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Flat-band superconductivity in periodically strained graphene: mean-field and
Berezinskii–Kosterlitz–Thouless transition

Teemu J. Peltonen1 and Tero T. Heikkilä1

1University of Jyväskylä, Department of Physics and Nanoscience Center,
P.O. Box 35 (YFL), FI-40014 University of Jyväskylä, Finland

In the search of high-temperature superconductivity one option is to focus on increasing the
density of electronic states. Here we study both the normal and s-wave superconducting state prop-
erties of periodically strained graphene, which exhibits approximate flat bands with a high density
of states, with the flatness tunable by the strain profile. We generalize earlier results regarding a
one-dimensional harmonic strain to arbitrary periodic strain fields, and further extend the results
by calculating the superfluid weight and the Berezinskii–Kosterlitz–Thouless (BKT) transition tem-
perature TBKT to determine the true transition point. By numerically solving the self-consistency
equation, we find a strongly inhomogeneous superconducting order parameter, similarly to twisted
bilayer graphene. In the flat-band regime the order parameter magnitude, critical chemical poten-
tial, critical temperature, superfluid weight, and BKT transition temperature are all approximately
linear in the interaction strength, which suggests that high-temperature superconductivity might
be feasible in this system. We especially show that by using realistic strain strengths TBKT can be
made much larger than in twisted bilayer graphene, if using similar interaction strengths. We also
calculate properties such as the local density of states that could serve as experimental fingerprints
for the presented model.

I. INTRODUCTION

Graphene was long waiting for superconductivity to be
added to its long list of miraculous properties. It took
over ten years after its discovery before superconductiv-
ity was demonstrated in chemically doped graphene [1–4]
with a critical temperature Tc of a few kelvin. Recently
the experiments on magic-angle twisted bilayer graphene
(TBG) [5–7] have drawn much more attention, demon-
strating superconductivity in a carbon-only material (al-
though the role of the hexagonal boron nitride substrates
is being disputed [8]) similarly with a Tc of a few kelvin.

Lack of superconductivity in pristine graphene can
be understood from the small-ν limit of the standard
Bardeen–Cooper–Schrieffer (BCS) result for the critical
temperature, Tc ∼ ωce

−1/(|λ|ν) [9, 10], with |λ| describing
the strength of the attractive electron–electron interac-
tion, ν being the density of states (DOS) at the Fermi
level, and ωc being the cutoff (Debye) frequency. Since
for intrinsic, undoped, graphene the density of states at
the Fermi level is ν = 0, according to this result we have
also Tc = 0. The doping experiments can be understood
from the same result. Since close to the Dirac point ν
increases linearly with chemical potential, doping can be
utilized to render Tc finite. But due to the exponential
suppression of the critical temperature, to produce Tc of
a few kelvin, the chemical potential shift has to be of the
order of eV [1, 3], corresponding to a very heavy doping
level.

TBG provides an alternative mean to render Tc finite:
increase the density of states by flattening the electronic
bands through moiré-modulated interlayer coupling. In
the limit of a large ν (the flat-band limit), BCS the-
ory gives a linear relationship Tc ∼ |λ|Ω [10], where Ω
is the area of the flat band, instead of the exponential
one. The linear relation allows in principle to increase

Tc much higher even with a small interaction |λ|. Here
the limiting factor seems to be the area Ω of the flat
band, which in the case of TBG is roughly the superlat-
tice (moiré) Brillouin zone (SBZ), fixed by the rotation
angle θ. Since θ fixes also the interlayer coupling modu-
lation, the whole dispersion is fixed by the rotation alone.
From experiments [5, 11] and theories [12, 13] we know
that in order to yield flat bands θ has to be close to the
magic angle θ∗ ≈ 1◦, for which Ω is only about 0.04 %
[14] of the original graphene Brillouin zone (BZ). An in-
crease of a few kelvin in Tc has been successfully demon-
strated [6] by applying high pressure to slightly increase
θ∗ and thus also Ω. In TBG the flat bands are in fact
not exactly at zero energy, but of the order of meV higher
and lower. But compared to chemically doped graphene
where ∼ eV doping levels are needed, a thousand-fold
reduction in the needed chemical potentials allows using
much simpler and more easily tunable electrical doping.

In this paper we study yet another mechanism to pro-
duce flat bands in graphene, which is possibly free of the
limitations in TBG: periodic strain [15–21]. Instead of
periodically modulating interlayer hopping in TBG, we
modulate the intralayer hopping in monolayer graphene
by periodic strain. In this system we can, in principle,
separately choose the strain period d (and thus the SBZ
area ∼ Ω) and its strength β (and thus the flatness of
the bands), potentially allowing us to increase Tc higher
than in TBG by engineering strains with high amplitude
and small period.

At low energies, near the K and K ′ = −K points
where graphene can be described as a Dirac mate-
rial, strain is modelled by a pseudo vector potential A
[16, 18, 22–25], similarly to an external magnetic field.
But while the external magnetic field breaks the time-
reversal symmetry and usually suppresses superconduc-
tivity, the strain-induced A has opposite signs on differ-
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2

ent valleys, preserving time-reversal symmetry and thus
preserving and even promoting spin-singlet superconduc-
tivity. Moreover, strain-induced pseudo vector potentials
can easily reach an effective magnetic field strength of
tens [26] or even hundreds [21, 27] of tesla, opening the
possibility for extreme tuning of electronic properties.

Possibilities for experimentally producing periodic
strain in graphene are numerous. In fact, flat bands have
already been observed in an experiment by Jiang et al .
[21], where both 1D and 2D periodic strains were created
by boundary conditions. In this experiment the displace-
ment amplitude was of the order of 1Å and the period d
was tunable between 8 and 25 nm. Even better control of
the strain pattern could perhaps be achieved by optical
forging [28], which allows drawing arbitrary out-of-plane
strain patterns in graphene, even below the diffraction
limit [29]. On the other hand the small secondary ripples
observed in the simulations [28] could be exploited, simi-
larly to the Jiang et al . experiment [21], but with better
control.

Another experimentally demonstrated method is to use
an AFM tip to evaporate hydrogen from a Ge-H substrate
to produce a pressurized H2 gas under specific locations
of graphene [30]. One option could be graphene on a
corrugated surface [31, 32]. Applying in-plane compres-
sion has been predicted to produce periodic wrinkles both
in simply-supported [31, 33] and encapsulated [34, 35]
graphene, with amplitude and period of the order of 0.2Å
and 2 nm, respectively. In the same spirit the proposed
graphene cardboard material could be manufactured [36].
Also an ultracold atom gas in a tunable optical honey-
comb lattice [37] could be used.

It has been predicted [38–42] and observed [43] that
TBG exhibits moiré-periodic strain due to lattice mis-
match and the following structural relaxation. The rel-
ative magnitude of the moiré and strain effects can be,
however, difficult to disentangle, as superconductivity by
both effects has been predicted by BCS theory [14, 19].
But if the moiré effect is enhancing for superconductivity,
as it seems to be, we get a lower bound for Tc by study-
ing the strain effects. Similarly periodic strain can be
expected with other mismatch lattices, such as graphene
on hBN [6].

In this work we generalize the model and results of
Kauppila et al . [19], where both the normal and su-
perconducting spin-singlet, s-wave state in periodically
strained graphene (PSG) have been studied in the case
of a cosine-like 1D potential A(x, y) = β

d (0, cos(2πx/d)),
to arbitrary periodic pseudo vector potentials A. This
generalization is motivated by the experiment of Jiang
et al . [21], where a variety of periodic strain patterns,
both 1D and 2D, were manufactured. On the other hand
generalizing the theory to 2D strains bridges the gap be-
tween PSG [19] and TBG [14] by showing how similar
these two systems are in many aspects.

