1.3 Time Evolution

Real-Time Evolution

In order to do the numerical simulation for the real time evolution, we split the double
site Hamiltonian in odd and even sites.

H =
∑
i odd

Hi,i+1 +
∑
i even

Hi,i+1 = F +G (4.16)

According to the Suzuki-Trotter expansion, we do time evolution of the alternate
lattice sites. The �rst order expansion is

U = e−iHdt = e−iFdte−iGdt +O[dt2], (4.17)

which generates an error in the order of dt2. To minimize the time error, we generally
use the second order ST expansion which comes with the error of the order dt3.

U = e−iHdt = e−iFdt/2e−iGdte−iFdt/2 +O[dt3] (4.18)

The diagrammatic representation is given in Fig. 4.1. However, the time error can
even be reduced by applying Forest-Ruth formula, which gives Trotter error of the
order O(dt6). The formula of the decomposition is given by [77]

e−iHdt = e−iFθdt/2e−iGθdte−iF (1−θ)dt/2e−iG(1−2θ)dte−iF (1−θ)dt/2e−iGθdte−iFθdt/2, (4.19)

with the constant θ = 1/(2− 21/3). Better Suzuki-Trotter formula with a higher order
of time error can be designed, but they do not improve the accuracy of exponential sig-
ni�cantly [77]. However, the Forest-Ruth formula allows us to consider larger step size
which essentially helps to reduce the simulation time and to preserve computational
resources.

Imaginary-Time Evolution

Imaginary time evolution is required to �nd out the ground state and the thermal
state of the system. The ground state is determined by taking imaginary time evolu-
tion for a long time (ideally in�nity). The state vector is being normalized after each
in�nitesimal step of the time evolution. The coe�cients of the basis vectors reduce
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exponentially during imaginary time evolution. Higher-energy states are being sup-
pressed more, leaving the lowest energy state �nally as the ground state of the system.
In practice, DMRG code is designed to determine the ground state by imaginary time
evolving and normalizing the initial product state iteratively, which is expressed as

|ψgr〉 = lim
τ→∞

e−H̃τ |ψP 〉
||e−H̃τ |ψP 〉||

, (4.20)

where |ψP 〉 is an initial product state and 〈ψ0|ψP 〉 = 0. The implementation is quite
straight forward. We evolve the full chain for δτ time step each time and normalize.
The algorithm of the imaginary time evolution is slightly di�erent than real time
evolution. Unlike higher-order Trotter decomposition, here we use back-forth method.
Even though the time evolution for the determination of ground state should continue
for in�nite time, we terminate the code when we see that the state converges to the
ground state and hardly changes anymore. Several convergence criteria can be there to
stop the iteration. For instance, one could use the sum of the square of the di�erences

between the λ-coe�cients of the two consecutive steps: 1
N

∑N
i

∑χ
αi

(
λαi − λ

[next]
αi

)2

.

When the quantity is below a threshold, we consider the convergence is reached.

Back-forth scheme

Higher order Trotter decompositions are often used in real time evolution which is
not a good choice for imaginary time evolution for having non-unitary operations on
each pair which produces non-orthogonal Schmidt eigenstates. The unitarity of the
evolution operator preserves the orthogonality of the sets, which is not happening
here. Hence, we sweep the evolution operators across the chain forward and backward
direction, with the order (1, 2), (2, 3), ..., (N−1, N), (N−1, N), (N−2, N−1), ..., (1, 2).

In order to understand the whole scenario, let us start with a two site operation
between site n and n + 1. The non-unitary operation hampers the orthogonality of
the state |φ[1..(n−1)]

α 〉 and |φ[(n+2)..N ]
γ 〉. But the SVD ensures orthogonalization of the

states |φ[1..n]
β 〉 and |φ[(n+1)..N ]

β 〉. In the next step, when we target the alternate sites

through Trotter decomposition, we demand orthogonality of the states |φ[1..(n−1)]
α 〉 and

|φ[(n+2)..N ]
γ 〉 for the operation on the pairs (n − 2) − (n − 1) and (n + 2) − (n + 3),

respectively, which is not happening anymore. Hence, instead of choosing alternate
sites, we switch to the next pair of sites which is (n+1)-(n+2) to ful�ll the require-
ment of orthogonality of the state |φ[(n+1)..N ]

β 〉, which is satis�ed from the SVD of the

previous operation; and the state |φ[1..(n+2)]
δ 〉 which has the orthogonality from the

original state, was not changed in the previous operation. This is the reason why we
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sweep across the chain in the forward and backward direction while doing imaginary
time evolution. Many sets of states become non-orthogonal during the time evolution,
but the requirement of orthogonality condition is satis�ed for the sets of states that
we consider at any point. At the end of the imaginary time evolution, we restore the
orthonormality of the states by sweeping across the chain forward and backward with
a unitary operator (e.g., the identity) [78].

4.1.4 Estimation of Errors

There are two major error sources in TEBD: Suzuki-Trotter expansion and truncation
of the Hilbert space [79].

Trotter Error

In the case of a Trotter approximation of n th order, the error appears of order δtn+1.
Taking into account the number of steps T

δt
, the error after the time T is

εtr =
T

δt
δtn+1 = Tδtn. (4.21)

The actual state |ψ̃Tr〉 should be

|ψ̃Tr〉 =
√

1− εtr2|ψTr〉+ εtr|ψ⊥Tr〉, (4.22)

where |ψTr〉 is the state obtained after time evolution and |ψ⊥Tr〉 accounts for the part
that is neglected while doing the operation. The total Trotter error scales with time
T as

εtr(T ) = 1− |〈ψ̃Tr|ψTr〉|2 = 1− 1 + ε2tr = ε2tr. (4.23)

Truncation Error

The errors arises with the truncation of the Hilbert space from the decomposition,
are twofold. The sum of all discarded eigenvalues of the reduced density matrix, at
the bond n is



32 Numerical Methods

εn =

χ∑
α=χc

(λ[n]
α )2, (4.24)

where χc is the truncated Schmidt number. Now, at a given bond n, the actual state
|ψ〉 is described by Schmidt decomposition

|ψ〉 =
√

1− εn|ψ[n]
D 〉+

√
εn|ψ[n]⊥

D 〉, (4.25)

where the truncated state is given by

|ψ[n]
D 〉 =

1√
1− εn

χc∑
αn=1

λ[n]
αn|Φ

[1..n]
αn 〉|Φ

[n+1..N ]
αn 〉 (4.26)

and

|ψ[n]⊥
D 〉 =

1
√
εn

χ∑
αn=χc

λ[n]
αn|Φ

[1..n]
αn 〉|Φ

[n+1..N ]
αn 〉 (4.27)

is the state corresponding to the eigenfunctions of smallest and irrelevant Schmidt
coe�cients and therefore those are neglected. Also, we see 〈ψ[n]⊥

D |ψ[n]
D 〉 = 0 because

they are spanned by vectors corresponding to orthogonal spaces. Using the same
argument as for the Trotter expansion, the error after the truncation is

εn = 1− |〈ψ|ψ[n]
D 〉|

2 =

χ∑
α=χc

(λ[n]
α )2, (4.28)

After moving to the next bond, similarly the state gives:

|ψ[n]
D 〉 =

√
1− εn+1|ψ[n+1]

D〉+
√
εn+1|ψ[n+1]⊥

D〉. (4.29)

After taking truncation on the next bond, the error is

ε = 1− |〈ψ|ψ[n+1]
D 〉|2 = 1− (1− εn+1)|〈ψ|ψ[n]

D 〉|
2 = 1− (1− εn+1)(1− εn) (4.30)

and so on. Moving from bond to bond, we determine the total error caused by trun-
cation in the full chain which is given by

εD = 1−
N−1∏
n=1

(1− εn). (4.31)
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4.1.5 Measurement of Correlation Functions

The operator AikjkB
il
jl
acts on the local Hilbert spaces of the sites k and l together to

determine the correlation function between the sites. The operators applied on the
MPS that determines the correlation function is expressed as

〈ψ∗|AikjkB
il
jl
|ψ〉 =

M∑
i1,i2,...,iN

 χ∑
β1,.,βN−1=0

λ
[1]
β1

Γ
[1]i1
β1β2

λ
[2]
β2

Γ
[2]i2
β2β3
· ... · λ[N ]

βN
Γ

[N ]iN
βNβN+1

λ
[N+1]
βN+1

∗

×
χ∑

α1,.,αN−1=0

λ[1]
α1

Γ[1]i1
α1α2

λ[2]
α2

Γ[2]i2
α2α3

..
∑
jk

AikjkΓ
[k]jk
αkαk+1

..
∑
jl

Bil
jl

Γ[l]jl
αlαl+1

..λ[N ]
αN

Γ[N ]iN
αNαN+1

λ[N+1]
αN+1

(4.32)

The order of matrix operation in this computation is N × M × χ4. Even though,
the operators Ak and Bl acts only on single sites, we can also calculate a higher-
order correlation function instantly following the same way with minimum additional
computational cost. Reversibly, a single site operator operates on one site only, and
hence, the operation is less complicated.

4.2 Preparation of Thermal Bath Using TEBD

In quantum statistical mechanics, the thermal state is considered as a mixed state,
which is expressed as an ensemble of pure states. The density matrix of a thermal
state (ρβ) at inverse temperature β with Hamiltonian H is given by ρβ = exp(−βH).

In the previous section we have discussed about TEBD algorithm which is one of
the most successful methods to study the strongly correlated one-dimensional (1D)
systems. Even though it is designed to study the time evolution and the determination
of ground state of a many body systems, quite di�erent methods for the simulations
at �nite temperatures have been developed, e.g. puri�cation of the density matrix [80,
81]. The combination of real and imaginary time DMRG allows to evaluate the �nite-
temperature response functions. The method was used successfully to study �nite-
temperature properties of quantum spin chains [60]. However, the simulation based
on matrix puri�cation is often limited due to a subsequent growth of entanglement
and the computational costs associated with it.

In order to get rid of this problem, the complementary approach is introduced where
one can choose a large number of sample pure states and calculate observables by
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taking the average over them [61], instead of purifying the density matrix. The states
whose ensemble generate the impact of ρβ = exp(−βH), are typically known as min-
imally entangled typical thermal states (METTS),= and in this chapter we discuss
the algorithm and the subsequent theory behind it.

4.2.1 Preparation of METTS with Pure State

Algorithm of minimally entangled typical thermal states

We employ the METTS algorithm, which approximates thermal expectation values
of an observable 〈Ô〉β by sampling over a large number of pure quantum states that
have low entanglement. Overall, these samples which keep physical properties of the
system for a given temperature, allows us to make e�cient DMRG calculations. The
thermal expectation value of an observable is obtained using a set of orthonormal
basis {|n〉} of classical product states (CPS)

|n〉 =
⊗

i
|ni〉, (4.33)

where |ni〉 are arbitrary orthonormal basis states for lattice site i. The thermal ex-
pectation value of the operator is determined as

〈Ô〉β =
1

Zβ

∑
n

〈n|e−βH/2Ôe−βH/2|n〉, (4.34)

where Zβ is the partition function. The CPS |n〉 becomes a matrix product state
(MPS) |φn〉 after the imaginary time evolution with probabilities Pn as

|φn〉 =
1√
Pn
e−βH/2|n〉, where Pn = 〈n|e−βH |n〉. (4.35)

Afterwards, the METTS |φn〉 is collapsed to a new CPS |n′〉 via projective measure-
ment consists of an arbitrary basis, from which one can subsequently estimate a new
METTS |φn′〉 and this process continues to generate a large set of MPS which alto-
gether typically represents a thermal state. Thus, the sampling is obtained e�ciently
through the generation of a Markov chain of METTS, illustrated in Fig. 4.2; where
the thermal average is shown to be determined from a set of imaginary time evolved
and normalized MPS states (|φn〉) with probabilities Pn/Zβ
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Figure 4.2: Generation of a set of METTS through imaginary time evolution and
projective measurement. [Pub.- III] reproduced with permission.

〈Ô〉β =
1

Zβ

∑
n

Pn〈φn|Ô|φn〉〉 (4.36)

The computational cost of this process increases when the entanglement between two
lattice points increases, and hence, the CPS is the best choice to start with for having
the least entanglement. The obtained MPS after imaginary time evolution is minimally
entangled and the entanglement entropy of the product states remains reasonably low
during real time evolution.

Summarize the algorithm and proof of balance condition

The algorithm that produce a set of METTS that represent a thermal state, can be
summarized as:

1. Choose a CPS |n〉.

2. Compute the MPS |φn〉 = exp(−βH/2)|n〉P (n)−1/2 and calculate observables.

3. Collapse a new CPS |n′〉 from |φn〉 through projective measurement and return
to step 2. A large collection of such MPS exhibits the properties of a thermal
state.

The probability of collapsing into a new state |n′〉 from the initial product state |n〉
is

pn→n′ =
1

Pn
|〈n′|e−βH/2|n〉|2. (4.37)

Considering an ensemble of all initial CPS |n〉 with probability distribution Pn/Zβ, we
arrive a new CPS |n′〉 through the time evolution and projective measurement with
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probability ∑
n

Pn
Zβ
pn→n′ =

∑
n

Pn
Zβ

1

Pn
|〈n′|e−βH/2|n〉|2

=
1

Zβ

∑
n

〈n′|e−βH/2|n〉〈n|e−βH/2|n′〉

=
1

Zβ
〈n′|e−βH |n′〉 =

Pn′

Zβ
.

Note that the obtained ensemble of all such |n′〉 has the same original distribution.
The transition probabilities follow a detailed balance condition

Pn
Zβ
pn→n′ =

Pn′

Zβ
pn′→n, (4.38)

which means the expected distribution of Pn is a �xed point stochastic Markov process.
Summarizing the whole process, we conclude by saying that starting from a random
CPS and taking imaginary time evolution upto β/2, one can arrive to an MPS, which
is then collapsed to another CPS through a projective measurement with measurement
basis. By repeating the same process for few times, we generate a collection METTS,
and, by doing the measurement on each METTS, we obtain the running average as
the desired output. It is seen that the measurement converges in some point which is
considered as our desired output.

4.2.2 Collapse of an MPS to a CPS

In this section, we discuss how to apply the CPS collapsing algorithm to a state |φn〉
represented as an MPS. During this process, we scan the whole lattice and collapse
the MPS of each site to a new CPS. We start by considering the orthogonality center
of the MPS at the �rst site, such that the tensors λ[n]

αn and Γ
[n]jn
αnαn+1 for n = 2, 3, ...

are right orthogonal to it. In order to collapse into a new state, �rst, we compute the
expectation values of the projectors P1(m) on the �rst site

P1(m) =
∑

j,k,α1,α2

λ[1]∗
α1

Γ[1]k1∗
α1α2

λ[2]∗
α2
U(k,m)U∗(j,m)λ[1]

α1
Γ[1]j1
α1α2

λ[2]
α2
, (4.39)

where U is a random unitary operator that rotates the projector operator in an ar-
bitrary angle. We use the operator U to rotate the orthonormal basis set as well and
make it arbitrary to make sure that we are working with a basis set which is not
an eigenvector of the Hamiltonian, otherwise the algorithm shrinks down to a trivial



4.3 Mapping of S/B Coupling Model to a Semi-in�nite 1D Chain 37

case. The change in the �rst site forces to update the λ[2]
α2 tensor for the projective

measurement in the next step on site 2. The update goes as

λ′[2]
α2

=
1√
P1(m)

∑
k1

U(k1,m)Γ[1]k1
α1α2
|α1=1λ

[2]
α2
. (4.40)

The new CPS for the site 1 is decided based on the probability P1(m). The bond
dimension of CPS is 1. So, values of λ[1]

α1 and λ
[2]
α2 vectors go as 1 for the �rst element

and 0 for the rest of the others.

4.3 Mapping of S/B Coupling Model to a Semi-

in�nite 1D Chain

The theoretical techniques which have been developed over decades and experimented
successfully on various two state systems [82, 83], do not provide any satisfactory
platform to obtain exact solution in case of a simple, non-trivial model like single
two level system (TLS) coupled to a zero temperature bath [84, 85] for having non-
linearity, even though nonlinear e�ects have been encountered formally many times,
e.g. micromechanical oscillator [86], Josephson qubits [87], and dielectrics at the limit
of single photon excitation energies [88]. As we intend to implement DMRG for open
quantum dynamics, one has to map the canonical S/B model to one-dimensional
harmonic chain with nearest neighbor interactions. The dynamics of a small subsystem
is obtained from the time dynamics of the small part of the chain. In the following
section, we discuss about the analytical technique that generates a map between the
two models to simulate open quantum system numerically.

4.3.1 System Speci�cation

Here, we present how the multimode environment coupled to a system is transformed
into a semi-in�nite chain model. The Hamiltonian of the bath for a S/B coupling
model given in Eq. (2.8), is expressed in continuous domain as

HB =

∫ xmax

−xmax
dxg(x)b†xbx, (4.41)

where bx(b†x) are the annihilation (creation) operators of a particular mode x of the
bath. xmax is the hard cuto� limit of the modes. The operators satisfy the bosonic
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commutation relation [bx, b
†
y] = δ(x − y). g(x) is the frequency of the mode. The

coupling Hamiltonian is

Hint =

∫ xmax

−xmax
dxh(x)

(
a†bx + ab†x

)
, (4.42)

where a(a†) are the annihilation (creation) operators of the system and h(x) is the
coupling strength of each mode, and depending on that we de�ne the measure dµ(x) =
h2(x)dx. The dynamics of the system is characterized by a positive function of the
energy of the bath, known as spectral density [89]:

J(ω) = πh2[g−1(ω)]
dg−1(ω)

dω
, (4.43)

where g−1(ω) is the inverse function of ω. As dω → 0, dg−1(ω)
dω

represents the density
of states of the bath. In order to map the S/B coupling model to a semi-in�nite chain,
we imply a mathematical transformation based on orthogonal polynomials [90]. In
Appendix A, we discuss about the de�nitions and properties of those orthonormal
polynomials.

4.3.2 Transformation of the Hamiltonian

The mapping between S/B coupling model is formulated by using a unitary opera-
tor which is constructed using orthonormal polynomials. The characteristics of these
polynomials were discussed previously. After the transformation of the S/B coupling
Hamiltonian, the 1D chain Hamiltonian is expected to be

H̃ = HS +η′
(
a†d0 + ad†0

)
+ lim
N→∞

[
N∑
n=0

ωnd
†
ndn +

N−1∑
n=0

ηn

(
d†ndn+1 + dnd

†
n+1

)]
. (4.44)

The transformation is shown with a schematic diagram in Fig. 4.3. dn(d†n) are the
annihilation (creation) operators of the chain at site n. ωn, η′ and η are the new pa-
rameters which we determine using the recurrence relation of the orthonormal poly-
nomial given in Eq. A.6. The new operators of the lattice sites are obtained by unitary
transformation of the old operators for each mode of the bath

dn =

∫ xmax

−xmax
dxUn(x)b(x), (4.45)
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Figure 4.3: Transformation of Hamiltonian from system/bath coupling model to semi
in�nite chain model. [Pub.- II,III] reproduced with permission.

where
Un(x) = h(x)p̃n(x).

The inverse transformation is given by

b(x) =
∑
n

Un(x)dn. (4.46)

The consideration of wide-band limit approximation (WBLA) makes the real valued
coupling coe�cient (h(x)) independent of the frequency the mode and therefore gives
a constant (h(x) = c0). Depending on the type of S/B coupling and the distribution of
the modes of the bath, one chooses a suitable orthonormal polynomial for the unitary
transformation. For example, in case of an open quantum system where the mode of
the bath is continuously distributed, and coupling coe�cient is a constant, Legendre
polynomial is an essential choice. However, if the mode of the bath is discrete, one
should consider Hahn polynomial [90].

Legendre polynomial

In order to make our life easier, we consider such kind of orthogonal polynomials as a
structural unit for the construction of unitary operator Un(x), which has a unit mea-
sure. Therefore, the constant associated with the coupling coe�cient (c0) is considered
to be absorbed within the system �eld operator. The frequency of the bath changes
linearly with x, giving ω = g(x) = g.x. Essentially, the spectral density function given
in Eq. (4.43) becomes

J(ω) =
πxmax
ε

θ(ω + ε)θ(ε− ω). (4.47)

ε = g.xmax is the extreme cuto� frequency of the mode of the bath. The frequency of
the bath mode belongs in the range ω ∈ [−ε, ε] and hence we consider a large value
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of xmax while simulating the open quantum system. The unit measure determines the
orthogonality relation as

∫ xmax

−xmax
dxp̃m(x)p̃n(x) = δm,n. (4.48)

Here, we use Legendre polynomial Ln(y) which satis�es the orthonormality criteria
in the range of y ∈ [−1, 1]. The orthogonality relation of the Legendre polynomial is
given by

∫ 1

−1

dyLn(y)Lm(y) = δm,n
2

2n+ 1
.

As the polynomial is an even function and not normalized, we consider a normalized
shifted Legendre polynomial L̃n(x) where x is de�ned in the range x ∈ [−xmax, xmax],
for the construction of unitary operator which is given by

Un(x) =

√
(2n+ 1)

2xmax
Ln

[
x

xmax

]
= p̃n(x). (4.49)

The unitary operator satis�es the orthonormal relation explained in the Eq. (4.48),
and transforms the interaction Hamiltonian to

Hint =

∫ xmax

−xmax
dxc0

(
a†bx + ab†x

)
= c0

∑
n

∫ xmax

−xmax
dxUn(x)

(
a†dn + ad†n

)
.

As L0(x) = 1, the zeroth order unitary operator gives U0(x) =
√

1
2xmax

. The orthog-

onality relation
∫ xmax
−xmax dxUn(x)U0(x) = δn,0 determines the interaction Hamiltonian

as

Hint = c0

√
2xmax

(
a†d0 + ad†0

)
. (4.50)

We get the value of η′ from the above equation, which can also be determined from
the expression of spectral density as [91]
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η′ =

√
c2

0

π

∫ xmax

−xmax
dωJ(ω) = c0

√
2.xmax. (4.51)

Using the transformation of b(x) and b†(x), we determine the Hamiltonian of the bath
as

HB =

∫ xmax

−xmax
dxg(x)b†xbx = g

∑
m,n

∫ xmax

−xmax
dx[xp̃n(x)]p̃m(x)d†ndm.

