JYVASKYLA STUDIES IN COMPUTING
151

Niko Kotilainen

Methods and Applications for
Peer-to-Peer Networking

¢
|

JYVASKYLAN YLIOPISTO

JYVASKYLA STUDIES IN COMPUTING 151

Niko Kotilainen

Methods and Applications for
Peer-to-Peer Networking

Esitetddn Jyvaskyldn yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi yliopiston Agora-rakennuksen salissa AgAud 2
joulukuun 21. paivana 2011 kello 12.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyvaskyld,
in building Agora, auditorium AgAud 2, on December 21, 2011 at 12 o'clock noon.

o

UNIVERSITY OF H JYVASKYLA

JYVASKYLA 2011

Methods and Applications for
Peer-to-Peer Networking

JYVASKYLA STUDIES IN COMPUTING 151

Niko Kotilainen

Methods and Applications for
Peer-to-Peer Networking

)

UNIVERSITY OF H JYVASKYLA

JYVASKYLA 2011

Editors

Timo Mannikko

Department of Mathematical Information Technology, University of Jyvéskyld
Pekka Olsbo, Ville Korkiakangas

Publishing Unit, University Library of Jyvaskyla

URN:ISBN:978-951-39-4604-3
ISBN 978-951-39-4604-3 (PDF)

ISBN 978-951-39-4603-6 (nid.)
ISSN 1456-5390

Copyright © 2011, by University of Jyvaskylad

Jyvaskyld University Printing House, Jyvaskyla 2011

ABSTRACT

Kotilainen, Niko

Methods and Applications for Peer-to-Peer Networking
Jyvaskyla: University of Jyvaskyld, 2011, 46 p.(+included articles)
(Jyvaskyla Studies in Computing

ISSN 1456-5390; 151)

ISBN 978-951-39-4603-6 (nid.)

ISBN 978-951-39-4604-3 (PDF)

Finnish summary

Diss.

Due to the exponential growth of the internet during the last 15 years, peer-to-
peer networks have been utilized in several new application categories ranging
from internet telephony networks to currency systems. The peer-to-peer archi-
tecture has also garnered a great amount of research interest, contributing to the
rapid advancement of the field. This dissertation explores peer-to-peer networks
from a number of angles and presents a wide array of research results. The re-
sults include resource discovery algorithms for peer-to-peer networks, a novel
routing algorithm for mobile encounter networks, an indoors location-sensing
system, middleware prototypes, application prototypes and ideas, and tools for
peer-to-peer networks research. The results provide various stepping stones on
the way towards new kinds of communication applications and methods, utiliz-
ing devices that can interact and communicate more efficiently and dynamically
both in local and global environments.

Keywords: Peer-to-peer, Mobile peer-to-peer, Social networks, Location sensing,
Mobility-assisted routing, Resource discovery, Genetic algorithms

Author

Supervisors

Reviewers

Opponent

Niko Kotilainen

Department of Mathematical Information Technology
University of Jyvaskyla

Finland

Dr. Jani Kurhinen

Department of Mathematical Information Technology
University of Jyvaskyld

Finland

Prof. Tapani Ristaniemi

Department of Mathematical Information Technology
University of Jyvaskyla

Finland

Prof. George C. Polyzos

Mobile Multimedia Laboratory

Department of Informatics/Computer Science
Athens University of Economics and Business
Greece

Dr. Ernesto Tarantino

Institute of High Performance Computing and
Networking

Napoli, Italy

Adj. Prof. Sergey Balandin

Department of Communications Engineering
Tampere University of Technology

Finland

ACKNOWLEDGEMENTS

I would like to express my greatest gratitude to everyone who has contributed
in making this dissertation a reality. Out of the many people who have left their
mark in this work in a way or another, Mikko Vapa and Jani Kurhinen deserve
special thanks. Without their support and guidance the dissertation you are cur-
rently reading simply would not exist.

Additional thanks go to all the co-authors of articles included in this work,
especially Maria Papadopouli, Annemari Auvinen, Ferrante Neri and Matthieu
Weber. I'd also like to thank professor Tapani Ristaniemi for his role in supervis-
ing the work and to professor Pekka Neittaanméki for taking the time from his
busy schedule to help speed up the writing process.

ACRONYMS

BFS
C/s
CPU
DFS
DTN
FM
GSM
GPS
IP
JVM
MANET
MEN
MP2P
P2P
RMI
TCP
TTL
UDP
WiFi
WLAN
XML

Breadth First Search
Client/Server

Central Processing Unit
Depth First Search

Delay Tolerant Network
Frequency Modulation

Global System for Mobile Communications
Global Positioning System
Internet Protocol

Java Virtual Machine

Mobile Ad-hoc Network
Mobile Encounter Network
Mobile Peer-to-Peer
Peer-to-Peer

Remote Method Invocation
Transmission Control Protocol
Time To Live

User Datagram Protocol

Trademark for one popular WLAN technology

Wireless Local Area Network

Extensible Markup Language

LIST OF FIGURES

FIGURE1 Peer-to-peer and client/server architectures 17

FIGURE2 Query in a pure peer-to-peer network........................ooooeeeenn. 26

FIGURE 3 NeuroSearch query forwarding..............................., 32

LIST OF TABLES

TABLE 1 Characteristics of the current unstructured P2P network sim-
ULAEOTS ot 30

TABLE2 Comparison of different NeuroSearch versions with other re-
source discovery algorithmscccooo 33

CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
ACRONYMS

LIST OF FIGURES AND TABLES
CONTENTS

LIST OF INCLUDED ARTICLES

1

INTRODUCTION ..ettttuuunnieeereeeerrrnnniinniiieeeseeeeeenennsmmmnesseeesssnnne 13
1.1 Problem Formulation.............cccooooiiiiiiiiiii 13
1.2 Author Contribution...........coooooiiiii 14
NETWORKING TECHNOLOGIEScccuttiiiiiiiiiiiiiirinniiiiiinnneeeeeeennnns 16
2.1 Related network architectures.................ccooeeiiiiiii 16
2.2 Peer-to-Peer NetwWorksccoooiviiiiiiiiiiiiiiiii e, 17

2.2.1 History of peer-to-peer networksccccccvviiiiiiinnnn.n. 17

2.2.2 Hybrid Peer-to-Peer Networks.................coooiiiiiiiiii. 18

2.2.3 Pure Peer-to-Peer Networks...........ccoooooiiiii, 19
2.3 Mobile Ad-Hoc Networksccooouiiiiiiiiiiiiiiiien e 20
2.4 Mobile Encounter Networks...........cccoooooiiii 21
2.5 Mobile Peer-to-Peer Networkscccoooeiviiiiiiiiiiiii, 22
2.6 Social Networking Applications in Mobile P2P Networks 23
CHALLENGES IN PEER-TO-PEER NETWORKINGccccuieiiiiieiinnnnnns 24
3.1 Resource DiSCOVEIYcccoooiiiiiiiiiiiiiiinii 24
3.2 Routing in Mobile Encounter Networks................ccooooiiiiiiiiin. 25
3.3 Location SeNnSiNgoooiiiiiiiiiiiiiiiiii i 27
RESEARCH TOOLSccevvtiiiiiiiiiiiiiiiiiniriiiiiiineeeeeeeennneensiiees 28
4.1 Mobile Peer-to-Peer middleware...............ccccovviiiiiin, 28
4.2 Distributed computing middlewarecccccoiiiiiii 29
4.3 Network Simulators...........cccooiiiiiin 30
CONTRIBUTIONS ...cvttiiiiieieiiiieiiiiiiiiiiiinneeeeeeeerrennsiiieseeeeesennnns 31
5.1 Social Mobile Peer-to-Peer............cccooeeiiiiiiiiiiiiiiiii, 31
5.2 Algorithms for Resource Discovery and Routing 32
5.3 Location SenSing...........ccooeiiiiiiiiiiiiiiiiini i 34
54 TOOIS .ciiiiiiiii i 34

541 Chedaroooeeiiiiiiieiiii e 35

5.4.2 Mobile Chedar — A P2P Middleware................cccccoeeeiii. 35

5.4.3 P2PRealm — A P2P Network Simulatorccccco.... 35

5.4.4 P2PDisCo - P2P Distributed Computing Middleware 36

545 P2PStUdio c.uiveniiiiiiiii i 37

6 CONCLUSION ..uuiiiiiiiiiiiiiiiiiineeriiiceeriiieeeriiiseesssieseesssnaeeesssans
YHTEENVETO (FINNISH SUMMARY) ccuutituiiimuiiiinniiiinnniennreineeennenns
REFERENCES... ittt ee s eeseaaes

INCLUDED ARTICLES

LIST OF INCLUDED ARTICLES

PI

PII

PIII

PIV

PV

PVI

PVII

PVIII

PIX

Niko Kotilainen, Lito Kriara, Konstantinos Vandikas, Konstantinos Mas-
torakis and Maria Papadopouli. Location-Based Media Sharing in a MP2P
Network. In ACM SIGMOBILE Mobile Computing and Communications Re-
view, volume 12, issue 1, pages 62-64, 2008.

Pedro Tiago, Niko Kotilainen, Heikki Kokkinen, Jukka Nurminen and
Mikko Vapa. Mobile Search — Social Network Search Using Mobile De-
vices. In Proceedings of the 5th IEEE Consumer Communications and Network-
ing Conference, pages 1201-1205, 2008.

Andrei Papliatseyeu, Niko Kotilainen, Oscar Mayora and Venet Osmani.
FINDR: Low Cost Indoor Positioning Using FM Radio. In Mobile Wireless
Middleware, Operating Systems, and Applications, volume 7 of Lecture Notes of
the Institute for Computer Sciences, Social Informatics and Telecommunications
Engineering, pages 15-26, 2009.

Niko Kotilainen and Maria Papadopouli. You've Got Photos! The design
and evaluation of a location-based media-sharing application. In Proceed-
ings of the 4th International Mobile Multimedia Communications Conference,
2008.

Niko Kotilainen and Jani Kurhinen. A Genetic-Neural Approach to
Mobility-Assisted Routing in a Mobile Encounter Network. In Proceedings
of the 5th International Conference on Information Technology and Applications,
2008.

Mikko Vapa, Niko Kotilainen, Annemari Auvinen, Heikki Kainulainen
and Jarkko Vuori. Resource Discovery in P2P Networks Using Evolution-
ary Neural Networks. In Proceedings of the 2004 International Conference on
Advances in Intelligent Systems - Theory and Applications, 2004.

Ferrante Neri, Niko Kotilainen and Mikko Vapa. An Adaptive Global-
Local Memetic Algorithm to Discover Resources in P2P Networks. In Ap-
plications of Evolutionary Computing, volume 4448 of Lectures Notes in Com-
puter Science, pages 61-70, 2007.

Ferrante Neri, Niko Kotilainen and Mikko Vapa. A Memetic-Neural Ap-
proach to Discover Resources in P2P Networks. In Recent Advances in Evo-
lutionary Computation for Combinatorial Optimization, volume 153 of Studies
in Computational Intelligence, pages 113-129, 2008.

Niko Kotilainen, Matthieu Weber, Mikko Vapa and Jarkko Vuori. Mobile
Chedar — A Peer-to-Peer Middleware for Mobile Devices. In Proceedings of
the Third IEEE International Conference on Pervasive Computing and Commu-
nications Workshops, pages 86-90, 2005.

PX

PXI

PXII

Niko Kotilainen, Mikko Vapa, Matthieu Weber, Joni Toyryld and Jarkko
Vuori. P2PDisCo — Java Distributed Computing for Workstations Using
Chedar Peer-to-Peer Middleware. In Proceedings of the 19th IEEE Interna-
tional Parallel and Distributed Processing Symposium, 2005.

Niko Kotilainen, Mikko Vapa, Teemu Keltanen, Annemari Auvinen and
Jarkko Vuori. P2PRealm — Peer-to-Peer Network Simulator. In Proceedings
of the 11th International Workshop on Computer-Aided Modeling, Analysis and
Design of Communication Links and Networks, 2006.

Niko Kotilainen, Mikko Vapa, Annemari Auvinen, Matthieu Weber and
Jarkko Vuori. P2PStudio — Monitoring, Controlling and Visualization Tool
for Peer-to-Peer Networks Research. In Proceedings of the ACM international
workshop on Performance monitoring, measurement, and evaluation of heteroge-
neous wireless and wired networks, pages 9-12, 2006.

1 INTRODUCTION

The majority of current network services are based on the client/server (C/S)
architecture, where a dedicated server computer processes the requests of nu-
merous clients. The C/S architecture brings with it some benefits, for example a
simple, clear structure and ease of management. The architecture does have its
downsides too, and it is not the most suitable architecture for all network services.

Another architecture that has lately garnered a lot of attention from both the
academic researchers and the industry, is the peer-to-peer (P2P) architecture. In
peer-to-peer systems, all the nodes, also called peers, can act both as servers and
as clients, both providing and consuming resources in the system. An example
of a peer-to-peer system is the Skype telephony platform where calls are being
routed through other nodes running the Skype software, instead of using servers
operated by the company operating the network. The use of the P2P architecture
leads to clear benefits for the network, which include robustness, high scalabil-
ity, high availability and low initial investment costs. The P2P architecture has
its problems too, as using the P2P architecture instead of the C/S architecture
makes systems more complex to design and operate. Locating resources in a P2P
network is especially a difficult problem due to the decentralized nature of the
network.

Lately, social networking applications where users can communicate with
their friends, have become hugely popular all around the world. This brings a
new topic for P2P research, as the actual social relationships of people can also be
used to generate the topology of the P2P network. For certain social networking
applications, this would greatly boost the efficiency of locating resources from
the network, and would solve the problem of joining the P2P network and the
problem of being able to trust other peers in the network.

1.1 Problem Formulation

This dissertation aims to answer the following questions:

14

e How to discover the required amount of resources from a peer-to-peer net-
work with a minimal usage of network capacity?

* How to route messages in a mobile encounter network while minimizing
the time the messages spend en route, and minimizing the required device
resources used?

* How mobile devices can sense their location indoors in a cost-effective way?

e Which kind of tools and platforms do real-life peer-to-peer applications re-
quire?

The results provide some steps on the way towards new kinds of services, utiliz-
ing devices that can interact and communicate more efficiently and dynamically
both in local and global environments.

1.2 Author Contribution

The author has participated in the writing process of all the articles included in
this dissertation. A short description of the articles and the author’s contribution
follows.

Article PI introduces a mobile P2P media sharing application, where short
range wireless connections can be used to share location based content. The sys-
tem utilizes the 7DS[42] middleware and the CLS[18] location sensing system.
For this article, the author designed and implemented the prototype.

Article PII introduces a mobile P2P search platform for highly dynamic con-
tent within a social network. The system utilized 3G connections and web servers
running on mobile devices to facilitate the search functionality. The author par-
ticipated in the development and evaluation of the prototype.

Article PIII introduces and evaluates a location-sensing system based on
measuring the signal strength received from low-power FM radio transmitters.
The system was found to be as precise as WLAN-based systems, with much lower
costs and smaller power consumption. The author designed and implemented
the prototype and participated in running the measurements and designing the
algorithms.

Article PIV evaluates the media sharing application first presented in Arti-
cle PI. The author conducted the measurements and evaluated the results.

Article PV introduces a new mobility assisted routing algorithm for mobile
encounter networks. The algorithm employs neural networks trained with ge-
netic algorithms to make the routing decisions. The author devised the algorithm
based on earlier research done on the resource discovery problem in wired P2P
networks.

Article PVI introduces a resource discovery algorithm for P2P networks.
The algorithm employs neural networks as the core of the resource discovery

15

algorithm. The author designed and implemented the tools used, performed the
simulations, and participated in designing the algorithm.

Article PVII enhances the algorithm presented in PVI by introducing a
novel memetic algorithm to the training process. The algorithms are compared,
and the new algorithm out performs the older one presented in PVI. The author
implemented the algorithms, ran the measurements, and participated in algo-
rithm design.

Because of PVII's good reviews, the authors were invited to write an ex-
tended version of the paper as a book chapter. This chapter is included as Article
PVIII, which evaluates further the algorithm presented in PVIIL. The author ran
the measurements and participated in the evaluation related to the research.

Article PIX presents a mobile P2P middleware prototype. The mobile peers
can also act as members in the non-mobile Chedar-network [5]. The author de-
signed and implemented the prototype.

Article PX presents a P2P distributed computing platform prototype built
on top of the Chedar [5] P2P middleware. The platform was tested and evaluated
using the network simulator presented in Article PXI. The author designed and
implemented the prototype, and did the evaluation.

Article PXI presents and evaluates a P2P network simulator prototype. The
simulator was heavily optimized for simulating neural network training scenar-
ios, and was used in the development of NeuroSearch presented in Article PV.
The author designed and implemented the prototype, and participated in the
evaluation process.

Article PXII presents a P2P network management tool for research use. The
tool has been designed to be used with the Chedar [5] network, but can also easily
be adapted for use with other networks. The author designed and implemented
the prototype.

The dissertation is structured as follows. Chapter 2 presents networking
technologies relevant to this dissertation. Chapter 3 explores the challenges in-
herent in peer-to-peer and mobile peer-to-peer networks. In Chapter 4, relevant
research tools are presented. Chapter 5 discusses the contributions of the author,
and finally, the dissertation is concluded in Chapter 6.

2 NETWORKING TECHNOLOGIES

2.1 Related network architectures

Several network architectures are currently used in data communication networks,
the most widely used being the Client/Server [41] architecture (C/S). In the C/S
architecture the network nodes have clearly described roles as either a client or a
server. The World Wide Web and the underlying HTTP protocol are typical exam-
ples of technologies employing the C/S architecture, in which the browser appli-
cation acts as a client and connects to web servers to fetch web pages requested by
the user. Clients are always the active parties in establishing a connection to the
server to request or send information, the servers just wait for connections and
requests. Designing C/S systems is relatively simple and designs become clean
with clearly determined roles. Administering C/S systems is also quite easy, as
information stored in the system is located centrally on the server. C/S designs
do have some drawbacks too because of the server-centricity of the design. The
server becomes a single point of failure in the system, and the costs involved in
building a robust C/S system can easily offset the benefits received from the sim-
pler design and easier maintenance. According to measurements presented by
Kondo [28], the average desktop computer CPU utilization is less than 15 per-
cent, proving that client resources in C/S systems are commonly underutilized.
Especially when building large scale systems, where a single server is not enough
to handle the load, it would be beneficial to consider other network architectures
too.

According to Hayes [21], the locus of computation is currently shifting from
personal computers and workstations to services provided over the internet from
multiple distant data centers distributing the computation load between each
other. Cloud computing was coined as a term for these services, and has drawn
considerable amounts of interest from the industry and academia alike. Sev-
eral systems using the cloud architecture are already on the market, for example
Google App Engine and Amazon Web Services. In cloud systems, the service
providers own large amounts of servers, commonly distributed between differ-

17

ent data centers. Commoditized resources on these servers are then sold to third
parties, who might not even know where and how many servers are being used
to run their processes. The aim of cloud computing providers is to make com-
puting a utility, comparable with electricity, where customers can purchase just
the required amount for their processes, and transparently scale their computing
resources up and down with demand [17].

The cloud computing architecture is still very centralized, with the cloud
servers owned and administered by a single entity. When combining cloud com-
puting technologies with client/server architecture, it is possible to fix some of
the problems of the C/S architecture; cloud systems generally do not suffer from
a single bottleneck or a single point of failure in the system for example. Cloud
architecture still suffers from several of the drawbacks of C/S networks, such
as having high initial investment costs and being susceptible to monitoring and
interference either from governmental, commercial or other entities [55].

2.2 Peer-to-Peer Networks

Peer-to-peer (P2P) systems differ from the traditional C/S and cloud comput-
ing systems in that all the nodes can act both as servers and as clients. In [47],
Schollmeier defines P2P networks as distributed systems, where the participants
share a part of their resources with other peers in the network, and other par-
ticipants access these resources directly, without passing intermediary entities.
These resources can be for example processing power, storage capacity or net-
work bandwidth. Figure 1 presents the logical topologies of peer-to-peer and
client/server architectures.

Client/ Server

Server

Client/
Server

FIGURE 1 Peer-to-peer and client/server architectures

Client/
Server

2.2.1 History of peer-to-peer networks

From the late 1960’s to the 1970’s the Defense Advanced Research Projects Agency
of the United States Department of Defence, or DARPA, established a research
project to develop a new kind of computer network. The design goals of the sys-
tem were to develop a military network capable of functioning even if a large

18

number of the nodes or communication links of the network were lost either due
to an attack on the infrastructure or for other reasons.

The resulting network was named ARPANET, which was the basis for the
current internet, and to some extent it still defines the nature of the internet. In
the 90’s the rapid growth of the internet and the arrival of the World Wide Web
moved the internet towards a client/server architecture, where the network has
a small number of dedicated servers and a large number of clients using services
from the servers. These clients become second-class citizens of the internet, as
they were usually connecting to the internet through slow and firewalled modem
connections, and only being assigned a temporary, dynamic IP address. This cre-
ated a very clear distinction between the servers and the clients. This trend has
reverted a little since the turn of the millennium because of peer-to-peer networks
and faster internet connections with static IP addresses emerging. The first P2P
networks at the turn of the millennium were used mostly for sharing copyright
protected files, like music, but since then a lot of legitimate uses for P2P networks
have also emerged, for example the Skype Voice-over-IP telephony application
and the Bitcoin P2P currency system. Even the DARPA is again using P2P net-
works on the battlefield, thus closing the circle [4].

2.2.2 Hybrid Peer-to-Peer Networks

P2P networks come in two main flavors, hybrid and pure P2P networks [47]. Hy-
brid P2P architecture, as the name implies, is a hybrid of both client/server and
pure peer-to-peer models, trying to combine the best parts of both models. In
hybrid P2P networks the network is managed by a server which holds a database
of resources held by the network nodes. The network nodes connect to the server
and report their resources to the database. The nodes query the server for re-
sources, and the server gives a reply containing information about nodes holding
the queried resource. After receiving the reply, a node can then establish direct
connection to the node(s) holding the resource and request the resource.

The best known hybrid P2P network was the original Napster network, but
as the majority of files shared over the network were copyrighted material, and
Napster operated without permission from the copyright holders, Napster was
quickly sued for facilitating copyright infringement and later the network was
shut down by US authorities. This case made the drawbacks of the hybrid model
very clear, as it was very easy for the authorities to shut down the network by un-
plugging the servers organizing the search. It could be argued that in the Napster
case there was a moral justification for shutting down the network, but in several
cases, for example military networks or networks used by dissidents in countries
with no free speech rights, there might be a third party trying to actively shut
down the network without such justification. This has been the case in China,
and lately in Iran, where the authorities have been actively trying to shut down
P2P communication networks used by political pro-democracy activists.

19

2.2.3 Pure Peer-to-Peer Networks

Pure peer-to-peer networks on the other hand drop the server altogether and run
completely on nodes with equal rights and responsibilities. The nodes of the net-
work do not have predetermined roles such as servers or clients, but are in an
equal position to other nodes in the network and can take different roles based
on the requirements of the network. The nodes of the network, called peers, are
usually connected to a few other peers, most commonly using TCP connections.
The connections form an overlay network topology on top of the physical net-
work connecting the nodes [40]. Nodes of the network can forward messages
between other nodes, and can make resources available to other nodes of the net-
work. The resources can be for example files, computing capacity, bandwidth,
storage space, location data, etc. If a node is looking to use a resource from the
network, it can act as a client and send a request to its neighbor nodes, which can
then again act as routers and forward the request further, or act as servers and
send a reply to the requesting client.

Oram [40] lists several benefits of pure P2P networks, some of which hold
true also for hybrid networks. The most prominent one being resiliency to at-
tacks and network failures. Due to the distributed nature of the network, there is
no single point of failure, and the tasks of failed nodes can be delegated to other
nodes of the network. P2P networks are also inherently scalable. As more peers
join the network, the new peers provide more computing capacity and band-
width to the network without the need to install more servers. This also lowers
the hardware costs associated with setting up the service, as no expensive servers
or datacenter space are needed.

As opposed to traditional client/server network architectures, P2P networks
do not have a single point of authority, and while this makes P2P networks ro-
bust, it is also the source of many problems in using these networks. As no party
in the network has a global view of the network topology, or of the location of
resources in the network, discovering resources and routing messages in the net-
work becomes problematic. Commonly in pure peer-to-peer networks the nodes
only have knowledge of their neighbor nodes, i.e. the nodes that they have es-
tablished connections to. To find a resource the node has to send a query to its
neighbors, which then forward the query to their neighbors according to the re-
source discovery algorithm the node is utilizing.

As there is no central authority in the network, it is complicated for the net-
work nodes to find out whether the information they are receiving from other
nodes of the network is trustworthy. If trust issues are not taken care of, rogue
nodes in the network can intentionally reply to resource requests with corrupted
data or otherwise send misleading and erroneous control messages hampering
the functionality of the network. Rogue nodes in the network can be battled with
several techniques, for example a web of trust design, where a user designates
his friends to be trusted, who then again designate their friends as being trusted.
This, combined with the removal of ousted rogue nodes and the nodes on the
path of trust to the rogue node, makes the network very difficult for rogue nodes

20

to infiltrate. This technique does require the network users to actually know each
other, which usually is not the case in P2P networks. To eliminate this require-
ment, a large number of architectures which automatically rate the nodes for their
trustability have been suggested [35].

Joining pure P2P networks also presents challenges. When a node is outside
the network, it has no knowledge of other nodes of the network, and thus an ex-
ternal source of node names is required. Research for solving the joining problem
has been carried out in our research group [56].

Significant research effort has been invested into solving these problems,
and several routing and resource discovery algorithms have been suggested in
literature. These algorithms are discussed in more detail in Chapter 3.

2.3 Mobile Ad-Hoc Networks

The majority of current wireless networks use static, stationary access points,
where mobile clients connect to gain access to the rest of the network. Examples
of these infrastructure-based networks include GSM and infrastructure-mode Wi-
Fi. In a way these networks can be classified as client/server (C/S) networks,
where mobile clients connect to stationary servers for connectivity to the rest of
the network. The infrastructure-based networks share several advantages with
client/server networks, such as ease of design and operation, and simple and re-
liable authentication and authorization methods. Just like wired C/S networks,
infrastructure based wireless networks have also some drawbacks:

e The infrastructure might not be available everywhere, or the access point
could not be contacted due to some objects attenuating the signal on the
way. If the devices cannot connect to the access points, no information can
be dissipated in the network.

* The investment cost for the infrastructure is usually very high.

* The network has low scalability. If a large amount of devices attempt to use
the services of a single access point, the access point can get overloaded and
fail to serve the clients.

* The networks also have low robustness, as the access points are a single
point of failure.

Some of these drawbacks can be solved with proper network design, for example
selecting the locations of the access points so that the mobile client device can
reach a minimum of two access points in any location. This though requires even
higher initial infrastructure costs, as the access points have to be placed more
densely than would be otherwise required.

These drawbacks make them unsuitable for some applications. As an ex-
ample, if one is to go hiking in the wilderness, one cannot expect GSM phones to

21

be able to connect to base stations, and thus no calls can be made even to nearby
fellow hikers. Now, if GSM phones could directly connect to each other to trans-
mit the call, the phones could effectively bypass the whole infrastructure-part
of the network, and if the phones cannot reach each other directly, the call can
be routed through a third party, possibly another hiker situated between the call
parties. Taking the example one step further, the phones could form a network
where calls are routed through several devices in range of each other. This would
make calls possible between callers who are far away from each other. In this
example, the phones would have created a mobile ad-hoc network (MANET).

Mobile ad-hoc networks are increasingly being used as an architecture for
wireless networks in scenarios like the one presented above. MANETs are self
configuring infrastructure-less networks, where the nodes connect to each other
using a wireless connection [2]. The connection technologies can be for example
Wireless Local Area Networks (WLAN) such as WiFi, Wireless Personal Area Net-
works (WPAN) such as Bluetooth, or even low-bandwidth and ultra-low power
technologies designed specifically for sensor network applications, such as Zig-
bee, IEEE 802.15.4 or Bluetooth Low Energy [32].

Benefits of MANETSs can be clearly seen with the example presented before,
where the network is able to function anywhere where the devices are able to
connect to each other, and as the amount of devices increases, the bandwidth
and the processing capacity of the network increases linearly all the way until the
capacity of the radio spectrum is reached. Also the cost of building the network
is low, as no infrastructure installations are required.

Although forming the network is very easy for the MANET nodes - the
nodes just connect to whomever they can reach over the radio interface, certain
nodes of the network can only connect to each other if they are within radio range
of each other. Routing information between far-away nodes becomes time- and
resource-consuming, as messages need to be routed through several nodes be-
tween them. Also the usable routes are constantly changing, as the nodes of the
networks can be moving, and thus connections are lost and created within the
network all the time. Several protocols and algorithms have been suggested for
routing messages in MANETs, which fall into two categories: proactive and reac-
tive routing. Proactive algorithms aim to maintain a routing table for the network
by keeping track of the changes in network topology, even if no messages are be-
ing sent, thus ensuring quick message delivery. Reactive algorithms on the other
hand only find a route to a destination when a message is available for send-
ing, this operating way minimizes routing overhead and the resources used for
control traffic [37].

2.4 Mobile Encounter Networks

Delay tolerant networks (DTNs) are a subclass of mobile ad-hoc networks, lack-
ing continuous connectivity. In DTNs the network nodes are distributed so sparsely,

22

or their wireless range is so small, that the network commonly becomes par-
titioned into unconnected sub-networks. Mobile encounter networks take this
even further, generating a network, where the nodes are rarely in connection with
other nodes for longer periods at once. As the nodes are mobile, they frequently
come within range of other nodes in the network, and when this happens they
initiate a connection and exchange data between the nodes, thus diffusing infor-
mation in the network [14, 24].

Information diffusion and routing in mobile encounter networks is very
similar to the spread of epidemic diseases, where infected individuals coming
into contact with others infect the other people too. The spread of disease has
been widely researched, and this research has been used as a basis for research
into information diffusion in all kinds of delay tolerant networks [12, 6]. Routing
in mobile encounter networks is further discussed in the section 3.2.

Due to the high delays in message delivery, mobile encounter networks are
not suitable for all networking applications, but there are a lot of applications
where the delays in diffusing the data do not hamper the functionality of the
application. For example web caching, commodity (i.e. gasoline or groceries)
price tracking, message delivery, and sensor network data delivery.

Due to the relatively young age of the research field, there are several terms
in use with relatively small differences. The terms pocket switched network [23]
and human contact network [46] are very similar with the term mobile encounter
network. The former two just place more emphasis on the human mobility and
human contact aspects of the network, whereas mobile encounter networks can
be for example created by swarms of mobile autonomous unmanned vehicles.
Also instead of a delay tolerant network, several researchers have recently used the
term disruption tolerant network.

2.5 Mobile Peer-to-Peer Networks

Mobile peer-to-peer (MP2P) networks function on the application layer of the
OSI-model, and thus are independent of the underlying network architecture
[20]. The networks are commonly classified into two categories, infrastructure-
based and infrastructure-less networks, according to the features of their under-
lying network infrastructure. Infrastructure-based networks utilize the internet
or other infrastructure-based networks, and infrastructure-less networks utilize
wireless ad-hoc networks. This dissertation will mainly discuss infrastructure-
less networks.

23

2.6 Social Networking Applications in Mobile P2P Networks

In his book [29], Kopomaa discusses the effects of a mobile way of life on the ur-
ban environment. Kopomaa describes mobile devices as nomadic objects, which
enable their users to move freely while carrying on with their activities, mak-
ing whatever space they are in a temporary home or office replacement. These
new forms of communication have a profound impact on our everyday lives, as
spontaneous and real-time communication with no restrictions on place and time
enables an all new social order, with all new social practices.

As the computing power, bandwidth, and storage space available to mobile
devices are advancing at great speed, new kinds of applications are made possi-
ble. Current mobile devices already provide a very capable platform for social
communication applications, and combining the ideas of MP2P and social net-
working make it possible to develop powerful communication applications. So-
cial applications are a good fit for P2P networks, because the overlay network can
be generated from the social connections of the participating people. As people
would already know their neighboring nodes in the P2P network, there would
be no problem in finding nodes to connect to, and also the problems caused by
the lack of trust between nodes would be greatly reduced. For certain applica-
tions, for example search in social networks (see Article PII) this greatly boosts
the efficiency of locating resources from the network [52, 51].

As proposed by Allen [3], the social aspects of P2P networks can also be
used to benefit the underlying processes of the P2P network. In his proposal the
network provides a higher reputation, and a higher payout to the cooperating
peers, thus incentivizing unselfish behavior.

3 CHALLENGES IN PEER-TO-PEER NETWORKING

Peer-to-peer and mobile peer-to-peer architectures introduce new challenges that
do not exist in the traditional client/server or infrastructure-based architectures.
This chapter introduces the challenges relevant to this dissertation.

3.1 Resource Discovery

Locating resources in a pure peer-to-peer network is problematic, as there is no
central authority that would keep a database of all the resources available in the
network. As there is no central server, the peers have to query their neighbors,
who in turn forward the query to their neighbors and so on. As the network can
have millions of peers, it is not feasible bandwidth-wise to forward the query to
all the peers in the network. Thus, the peers need a resource discovery algorithm
to make decisions on where to forward queries and where not to. Several algo-
rithms have been proposed to solve the resource discovery problem in different
settings, the most prominent of which are described below.

* Breadth-first-search (BFS) [34], where the query is simply sent to all the
neighbors of the node, who then again send it to all their neighbors and
so on. The algorithm is technically very simple, and it only requires one
configuration parameter, Time to Live (TTL). The TTL is required to keep
the algorithm from flooding the whole network, as it limits the number of
times a message will be forwarded. Lv et al. [33] find that BFS is not efficient
nor scalable, and in particular on Gnutella and power-law graphs the effects
of flooding are disastrous: the number of messages increases drastically
when TTL is increased.

e Highest Degree Search (HDS), which is proposed by Adamic et al. [1] and
Kim et al. [26], is a search strategy that utilizes the topological properties
of a power-law network. The search strategy first proceeds towards the
highest-degree node, i.e. the node that has the highest number of neighbors,

25

and then gradually moves to nodes of a lesser degree. The algorithm locates
resources efficiently if they can be found from the core of the network, but
the performance decreases when the central nodes are revisited in search
for lower degree nodes. The HDS algorithm also causes congestion in the
central nodes of the network, as all of the queries from the whole network
are forwarded towards the central nodes.

¢ Random walk, which resembles HDS in that the query is only forwarded
to one neighbor at a time. The random walk algorithm differs from the
HDS algorithm in that the neighbor to receive the query is selected at ran-
dom, thus lowering the chances of visiting the same nodes multiple times.
Just like with HDS, while random walkers increase the number of hops and
thus latency, they decrease the total traffic because the search proceeds in a
depth-first manner [33].

There are certain limitations in all approaches described above. First, each of
these algorithms uses some control parameters (for example time-to-live, the
number of walkers or the proportion of neighbors to forward the query) that
can be used to tune the algorithm. For a search algorithm, the number of con-
trol parameters should be kept at a minimum to allow zero configurability when
applied to a real environment. Second, while some of these approaches have
mechanisms to adapt to the environment, they do not utilize the entire potential
of the environment because they rely only on one strategy. In general, one strat-
egy alone cannot be efficient in all scenarios, and therefore an efficient algorithm
should be able to utilize many strategies depending on the current scenario.