The main conclusions of Kauppila et al . are that (i)
approximate flat bands are formed in the normal state,
(ii) the superconducting order parameter ∆(x) becomes

inhomogeneous and is peaked near the minima/maxima
of ∇×A, similarly to the local density of states (LDOS),
(iii) magnitude of ∆ can be tuned by the amplitude β,
(iv) Tc is linear in λ in the flat-band regime (large λ or
β), and (v) even though ∆ is strongly inhomogeneous and
anisotropic, supercurrent is only slightly anisotropic. We
show that these results continue to hold even when we
change the shape of A and move to 2D potentials. In ad-
dition we show how the shape ofA and its dimensionality
affect the superconducting order parameter ∆, the crit-
ical chemical potential µc, and the critical temperature
Tc. We furthermore extend the calculations by calculat-
ing the superfluid weight [44, 45] Ds and the Berezinskii–
Kosterlitz–Thouless (BKT) transition temperature TBKT
to determine the proper transition temperature in a 2D
system.

In addition to Kauppila et al ., spin-singlet, s-wave su-
perconductivity in strained graphene was studied also
by Uchoa et al . [16]. They, however, concentrated on
strain fields with a homogeneous pseudomagnetic field
B = ∇× A and correspondingly to a superconducting
state with a homogeneous order parameter ∆. This con-
straint allowed them to derive analytical formulas e.g .
for ∆ and Tc, yielding a similar Tc-linear-in-λ result as
what Kauppila et al . found out. Here we instead focus on
periodic and inhomogeneous strain accompanying also a
periodic and inhomogeneous B, which is probably more
accessible experimentally, since a constant B might be
difficult to obtain [27]. Our approach is also complemen-
tary to Uchoa et al . in the sense that the periodicity of
B allows us to use the notion of (flat) electronic bands,
whereas in the pseudo-Landau-level perspective of Uchoa
et al . the electronic levels are the pseudo-Landau levels.

This article is organized as follows. In section II we de-
rive the Bogoliubov–de Gennes (BdG) theory to describe
the superconducting state of PSG at low energies, details
of which are shown in the Supplementary Material [22].
In section III we present the results of applying some
selected periodic pseudo vector potentials A by numeri-
cally solving the self-consistency equation. In section IV
we summarize the main results and discuss open ques-
tions and future prospects.

II. MODEL

In the low-energy limit, after adding an in-plane dis-
placement field u and an out-of-plane displacement field
h, the graphene continuum Hamiltonian for valley ρ ∈
{+,−} is

Hρ(r) = ~vFσρ · (−i∇+ ρA(r))− µ, (1)

where the pseudo vector potential is given by [22–24]

A = − βG

2a0
(uxx − uyy,−2uxy) (2)
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and the strain tensor is

uij =
1

2
(∂iuj + ∂jui) +

1

2
∂ih∂jh. (3)

Here vF is the graphene Fermi velocity, µ is the chemi-
cal potential, βG = − d ln t/d ln a0 ≈ 2 is the graphene
Grüneisen parameter [24], a0 is the carbon-carbon bond
length, σρ = (ρσx, σy) is a vector of sublattice-space
Pauli matrices, and the graphene zigzag direction is as-
sumed to be in the x direction. Note that A works
exactly like a vector potential related to an external
magnetic field, but with the important difference that it
changes sign on valley exchange ρ 7→ ρ̄, preserving time-
reversal symmetry Hρ̄∗ = Hρ. Because of the relation
(2) we use the words “strain” and “pseudo vector poten-
tial” interchangeably. Note that for the linear elasticity
theory to be valid we should have [22]

‖u(r + δj)− u(r)‖, ‖h(r + δj)− h(r)‖ � a0, (4)

where δ1, δ2, and δ3 are the graphene nearest neighbor
vectors.

We model the possible superconducting state by a
(slightly generalized) BCS theory using BdG formalism.
We assume an intervalley, local (also in sublattice) inter-
action of strength λ (negative for attractive interaction
considered here), which has been widely used in the past
graphene literature [46–51] to model s-wave supercon-
ductivity. In this case the effective interacting mean-field
continuum Hamiltonian can be shown to be [22]

HBdG =
∑
σρ

∫
dr ψ†σρ(r)Hρ(r)ψσρ(r)

+
1

2

∑
σρ

∫
dr ψ†σρ(r)∆σ(r)ψ†Tσ̄ρ̄(r) + h.c. + const,

(5)

where σ ∈ {↑, ↓} denotes spin, the real space inte-
grals are over the Born–von Kármán cell R2/LBK, and
ψσρ(r) = (ψσρ,A(r), ψσρ,B(r))T is a sublattice-space vec-
tor of the electron annihilation operators. Furthermore
the superconducting order parameter in the sublattice
space is ∆σ(r) = diag(∆σ,A(r),∆σ,B(r)), where

∆σ,α = λ
∑
ρ

〈ψσ̄ρ̄,αψσρ,α〉 (6)

with angle brackets denoting the thermal average and
α ∈ {A,B} denoting the sublattice. Note that this kind
of a local interaction corresponds to spin-singlet type of
superconductivity, since from the fermionic anticommu-
tation relations it directly follows that ∆σ̄,α = −∆σ,α.
Furthermore due to locality r denotes the center-of-mass
coordinate of the Cooper pair, while the relative coordi-
nate is always zero, meaning that this interaction corre-
sponds to s-wave superconductivity.

Utilizing the fermionic anticommutation relations and
by doubling the basis set we can bring HBdG in (5) into

the Nambu form

HBdG =
1

2

∑
σρ

∫
drΨ†σρ(r)HρBdG(r)Ψσρ(r)+const, (7)

where the BdG Hamiltonian in Nambu space and the
Nambu-vector are

HρBdG =

(
Hρ ∆
∆∗ −Hρ

)
, Ψσρ =

(
ψσρ

s(σ)ψ†Tσ̄ρ̄

)
, (8)

respectively. Here the spin-independent order parameter
is ∆ = ∆↑ = s(σ)∆σ, s(↑) = 1, and s(↓) = −1.

Using the spectral theorem, a symmetry between the
positive and negative energy states, and defining the
fermionic Bogoliubon operators as

γσρbk =
1√
V

∫
drw†ρbk(r)Ψσρ(r), (9)

we may bring HBdG into the diagonal form [22]

H =
1

2

∑
σρbk

Eρbkγ
†
σρbkγσρbk + const. (10)

Here k together with the band index b enumerate the
positive-energy solutions of the BdG equation

HρBdG(r)wρbk(r) = Eρbkwρbk(r) (11)

and V =
∣∣R2/LBK

∣∣ is the area of the Born–von Kármán
cell. According to the calculation above, diagonalizing
HBdG, i.e. bringing it to the form (10), is equivalent to
solving the BdG equation (11).

By inverting the Bogoliubov transformation (9) we
may write the definition of the order parameter (6) as
the self-consistency equation [22]

∆α(r) = − λ
V

∑
ρbk

uρbk,α(r)v∗ρbk,α(r) tanh

(
Eρbk
2kBT

)
,

(12)
at temperature T , where we denoted the Nambu compo-
nents of w as w = (u, v)T. Note that ∆α might depend
on sublattice α, while Kauppila et al . [19] defined ∆ by
summing over α. As we see below, the self-consistent ∆α

is, in fact, sublattice dependent, leading to a different r
dependence than in [19].