Inserting the recurrence relation of the orthonormal polynomial provided in the Eq.
(A.6) and using the orthonormality among polynomials, we re-express the Hamiltonian
of the bath as

HB = g
∑
m,n

∫ xmax

−xmax
dx[xp̃n(x)]p̃m(x)d†ndm

= g
∑
n

[
1

Cn
d†n+1dn +

An
Cn

d†ndn +
Bn+1

Cn+1

d†ndn+1

]
= g

∑
n

[√
βn+1d

†
n+1dn + αnd

†
ndn +

√
βn+1d

†
ndn+1

]
, (4.52)

which determines coe�cients ωn and η as

ηn = g
√
βn+1 and (4.53a)

ωn = gαn. (4.53b)

Now, in order to calculate αn and βn, one has to transform the orthogonal polynomial
pn(x) to monic polynomial πn(x) by dividing it by its' leading coe�cient, which is

fn =

√
2n+ 1

2.xmax

(2n)!

(2.xmax)n(n!)2
.

Essentially, βn is calculated as
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βn =
〈p̃n, p̃n〉
〈p̃n−1, p̃n−1〉

f 2
n−1

f 2
n

=

(
fn−1

fn

)2

,

which determines ηn as

ηn = g
√
βn+1 = g

(
fn
fn+1

)
= ε

(
n+ 1√

(2n+ 1)(2n+ 3)

)
. (4.54)

Similarly, αn is determined as

αn =
〈xπn, πn〉µ
〈πn, πn〉µ

= 〈xp̃n, p̃n〉 =

∫ xmax

−xmax
dxx

(2n+ 1)

2.xmax
{Ln

[
x

xmax

]
}2

= xmax
(2n+ 1)

2

∫ 1

−1

dzz{Ln(z)}2

= 0,

which gives the diagonal elements
ωn = 0. (4.55)

Hahn polynomial

Previously, we mapped a continuous environment to a discrete semi-in�nite chain.
However, this might not be the case always, especially when a system coupled to
a discrete set of oscillators which cannot be determined by a continuous spectral
function. This discrete bath can still be transformed into a chain following the same
procedure that we have presented previously, the only di�erence is that one has to
use classical discrete orthonormal polynomials instead of continuous ones. Eventually,
the transformation relation given in the Eq. (4.45) changes to

dn =
N∑

k=−N

Un(k)bk. (4.56)

The inverse transformation would be similar to the Eq. (4.46). The orthogonality
relation given in the Eq. (4.48) changes to

N∑
k=−N

p̃m(k)p̃n(k) = δm,n. (4.57)
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Here, we use Hahn polynomial Qn(k,N) which satis�es the orthonormality criteria in
the range of n ∈ [0, N ] [92]. As the polynomial is an even function and not normalized,
we consider a normalized shifted Hahn polynomial by rescaling it and multiplying by
a normalization factor. The orthogonality relation of the Hahn polynomial is given by

N∑
k=−N

Q̃m(k,N)Q̃n(k,N) = δm,nρ
2
n, (4.58)

where Q̃n(k,N) = Qn(2k − N,N) is the shifted Hahn polynomial and ρ is the nor-
malization coe�cient which is expressed by

ρn = (−1)n(N !)

√
(2n+ 1)

(N + n+ 1)!(N − n)!
. (4.59)

Using the orthogonality relation given in the Eq. (4.58), one can show that the new
modes d†n and dn obey the same bosonic commutation relation, similar to the original
modes. The spectral density of the discrete bath can be deduced from the Eq. (4.43)
as

Jk = πg2
k = πθ(N − k)θ(N + k), (4.60)

which determines the coe�cient η′:

η′ = c0

√√√√ 1

πD

N∑
k=−N

Jk = c0

√
2N. (4.61)

Inserting the transformation of bk and b
†
k we re-express the Hamiltonian of the bath

as

HB =
N∑
−N

ωkb
†
kbk =

∑
m,n

∑
k

k
δωk
δk

p̃m(k)p̃m(k)d†mdn

=
∑
m,n

∑
k

(k/D)Q̃m(k,N)Q̃n(k,N)ρ−1
m ρ−1

n d†mdn. (4.62)

The recurrence relation of the Hahn orthogonal polynomial is given by

−1

2
(k +N)Q̃n(k,N) =

[
AnQ̃n+1(k,N)− (An + Cn)Q̃n(k,N) + CnQ̃n−1(k,N)

]
,

(4.63)
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where

An =
(n+ 1)(N − n)

2(2n+ 1)
and (4.64a)

Cn =
(n+N + 1)n

2(2n+ 1)
. (4.64b)

Using the recurrence relation and the orthogonality of the Hahn polynomial, one can
rewrite the Hamiltonian of the reservoir given in Eq. (4.62) as

HB =
1

D

∑
n

[
−2Anρ

−1
n ρn+1d

†
ndn+1 + (An + Cn −N)d†ndn − 2Cn+1ρ

−1
n+1ρnd

†
n+1dn

]
.

(4.65)

Using the expression of An, Cn and ρn, we determine the coe�cients ωn and ηn as

ηn = 1/D
√

(N − n)(N + n+ 2)

(
n+ 1√

(2n+ 1)(2n+ 3)

)
(4.66)

ωn = 0. (4.67)

It is not possible realistically to accept the semi-in�nite chain (N →∞) for numerical
simulation, and so we truncate the length of the chain in some point, which causes
recurrence in the time dynamics. We will explore this phenomenon while analyzing the
results of numerical simulation. However, the di�erence in the hopping coe�cients (ηn)
for the Legendre and Hahn does not create a serious problem other than the dispersion
relation. The dispersion relation of the Hahn polynomial is linear as expected, but
not always in the case of Legendre polynomials. Even though it shows linearity in the
central region, towards the edge of cuto� frequency it exhibits nonlinearity, which is
demonstrated in Fig. 4.4.
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(a) (b)

Figure 4.4: The dispersion relation of the chain constructed by (a)Legendre and
(b)Hahn polynomials.



5 Numerical Simulation of Open

Quantum Systems

Here, we use the TEBD numerical scheme introduced in the previous section to inves-
tigate simple linear S/B coupling and to study the consequences induced by modeling
and the numerical parameters. In order to check the applicability this algorithm, we
�rst simulate the dissipative dynamics of an open quantum system and then intro-
duce a thermal bath to study the thermalization dynamics of the system. Both the
cases, we have chosen a simple S/B coupling model given in Sec. 2.2.1, with the
generic function F (a, a†) = a. The interaction Hamiltonian in Eq. (2.16) becomes
Hint =

∑
k c0(a†bk + ab†k), where c0 is the coupling strength.

5.1 Free Dissipative Systems (T=0)

We start by assuming one photon kept initially in the system leaving bath completely
empty at zero temperature. The transformation of the continuous modes of the bath
to the discrete chain is done using Legendre polynomial given in the Sec. 4.3.2. The
model is chosen to study how the system population decays over time in the presence
of the empty bath. Transforming the open quantum system to 1D chain system we
see that the �rst site is populated by one quantum, all other sites remaining empty.
The dissipative dynamics of the system population is estimated analytically from Eq.
(2.40), and numerically through real time evolution of the full chain.

We plotted the population dynamics of the system in Fig. 5.1, evaluated in two ways;
analytically from QLE and numerically by TEBD, to compare them. In the system
population of the numerical result, we see an increment after a certain time, which
is caused due to the fact that the particle re�ects from the end of the chain. The
�nite size e�ect of the chain is discussed explicitly later in the appendix. However,
the population plot of the full chain exhibits the re�ection of the particle, which is
given in the insets of Fig. 5.1. Afterwards, we �t the curve and estimate the rate of
dissipation from the numerical data and compare with analytics.

46
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(a) (b)

Figure 5.1: Plot of system population determined numerically by TEBD and analyt-
ically from the solution of QLE for di�erent coupling constant (a)c0 = 1, (b)c0 = 2.
The parameters for TEBD simulation are given as: cuto� frequency ε = 100[g] (g
is the inverse of density of states), number of sites for the bath N = 101, Schmidt
number (χ) = 15, size of local Hilbert space (M) = 4, time step δt = 10−2g−1. In the
inset the image plot the population of the sites shows how the recurrence is occurring
from the boundary.

(a) (b)

Figure 5.2: Plot of system population determined by TEBD and an exponential �t of
the data for the di�erent coupling constant (a)c0 = 1, (b)c0 = 2. The parameters for
TEBD simulation are same with Fig. 5.1



48 Numerical Simulation of Open Quantum Systems

5.1.1 Curve Fit and Estimation

Here, we �t the TEBD numerical data with the best possible exponential curve (a ∗
exp[−bt]) using least absolute residuals (LAR) method determined by Levenberg-
Marquardt algorithm [93] to estimate the rate of dissipation. In order to compare
the analytics and numerics, one must ignore the rise-up of the system population
due to the recurrence of particle from the end. The system population determined
by TEBD and its �tted curve both are plotted in the Fig. 5.2. It is to be noted that
the numerically determined decay rate is little less than the analytically determined
decay rate, which happens due to the fact that the time error introduced from the
Suzuki-Trotter decomposition, which is discussed in the Appendix B.

5.2 Thermal Bath and Evolution of Open Quantum

System (for Simple S/B Coupling)

We study the time dynamics and the steady-state behavior of the system in the
presence of a thermal bath for a simple S/B coupling model. The dynamics of the
system �eld is described by QLE given in Eq. (2.32). The model is similar to the
model chosen in Sec. 5.1, the only di�erence is that a thermal bath is chosen this time
instead of an empty bath. We employ the numerical model for the thermalization
dynamics of open quantum systems for the �rst time, which includes generating the
thermal bath using minimally entangled typical thermal state algorithm explained
explicitly in Sec. 4.2 and couple the thermal bath to an empty system to observe
its evolution. In this case, Hahn polynomial is preferred over Legendre polynomial
for the transformation of the system bath coupling model to 1D chain model for
having linear dispersion relation which is shown in Fig. 4.4. The nonlinear dispersive
property of the Legendre polynomial introduces unwanted error while determining
the population spectrum of the bath. Also, we consider a realistic picture where the
resonating frequency of the system (ωc) is much larger than the cuto� window (ε) (the
lower cuto� ωc − ε > 0). The idea of such kind of modeling has been introduced due
to the fact that few modes of the bath around the resonating mode of the system are
coupled. The analytical estimation of the dynamics of the system population is given
in the following section.
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5.2.1 Analytics of System Dynamics in Presence of Thermal

Bath

Integrating QLE of a simple S/B coupling model given in the Eq. 2.32, we get the
time dynamics of the �eld operator of the system as

a(t) = −i
√

γ

2πD

∑
k

bk(t0)

−i(ωk − ωc) + γ
2

{e−iωk(t−t0) − e−(iωc+γ/2)(t−t0)}. (5.1)

This determines the population of the system, which is given by

〈a†a〉(t) =
1

2πD

∑
k

|
√
γ

(γ
2
− i(ωk − ωc))

[
e−i(ωk−ωc)(t−t0) − e−

γ
2

(t−t0)
]
|2〈b†k(t0)bk(t0)〉

(5.2)

The initial thermal population distribution of the bath is

〈b†k(t0)bk(t0)〉 =
1

eβωk − 1
, when k ∈ [−N,N ]. (5.3)

The thermal population of the system given in the Eq. (5.2) is given by

〈a†a〉(t) =
ωc+ε∑
ωc−ε

AIk +BJk, (5.4)

where

Ik =
γ/2πD

[(ωk − ωc)2 + (γ
2

4
)]

1

[eβωk − 1]
(5.5a)

Jk =
(γ/2πD) cos((ωk − ωc)(t− t0))

[(ωk − ωc)2 + (γ
2

4
)]

1

[eβωk − 1]
(5.5b)

and
A = (1 + e−γ(t−t0)) (5.6a)

B = −2e−γ(t−t0)/2. (5.6b)

We see that the time dynamics of the system is dependent on three parameters: the
temperature, rate of dissipation and the cuto� frequency. In the following section, we
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discuss how these parameters e�ect on the modeling and the steady-state behavior of
the thermal bath coupled system.

Figure 5.3: Plot of the function Ik for di�erent temperature and coupling between
the system and environment. The temperature is �xed for all plots in columns.
β = 5, 10[1/ωc] for the �rst and second column respectively, and the dissipation rate
changes over rows. γ = 0.0113, 0.0314, 0.0616ωc for the �rst, second and third row
respectively. [Pub.- III] reproduced with permission.

Modeling constraint of a thermal bath coupled system

• Cuto� frequency with temperature:

As the coe�cient B goes away when we reach steady state, the system popu-
lation is determined by the function Ik given in Eq. (5.5a). According to the
system/bath formalism, the system population dynamics is dependent on few
modes of the bath around the resonating mode of the system, and hence, one
should consider the cuto� frequency (ε) in an way so that it can marginalize the
the contribution of bath modes those are far away from the system mode. The
idea behind the fact is the impact of the modes of the bath whose frequencies
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are far away from the frequency of the mode of the system, have a minimum
impact in the dynamics and the steady state of the system. Therefore, the func-
tion Ik should converge when the frequency (ωk) goes far away from the cavity
resonance frequency (ωc). However, Fig. 5.3 shows that despite having a peak
of the function Ik at resonating frequency of the system, the function rises up
again for much lower frequency of the system mode (ωk << ωc), which is caused
due to the fact that the exponential thermal population distribution function of

the bath ( 1
[eβωk−1]

) dominates over the Lorentzian function

(
γ/2πD

[(ωk−ωc)2+( γ
2

4
)]

)
. In

case of a lower temperature bath, the rising up occurs faster than that of a high
temperature. One can bypass such kind of situations by reducing ε, but that rises
up the ratio between γ and ε, which is the next topic of discussion. However,
the thermal population always remains zero for all modes in a zero temperature
bath. Hence, the system is not e�ected by the cuto� frequency while relaxing to
the ground state.

• Dissipation rate and cuto� frequency:

The model of open quantum system assumes that the S/B coupling is weak
so that the second-order perturbation is a good approximation to study the
dynamics, which makes the rate of dissipation to be much lower than the cuto�

limit (γ << ε), ensuring the Lorentzian function

(
γ/2πD

[(ωk−ωc)2+( γ
2

4
)]

)
to act like

a delta function around ωc. The reduction of the rate of dissipation makes the
Lorentzian function closer to the delta function, and therefore it gives a more
accurate result.

Fig. 5.3 also plots the function Ik for di�erent decay rates of the system, which
shows that in case of low temperature bath, smaller values of decay rate are
more demands for the translation of the analytics into the numerics. But in
that case the system demands more time to reach the steady state. Therefore,
it might not reach steady state sometime before the particle re�ects back from
the boundary. The recurrence time can be raised up by increasing the density
of states, but some other constrains comes into the picture, as discussed at the
end of this section.

As the Lorentzian function becomes a delta function for a given condition γ <<
ε, the steady-state population of the system is approximated to

〈a†a〉(∞) =
1

eβωc − 1
, (5.7)

which is the thermal population of the bath corresponding to the mode of the
system.

The numerical parameters have a substantial impact in the generation of the thermal
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bath, and in the following part we investigate how the quality of simulation changes
with the variation of those parameters, which is helpful for the optimization of nu-
merics.

Figure 5.4: Population spectra for di�erent temperature (β = 5, 10, 25, 50[1/ωc]).
[Pub.- III] reproduced with permission.

Figure 5.5: Cumulative probability distribution of photon occupation for di�erent
temperature (β = 5, 10, 25, 50[1/ωc]). [Pub.- III] reproduced with permission.

5.2.2 Generation of Thermal Bath Using TEBD

The quality of thermal state generated by METTS algorithm is dependent on two
crucial parameters: temperature and the number of samples. Here, we discuss how
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Figure 5.6: Population variation in the lattice sites for di�erent temperature (β =
5, 10, 25, 50[1/ωc]). Frequency range of the bath ωk ∈ [0.7, 1.3]ωc. Number of METTS
samples = 50. [Pub.- III] reproduced with permission.

Figure 5.7: Population spectrum in lattice with the increment of number of METTS
samples (50, 100, 500, 1000), for a �xed temperature (β = 5[1/ωc]). Frequency the
bath belongs to the range ωk ∈ [0.7, 1.3]ωc. [Pub.- III] reproduced with permission.

the simulation is a�ected by these parameters.



54 Numerical Simulation of Open Quantum Systems

Change of Temperature

We plot the frequency spectrum of thermal population of the bath in Fig. 5.4, where
we see that as the thermal population reduces rapidly at lower temperature, less
number of modes are needed to be considered. This is also hinted by the Fig. 5.5,
where it is seen that in the case of low-temperature bath, the cumulative probability
saturates faster, and therefore the requirement of number of METTS samples goes
down. As a result, in Fig. 5.6, we see that the population distribution becomes smooth
when we reduce the temperature keeping number of METTS �xed, which indicates a
better quality of generation of thermal state. The comparison between analytical and
numerical thermal population are given in Table. 5.1.

Even though the METTS algorithm performs better at low temperature, however,
the overall thermal population goes down so signi�cantly that after certain range the
number looses reliability for numerical simulation. Hence, one can conclude by saying
that the preparation of the bath through imaginary time evolution is quite promising
to work with, but one has to compromise between the quality of preparation and the
number of photons.

Table 5.1: Population of a thermal bath for di�erent temperature. Analytical and
numerical values are compared here for the frequency range ωk ∈ [0.7, 1.3]ωc. The
number of METTS samples is kept �xed at 50 for all cases. [Pub.- III] reproduced
with permission.

β[1/ωc] Exact population TEBD prepared population
5 0.1626 0.1730
10 0.0028 0.0030
25 3.9723× 10−8 3.9677× 10−8

50 7.2920× 10−16 7.9524× 10−16

Number of Samples

A thermal state at higher temperature is always preferable in order to obtain pop-
ulation at a signi�cant level, which leads us to consider a large number of METTS
samples when we do real time evolution. Fig. 5.7 shows an improvement of the quality
of the preparation of the bath with the increment of the number of METTS samples,
which is hinted by the improvement of the smoothness of the plot de�ning a signi�-
cant pattern in the population distribution. However, the increment of the number of
samples also costs computational time and resources.
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Figure 5.8: Variation in the number of modes in population spectra and cumula-
tive probability distribution with the variation of density of state (DOS=25,50 [1/ωc]
respectively for �rst and second column). The temperature is �xed for both cases
(β = 5[1/ωc]). [Pub.- III] reproduced with permission.

Figure 5.9: Population spectrum in lattice with the increment of number of METTS
samples (500, 1000, 1500, 2500), for a �xed temperature (β = 5[1/ωc]). Frequency the
bath belongs to the range ωk ∈ [0.7, 1.3]ωc. The density of states is �xed as 50[1/ωc].
[Pub.- III] reproduced with permission.

Change of Density of States

The increment of density of states (DOS) increases the recurrence time, which gives the
system more time for relaxation to reach the steady state. In case of weak coupling
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between system and environment, more relaxation time is required, and therefore
higher DOS is a better choice. The increment of DOS also increases the number of
modes, which can be justi�ed from the comparative study given in Fig. 5.8. Therefore,
more number of METTS samples are required to represent such kind of thermal state,
which comes out as a disadvantage. Another disadvantage of the increment of DOS
is the increment of the requirement of the number of lattice sites, which causes more
simulation time and memory space.

We plot the population per site for a �xed temperature (β = 5[1/ωc]) and a �xed
range of cuto� frequency (ωk ∈ [0.7, 1.3]ωc) in Fig. 5.9 where we doubled the DOS
compared to the Fig. 5.7. The �gure represents how the population per site in the
bath changes when we change of number of METTS samples. We see that the more
number of METTS samples is required to represent a bath of higher density of state.
The increase of DOS of the bath increases the total population, as seen from the
Table. 5.2.

Table 5.2: Population of a thermal bath for di�erent density of state. Analytical and
numerical values are compared here for the frequency range ωk ∈ [0.7, 1.3]ωc and
temperature β = 5[1/ωc]. The number of METTS samples is kept �xed at 1000 for
all cases. [Pub.- III] reproduced with permission.

DOS [1/ωc] Exact population of bath Population of TEBD prepared bath
25 0.1626 0.1630
50 0.3082 0.3088

5.2.3 Real Time Propagation of System Coupled to Thermal

Bath

In this section, we evolve a system which was in ground state initially and coupled to
a thermal bath of inverse temperature β = 5[1/ωc]. In Fig. 5.10, the time dynamics of
the system population for di�erent cuto� frequencies and coupling strength is shown,
where the system population increases slowly in the case of lower values of dissipation
constant. The recurrence time of the system is 150[1/ωc] and hence the plot is not
given beyond that. The oscillation in the system population is gifted by the left tail
of the Fig. 5.3 and it can be explained analytically from the Eq. (5.4). The higher
value of γ also introduces more error in terms of oscillation to the dynamics of the
system population. We see the steady state population of the system is comparable
to the population of the bath at the resonating frequency of the system (ωc), which
is indicated by the Eq. (5.7) and marked by the black discrete line in Fig. 5.10. It
shows that the numerical result is synchronous to the analytical value and both of
them merge with the expected result when the system evolves for longer time.
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Time evolution with higher cuto� frequency

The time evolution of the population of the system is also determined with the varia-
tion of the cuto� frequency of the bath. As anticipated by the Eq. (5.4), the extension
of the lower cuto� frequency contributes more oscillation to the dynamics of the sys-
tem population, which is visible when we compare between Fig. 5.10(a) and (b). For
a �xed density of state, the increment of the cuto� frequency essentially demands
a longer chain for the simulation, and hence we had to increase the length of the
chain for the Fig. 5.10(b). Even though that longer chain demands more number of
METTS samples for the preparation of a thermal state, we kept the number �xed for
all simulations. Hence, for a �xed number of samples, the quality of the simulation
is expected to be poor in case of a bath with higher cuto� frequency, which is also
realized by comparing between Fig. 5.10(a) and (b). The quality of the simulation has
been identi�ed by looking at the smoothness of the plot which de�nes a signi�cant
pattern comparable with the analytics.

Time Evolution with Higher DOS of Bath

Both in Fig. 5.10(a) and (b), the system is unable to reach steady state due to slow
decay rate (especially for γ = 0.0113ωc). Hence, we raised the recurrence time up by
increasing the density of states (DOS) in Fig. 5.10(c) which ensures su�cient freedom
to relax to the steady state for the system.

