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ABSTRACT:  A concise enantio- and stereocontrolled synthesis of (+)-lycoperdic acid is presented. The stereochemical control is 
based on iminium-catalyzed Mukaiyama–Michael reaction and enamine-catalyzed organocatalytic α-chlorination steps. The amino 
group was then introduced by azide displacement, affording the final stereochemistry of (+)-lycoperdic acid. Penultimate hydro-
genation and saponification afforded pure (+)-lycoperdic acid in seven steps from a known silyloxyfuran. 

(+)-Lycoperdic acid (1) was isolated from a mushroom Lyco-
perdon perlatum by Rhugenda-Banga et al.1 It is an amino acid 
that shares structural similarities with both L-glutamic acid (2) 
and dysiherbaines (3a, 3b, Figure 1).2,3 The dysiherbaines are 
well-known ionotropic glutamate receptor binders3,4, a fact 
which has raised questions about the biological activity of (+)-
1 over the years.5–7 
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Figure 1. Glutamate-Related Amino Acids 

To date, there are seven total syntheses and one formal syn-
thesis for (+)-1.5–14 Most of them rely on either chiral pool or 
chiral auxiliaries to set the stereochemistry at C2 and C4 (Figure 
2). Very recently, the Oikawa group disclosed an approach 
where catalytic enantioselective hydrogenation was used to 
control the stereochemistry at C2 of (+)-1, but the construction 
of C4 was not stereoselective.7 

Herein, a total synthesis for (+)-1 is presented where the ste-
reochemistry is fully controlled by organocatalytic reactions. 
Retrosynthetically, the C2 stereocenter was envisioned to be set 
via α-amination reaction (Scheme 1).15,16 The challenging C4 
tertiary stereogenic center would be accessed via a Mukai-
yama–Michael reaction between a silyloxyfuran 4 and acrolein 
(6).17 
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Figure 2. Sources of stereochemistry in the published routes 

Our first challenge was to find the conditions for the desired 
Mukaiyama–Michael reaction with silyloxyfuran esters such as 
4. The closest precedent was set by Pansare group who demon-
strated that MacMillan’s trimethyl imidazolidinone 5 would 
catalyse reactions between acrolein and silyloxyfurans with 
good enantioselectivities but with poor yields (Scheme 1).18 Our 
own previous experience with enantioselective Mukaiyama-
Michael reactions with acrolein involving diphenylpyrrolidine 
(9)19 and pyroglutamic-acid-derived pyrrolidine20 catalysts sug-
gested that systematic optimization of the catalyst might offer 
better results. 

In contrast with the Pansare precedent, we wanted to avoid 
the use of any bulky ester groups, or even benzyl esters in the 
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nucleophilic component to prevent any conflict with later oper-
ations along the route (Scheme 1). For example, benzyl esters 
were deemed unsuitable as they might require special precau-
tions in the projected hydrogenation of the butenolide C=C 
bond. We thus selected the methyl ester 4 as the starting point 
for catalyst development.  
Scheme 1. Background of the study 
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The work commenced by screening studies with typical imin-

ium catalysts 9 and 13–15 (Scheme 2). These catalysts, unfor-
tunately, gave only poor to moderate enantiomeric ratios. Nev-
ertheless, comparison of differently substituted catalysts re-
vealed potentially useful trends. Thus, catalysts with electron 
withdrawing substituents enhanced the enantioselectivities: 
with para-substituted diarylpyrrolidine catalysts, there was a 
rising trend from F (er 80:20, 16) via NO2 (er 18:82, 17) to CF3 
(er 85:15, 18). In contrast, electron-donating groups (t-Bu) had 
a detrimental effect on er (catalyst S37, 57:43 er, see the Sup-
porting Information, Scheme S1). Interestingly, catalysts 18 and 
19, bearing either p-CF3 (18) or two m-CF3 groups (19) afforded 
similar enantioselectivities. Finally, diarylpyrrolidine 20 with 
four CF3-substituents provided a reaction with excellent level 
of enantioselectivity. 