In real space the self-consistency equation (12) is lo-
cal in space but the BdG equation (11) is a group of
2 difficult differential eigenvalue equations. The equa-
tions can be made easier to solve by utilizing period-
icity of A and writing them in Fourier space. We as-
sume both the pseudo vector potential A : R2/SL→ R2

(and thus the strain) and the order parameter ∆ to
be periodic in translations of the arbitrary superlattice
SL = spanZ{t1, t2} ⊂ R2, allowing us to use the Fourier
series [22]

A(r) =
∑
G

eiG·rÃ(G), ∆(r) =
∑
G

eiG·r∆̃(G). (13)
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4

Here the sums are over SL∗S , where SL∗RZ = SL∗ =
spanZ{G1,G2} is the reciprocal lattice of SL, SL∗MZ =
spanZ{G1} is a one-dimensional sublattice of SL∗, and
S ∈ {RZ,MZ} denotes either the reduced zone scheme
or the mixed zone scheme (the terms are justified be-
low), the latter of which being applicable only if A and
∆ are constant in the t2 direction, which we call the 1D
potential case. Otherwise we call A a 2D potential.

Together with the assumption of the eigenfunctions
wρbk being periodic in the Born–von Kármán cell, the
Fourier series (13) imply the existence of the Bloch-type
Fourier series

wρbk(r) = eik·r
∑
G

eiG·rw̃ρbk(k +G) (14)

and the Fourier space version of the BdG equation [22]∑
G′

H̃ρBdG,GG′(k)w̃ρbk(k+G′) = Eρbkw̃ρbk(k+G). (15)

In the matrix form (15) can be written as

H̃ρBdG(k)w̃ρbk = Eρbkw̃ρbk, (16)

where the underlined variables are matrices or vectors in
theG space. Here k ∈ L∗BK/SL

∗
S belongs to the superlat-

tice Brillouin zone (SBZ) in the scheme S, b enumerates
the positive-energy bands for each k, and the Nambu-
space BdG Hamiltonian is

H̃ρBdG,GG′(k) =

(
H̃ρGG′(k) ∆̃(G−G′)

∆̃∗(G′ −G) −H̃ρGG′(k)

)
(17)

with the noninteracting (normal state) Hamiltonian

H̃ρGG′(k) = (18)

~vFσρ ·
[
(k +G)δGG′ + ρÃ(G−G′)

]
− µδGG′ .

Note the similarity to the Dirac-point low-energy TBG
model in [14, 51, 52]: while here Ã couples the sublattices
and G vectors within the layer, in TBG the Hamiltonian
(18) has a two-layer structure, Ã is absent, and the in-
terlayer coupling t̃⊥ couples sublattices and G vectors
between the layers. As we show in this paper, the second
layer is not necessary for yielding flat bands, but what
seems to be enough is coupling in the G space. To gener-
alize the theory to study the combined effect of periodic
strain and moiré physics, which should yield even more
pronounced flat bands, would thus be easy: add the sec-
ond rotated layer to the noninteracting Hamiltonian (18)
and couple the layers by t̃⊥(G−G′).

Let us discuss the notion of the reduced and the
mixed zone schemes. In the reduced zone scheme k =
k1G1 + k2G2 ∈ L∗BK/SL

∗
RZ is periodic both in the G1

and G2 directions, with both k1, k2 ∈ [− 1
2 ,

1
2 [ being pe-

riodic Bloch momenta. This is also traditionally called
the reduced zone (or the repeated zone) scheme. In the
case of A and ∆ being constant in the t2 direction (the

1D potential case) we are also allowed to use the mixed
zone scheme, where k = k1G1 + k2G2 ∈ L∗BK/SL

∗
MZ is

periodic only in theG1 direction but not in theG2 direc-
tion, with k1 ∈ [− 1

2 ,
1
2 [ being a periodic Bloch momentum

and k2 ∈]−∞,∞[ being a nonperiodic real momentum.
Thus in the traditional notion the G1 direction is in the
reduced (or repeated) zone and the G2 direction in the
extended zone scheme, justifying the term mixed zone
scheme.

The reduced zone scheme is convenient if one wants to
compare the effects of the 1D and 2D potentials, since the
dispersions look similar and the notion of a band is the
same, but the calculations are heavy due to the G space
being two-dimensional. On the other hand the mixed
zone scheme produces cleaner-looking dispersions and is
computationally much lighter due to the G space being
only one-dimensional, but with the cost of more difficult
comparison between the 1D and 2D potentials. Thus in
all the 1D potential calculations we use the mixed zone
scheme unless otherwise stated. Also Kauppila et al . [19]
used the mixed zone scheme in all the calculations and
visualizations.

Using the Fourier series (13) and (14) in (12) and
approximating the k sum as an integral (assuming the
Born–von Kármán cell to be large), the Fourier-space
self-consistency equation becomes [22]

∆̃α(G) = − λ

(2π)2

∑
ρbG′

∫
dk tanh

(
Eρbk
2kBT

)
×

×ũρbk,α(k +G′)ṽ∗ρbk,α(k +G′ −G), (19)

where the integral is over the continuum superlattice Bril-
louin zone R2/SL∗S in the scheme S, which in the reduced
zone scheme can be interpreted as the parallelogram de-
fined by G1 and G2, and in the mixed zone scheme as
the semi-infinite parallelogram with the finite side being
G1 and the infinite side being in the direction of G2.

In summary, in Fourier space we are solving the BdG
equation (15) together with the self-consistency equa-
tion (19). Now the BdG equation is a normal matrix
eigenvalue equation, but the price to pay is that the
corresponding matrix has countably infinite dimension
(2 × 2 × |SL∗S |), and the self-consistency equation be-
comes nonlocal in the Fourier components. Numerically,
however, they are easy to solve, provided we truncate
the Fourier-component set SL∗S and the band sum, and
in the case of 1D potential add a momentum cutoff in the
k integral in the G2 direction. These cutoffs we choose
so large that the results (dispersion, ∆) start to become
saturated, and together they correspond to the energy
cutoff ~ωc introduced earlier.

In a 2D system, however, we know that the super-
conducting transition is not properly described by the
mean-field critical temperature Tc determined from the
order parameter ∆, but by the BKT transition tempera-
ture determined from the superfluid weight Ds, which
describes the linearized supercurrent density response
〈j〉 = ( e

~ )2Ds 〈A〉 to an external (real) vector potential
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A, where the angle brackets denote average over position.
For the present model we may calculate the µ, ν ∈ {x, y}
component of the superfluid weight from [22, 45]

Ds
µν =

(~vF)2

(2π)2

∑
ρbb′

∫
dk

f(Eρb)− f(Eρb′)

Eρb − Eρb′
× (20)

×
(
w̃†ρbσ

ρ
µw̃ρb′w̃

†
ρb′σ

ρ
νw̃ρb − w̃

†
ρbτzσ

ρ
µw̃ρb′w̃

†
ρb′τzσ

ρ
νw̃ρb

)
,

where the b, b′ band sums are calculated over both the
positive and negative energy bands, τz is the Pauli-z ma-
trix in Nambu space, f is the Fermi–Dirac distribution,
the difference quotient is interpreted as the derivative
f ′(Eρb) if Eρb = Eρb′ , and where we suppressed the k
dependence.

From the temperature dependence of Ds we can then
calculate the BKT transition temperature TBKT from the
generalized KT–Nelson criterion [53–55]

kBTBKT =
π

8

√
detDs(TBKT) (21)

for an anisotropic superfluid weight, which also needs to
be calculated self-consistently, unlessDs(TBKT) ≈ Ds(0).

III. RESULTS

We solve [56] the order parameter ∆, the super-
fluid weight Ds, and the Berezinskii–Kosterlitz–Thouless
transition temperature TBKT for a selection of periodic
pseudo vector potentialsA with the period d. ∆ is solved
from the self-consistency equation (19) by the fixed-point
iteration method with the initial guess of a constant or-
der parameter ∆A = ∆B [22], Ds is calculated from (20),
and TBKT is calculated by interpolating (21) in a prede-
termined temperature mesh.