5.2.4 Time Evolution of Quadrature Fluctuations

The numerical technique moreover provides a promising platform for the investigation
of the dynamics of open quantum systems. Here, real-time dynamics of the quadrature
�uctuations is plotted in Fig. 5.11 comparing with its analytics, to investigate the
applicability of the method in the physics of quantum Brownian motion. The arbitrary
quadrature is de�ned as Xθ(t) = eiθc(t) + e−iθc†(t). We see the quadrature �uctuation
becomes phase (θ) independent (δXθ(t) =

√
1 + 2n(t)) due to the fact that 〈dk(0)〉 =

〈d†k(0)〉 = 〈d2
k(0)〉 = 〈d†k

2
(0)〉 = 0, and its time dynamics gives similar pattern to the

population dynamics.
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(a) (b)

(c)

Figure 5.10: (a,b) Plot of the time evolution of the system population for di�erent
cuto� frequency: (a)ε = 0.3ωc is and (b)ε = 0.6ωc. The length of the chain of the bath
is 16 and 31, respectively, keeping the DOS �xed DOS = 25[1/ωc]. (c) Plot of the time
evolution of the system population increasing the density of state DOS = 50[1/ωc].
The length of the chain of the bath is 31, and the cuto� frequency is (ε = 0.3ωc) .
The temperature (β = 5[1/ωc]) and number of METTS samples (4000) are kept �xed
in all cases. Thick lines corresponds to the TEBD numerical result and the thin lines
represent analytical results obtained from the Eq. 5.4. The black dashed line stands
for the thermal population corresponding to the mode of the system expressed in Eq.
5.7. [Pub.- III] reproduced with permission.

.
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Figure 5.11: Plot of the time evolution of the quadrature �uctuation for di�erent rate
of dissipation. All other parameters are kept same with Fig. 5.10(c). Thick lines corre-
spond to the TEBD numerical result and the thin lines represent their corresponding
analytics. The black dashed line stands for the quadrature �uctuation corresponding
to the mode of the system at same temperature. [Pub.- III] reproduced with permis-
sion.

5.3 Conclusion

We used the transformed 1D chain model of open quantum systems to study dissipa-
tion and thermalization dynamics of that open quantum system. We see the recurrence
time of the real time evolution raises up linearly when the DOS increases. Also, it is
seen that even though the METTS algorithm exhibits better performance at lower
temperature, the overall model demands the thermal state to be prepared at higher
temperature to get thermal population up to a signi�cant level, which helps to over-
come unwanted error in the system population dynamics, which is contributed by
the lower limit of cuto� frequency. Hence, we consider more METTS samples which
costs more computation resources. In conclusion, we say that the thermal bath gen-
erated numerically is satisfactory to work with, but the quality of the result should
be compromised with computation resources. The numerical scheme could be a useful
tool in the determination of the exact solution in case of nonlinear S/B coupling [94],
single photon optomechanics [38, 39], and analyzing non-classical dynamics of non-
linear systems [95]. Also, the technique can be useful for the critical behaviors and
non-Markovian dynamics spin-Bosson coupling models [63, 82�84].



6 Kerr Nonlinear Systems

The Kerr e�ect was discovered by John Kerr in 1875 [96], which shows quadratic
electro-optic (QEO) e�ect and is seen in almost all materials. We generally determine
the steady state solution of the Kerr nonlinear system in two di�erent ways: semiclas-
sically where we approximate the state of the system to a nearest coherent state, and
quantum-mechanically, where the exact solution is estimated from the master equa-
tion of the density matrix of the system. The semicalssical estimation of dispersive
and absorptive bistability both were derived from the Heisenberg equation of motion
[97, 98]. However, the quantum-mechanical solution for absorptive [99] and dissipa-
tive cases [100] were determined by mapping master equation to the Fokker plank
equation. Here, we aim to present both full quantum-mechanical and semiclassical
calculations of the dispersive optical bistability. Afterwards, we intend to determine
the dynamical behavior of Kerr nonlinear system. One way of approaching analyti-
cally could be applying the linearized approximation, where we linearize the quantum
�uctuation over nonlinear steady-state �eld amplitude. The method exhibits accuracy
when the impact of nonlineary is negligible, which means the steady state �eld of the
system changes linearly with the change of the driving �eld. The linearized model
fails when we increase the strength of the driving pump. In that situation, no such
analytical model is useful to extract out information from the system. Therefore, we
introduce TEND numerical model for the investigation of the transient and steady
state behavior of the Kerr nonlinear system.

6.1 Hamiltonian Formulation

The Kerr e�ect exhibits distinction from from the Pockels e�ect (linear electro-optic
e�ect) for having a change of induced refractive index proportional to the square of
the electric �eld. The di�erence in index of refraction (∆n) is given by

∆n = λKE2, (6.1)

where λ is the wavelength of the light, K is the Kerr constant, and E is the strength
of the internal electric �eld. For a general nonlinear model, the electric polarization
�eld P changes to the electric �eld E according to

60
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P = χ(1) : E + χ(2) : EE + χ(3) : EEE + · · · , (6.2)

where χ(n) is the (n+1)th rank of susceptibility tensor. In a Coulomb gauge the vector
potential is determined from the equations

E = −∂A
∂t

(6.3a)

B = ∇×A and (6.3b)

∇.A = 0. (6.3c)

Using Maxwell's equation ∇ × B = 1
c2
∂E
∂t
(considering no displacement current), and

vector identity ∇×∇×A = ∇(∇.A)−∇2A, one can �nd the wave equation for the
vector potential (A(r, t)) as

∇2A =
1

c2

∂2A

∂t2
. (6.4)

The solution of the di�erential equation allows us to express the vector potential in
the form of �eld operators as

A = i

(
1

2ωSε0

)1/2 (
au(r)− a†u∗(r)

)
, (6.5)

where ωS is the frequency of the system mode and the mode function u is de�ned to
satisfy

∫
V

u(r)u∗(r)d3r = 1.

From here, one can deduce the corresponding electric and magnetic �eld by solving
the di�erential equations given in the Eq. (6.3) as

E = i

(
ωS
2ε0

)1/2 (
au(r)− a†u∗(r)

)
and (6.6a)

B = i
(ωSµ0

2

)1/2 (
au(r)− a†u∗(r)

)
(6.6b)
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The Hamiltonian of of the system is determined by

HS =

∫
dr

(
B2

2µ0

+ ε0E
[

1

2
χ(1) : E +

1

3
χ(2) : EE +

1

4
χ(3) : EEE + · · ·

])
. (6.7)

In case of a Kerr nonlinear system the nonlinearity exhibits up to third order. From
the expression of electric and magnetic �eld given in Eq. (6.6), one can obtain the
anharmonicity parameter as

χ” = (
3~ω2

S

8ε20
)

∫
V

χ(3)(r)|u(r)|4d3r (6.8)

Essentially, the Hamiltonian becomes

HS = ωSa
†a+ χ′′a†

2
a2 − i(a†Ee−iωLt − aE∗eiωLt). (6.9)

The last term of the right hand side is the coupling Hamiltonian, which represents
system coupled to a large number of bosonic modes of the reservoir. Eventually, E is
the amplitude of an external classical electric �eld, which is driving the system with

an oscillation frequency ωL. The �eld is given by ~̃E(t) = ~Ee−iωLt + ~E∗eiωLt.

6.2 Quantum Fluctuations via the Fokker-Planck equa-

tion

The equation of motion of the density operator (ρS) of the system is obtained from
the Master equation given by Eq. (2.12) [8, 13],

ρ̇S = −i∆[a†a, ρS]−iχ′′[a†2a2, ρS]

−([a†, ρS]E − [a, ρS]E∗)

−γ
2

[(N + 1)(a†aρS + ρSa
†a− 2aρSa

†)

+N(aa†ρS + ρSaa
† − 2a†ρSa), (6.10)

where N is the thermal population of the thermal reservoir. Now, suppose that the
observer switches to the frame of the driving �eld and observes the oscillation of
the cavity mode modi�es as aorig = e−iωLtahere. Hence, the detuned cavity frequency
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becomes ∆ = ωS − ωL (see Appendix A). γ is the decay rate of the internal �eld of
the system, which comes from the coupling to the environment. The terms of the top
row correspond to isolated time evolution of the system, the second row stands for
the �uctuation due to external noise interference caused by the bath, and the last two
rows represent dissipation of the system.

In the next step, we determine the Fokker-Planck equation of the corresponding master
equation, which represents the time evolution of the quasiprobability distribution
function [100]. As the Fokker-Planck equation does not have a generalized solution,
we adopt a non-diagonal generalized P-representation which expresses the density
matrix of the system in a spectrum of coherent basic state

ρS =

∫
P (α, β)

|α〉〈β∗|
〈β∗|α〉

dαdβ, (6.11)

where α, β are the amplitude of coherent states. P (α, β) is the P-function, which
represents the probability of the density operator corresponds to coherent states of
amplitude α and β.

6.2.1 Mapping of Master Equation to the Fokker-Planck Equa-

tion

The mapping of operators acting on the density matrix is (see Appendix A)

aρ→ αP (α, β) a†ρ→ (β − ∂

∂α
)P (α, β)

ρa† → βP (α, β) ρa→ (α− ∂

∂β
)P (α, β). (6.12)

In this stage we try to get the P representation on the RHS and LHS of the Eq. 6.10.
The P representation of the LHS of the Eq. 6.10 is d

dt
P (α, β). Using the relations given

in the Eq. 6.12 one can map the RHS of the Eq. 6.10 as

− i∆(a†aρS − ρSa†a)→ −i∆
[
(β − ∂

∂α
)α− (α− ∂

∂β
)β

]
P (α, β)

= i∆

[
∂

∂α
α− ∂

∂β
β

]
P (α, β)
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− iχ′′
[
a†

2
a2ρS − ρSa†

2
a2
]
→ −iχ

[
(β − ∂

∂α
)2α2 − (α− ∂

∂β
)2β2

]
P (α, β)

= iχ

[
∂

∂α
2α2β − ∂2

∂α2
α2 − ∂

∂β
2β2α +

∂2

∂β2
β2

]
P (α, β)

−(Ea†−E∗a)ρS+ρS(Ea†−E∗a)→ [−E(β− ∂

∂α
)+E∗α+βE−(α− ∂

∂β
)E∗]P (α, β)

= [
∂

∂α
E +

∂

∂β
E∗]P (α, β)

− γ

2
(N + 1)(a†aρS + ρSa

†a− 2aρSa
†)→

− γ

2
(N + 1)

[
(β − ∂

∂α
)α + (α− ∂

∂β
)β − 2αβ

]
P (α, β)

=
γ

2
(N + 1)

[
∂

∂α
α +

∂

∂β
β

]
P (α, β)

− γ

2
N(aa†ρS + ρSaa

† − 2a†ρSa)→

− γ

2
N

[
(β − ∂

∂α
)α + (α− ∂

∂β
)β − (α− ∂

∂β
)(β − ∂

∂α
)− (β − ∂

∂α
)(α− ∂

∂β
)

]
P (α, β)

= −γ
2
N

[
∂

∂α
α +

∂

∂β
β − 2

∂2

∂α∂β

]
P (α, β).

Equating the P representation of the LHS and RHS one obtains

d

dt
P (α, β) =

[
∂

∂α
(i∆α + 2iχ′′α2β + E +

γ

2
α) +

∂

∂β
(−i∆β − iχ′′2β2α + E∗ +

γ

2
β)

+
∂2

∂α2
(−iχ′′α2) +

∂2

∂β2
(iχ′′β2) +

∂2

∂α∂β
(γN)

]
P (α, β). (6.13)

Note that the partial di�erential equation is describing the time evolution of the
quasiprobability distribution of a state of a system under the in�uence of random
forces, and this is why it is called quantum Fokker-Planck equation of the open quan-
tum system. One can remind the parallel picture of the classical Fokker-Planck equa-
tion which is discussed explicitly in Appendix A. Eq. (6.13) can be represented in the
form of a matrix equation as

d

dt
P (α, β) =

∑
i=1,2

∂

∂ξi

[
−Ai(ξ) +

1

2

∑
j=1,2

∂

∂ξj
Bi,j(ξ)

]
P (ξ), (6.14)
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where ξ1 = α and ξ2 = β. The quantities A and B are de�ned as

A =−
(

i∆α + 2iχ′′α2β + E + γ
2
α

−i∆β − iχ′′2β2α + E∗ + γ
2
β

)
and (6.15a)

B =2

(
−iχ′′α2 γ

2
N

γ
2
N iχ′′β2

)
. (6.15b)

6.2.2 Potential Condition for Steady State Solution

The steady state situation of the system is considered when the system relaxes after
the occurrence of all possible transition, i.e. time evolved state after a long time. As
the system does not change in this situation one can simply consider that the left-hand
side of the Eq. (6.14) is zero, and arrives at the condition

∑
i=1,2

∂

∂ξi

[
−Ai(ξ) +

1

2

∑
j=1,2

∂

∂ξj
Bi,j(ξ)

]
P (ξ) = 0. (6.16)

The situation holds in case of even more simpli�ed condition

Ai(ξ)P (ξ) =
1

2

∂

∂ξj
Bi,j(ξ)P (ξ), (6.17)

which implies

Bi,j
∂lnP

∂ξj
= 2Ai −

∂Bi,j

∂ξj
. (6.18)

Considering P (ξ) = exp (−φ(ξ)), one arrives at

− ∂φ(ξ)

∂ξj
= (B−1

i,j )

(
2Ai −

∂Bi,j

∂ξj

)
≡ Fj(ξ). (6.19)

If we consider Fi as the generalized force, φ(ξ) must be corresponding potential. In
order to integrate the di�erential equation the following condition has to be satis�ed

− ∂2φ(ξ)

∂ξj∂ξi
=
∂Fj(ξ)

∂ξi
=
∂Fi(ξ)

∂ξj
= −∂

2φ(ξ)

∂ξi∂ξj
. (6.20)

The condition indicates that the multivariate integral is independent of the path of
integration. In the case of one dimensional case, the potential condition is always
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satis�ed. The turning point of the potential appears when the following condition is
satis�ed

2Ai =
∑
j

∂Bi,j

∂ξj
. (6.21)

Such a case, where the di�usion matrix is diagonal and constant (Bi,j = Wδi,j), the
di�erential equation becomes

− δφ

δξi
=

2Ai
W

. (6.22)

Hence, one can say that the turning point is a deterministic condition, i.e. where the
steady-state solutions are obtainable.

6.2.3 Correlation Function

The di�usion matrix given in Eq. (6.15b) is neither diagonal nor constant. So, the
formula given in the Eq. (6.22) is not useful for the determination of the correlation
functions. Hence, we determine the generalized force F (ξ) given in the Eq. (6.19),
which is given by

F1(ξ) = (B−1
1,1)

(
2A1 −

∂B1,1

∂α

)
= (−iχ′′α2)−1(−i∆α− 2iχ′′α2β − E − γ

2
α + 2iχ′′α)

=

(
∆

χ′′α
+ 2β +

E

iχ′′α2
+

γ

2iχ′′α
− 2

α

)
F2(ξ) = (B−1

2,2)

(
2A2 −

∂B2,2

∂β

)
= (iχ′′β2)−1(i∆β + 2iχ′′β2α− E∗ − γ

2
β − 2iχ′′β)

=

(
∆

χ′′β
+ 2α− E∗

iχ′′β2
− γ

2iχ′′β
− 2

β

)
. (6.23)

One can check whether the condition of integratability given in Eq. (6.20), is satisfying
in this case (∂F1

∂β
= 2 = ∂F2

∂α
). Now, in order to get the expression of P (α, β), we

determine the potential by integrating the generalized force term over two di�erent
independent paths 0, 0→ α, 0 and α, 0→ α, β

P (α, β) = exp

[∫ α,β

α,0

∫ α,0

0,0

(F1dα + F2dβ)

]
= exp

[
(

∆

χ′′
+

γ

2iχ′′
− 2) lnα +

E

iχ′′α
+ 2βα + (

∆

χ′′
− γ

2iχ′′
− 2) ln β − E∗

iχ′′β

]
= α

[ ∆
χ′′+

γ
2iχ′′−2]

β
[ ∆
χ′′−

γ
2iχ′′−2]

exp

(
2αβ − E

iχ′′α
+

E∗

iχ′′β

)
. (6.24)
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Figure 6.1: Hankel contour starts at +∞ at real axis goes towards 0 and encircles 0
in a counter clockwise direction and returns back to +∞.

Clearly, the function diverges in the usual complex integration domain. This says
the P representation does not exist in a steady-state until it becomes a determinable
special function. To determine the moments, one has to accept that the P function
is given in the complex domain. We have exposed the domain of integration in the
latter section. However, if the driving �eld E is real E = E∗ = E0, the normalization
integral can be written as

I(p, q) =

∫
c

∑
n

2n

n!
x−p−ny−q−n exp

[
− E0

iχ′′
(x− y)

]
dxdy, (6.25)

where p = [ ∆
χ′′

+ γ
2iχ′′

], q = [ ∆
χ′′
− γ

2iχ′′
] and x = 1

α
and y = 1

β
. The integral is determinable

in terms of a sum of "Gamma" function integrals. The reciprocal of the "Gamma"
function is de�ned as

[Γ(t)]−1 =

(
1

2πi

)∮
H

(−w)−t exp(−w)dw. (6.26)

Here, the variable w is de�ned along the Hankel contour which starts at +∞ at the
real axis, goes towards the origin and encirculating the origin in a counterclockwise
direction returns back to +∞ through another sheet. The contour is shown in the Fig.
6.1. In this case, The branch point is located at origin, and the branch cut is de�ned
along the positive real axis. Using the above expression, one can express the integral
I(p, q) as

I(p, q) = −4π2
∑
n

2n(−1)q+n−1(−E0/iχ
′′)p+q+2(n−1)

n!Γ(p+ n)Γ(q + n)
. (6.27)
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This is a transcendental series, which can be written in terms of well de�ned general-
ized 0F2 hypergeometric series

F
(

[], [p, q], z
)

=
∑
n

znΓ(p)Γ(q)

n!Γ(p+ n)Γ(q + n)
. (6.28)

Introducing the above expression, �nally we express the normalization integral as

I(p, q) =

(
4π2(−1)p[E0/iχ

′′]p+q−2

Γ(p)Γ(q)
F
(
[], [p, q], 2[E0/iχ

′′]2
))

. (6.29)

As the generalized P representation is a normally ordered representation, the normal
order averages of the operator moments can be calculated as

〈(a†)m(a)n〉 =

∫
P (α, β)βmαndαdβ. (6.30)

In order to get observables, one has to calculate the moments and divide it by nor-
malization factor. In this case, we see the moments are the same function as the
normalization factor, but with a replacement of (p, q) by (p + n, q + m). Essentially,
we get the moment calculating generalized function as

G(m,n) = 〈(a†)m(a)n〉 =

(
(−1)n[E0/iχ

′′](m+n)Γ(p)Γ(q)F
(
[], [p+ n, q +m], 2[E0/χ

′′]2
)

Γ(p+ n)Γ(q +m)F
(
[], [p, q], 2[E0/χ′′]2

) )
.

(6.31)

We calculate the mean of coherent �eld amplitude 〈a〉 and the second order correlation
function g2(0) from the Eq. (6.31) as

〈a〉 =

(
[E0/iχ

′′]F
(
[], [p+ 1, q], 2[E0/χ

′′]2
)

pF
(
[], [p, q], 2[E0/χ′′]2

) )
(6.32a)

g2(0) =
〈(a†)2a2〉
〈a†a〉2

=

(
pqF

(
[], [p, q], 2[E0/χ

′′]2
)
F
(
[], [p+ 2, q + 2], 2[E0/χ

′′]2
)

(p+ 1)(q + 1)[F
(
[], [p+ 1, q + 1], 2[E0/χ′′]2

)
]2

)
.

(6.32b)
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6.3 Coherent State Approach

The equation of motion of the system �eld operators can be obtained from the quan-
tum Langevin equation

ȧ = −i∆a− 2iχ′′a†a2 − E − γ

2
a

ȧ† = i∆a† + 2iχ′′a†
2
a− E∗ − γ

2
a†. (6.33)

Now, we replace the �eld operators by the coherent �eld amplitude (α ≡ 〈a〉) of the
system. When the system relaxes down to a steady state situation, we get the solutions
following from the above equation

|E|2 = |α|2
(

(∆ + 2χ′′|α|2)2 +
γ2

4

)
. (6.34)

The turning points are those points where |E| holds its extreme values,

d|E|2

d|α|
= 2|α|

(
∆2 + 8∆χ′′|α|2 + 12χ′′

2|α|4 +
γ2

4

)
= 0 (6.35)

This yields the turning points

|α|2s =
1

6χ′′

(
−2∆±

√
∆2 − 3

γ2

4

)
. (6.36)

To investigate the regions of stability, we introduce a linearized analysis about the
steady state by considering a small �uctuations about the steady state

α(t) = α0 + a(t).

The �rst orders of the �uctuations leads to get the equation

[
ȧ

ȧ†

]
= −A

[
a
a†

]
, (6.37)

where
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A =

[
4iχ′′|α|2 + γ

2
+ i∆ 2iχ′′α2

−2iχ′′α∗2 −4iχ′′|α|2 + γ
2
− i∆.

]

Now, according to the Routh-Hurwitz stability criterion, the roots of the characteristic
polynomial of a linear system must have negative real parts, which yields to determine

Tr{A} = γ > 0

Det{A} =
γ2

4
+ ∆ + 8χ′′∆|α|2 + 12χ′′

2|α|4 > 0. (6.38)

One can notice that Det{A} = d(|E|2)
d(|α|2)

. Hence, Det{A} = 0 is equivalent to �nding a
turning point and those are soft-mode instabilities. One can verify that for |α| < |α|s
or |α| > |α|s the Hurwitz criterion gives stable eigenvalues. Typically, |α|s is a real
positive quantity and hence the Eq. (6.38) bounds the domain ∆ < 0 and |∆| > 3γ

2

4

to see the turning point.

6.4 Results

In order to justify the applicability of the numerical model, we compare the analytics
and numerics by plotting the steady state system �eld and the second-order correlation
function of the Kerr nonlinear system. The analytics is given explicitly in Eqs. (6.32)
and (6.37), and the numerics is determined based on the Hamiltonian given in the
Eq. (6.9), in two di�erent methods: TEBD algorithm and the time propagation of
Heisenberg equation of motion by solving the di�erential equation given in Eq. (6.33)
using Euler's method. Initially, the bath is at zero temperature, and the transformation
of the continuous modes of the bath to the discrete chain is done using Legendre
polynomial given in the Sec. 4.3.2.