Figure 2 presents a query in a P2P network using the Breadth First Search
(BES) algorithm. In the beginning Peer 1, which is querying for resource R, sends
the query to its neighbors, Peer 2 and Peer 3. These two send the query to all
their neighbors except Peer 1, where the query was received from. When peers
2 and 3 receive the query from each other, they disregard the received message
because they have processed the query before. When Peer 4 receives the query,
it notices that it holds the queried resource and sends a reply to the query. Peer
2 forwards the reply to Peer 1 and thus Peer 1 gains the knowledge of where to
find the resource and can then use the resource. As it is evident, the algorithm
efficiency is not optimal, as the algorithm sends more messages than those which
would be required to find the resource.

3.2 Routing in Mobile Encounter Networks

To bring multi-hop data transmission into mobile encounter networks, the mo-
bility of the nodes has to be used to deliver messages between nodes that do not
have a direct communication route between them. This poses a difficult prob-
lem, because there is no global knowledge of the network state, or of future lo-
cations and encounters of the peers. In fact there is no real-time knowledge of

26

Peer 1
(Querier)

_ Query (Who has E?)
—> Reply (Peer4hasE|)
<+—> Resource usage

FIGURE 2 Query in a pure peer-to-peer network

what is happening outside the radio range of the device, as the devices of the net-
work only exchange information during encounters with other devices. Further
problems are caused by the difficulty in predicting the movements of the mobile
devices, though a prediction of the mobility can be acquired by using statisti-
cal methods to infer the information from the current and historical location and
heading information of the device.

For mobile devices it is usually very important to conserve power, thus the
efficiency of the routing algorithms is essential in mobile encounter networks [8].
Some algorithms proposed for routing are as follows.

Epidemic routing was first introduced by Vahdat and Becker [10]. As the
name implies, the algorithm emulates the spread of epidemic diseases to route
information. Available messages are passed to all encountered nodes in the hope
that one of the nodes is able to deliver it to a target location. It is a very powerful
method and always gives the smallest delay possible if the network system han-
dles the data flow properly. However, unlimited forwarding of messages makes
the algorithm waste a lot of network resources.

Spray and wait [48] and later Spray and focus [49] were proposed by Spy-
ropoulos et al. The algorithms are good examples of methods designed to limit
the flooding of the network experienced when using the epidemic routing algo-
rithm. Spray and Wait exploits different types of counters to control the num-
ber of message copies in the network. Spray and Focus has evolved from Spray
and Wait, and combines copying and forwarding. These schemes, however, do
not qualitatively distinguish distinct nodes while passing message copies. In-
stead, they employ numerous randomly selected nodes as message carriers. Even
though they are more efficient than the pure epidemic diffusion, they still waste
substantial amounts of device memory, battery power and network bandwidth
while passing data to inappropriate network nodes.

During the last year, socially aware algorithms have been proposed for rout-
ing in mobile encounter networks by Bulut and Szymanski [7], Mei et al. [38] and
Klein et al. [27]. Based on the observation that individuals with similar inter-

27

ests tend to meet more often, they hypothesize that inclusion of knowledge of
the social structure improves the efficiency of routing, and the simulation results
support the hypothesis.

3.3 Location Sensing

Location sensing capabilities are important for many mobile applications, espe-
cially those operating in a mobile P2P fashion [11]. In outdoor settings GPS usu-
ally provides good enough accuracy with modern receiver technologies, but in-
door localization is still an area to be improved. There are plenty of approaches
for implementing indoor location sensing, some of which are presented in the
following list:

* Proximity-based methods sense nearby transmitters, and use their IDs to
make an estimation of a position. This is the simplest of the categories,
but also the least precise. Examples of proximity-based systems include
recording pre-placed RFID tags in range and comparing this information to
a known map of the RFID tags [25].

¢ Signal strength -based methods record the signal strengths received from
transmitters with known locations and approximate their distance from the
receiver using this data. For example CLS [18], which uses WiFi and/or
Bluetooth signal strengths, and FINDR PIII,[45], which uses low range FM
radio signals. Varshavsky [53] presents a system for using GSM signal
strength measurements for indoor location sensing, and Stuntebeck et al
use radio frequencies injected into the power lines running in the walls of
buildings for location sensing [50].

¢ Time-based methods measure the time a signal travels from the transmitter
to the receiver, and triangulate a location based on this measurement. Ex-
amples of time-based location sensing are GPS, and measuring the time of
ultrasound pulses [54].

4 RESEARCH TOOLS

When doing the research discussed in this dissertation, several different research
tools were evaluated. Due to the unique requirements of the research problems
this dissertation covers, most of these tools did not have the required capabilities.

4.1 Mobile Peer-to-Peer middleware

Several middleware enabling MP2P functionality for applications running on top
of the middleware have been proposed. The middleware offers an application
programming interface for application development, each with their distinctive
functionalities. This section presents the most prominent ones.

7DS (7 Degrees of Separation) [42, 43] is an architecture and a set of protocols
enabling resource sharing among peers that are not necessarily connected to the
internet. The 7DS prototype has been written in Java 2 Standard Edition. 7DS
works only on IP networks and uses UDP multicast to query other peers, so the
peers have to be on the same broadcast group.

LightPeers is a light-weight mobile peer-to-peer framework proposed by
Christensen et al. [10]. It has been designed for mobile computers supporting ad
hoc groups for learning, gaming, and playing by allowing peers in the field to
produce, share, and present digital material in a session. The LightPeers frame-
work utilizes UDP connections for communication between the nodes.

Proem [30] is a mobile middleware providing a solution for developing and
deploying applications for mobile ad hoc networks. In Proem, middleware is re-
sponsible for presence and discovery services as well as being an identity, data
space and community manager. Proem has been designed for mobile peers in
ad hoc networks whereas in Mobile Chedar peers with fixed P2P network con-
nections are also supported. The current prototype of Proem uses Wireless Lo-
cal Area Network (WLAN) for communication and has been implemented using
Java.

XMIDDLE [36] is a reflective middleware enabling transparent sharing of

29

XML documents between mobile peers, because the data structure consists of
XML trees, modifications to the branches of XML tree are fine-grain for example
compared to modification of files. XMIDDLE solves the problem of simultaneous
edits by several peers by allowing the user to resolve the update conflicts. The
current XMIDDLE prototype is based on WiFi and has been implemented using
Java.

MOBY [22] is a service network enabling access to services on wide area
networks. The framework is built using Jini and Jini Technology Surrogate Ar-
chitecture Specification. In MOBY, resources are registered to Jini Lookup Ser-
vice, which is located in the local area network. MOBY’s P2P network is based on
the super-peer architecture, i.e. the network is divided into domains by Mnode
super-peers. Like 7DS and LightPeers, MOBY uses UDP for communication be-
tween Mnodes. Resource discovery in MOBY is done using the expanding ring
search algorithm [33] between Mnodes. Overall, MOBY is designed more like
a fixed overlay, because the links between Mnodes are preconfigured compared
to the autonomous overlay approach used in the other middleware discussed
above.

4.2 Distributed computing middleware

When choosing a distributed computing platform to distribute the P2PRealm
simulator, there were several options for distributing Java-based applications
available.

One class of software is formed by programming language independent
distributed computing tools that support Java. An example of such software is
Globus Toolkit [16], in which Java Commodity Grid kit provides an interface for
accessing Globus services using Java programs. Globus contains mechanisms for
code mobility which poses security risks, because the downloaded code needs to
come from a trusted source or otherwise guaranteed not to be malicious. Globus
also employs centralized indexes for resource discovery instead of the more flex-
ible and robust P2P approach.

Programming language dependent class of Java distributed computing plat-
forms can be divided into two: Java extensions and Java libraries. Java extensions
such as JavaParty [44] provide special distribution mechanisms requiring changes
to the Java compiler and/or Java Virtual Machine (JVM). This increases the diffi-
culty of distributing an application. Java libraries provide special class libraries
for the distribution without the need for modifications to the Java compiler or the
JVM, and therefore the Java libraries are easier to deploy. An example of such li-
brary is JavaSymphony [13]. Like Globus, JavaSymphony employs a centralized
index of available resources.

Some implementations of Java distributed computing that use peer-to-peer
network for locating the resources do exist. In such design the resource index has
been decentralized and peers cooperatively route resource queries among each

30

other. An example of such a system is GT-P2PRMI [9], which allows Remote
Method Invocation (RMI) lookups to be performed through an extended version
of RMIRegistry called P2PRMIRegistry. P2PRMIRegistry is used to form the over-
lay network, for binding and publishing the remote methods and for looking up
the published remote methods.

4.3 Network Simulators

Network simulators can be classified into two groups, packet-level simulators
and message-level simulators. Packet-level simulators include real-life protocol
headers in the simulation, which makes the simulation more accurate, but also
slows down the simulation. A comparison of current simulators is presented in
Table 1.

When training the NeuroSearch resource discovery algorithm, a simulator
was practically the only choice to do the training. As described in publication
PXI, there are various network simulators available that can be used in studying
P2P networks. However, these simulators are not primarily designed for speed,
and none of them contains functionalities required for training neural networks.
As described in section 5.4.4, even the P2PRealm network simulator, which has
been heavily optimized for speed, is not fast enough for training neural networks,
and so the speed of the simulator was crucial. The requirements for training of
the NeuroSearch algorithm are too unique and too computationally demanding
to be run on top of a general P2P network simulator, thus it was justifiable to
implement our own simulator.

TABLE 1 Characteristics of the current unstructured P2P network simulators

Simulator Level of | Parallel | Scalability | Overlay with | Programming
Detail Routers language

NS-2 Packets Yes Very low | Yes C++

NS-3 Packets Yes Very low | Yes C++ / Python

OPNET Packets Yes High Yes Cand C++

Modeler

QualNet Packets Yes n/a Yes C++

PLP2P Packets Yes Medium | - C++

QueryCycle | Messages | No n/a Yes Java

3LS Messages | No Very low | Yes Java

PeerSim Messages | No Very high | Yes Java

NeuroGrid | Messages | No High No Java

GPS Messages | No n/a No Java

P2PRealm Messages | Yes Medium | No Java and C

5 CONTRIBUTIONS

This chapter presents briefly the contributions described in the included articles.

5.1 Social Mobile Peer-to-Peer

A social multimedia sharing application called PhotoJournal [PL,PIV] was devel-
oped in cooperation with the University of Crete and the FORTH institute from
Greece. The application runs on the 7DS [42] mobile P2P middleware, enabling
users to share location-tagged photos with other users of the application using a
map-based user interface. The users’ current location is determined using CLS
[18] and/or GPS information, whichever happens to be available. This location
information is also used to tag photos added to the system with location infor-
mation.

A client/server version of the PhotoJournal was also developed, to enable
comparisons between the two versions. The delay the application experiences
while querying other nodes within the social network was measured as part of
the research. In the measurements, the MP2P approach was compared with a
more traditional client/server based approach where mobile devices accessed a
centralized server disseminating information over a WiFi or a 3G link. The mea-
surements show that in this case, the MP2P approach proved to be significantly
faster than the infrastructure-based approach. Depending on network and device
qualities, the median delay varied between 282ms and 1.9s.

Independent from the PhotoJournal project, novel search methods that could
take advantage of the social network inherent to the mobile P2P architecture were
investigated in Article PII. In this article, a prototype allowing the user to search
for relevant information in a highly dynamic social network environment com-
posed of mobile devices is presented. This kind of search functionality comple-
ments traditional web search engines, as the social network can be searched in
real-time. The system also provides users fine-grained control of the privacy of
information available for other people conducting searches. This differentiates

32

the system from traditional search engines, as with them the privacy controls are
very coarse — either the information can be found on Google, or not. The system
is also completely decentralized, bringing all the basic benefits of P2P networks,
which have already been described in Chapter 2. Since the research was pub-
lished, both Google and Facebook have commercialized some ideas presented in
the article.

5.2 Algorithms for Resource Discovery and Routing

A novel resource discovery algorithm for P2P networks, called NeuroSearch, was
presented in Article PVI. The algorithm used a neural network model first pre-
sented in [15], where Fogel used evolving neural networks to create an artificial
intelligence player for the game of checkers. The main difference between Neu-
roSearch and other algorithms, some of which are described in Section 3.1, is that
NeuroSearch has been artificially developed by employing a neural network to
make the forwarding decisions that control the behavior of the algorithm. This
enables NeuroSearch to adapt to the current network scenario, unlike other re-
source discovery algorithms, which only employ one strategy to make forward-
ing decisions.

When a node using NeuroSearch receives a resource query, it first checks
whether it has an instance of the queried resource, and if it does, it reports the
resource to the querier. After this, the node inputs its neighbors” information and
information from the query one by one to a neural network, which computes
a decision whether the query should be forwarded to the neighbor in question.
This process is depicted in Figure 3.

ot

A B

FIGURE 3 NeuroSearch query forwarding

To train the neural networks, our system uses an evolutionary method,
where different neural networks compete against each other. In the beginning
of training, 30 neural networks are randomly generated, tested, and compared
to each other. The 15 worst performing networks are replaced with offspring
of the 15 best performing networks. The offspring is created from each of the

33

best performing networks by making random changes to the parents. This test-
compare-replacement procedure is done thousands of times and so the neural
networks gradually develop the ability to make good decisions for resource dis-
covery. Finally, the best individual from the neural networks is selected to be the
newly created NeuroSearch resource discovery algorithm.

Training a neural network is a very computationally demanding task. For
example, when training a population of 30 neural networks for 100 000 genera-
tions, evaluating a neural network is done 3 million times. And when a single
evaluation can consist of 100 queries to the P2P network and a single query can
require hundreds of neural network based decisions, the training requires large
amounts of computing power.

The NeuroSearch algorithm was further refined by the addition of memetic
characteristics to the training model in Articles PVII and PVIII. As defined by
Moscato et al in [39], memetic algorithms combine evolutionary algorithms with
separate local search algorithms to create algorithms capable of finding good so-
lutions more efficiently than evolutionary algorithms alone.

All of these algorithms were also compared to two traditional resource dis-
covery algorithms, BFS and DFS, and with one traditional genetic algorithm(GA)
employing crossover and mutation to train the neural network. The results show
that AGLMA, the most complex of the algorithms, took longer to train the neural
network, but eventually it generated the best algorithm.

Table 2 shows the optimization results. The final fitness F? obtained by the
most successful experiment over 30 sample runs, the related number of query
packets P used in the query and the number of found resource instances R dur-
ing the query are given. In addition the average best fitness at the end of the
experiments < F >, the final fitness of the least successful experiment £ and the
related standard deviation are shown. Since the BFS follows a deterministic logic,
thus only one fitness value is shown. On the contrary, the DFS under study em-
ploys a stochastic structure and thus the same statistical analysis as that of GA,
NS, ANS and AGLMA over 30 experiments has been carried out.

TABLE 2 Comparison of different NeuroSearch versions with other resource discovery

algorithms
AGLMA | ANS NS GA BFS DFS

P 350 355 372 497 819 514
R 81 81 81 85 81 81

£ 3700 3695 3678 3366 3231 3536
<F> 3654 3647 3582 2705 - 3363
ja 3506 3504 3502 0 - 3056
std 36.98 36.47 37.71 1068 - 107.9

A similar approach was also taken to generate an algorithm for solving the mo-
bility assisted routing problem in Article PV, where an algorithm called Neuro-
Router was proposed. As with NeuroSearch, the algorithm employs a trained

34

neural network to make decisions, though in this case the decisions are about
routing in a mobile encounter network. When encountering a node, information
about the encountered node with information about the message being processed
are fed to a neural network, the output of which defines whether the message is
forwarded to the encountered node. This makes the algorithm flexible and en-
ables it to employ different strategies for different situations. The algorithm could
also be further improved with the addition of social-aware features to the input
of the neural networks.

5.3 Location sensing

FINDR, a location sensing system primarily for indoor use, is presented in Article
PIII. FINDR is based on measuring signal strengths from stationary transmitters,
but instead of measuring WLAN or Bluetooth signals the system measures the
strength of FM radio signals transmitted from cheap MP3 players with built in
FM radio transmitters. In the evaluation of the system, we used 3 FM radios
transmitting on different frequencies, and a Nokia N800 device to measure the
received signal strength. The system employs the fingerprinting method, where
the signal strengths are measured within certain intervals in the map space. When
using the system, measured signal strengths are then compared against the signal
strengths in the fingerprint database to find out the current location.

When compared to WLAN base stations being used in other similar location
sensing systems, the FM radio transmitters are much cheaper to procure and are
much smaller in size. They also consume a minimal amount of power, which
enables them to even run on batteries, if required. Any computing device that
can measure the strength of an incoming FM radio signal can be used as a FINDR
client device, and because the system does not require any specialized hardware,
it is also easily deployable.

The FINDR system evaluation shows a median accuracy of 1.3m, and an
accuracy of 4.5m at 95% confidence level, thus comparing favourably with similar
WLAN:-based systems.

The FINDR system was developed in cooperation with the Create-Net insti-
tute from Trento, Italy.

5.4 Tools

It was not always possible to find a tool fulfilling the requirements set by the re-
search method and the research problem, and thus several tools were developed
in the research process.

35

5.4.1 Chedar

Although the Chedar application falls outside of the scope of this dissertation, a
short introduction to it is required as several of the tools described in the follow-
ing chapters depend on Chedar.

Chedar (CHEap Distributed ARchitecture, [5]) is a pure peer-to-peer mid-
dleware designed for peer-to-peer applications. The goal of the Chedar software
is to provide a convenient API for peer-to-peer application developers. Chedar
peers use TCP connections to communicate with each other. Chedar can be used
to distribute different kinds of resources to other nodes in the Chedar network.
Distributed resources can be for example files, CPU time or storage space. Every
node stores information about the resources it provides in XML format. When
the node receives a query about a resource it checks whether it has the resource
by checking the resource XML database via an XPath query.

5.4.2 Mobile Chedar — A P2P Middleware

Mobile phones have very limited capacities of memory and processing power,
and also applications running on phones should conserve battery power as much
as possible. On the other hand mobile applications are becoming more complex
all the time, and users demand more and better functionality from mobile appli-
cations. Mobile Chedar, a system that allows mobile devices to access resources
from workstations in the Chedar fixed-network P2P system, is presented in pub-
lication PIX, and an application using Mobile Chedar is presented in publication
[31].

Mobile Chedar has been implemented using the Java 2 Micro Edition (J2ME)
programming language and it uses Bluetooth [19] as a communication technol-
ogy. Mobile Chedar is an extension to the the Chedar fixed-network P2P mid-
dleware, and it provides mechanisms for data streaming between Mobile Chedar
nodes and between the Mobile Chedar and Chedar networks.

Let us look at one case where this could be useful. Mobile users might want
to view high quality videos on their phones, but the phone’s processor does not
have enough power to decode such a stream and delivering the stream uncom-
pressed over a 3G network would not work because of bandwidth limitations.
One solution to the problem would be to use Mobile Chedar to get a computer
from the Chedar network to fetch the video stream from the internet, re-encode
the video to better fit the mobile device, and then send it to the requesting mobile
phone using the free and relatively fast Bluetooth network.

5.4.3 P2PRealm — A P2P Network Simulator

Originally the NeuroSearch training was done directly on the Chedar P2P net-
work, running on computers located at the computer laboratories of the univer-
sity. As was mentioned in Chapter 5.3, this turned out to be a very time consum-
ing process, as all the query messages used in the training needed to be physically

36

sent between computers participating in the P2P network.

Due to the prohibitive slowness of the original NeuroSearch training ap-
proach, there was a need to find a simulator to train NeuroSearch, and as no off-
the-shelf solutions were suitable, the decision was made to develop the P2PRealm
network simulator. P2PRealm (Article PXI) is a peer-to-peer network simulator
that has been designed to be as fast as possible due to the high CPU time require-
ments of NeuroSearch training. An average neural network training run takes
about a week on an ordinary PC using P2PRealm.

Using building blocks from Chedar and P2PStudio, the first version of the
P2PRealm simulator was developed very quickly, in about one working day. The
same neural network training scenario was run on the early prototype as in the
Chedar system and the results were very promising: running the neural network
training in the simulator was about three magnitudes, or a thousand times faster
than on the Chedar system. Nowadays the simulator has grown to include six
classic resource discovery algorithms, and also a k-Steiner tree based algorithm
for finding the upper bounds of resource discovery algorithm performance.

The simulator source code has also been heavily optimized to gain more ef-
ficiency. Several bottlenecks were identified by profiling the simulator and these
bottlenecks neutralized using various software optimization techniques.

5.4.4 P2PDisCo — P2P Distributed Computing Middleware

Even with the simulator approach presented in the previous section, NeuroSearch
training was not quick enough to run our simulations, because there are dozens
of parameters to set in the training process, thousands of training sessions are
required to find out an optimal set of parameters for the training process. As a
single training simulation took about a week, it was apparent that thoroughly
testing the effect of different parameters in different scenarios was prohibitively
time-consuming. The next step to speed up NeuroSearch training was to dis-
tribute the P2PRealm simulator to run in parallel on several computers. This was
achieved by implementing the P2PDisCo middleware.

P2PDisCo (publication PX) is a distributed computing middleware running
on top of the Chedar [5] P2P network middleware. It can be used to distribute
any Java application, as long as the application only uses files for input and out-
put, with minor modifications. P2PDisCo redirects the I/O operations of dis-
tributed applications to access memory buffers controlled by P2PDisCo instead
of accessing local files. Thus the distributed application does not see any differ-
ence between running locally and running on top of P2PDisCo, and P2PDisCo
runs with minimal impact and requirements to the underlying computer system
because no disk space is required for the I/O files. This was a requirement when
the NeuroSearch training was run on hundreds of desktop PC computers located
in the computer labs of the Agora building at the University of Jyvéskyld. As the
workstations’ processors would otherwise be idle for most of the time, P2PDisCo
enabled this idle resource to be used for computation.

When the master node is started, it connects to the Chedar network and

37

starts a query looking for idle computing resources, and the peers that are ready
for computing answer the query. The master node selects which of the located
nodes will be used for computing and distributes tasks to these nodes which
start the computation. During the computation, results are sent back to the master
peer when the memory buffer reaches 256 kB, thus the P2PDisCo does not require
large amounts of memory on the computing peers. Also, this ensures that if the
computing node is reset, the computation results are still saved to the point of the
last update.

5.4.5 P2PStudio

In order to test and monitor the Chedar network there was a need for a tool that
enables the researchers to remotely control and monitor each Chedar network
node in a centralized way. To enable Chedar nodes to be monitored and con-
trolled, the Chedar client also has the capability to be connected for monitoring
and control. P2PStudio (publication PXII) is a monitoring, controlling and visual-
ization tool that uses this functionality to connect to Chedar nodes to collect data
from them and to control their behavior. P2PStudio is comprised of two distinct
applications: the user interface and the server. The server application connects
to Chedar nodes to control them and to collect data, such as event, topology and
resource information. The user interface communicates with the server and in-
terfaces with the user.

The P2PStudio user interface component can also be used as a standalone
application without a connection to the server when visualizing network topolo-
gies and graphs generated by the P2PRealm (Article PXI) network simulator.

6 CONCLUSION

The history of P2P networks dates back to the 1960’s, when the P2P architecture
was the basis for some of the earliest large-scale computer networks. During the
following decades the architecture received only limited attention, as comput-
ing at the time was mostly dominated by mainframes and client/server systems.
Only during the last 15 years have P2P networks had a revival due to the ad-
vent of the internet. Peer-to-peer networks are an exciting field to do research in,
as the state of the art is moving forward at such a great pace. This dissertation
suggests advancements on a wide range of research subjects, from algorithms to
middleware prototypes and from application ideas to research tools.

Due to the distributed nature of the P2P architecture, finding available re-
sources in the network is a difficult problem. The resource discovery should be
done with minimal computing power and network bandwidth usage to prevent
network congestion. NeuroSearch, a resource discovery algorithm presented
in Article PVI, provides one solution to this problem. NeuroSearch employed
trained neural networks to make the routing decisions, and has been evaluated
to perform better than reference algorithms presented in the relevant literature.
Memetic algorithms were later added to the NeuroSearch training process, as de-
scribed in Articles PVII and PVIII, which further improved the efficiency of the
algorithm.

This dissertation also discussed mobile peer-to-peer networks, both from
an algorithmic point of view and from an applications point of view. Due to the
mobility of the nodes, mobile peer-to-peer networks often gain and lose connec-
tions all the time. When the network becomes sparse enough that the devices can
only maintain connections to other devices during short encounters, the network
is called a mobile encounter network. Routing in mobile encounter networks is
discussed in Article PV, which aimed to solve the routing problem using similar
ideas that were used to tackle the resource discovery problem in the NeuroSearch
articles.

Location-sensing is an important requirement for many mobile applications,
whether they utilize P2P networking or not. Location-sensing was explored in
Article PIII, which introduced and evaluated a location-sensing system based

39

on measuring the signal strength received from low-power FM radio transmit-
ters. The system was found to be as precise as WLAN-based systems, with much
lower costs and smaller power consumption.

Articles PI, PII and PIV presented and evaluated two mobile peer-to-peer
application prototypes. PhotoJournal was a location-based media sharing appli-
cation utilizing low range wireless networks, which harnessed the WiFi ad-hoc
mode to enable the users to share content with other nearby users. The Mobile
Search application on the other hand utilized standard web protocols and servers
running on mobile devices to enable users to make real-time searches within their
social networks.

The dissertation also presented several research tools used in the devel-
opment of the NeuroSearch resource discovery algorithm. A system where the
Chedar P2P network was running the tests controlled by the P2PStudio tool,
described in PXII, was originally used in training the neural networks of Neu-
roSearch. This approach was discovered to be too slow — a single neural network
training in a P2P network with a hundred nodes would have taken almost a year.
The next step was to implement a network simulator that could be used to speed
up the training of NeuroSearch. Thus P2PRealm, described in PXI, was born. The
simulator is unique in the sense that it has been designed for training neural net-
works and as such it is very optimized for speed. The simulator speeded up the
training about 1000-fold, but even this was not fast enough for us. To speed up
the training even further, P2PDisCo, described in PX, was developed to distribute
the computing needed in training NeuroSearch to hundreds of PCs. P2PDisCo is
a general distributed computing platform running on top of the Chedar middle-
ware.

A mobile extension to the Chedar network called Mobile Chedar was also
presented in Article PIX. Mobile Chedar was able to utilize resources from the
fixed Chedar network and to provide mechanisms for data streaming within the
network.

Even after the advances described in this dissertation, several research ques-
tions remain open. As the progress in the field of P2P networks is very intensive,
new research directions are guaranteed to appear. It follows that P2P networks
are bound to be an interesting research field for the foreseeable future.

40
YHTEENVETO (FINNISH SUMMARY)

Suurin osa nykyisin kdytossa olevista verkkopalveluista on suunniteltu kayttden
asiakas/palvelin-mallia, jossa palvelinlaite késittelee lukuisien asiakaslaitteiden
pyyntojd. Asiakas/palvelin-mallia kdytetddn sen selkedn rakenteen ja helpon hal-
litavuuden vuoksi. Asiakas/palvelin-malli ei kuitenkaan sovellu kaikkiin kayt-
totilanteisiin mallin heikkouksien vuoksi. Mallin mukaan toteutetut jarjestelmat
skaalautuvat usein huonosti suuriin kdyttdjamddriin ja vaativat kalliita alkuin-
vestointeja. Jarjestelmat ovat myos alttiita niiden vakautta uhkaaville tekijoille
jarjestelmén keskitetyn luonteen takia.

Nadita ongelmia voidaan ratkoa kdyttamalld vertaisverkkomallia verkkopal-
veluiden suunnittelussa. Vertaisverkko on tietoverkko, jossa verkon kaikki toi-
mijat ovat tasa-arvoisessa asemassa ja voivat toimia sekd palvelin- ettd asiakas-
laitteina eli voivat sekd tarjota ettd kuluttaa verkon palveluita. Vertaisverkkojen
hajautetun luonteen ansiosta vertaisverkkojéarjestelmat eivat yleensa karsi ndista
ongelmista. Eduistaan huolimatta vertaisverkot eivét sovi kaikkiin kdyttotarkoi-
tuksiin, silld niiden hajautettu luonne luo erityyppisid ongelmia. Esimerkiksi re-
surssien l0ytdminen vertaisverkosta on vaikeaa, koska verkossa ei ole keskitettya
rekisterid resursseista, vaan ne sijaitsevat hajallaan verkossa.

Téssa vaitoskirjassa, jonka otsikko on "Menetelmid ja sovelluksia vertais-
verkkokdyttoon", tarjotaan ratkaisuja vertaisverkkojen ongelmiin ja uusia mene-
telmid vertaisverkkojen toiminnan tehostamiseen. Tavoitteena on siis laajentaa
perinteistd vertaisverkkojen kéyttoaluetta. Tamaén lisaksi vditoskirja esittelee ver-
taisverkkoja hyodyntavid sovellusprototyyppejd sekd sovellusideoita. Vditoskir-
jassa esitellddn my0s useita tutkimuksen avuksi kehitettyja tyokaluohjelmistoja.
Viitoskirjassa esiteltyjd tuloksia voi hyodyntdd uudentyyppisten verkkopalve-
luiden ja palvelualustojen kehityksessa.

41
REFERENCES

[1] L. Adamic, R. Lukose, and B. Huberman. Local Search in Unstructured Net-
works. In S. Bornholdt and H. Schuster, editors, Handbook of Graphs and Net-
works:From the Genome to the Internet. Wiley-VCH, Berlin, 2000.

[2] L Akyildiz and X. Wang. Wireless Mesh Networks. John Wiley & Sons, Inc.,
2009.

[3] S. M. Allen, G. Colombo, and R. M. Whitaker. Cooperation through self-
similar social networks. ACM Trans. Auton. Adapt. Syst., 5:4:1-4:29, February
2010.

[4] Z. Anwar, W. Yurcik, and R. H. Campbell. A survey and comparison of peer-
to-peer group communication systems suitable for network-centric warfare.
SPIE Security and Defense Conference, Program on Communications and Network-
ing Technologies and Systems, 2005.

[5] A. Auvinen, M. Vapa, M. Weber, N. Kotilainen, and J. Vuori. Chedar: peer-
to-peer middleware. In Parallel and Distributed Processing Symposium, 2006.
IPDPS 2006. 20th International, page 7 pp., april 2006.

[6] N. Bailey. The Mathematical Theory of Infectious Diseases. Hafner, 1975.

[7] E. Bulut and B. Szymanski. Friendship based routing in delay tolerant mo-
bile social networks. In GLOBECOM 2010, 2010 IEEE Global Telecommunica-
tions Conference, pages 1 -5, dec. 2010.

[8] S. Buruhanudeen, M. Othman, and B. Ali. Existing manet routing proto-
cols and metrics used towards the efficiency and reliability- an overview. In
Telecommunications and Malaysia International Conference on Communications,
2007. ICT-MICC 2007. IEEE International Conference on, pages 231 —236, may
2007.

[9] T. Chang and M. Ahamad. GT-P2PRMI: Improving middleware perfor-
mance using peer-to-peer service replication. Future Trends of Distributed
Computing Systems, IEEE International Workshop, pages 172-177, 2004.

[10] B. G. Christensen. Lightpeers: A lightweight mobile p2p platform. In Perva-
sive Computing and Communications Workshops, 2007. PerCom Workshops "07.
Fifth Annual IEEE International Conference on, pages 132 =136, march 2007.

[11] W. Dargie and C. Poellabauer. Fundamentals of Wireless Sensor Networks: The-
ory and Practice. Wireless Communications and Mobile Computing. John
Wiley & Sons, 2010.

[12] P. T. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Massoulieacute;. Epi-
demic information dissemination in distributed systems. Computer, 37:60—
67,2004.

42

[13] T. Fahringer. JavaSymphony: a system for development of locality-oriented
distributed and parallel Java applications. In Cluster Computing, 2000. Pro-
ceedings. IEEE International Conference on, pages 145 —152, 2000.

[14] K. Fall. A delay-tolerant network architecture for challenged internets. In
SIGCOMM ’03: Proceedings of the 2003 conference on Applications, technolo-
gies, architectures, and protocols for computer communications, pages 27-34, New
York, NY, USA, 2003. ACM.

[15] D. B. Fogel. Evolving a checkers player without relying on human experi-
ence. Intelligence, 11(2):20-27, 2000.

[16] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.
The International Journal of Supercomputer Applications and High Performance
Computing, 11:115-128, 1997.

[17] L Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud computing and grid computing
360-degree compared. In Grid Computing Environments Workshop, 2008. GCE
'08, pages 1 -10, nov. 2008.

[18] C.Fretzagias and M. Papadopouli. Cooperative location-sensing for wireless
networks. In Pervasive Computing and Communications, 2004. PerCom 2004.
Proceedings of the Second IEEE Annual Conference on, pages 121-131, March
2004.

[19] B.S. I. Group. Bluetooth core specification v1.2. March 2004.

[20] I Gruber, R. Schollmeier, and W. Kellerer. Performance evaluation of the mo-
bile peer-to-peer service. Cluster Computing and the Grid, IEEE International
Symposium on, 0:363-371, 2004.

[21] B. Hayes. Cloud computing. Commun. ACM, 51:9-11, July 2008.

[22] T. Horozov, A. Grama, V. Vasudevan, and S. Landis. Moby — a mobile peer-
to-peer service and data network. In Proceedings of International Conference on
Parallel Processing, pages 437—444, 2002.

[23] P. Hui, A. Chaintreau, J. Scott, R. Gass, J. Crowcroft, and C. Diot. Pocket
switched networks and human mobility in conference environments. In
WDTN ’05: Proceedings of the 2005 ACM SIGCOMM workshop on Delay-tolerant
networking, pages 244-251, New York, NY, USA, 2005. ACM.

[24] S. Jain, K. Fall, and R. Patra. Routing in a delay tolerant network. In SIG-
COMM "04: Proceedings of the 2004 conference on Applications, technologies,
architectures, and protocols for computer communications, pages 145-158, New
York, NY, USA, 2004. ACM.

[25] G. Y. Jin, X. Y. Lu, and M. S. Park. An indoor localization mechanism us-
ing active rfid tag. Sensor Networks, Ubiquitous, and Trustworthy Computing,
International Conference on, 1:40-43, 2006.

43

[26] B.]. Kim, C. N. Yoon, S. K. Han, and H. Jeong. Path finding strategies in
scale-free networks. Physical Review E, 65, 2002.

[27] B.Klein and H. Hlavacs. A socially aware caching mechanism for encounter
networks. Telecommunication Systems, pages 1-8, 2011.

[28] D. Kondo, G. Fedak, F. Cappello, A. A. Chien, and H. Casanova. Character-
izing resource availability in enterprise desktop grids. Future Gener. Comput.
Syst., 23(7):888-903, 2007.

[29] T. Kopomaa. The city in your pocket: Birth of the mobile information society.
Gaudeamus, 2000.

[30] G. Kortuem. Proem: a middleware platform for mobile peer-to-peer com-
puting. Mobile Computing and Communications Review, 6:62-64, 2002.