In the case of a 1D potential we concentrate on the
potentials

A1D
cos(x, y) =

β

d
(0, cos(2πx/d)), (22)

A1D
c (x, y) =

β

d
(0, triangleSquarec(x/d)), (23)

both periodic in translations of the square superlattice
SL = spanZ{t1, t2} with the primitive vectors t1 = (d, 0)
and t2 = (0, d) (or any multiple of t2). The latter
utilizes the function triangleSquarec, shown in figure 1,
which is a d-periodic waveform where the slope param-
eter c ∈ [4,∞[ can be used to interpolate between the
triangle and square waveforms. This allows controlling
the slope ±βc/d2 of A1D

c at the lines x = ∓d/4. Note
that the triangle waveform c = 4 corresponds to the case
of (nearby) islands with constant pseudomagnetic fields,
as discussed qualitatively in Uchoa et al . [footnote 20 in
Ref. 16]. Note also that the potential A1D

2π has exactly
the same slope as A1D

cos at the points x = ±d/4 and also
otherwise approximates that potential rather well, so all

c=4

c=10

c=100

-0.4 -0.2 0.0 0.2 0.4

-1.0

-0.5

0.0

0.5

1.0

x/d

tr
ia
n
gl
eS
qu
ar
e
c
(x
/d
)

Figure 1. A plot of the d-periodic function triangleSquarec
used for defining the potential A1D

c , shown here for three val-
ues of c. The slope near the points x = ∓d/4 is given by
±c/d.

the following results are more or less indistinguishable
between these two potentials. Since both the potentials
A1D

cos and A1D
c are constant in the t2 direction, this al-

lows us to use either the reduced zone or the mixed zone
scheme in the theory.

To concretize the difference between the two schemes
we write the Fourier components of the cosine potential.
In the reduced zone scheme they are [22]

Ã
1D
cos(m1G1 +m2G2) =

β

2d
(0, δm1,−1 + δm1,1)δm2,0, (24)

for the cosine potential and for A1D
c they are given in

the Supplementary Material [22]. Here m1G1 +m2G2 ∈
SL∗RZ = SL∗ belongs to SBZ in the reduced zone scheme,
where the SBZ primitive vectors are G1 = (2π/d, 0) and
G2 = (0, 2π/d). But since for the 1D potentials the com-
ponents are multiplied by δm2,0, we may as well use a one-
dimensional Fourier series [22] and define in the mixed
zone scheme

Ã
1D
cos(m1G1) =

β

2d
(0, δm1,−1 + δm1,1), (25)

where m1G1 ∈ SL∗MZ belongs to SBZ in the mixed zone
scheme.

On the other hand in the 2D case we concentrate on
the simplest generalization of the 1D cosine-like potential
A1D

cos, the potential

A2D
cos(x, y) =

β

d
(cos(2πy/d), cos(2πx/d)) (26)

with the lattice of periodicity being the square super-
lattice SL = spanZ{t1, t2}, with the primitive vectors
t1 = (d, 0), t2 = (0, d). Note that we are allowed to
choose a potential periodic in any superlattice, whereas
in TBG the (moiré) superlattice is fixed by the rotation
angle. Thus in principle the periodic strain allows much
more freedom in tuning the system. The Fourier compo-
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y
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(a)

-1.5-1.0-0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

x/d

y
/d

(b)

(c) (d)

(e) (f)

Figure 2. (a,b) Example in-plane displacement fields, defined
in (28) and (29), producing the studied pseudo vector po-
tentials A1D

cos and A2D
cos through (2) with exaggeratedly large

amplitude and small period. (c,d) The corresponding pseu-
domagnetic fields B = ∇ × A with β = 40 and β = 20,
respectively. (e,f) Corresponding typical profiles of the self-
consistent superconducting order parameter ∆A/B (A orange,
B blue), which is always peaked at the minima/maxima
of ∇ × A. The parameters for calculating ∆ are T = 0,
λ/(~vFd) = −0.01, and optimal doping µ = µopt yielding a
maximal ∆ (µ = 0 produces the same ∆ for such large λ).

nents of the 2D cosine potential are

Ã
2D
cos(m1G1 +m2G2) =

β

2d
(δm2,−1 + δm2,1, δm1,−1 + δm1,1) (27)

in the reduced zone scheme, where m1G1 + m2G2 ∈
SL∗RZ with G1 = (2π/d, 0) and G2 = (0, 2π/d).

According to (2) the potentials A1D
cos and A2D

cos can be
produced for example by the in-plane displacement fields

u1D
cos(x, y) =

βa0

βGπ
(0, sin(2πx/d)), (28)

u2D
cos(x, y) =

βa0

βGπ
(0, sin(2πx/d) + sin(2πy/d)), (29)

respectively. The pseudomagnetic fields B = ∇×A =

∂xAy − ∂yAx produced by the 1D and 2D cosine poten-
tials, together with these example displacement fields, are
shown in figures 2(a–d). The amplitude B of B, which
is an important factor determining the flatness of the
bands and the magnitude of the superconducting order
parameter ∆A/B , is

B1D
cos =

2πβ

d2
, B1D

c =
cβ

d2
, B2D

cos =
4πβ

d2
(30)

for the potentialA1D
cos,A

1D
c , orA2D

cos, respectively. To give
a realistic scale for β, in the experiment by Jiang et al .
[21] a pseudomagnetic field of ~

eB ≈ 100 T was observed
for a strain period of d = 14 nm, which corresponds to
β ≈ 5 for the 1D cosine potential. To be better in the
flat-band regime, we mostly use a factor of 4 to 8 times
larger values of β in this study.

Corresponding typical profiles of ∆A/B for the cosine
potentials are shown in figures 2(e–f), from where it is
clear that ∆A/B is always peaked at the minima/maxima
of the pseudomagnetic field B. For comparison in TBG
[14] ∆ is localized around the AA stacking regions and
is independent of the sublattice and layer. Note that
the sublattice dependence was not present in the work
by Kauppila et al . [19] due to sublattice-summation in
the self-consistency equation. As we see below, it is ap-
proximately the maximum (over position r) of the order
parameter that is important in describing the strength of
the superconducting state. As for all the studied poten-
tials the maximum of the order parameter is independent
of the sublattice, we simply denote max ∆ := max ∆A =
max ∆B .

The typical dispersion relations in the normal state are
shown in figure 3 together with the conical unstrained
graphene dispersions. For an easier comparison the 1D
potentialA1D

cos dispersion is shown both in the mixed zone
and reduced zone schemes, while the 2D potential A2D

cos

dispersion only in the reduced zone scheme (the only pos-
sibility in this case). We find similar-looking approximate
flat bands as in TBG [14, 52], with the difference that
here the number and the flatness of the flat bands can
be controlled by β and c. Also all the successive bands
are touching, while in TBG many models predict the flat
bands to be isolated [40, 42, 52, 57].