6.4.1 Steady-State Situation

In Fig. 6.2 (a), we have plotted the stationary value of the �eld of the system and the
second-order correlation function determined analytically and numerically. We see the
TEBD determined numerical values follow the quantum mechanical exact analytical
solution obtained by solving the Fokker-Plank equation of the EOM of the density
matrix, which is expressed in Eq. (6.32). It is also noticeable that there is a di�erence
between the analytics and numerics, which is more visible in the transition region,



6.4 Results 71

Figure 6.2: (a) Steady state �eld amplitude and second order correlation function,
(b) phase plotted for ∆ = −10, χ” = 3, γ = 6.3 with the variation of driving �eld
amplitude. All quantities are in the units of g and the TEBD simulation parameters:
N = 50, χ = 25,M = 15, δt = 10−2g−1.. [Pub.- II] reproduced with permission.

caused by the fact that the TEBD numerics su�ers time error due to Suzuki-Trotter de-
composition. The semi-classically obtained analytical solution given in the Eq. (6.34)
is also plotted in this �gure, which determines the branch values and the transition
region. The di�erence between semiclassical and quantum-mechanical solution is that
the �rst solution exhibits bistability, whereas the second one does not. In the plot of
g2(0) the peak indicates the raising-up of the �uctuations around the transition point.
This happens because of the superposition of two coherent states around the transi-
tion region. Due to the fact that the coherent states are not mutually orthogonal, the
state loses its classical nature, creating a non classical state. One can also visualize
the turning points of the semi-classical solution from the Eq. (6.36). Comparing with
the classical bistability, it is seen that the major shift in the simulation of the quan-
tum dynamics occurs around the classically determined transition region. It is also to
be noted that the numerical time propagation of the QLE obtained through Euler's
method follows the analytically estimated semi-classical solution; where the transition
occurs in between the boundary of analytically predicted region. The phase angle is
also plotted in the Fig. 6.2 (b). As anticipated, the semi-classically and numerically
determined value initially follows the lower branch and jumps to the upper branch in
the interval of the transition region, whereas the TEBD determined value follows the
quantum-mechanical exact solution which has a gradual change towards the upper
branch.
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Figure 6.3: Time dynamics of the system �eld with the variation of driving �eld am-
plitude ((a)1, (b)3, (c)5, (d)7, (e)15, (f)19). The blue solid line and the red dashed
lines correspond to the time propagation using Euler's method and TEBD numerical
method, respectively. In inset we plot the trajectory of the system �eld, along with
the phase. All other parameters remain same with Fig. 6.2. [Pub.- II] reproduced with
permission.

6.4.2 Time Dynamics of System Field

The time dynamics of system �eld, plotted in Fig. 6.3, is determined numerically
using two di�erent methods. It is seen from the plot that the �eld stabilizes after
su�ering initial oscillation. The frequency of the oscillation decreases while increasing
the strength of the driving pump when the system is in lower branch, but increases
when it switches to upper branch. The reason behind the di�erence in two di�erent
methods is the fact that the semi-classical Euler's method gives the coherent �eld of
the system which belongs to one among two branches, whereas the TEBD determined
result keeps the superposition of both the branches while determining the time dy-
namics. The di�erence is more visible in the extreme transition region (Fig. 6.3(c)
and (d)). Also, the interesting phenomenon is seen in the plot of the time evolution
of the amplitude and the phase of the �eld of the system together which is given
in insets, where we see that the system reaches two di�erent steady states following
completely opposite trajectories. The lower branch follows anticlockwise trajectory
(Fig. 6.3(a), (b) and (c)) whereas the upper branch follows clockwise (Fig. 6.3(d), (e)
and (f)). However, in the transition region we don't �nd any particular pattern due
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Figure 6.4: Plot of the second order correlation function with the variation of the
driving �eld. All other parameters remain same with Fig. 6.2. [Pub.- II] reproduced
with permission.

to the superposition of two coherent �elds.

6.4.3 Second Order Correlation Function

Time evolution of the second order correlation function are plotted using TEBD algo-
rithm in Fig. 6.4 where the correlation function moreover gives unit value towards a
stable classical branch. Anticipating that, we see the time evolution of g2(0) deviates
much from unit value around the transition region, which is caused by the superpo-
sition of two coherent states. This indicates that the evolution of the system goes
through nonclassical states.

6.5 Conclusion

Analyzing of the steady state of the system, we observe that the TEBD numerical
result follows the quantum mechanical exact solution and the time propagation of the
system �eld by Euler's method obeys the semi-classical solution of the Heisenberg
equation of motion. It is observed from the time dynamics of the Kerr system that
the semi-classical Euler's method gives the coherent �eld of the system among two
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possibilities, whereas TEBD numerical result determines superposition of them. The
consequence is visualized in terms of a signi�cant di�erence while determining system
�eld using two di�erent methods, which certainly increases around the classical tran-
sition region. Also, we see that TEBD determined g2(0) does not show its dynamics
evolve as unit valued, especially when it is around the transition region, and indicating
a non-classical state which is caused by the superposition of two coherent states.



7 Summary

In this thesis, a theoretical and numerical model has been presented to study the
time evolution of open quantum systems aiming to be applied in a di�erent types
of systems. In particular, the methods have been designed targeting to be used in
nonlinear systems and to study thermalization of open quantum systems.

In chapter 2, we have explained the theoretical tools used to study the dynamics of
open quantum systems. These tools include quantum Langevin equation and master
equation, and, in this section, we have given a detailed derivation of those equations,
established a connection between them and their classical counterparts. The decoher-
ence and dephasing dynamics for di�erent types of S/B coupling are also included
within this framework.

The chapter 3 presents an application of the theoretical modeling of an open quantum
system, where we reported the way of deducing nonlinear QLEs from a nonlinear S/B
coupling Hamiltonian. Overall, we have shown here how an e�ective nonlinear S/B
coupling can be modi�ed in the presence of impurities modeled as TLSs. For the small
values of external �eld, we see the steady state system �eld does not change much
from the steady state �eld obtained in the absence of nonlinear dissipation, but for the
stronger external �eld the deviation becomes substantial from the solution of linear
system. It is also seen that the �uctuation spectrum of the system shows dependency
on phase angle.

In chapter 4, we have introduced a time-evolving block decimation algorithm for
the numerical simulation of an open quantum system. The chapter starts with a
description of the algorithm, explaining real and imaginary time evolution of one-
dimensional many-body systems. We also explain another algorithm that describes
the preparation of a minimally entangled typical thermal state, which is required to
generate a thermal bath to study the thermalization of an open quantum system. In
the end, we provide a mapping of the system-reservoir model to a semi-in�nite discrete
chain with nearest-neighbour interactions using orthogonal polynomials.

In chapter 5, we have presented the results of numerical simulation open quantum
systems using TEBD algorithm and the comparison with analytics. We start with
evolving a simple model of a free dissipating open quantum system where one quan-
tum of boson dissipates freely in an empty bath. Both the numerical and analytical
estimation presents a similar rate of dissipation of the system population. Afterward,

75
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we present the numerical simulation of the thermalization of an open quantum system
and compared it with analytical estimation. The results show that even though the
METTS algorithm performs better at a lower temperature, we prefer to generate a
higher temperature thermal bath to obtain the population to a signi�cant threshold
level. The another reason is to avoid unwanted error in the dynamical behavior of the
system population which comes from the lower cuto� frequency limit. Hence, one must
consider a large number of METTS samples which costs more computation resources,
and therefore appears as a disadvantage.

Finally in chapter 6, we have studied the coherent driven Kerr nonlinear system dis-
cussing comparatively theoretical and numerical estimations of steady state behavior.
The analytical method includes semi-classical solution of the Heisenberg equation of
motion and quantum mechanical exact solution obtained by mapping the equation of
motion of the density matrix of the system to a Fokker-Plank equation. The numerical
approach not only includes TEBD algorithm, but also the time propagation of the
system �eld by solving semi classical equation using Euler's method. It is observed
that TEBD numerical result obeys quantum mechanical exact solution, whereas the
time propagation using Euler's method follows the semi-classical analytical solution
of the Heisenberg equation of motion. It is also seen that the semi-classical Euler's
method estimates a coherent �eld of the system which is one among two solutions,
but TEBD determined numerical result keeps the superposition of both of them. As a
consequence, the TEBD obtained dynamics exhibits generation of non-classical states
while evolving the Kerr nonlinear systems.
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Theoretical Appendix

Orthonormal Polynomials

Let us de�ne an orthogonal polynomial pn(x) of degree n, which belongs to a space
pn(x) ∈ P with real coe�cients, as

pn(x) =
n∑
i=0

aix
i, (A.1)

where ai ∈ R and x is real (as it corresponds to the mode of the system). One can
extend it to complex, but real coe�cients are good enough in this formulation. For
a positive nondecreasing and di�erentiable measure dµ(x) de�ned in a �nite interval
[a, b], all moments have �nite value:∫ b

a

dµ(x)xr <∞, r = 0, 1, 2, ...

The inner product of any two polynomials (p(x), q(x) ∈ P) is de�ned as

〈p(x), q(x)〉µ =

∫ b

a

dµ(x)p(x)q(x), r = 0, 1, 2, ... ,

which yields the the Cauchy-Schwarz's inequality

|〈p, q〉µ| ≤ ||p||µ||q||µ,

where norm of a polynomial (||p||µ) is given by

||p||µ =
√
〈p(x), p(x)〉µ > 0,

Orthogonal polynomial pn(x) satis�es the orthogonality relation

〈pm(x), pn(x)〉µ =

∫ b

a

dµ(x)pm(x)pn(x) = δm,n,

77
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The polynomial pn is called monic if the leading coe�cient an = 1. Then, it is denoted
as πn(x). Any polynomial can be made monic, by dividing it by its leading coe�cient.
The orthogonality relation changes to

〈πn(x), πm(x)〉µ = ||πn||2µδm,n. (A.2)

The monic non-orthogonal polynomial can be recovered to an orthonormal polyno-
mial as pn(x) = πn(x)/||πn||. For a nonzero measure dµ, the monic polynomials are
constructed by Gram-Schmidt algorithm:

πk(x) = mk(x)−
k−1∑
n=0

(
〈mk, πn〉µ
〈πn, πn〉µ

)
πn, (A.3)

where mk(x) = xk and π0 = 1. One can check the orthogonality relation given in Eq.
(A.2) recursively, from the structure given in the Eq.(A.3) as

〈πk, πl〉k〉l = 〈mk, πl〉−
k−1∑
n=0

(
〈mk, πn〉µ
〈πn, πn〉µ

)
〈πn, πl〉 = 〈mk, πl〉−

(
〈mk, πl〉µ
〈πl, πl〉µ

)
〈πl, πl〉 = 0.

Hereafter, we deduce a useful recurrence relation for the monic polynomials from the
Gram-Schmidt algorithm given in the Eq. (A.3), as

πn+1 = (x− αn)πn(x)− βnπn−1(x), n = 0, 1, 2, 3, ... , (A.4)

where π−1 ≡ 0 and the recurrence coe�cients are

αn =
〈xπn, πn〉µ
〈πn, πn〉µ

and (A.5a)

βn =
〈πn, πn〉µ
〈πn−1, πn−1〉µ

(A.5b)

The corresponding recurrence relation for the non-monic orthogonal polynomial is

p̃n+1(x) = (xCk − Ak)p̃n(x)−Bnp̃n−1, n = 0, 1, 2, 3, ... (A.6)
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with p−1 ≡ 0. The coe�cients of both recurrence relations are given by

An =
αn√
βn+1

, (A.7a)

Bn =

√
βn√
βn+1

and (A.7b)

Cn =
1√
βn+1

. (A.7c)

The orthonormal polynomials are used in the following section for the transformation
of the S/B model to 1D semi-in�nite chain model.

Transformation of Hamiltonian to a Rotating Frame

We start with considering the total Hamiltonian HS and the wave function |ΨS(t)〉 at
time t describes a system in the Schrödinger picture. The equation of motion of the
wave function gives

i
∂|ΨS〉
∂t

= HS|ΨS〉. (A.8)

Now, suppose that the Hamiltonian contains two di�erent parts

HS = H0,S +H1,S, (A.9)

which are provided by two di�erent sources and therefore do not commute. Assume
that H1,S is the external source and H0,S is contributed by the internal �eld. In this
case one can represent the wave function in the interaction picture as

|ΨI〉 = U †|ΨS〉, (A.10)

where the unitary operator U = exp (−iH1,St). We now �nd the corresponding trans-
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formed Hamiltonian H̃ from the Schrödinger equation of motion as

i
∂|ΨI〉
∂t

= i
∂U †|ΨS〉

∂t
= iU †

∂|ΨS〉
∂t

+ i
∂U †

∂t
|ΨS〉

= U †HS|ΨS〉 −H1,SU
†|ΨS〉

=
(
U †HSU −H1,S

)
U †|ΨS〉

=
(
U †HSU −H1,S

)
|ΨI〉 (A.11)

Therefore H̃ =
(
U †HSU −H1,S

)
. Clearly, U † does not commute with HS and hence,

we see a frequency shift while considering the system Hamiltonian.

Coherent Representation of Density Matrix

Amaster equation can be transformed to a c-number equation using Glauber-Sudarshan
P representation of the density matrix. It is required to establish the relation between
the operators and the corresponding c-number. For that, we represent the density
matrix in coherent basis. Typically, a coherent state is represented on the basis of
Fock states, as

|α〉 = e−
|α|2

2

∞∑
n=0

αn√
n!
|n〉 = e−

|α|2
2 eαâ

†|0〉. (A.12)

The operators, on the coherent state gives

a|α〉 = α|α〉 (A.13a)

〈α|a† = α∗〈α|. (A.13b)

In order to derive other relations we use Bargmann state (||α〉), which is de�ned by

||α〉 = e
|α|2

2 |α〉 =
∞∑
n=0

αn√
n!
|n〉, (A.14)

so that

a†||α〉 =
∞∑
n=0

αn√
n!

√
n+ 1|n+ 1〉 =

∂

∂α
||α〉. (A.15)
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Similarly,

〈α||a =
∂

∂α∗
〈α||. (A.16)

The P-representation of the density matrix is given by

ρ =

∫
dαdβ∗

||α〉〈β||
〈β|α〉

e−
(|α|2+|β|2)

2 P (α, β∗) =

∫
dαdβ∗||α〉〈β||e−αβ∗P (α, β∗). (A.17)

Therefore, the operators on the density matrix give

a†ρ =

∫
dαdβ∗

(
∂

∂α
||α〉〈β||

)
e−αβ

∗
P (α, β∗)

=

∫
dαdβ∗||α〉〈β||e−αβ∗

(
β∗ − ∂

∂α

)
P (α, β∗), (A.18)

and

ρa =

∫
dαdβ∗||α〉〈β||e−αβ∗

(
α− ∂

∂β∗

)
P (α, β∗). (A.19)

Fokker-Planck Equation

The time evolution of the probability distribution of the velocity of a particle which
is in Brownian motion under the in�uence of random forces, is treated by the Fokker-
Planck equation. We formulate the equation in terms of the evolution of the condi-
tional probabilities for a stationary random process. We also assume that the evolution
goes through a Markov process where the future probabilities are determined by the
most recently known value, not on the previous history. Therefore, the conditional
probability is given by

Pn(y1, t1; y2, t2; ...|yn, tn)dyn = P2(yn−1, tn−1|yn, tn)dyn (A.20)

that lies between yn and yn + dyn at time tn (where t1 < t2 < t3... < tn). The
probability distributions pn and the conditional probabilities Pn are related through

pn(y1, t1; ...; yn, tn) = pn−1(y1, t1; ...; yn−1, tn−1)× Pn(y1, t1; ...; yn−1, tn−1|yn, tn).
(A.21)
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According to general probability theory, the two point conditional probability distri-
bution satis�es Chapman-Kolmogorov equation, and, if the process is Markovian, the
equation reduces to the Smoluchowski equation

P2(y1, t1|y3, t3) =

∫ ∞
−∞

dy2P2(y1, t1|y2, t2)P2(y2, t2|y3, t3). (A.22)

Writing in terms of P2(y0|y, t) where y0 and y are the starting and ending point at
time t, respectively, the Fokker-Planck equation is

∂

∂t
P2 = − ∂

∂y
[A(y)P2] +

1

2

∂2

∂y2
[B(y)P2], (A.23)

where

A(y) = lim
δt→0

∫ ∞
−∞

dy′(y′ − y)P2(y|y′, δt) and (A.24a)

B(y) = lim
δt→0

∫ ∞
−∞

dy′(y′ − y)2P2(y|y′, δt) (A.24b)

are the rate of growth of the mean and standard deviation, respectively. The equation
can be solved with the initial conditions P2(y0|y, 0) = δ(y − y0). The �rst term is a
drift and the second to a di�usion of the distribution corresponding to a systematic
bias and a residual average e�ect of negative and positive jumps, respectively.

Derivation

Considering y1 → y0, y3 → y, y2 → y − η and t2 − t1 → t, t3 − t2 → τ , we express the
Eq. (A.22) as

P2(y0|y, t+ τ) =

∫ ∞
−∞

dηP2(y0|y − η, t)P2(y − η|y, τ), (A.25)

where τ is a small time increment. Now, expanding the left hand side in a Taylor
series of τ , and keeping upto the �rst order, we obtain

P2(y0|y, t+ τ) = P2(y0|y, t) +
∂P2(y0|y, t)

∂t
τ (A.26)

Now expanding P2(y0|y − η, t)P2(y − η|y, τ) of the right hand side of the Eq. (A.25),
we write
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P2(y0|y − η, t)P2(y − η|y, τ) =
∞∑
n=0

(−1)n

n!
ηn

∂n

∂yn
P2(y0|y − η, t)P2(y − η|y, τ),(A.27)

Comparing with Eq. (A.26), we get

∂P2(y0|y, t)
∂t

=
∞∑
n=1

(−1)n

n!
lim
τ→0

1

τ

∫ ∞
−∞

dηηn
∂n

∂yn
P2(y0|y − η, t)P2(y − η|y, τ) (A.28)

The evolution of the random process is conducted by small changes, and therefore,
only �rst two moments n = 1, 2 of P2 contribute, not higher moments increasing with
τ p (where p > 1) as τ → 0.



Appendix B:

Numerical Appendix

Free Dissipative Open Quantum Systems (T=0)

Here, we investigate about the simulation errors of the free dissipative system men-
tioned in the Sec. 5.1. This study will be useful to optimize the parameters in order to
do the simulation e�ciently compromising with the resources and a minimum amount
of error. The errors appear in this numerical simulation in two ways: modeling error
and numerical error. The �rst type of error comes from the canonical transformation
of S/B coupling to 1D chain model and the second type is introduced due to the
limitation of TEBD algorithm.

Modeling Error

In practice, we opt a model where the chain is having a �nite length due to �nite
number of modes of the bath (Sec. 4.3.2), which introduces modeling error. Here, we
investigate how the recurrence time changes when the modeling parameters change,
and estimate the time of the �rst recurrence of the particle which is shown in Fig. 5.1.

• Length of the chain: In Fig. B.1a, we see a linear increment in the recurrence time
when the length of the chain increases, which causes because of the reduction
of the group velocity for photon while increasing of the number of sites. The
group velocity is de�ned by vg = δω

δkN
, where ω is the frequency, and kN is the

wavenumber determined by the number of lattice sites (kN ∝ N).

• Cut-o� frequency: Fig. B.1b shows that recurrence time decreases with the in-
crement of the cuto� frequency. This happens due to the fact that the increment
of the cuto� frequency increases the group velocity, causing the phonon traveling
faster in the lattice.
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(a) (b)

Figure B.1: Variation of �rst recurrence time with the change of (a) the length of chain
( for �xed xmax= 400) and (b) cut-o� frequency (for �xed length of chain N= 400).
g is the inverse of the density of states.

(a) (b)

Figure B.2: (a) Plot of time evolution of a free dissipative system for di�erent time
steps. Other parameters: xmax = 100, N = 101,M = 4, χ = 15, c0 = 1
(b) Plot of time evolution of a free dissipative system for di�erent length of the chain.
The cuto� frequency changes from 50 to 200g, as the density of states is kept �xed) .
Other parameters: δt = 1× 10−2g−1,M = 4, χ = 15, c0 = 1
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(a) (b)

Figure B.3: (a) Plot of the time evolution of the von Neumann entropy of the �rst
site. Other parameters: xmax = 100, N = 101,M = 4, χ = 15, c0 = 1.
(b) Plot of the eigenvalues of the reduced density matrix (in logarithmic scale) when
the entanglement is maximized. The black line shows the truncation point.

Numerical Error

As we discussed earlier in Sec. 4.1.4, there are two major error sources present in
TEBD algorithm; they are time error and truncation error of the Hilbert space.

• Suzuki-Trotter error: The Suzuki-Trotter error in real time evolution concen-
trates in the overall phase and causes the time error (Sec. 4.1.4). Fig. B.2a,
demonstrates an improvement of accuracy of the simulation while reducing time
step which can be justi�ed by Eq. (4.21). The error also increases while increas-
ing the size of the system, which is indicated from the Eq. (4.31). Fig. B.2b
justi�es the phenomenon by exhibiting the increment of the time error with the
length of the chain despite of the fact that the cuto� frequency increases pro-
portionally. In this simulation, we increase the cuto� limit proportionally while
increasing the length of the chain keeping the density of states is kept �xed.

• Truncation error: Here, we deal with only one photon which was located initially
at the �rst site. Hence, the choice of the size of local Hilbert space is su�cient
to represent a complete set. However, the truncation on the Schmidt spectrum
(Sec. 4.1.4) could be an issue. To estimate a reasonable size of the Schmidt
number, we plot the von Neumann entropy (given in Eq. (4.11)) associated with
the entanglement between the system and the �rst site in Fig. B.3a. As the
evolution of the state starts from a product state, the von Neumann entropy
was zero at the beginning. The quantity increases initially and reaches to the
maximum value, and then reduces with time.

We estimate the Schmidt number when the entanglement is maximized. The
Schmidt number should be chosen in such a way that the contribution of the
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Figure B.4: Variation of recurrence time with the variation of (a) number of sites, (b)
cuto� frequency. E = 4 and all other parameters remain same with Fig. 6.2. [Pub.-
II] reproduced with permission.

eigenvalues after truncation is negligible when we compare with the accepted
Schmidt spectrum (di�erence is in the order of magnitude). In Fig. B.3b we
plotted the eigenvalues of the reduced density matrices in logarithmic scale when
the entanglement is maximum between the system and the �rst site of the chain.
The truncation is shown by the black line which shows that the choice of Schmidt
number is reasonable in this case.

Kerr Nonlinear System (T=0)

The modeling and numerical error in the simulation of Kerr nonlinear system are
discussed below.

Modeling Error

• Length of the chain: It is seen from the Fig. B.4(a) that the recurrence time
increases with the increment of the length of the chain, which happens due to
the fact that the increment of the number of sites reduces the group velocity for
the particle to travel.