[31] J. Kurhinen, M. Vapa, M. Weber, N. Kotilainen, and]. Vuori. Short range
wireless p2p for co-operative learning. In Proceedings of the 3rd International
Conference on Emerging Telecommunications Technologies and Applications. Uni-
versity of South Bohemia, 2005.

[32] J. Kuula. Langattoman anturiverkon hyddyntdminen parsinavetan ilman-
vaihdon ohjauksessa. Master’s thesis, University of Jyvaskyld, 2011.

[33] Q. Ly, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication in
unstructured peer-to-peer networks. In Proceedings of the 16th International
Conference on Supercomputing. ACM Press, 2002.

[34] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann publishers, 1997.

[35] S. Marti and H. Garcia-Molina. =~ Taxonomy of trust: Categorizing
P2P reputation systems. Computer Networks, 50(4):472 — 484, 2006.
<ce:title>Management in Peer-to-Peer Systems</ ce:title>.

[36] C. Mascolo, L. Capra, S. Zachariadis, and W. Emmerich. XMIDDLE: A data-
sharing middleware for mobile computing. International Journal on Wireless
Personal Communications, Kluwer Academic Publisher, 21:77-103, 2002.

[37] C. Mbarushimana and A. Shahrabi. Comparative study of reactive and
proactive routing protocols performance in mobile ad hoc networks. In Ad-
vanced Information Networking and Applications Workshops, 2007, AINAW "07.
21st International Conference on, volume 2, pages 679 —-684, may 2007.

[38] A.Mei, G. Morabito, P. Santi, and J. Stefa. Social-aware stateless forwarding
in pocket switched networks. In INFOCOM, 2011 Proceedings IEEE, pages
251 -255, april 2011.

[39] P. Moscato, R. Berretta, and C. Cotta. Memetic Algorithms. John Wiley & Sons,
Inc., 2010.

44

[40] A.Oram, editor. Peer-to-Peer: Harnessing the Power of Disruptive Technologies.
O'Reilly & Associates, Inc., 2001.

[41] R. Orfali, J. Edwards, and D. Harkey. Essential Client/Server Survival Guide.
John Wiley & Sons, Inc., New York, NY, USA, 1994.

[42] M. Papadopouli and H. Schulzrinne. Design and implementation of a peer-
to-peer data dissemination and prefetching tool for mobile users. In Proceed-
ings of the First New York Metro Area Networking Workshop, 2002.

[43] M. Papadopouli and H. Shulzrinne. Peer-to-Peer Computing for Mobile Net-
works: Information Discovery and Dissemination. Springer, 2009.

[44] M. Phillipsen and M. Zenger. JavaParty: Transparent remote objects in java.
Concurrency and Computation: Practice and Experience, 9:1225-1242, 1997.

[45] A.Popleteev. Indoor positioning using FM radio signals. PhD thesis, University
of Trento, 2011.

[46] N. Sastry, D. Manjunath, K. Sollins, and J. Crowcroft. Data delivery prop-
erties of human contact networks. Mobile Computing, IEEE Transactions on,
10(6):868 —880, june 2011.

[47] R. Schollmeier. A definition of peer-to-peer networking for the classifica-
tion of peer-to-peer architectures and applications. In Peer-to-Peer Comput-
ing, 2001. Proceedings. First International Conference on, pages 101 -102, aug
2001.

[48] T. Spyropoulos, K. Psounis, and C. S. Raghavendra. Spray and wait: an
efficient routing scheme for intermittently connected mobile networks. In
Proceedings of the 2005 ACM SIGCOMM workshop on Delay-tolerant networking,
WDTN ‘05, pages 252-259, New York, NY, USA, 2005. ACM.

[49] T. Spyropoulos, K. Psounis, and C. S. Raghavendra. Spray and focus: Effi-
cient mobility-assisted routing for heterogeneous and correlated mobility. In
Pervasive Computing and Communications Workshops, 2007. PerCom Workshops
"07. Fifth Annual IEEE International Conference on, pages 79 -85, march 2007.

[50] E.P.Stuntebeck, S. N. Patel, T. Robertson, M. S. Reynolds, and G. D. Abowd.
Wideband powerline positioning for indoor localization. In UbiComp '08:
Proceedings of the 10th international conference on Ubiquitous computing, pages
94-103, New York, NY, USA, 2008. ACM.

[51] E S. Tsai, W. Han, J. Xu, and H. C. Chua. Design and development of
a mobile peer-to-peer social networking application. Expert Syst. Appl.,
36(8):11077-11087, 2009.

[52] Y. Upadrashta, J. Vassileva, and W. Grassmann. Social networks in peer-to-
peer systems. In HICSS "05: Proceedings of the Proceedings of the 38th Annual

45

Hawaii International Conference on System Sciences, page 200.3, Washington,
DC, USA, 2005. IEEE Computer Society.

[53] A. Varshavsky, E. de Lara, J. Hightower, A. LaMarca, and V. Otsason. GSM
indoor localization. Pervasive Mob. Comput., 3(6):698-720, 2007.

[54] A. Varshavsky, E. de Lara, J. Hightower, A. LaMarca, and V. Otsason.
ATLINTIDA: A robust indoor ultrasound location system: Design and eval-
uation. Advances in Soft Computing, 51:180-190, 2009.

[55] C. Wang, Q. Wang, K. Ren, and W. Lou. Privacy-preserving public auditing
for data storage security in cloud computing. In INFOCOM, 2010 Proceedings
IEEE, pages 1 -9, march 2010.

[56] M. Weber, J. Vuori, and M. Vapa. Advertising peer-to-peer networks over
the internet. Radiotekhnika, 133:162-170, 2003.

ORIGINAL PAPERS

PI

LOCATION-BASED MEDIA SHARING IN A MP2P NETWORK

by

Niko Kotilainen, Lito Kriara, Konstantinos Vandikas, Konstantinos Mastorakis
and Maria Papadopouli 2008

In ACM SIGMOBILE Mobile Computing and Communications Review,
volume 12, issue 1, pages 62-64

Reproduced with kind permission of the Association for Computing Machinery.

Demonstration Abstract: Location-based Media Sharing
in a MP2P Network *

Niko Kotilainen® Lito Kriara®

Konstantinos Vandikas®

Konstantinos Mastorakis®

Maria Papadopouli®

“Department of Computer Science, University of Crete, Greece &
Institute of Computer Science (ICS), Foundation for Research and Technology - Hellas (FORTH)
Department of Mathematical Information Technology, University of Jyviskyld, Finland

In both academia and industry, peer-to-peer (p2p) applications have attracted great at-
tention. This paper introduces and implemented a novel location-based multimedia appli-
cation, the Multimedia Traveling Journal application (PhotoJournal) that employs the p2p
paradigm and enables location-based content sharing among mobile users.

I. Introduction

The Web and Internet have been catalysts for the cre-
ation of collaborative applications and tools. On-line
collaboration has been enriched with new applications
and tools for sharing and experimenting with multi-
media data in a synchronous or asynchronous man-
ner, such as YouTube and Flickr. These technologies
have allowed the formation of new types of social net-
works, interactions, and online communities. We an-
ticipate that in the near future mobile devices that have
the processing, communication and geolocating ca-
pabilities will enable seamless integration of services
combining media sharing and geographical tagging.

The Multimedia Traveling Journal application
(PhotoJournal) applies the peer-to-peer (p2p)
paradigm to share location-based content among
mobile devices. It also enables users to build inter-
active multimedia journals that associate multimedia
objects such as pictures, video, or hypertext, with
locations on maps. The PhotoJournal is supported
by a middleware with two main components, namely
a positioning and an information discovery system.
The underlying positioning technologies are GPS and
Cooperative Location-sensing System (CLS) [1, 2].
7DS [3] enables information discovery and sharing in
a p2p manner. Section II focuses on PhotoJournal
and briefly introduces CLS and 7DS, while Section
IIT summarizes our main conclusions and future work
plans.

*This work was supported by the Greek General Secretariat
for Research and Technology under Programs Regional of Crete,
Crete-Wise KP-18 (KIIX 00126) and 0SNON-EU-238, and the
European Commission (MIRG-CT-2005-029186). Niko Koti-
lainen participated in this project while visiting the Univer-
sity of Crete and FORTH. Contact person: Maria Papadopouli
(mgp@ics.forth.gr).

II. Architecture of PhotoJournal

In general when an application requests a data object,
7DS first checks its cache, and if the data is not avail-
able, it tries to acquire it from the Internet. If the lo-
cal web client fails to connect to the Internet, the lo-
cal 7DS instance multicasts a query about that object
in the wireless LAN. Figure 1 summarizes the main
components of the location-based media sharing sys-
tem, namely the PhotoJournal application, 7DS and
CLS.

Web browser

Photojournal Client

Device

Photojournal
Server

Other Device

il

GPS > g
Position 7DS

cLs > < 1P

»| Other Device

Figure 1: The architecture of a location-based media
sharing system.

Through 7DS, PhotoJournal allows peers to share
files associated with certain locations. The multime-
dia files and maps are stored in the cache of the local
7DS instance. A user can add multimedia objects to
a certain point of the map by clicking on the map and
browsing the image files corresponding to that loca-
tion. Moreover, the user can add, modify, or delete
comments on a certain multimedia file, and rate its
content. A multimedia file can be set public or private,
while only public files are shared with other peers.

The PhotoJournal searches other 7DS peers for
multimedia files associated with a given area marked
on the map by the user. It forms a 7DS query and mul-

62 Mobile Computing and Communications Review, Volume 12, Number 1

Figure 2: PhotoJournal can superimpose multimedia
objects at their locations on a map. A marker indicates
the number of files associated with that location.

[Sateltind] ssbria |

Figure 3: A user can mark the area for which multi-
media objects are requested.

ticasts it to other 7DS peers. Furthermore, it maintains
and displays a list of neighboring 7DS peers, updat-
ing it periodically. A user may then select the 7DS
peers from which the application retrieves the files as-
sociated with the predefined area, stores them in the
local cache and displays them on the map (as illus-
trated in Figures 2 and 3). Areas on the map associ-
ated with multimedia files can be distinguished by a
marker that also indicates the number of the available
relevant files. Moreover, the queries are formed using
location-based or rate-related criteria. The response
of a peer includes the multimedia files and reviews.
As shown on Figure 3, a web browser is the fron-
tend of PhotoJournal. It consists of a map frame on
the right and a photo bar on the left side of the win-
dow. Its backend runs on 7DS. It receives all queries
from the frontend through 7DS’s proxy server, and
supports the typical 7DS functionality by adding or
deleting photos, querying photos from 7DS neighbors
or handing out photos from the local cache. 7DS can

also cache map files, enabling the application to work
without an Internet connection.

If the device has a built-in camera, users can take
photos and videoclips and upload this information
along with position traces (produced by GPS or CLS)
to the PhotoJournal which can automatically asso-
ciate the multimedia files with the user’s current po-
sition. The PhotoJournal can automatically superim-
pose the uploaded content on an appropriate map by
matching the timestamp of the content of the multi-
media files with the timestamp of the GPS/CLS trace.
Furthermore it locates them on the map, and updates
its local 7DS cache.

CLS is a novel location sensing system that employs
the p2p paradigm and a probabilistic framework to es-
timate the position of wireless-enabled devices in an
iterative manner. CLS can incorporate signal-strength
maps of the environment to improve the position es-
timates. Such maps have been built using measure-
ments that were acquired from access points and peers
during a training phase. Periodically, CLS can refine
its positioning estimations by incorporating newly re-
ceived information from other devices.

At run-time, the local CLS instance acquires signal-
strength measurements from peers, constructs a run-
time signature, and compares it with the ones that
have been generated during the training phase. For
the comparison, it employs confidence interval-based
and percentiles-based criteria.

CLS adopts a grid-based representation of the phys-
ical space; each cell of the grid corresponds to a phys-
ical position of the physical space. The cell size re-
flects the spatial granularity/scale. Each cell of the
grid is associated with a value that indicates the like-
lihood that the node is in that cell. These values are
computed iteratively using one of the following two
approaches, namely a voting algorithm and a particle
filter based model.

In the voting process, a local CLS instance casts
votes on cells of the grid based on measurements re-
ceived from peers. A signature associates each cell
of the grid with a vector of statistical information of
the RSSI values that were recorded from messages re-
ceived from those peers during the training and run-
time phases. The algorithm assigns a weight at each
cell depending on the similarity of the training and
runtime signatures. The cell with the highest weight
is the one that CLS reports as the user’s position.

The CLS particle-filter based approach can be for-
mulated in probabilistic terms as the problem of de-
termining the probability of a node being at a certain
location given a sequence of signal strengths. Assum-

Mobile Computing and Communications Review, Volume 12, Number 1 63

ing first-order Markov dynamics, the above problem
can be expressed using the network graph depicted in
Figure 4, where z}, is the node location (system state)
at time instant k = 1,...,7. x; cannot be observed
directly (it is “hidden”). Yet, for each location xj, a
measurement vector yy, (signal strength) is available
that depends on the hidden variable according to a
known observation function.

O-O—O - =@~
®® 6 ©

Figure 4: Clear circles indicate hidden state vari-
ables, grayed circles indicate observations, horizontal
arrows indicate state transition functions and vertical
arrows indicate observation functions.

Due to the Markov assumption, each node loca-
tion, given its immediately previous location, is con-
ditionally independent of all earlier locations, that is
P(zg|xo, 1, ..., x5—1) = P(ag|rr—1). Similarly,
the observation at the k-th time instant, given the cur-
rent state, is conditionally independent of all other
states P(yg|zo, z1,. .., 25) = P(yk|zr).

Based on the this model, location-sensing can be
formulated as the problem of computing the location
z, of a node at time k, given the sequence of obser-
vations y1,y2, ...yg, up to time k, that is, determin-
ing the a posteriori distribution P(zg|y1,y2, ..., Yk)s
using particle filters. To generate and maintain the
particles, we utilize the Sampling/Importance Resam-
pling (SIR) algorithm introduced by Rubin [4]. Ac-
cording to SIR, instead of sampling the true a poste-
riori distribution (which is not possible because this
distribution is not available in closed form), parti-
cles are drawn from the so-called proposal distribu-
tion 7(xk|y1, Y2, - - -, yk)- To compensate for this dif-
ference, each pamcle .s(L) is also assigned a weight
w'F), which is computed, according to the Importance
Sampling Principle: w(L> W

The performance of CLS was evaluated in Telecom-
munication and Networks Laboratory at FORTH, an
area of 7x12m? and a median location error of 1.8m
was reported [2].

III. Conclusions

This implementation of PhotoJournal has adopted a
p2p architecture. We are implementing a more cen-
tralized approach for thin devices (e.g. smart-phones)

in which a client acquires and sends the multimedia
files to a webserver. The hybrid architecture facilitates
both the centralized and p2p approaches, enabling de-
vices to acquire the data either from a web-server or
another peer. We are in the process of deploying a
testbed in an aquarium and perform user studies. Fur-
thermore, we will evaluate the delay and scalability of
these architectures via empirical-based measurements
and simulations.

Privacy plays a critical role in the adoption of mo-
bile peer-to-peer computing applications. 7DS-like
systems facilitate sharing among devices in different
types of environments. However, depending on the
application and usage peers may have different pri-
vacy requirements. Currently, 7DS offers a crude dis-
tinction between private and non-private objects and
a finer description of the privacy requirements is re-
quired.

Mobile p2p computing is a relatively new technol-
ogy, not yet proven in the research community and
industry. A fruitful approach would be to develop a
general infrastructure for mobile peer-to-peer appli-
cations, build some robust applications, and extract
a toolkit that other new applications could use. Our
group sets the directions for exploring this technology
further.

References

[1] C. Fretzagias and M. Papadopouli, “Coopera-
tive location-sensing for wireless networks”, Sec-
ond IEEE International conference on Pervasive
Computing and Communications 2004, Orlando,
Florida, March 14-17, 2004.

2

—

K. Vandikas, L. Kriara, T. Papakonstanti-
nou, A. Katranidou, H. Baltzakis and M. Pa-
padopouli, “Empirical-based analysis of a coop-
erative location-sensing system”, First Interna-
tional Conference on Autonomic Computing and
Communication Systems (ACM Autonomics’07),
Rome, Italy, October 28-30, 2007.

3

[l

M. Papadopouli and H. Schulzrinne, “Effects of
power conservation, wireless coverage and co-
operation on data dissemination among mobile
devices”, ACM SIGMOBILE Symposium on Mo-
bile Ad Hoc Networking & Computing (MobiHoc)
2001, October 4-5, 2001, Long Beach, California.

[4

=

D.B. Rubin, “Using the SIR Algorithm to Simu-
late Posterior Distributions.”, Bayesian Statistics.
Oxford University Press. vol.3, p.395-402, 1988.

64 Mobile Computing and Communications Review, Volume 12, Number 1

PII

MOBILE SEARCH - SOCIAL NETWORK SEARCH USING
MOBILE DEVICES

by

Pedro Tiago, Niko Kotilainen, Heikki Kokkinen, Jukka Nurminen and Mikko
Vapa 2008

In Proceedings of the 5th IEEE Consumer Communications and Networking
Conference, pages 1201-1205

Reproduced with kind permission of IEEE Communications Society.

Mobile Search — Social Network Search
Using Mobile Devices

Pedro Tiago Niko Kotilainen Mikko Vapa
FCT, Universidade Nova de Lisboa University of Jyviskyld University of Jyviskyld
Caparica, PORTUGAL Jyviiskyld, FINLAND Jyviiskyld, FINLAND
ptiago@gmail.com niko.kotilainen@jyu.fi mikko.vapa@jyu.fi

Heikki Kokkinen
Nokia Research Center
Helsinki, FINLAND
heikki.kokkinen@nokia.com

Abstract- During the last years progress in web search engines
has been made to the point that relevant information can be
reached easily most of the times. However very little empirical
research has been carried to study web search in highly dynamic
social network environments composed of mobile devices. The
aim of this work was therefore to investigate novel approaches
that took advantage of the social network environment inherent
to mobile peer-to-peer paradigm. The work focused mainly on
the development of a prototype for Mobile Search concept. The
prototype was built on top of Drupal content site management
system. This study suggests that the methods presented can be a
complement to traditional web search engines.

1. INTRODUCTION

Mobile phones' computational power has been improving
approaching the capabilities of general purpose computers.
Nowadays it is possible to host a web site on a mobile device.
It is also expected that the number of mobile web sites will
outnumber the static web servers [17].

Mobile phones possess an extra set of concerns that are not
present in normal web servers (e.g. Personalization;
Interactivity; Location and context dependence; Dynamicity)
[17]. Those concerns can be further expanded by taking into
consideration the social network formed by the contacts in the
address book. This fact introduces paradigm shifts in relation
to the Peer-to-Peer web search paradigm and the traditional
centralized search approach.

Recently, there has been a growing interest in how to
explore the mobile phone capabilities in the web search
context and how to merge them with existing phone
functionalities [15,17]. However the research has tended to
focus on centralized approaches or Peer-to-Peer web search,
rather than on the Peer-to-Peer web search in the social
network context. The purpose of this article is to present
different strategies that take advantage of the described type
of an environment and extend the current web search

Jukka K. Nurminen
Nokia Research Center
Helsinki, FINLAND
jukka.k.nurminen@nokia.com

mechanisms giving the end user new possibilities of exploring
information.

In the future it will be common to have a web server
running in mobiles devices. This represents a shift in normal
web servers’ webware. The biggest change is the possibility of
users to freely manage their own content without being
restricted by third parties. There is a need to categorize
content in different ways in order to create new forms of
navigation and search.

The content in mobile phones can be divided in two distinct
logical groups: dynamic and static. Dynamic content usually is
unique and generated by the mobile phone sensors. Static
content on the other hand is not context dependent and is
generated by the user. Both types of content can be easily
replicated. Usually dynamic content can be easily
characterized by tags, although static content can be
categorized in a similar way. Content is distributed to
overlapping data islands. Each user may belong to several data
islands simultaneously because each user is connected to users
who belong to different interest groups (even unknowingly)
[5]. The connections are created based on the address book
contacts forming presumably a power law graph [5]. It's
assumed that the nearest neighbors of a node have higher
probability to own relevant content to that node. In the
information searching context it is important to have an ability
to search through relevant data and take advantage of the
overall network topology.

The article is structured as follows. The motivation behind
the need for Mobile Search is presented in section II. Section
IIT continues with the core concerns and major differences
between this type of search and traditional centralized web
search. Subsequently in section IV a brief description of the
prototype is given and the related work within the topic is
reviewed in section V. Finally, section VI describes the future
work and section VII concludes the paper.

1201
1-4244-1457-1/08/$25.00 © IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2008 proceedings.

II. MOBILE SEARCH

This section describes a system for Mobile Search. The
system is based on pure Peer-to-Peer architecture and it offers
scalability, efficiency, resilience to failures and privacy at a
higher degree than current centralized solutions. [4]

To take advantage of the portrayed scenario a new set of
concepts were introduced. One is how to navigate through the
data in a social network. Social network’s connections are
determined from an address book of a mobile device. Users
search one graph level of their social network at a time usually
starting from their neighbors. However, users may also start a
query anywhere in the social network. Every time a user
issues a search query the mobile device forwards it to all its
neighbors. The neighbors answer back by returning a result set
and a list of their neighbors. If the user who issued the query is
not satisfied by the results he can always ask new results from
the next level neighbors as long as there are non-visited nodes
in the network. This concept was named manual multi-
hopping. In manual multi-hopping the user needs to select
which of the non-visited nodes will be used for querying the
next level. Manual multi-hopping can be extended to
automatic multi-hopping if an algorithm is used to sort which
of the non-visited nodes to query further thus avoiding the
need for user decision. One example of such algorithm is only
to forward a query to neighbors of the nodes that previously
returned results to that query. Automatically sorting the non-
visited nodes leads to tradeoff between search accuracy and
easiness of searching suggesting that both manual and
automatic multi-hopping should be available for the user.

Another way of navigating is by searching neighbor content
tags and getting the result set composed by the content links
with the tags and the list of next level neighbors. Tags work as
links between content categorized similarly. At each hop the
user gets the list of contents tagged in a similar way by nodes
in its neighborhood.

The Mobile Search system can be divided to two logical
parts: local web search engine and meta crawling. Local web
search engine is a search service, which manages the search
index of a mobile device. Meta crawling term refers to a
search service, which uses other local web search engines for
getting the results and then combines different result sets into
one. The part responsible for the meta crawler gets it’s results
from direct neighbors. The way the results are presented can
always be changed thus the mobile device bears the load of
processing the returned references. Any specific method to
sort out the references in certain order can be employed. For
example more relevance can be given to results from a certain
source so they appear first in the result list. There is also the
possibility to merge different types of mobile phone data with
different type of content. For example user A may search for
user B's meetings and after getting the results he may merge
the results with his own agenda and display the meeting
locations on a map.

The local web search engine gives a user the power to tailor
the search results to his/her own needs. The search index can

1202

be updated every time the content changes. The user may
allow certain information to be only searched by a specific
group of users or to influence certain query results in a certain
context. This feature allows users to create groups of trust.
They can decide which information source is more relevant to
them in different contexts. Also the level of privacy and who
to trust is determined by each node following the motto: “I
only display what I want to who I want”.

III. COMPARISON

It may be pointed out that centralized solutions have a
single point of failure, load balance and trust issues and may
censor certain entities [11]. Although nowadays they have
grown incredibly robust. One main advantage of Mobile
Search is the total independence of the nodes. The system can
operate without any central server and system load is fully
distributed. Each node is responsible for processing the
queries and search requests.

For example Google presents in its back end a highly
scalable architecture [3] but it cannot address the premise that
our friends are more likely to have interesting results to us and
may not even be connected or linked to our content [8]. In this
scenario the hyperlink concept is expanded by the network of
connections formed by the mobile phone’s address book.
These types of links enable the blend of several groups of
interest along the network. In several situations the link web
structure of documents doesn't portray possible relations
between people [10].

The search space indexed by centralized solutions is limited
because central servers have limited crawling capacity. Index
of a centralized solution can thus be characterized as one large
result set. Also, crawling cannot easily find content without
external references. In contrast, decentralized social network
search consists of multiple small result sets, does not have
indexing limitations and does not need external links to point
out the content. Non-referenced content can be found by
finding a neighbor of the owner of non-referenced content.
Thus decentralized search potentially provides more results
than centralized solutions when user continues navigating the
social network further. However, queries executed in
immediate surroundings of the querying node usually result in
fewer and more accurate results than centralized solutions.

Web search engines do not allow tailoring results to
individual needs. For example user A only wants to display a
specific result list to a certain query from user B. Centralized
solutions provide an efficient way of finding popular content
but lack the ability to find more personal/social proximity
content [8]. This situation is evident in a corporate setting
where many documents are not available to the outside world.
Other type of personal/social proximity content that is not
indexed by web search engines is mobile phone data. One
example is searching for a phone number or meeting
information that is available in one of our neighbors. This
capability avoids the use of third entities (e.g. number services,
central servers) and enhances the information availability. In

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2008 proceedings.

the other hand Mobile Search due to the topic oriented
network nature is not suited to find popular content.
Conversely, it's a powerful mechanism in restricted topic set
environment [8].

One major issue of Mobile Search in relation to the
centralized approach is the quality of the results returned.
Different sites may have different criteria to classify and rank
information. This poses a problem how to merge the different
results sets returned for a query [12]. In the other hand, this

can highly increase the quality of the results in some scenarios.

For example in a work context user A can give more weight to
Document X in searches made by users from the workgroup
because that document is more relevant to them.

Other issue is the high number of neighbors and free riding.
Those factors are a risk to network traffic. They can be
overcome first by limiting the search query to a pre-selected
group of users and second by only returning back neighbors
who have a higher probability of having meaningful content.

Centralized solutions update their index when content is
crawled whereas in Mobile Search the owner can index the
searchable content whenever he/she desires. This leads to up-
to-date result sets without any increase in network traffic. And
as long as the user sets the permissions for different content,
other users authorized to view that content can find it without
knowing the exact location. With centralized solutions
everyone has to trust a single entity allowing possibilities for
censorship or pressure from external entities.

Concern Centralized-solutions Mobile-Search

Load centralized/single- highly-
point-offailure distributed

Trust censorship/pressure- highly-
from-external-entities | distributed

Search- billions-(single-set) hundreds- to-

space- Dbillions-(multiple-

dilferent-sets)

Index- days-to-months every-second

update

Content- | popular personal/social-

type proximity

IV. DRUPAL PROTOTYPE

Drupal was used as a test platform for Mobile Search.
Drupal is an open-source content management system. It
allows managing and publishing several types of content. The
meta crawler described in section II was built as a weakly
coupled component on top of Drupal local web search engine.
This component allows automatic multi-hopping and result
interleaving.

The current implementation is single threaded because
Mobile Apache doesn't support multiple threads [15,16].
Drupal tac_lite module and Drupal module were also used as
fundamental elements in the prototype. These modules allow
setting content access rules and to process user authentication
in distributed fashion without any central servers.

1203

An extra component that allows to do queries to local
mobile phone content such as location, address book and
meeting data was implemented. This feature was built as a
proof of concept. However, the prototype is also able to gather
search results from unmodified Drupal web sites.

One drawback during the elaboration of the prototype is
related to the single-threaded nature of the meta crawler. This
can have a negative impact on response time because site
crawling is done in a serial way. A multi-thread
implementation would speed up the system considerably.

V. RELATED WORK

The concept of Peer-to-Peer web search has been harnessed
before in the literature. Different approaches [2,8,13,14,20]
have been tried before. Although these studies tended to focus
on Peer-to-Peer web search, rather less attention has been paid
to how to take advantage in this scenario of mobile sites'
concerns and integration in the social network context.

Mislove et al. [8] studied how to integrate social network
search with web search in order to complement search results.
Also, how content publishing and locating influence the
overall searching experience in the web perspective and in the
social network context is discussed. Supported by the
experiment made with PeerSpective prototype, [8] points out
flaws in the traditional hyperlinked search like the difficulty of
web search engines to index content not well linked to the
general web or that is not publicly available. Similar to Mobile
Search, [8] presents the idea that social networks, due to data
islands formed by user communities, can lead to more timely
and efficient searching experience.

Like in our work, [8] gives special importance to social
network links but leaves as an open topic how the underlying
social network links are formed. In Mobile Search social
network structure is automatically defined by the mobile
phone address book contacts and can be enhanced by linking
content neighbor tags every time a search is performed.
Ultimately, the Mobile Search presents the possibility of
creating a virtual multi-level content social network. The
mechanisms described in [8] could also be adapted and
incorporated into Mobile Search.

Bawa et al. [2] introduce YouSearch, which allows
searching dynamically changing content from personal web
servers. YouSearch differs from Mobile Search approach by
having a centralized server (registrar) for storing bloom filters
of indexed keywords. This introduces a need to update bloom
filters periodically to accommodate changes in content of the
peers. Mobile Search is designed for mobile devices with a
limited battery and therefore periodically occurring updates
needs to be avoided. According to the calculations in [2] one
registrar could serve approximately 10000 peers with a 1,5
Mbps network connection. In Mobile Search such an entity is
not needed, because all functionalities are decentralized.
YouSearch uses caching for storing search results on a
querying peer to avoid re-executing a similar query later. This
is a feature which could also be applied in Mobile Search.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2008 proceedings.

Finally, YouSearch does not take into account social network
connections and therefore searching needs to be explicitly
directed to different groups or to specific registrar. This
reduces the flexibility of searching.

Zhou et al. [20] states that the evaluation of resources by
human users is more important for search quality than the
traditional machine based approach. They present a novel
page ranking algorithm - Peer-Rank. In this paper a simpler
version to rank remote results is presented. First of all, in the
problem context described in this study it's assumed that the
content on the mobile phone can be divided in two sub-types:
dynamic/unique (photos taken with mobile phone camera) and
static/common (music files). It will be rare to have different
sites returning the same content. Secondly, it's also supposed
that the majority of the content will be dynamic/unique due to
the nature of mobile phone. Furthermore, each mobile site can
employ its own human/machine based methods to rank results.
With these details in mind two ways of ranking the results are
proposed: Explicit (Tagging content) and Implicit (Machine
based methods).

Galanx [14] focuses on query forwarding in Peer-to-Peer
web search context. Traditionally Peer-to-Peer web search
studies try to "emulate" the behavior of centralized solutions.
Those approaches are completely orthogonal to the one
presented in this paper. One of the main concepts derived
from the social network environment is the ability to navigate
through neighbor sites and explore them like in a common
social network site where users are able to follow friends'
links and explore them. In this case links are created based on
the search results. If users are not satisfied with the results
they can always jump to the next set of nodes and continue
searching. In the Galanx case, like in a centralized web search,
only a set of results is provided and the users are unable to

Jo&o Santos
Juijitsu
Portugal

b
Portugal
Lisboa
Tralley

explore the network by themselves. The sites are presented as
fully separated entities, although they can have hyperlinks
between them allowing partial network navigation.

The query forwarding mechanism of Mobile Search can be
described as a directed breadth first search with manual
iterative deepening. The algorithm is similar to the one
described in [19] and [6] with the exception of using manual
iterative deepening. A search is only continued if the user is
not satisfied with the results.

Other major source of inspiration was the social network
tagging system. Similarly the same principle was applied to
the system with minor modifications. Users are able to tag
content freely. Some predefined tags related with mobile
phone concerns will be always available (e.g., photo location).
Generally user tags have only a local significance in the
network [9]. The predefined tags try to create general tags
present all over the network enhancing the navigation. Each
time a user in a site can search for neighbor tags and navigate
through them like in the normal web search presented in this
report.

VI. FUTURE WORK

The concept of Mobile Search can be easily expanded and
integrated as an extension to existing systems.

Query forwarding algorithms should be considered in order
to minimize several problems like free riding [1] though in a
different setting than previous studies. Algorithms like Ant
search [18], K-Random walk, Expanding Ring and hybrid
approaches should be considered.

Other way of extending the Mobile Search functionalities is
by creating different ways of accessing the same content.
Information could be accessed by a search result or by
different entry point. An entry point is a link to a specific

Portugal
Lisboa

Portugal |:| Portugal
Lisbaa
ooo Lisboa
ooo
ooo
Source
Node
Portugal Portugal Portugal Portugal
Caravel Lisboa Lisboa Figo
Football

Figure 1. Tagging Concept

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2008 proceedings.

content. Tags are an example of creation of different entry
points. A different way of creating an entry point is by
merging different types of data.

Figure 1 shows an example of the tagging concept. The
mobile phone represents the source node who issued a query
searching for the tag Portugal. The figure represents the results
returned by the neighbor nodes in different network levels
(each image corresponds to a neighbor who returned a result).

For example if the source node issued the query Portugal it
would obtain six results. If then the user chooses to navigate
by the tag Lisboa he would get one result (the trolley image).
If instead the user chooses the keyword Portugal he would get
three results (the trolley, the caravel and Figo).

Mobile Search enables the creation of multi-social network
fusion. With the Mobile Search the user doesn't need to know
exactly where the different entry points are. The returned
results will allow exploring vicinities following the links of
the different tags or by asking for new results. The same user
may present in its own site several data related to it's own
interests. Certain data may only be available to a specific
group of users. The data also may be presented in different
ways for different groups. These features could be particularly
valuable in an enterprise setting. One example would be a
fully distributed enterprise portal [10] using the technology
described in this paper.

Other feature worth exploring is adaptive ranking.
Historical behavior of users who conducted similar searches or
may have a similar role in an organization may be used to
boost document rating. This concept may be expanded if more
data is available by creating a profile to generate suggestions
for documents based on user context and role in that particular
social network [10].

All those features can be tweaked at different granularity for
different group of users that access the system. For example a
user may only generate profiles of work mates in order to
make suggestions.

Other topic of interest is the usability of search results, and
new paradigms of displaying different types of information
and user interaction. Current Web2.0 may not be fully suitable
for mobile device paradigm of interaction. This could also be
an excellent opportunity to use a query language applied to
this type of systems for example an adaptation of webSQL [7].
This would likely create a bigger interoperability and
homogenization in this type of systems with easier
deployment of new functionalities.

VII. CONCLUSIONS

Mobile Search complements traditional web search engines.
It gives the user means to explore the neighbors’ contents by
traveling to the friends network topology. It covers a multitude
of environments not covered by the centralized solutions.

One of the main advantages in relation to current
centralized social network sites is the possibility to manage
the site without interference from an external entity. Currently
in a normal social network site a user can only display or use

1205

modules made available by a third entity. Due to this
characteristic it is possible to merge different network sites
that cover different topics and create a social network "melting
pot". Each user can have what type of content he/she wishes in
the site and display different content for different users.

This type of system is better suited for mobile devices due
to the “always on” characteristic [18]. Content can be always
updated on spot.

Mobile Search has an enormous potential to evolve and
become a major tool in knowledge management technology.
Adaptive Ranking, Role-based Recommendations, Locating
Experts and Communities [10] can be taken to extreme. To
sum up Mobile Search can be used to enhance the ability to

search for critical information.
REFERENCES

[1] E.Adarand B. Huberman, Free riding on gnutella. Technical report, Xerox PARC,

2000.