We calculate most of the superconducting state results
at optimal doping µ = µopt, which is the energy of the
density of states peak as discussed in Sec. III A, and is
thus the doping level with the highest ∆. We start dis-
cussing the superconducting state results by calculating
max ∆ as a function of the interaction strength λ for
the different potentials A, as shown in figures 4(a) for
the cosine potentials. The most important conclusion is
that for large enough λ, β, or c, which we call the flat-
band regime due to the energy scale of ∆ exceeding the
flat-band bandwidth, the dependence is linear in λ as we
would expect for any flat-band superconductor [10]. On
the other hand for small enough λ, β, and c the dispersive
behavior of the lowest energy bands starts playing a role,
which we call the dispersive regime. In the dispersive
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(a) A1D
cos, β = 30, mixed zone

scheme (MZ)
(b) A1D

cos, β = 30, reduced zone
scheme (RZ)

(c) A2D
cos, β = 15, reduced zone

scheme (RZ)

Figure 3. Typical dispersions in the normal state at the valley
ρ = ± with µ = 0. (a,b) The 1D cosine potential A1D

cos (shown
for β = 30) (a) in the mixed zone scheme (MZ) and (b) in the
reduced zone scheme (RZ). (c) The 2D cosine potential A2D

cos

(shown for β = 15) in the reduced zone scheme. The strained
dispersions are shown in blue and for comparison the conical
unstrained graphene dispersions in orange.

regime the order parameter is exponentially suppressed
and we also start seeing quantum critical points [48]. We
further see how in the flat-band regime the behavior of
A2D

cos with β is similar to that of A1D
cos with 2β. Since

in this paper we are mostly interested in the flat-band
regime, we choose to calculate many of the following re-
sults at the fixed interaction strength λ/(~vFd) = −0.01,
which is clearly in the flat-band regime except for A2D

cos

with β = 10, which is at the interface of the dispersive
and flat-band regimes.

To further confirm that in the flat-band regime max ∆
is linear both in the interaction strength λ and the am-
plitude B of the pseudomagnetic field B,

max ∆ = −ζBλ, (31)

we show the ratio ζ for all the potentials in figures 4(b,c)
at µ = µopt and T = 0. In the flat-band regime ζ tends
approximately to a constant ζ ≈ 0.15, which holds as long
as c . 20. For c & 20 we start seeing deviations from
this result, with ζ ≈ 0.05 for the extreme case of c = 100.
The small variation in ζ due to c even in the flat-band
regime is most likely due to the fact that the maximum
of ∆ is not exactly the correct quantity to calculate, but
it gives a very good estimate. We may compare this to
the exact-flat-band result [14] with a constant ∆FB, for
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Figure 4. Behavior of the maximum of the superconducting
order parameter ∆ as a function of the interaction strength λ
at optimal doping µ = µopt and T = 0. (a) Linearity of max ∆
in λ in the flat-band regime for the cosine potentials. Each
potential has three curves corresponding to β = 20, 30, 40
(1D potential) or β = 10, 15, 20 (2D potential), from bottom
to top. (b,c) The ratio max ∆/(−λB) as a function of λ for
(b) the cosine potentials and (c) A1D

c with varying c, where
B is the amplitude of the pseudomagnetic field B. In (b) the
curves are the same as in (a) while in (c) each c has two curves
corresponding to β = 30, 40, from bottom to top. In the flat-
band regime the ratio tends approximately to a constant as
in (31).

which ∆FB = − 1
(2π)2nΩλ with Ω = 1/d2 and n being

the number of flat bands. In PSG it is the amplitude
B of the pseudomagnetic field B that effectively deter-
mines nΩ, the number of approximate flat bands in the
system with the SBZ area of 1/d2. A similar linear rela-
tionship was found out by Uchoa et al . [16] in the case of
a homogeneous pseudomagnetic field B, although with a
somewhat larger prefactor ζ.

A. Order parameter profile, dispersion, and
density of states

In figure 5 we show a cross section of the self-consistent
∆A/B [as in figures 2(e,f)] along the line (x, 0) [1D poten-
tials] or r(1,−1) [2D potential] for different potentials A,
strain strengths β, and slope parameters c. The effect of
β is to simply linearly increase the amplitude of ∆A/B .
On the other hand increasing c not only increases the am-
plitude of ∆A/B , but makes it also more localized. We
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Figure 5. Effect of the amplitude β and the slope parameter
c on ∆A/B (A solid, B dashed lines) at λ/(~vFd) = −0.01,
and optimal doping µ = µopt (µ = 0 produces the same ∆
for such large λ). (a) Varying β of the 1D cosine potential
A1D

cos. (b) Varying the slope parameter c of the 1D potential
A1D

c with β = 30. (c) Varying β of the 2D cosine potential
A2D

cos. ∆A/B is drawn along the line (x, 0) [1D potentials] or
r(1,−1) [2D potential].

also see that for the 2D potential A2D
cos, ∆A/B with the

strain strength β along the diagonal behaves similarly as
∆A/B in the x direction for the 1D potential A1D

cos with
2β.

These effects we can further see in the dispersions and
densities of states in figures 6 and 7, respectively, which
are plotted at µ = 0 for clarity. In figure 6 we show the
cross section of the dispersions in figure. 3 along the line
(0, ky) [1D potentials] or k(1, 1) [2D potential], both in
the normal and superconducting states, and in the dif-
ferent schemes to allow for easier comparison between
the 1D and 2D potentials. In figure 7 we show the cor-
responding densities of states (DOS). We clearly see in
the normal state how increasing β and c both suppress
the group velocity, thus increasing flatness of the bands.
The density of states becomes correspondingly more and
more peaked at zero energy. The superconducting en-
ergy gap also increases both with increasing β and c, and
the peculiar double-peak structure in the superconduct-
ing DOS is also better revealed for higher β or c. In the
2D case it is notable how increasing β generates multi-
ple peaks in the normal state DOS, and thus also in the
superconducting state DOS, in a way that separates it
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(e) A2D
cos, β = 10, RZ
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(f) A2D
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Figure 6. Effect of the strain strength β and the slope param-
eter c on the dispersion (normal state: solid, superconducting
state: dashed lines) for the different potentials at µ = 0.
In the superconducting state T = 0 and λ/(~vFd) = −0.01.
(a,b) Dispersions in the mixed zone scheme (MZ) along the
line (ky, 0) for (a) A1D

cos with various β and for (b) A1D
c with

various c and fixed β = 30. (c,d) Corresponding dispersions in
the reduced zone scheme (RZ) along the line (0, ky) for A1D

cos

with β = 20 and 30, respectively. (e,f) Dispersions for A2D
cos

along the diagonal line k(1, 1) in the reduced zone scheme for
β = 10 and 15, respectively.

from the 1D potentials.
To determine more properties that could be measured

e.g . by STM [21, 58], we show in figure 8 the local densi-
ties of states (LDOS) along the line (x, 0) [1D potentials]
or r(1,−1) [2D potential], which further illustrate the
results discussed so far. In the normal state the overall
energy dependence shows the clear peak at zero energy
for the 1D potentials, as well as the multiple-peak struc-
ture for the 2D potential. In the superconducting state
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Figure 7. Effect of the strain strength β and the slope pa-
rameter c on the density of states (DOS) at µ = 0, T = 0,
and λ/(~vFd) = −0.01 (normal state: solid, superconducting
state: dashed lines) for (a) A1D

cos, (b) A1D
c , and (c) A2D

cos. For
clarity the successive curves in the DOS plots are shifted ver-
tically by 15 in (a,c) and by 7 in (b). Each curve is normalized
such that the shown area integrates to unity.

the energy dependence also shows the superconducting
gap, as already seen in the total DOS in figure 7. The
position dependence gives us more information about the
underlying strain field. They clearly show the high den-
sity of low-energy states near the points x = ±d/4 (1D
potentials) or r = ±d/4 (2D potential), that is, points
where B has extrema. Furthermore the states on the
positive (negative) x or r side are those coming from the
sublattice A (B), which, by comparison to Fig. 2(c–d),
means that the A (B) sublattice states are localized at
the minima (maxima) ofB. This kind of localization and
sublattice polarization was also experimentally observed
by Jiang et al . [21]. Since the low-energy states are the
ones contributing to superconductivity, their localization
explains the similar localization of the order parameter
∆A/B , as seen in figures 2(e,f).