• Cut o� frequency: The increment of the cuto� frequency increases the group
velocity, which ensures the particle to travel faster in the lattice. This causes
the reduction of the recurrence time which is visible in the Fig. B.4(b).
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Figure B.5: (a) Time evolution of the system �eld with the variation of step size in
TEBD simulation. (b) Plot of cumulative probability of a regular Poisson distribution
for di�erent mean values. The black line shows the truncation point in the Hilbert
space. (c) Plot of the time evolution of the von Neumann entropy of the �rst site.
(d) Plot of the eigenvalues of the reduced density matrix when the entanglement is
maximized, and the black line shows the truncation point. For (a) E = 4 and (c,d)
E = 20, and all other parameters remain same with Fig. 6.2. [Pub.- II] reproduced
with permission.
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Numerical Error

• Suzuki-Trotter error: From Fig. B.5(a), we see an improvement in the accu-
racy of the simulation with the reduction time step. The curves approach each
other as time step decreases, and beyond the time step 10−2g−1, any substantial
improvement is not visible in the plot of system �eld.

• Truncation error: The reasonable size of Hilbert space is expected to be a size
which is capable of expressing the �eld of the system with a negligible amount of
error. The Poisson probability distribution of the coherent �eld generated in the
system demands an in�nite local Hilbert space to make the set complete, which
is practically not possible. The occupation probability of boson of this coherent
�eld (|n〉) is distributed in Fock basis according to |〈n|α〉|2 = 1

n!
(|α|2ne−|α|2). In

Fig. B.5(b), we have shown the cumulative probability distribution estimates
the reasonable size of local Hilbert space, accepting accuracy upto a signi�cant
extent.

Afterwards, the von Neumann entropy is plotted in Fig. B.5(c) for the estimation
of the reasonable size of the Schmidt number. The quantity is associated to the
entanglement between the system and the �rst site (S = −

∑
α2

(λ
[2]
α2)2 log2(λ

[2]
α2)2).

It is seen to be zero at the beginning due to the fact that the evolution starts
from a product state. It increases initially and reaches to the maximum value,
and after that reduces with time.

We estimate the Schmidt number for maximal entanglement between �rst two
sites. The Schmidt number should be chosen in such a way that the eigenval-
ues after truncation contribute so less that they can easily be neglected. The
eigenvalues of the reduced density matrices are plotted in Fig. B.5(d), and the
truncation line con�rms the choice of Schmidt number to be reasonable here.
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Based on the experimental evidence that impurities contribute to the dissipation properties of solid-state open
quantum systems, we provide here a description in terms of nonlinear quantum Langevin equations of the role
played by two-level systems in the dynamics of a bosonic degree of freedom. Our starting point is represented
by the description of the system-environment coupling in terms of coupling to two separate reservoirs, modeling
the interaction with external bosonic modes and two-level systems, respectively. Furthermore, we show how
this model represents a specific example of a class of open quantum systems that can be described by nonlinear
quantum Langevin equations. Our analysis offers a potential explanation of the parametric effects recently
observed in circuit-QED cavity optomechanics experiments.
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I. INTRODUCTION

The dynamics of open quantum systems, i.e., quantum
systems that can be described as separate entities from their
surrounding environment while being somehow coupled to it,
is arguably one of the most fundamental problems in quantum
mechanics, encompassing concepts such as the measurement
paradox [1] and the boundary between quantum and classical
physics [2]. On general grounds, the interaction between a
quantum system and its environment represents an important
aspect of the physics of condensed matter and complex
systems, which has been the focus of extensive analysis
[3–5], with repercussions in contexts ranging from the energy
transport in photosynthetic complexes [6] to the physics of
ultracold gases [7–9].
In the description of these systems, the inclusion of

the role played by coupling to an external environment is
necessary, if only because the system has to be coupled to
an external measurement apparatus which, from the quantum-
dynamical perspective of the system, represents a source of
noise and dissipation. At the same time the manipulation
of open quantum systems has recently led to the possibility
of preparing and detecting quantum states of matter and
radiation [10,11], paving the way for the definition of a
new paradigm of quantum technology, which represents an
important field for applications ranging from secure (quantum)
communication [12] to sensing of electromagnetic fields
[13] and to the detection of gravitational waves [14]. This
prospect of technological application of quantum mechanics
is rooted in the relatively recent development of fabrication
techniques at the nanoscale, in particular, nanomechanical
resonators, superconducting qubits, and, more in general,
circuit quantumelectrodynamics (QED) setups [15–18],where
the characteristic scales involved in the dynamics of these
systems naturally lead to the study of the quantum properties
in the presence of coupling to an environment.

*francesco.p.massel@jyu.fi

Within this framework, it has recently been observed that
this coupling can represent an important resource leading
to the notion of reservoir engineering [19]. This concept
corresponds to the idea that, by manipulating the properties of
the environment coupled to a given quantum systemor even the
nature of the system-environment coupling itself, it is possible
to generate specific (quantum) states for the system. Prominent
examples are represented by the recent achievements in the
field of cavity optomechanics, where ground-state cooling
[20] and squeezing below the standard quantum limit (SQL)
[21–23], along with nearly quantum limited amplification
[24,25] and nonreciprocal photon transmission [26], have been
achieved by introducing a specific (Gaussian) state for the
reservoir. While these examples correspond to inducing a
specific state for the system by manipulating the state of the
reservoir, in Refs. [27] and [28] it is shown that by designing a
specific nonlinear coupling between system and environment,
it is possible to protect certain quantum states (cat states)
against decoherence.
If the coupling between the system and the environment

is described by a linear Hamiltonian, the effects of noise and
dissipation on the dynamics of the system can be described
in terms of linear quantum Langevin equations (QLEs)
[11]. These equations represent an extension to the quantum
regime of the classical Langevin equations and, in analogy to
their classical counterpart, include in the description of the
dynamics of the system the role played by the environment,
including dissipative and noise effects. However, the case of a
linear system-environment coupling is not the most general
situation that can arise. For instance, for nanomechanical
resonators [29–33] and for circuit-QED setups [34–39], the
experimental evidence of nonlinear phenomena related to the
coupling between system and environment has emerged and,
more importantly for our analysis, the relevance of impurities
in this phenomenon has been discussed. For both setups, it has
been shown (see, e.g., [29,34]) that the impurities naturally
arising in the material composing the devices, its supports,
and/or substrate represent a source of dissipation. These
defects can be modeled in terms of two-level systems (TLSs).

2469-9926/2017/96(6)/063830(8) 063830-1 ©2017 American Physical Society



JUUSO MANNINEN, SOUVIK AGASTI, AND FRANCESCO MASSEL PHYSICAL REVIEW A 96, 063830 (2017)

The reason behind the possibility of modeling impurities in
these terms is represented by the fact that each impurity can be
construed as quantum systems which exhibit two local energy
minima. For instance, as a charged impurity that can hop
between two defects in the crystal structure, or a dangling
bond with two possible configurations.
More specifically, these TLSs exist primarily due to the

disordered potential landscape of amorphous materials, e.g.,
in surface oxides of thin-film circuit electrodes [38], in the
tunnel barrier of Josephson junctions [34], and at disordered
interfaces [40,41], coupling with the bosonic degrees of
freedom of the system, either through a purely electromagnetic
interaction (optical and circuit-QED setups) or a phononic one
in the context of nanomechanical systems [42].

II. MODEL

In this article we show under what conditions, considering
a nonlinear coupling between system and a bath of TLSs,
it is possible to derive a nonlinear QLE for the dynamics
of the degrees of freedom of the system, having in mind a
circuit-QED setup. In addition, we show how the nonlinear
QLEs derived here can represent an explanation to some of
the phenomena recently observed in the context of microwave
quantum optomechanics [22].
The starting point for our analysis is represented by a

bosonic system (S) coupled to an environment (E). The total
Hamiltonian of the bipartite system (S + E) is given by

H = HS + HE + HS−E , (1)

where HS = HS (c,c†) is the Hamiltonian of the isolated
system, exhibiting a generic dependence on the annihilation
(creation) operators c (c†) associated with the system, and HE
is the Hamiltonian for the bath.
We assume here that the environment Hamiltonian can be

decomposed into two terms, HB
E = ∑

k ωkb
†
kbk and H TLS

E ,
corresponding to a bath of free bosonic modes and to a
bath of TLSs, respectively (see Fig. 1). The bosonic bath
describes, for instance, the modes of the electromagnetic field
of the environment. In our analysis we assume that these

FIG. 1. Cartoon picture of the setup. The system S is coupled to
an environment E , which is constituted by a bosonic bath EB and a
bath of TLSs ETLS. The coupling between the two baths and the system
is mediated by the Hamiltonians HS−B and HS−TLS, respectively.

modes, while being associated with the noise properties and
dissipation of the system, encompass also the external coherent
fields driving the system whose properties are encoded in the
state of the bath for the modes bk (see, e.g., [11]). Our choice
is equivalent to considering a coherent driving term for the
system Hamiltonian and a purely thermal bath.
In this scenario, we describe the coupling between these

modes and the degrees of freedom of the system by the
following Hamiltonian:

HS−B =
∑

k

gBk (c
†bk + cb

†
k). (2)

In addition, we model the bath of TLSs as a collection of
spins Jk. In this scenario we have that H TLS

E = ∑
k �kJ

k
z .

This choice for the modeling of TLSs corresponds to the idea
that, for each �k multiple TLSs are present that collectively
couple with the system S. While for �k � ωS, where ωS
corresponds to a characteristic frequency for the system,
the presence of impurities leads to a renormalization of the
linewidth associated with the linear response of the system
induced by the coupling given in Eq. (2) (see Appendix D);
for�k � nωS, nonlinear contributions appear. In our analysis,
also in light of the recent investigations concerning the
relevance of two-photon emission processes by TLSs [43,44]
when coupled to bosonic modes, we consider the case
n = 2, representing the lowest-order approximation beyond
linear coupling. This assumption appears to be compatible
with the usual experimental conditions encountered in the
context of circuit QED, where microwave cavities operate at
frequencies corresponding to few GHz [15,16,45] while the
energy separation of a TLS relevant for the physics of either of
these systems is of the order of 10GHz [45,46]. In this case, it
is possible to write the system-TLS coupling Hamiltonian as

HS−TLS =
∑
k

gTLSk (J k+c2 + J k−c†
2
). (3)

If we assume that |Jk| � 1, corresponding to the idea that
for each value of k multiple TLSs couple to the system S, by
resorting to the Holstein-Primakoff (HP) realization of spin
operators in terms of bosonic modes, we can replace the spin
operators with bosonic ones. This mapping can be performed
in two different ways, corresponding to complementary exper-
imental conditions (see Appendix A). If it is assumed that the
TLSs mostly reside in their ground state, we have that J k3 �
−jk, where jk is the index of the representation associated
with the spin Jk and the HP mapping reads J k3 → d

†
kdk − jk,

J k− → dk, J k+ → d
†
k. In this case, the coupling between the

system and the TLS bath can be approximated by

HS−HP− =
∑
k

gHPk (d
†
kc
2 + dkc

†2), (4)

with gHPk = √
2jkgTLSk . On the other hand, if the TLSs mainly

reside in their excited state (J k3 � +jk) the mapping can be
written as J k3 → jk − d

†
kdk, J k− → d

†
k, J k+ → dk, leading to

the following approximation for HS−TLS:

HS−HP+ =
∑
k

gTLSk (dkc
2 + d

†
kc

†2). (5)
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These two different forms of the HP mapping correspond to
two different physical situations. In the former case, the TLSs
prevalently reside in their ground state, corresponding to the
idea that the impurities mainly reside in their ground state,
implying a low-temperature regime. In this case, the bosonic
excitations described by the operators dk represent (weak)
excitations around the ground state. On the other hand, the
latter case corresponds to the situation in which the highest
excited (metastable) state of the TLSs is weakly (de-)excited,
corresponding, for instance, to the case in which an external
drive induces excitations in the TLSs bath, leading to a possible
interpretation of the linewidth narrowing observed in circuit-
QED setups under strong driving conditions [35] in terms of
nonlinear QLEs associated with the saturation of the TLSs. In
this picture, the external drive effectively heats the impurities
to their excited state, inducing the population inversion for the
ensemble of TLSs and a consequent saturation, justifying the
HP+ transformation in terms of (weak) deexcitations of the
highest excited state.
As we show in Appendix B, it is possible to derive QLEs

for the system, provided that the environment Hamiltonian is
described by a set of bosonic operators coupled linearly to
the system degrees of freedom. It is important to note that the
requirement of linearity concerning the system-environment
Hamiltonian is limited to the bath degrees of freedom,meaning
that its most general form can be expressed as

HS−E =
∑
k

gk[F
†(c,c†)ek + F (c,c†)e†k], (6)

where ek and e
†
k represent generic bosonic operators associated

with the environment degrees of freedom. The form the
system-environment coupling represents a sufficient condition
for the derivation of a nonlinear QLE, along with the
assumption that the modes of the bath are noninteracting. In
other terms, it is necessary to assume a linear dependence
of the coupling Hamiltonian on the environmental degrees of
freedom, since in order to derive the QLEs for the system,
the solution of the Heisenberg equation of motion for the
environment degrees of freedom has to assume a specific form
in which the contribution of the system and the environment
operators can be represented as two separate additive terms
(see Appendix B).

III. EQUATIONS OF MOTION

It is clear that since the form of HS−B and HS−HP± can be
expressed in the form given by Eq. (6), withF (c,c†) given by c,
c2, and c†2, andwith ek = bk and ek = dk forS − B,S − HP−,
and S − HP+, respectively, we can write the dynamics of the
system in terms of a (nonlinear) QLE as

ċ = −i[c,HS ]−
(

κ

2
+ κNc†c

)
c + √

κcin + 2√κNc†cTLSin ,

(7a)

ċ = −i[c,HS ]−
(

κ

2
− κNc†c

)
c + √

κcin + 2√κNc†cTLSin
†
.

(7b)

Equations (7a) and (7b), obtained considering the system-
environment coupling given by HS−HP− and HS−HP+ , respec-
tively, are the main result of our analysis. The presence of
a TLS bath leads to the appearance of nonlinear dissipative
terms (±κNc†c c) and to purely imaginary parametric noise
terms (2

√
κNc†cTLSin

(†)
). We stress here that these terms are

the direct result of the modeling of the bath in terms of
two separate environments (HS−B and HS − HP±) and do not
represent an ad hoc modification of the linear QLEs that can
be derived in the absence of coupling to TLSs. In particular,
while the nonlinear dissipation term possibly represents a
natural extension to the nonlinear regime of linear QLEs, the
parametric noise term is a nontrivial contribution associated
with the presence of the TLS bath.
In addition, we observe here that, analogously to their

linear counterpart, Eqs. (7a) and (7b) are time local, i.e.,
the dynamics is Markovian. As detailed in Appendix B, this
property is related to the assumption that within the range of
frequencies of interest, the coupling strength between system
and environment is independent of the mode considered
(wide-band-limit approximation) [47].
If we further consider a pump probe representative of a

circuit-QED setup (e.g., a circuit optomechanical experiment),
we can assume that the dynamics given by Eq. (7) is linearized
around a strong coherent tone:

αp = αin exp[−iωpt].

The frequency ωp is detuned by� = ωp − ωc from the cavity
resonant frequency. As a result of the linearization scheme,
we have that the amplitude of the cavity field oscillating at
ωp is given by the solution of a nonlinear algebraic equation.
In Fig. 2 we have plotted the stationary value of the cavity
field for the two choices of the HP mapping (HP±). As
expected, for small values of the driving fieldαin, the stationary
solution corresponds to the solution in the absence of nonlinear
dissipation. However, for larger values of αin the stationary
solution substantially deviates from the solution of the linear
system, with, for the parameters discussed here, a negligible
difference between HP± cases.
Furthermore, the (first-order) dynamics of the fluctuations

c = α + a around the stationary value induced by the pump
(in a frame rotating at ωp) is given by

ȧ =
[
i� −

(
κ

2
+ 2κN |α|2

)]
a − κNα2a†

+√
κain + 2√κNα∗aTLSin , (8a)

ȧ =
[
i� −

(
κ

2
− 2κN |α|2

)]
a + κNα2a†

+√
κain + 2√κNα∗aTLSin

†
, (8b)

the HP− and HP+ case, respectively (see Appendix C). It
is possible to see that Eqs. (8a) and (8b) include a purely
imaginary parametric term on top of a nonlinear dissipation
term, implying linewidth broadening or narrowing, depending
on the state of the TLSs bath. Recently, in Ref. [22] a term of
the same form was introduced as an ad hoc parameter in order
to match the experimental results of a cavity optomechanical

063830-3



JUUSO MANNINEN, SOUVIK AGASTI, AND FRANCESCO MASSEL PHYSICAL REVIEW A 96, 063830 (2017)

(a)

(b)

0 0.5 1 1.5 2

104

0

100

200

300

400

500

600

0 0.5 1 1.5 2

104

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

FIG. 2. Amplitude (a) and phase (b) for the stationary value (in
a frame rotating at ωp, see text) of the cavity field α in the presence
of a driving αin. Parameters: κN = 1.5×10−4, � = 20 (all quantities
expressed in units of κ).

experiment aimed at establishing squeezing below the SQL of
a nanomechanical resonator.
Our description, therefore provides a potential explanation

of such parametric effects in terms of nonlinear dissipation
phenomena associated with the nonlinear coupling to a bath
of TLSs. In order to characterize the effect induced by the
presence of the nonlinear coupling to TLSs, we evaluate the
fluctuation spectrum of the cavity field Sθ

ω = 1/2〈{Xθ
ω,Xθ

−ω}〉,
withXθ

ω = 1/
√
2(a†

−ωeiθ + aωe−iθ ), assuming thermal fluctu-
ations both for the bosonic and the TLS bath. As hinted by the
structure of Eqs. (8a) and (8b), the presence of a parametric
term induces squeezing,which can be experimentally observed
by homodyne detection of the output field, in the cavity
spectrum for both cases, as seen in Fig. 3, where the cavity fluc-
tuation spectrum exhibits a clear dependence on the phase θ .

IV. CONCLUSIONS

We have reported here how it is possible to deduce
nonlinear QLEs for the dynamics of an open quantum system
from a nonlinear system-environment coupling Hamiltonian.
Moreover, we have discussed how an effective nonlinear
system-environment coupling can emerge in the presence
of impurities modeled as TLSs. Ultimately, we have shown
that the TLS-induced nonlinearities can represent a potential
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FIG. 3. Noise spectrum for the cavity field in the presence of
an external drive αin = 700, for (a) HP− and (b) HP+ for 〈a†

inain〉 =
〈aTLSin

†
aTLSin 〉 = 1 (all other parameters as in Fig. 2).

explanation for the imaginary parametric terms reported in
Ref. [22].
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APPENDIX A: HOLSTEIN-PRIMAKOFF
TRANSFORMATION

We discuss here the Holstein-Primakoff realization allow-
ing us to replace the spin operators Jz, J± obeying the usual
SU(2) commutation relations[

J kz ,J k±
] = ±J k±, [J k+,J k−] = 2J kz , (A1)

with bosonic operators dk, d
†
k, for which

[dk,d
†
k] = 1. (A2)

As discussed in the main text, in order to map the spin
operators obeying Eq. (A1) with the bosonic operators dk, d

†
k,

we have two possibilities, depending on the physical situation
we want to describe. If we assume that J kz � −jk, this choice
is indicated in the main text as HP−, we can consider the
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following transformation:

J kz = n̂k − jk, J k+ = d
†
k

√
2jk − n̂k, J k− =

√
2jk − n̂k dk,

(A3)

where n̂k = d
†
kdk. The operators J kz , J

k
± can be shown to fulfill

the SU(2) commutation relations[
J kz ,J k+

] = [n̂k,d
†
k]

√
2jk − n̂k = J k+,[

J kz ,J k−
] =

√
2jk − n̂k[n̂k,dk] = −J k−, (A4a)

[J k+,J k−] = d
†
k(

√
2jk − n̂k)

2dk −
√
2jk − n̂k n̂k

√
2jk − n̂k

= n̂k
(
2jk−n̂k + 1)−2jk+n̂k−n̂k(2jk−n̂k)=2J kz .

(A4b)

In the limit jk → ∞, we have that
J k+√
2jk

= d
†
k

√
2jk − n̂k

2jk
= d

†
k

(
1− n̂k

4jk
+ · · ·

)
� d

†
k,

J k−√
2jk

� dk,
J kz

jk
= n̂k

jk
− 1 � −1. (A5)

Therefore the bosonic excitations described by dk and d
†
k

correspond to (small) excitations around the J kz = −jk state.
Conversely, we can write

J kz = jk − n̂k, J k− = d
†
k

√
2jk − n̂k, J k+ =

√
2jk − n̂k dk,

(A6)

so that when jk → ∞,
J k+√
2jk

� dk,
J k−√
2jk

� d
†
k,

J kz

jk
= 1− n̂k

jk
� 1, (A7)

which correspond to the description of small fluctuations
around the J kz = j state, indicated as HP+ in main text.

APPENDIX B: QLE FOR F(c,c†)

We discuss here the form of the QLEs generated by a
model for which, following the notation introduced in Eq. (1)
of the main text, HS is left unspecified. The environment is
given by a set of noninteracting bosonic modes described by
HE = ∑

k ωke
†
kek, where ek (e

†
k) are the annihilation (creation)

operators associated with mode k and the system-environment
coupling is given by the following Hamiltonian:

HS−E =
∑
k

gk[F (c,c
†)e†k + F †(c,c†)ek], (B1)

where F (c,c†) is a generic function of the creation and
annihilation operators of the system. Since HS−E is a linear
operator with respect to the degrees of freedom of the bath
and e

(†)
k commutes with HS , we can follow the same strategy

employed for the derivation of the linear QLEs [11] and write
the equations of motion (EOM) for the bath field operators in
the Heisenberg picture as

ėk(t) = −iωkek(t)− igkF (c,c
†). (B2)

Similarly, the EOM for the system can be written as

ċ(t) = i[HS ,c(t)]+ i
∑
k

gk([F,c]e†k + [F †,c]ek). (B3)

Equation (B2) can be solved in terms of an initial condition t0,
yielding

ek(t)=e−iωk(t−t0)ek(t0)− igk

∫ t

t0

e−iωk(t−t ′)F [c(t ′),c†(t ′)] dt ′.