M. Bawa, R. I. Bayardo Jr., S. Rajagopalan, and E. I. Shekita. Make it Fresh,

Make it Quick — Searching a Network of Personal Webservers. Proceedings of the

12" International Conference on World Wide Web, ACM Press, pages 577-586,

2003.

S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.

Computer Networks and ISDN Systems, 30(1-7):107-117, 1998.

D. Choon-Hoong, S. Nutanong, and R. Buyya, Peer-to-Peer Networks for Content

Sharing, Peer-to-Peer Computing: Evolution of a Disruptive Technology, pages

28-65, Idea Group Inc., Hershey, PA, USA, 2005.

E. F. Churchill and C. A. Halverson. Social networks and social networking. IEEE

Internet Computing, 9(5):14-19, 2005.

X. Li and J. Wu. hi hni in p peer networks. Handbook of

Theoretical and Algorithmic Aspects of Ad Hoc, Sensor, and Peer-to-Peer

Networks. Auerbach Publications, pages 613 — 642, 2006.

A. O. Mendelzon, G. A. Mihaila, and T. Milo. Querying the world wide web. Int. J.

on Digital Libraries, 1(1):54-67, 1997.

A. Mislove, K. P. Gummadi, and P. Druschel. Exploiting social networks for

internet search. In Proceedings of the 5™ Workshop on Hot Topics in Networks,

Irvine, CA, 2006.

J. C. Paolillo and S. Penumarthy. The social structure of tagging internet video on

del.icio.us. In Proceedings of the 40th Annual Hawaii International Conference on

System Sciences, page 85, Washington, DC, USA, 2007. IEEE Computer Society.

P. Raghavan. Social networks from the web to enterprise. IEEE Internet

Computing, 6(1), 2002.

P. Reynolds and A. Vahdat. Efficient peer-to-peer keyword searching. In

Proceedings of International Middleware Conference, pages 21-40, June 2003.

E. Selberg and O. Etzioni. The metacrawler architecture for resource aggregation

on the web. IEEE Expert, 12(1):11-14, 1997.

H. Tomiyasu, T. Mackawa, T. Hara, and S. Nishio. Social network applications

using cellular phones with e-mail function. In Proceedings of 21st International

Conference on Data Engineering. IEEE Computer Society, 2005.

Y. Wang, L. Galanis, and D. J. DeWitt. Galanx: An efficient peer-to-peer search

engine. Technical report, University of Wiscosin - Madison, 2003.

J. Wikman. Mobile web server - eurooscon presentation, 2006.

J. Wikman and Ferenc Dosa. Providing http access to web servers running on

mobile phones. Technical report, Nokia Research Center, May 2006.

J. Wikman, Ferenc Dosa, and Mikko Tarkiainen. Personal website on a mobile

phone. Technical report, Nokia Research Center, 2006.

C.-J. Wu, K.-H. Yang, and J.-M. Ho. Antsearch: An ant search algorithm in

unstructured peer-to-peer networks. In Proceedings of the 11th IEEE Symposium

on Computers and Communications, pages 429-434, Washington, DC, USA, 2006.

IEEE Computer Society.

B. Yang and H. Garcia-Molina. Improving search in peer-to-peer networks. In

Proceedings of 22nd International Conference on Distributed Computing Systems,

Vienna, Austria, 2002.

J. Zhou, K. Li, and L. Tang. Towards a fully distributed p2p web search engine. In

Distributed Computing Systems, 2004. FTDCS 2004. Proceedings. 10th IEEE

International Workshop on Future Trends of, pages 332-338. IEEE Computer

Society, 2004.

[3]

[4]

[91

[10]
(1]
[12]

[13]

[14]

[15]
[16]

[17]

(18]

[19]

[20]

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2008 proceedings.

PIII

FINDR: LOW COST INDOOR POSITIONING USING FM
RADIO

by

Andrei Papliatseyeu, Niko Kotilainen, Oscar Mayora and Venet Osmani 2009
In Mobile Wireless Middleware, Operating Systems, and Applications, volume 7

of Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, pages 15-26

Reproduced with kind permission of Springer Berlin / Heidelberg.

FINDR: Low-Cost Indoor Positioning
Using FM Radio

Andrei Papliatseyeu!, Niko Kotilainen?, Oscar Mayora®, and Venet Osmani?
! University of Trento, Via Sommarive 14, Povo (TN), 38050, Italy
papliats@disi.unitn.it
2 University of Jyviskyla, P.O. Box 35, 40014 Jyviskyld, Finland
niko.kotilainen@jyu.fi
3 Create-Net, Via alla Cascata 56/D, Povo (TN), 38050, Ttaly
oscar.mayora@create-net.org, venet.osmaniQcreate-net.org

Abstract. This paper presents an indoor positioning system based on
FM radio. The system is built upon commercially available, short-range
FM transmitters. The features of the FM radio which make it distinct
from other localisation technologies are discussed. Despite the low cost
and off-the-shelf components, the performance of the FM positioning is
comparable to that of other positioning technologies (such as Wi-Fi).
From our experiments, the median accuracy of the system is around
1.3 m and in 95% of cases the error is below 4.5 m.

Keywords: Indoors positioning, FM radio, location awareness.

1 Introduction

Location awareness is an important requirement for many modern applications,
spanning from mobile maps and geotagging to Internet of Things and health-
care. The Global Positioning System (GPS) is most widely used for location
sensing, but it is limited to outdoors-only applications. A body of research has
addressed indoor positioning using different technologies, like ultrasound and
infrared beacons, Wi-Fi and GSM networks, or other types of radios [1]. Most
of these systems are limited in terms of expensive/custom hardware, laborious
deployment or low accuracy.

Our paper explores the applicability of short-range FM radio transmitters
for indoor positioning. We have installed our FINDR (FM INDooR) positioning
system in our lab and this paper presents performance evaluation results of the
system as well as an overview of particular properties of FM radio with respect
to localisation.

FM has a number of advantages over other positioning technologies, like
Wi-Fi. Firstly, although Wi-Fi infrastructure is readily available in office build-
ings, the installation of a localisation system in domestic environment requires
additional hardware. In this case, FM is a cheaper alternative to the deployment
of multiple Wi-Fi access points per apartment. FM transmitters are cheaply

C. Giannelli (Ed.): Mobilware, LNICST 0007, pp. 15-26, 2009.
© Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

16 A. Papliatseyeu et al.

available from many consumer electronics shops; the client device can be rep-
resented by a PDA or a cellphone with an embedded FM receiver. Secondly,
FM radio can be safely used in sensitive environments, e.g. hospitals, whereas
GSM, Wi-Fi or Bluetooth devices must be switched off there. Finally, FM is
very power-effective: an average FM receiver consumes about 15 mW, compared
to almost 300 mW of Wi-Fi (in receiving mode) [2, 3].

The paper is organized as follows. Section 2 provides and overview of the
related work. Section 3 then introduces our approach and our experimental
testbed. Section 4 presents results pertaining to performance evaluation of
FINDR, while Section 5 describes the possible application scenarios of the sys-
tem. Finally, Section 6 draws the conclusions and outlines the future work.

2 Related Work

2.1 Wireless Positioning Techniques

In the last decade, a large body of research has been dedicated to the develop-
ment of location-aware systems. Indoors positioning systems rely on several types
of sensors: ultrasound [4, 5], infrared (IR) [5, 6], digital compass [4], RFID [7],
and various kinds of radio: Wi-Fi [8, 9], GSM [10], Bluetooth [11], domestic pow-
erline [12, 13], and others [14, 15]. Such systems usually rely on one or a number
of the following criteria: user proximity to some fixed beacons, time of signal
propagation, and received signal strength. In the sections that follow we briefly
describe each of these approaches to localisation.

Proximity-Based. Given an environment with a number of beacons with
known positions, the algorithm assumes that the user’s position is that of the
nearest beacon. Due to its simplicity, the method is widely adapted by the sys-
tems using custom radio beacons [15], as well as Bluetooth [16], IR [5] and GSM
base stations [17, 18]. Unfortunately, the accuracy of such systems is low and
depends on the density and the number of installed beacons.

Time-Based. Time-based methods use information about signal propagation
time between the mobile device and beacons with known positions, in order
to estimate the position of the mobile user. The most prominent example of
this class of methods is GPS. Using the signals from a set of GPS satellites, a
basic GPS receiver is able to compute its position with the accuracy of about
8 m [19, p. 22]. However, GPS has long start-up times (up to a few minutes) and
does not work indoors and in dense urban areas, which limits GPS’s applicabil-
ity for ubiquitous location-based services. Ultrasonic localisation systems, like
Cricket [4], also rely on the travel time of an ultrasound pulse. While provid-
ing a good accuracy, time-based systems usually require custom hardware and
expensive installation.

FINDR: Low-Cost Indoor Positioning Using FM Radio 17

Signal Strength-Based. There are two general positioning approaches that
use Received Signal Strength Indication (RSSI), namely propagation modelling
and fingerprinting. The first approach attempts to build a model of the signal
propagation in the space in order to identify the distance between the user and
beacons. The fingerprinting approach, in turn, relies on a database associating
RSSI measurements with corresponding coordinates and then uses statistics and
machine learning algorithms in order to recognize user position among those
learned during the training phase. RSSI-based methods are the most powerful,
as they can provide a rather high accuracy with a few beacons.

One of the pioneering projects in RSSI-based positioning was RADAR [20].
The authors applied both propagation modelling and fingerprinting within a
Wi-Fi network, and, with some enhancements, the system error was as low as
2 m [8]. With more advanced probabilistic methods, the median error of a Wi-Fi
based system can reach 1.2-1.45 m [9, 21]. RSSI fingerprinting has also been
successfully applied for indoor localisation using GSM base stations. In [10], the
authors employed so-called wide fingerprints, which included RSSIs of up to 35
GSM channels, and thus managed to achieve a Wi-Fi-like median positioning
accuracy. However, the topology of a GSM network can be changed at any time
by the network operator, thus requiring system recalibration. [12] proposed a
more reliable approach for indoors positioning. In their system, two beacons were
injecting high-frequency signals into domestic powerline. These signals could
then be detected by a specialised receiver and associated with the user’s location.
An extended, wideband version of the system achieved a 90% accurate room
recognition [13]. Despite the easy installation, the system requires specialised
hardware with limited availability.

To the best of our knowledge, there is only one work dedicated to positioning
with FM radio. [14] described their experiments on using prototype hand watch
with an embedded FM radio, to localise using commercial FM broadcasting sta-
tions. The authors applied a Bayesian classifier to distinguish six areas of Seattle,
based on RSSI ranking of the local FM stations. In the best case, the recognition
accuracy was 82%. Although the paper does not provide any information about
error distances, the system accuracy can be estimated as hundreds of meters to
kilometers, which renders it impracticable for indoor environments. Our system,
instead, is based on readily available hardware and is particularly suitable for
indoor use.

3 FM Positioning

3.1 Our Approach

The FINDR positioning system employs a set of short-range FM transmitters
as wireless beacons and a programmable radio on the client device. Most of the
beacon-based positioning technologies have two general requirements: measuring
of user to beacon relative position and the ability to distinguish different beacons.
In the next two sections we identify possible solutions how FM radio can address
these requirements.

18 A. Papliatseyeu et al.

Relative Position-Dependent Features. The relative position of the user
with regard to a beacon can be characterised by angle between directed antennas,
signal propagation time and RSSI. For the FM positioning, we have identified
three features that can be used as a measure of distance between the beacons
and the user.

The first feature is RSSI, defined as the amplitude of the received radio-
frequency signal. Most of the current FM receivers employ RSSI value internally,
to enable auto-tuning capability.

When RSSI is not available, one can use the signal-to-noise ratio (SNR) of
the demodulated signal. In this case, the beacon is set to transmit a known
periodic signal (for example, a sine wave of 1kHz) and the receiver performs a fast
Fourier transform (FFT) of the demodulated signal, calculating the intensities of
different frequency bands. Then, the intensity of the band of interest is divided
by the average intensity of the all bands, thus representing signal-to-noise ratio.
A similar method was applied by [12] to an amplitude-modulated (AM) signal.
However, our experiments show that SNR of an FM signal is almost a step
function, which considerably limits applicability of this approach to FM-based
positioning (see Section 4.1).

There is also another feature that depends on the signal quality and, conse-
quently, on the distance between the transmitter and the receiver, namely, stereo
channels separation. In good reception conditions the stereo channels are well
separated, providing best sound quality. However, as the radio signal deterio-
rates, the receiver’s circuitry will start to reduce the audio bandwidth and thus
decrease channel separation in order to filter out the noise [22]. Ultimately, this
results in a plain mono signal.

Distinguishing Beacons. For a beacon-based positioning system it is crucial
to distinguish current beacon from the others. The beacons can be identified ei-
ther by their carrier frequencies or by the signals they transmit (e.g. coordinates,
ID, name, etc).

Unfortunately, due to the properties of FM, it is impossible to use the same
frequency for all beacons. Due to the so-called “capture effect”, when a num-
ber of stations transmit on the same (or close by) frequency, the signal from
the strongest one will dominate the others, while the weaker signals get atten-
uated [23]. Therefore, in our experiments we had to tune each transmitter to a
different frequency and switch between them at the receiver side. Despite this,
no special network planning is required for larger-scale deployments to avoid
beacons interference, as any distant interfering beacons will not be observed due
to the capture effect.

3.2 Experimental Setup

The FINDR was evaluated with empirical measurements in the Multimedia,
Interaction and Smart Environments (MISE) lab of Create-Net [24]. The room
dimensions were 12 x 6 m, and the room contained ordinary office furnishing.

FINDR: Low-Cost Indoor Positioning Using FM Radio 19

=<

Fig. 1. Floorplan of the measurement area. The antennas mark the positions of the
three transmitters and the dashed lines mark room furniture.

Fig.2. MP3 player with an embedded FM transmitter, connected to power adapter.
The antenna is not connected.

Figure 1 presents the layout of the room. A grid of 1 x 1 m cells was created for
testing, and measurements were carried out in all accessible points of the grid
(totally 46 points).

The receiving device used in the tests was a Nokia N800 Internet Tablet. The
N800 is an based on an ARM processor and features a built-in FM receiver.
The N800 is running an open, Linux-based operating system, so developing low-
level custom applications for the device is relatively easy. The prototype locating
software was programmed in Python and used the PyFMRadio-library to tune
the FM-receiver to each of the transmitter’s frequency one after another and
read the signal strength from the FM-receiver hardware. The signal strength
was reported on a 16-step scale (normalized to range 0...1) and was measured
300 times in a row for each frequency, with about 0.01 second between the
measurements. The standard N800 headset was used as an antenna.

20 A. Papliatseyeu et al.

The transmitter used was a Koénig mp3 player, which features a built-in FM-
transmitter (Figure 2) [25]. To increase the range of the transmitters, a 1.8-meter
audio cable was connected to the player’s audio output to act as an antenna.
Initially, the whole FM band was scanned and manually checked for frequen-
cies with little interference from local FM-radio stations. The transmitters were
then tuned to these frequencies. To avoid the effect of battery degradation, the
transmitters were powered by USB power adapters.

4 Results

4.1 RSSI Dependency on Distance

In order to estimate the feasibility of the FM positioning, we first carried out a
test to see which of the features discussed in Section 3.1 are more suitable for
positioning. Stereo channel separation method has not been implemented yet
and will be addressed in the future work.

The RSSI dependence on the distance from the transmitter is presented in
Figure 3. To avoid any interference from the testbed’s furniture, this test was
performed outdoors. The graph is relatively smooth and monotone starting from
0.5 m, and proves RSSI to be a good feature for positioning. Eventual plateau-
looking areas can be explained by the limited number of RSSI levels recognized
by our receiver.

Figure 4 corresponds to the indoors measurements and shows the RSSI from
each of three transmitters while the user was moving from Transmitter 1 to
Transmitter 3 (as of floorplan in Figure 1). The dependencies are not very
smooth, which is caused by the distortions from the furniture and multipath
propagation. Nevertheless, the general trends are clearly observable.

For the RSSIgny g method, the transmitter was set to broadcast a continuous
dual tone multi-frequency (DTMF) signal for digit “1” (1209 Hz and 697 Hz).

0.80 A

0.60 -

Normalized RSSI

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Distance, meters

Fig. 3. RSSI dependence on distance

RSSI

FINDR: Low-Cost Indoor Positioning Using FM Radio 21

0.7

0.1

0.0 T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12
Distance from Transmitter 1, meters

Transmitter 1 — — — — Transmitter 2 — - — - — Transmitter 3

Fig. 4. RSSI variation while moving from Transmitter 1 to Transmitter 3, with Trans-
mitter 2 placed between them

Normalized FFT-RSSI

1.00

>

0.80 A

0.60 -

0.40 A

0.20 A

0.00 T T T T T T T T T T T T T T T T T g
0.0 0.6 1.2 1.8 24 3.0 3.6 4.2 4.8 5.4

Distance, meters

Fig.5. RSSIsnr dependence on distance

At the receiver side, the audio signal from an FM radio was sampled by a laptop
sound card at 8 kHz sampling frequency and transformed to the frequency do-
main using 1024-band FF'T. For each point, 32 spectra were recorded and then
averaged. RSSIgyr was then calculated as follows:

bandesor - + bandi209m -
mean(all-bands)

RSSIsyr =

22 A. Papliatseyeu et al.

The experiment discovered no clear dependency of RSSIgy g from the dis-
tance to the transmitter (see Figure 5). In range from 0.5 m to 3.6 m the mean
RSSIsnyr value barely changed, between 3.6 m and 4.5 m it became unstable,
and then rapidly degraded to the noise level. Such a behaviour can be explained
by the capture effect, which improves the post-detection SNR for non-linear mod-
ulations (such as FM) when the pre-detection SNR is above a certain threshold,
“capture threshold”; below this threshold the SNR drops dramatically [26]. In
our case, the capture effect is complemented by the receiver noise-reduction cir-
cuitry which automatically mutes the audio output if the received signal is too
weak [2].

Thus, RSSIgyr dependency on the distance is almost a step function due to
intrinsic properties of FM. Therefore, we did not consider RSSIgn g for further
experiments.

4.2 2D Positioning

To estimate the FINDR accuracy in two-dimensional positioning, we have used
fingerprinting approach with two evaluation methods: leave-one-out validation
and an independent test set. In leave-one-out method, we sequentially selected
one of the RSSI measurements and excluded all the measurements related to the
same coordinates from the training set. The selected measurement was then used
as test data. It should be noted however, that leave-one-out evaluation tends to

1.10
1.00
0.90
0.80
0.70
0.60
0.50
0.40 /
0.30 / /
0.20 /
0.10 / /
0.00 :

0 1 2 3 4 5 6 7 8 9 10 1 12
Error distance, meters

Probability

‘ —&— Leave-one-out —— Cross-person —&— Random

Fig. 6. Error distributions for two-dimensional positioning

FINDR: Low-Cost Indoor Positioning Using FM Radio 23

worsen the actual positioning accuracy, as the classifier is unable to recognize the
class it has not been trained on (that is, the error distance is always greater than
zero) [20]. Besides that, in order to estimate the real-world system accuracy, we
have tested the FINDR on an independent data set collected by another person.

For classification, a k-nearest neighbour (kNN) method was used [27]. The
kNN classifier evaluates the distance from the test point to all the training
points, and selects the labels (classes) of the k nearest training points. From
these k labels, the prevailing one is returned as the classification result. For
our task, we employed the Euclidean distance measure. The optimal value of &k
(k = 9) was selected by leave-one-out validation and then reused for cross-person
evaluation.

The error distance distributions for both approaches are shown in Figure 6.
The baseline performance is represented by a random classifier. The median ac-
curacy for the leave-one-out evaluation method is 1.3 m, falling to about 4.5 m at
95% confidence level. For the independent test set, 29% of places are recognized
correctly. The median accuracy is 1.3 m. Despite the long tail, caused by distant
outliers, in 95% of the cases the positioning error stays below 6.8 m.

4.3 RSSI Stability over Time

For a fingerprinting-based system, it is very important that the values measured
during calibration phase do not drift over time. Otherwise, the system accuracy
may diminish significantly, and the system will require recalibration. It has been
demonstrated, that many current fingerprinting-based systems are affected by
the signal stability problems [13, 28].

In order to estimate the stability of the FM signal strength in FINDR, we
placed a transmitter 4 meters apart from the receiver and left it recording the
RSST over the weekend. However, in four hours the device ran out of memory
and only 1.7 million samples have been recorded. Their mean value was 0.57975
and the variance was 0.00097.

The RSSI distribution in Figure 7 proves the FM RSSI to be rather stable.
The two peaks are different by one quantization step only. There are about 4000
outliers, which constitute only about 30 seconds of the whole 4-hour dataset.
Note that the measurements have been done by a receiver that distinguishes only
16 RSSI levels; a more advanced receiver could improve both the distribution
detail and the positioning accuracy.

5 Application Scenarios

The need for finding one’s position has sprung up a number of technologies that
fulfil this purpose with varying degrees of success. While outdoor positioning is a
relatively mature technology (i.e. GPS), the indoor localisation has been proven
an interesting research challenge. The interest in indoor positioning has been fu-
elled by the potential it offers in creating novel applications that can span across
diverse domains. Applications ranging from locating lost keys within home, up

24 A. Papliatseyeu et al.

1.4E+06 10000000

ts
N}
m
+
=}
>

1000000

100000

10000 -

=
o
m
i
=}
@

1000

4.0E+05 100 -
2.0E+05 - 10 I I I I
0.0E+00 1 I

o

Number of measurement
Number of measurements

[P N ot N m s oo~ o o
o o o o o o o o o o o o o o o o o o
RSSI RSSI

(a) Normal scale (b) Logarithmic scale

Fig. 7. RSSI distribution for 4-hour long measurements

to detecting mobility patterns of elderly that aid disease diagnosis, are made
possible by utilising technologies that offer relatively precise location informa-
tion, while considering the cost benefits. FM localisation method, described thus
far, is such technology that can give rise to a number of interesting applications.

Applications that make use of localisation can be found in the realm of social
sciences, amongst other domains. Localisation can be utilised to infer mobility
patterns of users. A study, described in [29], tracked location of 100.000 mobile
phones. Analysis of the data revealed that users have predictable mobility be-
haviour patterns, which authors were able to infer by analysing only half of the
data collected. However, this study was limited since location data was based on
GSM localisation, thus had a low granularity, typical of a GSM cell tower range.

FM localisation will allow analysis of data that has much higher localisation
granularity, by simply utilising a mobile phone with built-in FM receiver. This
information then can be used, not only to infer mobility patterns, but by using
the concept of group location, the social network of a user can also be deduced. In
other words FM localisation method will allow inference of human relationships,
for example colleagues that spent time in the same office, through analysis of
sub-room mobility patterns.

Naturally, localisation technology is applicable to a number of other domains,
including health care, where it can be used to aid elderly locate misplaced objects
(such as their mobile phone), or even deliver location dependent reminders -
locking the front door when entering the house for instance. These applications
can be enabled by a low-cost, sub room location solution, which FM positioning
is able to provide.

6 Conclusion

This paper presented the FINDR, an indoor positioning system based on FM
radio technology. The system is a low-cost solution that does not require any

FINDR: Low-Cost Indoor Positioning Using FM Radio 25

specialised hardware, thus is easily deployable. FM transmitters, used as beacons,
are easily available in the most of electronics shops. Virtually any cellphone or
PDA, with an embedded FM tuner can be used as a client device. FM receiver
is by an order of magnitude more power-efficient than Wi-Fi. The preliminary
results of the system evaluation show a median accuracy of about 1.3 m and
4.5 m at 95% confidence level that is favourably comparable to other state-of-
the-art positioning systems.

In the future we plan to conduct a more comprehensive evaluation of FINDR
using probabilistic classifiers and perform a same-environment comparison with
other positioning systems. These results will be applied to a number of previously
described application domains.

References

[1] Hightower, J., Borriello, G.: Location systems for ubiquitous computing. Com-
puter 34(8), 57-66 (2001)

[2] TDAT7088 Datasheet (1996)

[3] Broadcomm BCM4326 Single-Chip IEEE 802.11b/g MAC/baseband/radio
Datasheet (2006)

[4] Priyantha, N.B., Miu, A.K.L., Balakrishnan, H., Teller, S.: The cricket compass for
context-aware mobile applications. In: Proceedings of the 7th Annual International
Conference on Mobile Computing and Networking, pp. 1-14. ACM Press, New
York (2001)

[5] Fox, D., Hightower, J., Liao, L., Schulz, D., Borriello, G.: Bayesian Filtering for
Location Estimation. IEEE Pervasive Computing (2003)

[6] Liao, L., Fox, D., Hightower, J., Kautz, H., Schulz, D.: Voronoi Tracking: Location
Estimation Using Sparse and Noisy Sensor Data. In: Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2003) (2003)

[7] Hightower, J., Borriello, G.: Particle Filters for Location Estimation in Ubiquitous
Computing: A Case Study. In: Davies, N., Mynatt, E.D., Siio, I. (eds.) UbiComp
2004. LNCS, vol. 3205, pp. 88-106. Springer, Heidelberg (2004)

[8] Bahl, P., Padmanabhan, V.N., Balachandran, A.: Enhancements to the RADAR
User Location and Tracking System. Technical Report MSR-TR-2000-12, Mi-
crosoft Research, Redmond, WA, USA (2000)

[9] Youssef, M.A., Agrawala, A., Shankar, A.U.: WLAN location determination via
clustering and probability distributions. In: Proceedings of the 1st IEEE Interna-
tional Conference on Pervasive Computing and Communications (PerCom), pp.
143-150 (2003)

[10] Varshavsky, A., de Lara, E., Hightower, J., LaMarca, A., Otsason, V.: GSM indoor
localization. Pervasive and Mobile Computing 3(6), 698-720 (2007)

[11] Kotanen, A., Hannikéinen, M., Leppékoski, H., Himéldinen, T.D.: Experiments on
local positioning with Bluetooth. In: Proceedings of the International Conference
on Information Technology: Coding and Computing (ITCC 2003), pp. 297-303
(2003)

[12] Patel, S.N., Truong, K.N., Abowd, G.D.: PowerLine Positioning: A Practical Sub-
Room-Level Indoor Location System for Domestic Use. In: Dourish, P., Friday, A.
(eds.) UbiComp 2006. LNCS, vol. 4206, pp. 441-458. Springer, Heidelberg (2006)

26

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

21]

(22]
(23]

24]
[25]

[26]

27]
28]

29]

A. Papliatseyeu et al.

Stuntebeck, E.P., Patel, S.N., Robertson, T, Reynolds, M.S., Abowd, G.D.: Wide-
band powerline positioning for indoor localization. In: Proceedings of Ubicomp
2008 (2008)

Krumm, J., Cermak, G., Horvitz, E.: RightSPOT: A Novel Sense of Location
for a Smart Personal Object. In: Dey, A.K., Schmidt, A., McCarthy, J.F. (eds.)
UbiComp 2003. LNCS, vol. 2864, pp. 36-43. Springer, Heidelberg (2003)

Bulusu, N., Heidemann, J., Estrin, D.: GPS-less low-cost outdoor localization for
very small devices. Personal Communications, IEEE 7(5), 28-34 (2000)
Hallberg, J., Nilsson, M., Synnes, K.: Positioning with Bluetooth. In: Proceedings
of 10th International Conference on Telecommunications (ICT 2003), 23 February—
1 March 2003, vol. 2, pp. 954-958 (2003) doi:10.1109/ICTEL.2003.1191568
LaMarca, A., Chawathe, Y., Consolvo, S., Hightower, J., Smith, 1., Scott, J.,
Sohn, T., Howard, J., Hughes, J., Potter, F., Tabert, J., Poweldge, P., Borriello,
G., Schilit, B.: Place Lab: Device Positioning Using Radio Beacons in the Wild.
In: Gellersen, H-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS,
vol. 3468, pp. 116-133. Springer, Heidelberg (2005)

Laasonen, K., Raento, M., Toivonen, H.: Adaptive On-Device Location Recogni-
tion. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp.
287-304. Springer, Heidelberg (2004)

US Department of Defence. GPS SPS Performance Standard. (September 2008),
http://www.navcen.uscg.gov/gps/geninfo/
2008SPSPerformanceStandardFINAL.pdf

Bahl, P., Padmanabhan, V.N.: RADAR: an in-building RF-based user location
and tracking system. In: Proceedings of 9th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM 2000), March 26-30, 2000,
vol. 2, pp. 775-784 (2000) doi:10.1109/INFCOM.2000.832252

Roos, T., Myllymaki, P., Tirri, H., Misikangas, P., Sievénen, J.: A Probabilistic
Approach to WLAN User Location Estimation. International Journal of Wireless
Information Networks 9(3), 155-164 (2002)

Honjo, K., Simpson Jr., D.L.: Stereo FM receiver, noise control circuit therefor.
US Patent 5432854 (July 1995)

Leentvaar, K., Flint, J.H.: The capture effect in FM receivers. IEEE Transactions
on Communications 24, 531-539 (1976)

http://www.create-net.org/mise
http://www.koniggaming.com/mp3withfmtransmitter.html (as accessed on
2009.02.19)

JPL’s Wireless Communication Reference Website. Analog Transmission over Fad-
ing Channels, http://wuw.wirelesscommunication.nl/reference/chaptr05/
analog/analog.htm (as accessed on 2008.11.20)

Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)

Kaemarungsi, K.: Distribution of WLAN Received Signal Strength Indication for
Indoor Location Determination. In: Proceedings of the 1st International Sympo-
sium on Wireless Pervasive Computing, pp. 1-6 (2006)

Smith, K.: Mobile phones demystify commuter rat race. Nature News, June 4
(2008)

PIV

YOU’'VE GOT PHOTOS! THE DESIGN AND EVALUATION OF
A LOCATION-BASED MEDIA-SHARING APPLICATION

by
Niko Kotilainen and Maria Papadopouli 2008

In Proceedings of the 4th International Mobile Multimedia Communications
Conference

Reproduced with kind permission of the Association for Computing Machinery.

You’ve Got Photos! The design and evaluation of a
location-based media-sharing application

Niko Kotilainen
Department of Mathematical Information
Technology
University of Jyvaskyla
Finland

ABSTRACT

PhotoJournal is a novel location-based media sharing appli-
cation that enables users to build interactive journals that
associate multimedia files with locations on maps and share
this information with other users. Its underlying informa-
tion discovery and sharing mechanism is 7DS that runs in
either pure peer-to-peer or centralized server-to-client mode,
depending on the availability of a server and/or an infras-
tructure. 7DS-enabled devices act as miniature caches, shar-
ing information with each other. When access to an informa-
tion server (e.g., web server) is not available, the local 7DS
instance running on the device enables the device to search
and access information from other peers in proximity. We
have implemented the prototype and evaluated the delay to
access the data using three testbeds. Two of these testbeds
employ a centralized (server-to-client) architecture, while
the third one applies the peer-to-peer paradigm. Depend-
ing on the underlying network technology and device capa-
bilities, this delay varies. The results encourage us to per-
form additional empirical-based studies under increased traf-
fic load conditions and initiate a user-study in the premises
of a museum and a research park.

1. INTRODUCTION

New applications and tools for sharing and experiment-
ing with multimedia data in a synchronous or asynchronous
manner, such as Flickr, YouTube, Me.dium, MySpace, face-
book, and JumpCut, have enriched on-line collaboration, al-
lowing the formation of new types of social networks, inter-
actions, and online communities. Furthermore, the market
of location-based services grows rapidly. In the near future,
mobile devices that have the processing, communication,

*This research was supported by the Greek General Secre-
tariat for Research and Technology under Regional of Crete,
Crete-Wise KP-18 (KIIX 00126) and 05NON-EU-238.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MobiMedia’08 July 7-9, 2008, Oulu, Finland

Copyright 2008 ACM 978-963-9799-25-7/08/07 ...$5.00.

*
Maria Papadopouli
Department of Computer Science
University of Crete &
Institute of Computer Science
Foundation for Research & Technology-Hellas

and geolocating capabilities will enable seamless integration
of services combining media sharing and geographical tag-
ging.

PhotoJournal applies the peer-to-peer (p2p) paradigm to
facilitate the access and sharing of location-based multime-
dia content among mobile devices. It also enables users to
build interactive multimedia “journals” that associate mul-
timedia objects, such as pictures, video, or hypertext, with
locations on maps. Multimedia files can be “superimposed”
on certain locations of maps and users may manage, review,
update or delete them. Users may query for content regard-
ing an area of a map and update their journal. Peers that
run an instance of the PhotoJournal application on a device
may respond to such queries and share their multimedia con-
tent.

PhotoJournal is supported by graphical user interfaces (GUIs)
to access, search, share, and manage the multimedia content
and a middleware with two main components, namely a po-
sitioning and an information discovery and sharing system.
The underlying positioning technologies are GPS and the
Cooperative Location-sensing System (CLS) [9, 22], while
7DS [20] enables information discovery and sharing. When
access to an information server (e.g., web server) is not
available (e.g., a device experiences intermittent connectiv-
ity to the Internet), the 7DS instance running on that device
(e.g., peer) enables the peer to search and access informa-
tion from other peers in the wireless LAN. 7DS can instan-
tiate both the server-to-client and peer-to-peer paradigms
and provide complementary access through peers, when an
infrastructure—or connectivity to an infrastructure—is not
available. 7DS assumes that, in the face of disconnections,
users can trade the data consistency and currency over data
availability.

We implemented PhotoJournal and evaluated its perfor-
mance under both peer-to-peer and infrastructure-based ar-
chitectures. The delay that a user experiences to access the
requested data from the time the device is in the range of an-
other cooperative device with relevant data (i.e., dataholder)
is measured. Depending on the underlying network tech-
nology (e.g., 3G or IEEE802.11), architecture, and device
capabilities, the median delay varies from 282ms (in a p2p
architecture, running on a PC in a IEEE802.11 single-hop
network) to 1.9s (running the application on a smartphone
and accessing the web server via a 3G network). However,
the frequency that a device is close to a dataholder depends
on several parameters, such as popularity of the data, den-

sity of peers, mobility pattern, and transmission power.

Section 2 presents the related work, while Section 3 fo-
cuses on the PhotoJournal architecture and introduces its
main components. The performance of the PhotoJournal is
analyzed in Section 4. Finally, Section 5 reflects on mobile
peer-to-peer computing and Section 6 summarizes our main
conclusions and future work plans.

2. RELATED WORK

Wireless LAN

S ; (2) query {_4_)reapnnze if
(1)nl.:‘|ﬂtﬁcessful MHC

access to the internet (3) cache hit

(3)cache miss

Figure 1: Example of information sharing using
7DS. The arrows show the message exchange for the
7DS communication. The light-shaded area denotes
the wireless LAN, the darker-shaded area the Inter-
net, and the thunderbolt-like shape the WAN con-
nection that is not currently available.

The anticipation of a growing number of users that form
“on-line” communities to gossip, share information and re-
sources via their wireless-enabled devices inspired the design
of 7DS. 7DS may relay, search for and disseminate informa-
tion in a self-organizing manner, without the need for an
infrastructure. 7DS-enabled devices can interact either in a
p2p or server-to-client manner. These different modes of op-
eration allow 7DS to instantiate different mobile information
access schemes when possible, and provide complementary
access through peers, when an infrastructure is not available.
Figure 1 illustrates an example of 7DS peer-to-peer use. Mo-
bile host A (MH A) tries to access a data object. The local
7DS instance running on host A detects an unsuccessful at-
tempt to connect to the Internet and tries to retrieve the
data from peers that are within its wireless range. Both
hosts B and C (MHB and MH C, respectively) are within
the range of host A and receive the query. Unlike host B,
host C has a copy of the data in its cache and responds to
host A’s query.