In the normal state LDOS we further see the localiza-
tion pattern splitting at higher energies for the 1D poten-
tials. This is contrasted with the 2D potential, where the
higher-energy peaks are separated not only in position
but also in energy. Furthermore in the superconducting
state LDOS we see the same behavior in the energy gaps
as in the total DOS: increasing β or c leads to an in-
creasing gap size, with the localization pattern staying

0 0.1 0.2 0.3 0.4 0.5

(a) A1D
cos, β = 20, normal (b) A1D

cos, β = 20, SC

(c) A1D
cos, β = 30, normal (d) A1D

cos, β = 30, SC

(e) A1D
20 , β = 30, normal (f) A1D

20 , β = 30, SC

(g) A2D
cos, β = 10, normal (h) A2D

cos, β = 10, SC

(i) A2D
cos, β = 15, normal (j) A2D

cos, β = 15, SC

Figure 8. Local density of states (LDOS) at µ = 0 and T = 0
along the line (x, 0) [1D potentials] or r(1,−1) [2D potential]
both in the (a,c,e,g,i) normal and (b,d,f,h,j) superconducting
(SC) states. In the superconducting state λ/(~vFd) = −0.01.
In each plot the states on the positive (negative) x or r side
is coming from the sublattice A (B). Each plot is normalized
such that the total visible area integrates to unity.

Page 9 of 15 AUTHOR SUBMITTED MANUSCRIPT - JPCM-115947.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



10

● ●
●

● ● ● ● ●
●

● ●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

■ ■

■

■

■

■

■

■ ■

■

■

■

■

■

■ ■

■

■

■

■

■

■ ■

■

■

■

■

■

◆ ◆

◆

◆

◆

◆

◆ ◆

◆

◆

◆

◆

◆ ◆

◆

◆

◆

◆

◆ ◆

◆

◆

◆

◆

● β=20

■ β=30

◆ β=40

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

μ/maxΔ(μ=0)

m
ax
Δ
/m
ax
Δ
(μ
=
0
)

(a) A1D
cos

●

●●●
●

●

●●●●●●
■■

■

■

■■■■■
■

■■■■■■ ◆◆◆◆
◆

◆

◆◆◆◆◆◆ ◆◆◆◆◆◆
▲

▲

▲

▲▲▲▲
▲

▲▲▲▲

● A4
1D

■ Acos
1D

● A10
1D ■ Acos

2D

0.000 0.005 0.010 0.015 0.020
0.0

0.5

1.0

1.5

2.0

2.5

-λ/ (ℏvFd)

μ 5
0
%
/m
ax
Δ
(μ
=
0
)

(b)

Figure 9. Solving the “critical” chemical potential µ50% at
T = 0, where µ50% is the chemical potential where max ∆ has
dropped to max ∆(µ = 0)/2. (a) Normalized order parameter
maximum max ∆/max ∆(µ = 0) as a function of the normal-
ized chemical potential µ/max ∆(µ = 0) for A1D

cos showing
how doping away from the flat band, located at the DOS
peak (which is at the zero energy in the flat-band regime and
at a nonzero energy in the dispersive regime), kills supercon-
ductivity. The behavior is the same for −µ. The four curves
for each β are those for −λ/(~vFd) = 0.005, 0.01, 0.015, 0.02
(from top to bottom). (b) The ratio µ50%/max ∆(µ = 0) as a
function of λ for different potentials A. Each 1D potential has
three curves corresponding to β = 20, 30, 40 (from top to bot-
tom). In the flat-band regime the ratio tends approximately
to a constant as in (32).

the same. Again the 2D potential behaves slightly differ-
ently: the gap is largest at r = ±d/4, while for the 1D
potentials the gap at x = ±d/4 is smallest.

B. Critical doping level and temperature

We can in principle calculate the critical doping level
µc and the critical temperature Tc by solving the self-
consistency equation (19) for various µ and T and by
solving for the point where ∆ vanishes. But since the
fixed-point iteration scheme converges slowly when ∆ is
small, we calculate µ50 % [T50 %] instead, corresponding
to the chemical potential [temperature] at which max ∆
has decreased to max ∆(µ = 0)/2 [max ∆(T = 0)/2].

We show in figure 9(a) the µ-dependence of ∆ at
T = 0 in the case of A1D

cos, from where µ50 % is deter-
mined. We see how doping away from the flat band,
which in the flat-band regime is located at zero en-
ergy, kills superconductivity. In this case µ50 % ap-
proaches ∼ 0.7 max ∆(µ = 0) in the flat-band limit.
In the flat-band regime the results fit very well the re-
lation max ∆(µ) =

√
(max ∆(µ = 0))2 − (µ/b)2 with b

as the fitting parameter, as compared to the result [59]
∆FB(µ) =

√
∆FB(µ = 0)2 − µ2 for exactly flat bands and

homogeneous ∆FB. On the other hand in the dispersive
regime ∆ is not maximized at zero chemical potential,
but around µ ≈ 0.9 max ∆(µ = 0) ≈ 0.9

1.1 max ∆(µ =
µopt) ≈ 0.02~vF/d instead, which corresponds to the
DOS peak position shown in figure 7(a). This is exactly

the same behavior as seen in TBG [14, 51]: in the flat-
band regime the energy scale of ∆ exceeds the DOS peak
separation (the “bandwidth”) and the smeared DOS is
centered at zero energy, while in the dispersive regime ∆
can “see” the double-peaked DOS because of the small en-
ergy scale of ∆. In TBG this might explain [14, 51] why
superconductivity is observed at a nonzero doping level
[5], and the same might happen also in PSG if the inter-
action strength λ is small enough. But note that in PSG
we can in principle tune A (its functional dependence,
β, c, and d) to move the interface between the flat-band
and dispersive regimes so that superconductivity would
be observed at zero doping.

To further verify that µ50 % is linear in max ∆(µ = 0)
in the flat-band regime,

µ50 % = ηmax ∆(µ = 0), (32)

we show in figure 9(b) the ratio η at T = 0 for a selection
of potentials. In the flat-band regime the ratio tends ap-
proximately to a constant η ≈ 0.7 as long as c . 10. For
c & 10 we start seeing slight deviations from this, with
η ≈ 0.6 and 0.5 for c = 20 and 100, respectively. The crit-
ical chemical potential µc is slightly larger, approximately
µc ≈ max ∆(µ = 0) for A1D

cos in the flat-band regime ac-
cording to figure 9(a). This coincides with the case of
perfectly flat bands and a constant ∆FB for which [60,
Supplemental Material of Ref. 14] µFB

c = ∆FB(µ = 0).
In experiments the filling ν is more easily directly con-

trolled [5] than the chemical potential µ, which we use as
a parameter. While we do not calculate the filling, hints
for the ν(µ) dependence in PSG can be found from the
work of Uchoa et al . [16] in the case of strained graphene
with a homogeneous pseudomagnetic field [61] or from
Refs. 14 and 52 in the case of TBG.

In figure 10 we show the corresponding plots for deter-
mining T50 % at µ = µopt. Again the ratio ξ in

kBT50 % = ξmax ∆(T = 0), (33)

tends approximately to a constant ξ ≈ 0.35 in the flat-
band regime as long as c . 10. For c & 10 we start seeing
deviations from this, with ξ ≈ 0.3 for c = 20 and ξ ≈ 0.25
for c = 100. The critical temperature Tc is slightly larger,
approximately kBTc ≈ 0.4 max ∆(T = 0) for A1D

cos in the
flat-band regime according to figure 10(a). For compar-
ison, in the case of perfectly flat bands and a constant
∆FB we have the result [10] kBT

FB
c = 1

2∆FB(T = 0)
and in TBG [14] within the same interaction model
kBTc ≈ 0.25 max ∆(T = 0).