Studies to further enhance the er of the reaction were also 
carried out. For further optimization, it was clear that the dia-
rylpyrrolidine core of catalysts 16–20 was lacking the needed 
modularity. Thus, we also screened with pyroglutamic-acid-de-
rived pyrrolidine catalysts and the above trend was also ob-
served with these catalysts (Scheme 2). Catalyst 21 gave almost 
a racemic product, along with a group of catalysts with electron 

donating substituents (see Supporting information, Scheme S1) 
but addition of electron-withdrawing CF3-groups improved the 
er of the reaction from 68:32 to 89:11 (catalysts 22 and 23). 
Unfortunately, the change of the phenyl-substituent of 23 to a 
3,5-bis-CF3-phenyl (catalyst 24) or a pentafluorophenyl-substit-
uent (catalyst 25) failed to elicit higher enantioselectivities. 
With these results, we decided to proceed with the total synthe-
sis with our most selective catalyst 20. 
Scheme 2. Screening the catalysts for the Mukaiyama–Mi-
chael reactiona 
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a) Enantiomeric ratios determined by chiral GC from the reaction 

mixture.  

Further optimization of the reaction conditions (Table S1, en-
try 7, Supporting Information) revealed that TFA was the opti-
mal counteracid. Lowering the temperature to –30 °C had no 
effect on er but the conversion fell dramatically. Interestingly, 
when water was excluded from the reaction, er of 95:5 was 
achieved (Table S1, entries 10 and 11, Supporting information). 
Unfortunately, the reaction never reached completion, thus 
making these conditions unpractical.21 

With these conditions at hand, we continued with the total 
synthesis. The entire route is shown in Scheme 3 starting from 
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the known silyloxyfuran 4 (see also the Supporting Infor-
mation).22,23 In gram-scale, the enantioselective Mukaiyama–
Michael reaction afforded the aldehyde (+)–7 in 47% yield and 
er 94:6. (+)–7 was then reduced to 27 with an 86% yield after 
chromatographic purification. In both of these transformations, 
the sensitivity of acrolein, (+)-7 or 27 to polymerization were 
found to hamper the yields.  

In our initial route, aldehyde 27 was first α-aminated with 
DBAD (28) using List’s protocol16, and the resulting amino al-
dehyde 29 was oxidised to the corresponding carboxylic acid 
30. Unfortunately, this relatively straightforward route to (+)-
lycoperdic acid had to be abandoned since the subsequent N–
N-bond cleavage could not be reliably achieved (Scheme 3).24 

In the alternative, ultimately successful route (Scheme 3), al-
dehyde 27 was subjected to an organocatalytic α-chlorination 
reaction, using perchlorinated quinone 31 as the Cl+-source and 
the MacMillan imidazolidinone TFA-salt 14 as the catalyst.25,26 
Instead of 31, N-chlorosuccinimide was also tested in this reac-
tion, but it afforded lower conversions than quinone 31.27 The 
intermediate α-chloroaldehyde was directly oxidised in the 
same pot to the corresponding carboxylic acid 32.28 The crude 
acid was then methylated with MeI under basic conditions, 
yielding the diester 33 in 71% yield over two steps. It was note-
worthy that this two-step sequence could not be carried out with 
unsaturated aldehyde (+)–7; a complex mixture of compounds 
was obtained under the same reaction conditions. The diester 33 
was then converted into the corresponding azide via SN2-
reaction with NaN3, yielding the azide 34 in 84% yield. The az-
ide group was then converted to the Boc-protected amino group 
via hydrogenolysis in the presence of Boc2O. To our delight, the 
diastereomers were separable chromatographically at this stage, 
giving the desired full-protected natural product 35 in 74% 
yield, alongside with 4-epi-35 (9%, 86:14 diastereomeric pu-
rity). 

With diastereomerically pure 35, the final stages were then 
explored. Saponification under basic conditions led to epimeri-
zation of the labile C2 stereocenter. In contrast, refluxing the 
compound 35 in 6 M HCl smoothly removed the Boc- and ester 
protecting groups, and after neutralization of the hydrochloride 
salt by an ion exchange column, crude (+)-1 was in our hands. 
In order to get analytically pure samples and to remove the hy-
droxy acid 36, the crude product was recrystallized twice from 
water giving us pure (+)-1 in 28% yield. It was noteworthy that 
36 could not be transformed to the lactone by dehydration (e.g. 
benzene, reflux) since these conditions resulted in the formation 
of several side products. 

 

Scheme 3. The total synthesis route.  
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In summary, we have developed an enantioselective organo-

catalytic total synthesis route for (+)-lycoperdic acid without 
using a chiral pool approach. As the key transformation, imin-
ium-catalysed Mukaiyama–Michael reaction between silyloxy-
furan 4 and acrolein (6) using a specifically optimized catalyst 
20 successfully installed the key C4 tertiary stereogenic center. 
Efforts to synthesise derivatives of (+)-1 as well as wider stud-
ies of the developed Mukaiyama–Michael reaction are on their 
way. 
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