Applications interact with 7DS employing pairs of attributes
to describe the data that they are willing to share with other
application instances running on peers. For each applica-
tion, 7DS maintains an index of the local cache that is pop-
ulated with data that can be shared. This data may have
been acquired from other peers or servers [18, 19, 20, 21].

MOBY [11] proposes a service-oriented network architec-
ture, in which each peer interacts both with the available

infrastructure and its neighbours. It provides a method
to integrate available services in handheld mobile devices.
MOBY'’s architecture is based on Mnode super-peers, which
allow mobile devices to access and locate available services,
as opposed to the 7DS platform, where there is no need for
external storage. Although super-peers are mainly respon-
sible for service management, interaction among Mnodes
is encouraged in order to reduce load on peers acting as
gateways. Horozov et al. in [11] discuss security challenges
by integrating secure service registration capabilities in the
available architecture.

Mobile chedar [15] is a middleware extension to Chedar
[4], providing resource sharing and distribution in mobile
p2p systems, in a completely decentralized fashion. The pro-
posed API performs topology management by selecting con-
nections that aim to establish a scalable and fault-tolerant
network. Communication among peers in both Chedar and
mobile Chedar is Gnutella-like, in which queries are sent to
neighboring peers and direct connections are created among
them. P2P systems that adopt the Chedar API are not eval-
uated in terms of performance, and no analysis is provided
concerning the impact of malicious users on system security.

LightPeers [7] is a lightweight mobile p2p platform, devel-
oped to support users utilizing a variety of mobile devices
with limited capabilities. Communication among peers is
established by broadcasting discovery messages and mul-
ticasting queries to nodes of the same group. LightPeers
was implemented to ease the exchange of information and
services among peers and support interactive applications.
This architecture can be used in ad-hoc networks that facil-
itate delay tolerant messaging.

Proem is a Java oriented middleware platform for develop-
ing and deploying applications for mobile ad-hoc networks.
The Proem middleware consists of three parts: an applica-
tion runtime environment, a set of middleware services, and
a protocol stack for communication. In Proem, each appli-
cation is managed by the peerlet engine, which is responsi-
ble for dynamically adding and removing peerlets from the
system. The set of middleware functions is designed to al-
low distributed applications to share resources and exchange
event information, and declare and discover new services.
The protocol stack defines the syntax and semantics required
to enable communication between peers.

This paper considers that in the wireless range of a querier,
there is a cooperative device with the relevant data (in the
p2p architecture) or a predefined web server that can be
accessed via the wireless Internet (in the infrastructure ar-
chitecture), respectively. The frequency that a device is in
the range of dataholders has a dominant impact on the total
delay that a user will experience, i.e., the total time elapsed
from the formation of the query until the local device re-
ceives relevant data. However, this delay depends on several
parameters, such as popularity of the data, density of peers,
their mobility pattern and transmission power. An evalua-
tion of the impact of these parameters on data dissemination
assuming random-walk based mobility patterns can be found
in [18, 19, 20, 21]. In general, for different usage and appli-
cation characteristics, the likelihood that users in proximity
would be interested in similar data varies.

Although currently 7DS uses single-hop multicast, a rout-
ing protocol could facilitate the communication among peers.
Mobile peer-to-peer computing applications often create sparse
and intermittently-connected networks, referred to as de-

lay tolerant networks (DTNs). Traditional routing proto-
cols for ad-hoc networks do not perform well in DTNs due
to their unstable paths. Important parameters in the de-
sign of such routing protocols are the co-residency time be-
tween peers, time that a peer is out of the range of other
relay nodes, information servers, or access points (APs), re-
laying, querying, and cooperation policies, information lo-
cality, and buffer management. Several studies on routing
protocols in DTNs have appeared, evaluating the impact of
buffer management, relaying policies, and placement of re-
lay nodes (e.g., [8, 5, 17, 25]) or of the knowledge about
device location, peer movement and connectivity patterns
on the routing protocol (e.g., [16, 13, 23, 24]). Depend-
ing on the communication patterns between peers, different
network topologies can be formed, affecting dramatically the
speed that the information is disseminated. Analyzing how
fast data spread in scale-free networks has been the focus of
recent studies (e.g., [14]).

3. PHOTOJOURNAL ARCHITECTURE

N

Beviee Web browser

PhotoJournal Client

T

m:> PhotoJournal Server
Position

i —— 7DS

Figure 2: PhotoJournal architecture: The application
is supported by an underlying information discov-
ery and sharing mechanisms (7DS) and positioning
system (e.g., CLS, GPS).

PhotoJournal allows the creation of interactive location-
based multimedia journals and enables users to discover and
share their content with each other. A local PhotoJournal
instance may automatically superimpose local multimedia
content to the appropriate areas of maps and enable a user
to specify location-based queries for certain areas of a map.
It is supported by 7DS, its underlying information sharing
and discovery mechanism, and a positioning system, GPS
and CLS or outdoor and indoor environments, respectively.
PhotoJournal runs as an application with a web browser-
based user frontend.

3.1 CLS

CLS applies the peer-to-peer paradigm by enabling de-
vices to gather positioning information from other neigh-
boring peers, estimate their distance from their peers based
on signal-strength measurements, and position themselves
accordingly [9]. CLS creates a signal-strength signature map
of the physical space during a training phase and compares
it with analogous run-time measurements employing vari-
ous statistical-based criteria. Iteratively, it can refine its
positioning estimates by incorporating newly received infor-
mation from other devices.

CLS and GPS periodically record the coordinates of the
current position of the device with a timestamp in the po-
sitioning trace. Users can upload pictures and videos with
their associated timestamp. PhotoJournal can correlate the
timestamp information of the multimedia content with the
positioning trace and associate the multimedia files with cer-
tain areas of a map.

3.2 User frontend

The user frontend of the PhotoJournal client is a web-
browser based interface that communicates with the local
PhotoJournal server using HTTP. The latter is responsible
for the interaction of the PhotoJournal client with the 7DS
module, forwarding the corresponding messages and assur-
ing that packets are in the proper format as they are ex-
changed across different modules.

Using a PhotoJournal GUI, a user may superimpose mul-
timedia content on certain locations of the map by clicking
on the map and browsing the multimedia files correspond-
ing to that location. Moreover, a user can add, modify, or
delete comments about a certain multimedia file, rate its
content and set its access permission. A multimedia file can
be set public or private—only public files can be shared with
other peers. The PhotoJournal frontend (as shown in Fig-
ure 4) runs on a web browser and consists of a map frame
on the right and a photo bar on the left side of the window.
Its backend runs on 7DS. It receives all queries from the
frontend through 7DS’s proxy server, and supports the typi-
cal 7DS functionality by adding or deleting photos, querying
photos from 7DS neighbors or handing photos from the local
cache. 7DS can also cache map files, enabling the application
to work without an Internet connection.

PhotoJournal can automatically superimpose the uploaded
content on an appropriate map by matching the timestamp
of the content of the multimedia files with the timestamp
of the GPS/CLS trace and associating these files with the
corresponding position on the map. Furthermore, it updates
its local 7DS cache and its indexing mechanism.

Figure 2 summarizes the main components of the location-
based media sharing system, namely the PhotoJournal appli-
cation, 7DS and CLS.

3.3 Peer discovery and information access

A user may search for multimedia content related to a
certain location in the following manner: First, the user
indicates the region of interest by marking the corresponding
area on the displayed map (e.g., the white rectangular on the
map illustrated in Figure 4). Then, the local 7DS instance
will search for relevant data in its cache, on the web, and in
the cache of other peers. Specifically, it will first check its
local cache for multimedia files associated with that area.
If the search is successful, it will display a marker with a
number indicating the number of multimedia files associated
with that location. In the case that no relevant data can
be found, 7DS’s web client attempts to acquire it from the
Internet by accessing a predefined web site. Finally, if the
web client fails to acquire the requested data (e.g., in the case
of intermittent connectivity to the Internet or unavailability
of a web server), 7DS will form a media query and multicast
it to its peers. A media query describes the requested data

!'We assumed that the digital camera timestamps recorded
files and is synchronized with the user’s device running a
positioning system.

Figure 3: PhotoJournal can superimpose multimedia
objects at their locations on a map. A marker indi-
cates the number of files associated with that loca-
tion.

Figure 4: On the main GUI of the PhotoJournal a user
can mark the area for which multimedia information
will be requested.

in XML format and is formed using location- and rate-based
criteria. Upon the reception of a media query, the local 7DS
instance of a peer may search its local cache for relevant
data. If a relevant data object is found in its cache, it will
form and send an XML response, including a URL to the
relevant multimedia file, reviews and rating information.

The PhotoJournal will display—periodically updating it—
the list of peers that responded to recent queries. A user
may select a certain 7DS peer from this list to retrieve the
requested content. When the web client retrieves the rele-
vant data objects from the peer, it stores them in the local
cache and displays them on the map (as illustrated in Fig-
ures 3 and 4). Areas on the map associated with multimedia
files can be distinguished by a marker that also indicates the
number of the available relevant files. A demo of the Photo-
Journal can be found in [2].

4. PERFORMANCE ANALYSIS

To evaluate the performance of the PhotoJournal, empirical-
based measurements were performed using two different ar-

chitectures, namely, an ad-hoc and an infrastructure-based
one. The infrastructure-based approach realizes the tra-
ditional server-to-client approach: PhotoJournal clients re-
quest content from a web server. Unlike the infrastructure-
based architecture, in the ad-hoc (i.e., p2p) architecture,
devices access the information in a peer-to-peer manner. In
the infrastructure-based architecture, we experimented with
both 3G or IEEE802.11 technologies. The estimated effec-
tive downlink speed of the 3G connection is approximately
400 Kbps. The peers in the p2p architecture communicate
via IEEE802.11 in the ad hoc mode.

Throughout the text, the terms “infrastructure” and “cen-
tralized” are used interchangeably for describing the archi-
tecture paradigm and testbed (similarly with the terms “ad-
hoc” and “p2p”).

4.1 Metrics

To evaluate the performance of the PhotoJournal applica-
tion over the two different architectures, the following bench-
marks are defined:

1. Query processing delay: the total time elapsed between
the reception of a (neighbor or a media) query and the
transmission of a response.

2. Query transmission delay: the time spent by a spe-
cific query to travel over the network, subject only to
network elements and propagation delays.

3. Query forming delay: the time that a request spends
at various levels of the protocol stack before being for-
warded to the network layer.

4.2 Testbeds

The empirical-based measurements were performed on three
testbeds. Two of them employed the infrastructure-based
architecture, while the third one the ad-hoc based one. The
client-to-server communication takes place using 3G (in the
“3G infrastructure” testbed) and IEEE802.11 (in the “IEEE802.11
infrastructure” testbed). In these testbeds, the wireless client
is a Nokia N80 smartphone and the web server runs Apache.
In the ad-hoc testbed, wireless clients running the Photo-
Journal application are part of an IEEE802.11b adhoc net-
work, each using a PC equipped with an A-Link USB WLAN
interface.

To measure these different delays, monitors are placed at
certain testbed locations. The time granularity of these mea-
surements depends on the specific platform. For example,
the time-keeping clock of the smartphone has a frequency
of 64Hz (corresponding to a granularity of approximately
15ms [10]), while the granularity of the web server monitor
is of 1 ps. Table 1 illustrates the list of monitors used in our
measurements along with the specific event they capture.

The main difference between the p2p and the centralized
architecture is that the latter does not require a peer (neigh-
bor) discovery phase and querying devices send their re-
quests directly to a predefined web server via either the 3G
or IEEE802.11 infrastructure.

‘We ran 30 experiments using PhotoJournal in each of the
three testbeds. In the infrastructure-based experiments, a
script initiated a sequence of queries for the same content.
For each experiment in the p2p testbed, a user selected a
different region of interest on the map, initiating a query
for related content. The resulted delay measurements are
shown in Figures 5, 6, and 7.

P2P architecture
Time | Event description
Ty local 7DS instance receives a request
T local 7DS multicasts a discovery query
T3 peer receives a query
Ty dataholder sends a response
Ts querier receives response
Centralized architecture
Time | Event description
Ts smartphone receives a user query
T7 smartphone sends a query to web server
Ty web server receives a query
Ty web server sends response to smartphone
Tio smartphone receives response

Table 1: Monitors capturing various event types in
the infrastructure and p2p architectures. The term
T; indicates the time the event i was recorded at the
corresponding monitor.

Delay P2P Infrastructure
Query forming .- Ty T7 = Ts
Query processing Ty —Ts Ty —Ts
Query transmitting | 75 —To —Tu+T3 | Two—T7—To+Tx

Table 2: Different delay types as measured based
on the recorded event times for the p2p- and
infrastructure-based architectures.

4.3 Query forming delay

The processing power and CPU load impact the query
forming delay. In the infrastructure architecture, the query
forming delay is significantly larger, exhibiting also higher
variability compared to the ad-hoc one (as shown in Fig-
ure 5). The PhotoJournal query in the centralized testbed
is formed by a smartphone with scarce resources and low
processing capabilities compared to the powerful PCs used
in the p2p testbed. Furthermore, compared to IEEE802.11
LANSs, 3G networks are more demanding in terms of process-
ing power. However, even when a PhotoJournal-client runs
on a powerful PC, the query forming delay remains signifi-
cantly large, up to 100 ms. Such values are due to the XML
document processing performed by 7DS in order to describe
the requested items. Moreover, the interaction between the
7DS component and the PhotoJournal client results in fre-
quent context switches, increasing further the measured de-
lay.

As expected, query forming delay is larger in the case of
media queries compared to neighbor queries, since in the
former case the corresponding request needs to describe the
area of interest whereas in the latter case, a peer discovery
request is simply a “template” message (used to search for
peers in the wireless range of the querier).

4.4 Query processing delay

The query processing delay is significantly lower in the
centralized setting compared to the p2p one (as shown in
Figure 6). This is due to the complexity that 7Ds introduces,
when used in networks where no 3G or IEEE802.11 infras-
tructure is available. The time required for a web server to
form a response is significantly lower from the one of a regu-

1 : : : - -
o 3G infrastructure ——
00 L= IEEE802.11 infrastructure —s— |
- i |EEE802.11 ad-hoc (media access) =
08 H INEEE802.11 ad-hoc (peer discovery) @
L]
0.7 &
06
&
8 o5
o S
0.4 ‘i\ T
03 3
02 R i
01 . =
o a a\ T—~—
0 50 100 150 200 250 300 350

Query forming delay (ms)

Figure 5: Complementary cumulative distribution
function (CCDF) of query forming delays.

1 T
Y oal j " 3G infrastructure ——
0.9 M @ |EEE802.11 infrastructure —=— |
7 ”m IEEE802.11 ad-hoc (peer discovery) -+
08 v IEEE802.11 ad-hoc (media access) o
07 3
B]
06 i
w M .
5 o5 % e
o K -
0.4 1 e
0.3 % Z
0.2 ’ S a
LA N 8
< a
0.1
<]
0 =
0 20 40 60 80 100 120 140

Query processing delay (ms)

Figure 6: Complementary cumulative distribution
function (CCDF) of query processing delays.

lar 7DS peer. Note that in the ad-hoc testbed, 7DS employs
XML for describing a data item, while in the infrastructure-
based architecture, a 7DS client only sends a simple HTTP
request directly to the web server over the Internet. The to-
tal time elapsed between the reception of a media query and
the transmission of a response is greater than 40 ms for the
70% of the queries in p2p mode (as illustrated in Figure 6).

The query processing delay for media access is larger than
for peer discovery due to the intense processing required for
the first query type. When a peer receives a media query,
it will search the local cache for relevant media items. The
variability exhibited in the ad-hoc architecture is due to the
variable sized map areas.

4.5 Query transmission delay

The transmission delay of a media access query is stochas-
tically larger than the delay of a peer discovery one (as shown
in Figure 7). For example, in p2p, the median media access
delay is approximately 39 ms compared to a median peer
discovery delay of 15ms. A typical response size to a me-
dia access query is approximately 20 KB (compared to only
a few bytes which is the response to a peer discovery one).

i& ' ! 3G infrastructure ——
0.9 EE802.11 infrastructure —=— |
- IEEE802.11]ad-hoc (peer discovery) ----=
08 IEEE802.1% ad-hoc (media access) =
o . §
0.6
5 }
S o5
¢ |
0.4

0.1

0.3 é

Y 3
:
]

0 500 1000 1500 2000 2500 3000
Query transmission delay (ms)

Figure 7: Complementary cumulative distribution
function (CCDF) of query transmission delays.

The variability in query transmission delay is due to the
various sizes of the response for different query types. Also
compared to the ad-hoc network, an infrastructure results
in increased transmission delays due to the aggregate traf-
fic of other clients associated with the IEEE802.11 AP and
the lower transfer rates (in 3G). The IEEE802.11 centralized
approach exhibits lower transmission delays than 3G (e.g.,
median delay of 750 ms compared to 1800 ms). With 3G’s
maximum speed of 2Mbps, it is hard to compete with the
11 Mbps transfer rate of IEEE802.11.

To summarize, the mean and median delays from the time
the PhotoJournal received user’s input until the reception of
the relevant media files are are 1,995 ms and 1,898 ms in 3G,
876 ms and 843 ms in IEEE802.11 infrastructure, and 305 ms
and 282ms in IEEE802.11 ad-hoc, respectively. Thus, the
7DS /PhotoJournal introduces delays that are tolerable. How-
ever, several aspects of the current 7DS implementation can
be improved; For instance, the code is large and complex.
It can be simplified significantly using libraries included in
recent Java versions. We intend to evaluate its scalability un-
der increased traffic load conditions. Furthermore, it would
be interesting to perform a user study in the premises of
a museum or FORTH and collect additional feedback from
users (e.g., visitors in these premises) not only about its
performance but also its features and GUIs.

5. DISCUSSION ON MOBILE P2P SYSTEMS

The development of 7DS and PhotoJournal motivated us
to reflect on mobile peer-to-peer computing. Critical as-
pects of a mobile peer-to-peer system are the incentives for
cooperation and privacy requirements.

The effectiveness of mobile peer-to-peer computing sys-
tems depends on their substantial deployment, cooperation,
interoperability, and scalability. Depending on the avail-
ability of a resource, a peer may dynamically adapt its co-
operation strategy. The scarcity of resources enhances the
tension between cooperation and competition. Given the en-
ergy constraints, the nondeterministic characteristics of the
environment, and the presence of exogenous parameters that
impact the resource availability, such resource allocation al-
gorithms are non-trivial. In general, the following parame-
ters impact the power consumption of a network interface:

size and number of packets sent and received, and time the
network interface is on. To reduce the power consumption,
these parameters need to be kept low.

To prevent denial of service attacks, encourage coopera-
tion, and better allocate resources, the use of micropayment-
based and/or reputation-based mechanisms can be impor-
tant [3, 6, 26, 12, 1]. However, these mechanisms should
have a relatively low overhead, in order to not discourage
the energetic participation of peers. While a relaxed protec-
tion of resources may impede the use of a peer-to-peer sys-
tem, high costs or strict conditions to access the resources
may dissuade their usage. The design of a mobile p2p sys-
tem needs to address the balance between these two require-
ments.

Increasingly wireless devices collect a large amount of in-
formation that can be analyzed to reveal the personal and
social context of the user. This abundance of information
makes users vulnerable to intrusion of privacy threats. The
identification of the position of the device and potentially,
the identity of the subject using the device—which can be
acquired directly or inferred using statistical analysis—are
examples of such threats. Malicious users can abuse such
information by spamming users with advertisements or dis-
closing it inappropriately. Thus, a tradeoff between enhanc-
ing the information access and disclosing private informa-
tion inappropriately is exposed. The larger the availability
of information, the more likely is to enhance the information
access and sharing but also the higher the vulnerability in
privacy threats.

As in the case of the Internet, peer-to-peer systems need
to be flexible and dynamic to sustain long-term use. Pri-
vacy will play an important role in the adoption of mobile
peer-to-peer computing applications. Currently, 7DS and
PhotoJournal offer a crude distinction between private and
non-private objects and a finer way to describe their pri-
vacy requirements is needed. However, privacy is context
sensitive and depends on the social context, user activity,
ownership of the device, application, and personality of the
user. Depending on these parameters, the system may de-
cide about the privacy and cooperation policies with or with-
out any user intervention. Thus, it is important to provide
mechanisms that allow a fine-level description of the pri-
vacy requirements and draw a balance between enhancing
the service and protecting user privacy.

6. CONCLUSIONS

This work focused on PhotoJournal, a multimedia location-
based application, and analyzed the delay that the applica-
tion experiences from the time the request is formed until a
response is received. Depending on the underlying network
technology and device capabilities, this median delay varies
from 282ms to 1,9s. In these experiments, in the wireless
range of a querier, there was always a cooperative device
with the relevant data (in the ad-hoc testbed) or a prede-
fined web server that can be accessed via the wireless Inter-
net (in the infrastructure testbeds), respectively. As men-
tioned earlier, the frequency that a device is in the range of
dataholders has a great impact on the total delay that a user
will experience, i.e., the total time elapsed from the forma-
tion of a query until the local device receives relevant data.
Our earlier research analyzed the data dissemination in ad
hoc wireless network, assuming random-walk based mobil-
ity models. An interesting followup study would consider

heterogeneous wireless environments, supported partially by
wireless infrastructures; in areas with limited or no cover-
age by APs, the mobile peer-to-peer computing paradigm
can be used to enhance the information access. In such en-
vironments, it would be useful to evaluate various routing
protocols integrated with mobile peer-to-peer systems using
more realistic access and traffic patterns.

Only a few studies on mobile p2p systems evaluate the
performance of their system with empirical-based measure-
ments. Typically, the evolution of a technology includes
the following steps: simulation-based studies of the technol-
ogy, measurements in a real-life testbed and controlled ex-
periments, and further empirical-based measurement stud-
ies in large-scale testbeds (if the technology becomes widely
adopted). To assist the deployment of mobile peer-to-peer
computing systems, a fruitful approach would include the
development of the following components [21]:

e a general infrastructure for mobile peer-to-peer appli-
cations and a toolkit that new applications could use

e robust mobile peer-to-peer applications with friendly
GUTs that can also control the distribution of data and
form context- and semantic-based queries

e protocols that ensure anonymity and privacy

e mechanisms that encourage cooperation among peers
in an energy-efficient manner

Mobile p2p computing opens up exciting challenges in com-
puter science, demanding interdisciplinary research and in-
novative paradigms.

7. ACKNOWLEDGEMENT

The authors would like to thank Manolis Ploumidis and
Elias Raftopoulos for their help in reviewing an earlier draft
and providing useful feedback on the performance analysis
and Alexandros Kapravelos, Despina Maggina, and Vasiliki
Papavasileiou for their help in the implementation of some
features of the PhotoJournal.

8. REFERENCES

[1] Ling liu. security and trust in peer-to-peer systems: Risks
‘d[ld countermeasures.
http://www.cc.gatech.edu/ lingliu/keynotes/.
[2] Mobile Computing Activity at FORTH-ICS.
http://www.ics.forth.gr /mobile/software.html/.
[3] Peer-to-peer: Harnessing the power of disruptive
technologies.
http://www.freehaven.net/doc/oreilly /accountability-
ch16.html.
[4] A. Auvinen, M. Vapa, M. Weber, N. Kotilainen, and
J. Vuori. Chedar: Peer-to-peer middleware. In Proceedings
of the 19th IEEE International Parallel & Distributed
Processing Symposium (IPDPS 2006), Rhodes Island,
Greece, July 2006.
[5] Brendan Burns, Oliver Brock, and Brian Neil Levine.
Autonomous Enhancement of Disruption Tolerant
Networks. In Proc. IEEE International Conference on
Robotics and Automation, Orlando, Florida, May 2006.
Levente Buttyan and Jean-Pierre Hubaux. Nuglets: a
virtual currency to stimulate cooperation in self-organized
mobile ad hoc networks. Technical Report DSC/2001/001,
Swiss Federal Institute of Technology, Lausanne, January
2001.

=

[7] Bent Guldbjerg Christensen. Lightpeers: A lightweight
mobile p2p platform. In Proceedings of the Fifth IEEE
International Conference on Pervasive Computing and
Communications Workshops (PERCOMW ’07), pages
132-136, White Plains, NY, March 2007.

[8] James Davis, Andy Fagg, and Brian Neil Levine. Wearable

computers as packet transport mechanisms in highly

partitioned ad-hoc networks. In Proc. International

Symposium on Wearable Computers (ISWC), Zurich,

October 2001.

Charalampos Fretzagias and Maria Papadopouli.

Cooperative Location Sensing for Wireless Networks. In

Second IEEE International conference on Pervasive

Computing and Communications, Orlando, Florida, March

2004.

[10] Richard Harrison. Symbian OS C++ for Mobile Phones.
John Wiley & Sons Ltd, 2003.

[11] T. Horozov, A. Grama, V. Vasudevan, and S. Landis. Moby
— a mobile peer-to-peer service and data network. In
Proceedings of International Conference on Parallel
Processing, pages 437-444, Washington, DC, USA, August
2002.

[12] Jean-Pierre Hubaux, Levente Butyan, and Srdan Capkun.
The quest for security in mobile ad hoc networks. In ACM
International Symposium on Mobile Ad Hoc Networking
and Computing (MobiHoc), pages 146-155, Long Beach,
CA, October 2001.

[13] Sushant Jain, Kevin Fall, and Rabin Patra. Routing in a
delay-tolerant network. In ACM Symposium on
Communications Architectures and Protocols (SigComm,),
Portland, OR, USA, August 2004.

[14] Jon Kleinberg. The wireless epidemic. Nature (News and
Views), 449:287-288, 2007.

[15] Niko Kotilainen, Matthieu Weber, Mikko Vapa, and Jarkko

Vuori. Mobile Chedar - a peer-to-peer middleware for

mobile devices. In Proceedings of the Second International

Workshop on Mobile Peer-to-Peer Computing (MP2P’05),

pages 86-90, Kauai Island, Hawaii, March 2005.

Qun Li and Daniela Rus. Sending messages to mobile users

in disconnected ad-hoc wireless networks. In ACM

International Conference on Mobile Computing and

Networking (MobiCom,), pages 44-55, Boston, MA, USA,

August 2000.

Marc Liberatore, Brian Neil Levine, and Chadi Barakat.

Maximizing Transfer Opportunities in Bluetooth DTNs. In

Proc. ACM Conference on Future Networking Technologies

(CoNexzt), Lisboa, Portugal, December 2006.

Maria Papadopouli and Henning Schulzrinne. Seven degrees

of separation in mobile ad hoc networks. In IEEE

Conference on Global Communications (GLOBECOM),

San Francisco, CA, November 2000.

Maria Papadopouli and Henning Schulzrinne. Effects of

power conservation, wireless coverage and cooperation on

data dissemination among mobile devices. In ACM

International Symposium on Mobile Ad Hoc Networking

and Computing (Mobihoc), Long Beach, CA, October 2001.

Maria Papadopouli and Henning Schulzrinne. A

performance analysis of 7DS a peer-to-peer data

dissemination and prefetching tool for mobile users. In

Advances in wired and wireless communications, IEEE

Sarnoff Symposium Digest, Ewing, NJ, March 2001.

Maria Papadopouli and Henning Schulzrinne. Peer-to-Peer

Computing for Mobile Networks: Information Discovery

and Dissemination. Springer (under preparation), 2008.

Konstantinos Vandikas, Lito Kriara, Tonia

Papakonstantinou, Anastasia Katranidou, Haris Baltzakis,

and Maria Papadopouli. Empirical-based analysis of a

cooperative location-sensing system. In ACM First

International Conference on Autonomic Computing and

Communication Systems (Autonomics), Rome, Italy,

October 2007.

[23] J. Yang, C.-K. Lee Y. Chen, and M. Ammar. Ferry

[9

16

17

(18

19

[20

21

[22

[24

25]

[26]

replacement protocols in sparse manet message ferrying
systems. In JEEE Wireless Communications and
Networking (WCNC), New Orleans, LA, March 2005.
Wenrui Zhao, Mostafa Ammar, and Ellen Zegura. A
message ferrying approach for data delivery in sparse
mobile ad hoc networks. In IEEE Conference on Computer
Communications (InfoCom), Hong Kong, March 2004.
Wenrui Zhao, Yang Chen, Mostafa Ammar, Mark D.
Corner, Brian Neil Levine, and Ellen Zegura. Capacity
Enhancement using Throwboxes in DTNs. In IEEE
International Conference on Mobile Ad hoc and Sensor
Systems, Vancouver, Canada, October 2006.

Lidong Zhou and Zygmunt J. Haas. Securing ad hoc
networks. IEEE Network, 13(6), November 1999.

PV

A GENETIC-NEURAL APPROACH TO MOBILITY-ASSISTED
ROUTING IN A MOBILE ENCOUNTER NETWORK

by

Niko Kotilainen and Jani Kurhinen 2008

In Proceedings of the 5th International Conference on Information Technology
and Applications

Reproduced with kind permission of the 5th International Conference on
Information Technology and Applications.

A Genetic-Neural Approach for Mobility Assisted
Routing in a Mobile Encounter Network

Niko P. Kotilainen, Jani Kurhinen

Abstract--Mobility assisted routing (MAR) is a concept,
where the mobility of a network’s nodes is used to
physically carry data to its destination. Traditionally, MAR
algorithms have been based on few simple rules, often
limiting the performance of these algorithms. In this paper,
we propose an architecture in which a trained neural
network is fed information about the message and the
encountered peer, and which then decides whether to
forward the message to the encountered peer. This
algorithm, called NeuroRouter, is capable of utilizing the
most efficient routing strategies in different environments
by adapting its behavior based on environmental variables.

Index Terms—Mobile encounter network, Mobile
peer-to-peer, Mobility assisted routing, Neural network.

I. INTRODUCTION

Personal digital assistants (PDA) and voice-centered mobile
phones have become powerful application platforms which are
used in almost all fields of modern society. In addition to
supporting a wide spectrum of applications, they can be used for
creating new data. For example, one can contribute to a live
blog or share photographs with the world immediately after they
have been captured. The created data is transmitted for the most
part via cellular or wireless local area networks, but short range
wireless data links are also employed. At the same time
peer-to-peer communication systems such as BitTorrent and
Skype have taught people to utilize this new communication
paradigm in both entertainment and business. While
peer-to-peer computing has clearly shown its potential on the
fixed Internet, application scenarios using short range
connectivity remain underdeveloped. However, the idea of
harnessing millions of mobile terminals to provide all
imaginable content to information consumers is intriguing.

In the past, the mobility of a network’s nodes has been
considered problematic with respect to data delivery in a
short-range local communication system. However, as
Spyropoulos et al. [8] said, "mobility can be turned into a useful
ally". In fact in ad-hoc networks where connectivity is very
intermittent, node mobility is often the only option to deliver
messages between distant nodes of the network. In [5] we
introduced the concept of a mobile encounter network (MEN),

This work was supported in part by the Nokia Foundation.

N. Kotilainen and J. Kurhinen are with the Department of Mathematical
Information Technology, University of Jyviskyld, P.O. Box 35, 40014
Jyviskyld, Finland (e-mail: niko. kotilainen@jyu.fi, kurhinen@mit.jyu.fi).

ICITA2008 ISBN: 978-0-9803267-2-7

which builds on the concept cited above. In a MEN
environment, data is transmitted only during node encounters.
Instead of being a cause of problems, the mobility of the nodes
provides a method for data delivery from one node to another.
The actual mobile encounter network is the result of all the
encounters and data exchange. In a communication system like
MEN, a given network node is able to create short-term
connections with other network nodes, i.e. the network topology
can be defined as a function that is dependent on time. Due to
the frequent changes in the network topology, a node may end
up inside the communication range of other parties which
posses desired information or desire information from the node.

In general these types of systems are called delay tolerant
networks (DTNs) [1]. On the other hand, DTNs often do not
rely only on direct node to node data delivery, but also benefit
from multi-hop routing. Data MULEs [6], one of the first
concepts to describe this kind of environment, route data using
several independent mobile carriers. Our studies in [3] and [4]
discuss similar network systems where data is collected from
several sources to one data sink. The data is collected and
transported by mobile entities already moving within the
environment, and therefore the delivery does not incur
additional costs. The multi-hop transmission is the most
practical approach in this case; instead of giving full
responsibility to one mobile entity to deliver the data packet to
its target location, the data is passed to another unit that, in turn,
might be able to transmit the data to the actual receiver.

In mobility assisted routing (MAR), the mobility of the nodes
in the network is an important data transportation medium.
Because of the continuously changing network topology, there
are short term internode communication links in the network
that follow certain rules based on the mobility patterns of the
nodes. In this paper, we propose an architecture in which neural
networks are trained to become efficient MAR algorithms.

Section II of this paper describes mobile encounter networks.
Section IIT describes currently proposed mobility assisted
routing algorithms. In section IV we present our proposal for a
MAR algorithm. Section V describes the neural network
training process, and section VI contains conclusions and future
work plans.

II. MOBILE ENCOUNTER NETWORKS

Short-range wireless technologies, such as Bluetooth and
WLAN, enable mobile devices to network with other similar
devices. Information can be diffused from a member of the
network to another, and the mobility of the nodes enables a
sparse network to transfer information between distant nodes of

the network. There is no known route between the nodes; the
sender of the data just forwards the data to some of the devices it
encounters, which in turn forward it further, and eventually the
data is very likely to reach its destination. Mobile encounter
networks form a new class of mobile networks that emerge
when devices encounter and exchange information. One
encounter is made up of the discovery of devices, the
establishment of a connection between two devices and the
exchange of data. The duration of the encounters is usually
short, because of the mobility of the devices, but it can also be
long if the mobile devices are not moving. These single
information exchanges form a MEN, resulting in the diffusion
of information in the network with a delay.

MENs are very dynamic, and unlike traditional ad-hoc
networks, they don't provide multi-hop communication. This
lack of real-time routing limits MEN usage to applications
which can tolerate some delay in communication. But for
suitable applications, MENs have several benefits: they are
scalable, robust, do not require network infrastructure, and can
work in very sparse networks. In addition, the short-range
communication medium is free.

III. CURRENT MOBILITY ASSISTED ROUTING
ALGORITHMS

To bring multi-hop data transmission into mobile encounter
networks, the mobility of the nodes has to be used to deliver
messages between nodes that do not have a direct
communication route between them. The nodes forward their
messages to encountered peer nodes, with the hope that they
would deliver the message to the destination, or at least would
forward it further to nodes going to the right direction. This is
usually called mobility assisted routing (MAR). Fig. 1. shows a
simple example of message delivery using MAR.

The nodes in a mobile encounter network only know their
own situation and the information they get from encountered
nodes; they do not have a global view of the network status or
topology. Hence, making routing decisions is problematic.

Mobility assisted routing algorithms can be divided into three
classes: epidemic spreading, epidemic spreading with
limitations or restrictions, and targeted data delivery. The third
class of MAR protocols can be described as being more
intelligent than the former classes. As opposed to random
spreading, targeted data delivery methods focus on selecting
appropriate carrier nodes among the contacted nodes.