C. Superfluid weight and
Berezinskii–Kosterlitz–Thouless transition

temperature

To determine the true superconducting transition tem-
perature we calculate the superfluid weight Ds and the
Berezinskii–Kosterlitz–Thouless transition temperature
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Figure 10. Solving the “critical” temperature T50% at opti-
mal doping µ = µopt, where T50% is the temperature where
max ∆ has dropped to max ∆(T = 0)/2. (a) Normalized or-
der parameter maximum max ∆/max ∆(T = 0) as a func-
tion of the normalized temperature kBT/max ∆(T = 0) for
A1D

cos. Each β has four curves corresponding to −λ/(~vFd) =
0.005, 0.01, 0.015, 0.02. (b) The ratio kBT50%/max ∆(T = 0)
as a function of λ for different potentials A. Each A has
three curves corresponding to β = 20, 30, 40 (1D potentials)
or β = 10, 15, 20 (2D potential), with the outliers being those
for the smallest β. In the flat-band regime the ratio tends
approximately to a constant as in (33).

TBKT from (20) and (21). In figure 11(a) we show the
total superfluid weight

√
detDs, together with the dif-

ferent components Ds
µν , as a function of the interaction

strength λ for A1D
cos. The behavior is very similar to that

of max ∆ in figure 4(a): it is linear in the flat-band regime
and also increases linearly with increasing β. To further
verify that

√
detDs is linear in max ∆,

√
detDs = χmax ∆, (34)

we show the ratio χ in figure 11(c,d) at µ = µopt and T =
0. In the flat-band regime the ratio tends approximately
to a constant χ ≈ 0.15 . . . 0.4, which has more variation
than η and ξ for µ50 % and T50 % in the flat-band regime.
For comparison, in TBG we found [52] within the same
interaction model that χ ≈ 0.35 in the flat-band regime.

We may again compare (34) to the case of exactly
flat bands and a constant ∆FB. But since the super-
fluid weight depends heavily on the Hamiltonian itself
and not only its eigenvalues, we need to specify which
flat-band model to use. We take the “graphene flat-band
limit”, that is, graphene with vF → 0. In this case [45, 49]
Ds

FB = 2
π∆FB at µ = 0 ≈ µopt and T = 0, which in fact

holds for any vF.
What is intriguing in figure 11(a) is that for the stud-

ied 1D potentials the superfluid weight is almost isotropic
although the potentials are highly anisotropic. There is,
however, a slight anisotropy, Ds

xx 6= Ds
yy and Ds

xy = 0 =
Ds
yx, visible for large β and λ. On the other hand the 2D

potential produces an isotropic superfluid weight, Ds
xx =

Ds
yy and Ds

xy = 0 = Ds
yx. This (an)isotropy is consistent

with the symmetries of the studied potentials. For com-
parison in TBG it was found [52] that local interaction
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Figure 11. Behavior of the superfluid weight Ds at optimal
doping µ = µopt and (a,c,d) T = 0. (a) Ds as a function
of λ for A1D

cos showing linearity in the flat-band regime. The
superfluid weight for the 1D potentials is slightly anisotropic,
Ds

xx 6= Ds
yy, for large β and λ. For the 2D potential A2D

cos

(not shown) the superfluid weight is isotropic, Ds
xx = Ds

yy.
The off-diagonal components Ds

xy = 0 = Ds
xy are zero for all

the studied potentials. The (an)isotropy is consistent with
the symmetries of the studied potentials. (b)

√
detDs as a

function of temperature T for A1D
cos. Each β has three curves

corresponding to −λ/(~vFd) = 0.01, 0.015, 0.02, from bottom
to top. Also the dashed line

√
detDs = 8kBT/π is shown,

from intersections of which TBKT is determined through (21).
(c,d) The ratio

√
detDs/max ∆ as a function of the inter-

action strength λ for (c) the cosine potentials and (d) A1D
c

with varying c. In (c) each A has three curves correspond-
ing to (from top to bottom) β = 20, 30, 40 (1D potentials)
or β = 10, 15, 20 (2D potential), while in (d) each c has two
curves corresponding to (from top to bottom) β = 30, 40. In
the flat-band regime the ratio is approximately a constant
depending slightly on the potential, as in (34).

always produces an isotropic superfluid weight, while the
more complicated resonating valence bond (RVB) inter-
action was able to produce anisotropy through sponta-
neous symmetry breaking. The anisotropy could serve
as one experimental signature for superconductivity de-
scribed by the presented model, and it could be measured
by radio frequency impedance spectroscopy [62] in a Hall-
like four-probe setup [52].

Although in this work we do not separate the super-
fluid weight into the conventional and geometric contri-
butions [45], from general knowledge [45] and calculations
in TBG [52, 63] we expect the geometric contribution to
dominate in the flat-band regime.
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Figure 12. Behavior of the Berezinskii–Kosterlitz–Thouless
transition temperature TBKT at optimal doping µ = µopt.
The ratio kBTBKT/max ∆(T = 0) for (a) the cosine potentials
and (b) A1D

c with varying c. In (a) both potentials have
three curves corresponding to β = 20, 30, 40 (1D potential) or
β = 10, 15, 20 (2D potential), from top to bottom in the flat-
band regime, while in (b) each c has two curves corresponding
to β = 30, 40, from top to bottom. In the flat-band regime the
ratio tends approximately to a constant depending slightly on
the potential, as in (35).

In figure 11(b) we further show
√

detDs as a function
of temperature T for A1D

cos, from where TBKT is deter-
mined through (21) by solving for the intersection point
with the line

√
detDs = 8kBT/π. We immediately see

that in the flat-band regime Ds(TBKT) ≈ Ds(0) is a
rather good approximation so that the self-consistency
in (21) is not essential. This is very different from TBG
[52], where the temperature dependence is essential due
to TBKT being closer to Tc. We nevertheless need to solve
the full self-consistent equation for all the potentials, as
the relative magnitude of Tc and TBKT is not known be-
forehand.

The resulting ratio kBTBKT/max ∆(T = 0) is shown
in figure 12 for the different potentials at µ = µopt, fur-
ther confirming that Ds(TBKT) ≈ Ds(0): apart from the
different scale, the TBKT plots in figure 12 are very simi-
lar to the Ds plots in figures 11(c,d). Furthermore in the
linear relation

kBTBKT = κmax ∆(T = 0), (35)

the ratio κ tends approximately to a constant κ ≈
0.05 . . . 0.15 in the flat-band regime. Again in (35) we see
similarity to the “graphene flat-band limit” result with a
homogeneous ∆FB, for which kBT

FB
BKT = π

8D
s
FB(TFB

BKT) ≈
1
4∆FB(T = 0) at µ = 0 ≈ µopt if we furthermore assume
Ds

FB(TFB
BKT) ≈ Ds

FB(0).
Combining (34) and (35) we get in the flat-band

regime at µ = µopt the ratio TBKT/T50 % = κ/ξ ≈
0.2 . . . 0.4 depending on the potential. For A1D

cos this
yields TBKT/T50 % ≈ 0.4, and within the same accu-
racy TBKT/Tc ≈ 0.4. For comparison in TBG we found
within the same interaction model in the flat-band regime
kBTBKT ≈ 0.16 . . . 0.2 max ∆(T = 0) [52] (depending
slightly on λ), kBTc ≈ 0.25 max ∆(T = 0) [14], and thus
TBKT/Tc ≈ 0.6 . . . 0.8.