(B4)

By substituting Eq. (B4) and its Hermitian conjugate into
Eq. (B3) we obtain

ċ(t) = i[HS ,c(t)]+ i
∑
k

gk

{
[F,c]

[
eiωk(t−t0)e

†
k(t0)+ igk

∫ t

t0

eiωk(t−t ′)F †(t ′) dt ′
]

+ [F †,c]
[
e−iωk(t−t0)ek(t0)−igk

∫ t

t0

e−iωk(t−t ′)F (t ′) dt ′
]}

. (B5)

Like for the purely linear case, we introduce the density of states D = ∂k/∂ωk (supposing a continuum of states for the bath)
and assume that, in the relevant frequency regime, gk does not depend on the mode index k. If we define

gk =
√

κ

2πD
, (B6)

where κ is the mode-independent constant, we can write Eq. (B5) as

ċ(t) = i[HS ,c(t)]+ i
∑
k

√
κ

2πD

{
[F,c]

(
eiωk(t−t0)e

†
k(t0)+ i

√
κ

2πD

∫ t

t0

eiωk(t−t ′)F †(t ′) dt ′
)

+ [F †,c]
(

e−iωk(t−t0)ek(t0)− i

√
κ

2πD

∫ t

t0

e−iωk(t−t ′)F (t ′) dt ′
)}

= i[HS ,c(t)]+ √
κ

{
[F,c]

(
−c†in(t)−

√
κ

2
F †(t)

)
+ [F †,c]

(
−cin(t)+

√
κ

2
F (t)

)}
, (B7)
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where we have defined cin(t) as

cin(t) = − i√
2πD

∑
k

e−iωk (t−t0)ek(t0). (B8)

The definition introduced in Eq. (B6) corresponds to what in the context of electronic transport is defined as “a wide-band-limit
approximation” and, allowing us to write the QLE given in Eq. (B7) in time-local form, can be considered equivalent to the
Markov approximation [47].
Let us focus on the case, discussed in the text, of two separate baths: a bosonic bath with operators bk and a bath of TLSs

with HP-transformed modes dk. We define two functions Fb and FTLS of the system operators that couple to the bosonic and TLS
baths, respectively. The QLE (B7) then reads

ċ(t) = i[HS ,c(t)]+ √
κ

{
[Fb,c]

(
−c†in −

√
κ

2
F

†
b

)
+ [F †

b ,c]

(
−cin +

√
κ

2
Fb

)}

+√
κN

{
[FTLS,c]

(
−cTLS†in −

√
κN

2
F

†
TLS

)
+ [F †

TLS,c]

(
−cTLSin +

√
κN

2
FTLS

)}
. (B9)

Assuming a linear coupling between the system and the
bosonic bath and choosing the HP− mapping for the TLSs, one
obtainsFb = c andFTLS = c2. Substituting these into Eq. (B9)
gives

ċ = i[HS ,c(t)]−
(

κ

2
+ κNc†c

)
c + √

κcin + 2√κNc†cTLSin ,

(B10)

which corresponds to Eq. (7a) of themain text. On the contrary,
if the HP+ mapping is chosen, one obtains Eq. (7b) with
FTLS = c†2.

APPENDIX C: LINEARIZATION OF THE QUANTUM
LANGEVIN EQUATIONS

Here we outline the linearization strategy that allows us, in
the presence of a strong coherent tone αp = αine

−iωpt , to recast
Eqs. (7b) of the main text in terms of equations describing the
stationary state (in a frame rotating at ωp) and the fluctuations
around this stationary state, given by Eqs. (8a) and (8b) of the
main text.
Focusing on Eq. (7a),

ċ = −i[c,HS ]−
(

κ

2
+ κNc†c

)
c + √

κcin + 2√κNc†cTLSin .

(C1)

In the presence of a strong coherent pump αp = αine
−iωpt , we

seek a solution of the form c = α + a,

−iωpα + ȧ = −iωc(α + a)−
[
κ

2
+ κN (α

∗ + a†)(α + a)

]

× (α + a)+ √
κ(αin + ain)

+ 2√κN (α
∗ + a†)aTLSin , (C2)

where without loss of generality, we have assumed that
HS = ωcc

†c.
Neglecting the fluctuation terms, we obtain the equation for

the steady-state solution

0 = i�α − κ

2
α − κNα|α|2 + √

καin, (C3)

where � = ωp − ωc. From Eq. (C2) the equation for the
fluctuation around the steady-state solution value of α given
above is thus expressed as

ȧ =
[
i� −

(
κ

2
+ 2κN |α|2

)]
a − κNα2a† + √

κain

+ 2√κNα∗aTLSin . (C4)

With a similar procedure one can also show that Eq. (7b)
leads to Eq. (8b). Notice that the nonlinear dissipative terms
∓2κN |α|2a in Eqs. (8a) and (8b) lead to the broadening or nar-
rowing of the linewidth associated with the linearized response
of the cavity field fluctuations, respectively (see Fig. 4).

APPENDIX D: FLUCTUATION SPECTRUM
OF THE NONLINEAR MODEL

Assuming that, in addition to the strong coherent tone, the
dynamics of the system is affected by thermal fluctuations
of both the bosonic and the TLS baths degrees of freedom,

0 200 400 600 800 1000
-1

-0.5

0

0.5

1

1.5

2

2.5

3

FIG. 4. The total effective dissipation of the linearized models
Eq. (8a) (solid red) and Eq. (8b) (dashed green) that correspond to
the cases where the majority of the TLSs are in the ground state and
excited state, respectively. They are compared to the case of pure
linear dissipation (black dots). Here we assume the system to be a
simple cavity with HS = ωcc

†c. In units of κ , the parameters are
� = ωp − ωc = 20 and κN = 1.5×10−4.
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FIG. 5. The cavity spectra related to the Holstein-Primakoff couplings (a) HP− and (b) HP+ for the largest uncertainty quadrature (θ = π/2
and θ = 0, respectively). In (a) the linewidth widens as αin becomes larger (larger values of αin correspond to smaller values of the maximum
at ω = 0), whereas in (b) the linewidth becomes narrower (larger values of αin correspond to larger values of the maximum at ω = 0).
Here the thermal populations of the bosonic and TLS baths are nth = nTLSth = 1, and in the units of κ , the other parameters are � = 20 and
κN = 1.5×10−4.

we evaluate here the spectrum of these fluctuations focusing
on the HP− case (an analogous derivation holds for the HP+
mapping). The fluctuation spectrum

Sθ
ω = 1

2

〈{
Xθ

ω,Xθ
−ω

}〉
, (D1)

with Xθ
ω = 1/

√
2(a†

−ωeiθ + aωe−iθ ), can be obtained by
Fourier transforming the QLE given by Eq. (8a) and its
Hermitian conjugate[

−i(ω + �)+ κ

2
+ 2κN |α|2

]
aω + κNα2a

†
−ω

= √
κain,ω + 2√κNα∗aTLSin,ω , (D2a)

[
−i(ω − �)+ κ

2
+ 2κN |α|2

]
a
†
−ω + κNα∗2aω

= √
κa

†
in,−ω + 2√κNαa

TLS†
in,−ω, (D2b)

with the usual convention for the Fourier transform, according

to which at
FT�−→ aω and a

†
t

FT�−→ a
†
−ω.

Defining

A = −i(ω + �)+ κ

2
+ 2κN |α|2, (D3a)

B = κNα2, (D3b)

C = −i(ω − �)+ κ

2
+ 2κN |α|2, (D3c)

the QLE for the system can be expressed as(
aω

a
†
−ω

)
= 1

AC − |B|2
(

C −B

−B∗ A

)

×
( √

κain,ω + 2√κNα∗aTLSin,ω

√
κa

†
in,−ω + 2√κNαa

TLS†
in,−ω

)
, (D4)

and

aω = χd (ω)ain,ω + χx(ω)a
†
in,−ω + χTLSd (ω)aTLSin,ω

+χTLSx (ω)aTLS†in,−ω, (D5a)

a
†
−ω = χ∗

x (−ω)ain,ω + χ∗
d (−ω)a†

in,−ω + χTLS∗x (−ω)aTLSin,ω

+χTLS∗d (−ω)aTLS†in,−ω, (D5b)

where

χd (ω) = √
κC(AC − |B|2)−1, (D6a)

χx(ω) = −√
κB(AC − |B|2)−1, (D6b)

χTLSd (ω) = 2
√

κNα∗C(AC − |B|2)−1, (D6c)

χTLSx (ω) = −2√κNαB(AC − |B|2)−1. (D6d)

If we assume that the thermal populations of the baths are
given by 〈ain,ωa

†
in,ω′ 〉 = (nth + 1)δ(ω − ω′) and 〈aTLSin,ωa

TLS†
in,ω′ 〉 =

(nTLSth + 1)δ(ω − ω′), the cavity spectrum can be written as

Sθ
ω = 1

4 [(|χd (ω)|2 + |χx(−ω)|2)〈{ain,ω,a†
in,ω}〉 + (|χd (−ω)|2 + |χx(ω)|2)〈{a†

in,−ω,ain,−ω}〉]
+ 1

4 [(χd (ω)χx(−ω)e−i2θ + χ∗
d (ω)χ

∗
x (−ω)ei2θ )〈{ain,ω,a†

in,ω}〉
+ (χd (−ω)χx(ω)e

−i2θ + χ∗
d (−ω)χ∗

x (ω)e
i2θ )〈{a†

in,−ω,ain,−ω}〉]
+ 1

4

[(∣∣χTLSd (ω)
∣∣2 + ∣∣χTLSx (−ω)

∣∣2)〈{aTLSin,ω ,aTLS†in,ω

}〉
+ (∣∣χTLSd (−ω)

∣∣2 + ∣∣χTLSx (ω)
∣∣2)〈{aTLS†in,−ω,aTLSin,−ω

}〉]
+ 1

4

[(
χTLSd (ω)χTLSx (−ω)e−i2θ + χTLS∗d (ω)χTLS∗x (−ω)ei2θ

)〈{
aTLSin,ω ,aTLS†in,ω

}〉
063830-7



JUUSO MANNINEN, SOUVIK AGASTI, AND FRANCESCO MASSEL PHYSICAL REVIEW A 96, 063830 (2017)

+ (
χTLSd (−ω)χTLSx (ω)e−i2θ + χTLS∗d (−ω)χTLS∗x (ω)ei2θ

)〈{
a
TLS†
in,−ω,aTLSin,−ω

}〉]
= 1

2 [|χd (ω)|2 + |χd (−ω)|2 + |χx(ω)|2 + |χx(−ω)|2

+ 2 cos(θ + φ)|χd (ω)χx(−ω)+ χd (−ω)χx(ω)|]
(
nth + 1

2

)
+ 1

2

[∣∣χTLSd (ω)
∣∣2 + ∣∣χTLSd (−ω)

∣∣2 + ∣∣χTLSx (ω)
∣∣2 + ∣∣χTLSx (−ω)

∣∣2
+ 2 cos(θ + φTLS)

∣∣χTLSd (ω)χTLSx (−ω)+ χTLSd (−ω)χTLSx (ω)
∣∣](nTLSth + 1

2

)
, (D7)

where φ(TLS)=Arg[χ (TLS)d (ω)χ (TLS)x (−ω)+χ
(TLS)
d (−ω)χ (TLS)x (ω)]. In Fig. 5(a) we have plotted the cavity spectrum for the HP−,

and the spectrum related to HP+ coupling derived from Eq. (8b) is presented in Fig. 5(b).
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Abstract
We simulate coherent driven free dissipative Kerr nonlinear systemnumerically using Euler’smethod
by solvingHeisenberg equation ofmotion and time evolving block decimation (TEBD) algorithm,
and demonstrate how the numerical results are analogous to classical bistability. The comparisonwith
analytics show that the TEBDnumerics follow the quantummechanical exact solution obtained by
mapping the equation ofmotion of the densitymatrix of the system to a Fokker-Plank equation .
Comparing between two different numerical techniques, we see that the semi-classical Euler’smethod
gives the dynamics of the system field of one among two coherent branches, whereas TEBDnumerics
generate the superposition of both of them. Therefore, the time dynamics determined byTEBD
numericalmethod undergoes through a non-classical state which is also shown by determining
second order correlation function.

Introduction

TheKerr effect was discovered by JohnKerr in 1875 [1], which exhibits quadratic electro-optic (QEO) effect, is
seen in almost allmaterials, but certainmaterials displaymore strongly than others, for example organic
molecules and polymers [2], Se-based chalcogenide glasses [3] and silicon photonic devices [4]. The non-linear
phenomenon introduced byKerr effect has been observed experimentally and it has broad range application in
many optical andmagnetic devices. For example, the optical Kerr effects have been useful for nonlinear signal
processingwhich has shown several applications includingNRZ-to-RZ conversion [5], multi-casting,
demultiplexing, regeneration,monitoring,multiple-wavelength source [6, 7], andmanymore. Themagneto-
optical Kerr effect (MOKE) has potential application in ultrathinmagnetic devices, e.g. films [8], multilayers [9],
andmagnetic superlattices [10], and, the surfacemagneto-optic Kerr effect (SMOKE) has remain a powerful tool
for in situ characterization [11] . All the setups have shown bistability as their predominant characteristics which
causes due to nonlinear susceptibility.

Themultistability in the steady state solution of Kerr nonlinearity has been encountered theoretically in two
different ways: semiclassicaly where the state of the system is approximated to the nearest coherent state, and
quantummechanically wherewe estimate the exact solution from themaster equation formalism of the density
matrix of the system. The semicalssical solution of both dispersive and absorptive bistability has been derived by
using the quantumLangevin equation [12, 13], and the theory of quantummechanical solution for the
absorptive case [14] and the dissipative case [15] has been obtained bymapping themaster equation to the
Fokker plank equation. Both the techniques have been usedwidely to study the dynamics of open quantum
systemswhich is considered as one of themost fundamental problems in quantummechanics.

The theoretical techniques for open quantum systemhave been developed over decades and applied
successfully for detecting and preparing quantum states ofmatter and radiation [16], sensing electromagnetic
fields [17], quantum communication [18] and detection of gravitational waves [19]. The recent development of
nanoscale fabrication techniques, in general, circuit quantum electrodynamics (QED) setups exhibit the
technological application of quantummechanics, particularly in superconducting qubits and nanomechanical
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resonators ([20, 21]).Within this framework, recently the theory has been used to study various nonlinear
systems, e.g. two state systems [22, 23], microwave quantumoptomechanics [24] and impurities in solid state
systems [25]. In all cases, includingKerr nonlinear systems, linearized approximated theory has been
implemented to study the dynamical behavior of the system, where one transforms the nonlinearHamiltonian
to a linear one by accounting the quantum fluctuation over nonlinear steady state field amplitude. Appreciating
its simplicity, the technique, however, cannot provide a satisfactory platform. The limitation of the analytics
provokes us for the numerical simulation of the time evolution of nonlinear systems, explicitly. In order to
implement the numericalmodel, we transform the environmental degrees of freedom to a one dimensional
many body systemwith nearest neighbor interaction and simulate thewhole chain using time-adaptive density
matrix renormalisation group (t-DMRG)method. The computationalmethod consists of numerical
diagonalization and renormalization process.

The t-DMRG technique is considered as one of themost powerful numerical schemes in optical, atomic and
condensedmatter physics to be applied on strongly-correlatedmany-body quantum systems. The technique
have already been used for some of the renownedmodels of quantummechanics, e.g. Hubbardmodel [26–29],
Bose–Hubbardmodel [30–32] and Isingmodel [33–35], especially aiming to study the quenching dynamics,
magnetization and phase transition properties.

In this paper, we introduce a TEBDnumericalmodel for the simulation of open quantum system, and use
themodel for the first time to study the time dynamics of the Kerr nonlinear system. The article is composed by
startingwith the theoreticalmodel that explains how the continuousmodes of the bath together with the
nonlinear system is transformed into a one dimensional discrete chain.Hereafter, we use two different
numericalmethods: time propagation of the system field by solving theHeisenberg equation ofmotion using
Euler’smethod andTEBDnumericalmethod to determine the time dynamics and steady state behavior of the
system.We also compare between the numerics andwith analytics, discussing in detail explaining the physical
significance of our result.

Model: theory

TheHamiltonian of a system that describes theKerr effect is,

*( ) ( )† † †H a a a a i a Ee aE e , 1S S
i t i t2 2 L L

whereωS is the frequency of the cavitymode of oscillation, is the anharmonicity parameter which is
dependent on the real part of the third order nonlinear susceptibility tensor ([15]), and ( )†a a are the creation
(annihilation) operators of the system.E is the amplitude of an external drivingfieldwith an oscillation

frequencyωL, expressing as *˜ ( )E t Ee E ei t i tL L . In order tomake theHamiltonian time independent, we
switch to the frame of the driving field. Eventually, the detuned cavity frequency becomesΔ=ωS−ωL.
Considering the system is coupled to a thermal reservoir, the totalHamiltonian is given by,

( )H H H H , 2tot S B SB

where ( ) ( ) ( )†H g x d x d x xdB x

x

m

m
represents theHamiltonian of amultimode bosonic reservoir which is at

zero temperature, and ( )( ( ) )†H h x a d x h c x. . dSB x

x

m

m
is the interactionHamiltonian.We considerωS is the

central frequency of the reservoir, ( )†d dx x are the creation (annihilation) operators, and g(x) and h(x) are the
frequency of oscillation and the coupling strength between the system and environment, respectively, for the
environmentalmode x. The properties of bath can be characterized by a uniquely defined spectral density
function J(ω). Considering the linear dispersion relation (g(x)=g. x, where g is the inverse of density of states),
and implyingwide band limit approximation ( ( ) )h x c0 [36], we get the spectral density function [37]

( ) ( ) ( ) ( )J
1

2
, 3c c

where c2 0
2 is the decay rate of the system and θ is theHeaviside step function.With this choice of hard

cutoff, wefix the frequency limitωc=g. xm to run over the entire spectrumof bath.

Model: tebd numerics

To simulate an open quantum systemnumerically, we transform theHamiltonian of the system/bath coupling
model to a semi-infinite chainmodel, bymapping the bath operators to the operators of lattice chain, using a

unitary transformation: ( ) ( )b U x d x xdn x

x
n

m

m
. In a casewhere the spectral density is defined by the

equation (3), the normalized shifted Legendre polynomial is a natural choice as the unitary operator:

( ) ( )( )U x L x xn
n

x n m
2 1

2 m
which is defined in the range of xä[−xm, xm] and satisfies the orthogonality
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condition [38]. The transformedHamiltonian of the semi infinite chain is

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )† † † † †H H a b ab b b b b b blim 4chain S

N n

N

n n n
n

N

n n n n n0 0
0 0

1

1 1

where the coefficients are c 2 , 0c n0 and, ( )( )( )n c
n

n n

1

2 1 2 3
. The schematic diagramof the

transformation is given infigure 1(a). Similarmapping is introduced recently in [38] to simulate open quantum
systems aiming to be applied to spin-bosonmodels [39] and biomolecular aggregates [40].

Hereafter, we express the state of the chain as amatrix product state (MPS) to do the numerical simulation
using TEBD. TheMPS state is expressed by ([41])

∣ · ∣ ( )[ ] [ ] [ ] [ ] [ ] [ ] [ ] i i i i, ,.., , . 5
i i

M
i i N N i N

N N
,., 0 ... 0

1 1 2 2 1
1 2 1

N N

N N

N

N

1 1 1

1 1 2
2

2 2 3
3

1

TheΓ andλ tensors are obtained through the Schmidt decomposition of the pure state of N sites whereχ is
the Schmidt number andM is the dimension of localHilbert space. Figure 1(b) shows themethod of numerical
simulation for the real time evolution diagrammatically, wherewe choose 2nd order Suzuki Trotter (ST)
expansion ([42])which expresses the unitary evolution operator as

[ ] ( )U e e e e O td , 6t
i tH iF t iG t iF t

d
d d 2 d d 2 3chain

where F Hi chain
i i

odd
, 1 and G Hi chain

i i
even

, 1. The ST expansionminimizes the error in 3rd order of the time
step by evolving the pairs of alternate sites.

The simulation parameters are estimated byminimizing errors which appear in twoways: during the
modeling of the S/B formalism to a 1D chain and the simulation of each step of the real time evolution.We
discuss the errors extensively in appendixwith an estimation of simulation parameters.

Model: time propagation of semi-classical equation

Since the bath is at zero temperature, the time dynamics of the system field is obtained by theHeisenberg
equation ofmotion:

˙ ∣ ∣ ( )†a i a a i a i a
2

2 4 72 2

which is afirst order differential equation. Therefore, using Euler’smethod ([43]), we do the time propagation of
the systemfield numerically to obtain the time dynamics and steady state.

Results: steady state situation

The exact analytical expression of themoment calculating generalized functions of the systemfield operators are
derived bymapping themaster equation into the Fokker-Plank equation [15], which determines the steady-state
field amplitude and second order correlation functions:

Figure 1. (a)Transformation of system/bath couplingHamiltonian to a semi infinite chainHamiltonian. (b)Diagrammatic
expression of the real time evolutionwhere the operators applied on alternating pair.
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⎛
⎝⎜

⎞
⎠⎟

[ ] ( [ ] )
( [ ] )

( )a
E i F p q E

pF p q E
a

1, , 2

, , 2
. 80 0

2

0
2

⎛
⎝⎜

⎞
⎠⎟( ) ( ∣ ∣ ) ( [ ] )

( )( )[ ( [ ] )]
( )g

pqF p q E F p q E

p q F p q E
b0

, , 2 2, 2, 2

1 1 1, 1, 2
, 82 0

2
0

2

0
2 2

where * ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦E E E p q, ,
i i0 2 2

and ( ) ([] [ ] )F p q z F p q z, , , , , is the F0 2

hypergeometric function. Furthermore, the relation between the input drive and the semi-classical stationary
value of the systemfield, determined from theHeisenberg equation ofmotion given in equation (7), is given by

⎛
⎝⎜

⎞
⎠⎟∣ ∣ ∣ ∣ ( ∣ ∣ ) ( )E 2

4
, 92 2 2 2

2

whereα is the steady state system field.
Since the TEBDnumericalmodel for theKerr nonlinear system is introduced for thefirst time, we justify its

applicability by comparingwith the analytically estimated results. Here, we plot the steady state systemfield and
the second order correlation function infigure 2which presents both the numerical results determined through
TEBD and the time propagation of the systemfield using Euler’smethod, alongwith the analytically determined
semi-classical and quantummechanical solution, which shows how the TEBDnumerical result is analogous to
classical bistability. For the numerical simulation of the time dynamics, the initial state of the system is chosen to
be in a ground state, and therefore, no photon existed initially.We see the stationary value of the systemfield
loses its linear naturewhen the driving field is increased far. It is also to be noted that the semi classical solution
exhibits bistability whereas the exact quantummechanical solution does not. The peak in the plot of g2(0)
indicates the increase of the quantumfluctuations near the transition point, which happens due to the
superposition of two coherent states in the quantummechanical solution; and, as the coherent states are not
mutually orthogonal, the state loses its classical nature. The TEBDdetermined numerical resultmatches to the
quantummechanical exact analytical solution, whereas the numerical time propagation of the systemfield using
Euler’smethod follows the analytically determined semi-classical solution, and the branch shift occurs within
the boundary of analytically predicted transition region. The extent towhich bistability is observed depends on
thefluctuations of the input driving field, which in turn determine the time for random switching fromone
branch to the other. The time scale of the change of driving fieldmust be larger than time intervals of the random
switching between branches.