Epidemic routing was first introduced by Vahdat and Becker
[10]. As the name implies, the algorithm works like a disease:
using epidemic routing, messages are passed to all possible
network nodes in the hope that some node is able to deliver it to
a target location. It is a very powerful method and always gives
the smallest delay possible if the network system handles the
data flow properly. However, its efficacy requires vast amounts
of network resources. While copying the messages to other
network nodes, the epidemic algorithm wastes plenty of
system's resources like storage capacity, network bandwidth and
battery power.

Spyropoulos et al. has proposed Spray and Wait [7] and later
Spray and Focus [9] protocols, which are good examples of
methods designed to limit the problems of pure epidemic
diffusion. Spray and Wait exploits different types of counters to
control the number of message copies in the network. Spray and
Focus has evolved from Spray and Wait, and combines copying
and forwarding. These schemes, however, do not qualitatively
distinguish distinct nodes while passing message copies.
Instead, they employ numerous randomly selected nodes as
message carriers. However, the Spray and Focus protocol does
try to take advantage of potential opportunities to forward the
message closer to its destination during the focusing phase.

Even though they are more efficient than the pure epidemic
diffusion, they still waste substantial amounts of device
memory, battery power and network bandwidth while passing
data to inappropriate network nodes.

There are certain limitations in all of the algorithms described
above. First, these algorithms don't take into account the
qualities of the receiving nodes when making the routing

Peerb

(a) Peer a has a message M to be delivered to
peer c. Peer a encounters peer b, who is
going to the right direction. NeuroRouter
decides to forward the message to peer b.

Peerb

]

[l

Peer a

(b) Peer b carries the message with it, and
when encountering peer c, transmits the
message there.

Fig. 1. Message delivery in a mobile encounter network using mobility assisted routing.

decisions. Second, each of these algorithms uses some control
parameters (for example the number of "sprayed" packets or
time-to-live) that can be used to tune the algorithm. In situations
where a priori knowledge of the network environment is
unavailable, a routing algorithm including configuration
parameters is less than desirable. Finally, these algorithms don't
adapt to the environment or to environmental changes because
they rely only on one routing strategy. In general, only one
strategy cannot be efficient in all scenarios. Therefore, an
efficient algorithm should be able to utilize many strategies at
the same time. To overcome these limitations, we propose a
neural network based mobility assisted routing algorithm called
NeuroRouter. NeuroRouter independently learns the correct
behavior in given network conditions and uses many
combinations of strategies to route packages. To our
knowledge, it is the first MAR algorithm utilizing neural
networks, or genetic algorithms in general.

IV. NEUROROUTER — A MOBILITY ASSISTED
ROUTING ALGORITHM

When encountering peer nodes in the network, nodes have to
decide whether to forward messages to the encountered peer

node. This decision has a large impact on the efficiency of the
network. As was discussed in section III, current MAR
algorithms have limitations that affect their efficiency. Similar
problems with resource discovery algorithms in static
peer-to-peer (P2P) networks have been successfully solved
using genetic algorithms [11]. In this paper we are proposing
that the same idea be used in mobility assisted routing.

The proposed algorithm, NeuroRouter, decides to which of
the encountered nodes to forward the messages held in its
memory. Each time a pair of devices encounter one another,
both devices input local information about their messages and
the encountered node to a multi-layer perceptron neural
network, of which output determines whether the message is
forwarded to the encountered node. Fig. 2. illustrates this
process. The neural network is
approximator, which is organized into four layers: an input
layer, two hidden layers and an output layer. The input layer
contains the values of the neural network’s inputs. The hidden
layers do the actual work of decision making. The output layer
simply provides a “Yes” answer if its inputs’ sum is positive;
otherwise the answer is “No”. The layers are connected with
weights, which determine the qualities of the neural network. In

a non-linear function

Decision:
Yes/ No

Fig. 2. When peers encounter each other, they ask a neural network whether to forward messages to the encountered peer.

Fig. 2’s neural network, the arrows represent connections
between layers, each connection having its own weight, and the
circles represent neurons on the hidden layers and the output
neuron. The first hidden layer has 16 neurons and the second
one has 4 neurons. The activation function of the nodes of the
hidden layer is hyperbolic tangent,

2
t(x)=———>+—-1,
) l+e™

where x is the sum of inputs of the neuron. The output of the
neural network is calculated using neural network’s weights W
and inputs I with the following formula:

4 16 7
output W, 1) = 3 W, 1 W, ;13 W, 1)
i=1 Jj=1 k=1
The input parameters for the neural network are:
e “Bias”, a constant 1.0
e “Speed”, the encountered node’s speed
e “Direction”, the difference between the encountered
node's direction and the direction to the destination
e “Stability”, the stability of the encountered node's
speed and direction
e “Copies”, the number of copies of the message
already sent.

e “Hops”, the number of hops the message has taken
to reach the current node from the message
originator

e “Distance”, the distance to the destination

V. NEURAL NETWORK TRAINING

Neural networks cannot make good decisions automatically,
they have to be trained. Neural networks are trained by
optimizing the weights that define the neural network's behavior
until the neural network provides good results. Fig. 3.
introduces the training process. Our system uses an evolutionary
method to train the neural networks. In the beginning of the
method, 30 neural networks are randomly generated, tested, and
compared to each other. Then 15 worst performing networks are
replaced with offspring of the 15 best performing networks. The
offspring are created from the best performing networks by
making Gaussian random changes to the parents. This
test-compare-replace procedure is repeated thousands of times,
and the neural networks gradually become very high-quality
problem solvers. In the end the best individual from the neural
networks is chosen to be the newly created MAR algorithm.

The training requires a lot of neural network evaluations. For
example, training a population of 30 neural networks for
100.000 generations entails three million evaluations. As a
result, the training cannot be done in a real-life network, but
needs to be run in a simulator. For the training phase, we
therefore need to define a mobility model of the environment.
The model should reflect the parameters of the particular
system, and therefore there is no one single solution that suits
all. However, the random waypoint model, one of the most
widely used mobility models, is a close enough approximation

for training purposes.

We are currently modifying the P2PRealm [2] peer-to-peer
simulator to support mobility assisted routing. After the
NeuroRouter algorithm has been developed, i.e., the neural
network has been trained; it can be deployed to a real-life
network. After it has been deployed, the network’s nodes can
further improve and adapt the algorithm to their needs by using
message history data as training material.

Initialize neural
network population

\4

Generate offspring
neural networks to
replace discarded

ones
A

Evaluate the
neural networks

Enough
generations
done?

Discard the worst
performing half of]
the population

Pick the best
neural network

Fig. 3. Neural network training procedure

VI. CONCLUSION AND FUTURE WORK

In this paper, a new mobility assisted routing algorithm called
NeuroRouter has been proposed. The algorithm employs a
trained neural network to make the routing decisions when peer
nodes are encountered and thus can adapt to the environment
and make more efficient routing choices.

We are now in the process of implementing the described
system in a simulator environment using the P2PRealm [2]
network simulator, so that the proposed algorithm could be
compared to currently proposed MAR algorithms. We also
intend to implement a testbed to evaluate the system in a
real-life scenario. Future work on the subject will include using
global information about the network to find an optimal solution
to this problem. This solution would be the upper bound for
MAR algorithms, and current MAR algorithms could be
compared to this limit.

[1]
[2]

[3]

[4]

[5]

(6]

[71

[8]

[9]

[10

[11]

[12

REFERENCES

K. Fall, "A delay-tolerant network architecture for challenged internets,"
In ACM SIGCOMM 2003.

N. Kotilainen, M. Vapa, T. Keltanen, A. Auvinen, and J. Vuori,
"P2PRealm - peer-to-peer network simulator," in 17th International
Workshop on Computer-Aided Modeling, Analysis and Design of
Communication Links and Networks, 2006.

J. Kurhinen, "MP2P network in collecting data from sensor networks," in
11th IEEE Symposium on Comy and C icati 2006.

J. Kurhinen and J. Janatuinen, "Geographical routing for delay tolerant
encounter networks," in /2th IEEE Symposium on Computers and
Communications, 2007.

J. Kurhinen, V. Korhonen, M. Vapa, and M. Weber, "Modelling mobile
encounter networks," in [7th IEEE International Symposium on
Personal, Indoor and Mobile Radio Communications, 2006.

R. Shah, S. Roy, S. Jain, and W. Brunette, "Data MULEs: modeling a
three-tier architecture for sparse sensor networks," in First [EEE
International Workshop on Sensor Network Protocols and Applications,
2003.

T. Spyropoulos, K. Psounis, and C. S. Raghavendra, "Spray and wait:
Efficient routing scheme for intermittently connected mobile networks,"
in ACM SIGCOMM workshop on Delay Tolerant Networking, 2005.

T. Spyropoulos, K. Psounis, and C. S. Raghavendra, "Performance
analysis of mobility-assisted routing," in 7th ACM international
symposium on Mobile ad hoc networking and computing, 2006.

T. Spyropoulos, K. Psounis, and C. S. Raghavendra, "Spray and focus:
efficient mobility-assisted routing for heterogenecous and correlated
mobility," in Fifth annual IEEE international conference on Pervasive
computing and communications workshop, 2007.

A. Vahdat and D. Becker, "Epidemic Routing for Partially-Connected Ad
Hoc Networks," Technical Report CS-200006. Duke University, 2000.
M. Vapa, N. Kotilainen, A. Auvinen, H. Kainulainen, and J. Vuori.
"Resource discovery in P2P networks using evolutionary neural
networks," in International Conference on Advances in Intelligent -
Systems Theory and Applications, 2004.

0. Volovikov, T. Juonoja, M. Weber, N. Kotilainen, M. Vapa, and J.
Vuori, "Mobile encounter networks and their applications," in 5th IEEE
Consumer Communications and Networking Conference, 2008.

PVI

RESOURCE DISCOVERY IN P2P NETWORKS USING
EVOLUTIONARY NEURAL NETWORKS

by

Mikko Vapa, Niko Kotilainen, Annemari Auvinen, Heikki Kainulainen and
Jarkko Vuori 2004

In Proceedings of the 2004 International Conference on Advances in Intelligent
Systems - Theory and Applications

Reproduced with kind permission of IEEE Computer Society.

> PAPER IDENTIFICATION NUMBER: 067-04 < 1

Resource Discovery in P2P Networks Using
Evolutionary Neural Networks

Mikko A. VAPA, Niko P. KOTILAINEN, Annemari K. AUVINEN,
Heikki M. KAINULAINEN, and Jarkko T. VUORI

Abstract-- Resource discovery is an essential problem in peer-
to-peer networks since there is no centralized index in which to
look for information about resources. One solution for the
problem is to use a search algorithm that locates resources based
on the local knowledge about the network. Traditionally, the
search algorithms have been based on few simple rules, which
often reduces the performance from optimal. In this paper, we
describe the results of a process where evolutionary neural
networks are used for finding an efficient search algorithm from a
class of local search algorithms. The initial test results indicate
that an evolutionary optimization process can produce search
algorithm candidates that are competent compared to the
breadth-first search algorithm (BFS) used in Gnutella peer-to-
peer network.

Index Terms-- resource discovery, peer-to-peer networks,
multi-layer perceptrons, genetic algorithms.

1. INTRODUCTION

N the resource discovery problem, any node can possess

resources and query these resources from other nodes in the
network. The problem consists of graph with nodes, links and
resources. Resources are identified by unique IDs and nodes
may contain any number of resources. One node knows only
the resources it is currently hosting. Any node in the graph can
start a query, which means that some of the links are traversed
based on a local decision in the graph. Whenever the query
reaches the node with the queried ID, the node replies. The
goal is to locate a predetermined amount of resource instances
with a given ID using as few query packets as possible.

One possible solution for the resource discovery problem is
the breadth-first search algorithm (BFS) [1]. In BFS a node
that starts a query passes the query to all its neighbors. When
the neighbors receive the query, they pass it further to all their
neighbors except the one from which the query was received.
Nodes cache the messages that they have received and if the
query has already been received from other neighbor then

Manuscript received September 2, 2004. This work was supported in part
by the Graduate School in Electronics, Telecommunications and Automation
(GETA) and Innovations in Business, Communication and Technology
(InBCT) —project of Agora Center.

M. A. Vapa, A. K. Auvinen, and J. T. Vuori are with Department of
Mathematical Information Technology, University of Jyviskyld, Finland (e-
mail: firstname.lastname@jyu.fi).

N. P. Kotilainen is with Agora Center, University of Jyviskyld, Finland (e-
mail: niko.kotilainen@jyu.fi).

H. M. Kainulainen is with WTS Networks, Jyviskyld, Finland (e-mail:
heikki kainulainen@wts.fi)

query is dropped. Time-to-Live (TTL) value is used to limit
the number of hops the query can take by reducing TTL value
each time a query is received. When TTL decreases to zero the
query is dropped. The BES algorithm ensures that if a resource
is located in the network it can be found from the network if
TTL is high enough. The downside of the algorithm, however,
is that it uses many query packets to find the needed resources.
Thus, we propose an alternative algorithm that is more
efficient in face of used query packets and evaluate it using
peer-to-peer scenario with power-law distributed topology [2].
The rest of this paper is organized as follows. The next
section presents the references to related work done in P2P
resource discovery. Section III describes the NeuroSearch
algorithm as a solution for the resource discovery problem.
Section IV describes the optimization process and Section V
the test case used in the study. Section VI analyzes the
simulation results and in Section VII the paper is concluded.

II. RELATED WORK

Much research has been done regarding the resource
discovery problem. Adamic et al. [3] and Kim et al. [4]
propose a search strategy that utilizes the topological
properties of a power-law network. The search strategy first
proceeds towards highest-degree node, e.g. the node that has
the highest number of neighbors, and then gradually moves to
lower degree ones. The algorithm locates resources efficiently
if they can be found from the core of the network, but the
performance decreases when the central nodes are revisited in
search for lower degree nodes.

Lv et al. [5] evaluate BFS, expanding ring and random walk
search mechanisms with varying topologies, including random
graphs [2], power-law graphs and a snapshot of the Gnutella
network obtained in October 2000. These researchers find that
BFS is not scalable and in particular on Gnutella and power-
law graphs the effects of flooding are disastrous: the number of
messages increases drastically when TTL is increased.
Expanding ring, where TTL is extended gradually for BES, is
the first aid to the problem. However, because it forwards
duplicate messages to the nodes that the query has already
reached, a better solution to the problem using random walkers
is proposed by the researchers. A search initiates multiple
walkers and forwards them based on a random selection of a
neighbor. In addition to the TTL as a termination condition for
the walkers, Lv et al. use checking, where the random walkers
periodically check from the query originator whether the

> PAPER IDENTIFICATION NUMBER: 067-04 < 2

walker should be terminated or not. While random walkers
increase the number of hops and thus latency, they decrease
the total traffic because the search proceeds in a depth-first
manner.

Kalogeraki et al. [6] consider two search algorithms for the
resource discovery problem. The Modified Random BFS
Search behaves like BFS, but the neighbors select only a
random subset of neighbors for forwarding the query. This
reduces traffic, but adjusting the correct size of the subset for
various networks may be difficult. The researchers” work uses
a random graph in which all the nodes have approximately
similar degrees. Thus the performance of the algorithm in
power-law graphs cannot be directly determined from the
results. In another algorithm they present, called Intelligent
Search Mechanism, the nodes keep track of recent query
results provided by their neighbors. When a new query arrives,
the neighbors are sorted based on the similarity of the query to
earlier replies from the neighbor. Because the nodes keep track
of the earlier queries, the performance of the algorithm
improves as the network evolves.

Yang and Garcia-Molina [7] experimented with many types
of directed search strategies based on various heuristics. These
heuristics include the number of results returned, shortest

Query

(16 nodes)

1. Hidden layer 2. Hidden layer
(4 nodes)

average time to satisfaction, smallest average number of hops
of received results, the highest number of results returned,
shortest message queue, shortest latency and highest degree.
Their work suggests that, to minimize the time to satisfaction
measure, the best strategy is to pass the query to the neighbor
that has had the shortest average time to satisfaction for last
ten queries. Also, when considering the bandwidth use, the
most reliable measure is the smallest average number of hops
of received results for last ten queries. The heuristics used in
the study are based on history data collected locally in each
node.

Similar use of history data is found from the work by
Tsoumakos and Roussopoulos [8]. In their proposal, called
Adaptive Probabilistic Search algorithm, neighbors keep track
of the success rates of earlier queries and forward random
walkers probabilistically, based on the earlier success rate. The
algorithm is able to adapt to different query patterns and,
therefore, performs better than random walkers.

There are certain limitations in all the approaches described
above. First, each of these algorithms uses some control
parameters (for example time-to-live, the number of walkers or
the proportion of neighbors to forward the query) that can be
used to tune the algorithm. For a search algorithm, the number

Forward

Neighbor
Node

Neighbor
Node

. Forward

Bias

Hops
NeighborsOrder
ToNeighbors
CurrentNeighbors|
Sent
Received

Fig. 1: Processing of NeuroSearch resource query and the NeuroSearch neural network

> PAPER IDENTIFICATION NUMBER: 067-04 < 3

of control parameters should be kept to a minimal to allow
zero configurability when applied to a real environment.
Second, while some of these approaches have mechanisms to
adapt to the environment, they do not utilize the entire
potential of the environment because they rely only on one
strategy (for example the similarity of the query and earlier
replies, shortest average time to satisfaction for last 10 queries
or the success rate of earlier queries). In general, only one
strategy cannot be efficient in all scenarios and therefore an
efficient algorithm should be able to utilize many strategies at
the same time.

To overcome these limitations a neural network based
resource discovery algorithm called NeuroSearch was
designed. NeuroSearch learns by itself the correct behavior in
given network conditions and uses many combinations of
strategies to locate resources. To authors' knowledge this is the
first time when neural networks are being applied to resource
discovery problem.

III. NEUROSEARCH RESOURCE DISCOVERY ALGORITHM

The proposed algorithm, called as NeuroSearch, makes
decision to whom of the node's neighbors the resource request
message is forwarded based on the output neuron of three-
layer perceptron neural network. The algorithm is located
inside a peer node as shown in Fig. 1 and is the same for all
peers in the network. NeuroSearch can be represented as a
function O:7 —{0,1} , where se0,1]' is a 7-dimensional
input vector representing the state of a resource discovery
query. The output of O defines whether in a given state query
should be dropped O = 0 or forwarded to a peer O = 1 and is
evaluated for each neighbor peer separately.

When a resource request arrives to the algorithm it goes
through all the node's neighbors (denoted as receivers) one by
one with the neural network. The input parameters for the
neural network are:

e Bias is the bias term and has value 1.

e Hops is the number of hops the message has travelled.

e NeighborsOrder indicates in which rank this receiver
is in terms of number of neighbors compared to other
neighbors. The connection with highest rank has the
value of 0, second rank has the value of 1 and so on.

e ToNeighbors is the number of the receiver's neighbors.

e CurrentNeighbors is the number of node's neighbors.

e Sent has value 1| if the message has already been
forwarded to the receiver. Otherwise it has value of 0.

e Received has value 1 if the message has been received
earlier, else it has value of 0.

Hops and NeighborsOrder are scaled with the function

f'(x)zi and Neighbors and CurrentNeighbors with
) x+1

f(x)= 1 before giving them to the neural network. Scaling is
. X

performed to ensure that all the inputs are between 0 and 1.
There are two hidden layers in the network. In the first
hidden layer there are 15 nodes + bias and in the second

hidden layer 3 nodes + bias. Tanh is used as an activation

function in the hidden layers: ;(4)= _1, where a is the

I+e™
weighted sum of inputs to a neuron. Activation function in the
output node is the threshold function s(a)= 0,a<0,
L,a=0
Combining all together, the output O of the neural network
can be calculated with the following formula:

O=s(1+ i wyt(1+ i Wz,,f(i wi, S (I))))s

where /; is the value of input parameter i and w_ the neural

network weights on layer x in position y.

Whenever the query locates a queried resource a reply
message is sent back to the neighbor, which forwarded the
request to the node. When all the nodes in the query path have
forwarded the reply message backward, it is finally received
by the query initiator.

1IV. NEURAL NETWORK OPTIMIZATION
The weights w,, are unknown and therefore they need to be

adjusted to appropriate values. For doing this we use methods
of evolutionary computing [9]. The decision, which neural
networks are better than the others is done by counting the
query packets traversed in the test network and found
resources. The fitness for the neural network is defined in two
parts. Each query j is scored for the neural network /4 and the
fitness is calculated by summing up all the scores after n

queries: fitness, = ansc()rgj . The score is defined with the
Jj=1
following conditions:
1. If packets > 300 then score = 0
2. If foundResources = 0 then score = | _ 1
packets +1
3. If foundResources < availableResources |/ 2 and
foundResources > () then score = 50 X
foundResources — packets
4. If foundResources > availableResources / 2 then
score = 50 X availableResources | 2 — packets
In the equations availableResources is the maximum
number of resource intances that can be located in the query,
JfoundResources is the number of resource instances that the
neural network was able to locate for the query, and packets is
the number of query packets the neural network used for the
query. The constant value 300 was set as criterion for
determining when the neural network is considered to forward
the query indefinitely and the query can be stopped. Another
constant value, 50, was selected to be large enough to guide
the training process towards neural networks that locate more
resources than other neural networks. Now a neural network
could spend 49 query packets more in a query to locate one
additional resource compared to other neural network, which
located one resource less.
The first rule ascertains that an algorithm that eventually

> PAPER IDENTIFICATION NUMBER: 067-04 < 4

stops is always better than algorithm that does not. The goal of
finding half of the available resource instances was set to
demonstrate the algorithm’s ability to balance on a
predetermined quality of service level and not just on locating
all resource instances or one resource instance. The second
rule makes sure that if none of the resources are found then the
neural network should increase the number of query packets
sent to the network. The third rule states that if the number of
found resources is not enough then the neural network
develops only by locating more resources. Finally the last rule
ensures that when half of the available resource instances are
found from the network the fitness grows if neural network
uses fewer query packets.

The optimization process had an initial population of 30
neural networks whose weights were randomly defined from
interval [-0.2, 0.2]. Next, every neural network was tested in
the peer-to-peer simulation environment and fitness value
calculated. When all neural networks had been tested 15 best
were chosen for mutation and used to breed the new generation
of neural networks. As a result, 30 neural networks were
available for testing the new generation.

Mutation was based on the Gaussian random variation and
used weighted mutation parameter to improve the adaptability
of the evolutionary search. The random variation function was
similar to the one used by Fogel and Chellapilla in their
research [10] and is given as:

0,(j)=o,()exp(aV,(0.1)), j =1...N,,
w,(j)=w,()+0/ (HN O, j=1...N,,
where N = is the total number of weights and bias terms in

the neural network, __ 1 , N j(O,l) is a standard

V24N,
Gaussian random variable resampled for every j, O is the self-
adaptive parameter vector for defining the step size for finding

the new weight, () is the new weight value and index

1 <i <185 denotes the number of neuron enumerated over all
layers.

V. SIMULATION ENVIRONMENT

As a peer-to-peer simulation environment, we used Peer-to-
Peer Realm (P2PRealm) network simulator [11] that we have
developed. The simulator can be used to simulate the behavior
of a static peer-to-peer network and to train neural networks
using Gaussian random variation. P2PRealm has been
implemented using Java.

In the test case we used power-law graphs generated using
the Barabasi-Albert model [12]. A power-law network’s
1

neighbor distribution follows the power-curve p(j)=_—
k}/

5

where y =3 for Barabési-Albert graph. Therefore in power-
law networks there exist few hubs in the network that have
many neighbors as well as many nodes that have only few
neighbors. A power-law graph was selected because existing

P2P networks have shown to express power-law dependencies
[13]. The graphs tested contained 100 nodes with the highest
degree node having 25 neighbors. Small network size was
selected to allow visualisation of query paths in the network.
Dynamic changes e.g., node failures were not taken into
account to simplify the analysis. However, the approach can be
applied in dynamic scenarios also as shown in [14].

The test case data was divided into three distinct data sets as
described in [15]: a training set, a generalization set and a
validation set. Training set is used for training the neural
network. Generalization set is used to measure how well the
trained neural network performs with a new data set indicating
neural network’s ability to generalize. When performance
starts to decrease in generalization set the training can be
stopped, because the neural network adapts only to the training
set if training process is continued. Validation set is used as an
objective measure to verify how well the algorithm performs
with arbitrarily chosen new data set and ensures that the true
generalization ability of the neural network is being measured.

The training set contained two power-law topologies with
both being queried n = 50 times per generation for each neural
network. Two topologies were used to have neural networks
adapt to a wider range of situations than one topology would
have provided. The generalization set consisted of two power-
law topologies with 50 queries. When the performance started
to decrease in the generalization set the neural network having
highest fitness was selected and, as a validation set, one
topology with 100 queries was used to produce the final
simulation results.

For each topology, resource instances were allocated based
on the number of neighbors each node has. There were 25
different resources in the test case and the number of different
resources in a node was the same as the number of neighbors
the node had. This means that the largest hub had one instance
of all resources and the lower degree nodes only some of
these, randomly chosen from uniform distribution. The
querying nodes and queried resources were selected also
randomly from a uniform distribution for each query.

As stopping criteria for the optimization process, 100,000
generations were set. This seemed to take approximately two

ining ——

Generalization

M\A’M‘WNWWWMMMM et

{ “.‘ ik k’ﬁ

RV
gt e

35000

34800

34600

Fitness

34200

24000 L H H H
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Fig. 2: Evolution of the best neural networks in each
generation for training and generalization sets

> PAPER IDENTIFICATION NUMBER: 067-04 < 5

weeks on our desktop PC equipped with an AMD Athlon XP
1800 processor. The evolution of the best neural network in
each generation is shown in Fig. 2.

VI. SIMULATION RESULTS

To evaluate the difference between BFS and NeuroSearch,
we selected the best algorithm at the 85,736 generation and
calculated the number of packets used and found resources for
100 different queries using validation set. The 85,736™
generation was selected because between the 80,000 and
90,000 generations the neural networks had achieved steadily
good results and, in particular, in the 85,736™ generation,
neural network had the best fitness. The results are presented
in Fig. 3 and Fig. 4.

The results of Fig. 3 show that the performance of
NeuroSearch regarding the number of packets is nearer to BFS
with a time-to-live value 2 (BFS-2), rather than BFS with a
time-to-live value 3 (BFS-3). In average NeuroSearch
consumes 47.2 packets per query whereas BFS-2 consumes
30.0 and BFS-3 122.0 packets. The reason why there is some
variation in the number of packets for successive BFS queries
is that the number of delivered packets depends on which node
is querying. If the query starts from a central node (nodes 0-
10), it will produce more packets than the same query started
from an edge node (nodes 90-99) because the edge query has
fewer connections where BFS can spread. In case of
NeuroSearch, the performance is stable and does not depend
on which node is querying.

250 T T

NeuroSearch =
BFS with TTL2 -
BFS with TTL 3

Packets

20 T T T T

NeUroSearch’ =
BFSWth TTL2 ——
[BFS with TTL 3

Resources

10 20 30 40 50 60 70 80 %0 100

Fig. 4: Number of resources found by the algorithms

used query packets we can determine the efficiency of the
algorithms. These values are shown in Table I. The results
show that NeuroSearch’s efficiency is at the same level as
BFS-2’s locating a new resource every fifth packet. BFS-3
locates a new resource approximately every ninth packet.
Efficiency is easier to keep high when locating only few
resources because usually those can be found from the central
nodes alone. When the number of needed resources increases,
query has to spread more to the edges to locate the additional
resources. Therefore the efficiency of BFS-3 decreases
significantly. BFS-2 and NeuroSearch achieve near similar
efficiency indicating that NeuroSearch is able to sustain a good
efficiency even though it needs to locate more resources than
BFS-2.

TABLEI
EFFICIENCY OF THE ALGORITHMS
Algorithm Packets Resources Efficiency
BFS-2 3000 619 0.2063
BFS-3 12202 1295 0.1061
NeuroSearch 4719 975 0.2066

Querier

Fig. 3: Number of packets used by the algorithms

Fig. 4 shows how many resources the algorithms were able
to locate. NeuroSearch’s performance in terms of located
resources is quite similar to BFS-2 at central nodes, but better
in the edge nodes. Compared to BFS-3 NeuroSearch’s
performance is constantly lower, reaching the same
performance level only at some edge nodes. The reason why
NeuroSearch is satisfied with this level of performance is that
it has already reached the goal of finding half of the available
resources as defined in the fitness function and locating more
resources is not needed.

By calculating the ratio between the located resources and

For each query, NeuroSearch locates approximately half of
the resources or more, which can be seen in Fig. 5. There are
six queries in which NeuroSearch misses the target to locate
half of the resources. This variation results from the difference

20 T T T T T

NeUroSearch ——
Halfof resources

Resources

0 L L L L L
10 20 30 40 50 60 70 80 920 100
Querier

Fig. 5: Difference of located resources to half of resources

> PAPER IDENTIFICATION NUMBER: 067-04 < 6

between the training set and the validation set. Nonetheless,
the results indicate that the optimization process has found an
algorithm that is able to locate nearly half of the resources
from the network with high probability.

We analyzed the behavior of the best-evolved neural
network by tracking the path used by the queries. NeuroSearch
seems to prefer central nodes early in the query and uses
multiple paths for doing this. After reaching central nodes or
one hop later the spreading is stopped. The maximum number
of hops is 5. As verification for this the behavior of a typical
NeuroSearch query started from an edge node is illustrated in
Fig. 5. In the figure the query travels through the connections
denoted with a black line starting from node 99 with question
mark (?). Nodes marked with an exclamation mark (!) contain
the queried resource. In total the query uses 49 packets and
locates 11 resources. Six connections are traversed from both
directions, which is not shown in the figure.

VII. CONCLUSION

In this paper, a new resource discovery algorithm has been
proposed. NeuroSearch algorithm takes into account the
special characteristics of its environment and can be adjusted
to different kind of P2P networks. The algorithm’s
performance is also stable and competitive compared to the
BFS algorithm.

‘While NeuroSearch performs well compared to BFS it is by

L
95,

no means yet designed to be optimal. For example,
NeuroSearch does not yet include history-based inputs even
though they would significantly improve the performance.
Therefore, the results obtained in [3]-[8] will be considered in
forthcoming research on NeuroSearch. There are also other
directions that were left out of this research. First, we are
studying what improvements to the performance would be
gained by varying the neural network’s internal structure.
Second, we are aiming to find out what are the scalability
factors of NeuroSearch when the network size grows, and third
we are developing an optimal resource discovery algorithm
using global knowledge to be able to measure the best
efficiency a resource discovery algorithm can achieve. Also,
we are working on a solution to speed up the optimization
process by parallelizing the evolutionary algorithm using
distributed computing. This helps us to more accurately
determine the performance maximum of NeuroSearch.

ACKNOWLEDGMENT

The authors would like to thank the co-designers of
NeuroSearch Joni Toyryld, Yevgeniy Ivanchenko, Matthieu
Weber and Hermanni Hyytidld. Also we thank Tommi
Kirkkdinen for giving useful hints how to develop the
algorithm further and Barbara Crawford for proofreading the
article.

Fig. 5: Typical NeuroSearch resource query

> PAPER IDENTIFICATION NUMBER: 067-04 <

REFERENCES

[1] N. A. Lynch, Distributed Algorithms, Morgan Kauffmann Publishers,
1996.

[2] A.Barabasi, Linked, Perseus Publishing, 2002.

[3] L. A. Adamic, R. M. Lukose, and B. A. Huberman, “Local Search in
Unstructured Networks”, in Handbook of Graphs and Networks: From
the Genome to the Internet, Wiley-VCH, 2003, pp. 295-317.

[4] B.J.Kim, C.N. Yoon, S. K. Han, and H. Jeong, “’Path finding strategies
in scale-free networks”, Physical Review E 65, 2002.

[5] Q.Lv,P.Cao, E. Cohen, K. Li, and S. Shenker, “Search and Replication
in Unstructured Peer-to-Peer Networks”, in Proceedings of the 16™
International Conference on Supercomputing, ACM Press, 2002, pp.
84-95.

[6] V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-Yatzi, "A Local
Search Mechanism for Peer-to-Peer Networks”, in Proceedings of the
11" International ~Conference on Information and Knowledge
Management, ACM Press, 2002, pp. 300-307.

[7]1 B. Yang and H. Garcia-Molina, “Improving search in peer-to-peer
networks,” in Proceedings of the 22" IEEE International Conference
on Distributed Computing Systems (ICDCS’02), 2002.

[8] D. Tsoumakos and N. Roussopoulos, "Adaptive Probabilistic Search for
Peer-to-Peer Networks”, in Proceedings of the Third IEEE
International Conference on P2P Computing (P2P2003), IEEE Press,
2003, pp. 102-109.

[9]1 K. Miettinen, M. Mikeld, and P. Neittaanmiki and J. Périaux (eds.),
Evolutionary algorithms in engineering and computer science, John
Wiley & Sons, 1999.

[10] K. Chellapilla and D. Fogel, “Evolving neural networks to play checkers
without relying on expert knowledge”, /EEE Trans. on Neural
Networks, 10 (6), pp. 1382-1391, 1999.

[11] J. Toyryld, Building NeuroSearch — Intelligent Evolutionary Search
Algorithm For Peer-to-Peer Environment, Master’s Thesis, University
of Jyviskyld, 2004.

[12] A.-L. Barabasi and R. Albert, “Emergence of Scaling in Random
Networks”, Science 286 (1999) 509-512.

[13] M. A. Jovanovic, F. S. Annexstein, and K. A. Berman, Scalability
Issues in Large Peer-to-Peer Networks — A Case Study of Gnutella,
Technical report, University of Cincinnati, 2001.

[14] Y. Ivanchenko, Adaptation of Neural Nets For Resource Discovery
Problem in Dynamic And Distributed P2P Environment, Master’s
Thesis, University of Jyviskyld, 2004.

[15] A. P. Engelbrecht, Computational Intelligence: An Introduction, John
Wiley & Sons Ltd, 2002.

PVII

AN ADAPTIVE GLOBAL-LOCAL MEMETIC ALGORITHM TO
DISCOVER RESOURCES IN P2P NETWORKS

by

Ferrante Neri, Niko Kotilainen and Mikko Vapa 2007

In Applications of Evolutionary Computing, volume 4448 of Lectures Notes in
Computer Science, pages 61-70

Reproduced with kind permission of Springer Berlin / Heidelberg.

An Adaptive Global-Local Memetic Algorithm
to Discover Resources in P2P Networks

Ferrante Neri':2, Niko Kotilainen!, and Mikko Vapa!

! Department of Mathematical Information Technology, Agora,
University of Jyvéskyla, FI-40014, Finland
{neferran,npkotila,mikvapa}@jyu.fi
2 Dipartimento di Elettrotecnica ed Elettronica, Politecnico di Bari,
Via E. Orabona 4, 70125, Italy
neri@deemail.poliba.it

Abstract. This paper proposes a neural network based approach for
solving the resource discovery problem in Peer to Peer (P2P) networks
and an Adaptive Global Local Memetic Algorithm (AGLMA) for per-
forming the training of the neural network. This training is very chal-
lenging due to the large number of weights and noise caused by the
dynamic neural network testing. The AGLMA is a memetic algorithm
consisting of an evolutionary framework which adaptively employs two
local searchers having different exploration logic and pivot rules. Fur-
thermore, the AGLMA makes an adaptive noise compensation by means
of explicit averaging on the fitness values and a dynamic population siz-
ing which aims to follow the necessity of the optimization process. The
numerical results demonstrate that the proposed computational intelli-
gence approach leads to an efficient resource discovery strategy and that
the AGLMA outperforms two classical resource discovery strategies as
well as a popular neural network training algorithm.