By combining (31) and (35) we get kBTBKT = −κζBλ
at µ = µopt. Let us calculate an estimate of TBKT by
using λ = −1 eVa2 ≈ −6 eVÅ2, which roughly corre-
sponds [14, 52] to TBKT ≈ 1 K measured in TBG [5].
Here a =

√
3a0 ≈ 2.46Å is the graphene lattice con-

stant. For A1D
cos we have B = 2πβ/d2 and in the flat-

band regime κ = 0.15 and ζ = 0.15, yielding a sim-
ilar TBKT ≈ 1 K if we apply strain for example such
that β = 40 and d = 60 nm [then λ/(~vFd) ≈ −0.002
if using vF = 1× 106 m/s, which is in the flat-band
regime according to figures 4(b) and 12(a)]. In the case
of the in-plane displacement field u1D

cos (28) this corre-
sponds to the displacement amplitude βa0/(βGπ) ≈ 1 nm
if βG = 2. Since in this case the elasticity theory as-
sumes β/βG � d/a0 and d/a0 � 1 [22], we are very
well in the validity regime. On the other hand, if we are
able to decrease the strain period to d = 10 nm [then
λ/(~vFd) = −0.009], we get to a high-temperature su-
perconductor value of TBKT ≈ 40 K, which is still in the
validity regime. Note the optimization problem in in-
creasing TBKT: decreasing d directly enhances TBKT but
at the same time it makes the validity limit for β tighter,
while at the same time we should have as large β as possi-
ble. But this might only be a limiting factor in our linear
elasticity theory, while a more complete microscopic the-
ory could, perhaps, yield a result that increasing β or
decreasing d always increases TBKT.

The experiments of Jiang et al . [21] with ~
eB ≈ 100 T

and d = 14 nm can be described by the 1D cosine poten-
tial with β ≈ 5. When λ = −6 eVÅ2, λ/(~vFd) ≈ −0.007
is not in the flat-band regime. Hence TBKT cannot be ob-
tained from the simple estimate used above, and is likely
much lower than 1 K. Increasing the strain amplitude
by a factor of 4, so that β = 20, would yield ζ = 0.05,
κ = 0.17, and thus TBKT ≈ 0.007~vF/(dkB) ≈ 4 K. Fur-
ther decreasing the period to d = 8 nm, a period which
was already observed by Jiang et al ., would yield already
λ/(~vFd) ≈ −0.01 and thus TBKT ≈ 11 K.

IV. CONCLUSIONS

We have studied both the normal and superconducting
s-wave state properties of periodically strained graphene
(PSG) in the continuum low-energy model. We have
shown that periodic strain might be a mechanism that al-
lows increasing the critical temperature Tc higher than a
few kelvin, observed in doped graphene and in twisted bi-
layer graphene (TBG), or possibly even to tens of kelvins.
Especially we have generalized the results of Kauppila
et al . [19], where the authors studied the same prob-
lem in the case of a 1D cosine-like pseudo vector poten-
tial A, to potentials with arbitrary shape and dimen-
sion. We furthermore calculated the superfluid weight
and the Berezinskii–Kosterlitz–Thouless transition tem-
perature TBKT to determine the true transition temper-
ature observed in experiments. In the normal state we
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observed flat bands in the spectrum and localization of
low-energy states near the extremum points of the effec-
tive pseudomagnetic field B = ∇×A.

We modelled the superconducting state by the
Bogoliubov–de Gennes mean-field theory assuming a lo-
cal interaction between the Cooper pair leading to s-wave
pairing. Because of the inhomogeneous strain field we
observed a highly inhomogeneous order parameter ∆A/B

that is localized near the extremum points of B, sim-
ilarly to the localization of the low-energy states. We
also noticed how the superconducting Tc or TBKT can
be linearly increased by increasing the strain strength β,
decreasing the period d, or by increasing the slope (near
the extremum points of B) of the corresponding pseudo
vector potential A. On the other hand increasing the
slope makes the order parameter also more localized.

While between the 1D potentials we observed only
quantitative differences in the results, for the 2D cosine
potential we saw also some qualitative differences when
compared to the 1D potentials. The main differences are
the localization pattern of ∆A/B , and the more peaked
structure of the (local) density of states both in the nor-
mal and superconducting states. In the 2D case we stud-
ied only the cosine potential, but on the other hand the
qualitative similarity in the results between the different
1D potentials gives us certainty that changing the shape
of the potential would not change the qualitative results
in the 2D case neither. However, it should be noted that
it is the shape of B that matters and not that of the po-
tentialA itself, and thus even a 2D potential can produce
results that are effectively those of a 1D potential.

We chose all our potentials to be periodic in a square
(super)lattice, but note that any other lattice could be
chosen as well, with different shapes and different peri-
odicities in the two directions. Properties of this lattice
are then directly seen in the dispersion, as well as in the
localization of B and ∆A/B . We also observed the sym-
metry ∆B(r) = ∆A(−r) of the order parameter for all
the chosen potentials. This is due to the inversion sym-
metryA(r) = A(−r) present in all of them. The relative
magnitude between ∆A and ∆B can then be tuned by
breaking this symmetry, e.g . by using a sawtooth-wave
potential.

We also observed some very peculiar structures in the
(local) density of states, which could serve as an experi-
mental fingerprint of the physics described by this model.
We furthermore found that in the flat-band regime the
superconducting order parameter maximum max ∆ at
µ = µopt and T = 0, the “critical” chemical poten-
tial µ50 % at T = 0, the “critical” temperature T50 % at
µ = µopt, the superfluid weight

√
detDs at µ = µopt

and T = 0, and the BKT transition temperature TBKT
at µ = µopt are all approximately linear in the interac-
tion strength λ. The linear relations, instead of expo-
nential ones in usual bulk superconductors, suggest that
high-temperature superconductivity might be possible in
PSG.

As is known from the closely-related materials twisted

bilayer graphene [5, 7, 11, 64–66], twisted trilayer
graphene [67], twisted double bilayer graphene [68–70],
rhombohedral graphite [71], or other graphite-based com-
posites [72–76], also other phases like correlated insu-
lators might be present. These are obviously excluded
from the present study, but as we showed in previous
studies [14, 52], the superconductivity-only model gives
a plausible explanation for the observed superconduct-
ing states in TBG. This view of competing phases is
supported by recent experiments where superconduc-
tivity could be seen without the correlated insulating
phases [65, 66]. Thus we expect our similar model to
work also in PSG when concentrating only on super-
conductivity. If the competing phase (if any) is mag-
netic, we know from a recent study [77] that in a pure
flat-band system superconductivity is favored over mag-
netism whenever (in the weak coupling regime) the ef-
fective attractive electron–electron interaction strength
λ̂~ωc = [g2/(~ωc)](ΩFB/ΩBZ) is stronger than the repul-
sive one u = UΩFB/ΩBZ. Here g is the electron–phonon
coupling constant, U is the repulsive Hubbard coupling
constant, ~ωc is the characteristic phonon energy (in this
case the Einstein energy ~ωE), and ΩFB/ΩBZ is the ra-
tio of the flat-band area to the Brillouin zone area. The
competition between superconductivity and magnetism
was studied also by Löthman & Black-Schaffer [60], who
showed how the two phases in the flat-band regime have
somewhat different dependence on the doping.

An interesting future prospect would be to study the
other phases which, by the analogue of TBG, are highly
probable. Secondly the combination of moiré [14, 52]
and strain [this work] physics would perhaps advance
the understanding of superconductivity in TBG, where
intrinsic periodic strain is inevitable. Thirdly, general-
izing the Eliashberg formalism [77, 78] to the case of
PSG with inhomogeneous superconductivity would make
handling the electron–phonon interaction more accurate,
especially in the strong-coupling limit. From the experi-
mental point of view the challenge is to manufacture peri-
odically strained graphene samples with large amplitudes
and small periods and to perform low-temperature con-
ductivity measurements in this (electrically doped) sys-
tem to reveal the possible superconducting and/or corre-
lated insulator states. The periodic strain and flat bands
observed by Jiang et al . [21] are already an intriguing
starting point, but according to our calculations a TBKT
of the order of 4 K would need a strain amplitude 4 times
larger than in the experiment. On the other hand, fur-
ther decreasing the period to 8 nm would yield already
TBKT ≈ 11 K.
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