Results: time dynamics

The time dynamics of the Kerr nonlinear system is generally estimated analytically by linearizing the quantum
fluctuation over nonlinear steady state field amplitude. Anticipating its simplicity, however, this does not
provide accuracy when the impact of nonlinearity is predominant which is observed, especially when the system
is driven by a stronger pump. Even though an effort to study the classical dynamics of Kerr systemhas beenmade
in [44], but this does not provide sufficient information regarding quantumdynamics; which provokes us to opt

Figure 2. (a) Steady state field amplitude and second order correlation function, (b) phase plotted for 10, 3, 6.3
with the variation of driving field amplitude. All quantities are in the units of g and the TEBD simulation parameters:N=50,χ=25,
M=15, δt=10−2 g−1.
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numericalmethods.We plot the time dynamics of systemfield infigure 3which shows that thefield stabilizes
after suffering initial oscillation .However, the plots exhibit difference for two differentmethods, which comes
from the fact that the semi-classical Euler’smethod determines the coherent field of the systemwhich lies on one
among two branches, whereas TEBDdetermined result gives the superposition of both the branches, and as a
consequence, the difference enhances around the transition region (figures 3(c) and (d)) . The interesting
phenomenon is also noticedwhenwe plot the trajectory of the time evolution of the systemfield in phase space.
From the plots given in insets, we see that two different branches reach different steady states following a
completely opposite trajectory. However, in case of the TEBDnumerical result, we don’tfind any particular
pattern in the transition region, for the trajectory of the system field due to the dominant superposition of both
the coherent states.

Results: second order correlation function

Wealso plot the time evolution of the second order correlation function using TEBD algorithm, infigure 4
which shows that the correlation function does not deviatemuch fromunit valuewhen the system relaxes closer
to a stable classical branch.However, as anticipated due to the superposition of two coherent states, around the
transition region, the time evolution of the correlation function differsmuch from the unit, which indicates that
the evolution of the system goes through nonclassical states.

Conclusion

Wehave used TEBDnumerical technique andEuler’smethod successfully for the time propagation of the
systemfield of a Kerr nonlinear system, and studied how the numerical results are analogous to classical
bistability. Analyzing the steady state behavior of the system,we see that the TEBDnumerical result follows the
quantummechanical exact solution obtained bymapping the equation ofmotion of the densitymatrix of the
system to a Fokker-Plank equation, whereas the time propagation of the systemfield obtained using Euler’s
method follows the semi-classical solution of theHeisenberg equation ofmotion. The time dynamics
determined by two different numerical techniques show that the semi-classical Euler’smethod determines the
coherent field of the systemwhich lies one among two branches, whereas TEBDdetermined numerical result
keeps the superposition of both of them. As a result, there comes a difference in the system field for two different
methods, which enhances around the classical transition region. The TEBDdetermined second order
correlation function does not evolve as unit valued, especially around the transition regionwhich is an
indication of the generation of non-classical state due to the superposition of the two coherent states. The

Figure 3.Time dynamics of the system fieldwith the variation of driving field amplitude ((a)1, (b)3, (c)5, (d)7, (e)15, (f)19). The blue
solid line and the red dashed lines correspond to the time propagation using Euler’smethod andTEBDnumericalmethod,
respectively. In inset we plot the trajectory of the systemfield, alongwith the phase. All other parameters remain samewith figure 2.
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importance of our work, the analysis of the dynamical behavior of the externally drivenKerr nonlinear system,
has been visualized in recent experiments. For example, studding the influence of differentmagnetic fields on
electrical conductivity in a nonlinearmedia has drawn attention for exhibiting interesting quantum effects
[45, 46]. Analyzing the performance of the numerical techniques, we conclude by saying that the techniques
chosen here are quite promising toworkwith for the analysis of nonlinear systems, and could be useful for the
investigation of nonlinear dynamics reported in [24, 25].
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Appendix: Errors in tebd simulation and estimation of parameters

We investigate the error here introduced due to the finite values of the simulation parameters, and showhow
theymodify with the variation of those parameters. This studywill help us to estimate and optimize the
parameters in order to do the simulation efficiently.

Modeling error
Themodeling error is contributed by the canonical transformation of S/B coupling to 1D chain. In practice, we
choose amodel where the chain has afinite length considering the fact that the number ofmodes of the bath is
finite, which causes the recurrence of the particle from the end of the chain.Here, we discuss how the recurrence
time changes when those parameters change.

• Length of the chain: The recurrence time is dependent on the group velocity which is defined by vg kN
,

whereω is the frequency, and kN is thewavenumber determined by the number of lattice sites (kN∝N). In
figure A1(a), we see the recurrence time increases with the increment of the length of the chain, which happens
due to the fact that the increment of the number of sites reduces the group velocity for the particle to travel.

• Cut off frequency: The increment of the cutoff frequency increases the group velocity, forcing the particle to
travel faster in the lattice, causing the reduction of the recurrence timewhich is seen in the figure A1(b).

Numerical error
Apart frommodeling error, there are two othermajor sources of simulation error appears due to thefinite sizes
of the time step and the truncation of theHilbert space.

Figure 4.Plot of the second order correlation functionwith the variation of the driving field. All other parameters remain samewith
figure 2.
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• Suzuki Trotter error:In case of real time evolution, the Suzuki-Trotter errorwhich is introduced due to the
finite size of the time step, tends to concentrate in the overall phase ([42]). Infigure A2(a), we showhow the
accuracy of the simulation improvedwith the reduction time step. As time step decreases the curves approach
each other, and beyond the time step 10−2 g−1, we do not see any substantial improvement in the plot of cavity
field amplitude.

• Truncation error:TheTEBDnumericalmethod is involvedwith the truncation ofHilbert space in every step of
time evolution ([41]). The reasonable size ofHilbert space is such a size that has the ability to express the cavity
fieldwith negligible error. The coherent field generated in the systemhas a Poisson probability distribution

Figure A1.Variation of recurrence timewith the variation of (a)number of sites, (b) cutoff frequency. E=4 and all other parameters
remain samewithfigure 2.

Figure A2. (a)Time evolution of the systemfield with the variation of step size in TEBD simulation. (b)Plot of cumulative probability
of a regular Poisson distribution for differentmean values. The black line shows the truncation point in theHilbert space. (c)Plot of
the time evolution of the vonNeumann entropy of the first site. (d)Plot of the eigenvalues of the reduced densitymatrix when the
entanglement ismaximized, and the black line shows the truncation point. For (a)E=4 and (c, d)E=20, and all other parameters
remain samewithfigure 2.
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which demands infinite localHilbert space to complete the set which is clearly not possible. The occupation
probability of boson of a coherent field (∣ )n is distributed in Fock basis according to

∣ ∣ ∣ (∣ ∣ )!
∣ ∣n e

n
n2 1 2 2

. The cumulative probability distribution is shown infigure A2(b), which estimates

the reasonable size of localHilbert space, anticipating accuracy upto a significant extent.
In order to estimate a reasonable size of the Schmidt number, we plot the vonNeumann entropy associated
with the entanglement between the system and thefirst site ( ( ) ( ) )[ ] [ ]S log2 2

2
2 2

2 2 2
infigure A2(c). As

the evolution of the state starts from a product state, the vonNeumann entropywas zero at the beginning. It
increases initially and reaches to themaximumvalue, and then, reduces with time.
We estimate the Schmidt numberwhen the entanglement ismaximized. The Schmidt number should be
chosen in such away that the eigenvalues after truncation contribute so less that they can easily be neglected.
Infigure A2(d)weplot the eigenvalues of the reduced densitymatrices when the entanglement ismaximum
between the system and thefirst site of the chain. The truncation line shows that the choice of Schmidt number
is reasonable in this case.
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Abstract
We transform the system/reservoir couplingmodel into a one-dimensional semi-infinite discrete
chain through unitary transformation to simulate the open quantum systemnumerically with the
help of time evolving block decimation (TEBD) algorithm.We apply themethod to study the
dynamics of dissipative systems.We also generate the thermal state of amultimode bath using
minimally entangled typical thermal state (METTS) algorithm, and investigate the impact of the
thermal bath on an empty system. For both cases, we give an extensive analysis of the impact of the
modeling and simulation parameters, and compare the numerics with the analytics.

Introduction

Open quantum systems—i.e. quantum systemswhich are described as separate entities from the surrounding
environment while being somehow coupled to it— have drawn attention over the decades because of their
applicability in the foundation of statisticalmechanics, quantummechanics, and the realization of optical,
atomic andmolecular physics. The dynamics of open quantum systems is one of themost fundamental
problems in quantummechanics, encompassing concepts such as the boundary between quantum and classical
physics [1], and themeasurement paradox [2]. On general grounds, the system/bath (S/B) interaction
represents an important aspect of the physics of condensedmatter [3, 4], and complex systems, ranging from the
energy transport in photosynthetic complexes [5] to the physics of ultracold gases [6, 7].

The theory of open quantum systems has beenmergedwith experimental activities in the field of quantum
computation and decoherencemeasurement in a two-level system, which has extensive applications in quantum
networks [8, 9] ofmesoscopic systems, including superconducting circuits [10], ion traps [11, 12], and photonic
crystals [13]. The uses of the coupling between system and environment is rooted inmeasurement and sensing
applications, ranging from electromagnetic fields [14] to gravitational waves [15]. On the other side, the impact
of the external environment on the system represents a source of noise and dissipationwhenwe look at from the
quantum-dynamical perspective. However, the technological applications of quantummechanics have been
observed in the relatively recent development of nanoscale fabrication techniques, particularly in
superconducting qubits, nanomechanical resonators and,more in general, circuit quantum electrodynamics
(QED) setups [16, 17], where the dynamical quantumproperty shows dependency on the characteristic scales,
which is affected by the presence of coupling to the surrounding environment.Within this framework, it was
recently observed that a specific quantum state of the system can be generated bymanipulating the properties of
the environment or even the nature of the system environment coupling itself, which is known as reservoir
engineering [18]. For example, themanipulation led to the possibility ofmeasurement and control [19] of
quantum states, and to protecting certain quantum states (cat states) fromdecoherence by designing a specific
coupling (nonlinear) between system and environment [20, 21].

The dissipative dynamics of aMarkovian system and the noise interference due to the linear coupling
between the system and environment have been described in terms of linear quantumLangevin equations (QLE)
[19], which are an extension of the classical Langevin equation to the quantum regime.However, the linear
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coupling between the system and the environment does not appear as themost general situation; for instance,
nanomechanical resonators [22, 23], circuit QED setups [16, 17], optomechanical systems [24, 25] and the
impurity affected solid state systems [26]. In these cases, the theory has been implemented after transforming the
nonlinearHamiltonian to a linear one by linearizing the quantum fluctuation over a nonlinear steady state field
amplitude. Appreciating its simplicity, thismodel, however, does not provide a satisfactory platform to obtain
exact dynamical behavior. The interesting effects, e.g. non-classical behavior of the nonlinear systems [27], are
often overlookedwhenwe cannot handle the interaction between two systems in a perturbativemanner. Apart
fromnonlinear S/B coupling, the analyticalmodel is also limited to providing the exact solution in case of
non-Markovian dynamical phenomenon, for instance phase transition in a two level system (TLS) between
dynamically localized and delocalized states, at zero temperature forOhmic and sub-Ohmic reservoirs [3,
28–30]. The limitation of the analytics explicitly provokes us to simulate the time evolution numerically. The
numerical approach consists of transforming the environmental degrees of freedom tomany body systems and
simulate it in order to obtain the time evolution. The computationalmethod includes a numerical
diagonalization and renormalization process.

The time-adaptive densitymatrix renormalization group (t-DMRG) is considered as one of themost
powerfulmethods in atomic, optical and condensedmatter physics to study strongly correlatedmany-body
quantum system. Themethod have often been used for some renownedmodels of quantummechanics, such as
the Isingmodel [31, 32], theHubbardmodel [33–35] and the Bose–Hubbardmodel [36–38], especially aiming
to study themagnetization, quenching dynamics and phase transition properties. In order to implement it in
this case, wemap the canonical S/Bmodel to a one-dimensional harmonic chainwith nearest neighbor
interactions.

Here, we present a numericalmodel for the analysis of the simple coupling between the system and
environment, alongwith the consequences associatedwith themodeling and the numerical simulation.We start
with simulating the dissipative dynamics of an open quantum system, an thenwe study the thermalization of the
system in the presence of a thermal bath.

According to quantum statisticalmechanics, the thermal state is amixed state, and therefore, it is
represented by an ensemble of pure states. It is naturally expressed by using densitymatrix ( )Hexp for
the inverse temperatureβ andHamiltonianH. A fewnumerical approaches have been employed to study the
impact of thermal bath on an interactive system, e. g. quasi adiabatic propagator path integral algorithm
(QUAPI) [39, 40] or solving hierarchical equations ofmotion (HEOM) [41], but in all cases, the influence of the
bath on the dynamics of the system is taken care analytically usingwell defined Feynman-Vernon influence
functional. The influence functional appears to be different for different types of coupling between system and
environment, and in some cases, it becomes extremely difficult to determine, especially when nonlinear
coupling appears. However, themethodwe discuss here has the ability to overcome this problem. This includes
generation of thermal bath numerically and evaluation of time dynamics of both the system and environment.
Even though theDMRG technique is designed to determine the ground state [42] and the time evolution of
many body systems, a differentmethod has been used to study the thermal state. Here, we introduce a
complementary approachwhich includes taking a large number of sample pure states and determine an
observable by averaging over them, instead of expressing the state by a densitymatrix. The states whose
ensemble collectively generates the impact of thermal state, are determined through imaginary time evolution
and projectivemeasurements, typically known asminimally entangled typical thermal states (METTS) [43]. In
this article, we impose the algorithm for thefirst time to generate the thermal bath, parameterize it and
investigate the consequences to study the thermalization of open quantum system.

Theoreticalmodel

In this article, we discuss the dynamics of a simple couplingmodel between the system and the reservoir.We
start with theHamiltonian of the system coupled to a thermal environment, which is given by

( )H H H H , 1tot S B SB

where †H c cS c is theHamiltonian of the isolated system,ωc is the frequency, and ( )†c c are the bosonic
creation (annihilation) operators corresponding to themode of the system. †H d dB k N

N
k k k and

( )† †H g c d cdSB k N
N

k k k represent theHamiltonian of amultimode bosonic reservoir and the interaction
Hamiltonian, respectively, where ( )†d dk k are the creation (annihilation) operators, andωk and gk are the
frequency of oscillation and the coupling strength between the system and environment, respectively, for the
environmentalmode k. The frequency range of the reservoir, [ ],k c c , is chosen to be symmetric
around the systemmode (ωc). The idea behind kind ofmodeling is the fact that, realistically, the system couples
to the fewmodes of the environment around its resonatingmode (ωc). Themodel also includes consideration of
the linear dispersion relation of themodes of the bath ( kk ).
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In order to characterize the properties of the bath, we define the spectral density function J(ωk) [30],
implying the hard cutoff limit of the reservoir andwide band limit approximation ( )g ck 0 [44], as

( ) ( ) ( ) ( )J N k N k
1

2
, 2k

where θ is theHeaviside step function, and Dc2 0
2 is the decay rate of the systemwhere D k N

k
is the

density of states (DOS). In case of a large cutoff limit ( ), the quantumLangevin equation (QLE) is [19]

( ) ( ) ( ) ( ) ( )c t i c t c t c t
2

, 3c in

where ( ) ( )c t i e d 0in D k
i t

k
1

2
k is the inputfield to the system. If the reservoir remains at zero

temperature, no inputfield has contributed to the system. Therefore, theHeisenberg equation ofmotion (HEM)
of the systemmode is ( ) ( ) ( )c t i c t c tc 2

, which determines the free dissipative nature of the system

population ( ( ) ( ) ( )†n t c t c t ) as

( ) ( ) ( )n t e n 0 . 4t

TEBDnumericalmodel

Transformation of theHamiltonian
We transform the S/B couplingHamiltonian to a one-dimensional lattice chainHamiltonian for the numerical
simulation. The transformation is done bymapping the bath operators into the operators of the lattice chain by
defining a unitary transformation: b U dn k N

N
n
k

k. The normalized shiftedHahn polynomial is a natural

choice for the spectral density defined by equation (2) as the unitary operator [( ) ]U Q k N N2,n
k

n
1

n
,

whereQn(k,N) is theHahn polynomial, and ( ) ( !) ( )
( )!( )!N1n

n n

N n N n

2 1

1
is the normalization coefficient.

The transformedHamiltonian of the 1-D lattice chain is

( ) ( ) ( )† † † † †H H a b ab b b b b b b 5chain S
n

N

n n n
n

N

n n n n n0 0
0 0

1

1 1

where the coefficients are c N2 , n c0 and ( )( ) ( )( )
( )( )n

n N n N n

D n n

1 2

2 1 2 3
. The schematic diagramof

the transformation is shown infigure 1(a). Recently, similarmappingwas introduced in [45] to simulate open
quantum systems aiming to be applied to spin-bosonmodels [46] and biomolecular systems [47]. In all cases, the
model had remain successful to overcome the complexity of the deduction of non-Markovian dynamical
phenomenon, but the bathwas considered to be at zero temperature. But, in the following section, we introduce
METTS algorithm for thefirst time, for the generation of thermal bath atfinite temperature and the evolution of
system in the presence of the thermal bath.

Real-time evolution
Weuse time-evolving block decimation algorithm (TEBD) to do the numerical simulation, which requires
expressing the state of the full chain as amatrix product state (MPS):

∣ · · ∣ ( )[ ] [ ] [ ] [ ] [ ] [ ] [ ] i i i i... , , .., , 6
i i

M
i i N N i N

N N
,., 0 ... 0

1 1 2 2 1
1 2 1

N N

N N

N

N

1 1 1

1 1 2
2

2 2 3
3

1

TheMPS state is obtained through the Schmidt decomposition of the pure state ofN sites whereM is the
dimension of localHilbert space andχ is the Schmidt number [48]. Themethod of numerical simulation for the
real-time evolution is showndiagrammatically infigure 1(b), wherewe choose the second order Suzuki Trotter
(ST) expansion [49], whichminimizes the error in third order of the time step by evolving the pairs of alternate
sites. Using ST expansion, we express the unitary evolution operator as

[ ] ( )U e e e e O td 7t
i tH iF t iG t iF t

d
d d 2 d d 2 3chain

where, F Hi chain
i i

odd
, 1 and G Hi chain

i i
even

, 1.
The simulation parameters are estimated by looking at errors which can appear in twoways: whilemodeling

the S/B formalism to a one-dimensional chain and simulating each step during the real-time evolution. The
errors are discussed extensively afterwards to estimate the parameters for numerical simulation.

Algorithm for thermal state
We imply theMETTS algorithmby sampling over a huge number of pure quantum states [43]. Overall, these
samples contain physical properties of the system for a given temperature, which approximates thermal

3
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expectation values of any observable Ô , are determined using a set of orthonormal basis {∣ }n of classical
product states (CPS): ∣ ⨂ ∣nn i i , where ∣ni is an arbitrary orthonormal basis state of the lattice site i. The
thermal expectation value of an operator is

ˆ ∣ ˆ ∣ ( )O
Z

e Oen n
1

, 8
n

H H2 2

whereZβ is the partition function. TheCPS ∣n becomes amatrix product state (MPS) ∣ n after the imaginary
time evolutionwith the probabilities Pn as

∣ ∣ ∣ ∣ ( )
P

e P en n n
1

, . 9n
n

H
n

H2

In the next step, theMETTS ∣ n collapses to a newCPS ∣n through a projectivemeasurement with an
arbitrarymeasurement basis fromwhich one can subsequently compute a newMETTS ∣ n , and, this process
keeps on going on to generate a large set ofMPSwhich typically represents a thermal state altogether. Thus, the
generation ofMETTS samples undergoes aMarkov process which is illustrated infigure 1(c). In this framework,
the thermal average is determined from the set of imaginary time evolved normalizedMPS states (∣ n )with the
probabilitiesPn/Zβ

ˆ ∣ ˆ∣ ( )O
Z

P O
1

. 10
n

n n n

The algorithmhas been usedwidely to simulate the spin chain atfinite temperatures [50–52]. However, we
use the technique to study the thermalization of the open quantum systemnumerically for thefirst time, which
includes generation of the thermal bath using theMETTS algorithm, and afterwards, evolve an empty system in
the presence of the thermal bath.

The computation cost of TEBD increases with the entanglement of the quantum state, and hence theCPS is
the natural choice to start with for having least entanglement. The entanglement of the obtainedMPS states
remains relatively low during real time evolution, whichmakes the simulation efficient.

Free dissipative system

Wecheck the applicability of the TEBD algorithm in the dynamics of open quantum systems by comparing it
with the analytics of a simple system/bath couplingmodel, wherewe assume that one photon is kept initially in

Figure 1. (a)Transformation ofHamiltonian from system/bath couplingmodel to semi-infinite chainmodel (b)Time evolution
operation on alternating pairs (c)Generation of a set ofMETTS through imaginary time evolution and projectivemeasurement.
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the system and the bath is completely empty at zero temperature. Transforming themodes of the bath to a chain,
we see that thefirst site is populated by a single quantumand all other sites remain empty. Infigure 2, the
dissipative nature of the system,which is obtained numerically by doing real-time evolution of the full chain, is
comparedwith the analytics determined from theHeisenberg equation ofmotion (HEM) given by equation (4).
We see an increment in the systempopulation obtained in the numerical result after a certain time due to the
reflection of the particle from the end of the chain, which is visible explicitly from the plots of the population of
the full chain given in the insets offigure 2.

Recurrence time and density of states
The recurrence time decreases with the increment of the group velocity, causing the phonon to travel faster in

the lattice. The group velocity is defined by vg k
k

N
, whereωk is the frequency, and kN is thewavenumber

determined by the number of lattice sites (kN∝N). Eventually, the group velocity is inversely proportional to the
density of states ( )v Dg

1 , and therefore, the recurrence time increases linearly with the increment ofDOS,
which is seen infigure 3(a), wherewe increased theDOS by increasing the number of sites, keeping the cutoff
frequency fixed.

Figure 2.Plot of systempopulation determined numerically byTEBD and analytically from the solution ofQLE for different rates of
dissipation (a) γ=0.031 4ωc and (b) γ=0.125 6ωc. The parameters for TEBD simulation are cutoff frequency ò=0.3ωc; total
number of sites, including system and bath:N=17; Schmidt number (χ)=5; size of localHilbert space (M)=2; time step
t 0.5 c

1. In the inset, the image plot of the population on the sites shows how the particle reflects back from the boundary.

Figure 3. (a)Plot of time evolution of a free dissipative system for the variation ofDOS, which is obtained byfixing the cutoff frequency
and changing number ofmodes/lattice sites (γ=0.031 4ωc). (b)Plot of time evolution of a free dissipative system for different time
steps (γ=0.125 6ωc). All other parameters remain same for both thefigures (a) and (b)with figure 2.
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Errors and estimation of parameters
The case of real-time evolution, the ST expansion introduces time error, which tends to concentrate in the
overall phase [49]. Infigure 3(b), we showhow the accuracy of the simulation improvedwhile reducing the
time step.