1 Introduction

During recent years the use of peer-to-peer networks (P2P) has significantly
increased and thus demand of high performance peer-to-peer networks is con-
stantly growing. In order to obtain proper functioning of a P2P network a cru-
cial point is to efficiently execute the P2P resource discovery, since an improper
resource discovery strategy would lead to overwhelming query traffic and conse-
quently to a waste of bandwidth for each single user.

This problem has been intensively analyzed and several solutions have been
proposed in commercial packages and scientific literature. The solutions so far
proposed can be classified into two categories: breadth-first search (BFS) and
depth-first search (DFS). BFS strategies forward a query to multiple neighbors
at the same time whereas DFS strategies forward only to one neighbor.

BFS strategies have been used in Gnutella, where the query is forwarded to
all neighbors and the forwarding is controlled by a time-to-live parameter. This
parameter is defined as the amount of hops required to forward the query. Two
nodes are said to be n hops apart if the shortest path between them has length

M. Giacobini et al. (Eds.): EvoWorkshops 2007, LNCS 4448, pp. 61-70, 2007.
© Springer-Verlag Berlin Heidelberg 2007

62 F. Neri, N. Kotilainen, and M. Vapa

n [1]. The main disadvantage of the Gnutella’s mechanism is that it generates
a massive traffic of query messages when the time-to-live parameter is high.
In order to reduce query traffic, Lv et al. [2] proposed the Fzpanding Ring.
This strategy establishes that the time-to-live parameter is gradually increased
until enough resources have been found. Although use of the Fzpanding Ring
is beneficial in terms of query packet reduction, it introduces some delay to
resource discovery and thus implies a longer waiting time for the user. Kalogeraki
et al. [3] and Menascé [4] proposed that only a subset of neighbors are selected
randomly for forwarding. While in [3] a mechanism is proposed which stores
the performance of the queries previously done for each neighbor and then uses
this memory to direct subsequent queries, in [4] the earlier replies are cached
in directory entries and queried prior to using broadcast probability. Yang and
Garcia-Molina [1] proposed to heuristically select the first neighbor and further
uses BFS for forwarding the query. In Gnutella2 a trial query is sent to the
neighbors and estimates how widely the actual query should be forwarded.

In the DFS strategies, selection of the neighbor for query forwarding is per-
formed by means of heuristics. Lv et al. [2] studied the use of multiple random
walkers which periodically check the query originator in order to verify whether
the query should be forwarded further. Tsoumakos and Roussopoulos [5] pro-
posed using the feedback from previous queries in order to tune probabilities for
further forwarding of random walkers. Crespo and Garcia-Molina [6] proposed
routing indices, which provide shortcuts for random walkers in locating resources.
Sarshar et al. [7] proposed replicating a copy of resources and thus ensure that
resource discovery strategy locates at least one replica of the resource.

The main limitation of the previous studies, for both BF'S and DFS strategies,
is that all the approaches are restricted to only one search strategy. On the con-
trary, for the same P2P network, in some conditions it is preferable to employ
both BFS and DFS strategies. In order to obtain a flexible search strategy, which
intelligently takes into account the working conditions of the P2P network, Vapa
et al. [8] proposed a neural network based approach (NeuroSearch) which adap-
tively combines BF'S and DFS. In NeuroSearch, a trained neural network is able
to map a specific input set to forward decisions in an if-then logic. Thanks to
this logic, the resource discovery strategy can be applied also in devices with
limited computing power. On the other hand, training neural networks to adapt
to various conditions is challenging since it requires training in multiple topo-
logical scenarios thus leading to complicated computational requirements. It is
therefore fundamental to investigate efficient training algorithms which lead to
high performance in a short training time.

2 Problem Description

NeuroSearch [8] is a neural network-based approach which combines different
local information units together as an input to multi-layer perceptron (MLP)
neural network [9]. The neural network employed in NeuroSearch contains two
hidden layers, both having 10 neurons and two different transfer functions in

An AGLMA to Discover Resources in P2P Networks 63

Fig. 1. MLP Neural Network Fig. 2. Query Forwarding

hidden and output layers. The structure of this neural network (see Fig. 1)
has been selected on the basis of previous studies carried out by means of the
P2PRealm simulation framework [10]. Details regarding the functioning of this
neural network are given in [8] and [10]. We characterize the query forwarding
situation with a model consisting of 1) the previous forwarding node, 2) the
currently forwarding node and 3) the receiver of the currently forwarding node.
Upon receiving a query, the currently forwarding node selects the first of its
neighbors and determines the inputs, related to that neighbor, of the neural
network. The neural network output is then calculated. This output establishes
whether or not the query will be forwarded to the neighbor. Next, all other
neighbors including the previous forwarding node, are processed in a similar
manner by means of the same neural network. Fig. 2, shows an example of the
functioning of a P2P network with neural network based forwarding. The circles
shown in the figure represent peers of the P2P network. The arcs between the
peers represent the Transmission Control Protocol communication links between
the peers. The rectangles represent a neural network evaluation for different
neighbors. This paper addresses the problem in the training of a neural network
(i.e. the determination of the set of weight coefficients W) of the kind in Fig. 1
with the aim summarized in Fig 2. As shown in Fig. 1, the weights can be divided
into three categories on the basis of the layer to which they belong to. There are
22 input neurons and 10 neurons on both the hidden layers. Since one input is
constant (Bias, see [8]) the total amount of weights is 22+ 9 +10% 9+ 10 = 298.
The weights can take values within the range (—oo, 00). In order to estimate the
quality of a candidate solution, the performance of the P2P network is analyzed
with the aid of a simulator whose working principles are described in [10] and a
certain number n of queries are performed. For each query, the simulator returns
two outputs: the number of query packets P used in the query and the number
of found resource instances R during the query. At each j** query, these outputs
are combined in the following way and F} is determined:

0 if P> 300
1 : —
50% R— P if P <300 ANDO < R < 4F
50« 4 — Pif P <300 AND 4F <R

F; =

64 F. Neri, N. Kotilainen, and M. Vapa

In (1), the amount of Available Resources (AR) instances is constant at each
query and the constant values 300 and 50 have been set according to the criterion
explained in [8]. It must be noted that due to its formulation each F; could
likely contain several plateaus (see (1)). The total fitness over the n queries
n
is given by F' = " F;(W). It is important to remark that multiple queries
j=1
(n = 10) are needed in order to ensure that the neural network is robust in
different query conditions. The querying peer and the queried resource need
to be changed to ensure that the neural network is not only specialized for
searching resources from one part of the network or one particular resource
alone. Therefore, two consecutive fitness evaluations do not produce the same
fitness value for the same neural network. Since n queries are required and, for
each query, the first forwarding node is chosen at random, fitness F' is noisy.
This noise is not Gaussian. Let us indicate with PN (n) the distribution of this
noise and thus formulate the optimization problem addressed in this paper:

max (F (W) + Z) in (—o00,0)***;Z ~ PN (n) (2)

3 The Adaptive Global-Local Memetic Algorithm

In order to solve the problem in (2), the following Adaptive Global-Local Memetic
Algorithm (AGLMA) has been implemented.

Initialization. An initial sampling made up of S;OP individual has been exe-
cuted pseudo-randomly with a uniform distribution function over the interval
[—0.2,0.2]. This choice can be briefly justified in the following way. The weights
of the initial set of neural networks must be small and comparable among each
other in order to avoid one or a few weights dominating with respect to the
others as suggested in [11], [12].

Parent Selection and Variation Operators. All individuals of the pop-
ulation Sy, undergo recombination and each parent generates an offspring.
The variation occurs as follows. Associated with each candidate solution 7 is
a self-adaptive vector h; which represents a scale factor for the exploration.
More specifically, at the first generation the self-adaptive vectors h; are pseudo-
randomly generated with uniform distribution within [—0.2,0.2] (see [11], [12]).
At subsequent generations each self-adaptive vector is updated according to

[11], [12]:
REFL(5) = BE (5) eTNIOD) for j=1,2..n (3)

where k is the index of generation, j is the index of variable (n = 298), N; (0, 1)

is a Gaussian random variable and 7 = —2— = 0.1659. Each corresponding
n

candidate solution W; is then perturbed as follows [11], [12]:
WE () = W) + BiT () N; (0,1) for j=1,2..m (4)

Fitness Function. In order to take into account the noise, function F' is cal-
culated ng times and an Ezplicit Averaging technique is applied [13]. More

An AGLMA to Discover Resources in P2P Networks 65

specifically, each set of weights for a neural network (candidate solution) is eval-
uated by means of the following formula:
~ . g'i
F=F - —
mean \/E
where F! . and o! are respectively the mean value and standard deviation
related to the ng samples performed to the i*" candidate solution.

(5)

The penalty term % takes into account distribution of the data and the

number of performed samples [14]. Since the noise strictly depends on the so-
lution under consideration, it follows that for some solutions the value of o
is relatively small (stable solutions) and so penalization is small. On the other
hand, other solutions could be unstable and score 0 during some samples and
give a high performance value during other samples. In these cases o' is quite
large and the penalization must be significant.

Local Searchers. Two local searchers with different features in terms of search
logic and pivot rule have been employed. These local searchers have the role of
supporting the evolutionary framework, offering new search directions and ex-
ploiting the available genotypes [15].

1)Simulated Annealing. The Simulated Annealing (SA) metaheuristic [16]
has been chosen since it offers an exploratory perspective in the decision space
which can choose a search direction leading to a basin of attraction different from
starting point Wy and, thus, prevents an undesired premature convergence. The
exploration is performed by using the same mutation scheme as was described
in equations (3) and (4) for an initial self-adaptive vector hy pseudo-randomly
sampled in [—0.2,0.2].

The main reason for employing the SA in the AGLMA is that the evolution-
ary framework should be assisted in finding better solutions which improve the
available genotype while at the same time exploring areas of the decision space
not yet explored. It accepts, with a certain probability, solutions with worse per-
formance in order to obtain a global enhancement in a more promising basin of
attraction. In addition, the exploratory logic aims to overcome discontinuities of
the fitness landscape and to “jump” into a plateau having better performance.
For these reasons the SA has been employed as a “global” local searcher.

2)Hooke-Jeeves Algorithm. The Hooke-Jeeves Algorithm (HJA) [17] is a de-
terministic local searcher which has a steepest descent pivot rule. The HJA is
supposed to efficiently exploit promising solutions enhancing their genotype in
a meta-Lamarckian logic and thus assist the evolutionary framework in quickly
climbing the basin of attractions. In this sense the HJA can be considered as a
kind of “local” local searcher integrated in the AGLMA.

Adaptation. In order to design a robust algorithm [15], at the end of each
generation the following parameter is calculated:

Favg - Fbest
-Fu)orst - Fbest

p=1- (6)

66 F. Neri, N. Kotilainen, and M. Vapa

where Fworst, Fbest, and Favg are the worst, best, and average of the fitness
function values in the population, respectively. As highlighted in [18], ¥ is a
fitness-based measurement of the population diversity which is well-suited for
flat fitness landscapes. The employment of this parameter, taking into account
the presence of plateaus in the fitness landscape (i.e. areas with a very low vari-
ability in the fitness values.) 1, efficiently measures the population diversity even
when the range of variability of all fitness values is very small. The population
has high diversity when ¢ ~ 1 and low diversity when ¢ ~ 0. A low diversity
means that the population is converging (possibly in a suboptimal plateau). We
remark that the absolute diversity measure used in [14], [19], [20] and [21] is
inadequate in this case, since, according to this, the population diversity would
be very low most of the time.

Coordination of the local searchers. The SA is activated by the condition
¢ € [0.1,0.5]. This adaptive rule is based on the observation that for values of
1 > 0.5, the population diversity is high and therefore the evolutionary frame-
work needs to have a high exploitation of the available genotypes (see [19], [18]
and [21]). On the other hand, if ¢) < 0.5 the population diversity is decreasing
and application of the SA can introduce a new genotype in the population which
can prevent a premature convergence. In this sense, the SA has been employed
as a local searcher with “global” exploratory features. The condition regarding
the lower bound of usability of the SA (¢» > 0.1) is due to the consideration that
if ¢» < 0.1 application of the SA is usually unsatisfactory since it most likely
leads to a worsening in performance.

Moreover, the SA, in our implementation, is applied to the second best in-
dividual. This gives a chance at enhancing a solution with good performance
without possibly ruining the genotype of the best solution. The initial temper-
ature Temp® has been adaptively set Temp® = ‘Fm,g — Fbest’. This means that
the probability of accepting a worse solution depends on the state of the conver-
gence. In other words, the algorithm does not accept worse solutions when the
convergence has practically occurred.

The HJA is activated when 1 < 0.2 and is applied to the solution with best
performance. The basic idea behind this adaptive rule is that the HJA has the
role of quickly improving the best solution while staying in the same basin of
attraction. In fact, although evolutionary algorithms are efficient in detecting
a solution which is near the optimum, they are not so efficient in “ending the
game” of optimization. In this light, the action of the HJA can be seen as purely
“local”. The condition 1 < 0.2 means that the HJA is employed when there are
some chances that optimal convergence is approaching. An early application of
this local searcher can be ineflicient since a high exploitation of solutions having
poor fitness values would not lead to significant improvements of the population.

It should be noted that in the range ¢ € [0.1,0.2] both local searchers are ap-
plied to the best two individuals of the population. This range is very critical for
the algorithm because the population is tending towards a convergence but still
has not reached such a condition. In this case, there is a high risk of premature
convergence due to the presence of plateaus and suboptimal basins of attraction

An AGLMA to Discover Resources in P2P Networks 67

or false minima introduced by noise. Thus, the two local searchers are supposed
to “compete and cooperate” within the same generation, merging the “global”
search power of the SA and the “local” search power of the HJA. An additional
rule has been implemented. When the SA has succeeded in enhancing the start-
ing solution, the algorithm attempts to further enhance it by the application of
the HJA under supervision of the evolutionary framework.

Dynamic population size in survivor selection. The population is resized
at each generation and the S),, individuals having the best performance are
selected for the subsequent generation:

SPOP:Sgop—i_S;op' (1—1/1), (7)

where Sgop and S, are the fixed minimum and maximum sizes of the variable
population S, respectively.

The dynamic population size has two combined roles. The first is to massively
explore the decision space and thus prevent a possible premature convergence
(see [19]), the second is to Implicitly Average in order to compensate for noise
by means of the evaluations of similar individuals [13]. According to the first
role, when 1 ~ 0 the population is converging and a larger population size
is required to increase the exploration and possibly inhibit premature conver-
gence by offering new search directions. On the other hand, if the population is
spread out in the decision space it is highly desirable that the most promising
solution leads the search and that the algorithm exploits this promising search
direction. According to the second role, it is well-known that large population
sizes are helpful in defeating the noise [22]. Furthermore, recent studies [14], [23]
have noted that the noise jeopardizes functioning of the selection mechanisms
especially for populations made up of individuals having similar performance,
since the noise introduces a disturbance in pair-wise comparison. Therefore, the
AGLMA aims to employ a large population size in critical conditions (low di-
versity) and a small population size when a massive averaging is unnecessary.
The algorithm stops when either a budget condition on the number of fitness
evaluations is satisfied or ¢ takes a value smaller than 0.01.

4 Numerical Results

For the AGLMA 30 simulation experiments have been executed. Each experi-
ment has been stopped after 1.5 x 10° fitness evaluations. At the end of each
generation, the best fitness value has been saved. These values have been av-
eraged over the 30 experiments available. The average over the 30 experiments
defines the Average Best Fitness (ABF). Analogously, 30 experiments have been
carried out with the Checkers Algorithm (CA) described in [11], [12] according
to the implementation in [8], and the proposed here Adaptive Checkers Algo-
rithm (ACA) which is the CA with the fitness as shown in (5) and the adaptive
population size as shown in (7). For the same P2P network, the BFS according
to the implementation in Gnutella and the random walker DFS proposed in [2]

68 F. Neri, N. Kotilainen, and M. Vapa

have been applied. Table 1 shows the parameter settings for the three algorithms
and the optimization results. The final fitness F obtained by the most success-
ful experiment (over the 30 sample runs), the related number of query packets
P used in the query and the number of found resource instances R during the
query are given. In addition the average best fitness at the end of the experiments
<F >, the final fitness of the least successful experiment F* and the related
standard deviation are shown. Since the BFS follows a deterministic logic, thus
only one fitness value is shown. On the contrary, the DFS under study employs
a stochastic structure and thus the same statistic analysis as that of CA, ACA
and AGLMA over 30 experiments has been carried out.

Table 1. Parameter setting and numerical results

PARAMETER | AGLMA | CA | ACA [BFS|DFS
EVOLUTIONARY FRAMEWORK
Spop 30 30 30 - -
Spop € [20,40] | 30 |e[20,40]] - | -
sample size ng 10 — 10 — —
SIMULATED ANNEALING
initial temperature Temp®| adaptive — — — —
temperature decrease hyperbolic | — - - -
maximum budget per run 600 - - - -
HOOKE-JEEVES ALGORITHM
exploratory radius €1[0.5,0.01]| - - - -
maximum budget per run 1000 - - - -
NUMERICAL RESULTS

P 350 372 355 819 | 514
R 81 81 81 81 | 81

Jag 3700 3678 3695 [3231| 3536

<F> 3654 3582 3647 - 13363

Fv 3506 3502 | 3504 — 13056

std 36.98 37.71| 36.47 - |107.9

Numerical results in Table 1 show that the AGLMA and ACA outperform the
CA and that the AGLMA slightly outperformed the ACA in terms of the final
solution found. Moreover, the AGLMA clearly outperforms the BFS employed
in Gnutella and the DFS.

Figures 3 and 4 show the comparison of the performance. As shown, the
AGLMA has a slower convergence than the CA and the ACA but reaches a
final solution having better performance. It is also clear that the ACA has inter-
mediate performance between the CA and AGLMA. The ACA trend, in early
generations, has a rise quicker than the AGLMA but slower than the CA. On
the other hand, in late generations, the ACA outperforms the CA but not the
AGLMA. Regarding effectiveness of the noise filtering components, Fig. 4 shows
that the ACA and the AGLMA are much more robust with respect to noise than
the CA. In fact, the trend of the CA performance contains a high amplitude and

An AGLMA to Discover Resources in P2P Networks 69

3680

AGLMA_ AGLMA
T
3500 P « 3660
§ cA ACA 2
£ £ 3640 i
E bot ACA
@ 3000) K]
2 23620
8)
g 83600
g 2500 g
© © 3580, 4
CA
2000, 5 10 15 35603 11 12 1.3 1.4 1.5
fitness evaluation x10° fitness evaluation x 10°
Fig. 3. Algorithmic Performance Fig. 4. Performance (zoom detail)

frequency ripple, while the ACA and AGLMA performance are roughly mono-
tonic. Regarding effectiveness of the local searchers, the comparison between the
ACA and the AGLMA shows that the AGLMA slightly outperforms the ACA
tending to converge to a solution having a better performance.

5 Conclusion

This paper proposes an AGLMA for performing the training of a neural net-
work, which is employed as computational intelligence logic in P2P resource
discovery. The AGLMA employs averaging strategies for adaptively executing
noise filtering and local searchers in order to handle the multivariate fitness
landscape. These local searchers execute the global and local search of the de-
cision space from different perspectives. The numerical results show that the
application of the AGLMA leads to a satisfactory neural network training and
thus to an efficient P2P network functioning. The proposed neural network along
with the learning strategy carried by the AGLMA allows the efficient location
of resources with little query traffic. Thus, with reference to classical resource
discovery strategies (Gnutella BFS and DFS), the user of the P2P network ob-
tains plentiful amounts of information about resources consuming a definitely
smaller portion of bandwidth for query traffic. Regarding performance during
the optimization process, comparison with a popular metaheuristic present in
literature shows the superiority of the AGLMA in terms of final solution found
and reliability in a noisy environment.

References

1. Yang, B., Garcia-Molina, H.: Improving search in peer-to-peer networks. In: Proc.
of the 22nd Intern. Conf. on Distributed Computing Systems. (2002) 5-14

2. Lv, Q., Cao, P., Cohen, E.; Li, K., Shenker, S.: Search and replication in un-
structured peer-to-peer networks. In: Proc. of the 16th ACM Intern. Conf. on
Supercomputing. (2002) 84-95

3. Kalogeraki, V., Gunopulos, D., Zeinalipour-Yazti, D.: A local search mechanism
for peer-to-peer networks. In: Proc. 11th ACM Intern. Conf. on Information and
Knowledge Management. (2002) 300-307

70

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

F. Neri, N. Kotilainen, and M. Vapa

. Menascé, D.A.: Scalable p2p search. IEEE Internet Computing 7(2) (2003) 83-87
. Tsoumakos, D., Roussopoulos, N.: Adaptive probabilistic search for peer-to-peer

networks. In: Proc. 3rd IEEE Intern. Conf. on P2P Computing. (2003) 102-109

. Crespo, A., Garcia-Molina, H.: Routing indices for peer-to-peer systems. In: Proc.

of the 22nd IEEE Intern. Conf. on Distributed Computing Systems. (2002) 23-33

. Sarshar, N., Boykin, P.O., Roychowdhury, V.P.: Percolation search in power law

networks: Making unstructured peer-to-peer networks scalable. In: Proc. of the
IEEE 4th Intern. Conf. on P2P Computing. (2004) 2-9

. Vapa, M., Kotilainen, N.; Auvinen, A., Kainulainen, H., Vuori, J.: Resource dis-

covery in p2p networks using evolutionary neural networks. In: Intern. Conf. on
Advances in Intelligent Systems - Theory and Applications, 067-04. (2004)

. Engelbrecht, A.: Computational Intelligence-An Introduction. J. Wiley (2002)
. Kotilainen, N., Vapa, M., Keltanen, T., Auvinen, A., Vuori, J.: P2prealm - peer-

to-peer network simulator. In: IEEE Intern. Works. on Computer-Aided Modeling,
Analysis and Design of Communication Links and Networks. (2006) 93-99
Chellapilla, K., Fogel, D.: Evolving neural networks to play checkers without relying
on expert knowledge. IEEE Trans. Neural Networks, 10(6) (1999) 1382-1391
Chellapilla, K., Fogel, D.: Evolving an expert checkers playing program without
using human expertise. IEEE Trans. Evol. Computation, 5(4) (2001) 422-428
Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments - a survey.
IEEE Transactions on Evolutionary Computation 9(3) (2005) 303-317

Neri, F., Cascella, G.L., Salvatore, N., Kononova, A.V., Acciani, G.: Prudent-
daring vs tolerant survivor selection schemes in control design of electric drives. In
Rothlauf, F. et al., ed.: Applications of Evolutionary Computing, LNCS. Volume
3907., Springer (2006) 805-809

Krasnogor, N.: Toward robust memetic algorithms. In W. E. Hart et al., ed.:
Recent Advances in Memetic Algorithms, Springer (2004) 185-207

Cerny, V.: A thermodynamical approach to the traveling salesman problem. Jour-
nal of Optimization, Theory and Applications 45(1) (1985) 41-51

Hooke, R., Jeeves, T.A.: Direct search solution of numerical and statistical prob-
lems. Journal of the ACM, 8 (1961) pp. 212-229

Neri, F., Toivanen, J., Cascella, G.L., Ong, Y.S.: An adaptive multimeme algo-
rithm for designing hiv multidrug therapies. IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics, Special Issue on Computational Intelligence
Approaches in Computational Biology and Bioinformatics (2007) to appear.
Caponio, A., Cascella, G.L., Neri, F., Salvatore, N., Sumner, M.: A fast adaptive
memetic algorithm for on-line and off-line control design of PMSM drives. IEEE
Trans. on System Man and Cybernetics-part B 37(1) (2007) 28—41.

Neri, F., Toivanen, J., Makinen, R.A.E.: An adaptive evolutionary algorithm with
intelligent mutation local searchers for designing multidrug therapies for HIV. Ap-
plied Intelligence, Springer (2007) to appear.

Neri, F., Mékinen, R.A.E.: Hierarchical evolutionary algorithms and noise com-
pensation via adaptation. In S. Yang et al., ed.: Evolutionary Computation in
Dynamic and Uncertain Environments, Springer (2007) to appear.

Miller, B.L., Goldberg, D.E.: Genetic algorithms, selection schemes, and the vary-
ing effects of noise. Evolutionary Computation 4(2) (1996) 113-131

Schmidt, C., Branke, J., Chick, S.E.: Integrating techniques from statistical ranking
into evolutionary algorithms. In F. Rothlauf et al., ed.: Applications of Evolution-
ary Computing. Volume LNCS 3907., Springer (2006) 752-763

PVIII

A MEMETIC-NEURAL APPROACH TO DISCOVER
RESOURCES IN P2P NETWORKS

by

Ferrante Neri, Niko Kotilainen and Mikko Vapa 2008

In Recent Advances in Evolutionary Computation for Combinatorial
Optimization, volume 153 of Studies in Computational Intelligence, pages 113-129

Reproduced with kind permission of Springer Berlin / Heidelberg.

8

A Memetic-Neural Approach to Discover
Resources in P2P Networks

Ferrante Neri, Niko Kotilainen, and Mikko Vapa

Department of Mathematical Information Technology, Agora, University of
Jyvaskyld, P.O. Box 35 (Agora), FI-40014 University of Jyvéskyla, Finland
neferran@cc.jyu.fi, niko.kotilainen@jyu.fi, mikko.vapa@jyu.fi

Summary. This chapter proposes a neural network based approach for solving the re-
source discovery problem in Peer to Peer (P2P) networks and an Adaptive Global Local
Memetic Algorithm (AGLMA) for performing in training of the neural network. The
neural network, which is a multi-layer perceptron neural network, allows the P2P nodes
to efficiently locate resources desired by the user. The necessity of testing the network
in various working conditions, aiming to obtain a robust neural network, introduces
noise in the objective function. The AGLMA is a memetic algorithm which employs
two local search algorithms adaptively activated by an evolutionary framework. These
local searchers, having different features according to the exploration logic and the
pivot rule, have the role of exploring decision space from different and complemen-
tary perspectives. Furthermore, the AGLMA makes an adaptive noise compensation
by means of explicit averaging on the fitness values and a dynamic population sizing
which aims to follow the necessity of the optimization process. The numerical results
demonstrate that the proposed computational intelligence approach leads to an efficient
resource discovery strategy and that the AGLMA outperforms an algorithm classically
employed for executing the neural network training.

Keywords: Memetic Algorithms, Neural Networks, P2P Networks, Telecommunication,
Noisy Optimization Problems.

8.1 Introduction

During recent years the use of peer-to-peer networks (P2P) has significantly
increased. P2P networks are widely used to share files or communicate with
each other using Voice over Peer-to-Peer (VoP2P) systems, for example Skype.
Due to the large number of users and large files being shared communication
load induced to the underlying routers is enormous and thus demand of high
performance in peer-to-peer networks is constantly growing.

In order to obtain a proper functioning of a peer-to-peer network a crucial
point is to efficiently execute the peer-to-peer resource discovery, meaning the
search of information (files, users, devices etc.) within a network of computers
connected by Internet. An improper resource discovery mechanism would lead
to overwhelming query traffic within the P2P network and consequently to a
waste of bandwidth of each single user connected to the network.

C. Cotta and J. van Hemert (Eds.): Recent Advances in Evol. Comp., SCI 153, pp. 113-129, 2008.
springerlink.com © Springer-Verlag Berlin Heidelberg 2008

114 F. Neri, N. Kotilainen, and M. Vapa

Although several proposals are present in commercial packages (e.g., Gnutella
[151] and KaZaA), this problem is still intensively studied in literature. Resource
discovery strategies can be divided into two classes: breadth-first search and
depth-first search. Breadth-First Search (BFS) strategies forward a query to mul-
tiple neighbors at the same time whereas Depth-First Search (DFS) strategies
forward only to one neighbor. In both strategies, the choice of those neighbors
receiving the query is carried out by heuristic methods. These heuristics might
be stochastic e.g. random selection [152], or based on deterministic rules [153].

BF'S strategies have been used in Gnutella [151], where the query is forwarded
to all neighbors and the forwarding is controlled by a time-to-live parameter. This
parameter is defined as the amount of hops required to forward the query. Two
nodes are said to be n hops apart if the shortest path between them has length
n [153]. The main disadvantage of the Gnutella’s mechanism is that it generates
a massive traffic of query messages when the time-to-live parameter is high thus
leading to a consumption of an unacceptable amount of bandwidth.

In order to reduce query traffic, Lv et al. [152] proposed the Ezpanding Ring.
This strategy establishes that the time-to-live parameter is gradually increased
until enough resources have been found. Although use of the Expanding Ring
is beneficial in terms of query reduction, it introduces some delay to resource
discovery and thus implies a longer waiting time for the user. Kalogeraki et
al. [154] proposed a Modified Random Breadth-First Search (MRBFS) as an en-
hancement of the Gnutella’s algorithm. In MRBFS, only a subset of neighbors
are selected randomly for forwarding. They also proposed an intelligent search
mechanism which stores the performance of the queries previously done for each
neighbor. This memory storage is then used to direct the subsequent queries. Fol-
lowing the ideas of Kalogeraki et al., Menascé [155] proposed that only a subset
of neighbors are randomly selected for forwarding. Yang and Garcia-Molina [153]
proposed the Directed BFS (DBFS), which selects the first neighbor based on
one of several heuristics and further uses BFS for forwarding the query. They
also proposed the use of local indices for replicating resources to a certain radius
of hops from a node. In Gnutella2 [156] a trial query is sent to the neighbors
and, on the basis of obtained results, an estimate of how widely the actual query
should be forwarded is calculated.

In the DFS strategies, selection of the neighbor chosen for the query forward-
ing is performed by means of heuristics. The main problem related to use of
this strategy is the proper choice of this heuristic. A popular heuristic employed
with this aim is the random walker which selects the neighbor randomly. The
random walker terminates when a predefined number of hops have been trav-
elled or when enough resources have been found. Lv et al. [152] studied the
use of multiple random walkers which periodically check the query originator
in order to verify if the query should still be forwarded further. Tsoumakos
and Roussopoulos [157] proposed an Adaptive Probabilistic Search (APS). The
APS makes use of feedback from previous queries in order to tune probabilities
for further forwarding of random walkers. Crespo and Garcia-Molina [158] pro-
posed the routing indices, which provide shortcuts for random walkers in locating

8 A Memetic-Neural Approach to Discover Resources in P2P Networks 115

resources. Sarshar et al. [159] proposed the Percolation Search Algorithm (PSA)
for power-law networks. The idea is to replicate a copy of resources to a sufficient
number of nodes and thus ensure that resource discovery algorithm locates at
least one replica of the resource.

The main limitation of the previous studies, for both BFS and DFS strategies,
is that all the approaches are restricted to only one search strategy. On the
contrary, for the same P2P network, in some conditions it is preferable to employ
both BFS and DFS strategies. In order to obtain a flexible search strategy,
which intelligently takes into account the working conditions of the P2P network,
Vapa et al. [160] proposed a neural network based approach (NeuroSearch). This
strategy combines multiple heuristics as inputs of a neural network in order to
classify among all its neighbors those which will receive the query, thus it does
not fix a priori the search strategy (breadth-first or depth-first) to be employed.
Depending on the working conditions of the P2P network, NeuroSearch can
alternate between both search strategies during a single query.

Since NeuroSearch is based on a neural network, it obviously follows that an
initial training is needed. The resulting optimization problem is very challenging
because neural networks have a large number of weights varying from minus to
plus infinity. In addition, in order to obtain a robust search strategy it is required
that training is performed in various working conditions of a P2P network. It
is therefore required that many queries are executed, thus making the training
problem computationally expensive and the optimization environment noisy.

8.2 NeuroSearch - Neural Network Based Query
Forwarding

As highlighted above, NeuroSearch [160] is a neural network-based approach for
solving the resource discovery problem. NeuroSearch combines different local
information units together as an input to multi-layer perceptron (MLP) neu-
ral network [161]. Multi-layer perceptron is a non-linear function approximator,
which is organized into different layers: an input layer, one or more hidden layers
and an output layer. Adjacent layers are connected together with weights, these
weights are the parameters of the function approximator to be determined by
the learning process. Hidden and output layers contain neurons, which take a
weighted sum of outputs from the previous layer and use a non-linear trans-
fer function to produce output to the next layer. NeuroSearch uses two hidden
layers, both having 10 neurons and two different transfer functions in hidden
and output layers. The structure of this neural network has been selected on
the basis of previous studies carried out by means of the P2PRealm simulation
framework [162].

We characterize the query forwarding situation with a model consisting of
1)the previous forwarding node, 2)the currently forwarding node and 3)the re-
ceiver of the currently forwarding node. Upon receiving a query, the currently
forwarding node selects the first of its neighbors and determines the inputs,

116 F. Neri, N. Kotilainen, and M. Vapa

related to that neighbor, of the neural network. Then, the neural network output
is calculated. This output establishes whether or not the query will be forwarded
to the neighbor. Next, all other neighbors including the previous forwarding
node, are processed in a similar manner by means of the same neural network.
If some of the neighbors were forwarded, then new query forwarding situations
will occur until all forwarding nodes have decided not to forward query further.

Fig. 8.1 shows the functioning of a P2P network with neural network based
forwarding.

Fig. 8.1. Query Forwarding

The circles shown in the figure represent the peers of the P2P network. The
arcs between the peers represent the Transmission Control Protocol (TCP) com-
munication links between the peers. The rectangles represent a neural network
evaluation for different neighbors. More specifically, node A denoted with a ques-
tion mark begins a query. It attempts to forward the query to node B. The neural
network in rectangle 1. outputs zero and therefore the query is not forwarded.
Instead the second evaluation for node C, shown in rectangle 2, outputs one and
the query is forwarded to node C. Then node C attempts to forward the query
to neighbor nodes and the nodes B and D receives the query. In the last steps
nodes B and D do not forward the query further and the query ends. The query
enters nodes C and D denoted with an exclamation mark thereby locating two
resource instances.

8.2.1 The Set of the Neural Network Inputs

The MLP uses constant, binary and discrete valued inputs as an information for
making forwarding decisions. Each input I; is a neuron and all 22 inputs I form
the input layer.

The following input is constant:

(1) Bias takes value 1. Bias is needed in MLP neural networks to approximate
functions with non-zero output in case of zero input.

8 A Memetic-Neural Approach to Discover Resources in P2P Networks 117

The following inputs are binary:

(2) Sent scores 1 if the query has already been forwarded to the receiver. Oth-
erwise it scores 0.

(3) CurrentVisited scores 1 if the query has already been received by the cur-
rently forwarding node, else it scores 0.

(4) From is a binary variable indicating whether a query was received from this
receiver. From scores 1 if the current query was received from this receiver. Oth-
erwise it scores 0.