Truncation of theHilbert space is also an issue in TEBD simulation.However, we chose the size of local
Hilbert space to be 2 for having a single particle, and therefore the set is complete andwe do not expect any error
associatedwith the truncation of localHilbert space. Because the time evolution started from an initial product
state, the entanglement of the sites remains relatively low, and therefore the impact of the truncation in the
Schmidt spectrum is also negligible.

Thermalization of an open quantum system

Analytics of the thermalization of a system
Accounting for the back action of the environment, we determine the time dynamics of thefield operator of the
systemby integratingQLEof a simple S/B couplingmodel, given in equation (3) as

( ) ( )
( )

{ } ( )( )c t i
D

d

i
e e

2

0
. 11

k

k

k c

i t i t

2

2k c

The initial thermal population distribution of the bath is

( ) ( ) ( )†d d
e

0 0
1

1
, 12k k

k

which determines the population of the system as

( ) ( )n t AI BJ , 13k k

k c

c

where

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( )
( )

( ) [ ]

( ) (( ) )
( ) [ ]

( )

I
D

e

J
D t

e

2 1

1
,

2 cos 1

1
, 14

k

k c

k
k c

k c

2
4

2
4

k

k

2

2

and

( ) ( )A e B e1 , 2 . 15t t 2

As the coefficient B goes to zero at the steady state, the population of the system is determined by the function
Ik given in equation (14). Realistically, the population dynamics of the system are dependent on a fewmodes of
the bath around the resonatingmode of the system, and therefore, the cutoff limit (ò) should be considered in
such away that the contribution of themodes of the bath, thosewhich far away from the systemmode, can be
marginalized.Hence, the function Ik is expected to convergewhen the frequency (ωk) goes far away fromωc.
However,figure 4 shows that even though the function Ik exhibits a peak at the resonating frequency of the
system, it rises up againwhen the frequency of the bathmode ismuch lower than the frequency of the system
mode ( )k c , which comes from the fact that the exponential function of the thermal population

distribution of the bath ( )[ ]e

1

1k
dominates over the Lorentzian function

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠
⎤
⎦⎥( )

D2

k c
2

2

4

. The acceptance

up to the limit of the second order perturbation for the theoretical formulation of an open quantum system, is
essentially based on theweak coupling between system and environment, ensuring the Lorentzian function acts
like a delta function aroundωc.

It is also seen from figure 4 that Ik rises up faster towards the lower cutoff limit in the case of a bathwhich is at
a lower temperature than it does in the case of a high temperature. Such situations can even be bypassed by
reducing ò, but that increases the ratio between γ and ò. However, we can solve this issue by reducing the value of
γ, but that demandsmore time for the system to reach the stationary state, and hence itmight not be possible at
times to reach the steady state before the recurrence of the particle from the boundary. In that case, we increase
the recurrence time by increasing the density of states. However, in the case of a zero temperature bath, the
thermal population remains zero for allmodes. Therefore, the relaxation of the system to the ground state is not
affected by the cutoff frequency.
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Anticipating the fact that the Lorentzian function becomes a delta function for a given condition ,
the steady state population of the system is approximated to

( ) ( )n
e

1

1
, 16

c

which is the thermal population of the bath corresponding to themode of the system. So the steady state
population of the system is approximated to the population of the bath corresponding to themode of the system.

Generation of the thermal bath
The quality of the thermal state generated by theMETTS algorithm is dependent on two crucial parameters:
temperature and number of samples. The frequency spectrumof the thermal population of the bath is plotted in
figure 5(a), which determines that in the case of lower temperatures, as the thermal population reduces rapidly,
the fewermodes are required to be taken into account to express a thermal state. This is also suggested by
figure 5(b), which shows that the cumulative probability saturates faster for the low temperature bath, reducing
the requirement of number ofMETTS samples to represent the thermal state. The consequence is observed in
figure 5(c), where the plot of population distribution becomes smooth, and therefore defines a significant
patternwhile reducing the temperature for afixed number ofMETTS, which indicates a better quality of the
preparation of thermal state. In table 1we compare the thermal population obtained analytically and
numerically by taking average over 50METTS samples. However, anticipating better performance of the
METTS algorithm at low temperatures, it is also seen that the overall thermal population reduces so significantly
that after a certain range, the number is not reliable for numerical simulation. Therefore, we prefer to generate a
thermal state higher temperature in order to obtain the thermal population to a significant level, which forces us
to take a large number ofMETTS samples into account while doing real time evolution. Infigure 5(d), we show
how the increment of the number ofMETTS samplesmodifies the population distribution over the entire lattice
chain. As anticipated, the quality of the preparation of the bath improves while increasing the number ofMETTS
samples, which is indicated by the improvement of the smoothness of the plot.

Figure 4.Plot of the function Ik for different temperatures and rates of dissipation of the system. The temperature is fixed for all
plots in columns: β=5,10[1/ωc] for the first and second column respectively, and the dissipation rate changes over rows. γ=
0.011 3,0.031 4,0.061 6ωc for the first, second and third row respectively.
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Aswe increase the density of states for afixed frequency range, the number ofmodes and number of lattice
sites also increase, which essentially demandsmoreMETTS samples to represent a thermal state. Therefore, we
see a poor population distribution infigure 5(e) compared tofigure 5(d)[iv], whenwe doubled theDOS and
keep the number ofMETTSfixed.However, the increase of the density of states increases the total population of
the bath, which is shown in table 2.

Real-time propagation of systems coupled to thermal bath
Hereafter, we study the thermalization of an empty system in the presence of a thermal bath at inverse
temperatureβ=5[1/ωc]. The time evolution of the systempopulation for different cutoff frequencies and rates
of dissipation are shown infigure 6. As anticipated from equation (13), the oscillation in the population of the
system is introduced by the left tail offigure 4. The extension of the lower cutoff frequency contributesmore
oscillation to the dynamics, andmore population in the stationary state of the system,which is visible whenwe
comparefigures 6(a) and (b). The higher value of γ also contributesmore oscillation as an error to the dynamics

Figure 5. (a)Population spectra, (b) cumulative probability distribution of photon occupation, and (c) population variation on the
lattice sites for different temperatures (β=5, 10, 25, 50 [1/ωc] ). The number ofMETTS samples is 50. (d)Population variation on the
lattice sites with the variation of the number ofMETTS samples (50, 100, 500, 1000) for afixed temperature (β=5 [1/ωc]). Density of
states (DOS) is 25[1/ωc] for all cases. (e)Population distribution on lattice sites for higher density of states (DOS=50[1/ωc]). The
number ofMETTS samples is 1000, inverse temperature β=5 [1/ωc]. The frequency range of the reservoir is [ ]0.7, 1.3k c ,fixed
in all cases.

Table 1.Population of a thermal bath for different
temperatures in the frequency range [ ]0.7, 1.3k c . The
density of states ( [ ])DOS 25 1 c and the number of
METTS samples (METTS=50) are kept fixed for all cases.

[ ]1 c Analytical population TEBDpopulation

5 0.162 6 0.173 0

10 0.002 8 0.003 0

25 3.972 3×10−8 3.967 7×10−8

50 7.292 0×10−16 7.952 4×10−16
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of the systempopulation.We see the steady state population of the system is comparable to the thermal
population atωc, which is indicated by equation (16). In bothfigures 6(a) and (b), the systemhas not been able to
achieve the steady state for the slow dissipation rate (especially γ=0.011 3ωc). Therefore, we extend the
recurrence time by increasing theDOS infigure 6(c), which gives sufficient freedom to the system to relax to the
steady state.

The numerical technique, therefore proves a promising scheme to study the open quantumdynamics. In
order to investigate its applicability in the physics of quantumBrownianmotion, we plot real-time dynamics of
the quadraturefluctuations infigure 7with a comparison to its analytics. The arbitrary quadrature is defined as

( ) ( ) ( )†X t e c t e c ti i . As ( ) ( ) ( ) ( )† †d d d d0 0 0 0 0k k k k
2 2 , the quadraturefluctuation

becomes phase (θ) independent ( ( ) ( ) )X t n t1 2 , and its time dynamics gives a pattern similar to the
population dynamics.

Table 2.Population of a thermal bath for different density of
states in the frequency range [ ]0.7, 1.3k c and temperature
β=5[1/ωc]. The number ofMETTS samples is keptfixed at
1000 for all cases.

DOS [ ]1 c Analytical population TEBDpopulation

25 0.162 6 0.163 0

50 0.308 2 0.308 8

Figure 6. (a), (b)Plot of the time evolution of the systempopulation for different cutoff frequency: (a)ò=0.3ωc is and (b)ò=0.6ωc.
The length of the chain of the bath is 16 and 31, respectively, keeping theDOSfixed [ ]DOS 25 1 c . (c)Plot of the time evolution of
the systempopulation increasing the density of state [ ]DOS 50 1 c . The length of the chain of the bath is 31, and the cutoff
frequency is (ò=0.3ωc) . The temperature (β=5[1/ωc]) and number ofMETTS samples (4000) are kept fixed in all cases. Thick lines
correspond to the TEBDnumerical result and the thin lines represent analytical results obtained from equation (13). The black dashed
line stands for the thermal population corresponding to themode of the system expressed in equation (16).
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Conclusion

In this article, we intended to investigate the applicability ofMETTS algorithm in the thermalization dynamics
of open-quantum systems, anticipating the fact that theDMRG technique has the ability to extract out exact
dynamics without linearizing nonlinearHamiltonians. The consequences of this approach are demonstrated in
terms of the efficiency of the algorithmwith a discussion of advantages and disadvantages of this simulation. In
this spirit, we also compare the numerical result with analytical result determined usingHeisenberg equation of
motion.We startedwith presenting amodel that transforms theHamiltonian of a quantum system coupled
linearly to a discrete set ofmodes of a bosonic reservoir, to aHamiltonian of a one-dimensional chainwith
nearest-neighbour interactions.We then used themodel to study free dissipation and thermalization of that
open quantum system.We found the recurrence time of the real-time evolution increases linearly with the
increment of density of states. Our results also show that even though theminimally entangled typical thermal
states (METTS) algorithmperforms better at lower temperatures, we preferred towork at higher temperature in
order to obtain the thermal population at a significant level and avoid unwanted error in the population
dynamics of the system contributed by the lower cutoff frequency limit. Therefore,moreMETTS samples are
taken into account, which consumemore computation resources. In conclusion, one can say that the
numerically generated thermal bath shows promise, but, this requires a compromise between the quality of the
result and the computation resources. The numerical scheme presented herewasmainlymotivated by an
attempt to determine the exact solution in the case of nonlinear coupling between the system and the
environment [26], non-classical dynamics of non-linear systems [27], and reach out single photon limit in
optomechanical systems [24, 25]. The combination of real and imaginary time evolution of open quantum
systemwill allow us to investigate quantumBrownianmotion of topological quantummatter [53, 54]. In
addition, themethodwill be useful to study the non-Markovian dynamics and critical behaviors of the sub-
ohmic or ohmic spin-Bosson couplingmodels [3, 4, 28, 29].
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Abstract. We transform the system/reservoir coupling model into a one-dimensional semi-infinite discrete chain with nearest
neighbor interaction through a unitary transformation, and, simulate the dynamics of free dissipative open quantum system. We
investigate the consequences of such modeling, which is observed as finite size effect causing the recurrence of particle from the
end of the chain. Afterwards, we determine a formula for π in terms of the matrix operational form, which indicates a robustness
of the connection between quantum physics and basic mathematics.

Introduction

An open quantum system (OQS), described to be a separate entity from its surrounding environment while being
coupled with it, has shown importance due to its applicability in the foundation of quantum mechanics, statistical
mechanics and atomic, molecular, optical and bio-physics. The theory of OQS has remained useful to describe ex-
perimental activities in the field of decoherence measurement and quantum computation, which has applications in
quantum networks [1, 2] in mesoscopic systems, which includes photonic crystals [3], ion traps [4, 5] and supercon-
ducting circuits [6]. The coupling of system mode to the environment has been used in the sensing and measurement
related applications, in a broad range from electromagnetic fields [7] to gravitational waves [8].

The dissipative dynamics of OQS due to the system/bath (S/B) coupling, has been studied with the help of
quantum master equation and Heisenberg-Langevin equation [9]. Both the equations are extensions of their classical
counterpart, in the quantum regime. Despite of their simplicity, these techniques exhibit limitations while extracting
out exact solution when OQS suffers non-Markovianity in the dynamical behavior or non-linearity in the Hamiltonian.
For example, the non-Markovian dynamical phenomena has been observed in a type of quantum phase transition
between dynamically localized and delocalized states of two level system (TLS) for zero temperature sub-Ohmic and
Ohmic baths [10, 11, 12, 13], where one cannot treat effective interaction between oscillator and TLS in a perturbative
manner. On another side, the non-linear Hamiltonian appears in case of Kerr nonlinear system [14] or cavity coupled
TLS systems [15], where the theory of OQS has been implemented after linearizing the Hamiltonian over nonlinear
steady state field amplitude. Therefore, the interesting effects are often missed out, and the limitation of analytics
provokes us explicitly to do numerical simulation. The numerical method requires transformation of the degrees of
freedom of the environmental modes to a many body system with nearest neighbor interactions.

The idea of such mapping was first introduced in Ref. [13] where a recursive numerical technique was performed
on discretised environment, and truncated to form a many body chain. Furthermore, using the properties of orthogonal
polynomials, an exact unitary transformation has been presented that maps the Hamiltonian of a linearly coupled
system to a continuum of bosonic or fermionic modes, to a Hamiltonian that describes a one-dimensional chain with
only nearest-neighbor interactions [16]. Considering applicability, the time-adaptive density matrix renormalisation
group (t-DMRG) [17] has been considered recently as one of the most useful tools in optical, atomic and condensed
matter physics for the numerical simulation of one-dimensional systems with short-range interactions.

In this paper we present how the S/B coupling model is mapped to a semi infinite chain with nearest neighbor
interactions. We construct the Hamiltonian matrix for a single particle located in the entire chain, and use that to
simulate the free dissipative OQS. We also discuss the recurrence of particle which comes from the finite size effect



FIGURE 1. Transformation of Hamiltonian from system/bath coupling model to semi infinite chain model.

of the chain. Afterwards, we show that the famous quantity π can be computed from the dissipation dynamics of the
OQS, in terms of matrix operational form.

THEORETICAL MODEL

In order to discuss the dissipative dynamics of an OQS, we start with the full Hamiltonian

H = HS + HB + Hint (1)

Here, the Hamiltonian of the isolated system is HS = ωca†a, where ωc is the frequency, and a(a†) are the annihi-
lation (creation) operator of the system mode. The Hamiltonian of the bath is represented by a set of bosonic modes

HB =
∑N

k=−N ωkb†kbk, and, the interaction Hamiltonian between system and environment is Hint =
∑N

k=−N gk(b†ka+a†bk),

where bk(b†k) are the annihilation (creation) operators, and ωk is the frequency of kth mode of the environmental field.

gk is the coupling strength between the system and kth mode of the bath. The frequency of the bath changes linearly
with the change of mode k : ωk ∝ k, and the range is chosen to be symmetric around the system mode (ωc) due to
the fact that, in most of the realistic situation, the system is coupled to the modes of the environment around its own
resonating mode (ωc). Moving to a rotating frame of frequency ωc, the frequency range of the bath is accepted to be
ωk ∈ [−ε, ε].

The dynamics of the bipartite system is determined by a positive function of the mode of the bath, is known as
spectral density [13]. In case of a hard cutoff range of the modes of the reservoir, implying wide band limit approxi-
mation, i.e. the coupling strength is independent of the mode of the bath (gk = c0) [18], we obtain the spectral density
function as

Jk = c2
0Dθ(N − k)θ(N + k) (2)

where θ is the Heaviside step function and D = δk
δωk
= N
ε

is the density of states (DOS) of the bath.

In case of an empty bath, considering a large cutoff window (ε → ∞), the dynamics of the system is determined
by the Heisenberg equation of motion (HEM): ȧ(t) = − γ

2
a(t) [9], which gives a dissipative nature of the system

population (nS = 〈a†a〉) as nS (t) = e−γtnS (0), where γ = 2πDc2
0 is the rate of dissipation of the system. Therefore,

if the initial state of the system is a Fock state of only one particle, the occupation probability of the particle decays
down exponentially with time as

PS (t) = exp(−γt) (3)

NUMERICAL MODEL

Here, we transform the S/B coupling Hamiltonian to a semi-infinite chain model, using a unitary transformation of the
operators of the bath: dn =

∑N
k=−N Un(k)bk [16]. In a case where the spectral density is defined by Eq. (2), normalized

shifted Hahn polynomial is a the natural choice as the unitary operator: Uk
n =

1
ρn

Qn[(k + N)/2,N], where Qn(k,N)

is the Hahn polynomial, and ρn = (−1)n(N!)
√

(2n+1)
(N+n+1)!(N−n)!

is the normalization coefficient. One can check that the



FIGURE 2. Occumation probability in system determined numerically for different rates of dissipation (a)c0 = 0.6D−1 and (b)c0 =

1D−1. Total number of modes of the bath N = 30. In the inset the image plot is given for the population on the sites which shows
how the particle reflects back from the boundary.

new modes of the bath satisfy bosonic commutation relation [dn, d
†
m] = δmn. Essentially, the transformed Hamiltonian

becomes

H̃ = η′
(
a†d0 + ad†

0

)
+

N−1∑
n=0

ηn(d†ndn+1 + d†n+1
dn) (4)

The diagrammatic representation of this transformation is shown in Fig. 1. Using the recurrence relation of

Hahn polynomial [16, 19], the coefficients are determined as η′ = c0

√
2N and ηn =

(n+1)
D

√
(N−n)(N+n+2)
(2n+1)(2n+3)

. The mapping

is useful for the simulation of the time dynamics of OQS using DMRG method. Recently, similar mapping was
introduced in Ref. [16] aiming to be applied on spin-boson models [20] and biomolecular systems [21]. However,
instead of using DMRG, we use the Hamiltonian for a system where one particle of boson is located in entire chain.

FREE DISSIPATIVE SYSTEM

In a situation where only one particle located in the entire system and environment, which is initially localized in sys-
tem, leaving the bath completely empty, the state of the corresponding 1-D chain is represented by |S 〉 = [1 0 0 0 .....]T .
Essentially, the corresponding matrix representation of the chain Hamiltonian gives

H̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 η′ 0
η′ 0 η0

η0 0 η1

η1 .
.

. ηN−1

0 ηN−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

After time t, the occupation probability of the particle in the system is determined from the time evolved state

|S t〉 = e−iH̃t |S 〉 as PS (t) = |〈S |S t〉|2.We determine the time evolved state numerically, and plot the dissipative nature
of the system population in Fig. 2, where we observe that the system population increases again after a certain time,
which comes from the fact that the particle reflects back from the end of the chain, which is visible from the population
plot of the entire chain shown in the inset of Fig. 2. The recurrence of the particle is dependent on the DOS, which is
explained explicitly in appendix.

Comparing to the Eq. (3), we estimate the rate of dissipation from the numerically determined population dy-
namics of the system as



FIGURE 3. Plot of the value of π determined numerically, for incresing size of matrix. The black line corresponds to the actual
value. In the inset, % error is calculated for incresing size of matrix.

γ = −δ ln(PS (t))
δt

|t<recurrence time (6)

In the next step, we fix D = 1, c0 = 1 and t = 1 (which satisfies the condition t < recurrence time), in order to
get the simplest formula of π in terms of the matrix operational form. It is to be noted that Eq. (3) is obtained by
considering a large cutoff frequency which is ideally infinite. Therefore, the accuracy of the value of π determined
by this new formula, is anticipated when we increase the size of the matrix, which indicates consistency between
numerical modeling and analytical formulation of open quantum system. Fig. 3 presents a comparison between actual
and numerically determined value of π, which shows how the numerically determined value gets closer to actual one
when we increase the size of matrix.

Remark: Note that the unitary transformation of S/B coupling Hamiltonian is done using Hahn polynomial
which is given by Qn(k; N) = 3F2(−n,−k, n + 1; 1,−N + 1; 1), where 3F2 is generalized hyper-geometric function
which is constructed by Gamma function [19]. Therefore, the value of π has not been used anywhere in the process
of transformation of Hamiltonian to 1-D chain. On the other side, in the analytically determined dynamics of open
quantum system, the quantity π appears in the rate of dissipation from the Fourier transformation of delta function.

CONCLUSION

We present a model that represents the transformation of Hamiltonian of an OQS coupled linearly to a discrete set
of modes of bosonic reservoir, to a Hamiltonian of a one-dimensional chain having nearest-neighbour interactions.
Using the model, we study free dissipation of a particle, located initially in the system, to a zero temperature empty
bath. We observe that the finite length of the chain causes recurrence of particle from the end. The mapping seems
promising to investigate the dynamics of OQS through the numerical simulation of many body systems. We also
determine a formula for π in terms of matrix operations through this method. As anticipated from the fact that system
bath coupling model considers a large cutoff frequency, the accuracy increases as the size of the matrix increases.
Such kind of formulation indicates the robustness of the establishment of quantum physics and its connection to the
fundamental mathematics.

ACKNOWLEDGMENTS

I would like to thank Subrata Chakraborty for his suggestion and comments while preparing the manuscript. This
work was supported by the Academy of Finland under contract no. 275245.



FIGURE 4. Plot of time evolution of a free dissipative system for the variation of DOS (1D, 3/2D and 2D), which is obtained by
fixing the cutoff frequency (30D−1) and changing number of lattice sites. γ = 2.2619D−1 (the actual value of π has been used here).

Appendix

The recurrence time of the particle is dependent on the group velocity in the lattice. The group velocity is defined by
vg =

δωk
δkN

, where kN is the wavenumber determined by the number of lattice sites (kN ∝ N), and ωk is the frequency.
The higher group velocity causes the phonon traveling faster in lattice. However, the group velocity is inversely
proportional to the density of states (vg ∝ D−1), and therefore, the recurrence time increases linearly when the DOS
increases. In the Fig. 4, we increased the DOS by increasing the number of sites keeping the cutoff frequency fixed.
The increment of DOS forces to take more number of lattice into account, and therefore, which causes an increment
in the recurrence time.
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