(5) RandomNeighbor scores 1 for a randomly selected receiver and 0 for other
receivers in the current node.

(6) EnoughReplies scores 1, if through the query path used by the current query
an equal number or more resources have been found as were given in RepliesTo-
Get input parameter (see below). Otherwise EnoughReplies scores 0.

The following inputs are discrete:

(7) Hops is the number of edges the query has travelled in a P2P network (see
definition of Hops in section 8.1).

(8) ToNeighbors is the number of neighbors connected to the receiver.

(9) CurrentNeighbors is the number of neighbors connected to the currently for-
warding node.

(10) FromNeighbors is the number of neighbors connected to the previous for-
warding node.

(11) InitiatorNeighbors is the number of neighbors connected to the query
initiator.

(12) NeighborsOrder is a number associated to each neighbor connected to the
forwarding peer. The NeighborsOrder is assigned by ascent sorting and enumer-
ating (0,1, 2...) the neighbors according to their degree. By degree of a peer node
we mean the number of neighbors connected to it.

(13) FromNeighborsOrder, indicates the NeighborsOrder of the previous forward-
ing node.

(14) RepliesNow is the number of replies the query locates in its query path.
(15) PacketsNow is the number of packets the query produces in its query path.
(16) RepliesToGet is the number of resources that need to be located.

(17) Forwarded is the number of times the currently forwarding node has for-
warded the query.

(18) NotForwarded is the number of times the current node did not forward the
query.

(19) DecisionsLeft is the number of forwarding “decisions” the current node will
still make for the current query message i.e. how many neighbors have not yet
been evaluated for forwarding the query message.

(20) SentCounter is the number of times the current query has already been
forwarded to the receiver.

(21) CurrentVisitedCounter is the number of times the query has already been
received by the currently forwarding node.

(22) BranchingResourcesMissing estimates how many resources on average
should still be located from the current query path. First the estimate is set

118 F. Neri, N. Kotilainen, and M. Vapa

to the value of RepliesToGet. The estimate is updated each time the current
node has made all the forwarding decisions. If the current node contained the
queried resource, the value is decreased by one. The estimate is then updated
depending on whether the current value is positive or negative. In case of a pos-
itive value, the current value is divided with the number of neighbors receiving
the query. In case of a negative value, the current value is multiplied by the
number of neighbors, which will receive the query.

8.2.2 Input Scaling

To ensure that all inputs are in the range of [0, 1] the discrete inputs need to be
scaled. The discrete inputs can be classified into three categories according to
their original range of variability.

(a) Inputs in the range of [0,00] are Hops, NeighborsOrder, FromNeighborsOr-
der, RepliesNow, PacketsNow, RepliesToGet, Forwarded, NotForwarded, Deci-
sionsLeft, SentCounter and Current VisitedCounter and they are scaled with the
function s(/;) = ﬁ

(b)Inputs in the range of [1, oo] are ToNeighbors, CurrentNeighbors, FromNeigh-
bors and InitiatorNeighbors and they are scaled with s(I;) = %
(¢c)BranchingResourcesMissing is in the range of [—0o, 00] and it is scaled with

the sigmoid function s(lo2) = 1+€+122

The scaled inputs I are then given to the neural network.

8.2.3 Calculation of the Neural Network Output

The neurons on the hidden layers contain the transfer function t(a) = He%za -1
where a is the sum of the outcoming weighted outputs from the previous (input
or first hidden) layer and Bias.

The output layer neuron contains a transfer function

Oifa<0
“(“):{hfazo (8.1)

where a is the sum of the outcoming weighted outputs from the second hidden
layer. The output function is thus defined as follows:

L K J
O=fI)=u|ws1+ ng,zt wa,1,1 + Z wa, kit Zwl,j,ksj (Z;)
1=2 k=2 j=1

where J is the number of inputs, K is the number of neurons on the second layer,
L is the number of neurons on the third layer, w, ; is the weight from the jth
input to k'™ neuron on the first hidden layer, wo 1 is the weight from the kth
neuron on the first hidden layer to I** neuron on the second hidden layer and

ws,; is the weight from the I** neuron on the second hidden layer to the output

8 A Memetic-Neural Approach to Discover Resources in P2P Networks 119

neuron, wo 1, is the bias weight associated to the second hidden layer and ws ;
is the bias weight associated to the output layer.

Output O can take a boolean value indicating whether the query is forwarded
to the neighbor node currently being taken into consideration. The neural net-
work output is calculated separately for each neighbor node and after the calcu-
lations, the query is sent to neighbor nodes which had an output value 1.

8.3 The Optimization Problem

The neural network described above is supposed to handle the communication
and data transfer between a couple of peers. As in all cases of the neural networks,
its proper functioning is subject to correctly executed training. The training of a
neural network consists of determination of the set of weight coefficients W. As
shown in formula (8.2), the weights can be divided into three categories on the
basis of the layer to which they belong to. There are 22 input neurons and 10
neurons on both the hidden layers. Since one input is constant (Bias) the total
amount of weights is 22 % 9 4+ 10 % 9 + 10 = 298. The weights can take values in
the range [—o00, o] .

8.3.1 Fitness Formulation

In order to estimate the quality of a candidate solution, the performance of the
P2P network is analyzed with the aid of a simulator whose working principles are
described in [162]. More specifically, the set of weights is given to the simulator
and a certain number n of queries are performed. The total fitness over the n
queries is given by:

F=3 EW) (8.3)

where Fj is the fitness contribution from each query. It is important to remark
that multiple queries are needed in order to ensure that the neural network is
robust in different query conditions. In addition, for each query the amount of
Available Resources (AR) instances is known. Thus, AR is a constant value given
a priori.

For each query, the simulator returns two outputs:
(a) the number of query packets P used in the query
(b) the number of found resource instances R during the query

For details regarding the simulation see [162]. These outputs are combined in
the following way in order to determine each F:

0 if P> 300
l— 55 if P<300AND R=0

50« R— P if P <300 AND 0 < R < 4
50« 4% — Pif P <300 AND 4E <R

F = (8.4)

120 F. Neri, N. Kotilainen, and M. Vapa

In formula (8.4), the constant values 300 and 50 have been set according to
the criterion explained in [160].

The first condition in (8.4) ensures that the neural network should eventually
stop forwarding the queries. The second condition controls that if no resources
are found then the neural network increases the number of query packets sent to
the network. The third condition states that if the number of found resources is
not enough then the neural network develops only by locating more resources.
The fourth condition ensures that when half of the available resource instances
are found from the network the fitness grows if the neural network uses fewer
query packets. The fourth condition also upperbounds Fj; to 50 + 4% — A& —
49 % A—QR, because it is imposed that when half of the resource instances are found
P is at minimum %.

Thus, the problem of discovering resources in the P2P network consists of the
maximization of F' in a 298-dimension continuous space:

max (F (W)) in [—o0, 00]**® (8.5)

Due to the necessity of ensuring robustness of the neural network in different
queries, the fitness value varies with the chosen query. The querying peer and the
queried resource need to be changed to ensure that the neural network is not just
specialized for searching resources from one part of the network or one particular
resource alone. Since n (in our case n = 10) queries are required and they are
chosen at random, fitness F' is noisy. This noise does not have any peculiarity
and therefore it can hardly be approximated by a known distribution function.
Let us indicate with PN the distribution of this noise and thus re-formulate the
problem in equation (8.5)

max (F (W) + Z)in [—o0, 0]’ ;Z ~ PN (8.6)

8.3.2 Features of the Decision Space and the Fitness Landscape

As highlighted above, the optimization problem is highly multivariate and is de-
fined in a continuous domain. It obviously follows that the problem is quite chal-
lenging due to a high dimensionality. In addition, presence of the noise enhances
the difficulty of the problem because it introduces some “false” optima into the
landscape which disturb the functioning of any optimization algorithm [163,164].

Due to the structure of each F; (see equation (8.4)), the fitness landscape
contains discontinuities. In particular, it is relevant to observe that due to the
first condition in (8.4) the fitness landscape contains some plateaus with a null
value as well as some other areas which take non-null values and contain a
variability. In order to give a rough description of the fitness landscape, the
following test has been designed. 2 million candidate solutions have been pseudo-
randomly sampled by means of a uniform distribution within the decision space.
Fig. 8.2 and 8.3 show the histogram and distribution curve, respectively, related
to this test. It should be noted that the y-axis has a logarithmic scale. Fig. 8.2
shows that about half the points take a null fitness value and Fig. 8.3 shows that

8 A Memetic-Neural Approach to Discover Resources in P2P Networks 121

1e+06. I
100000

. 10000 10000 |-

1000 E o

0 500 1000 1500 2000 2500 3000 3500
fitness value fitness va lue

Fig. 8.2. Histogram of Fitness Values Fig. 8.3. Distribution of Fitness Values

the distribution curve contains a very high, sharp peak in zero and other lower
sharp peaks before 500. This obviously means the fitness landscape contains some
plateau areas for low fitness values (up to 500) and a variational area for high
fitness values. In other words the fitness landscape is locally flat and contains
several areas having a small variation in fitness values [165,166]. This feature
of the fitness landscape makes the optimization problem very challenging since
many optimization algorithms can easily stagnate or prematurely converge in a
suboptimal plateau.

8.4 The Adaptive Global-Local Memetic Algorithm

In order to solve the problem in (8.5), an Adaptive Global-Local Memetic
Algorithm (AGLMA) has been implemented.

8.4.1 Initialization

An initial sampling made up of S;wp individual has been executed pseudo-
randomly with a uniform distribution function over the interval [—0.2,0.2]. This
choice can be briefly justified in the following way. The weights of the initial set
of neural networks must be small and comparable among each other in order to
avoid one or a few weights dominating with respect to the others as suggested

in [167,168].

8.4.2 Parent Selection and Variation Operators

All individuals of the population Sy, undergo recombination and each parent
generates an offspring. The variation occurs as follows. For each candidate solu-
tion 7 is associated a self-adaptive vector h; which represents a scale factor for
the exploration. More specifically, at the first generation the self-adaptive vectors
h; are pseudo-randomly generated with uniform distribution within [—0.2,0.2].
At the subsequent generations each self-adaptive vector is updated according

to [167,168]:
REFL(5) = BF (j) TN OD) for j=1,2..n (8.7)

where k is the index of generation, j is the index of variable (n = 298), N; (0, 1)
is a Gaussian random variable and 7 = —4~— = 0.1659. Each correspondin,
fodn p g

122 F. Neri, N. Kotilainen, and M. Vapa

candidate solution W; is then perturbed according to the following formula
[167,168):

W () = WF + b5 () Nj (0,1) for j=1,2..n (8.8)

It is interesting to observe that each component hf (j) of the self-adaptive vec-
tor at the k** generation can be seen as the standard deviation of a Gaussian
perturbation.

8.4.3 Fitness Function

In order to take into account the noise, function F is calculated ng times (where
ns stands for number of samples) and an Ezplicit Averaging technique is applied
[164, 169]. More specifically each set of weights of a neural network (candidate
solution) is evaluated by means of the following formula:
~ . o'i
F=F, 'rlnean - —/n—g

where F! .. and o' are respectively the mean value and standard deviation
ith

related to the ng samples performed to the i** candidate solution.

(8.9)

The penalty term ;—TT takes into account the distribution of the data and
the number of performed samples [170]. Since the noise strictly depends on the
solution under consideration, it follows that for some solutions the value of ¢ is
relatively small (stable solutions) and so the penalization is small. On the other
hand, other solutions could be unstable and score 0 during some samples and
a high performance value during other samples. In these cases ¢¢ is quite large

and the penalization must be significant.

8.4.4 Local Searchers

Two local search algorithms with different features in terms of search logic and
pivot rule have been employed. These local searchers have the role of support-
ing the evolutionary framework, offering new search directions and exploiting the
available genotypes [171, 172]. The Simulated Annealing (SA) metaheuristic

[173], [174] has been chosen since it offers an exploratory perspective in the de-
cision space which can choose a search direction leading to a basin of attraction
different from where starting point Wy is. The exploration is performed by using
the same mutation scheme as was described in equations (8.7) and (8.8) for an
initial self-adaptive vector hy pseudo-randomly sampled in [—0.2,0.2]. The main
reason for employing the SA in the AGLMA is that the evolutionary framework
should be assisted in finding better solutions which improve the available genotype
while at the same time exploring areas of the decision space not yet explored. It
accepts with a certain probability solutions with worse performance in order to
obtain a global enhancement in a more promising basin of attraction. In addition,
the exploratory logic aims to overcome discontinuities of the fitness landscape and
to “jump” into a plateau having better performance. For these reasons the SA has
been employed as a “global” local searcher.

8 A Memetic-Neural Approach to Discover Resources in P2P Networks 123

The application of the SA local searcher can be successful in most cases, in
the early generations, and in the late generations as well. Moreover, due to its
structure the SA can efficiently offer solutions in unexplored basins of attractions
and, therefore, prevent an undesired premature convergence. The most delicate
issue related to the SA is choice of parameters. The SA has two parameters which
are the budget and the initial temperature Temp®. The budget has been fixed at
600 fitness evaluations (in order to have a constant computational cost for the
SA). The setting of the initial temperature T'emp® is performed as explained in
section 8.4.5. The temperature T'emp is reduced according to a hyperbolic law
following the suggestions in [175].

The Hooke-Jeeves Algorithm (HJA) [176,177] is a deterministic local
searcher which has a steepest descent pivot rule. Briefly the implemented HJA
consists of the following. An initial radius dy (in our implementation dy = 0.5)
an initial candidate solution Wy and a direction exploratory matrix are required.
In this implementation a standard identity matrix I has been chosen due to the
hypercubic features of the decision space. Let us indicate with I(m,:) the m®"
row of the direction matrix with m = 1,2..n (n = 298).

The HJA consists of an exploratory move and a pattern move. Indicating
with W, the current best candidate solution and with d the generic radius of
the search, the HJA during the exploratory move samples the points W, (m)+dI
(m,:) with m = 1,2..n and the points We,(m) — dI(m,:) with m = 1,2..n only
along those directions which turned out unsuccessful during the “+” move. Then,
if a new current best is found W, is updated and the pattern move is executed.
If a new current best is not found, d is halved and the exploration is repeated.

The HJA pattern move is an aggressive attempt of the algorithm which aims
to exploit promising search directions. Rather than centering the following ex-
ploration at the most promising explored candidate solution (W), the HJA
tries to move further [178]. The algorithm centers the subsequent exploratory
move at Wy, £dI(m,:) (“4+7 or “-” on the basis of the best direction). If this sec-
ond exploratory move does not outperform £'(W,,) (the exploratory move fails),
then an exploratory move with W, as the center is performed. The HJA stops
either when d < 0.01 or when the budget condition of 1000 fitness evaluation is
reached.

The HJA is supposed to efficiently exploit promising solutions enhancing their
genotype in a meta-Lamarckian logic and thus assist the evolutionary framework
in quickly climbing the basin of attractions. In this sense the HJA can be con-
sidered as a kind of “local” local searcher integrated in the AGLMA.

8.4.5 Adaptation

An adaptation has been implemented taking into account the features of this
kind of fitness landscape in order to design a robust algorithm [179,171]. At the
end of each generation the following parameter is calculated:

Favg - Fbest
Fworst - Fbest

p=1-— (8.10)

124 F. Neri, N. Kotilainen, and M. Vapa

where met, Fbest, and Fm)g are the worst, best, and average of the fitness
function values in the population, respectively.

As highlighted in [166], ¢ is a fitness-based measurement of the fitness di-
versity which is well-suited for flat fitness landscapes. The employment of this
parameter, taking into account the presence of plateaus in the fitness landscape.
1, measures the population diversity in terms of fitness and is relative to the
range of the fitness values [Fbest, me«st] in the population. Thus, even when all
fitness values are very similar, leading to Fbcst and Fworst being close to each
other, v still gives a well scaled measure, since it uses the relative distance of
F(wg from Fbest. The population has high diversity when ¥ ~ 1 and low diversity
when ¢ =~ 0. A low diversity means that the population is converging (possi-
bly in a suboptimal plateau). This parameter has been used in order to control
coordination among the local searchers and a dynamic population size.

8.4.6 Coordination of the Local Searchers

1 has been employed in order to execute an adaptive coordination of the local
searchers so as to let them assist the evolutionary framework in the optimization
process.

The SA is activated by the condition ¢ € [0.1,0.5]. This adaptive rule is based
on the observation that for values of ¢» > 0.5, the fitness diversity is high and
then the evolutionary framework needs to have a high exploitation of the avail-
able genotypes (see [180], [166] and [181]). In other words, under this condition
the evolutionary framework does not require the assistance of a local searcher. On
the other hand, if ¢ < 0.5 the fitness diversity is decreasing and the application
of the SA can introduce a new genotype in the population which can prevent a
premature convergence. Basically, the SA has the potential to detect new promis-
ing solutions outside a suboptimal plateau into which the population could have
fallen. In this sense, the SA has been employed as a local searcher with “global” ex-
ploratory features. The condition regarding the lower bound of usability of the SA
(v > 0.1) is due to the consideration that if ¢» < 0.1 convergence is approaching
and the fitness value has already been drastically reduced.

Thus, the SA has the role of exploiting already existing good genotypes but
nevertheless to explore other areas of the decision space. Due to its structure,
the SA could lead new search directions but its application can lead to a so-
lution which is worse than that which it started with. For this reason, in our
implementation it is applied to the second best individual. The initial temper-
ature Temp® has to be chosen for this local searcher. It is adaptively set to be

Temp?® = ’Favg — Fbest . This means that the algorithm does not accept worse

solutions when the convergence has practically occurred.

The HJA is activated when 1 < 0.2 and is applied to the solution with best
performance. The basic idea behind this adaptive rule is that the HJA has the
role of quickly improving the best solution while staying in the same basin of
attraction. In this light, the action of the HJA can be seen as purely “local”.
The condition ¢ < 0.2 means that the HJA is employed when there are some
chances that optimal convergence is approaching. An early application of this

8 A Memetic-Neural Approach to Discover Resources in P2P Networks 125

local searcher can be inefficient since a high exploitation of solutions having poor
fitness values would not lead to significant improvements of the population.

It should be noted that in the range ¥ € [0.1,0.2] both the local searchers are
applied to the best two individuals of the population. This range is very criti-
cal for the algorithm because the population is tending towards a convergence
but still has not reached such a condition. In this case, there is a high risk of
premature convergence due to the presence of plateaus and suboptimal basins
of attraction or false minima introduced by noise. Thus, the two local searchers
are supposed to “compete and cooperate” within the same generation, merging
the “global” search power of the SA and the “local” search power of the HJA
under supervision of the evolutionary framework.

An additional rule has been implemented. When the SA has succeeded in
enhancing the starting solution, the algorithm attempts to further enhance it by
the application of the HJA. This choice can be justified by the consideration that
when the SA succeeds, it returns a solution having better performance with a
genotype (usually) quite different from the starting one and, therefore, belonging
to a region of the decision space which has not yet been exploited.

8.4.7 Dynamic Population Size in Survivor Selection

The adaptation controls the population size whose dynamic variation has two
combined roles. The first is to massively explore the decision space and thus
prevent a possible premature convergence (see [182], [180]), the second is to
Implicitly Average in order to compensate for noise by means of the evaluations of
similar individuals [169]. The population is resized at each generation according
to the formula:

Spop = SLop + Sbyy - (1= 1), (8.11)
where Sszop and Sy, are the fixed minimum and maximum sizes of the variable
population S, respectively.

The coefficient ¢ is then used to dynamically set the population size [183,184]
in order to prevent a premature convergence and stagnation. According to the
first role, when the population is highly diverse a small number of solutions
need to be exploited. When ¢ =~ 0 the population is converging and a larger
population size is required to increase the exploration. The main idea is that
if a population is in a suboptimal plateau an increase of the population size
enhances the chances of detecting new promising areas of the decision space and
thus prevent premature convergence. On the other hand, if the population is
spread out in the decision space it is highly desirable that the most promising
solution leads the search and that the algorithm exploits this promising search
direction.

According to the second role, it is well-known that large population sizes
are helpful in defeating the noise (Implicitly Averaging) [185,186]. Furthermore,
recent studies [187,170] have noted that the noise jeopardizes proper functioning
of the selection mechanisms, especially in cases of low fitness diversity since the
noise introduces a disturbance in pair-wise comparison. Therefore, the AGLMA

126 F. Neri, N. Kotilainen, and M. Vapa

Pseudo-Random Initial Sampling of the weights W and self-adaptive parameters h;
Fitness evaluation of the initial population by F' = Fycan — \;’T%,

Favg—F
Calculate ¢p = 1 — | »2%9—"best |,
Fyorst —Fpest

while budget conditions and 1) > 0.01
for all the individuals 4
for all the variables j
hi (4) = hi (5) 7N 1)
Wi () = Wi + hi (5) Nj (0,1);

end-for
end-for
Fitness evaluation of the population by F= anecm — \77:7;
Sort the population made up of parents and offsprings according to their fitness values;
if ¢ €[0.1,0.5]

Execute the SA on the individual with the 2" best performance;

if ¥ <0.2

Execute the HJA on the individual with the best performance;
end-if

if the SA succeeds
Execute the HJA on the individual enhanced by the SA;
end-if
end-if
Calculate Spop = S}, + 52, - (1 —¥);
Select the Sp,p best individuals to the subsequent generation;

Calculate ¢ =1 — Favg —Fhest |,

Fuworst—Fhest |
end-while

Fig. 8.4. AGLMA pseudo-code

aims to employ a large population size in critical conditions (low diversity) and
a small population size when a massive averaging is unnecessary.

After the calculation of Sp,, in equation (8.11), the AGLMA selects for the
subsequent generation, among parents and offspring, the S, candidate solutions
having the best performance.

The algorithm stops when either a budget condition on the number of fitness
evaluations is satisfied or ¢ takes a value smaller than 0.01.

Fig. 8.4 shows the pseudo-code of the AGLMA.

8.5 Numerical Results

For the AGLMA 30 simulation experiments have been executed. Each exper-
iment has been stopped after 1500000 fitness evaluations. At the end of each
generation, the best fitness value has been saved. These values have been av-
eraged over the 30 experiments available. The average over the 30 experiments
defines the Average Best Fitness (ABF). Analogously, 30 experiments have been
carried out with the Checkers Algorithm (CA) described in [167,168] according
to the implementation in [160], and the ACA which is the CA with the fitness as
shown in (8.9) and the adaptive population size as shown in (8.11). In addition
a standard real valued Genetic Algorithm (GA) has been run for the problem
under study. The GA employs an arithmetic blend crossover and a Gaussian mu-
tation. For the same P2P network, the BFS according to the implementation in

8 A Memetic-Neural Approach to Discover Resources in P2P Networks 127

Gnutella and the random walker DFS proposed in [152] have been applied. Table
8.1 shows the parameter settings for the three algorithms and the optimization
results. The final fitness F* obtained by the most successful experiment (over
the 30 sample runs), the related number of query packets P used in the query
and the number of found resource instances R during the query are given. In
addition the average best fitness at the end of the experiments < F >, the final
fitness of the least successful experiment F™ and the related standard deviation
are shown. Since the BF'S follows a deterministic logic, thus only one fitness value
is shown. On the contrary, the DFS under study employs a stochastic structure
and thus the same statistic analysis as that of GA, CA, ACA and AGLMA over
30 experiments has been carried out.

Numerical results in Table 8.1 show that the methods employing the neu-
ral network approach are more promising than the classical methods for P2P
networks. Moreover, AGLMA and ACA outperform the CA and the AGLMA
slightly outperformed the ACA in terms of final solution found. The GA per-
formed significantly worse than the other optimization algorithms.

Fig. 8.5 shows a graphical representation of the solution in the most successful
experiment (over the 30 carried out) returned by the proposed AGLMA. An
index of the weights are shown on the x-axis and the corresponding weight
values are shown on the y-axis (see the crosses in figure).

As shown in Fig. 8.5, according to AGLMA, we propose a neural network having
a set of 298 weights, which take small values. More specifically, the proposed neural
network contains 296 weight values between -1 and 1. On the contrary, two weights
belonging to the first hidden layer take the values of around -1.5 and 1.5.

Table 8.1. Parameter setting and numerical results

PARAMETER | AGLMA | cA | AcA |GA[BFs|DFs
EVOLUTIONARY FRAMEWORK
S} op 30 30 30 30| — | -
Spop € [20,40] | 30 |€ [20,40]| 30 | — -
sample size ng 10 — 10 — — —

SIMULATED ANNEALING

initial temperature Tcmpo adaptive — — — — —

temperature decrease hyperbolic — — — — —

maximum budget per run 600 - - - - -
HOOKE-JEEVES ALGORITHM
exploratory radius €[0.5,0.01]| - - - - -

maximum budget per run 1000 - - - - -
NUMERICAL RESULTS
P 350 372 355 497 | 819 | 514
R 81 81 81 85 | 81 | 81
o 3700 3678 | 3695 [3366|3231|3536
<F> 3654 3582 3647 [2705| — |3363
Y 3506 3502 3504 0 — 3056

std 36.98 37.71| 36.47 |[1068| — |107.9

128 F. Neri, N. Kotilainen, and M. Vapa

weight value
o

0 50 100 150 200 250 300
weight index

Fig. 8.5. Distribution of Neural Network Weights

) AGLMA « 3660
0 T o
23500 2
-] CA ACA =
? 8
93000 3
a)
[g
52500 [g
] GA
& 2000
0 5 10 15 35603 1.1 1.2 1.3 14 1.5
fitness evaluation " 105 fitness evaluation X 10°

Fig. 8.6. Comparison of the algorithmic Fig. 8.7. Comparison of the algorithmic
performance performance (zoom)

Fig. 8.6 shows the comparison of the performance over the 1.5 x 10 fitness
evaluations and Fig. 8.7 shows a zoom detail of the algorithmic performance.

Fig. 8.6 shows that the AGLMA has a slower convergence than the CA and
the ACA but it reaches a final solution having better performance. It is also clear
that the ACA has intermediate performance between the CA and AGLMA. The
ACA trend, in early generations, has a rise quicker than the AGLMA but slower
than the CA. On the other hand, in late generations, the ACA outperforms
the CA but not the AGLMA. As shown in Fig. 8.6, the GA performed much
worse than the CA structured algorithms (CA, ACA, AGLMA) also in terms of
convergence speed.

It can be remarked that the ACA can be seen as an AGLMA which does
not employ local searchers but only executes Implicit (dynamic population size)
and FEzplicit Averaging (ng re-samples and modified fitness). In other words,
the ACA does not contain the memetic components but does contain the noise
filtering components. Fig. 8.7 shows that the ACA and the AGLMA are much
more robust to noise than the CA. In fact, as shown in Fig. 8.7, the trend of
the CA performance contains a high amplitude (about 20) and frequency ripple
around a mean value, while the ACA and AGLMA performance are roughly
monotonic. The oscillatory trend of the CA performance is due to an incorrect
estimation of candidate solutions. The quick initial rise of the CA performance

8 A Memetic-Neural Approach to Discover Resources in P2P Networks 129

is, according to our interpretation, also due to an overestimation of an unstable
solution. On the contrary, the ACA and the AGLMA efficiently filter the noise
and select only reliable solutions for the subsequent generations.

Regarding effectiveness of the local searchers, the comparison between the
ACA and the AGLMA shows that the AGLMA slightly outperforms the ACA
tending to converge to a solution having a better performance. Moreover it is
shown that after 1.5 x 10° fitness evaluations, the trend of the AGLMA still
continues to grow whilst the other trends seem to have reached a final value.

8.6 Conclusion

This chapter proposes an Adaptive Global Local Memetic Algorithm (AGLMA)
for performing the training of a neural network, which is employed as compu-
tational intelligence logic in P2P resource discovery. The AGLMA employs av-
eraging strategies for adaptively executing noise filtering and local searchers in
order to handle the multivariate fitness landscape. These local searchers execute
the global and local search of the decision space from different perspectives. The
numerical results show that the application of the AGLMA leads to a satisfac-
tory neural network training and thus to an efficient P2P network functioning.
The comparison with two popular metaheuristics present in literature shows that
the proposed approach seems to be promising in terms of final solution found
and reliability in noise environment. Matching with another algorithm with in-
termediate features highlights the effectiveness of each algorithmic component
integrated in the proposed algorithm.

The proposed neural network along with the learning strategy carried by the
AGLMA allows the efficient location of resources with little query traffic. Thus, the
user of the P2P network obtains plentiful amounts of information about resources
without consuming a large portion of his own bandwidth for query traffic.

Acknowledgements

We wish to thank Teemu Keltanen and Andrea Caponio for their kind support
in analyzing the data.

References

[151]

[152]

[153]

[154]

[155)

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]
[164)
[165]

[166]

A. Oram, Ed., Peer-to-Peer: Harnessing the Power of Disruptive Technologies.
Sebastopol, CA: O'Reilly & Associates, 2001.

Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replication in
unstructured peer-to-peer networks,” in Proceedings of the 16th International
Conference on Supercomputing. ACM Press, 2002, pp. 84-95.

B. Yang and H. Garcia-Molina, “Improving search in peer-to-peer networks,”
in Proceedings of the 22nd International Conference on Distributed Computing
Systems (ICDCS’02), 2002, pp. 5-14.

V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-Yazti, “A local search mech-
anism for peer-to-peer networks,” in Proceedings of the 11th International
Conference on Information and Knowledge Management. ACM Press, 2002,
pp- 300-307.

D. A. Menascé, “Scalable P2P search,” IEEE Internet Computing, vol. 7,
no. 2, pp. 83-87, March-April 2003.

A. Fisk, “Gnutella dynamic query protocol v0.1,” Gnutella Developer’s Fo-
rum, May 2003.

D. Tsoumakos and N. Roussopoulos, “Adaptive probabilistic search for peer-
to-peer networks,” in Proceedings of the Third IEEE International Conference
on P2P Computing (P2P2003). IEEE Press, 2003, pp. 102-1009.

A. Crespo and H. Garcia-Molina, “Routing indices for peer-to-peer systems,”
in Proceedings of the 22nd IEEE International Conference on Distributed
Computing Systems (ICDCS’02). 1EEE Press, 2002, pp. 23-33.

N. Sarshar, P. O. Boykin, and V. P. Roychowdhury, “Percolation search in
power law networks: Making unstructured peer-to-peer networks scalable,”
in Proceedings of the Fourth International Conference on P2P Computing
(P2P°04). 1EEE Press, 2004, pp. 2-9.

M. Vapa, N. Kotilainen, A. Auvinen, H. Kainulainen, and J. Vuori, “Re-
source discovery in P2P networks using evolutionary neural networks,” in
International Conference on Advances in Intelligent Systems - Theory and
Applications, 067-04, 2004.

A. Engelbrecht, Computational Intelligence - An Introduction. J. Wiley and
Sons, 2002.

N. Kotilainen, M. Vapa, T. Keltanen, A. Auvinen, and J. Vuori, “P2PRealm
- peer-to-peer network simulator,” in International Workshop on Computer-
Aided Modeling, Analysis and Design of Communication Links and Networks.
IEEE Communications Society, 2006, pp. 93-99.

K. Deb, Multi-objective Optimization using Evolutionary Algorithms. Chich-
ester, UK: John Wiley and Sons LTD, 2001, pp. 147-149.

J. Branke, Fvolutionary Optimization in Dynamic Environments. the Nether-
lands: Kluwer A. P., 2001, pp. 125-172.

B. Derrida and L. Peliti, “Evolution in a flat fitness landscape,” Bulletin of
Mathematical Biology, vol. 53, pp. 355-382, 1991.

F. Neri, J. Toivanen, G. L. Cascella, and Y. S. Ong, “An adaptive multimeme
algorithm for designing HIV multidrug therapies,” IEEE/ACM Transactions
on Computational Biology and Bioinformatics, Special Issue on Computa-
tional Intelligence Approaches in Computational Biology and Bioinformatics,
vol. 4, no. 2, pp. 264-278, 2007.

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]
[176]
[177]
[178]

[179]

[180]

[181]

[182]

[183]

K. Chellapilla and D. Fogel, “Evolving neural networks to play checkers with-
out relying on expert knowledge,” IEEE Transactions on Neural Networks,,
vol. Vol 10, No 6, pp. pp. 1382-1391, 1999.

K. Chellapilla and D. Fogel, “Evolving an expert checkers playing program
without using human expertise,” IEEE Transactions on Evolutionary Com-
putation,, vol. Vol 5, No 4, pp. pp. 422-428, 2001.

Y. Jin and J. Branke, “Evolutionary optimization in uncertain environments
- a survey,” IEEE Transactions on Evolutionary Computation, vol. 9, no. 3,
pp. 303-317, 2005.

F. Neri, G. L. Cascella, N. Salvatore, A. V. Kononova, and G. Acciani,
“Prudent-daring vs tolerant survivor selection schemes in control design of
electric drives,” in Applications of Evolutionary Computing, Lecture Notes in
Computer Science, F. Rothlauf et al., Ed., vol. 3907. Springer, 2006, pp.
805-809.

N. Krasnogor, “Toward robust memetic algorithms,” in Recent Advances in
Memetic Algorithms, W. E. Hart, N. Krasnogor, and J. E. Smith, Eds. Berlin,
Germany: Springer, 2004, pp. 185-207.

Y. S. Ong and A. J. Keane, “Meta-lamarckian learning in memetic algo-
rithms,” IEEFE Transactions on Evolutionary Computation, vol. 8, pp. 99-110,
2004.

S. Kirkpatrick, C. D. J. Gelatt, and M. P. Vecchi, “Optimization by simulated
annealing,” Science, no. 220, pp. 671-680, 1983.

V. Cerny, “A thermodynamical approach to the traveling salesman problem,”
Journal of Optimization, Theory and Applications, vol. 45, no. 1, pp. 41-51,
1985.

H. Szu and R. Hartley, “Fast simulated annealing,” Physics Letters A, vol.
122, pp. 157-162, 1987.

R. Hooke and T. A. Jeeves, “Direct search solution of numerical and statistical
problems,” Journal of the ACM,, vol. Vol 8, pp. pp. 212-229, 1961.

Kaupe, F. Jr., “?Algorithm 178: direct search”,” Communications of the
ACM,, vol. Vol 6, No 6, pp. pp. 313-314, 1963.

C. T. Kelley, Iterative Methods of Optimization. Philadelphia, USA: STAM,
1999, pp. 212-229.

N. Krasnogor, B. Blackburne, E. Burke, and J. Hirst, “Multimeme algorithms
for proteine structure prediction,” in Proceeding of Parallel Problem Solving
in Nature VII. Lecture Notes in Computer Science, Springer-Verlag, 2002.

A. Caponio, G. L. Cascella, F. Neri, N. Salvatore, and M. Sumner, “A fast
adaptive memetic algorithm for on-line and off-line control design of pmsm
drives,” IEEE Transactions on System Man and Cybernetics-part B, special
issue on Memetic Algorithms, vol. 37, no. 1, pp. 28-41, 2007.

F. Neri and R. A. E. Mékinen, “Hierarchical evolutionary algorithms and
noise compensation via adaptation,” in Ewvolutionary Computation in Dy-
namic and Uncertain Environments, Studies in Computational Intelligence,
S. Yang, Y. S. Ong, and Y. Jin, Eds. Springer, 2007, pp. 345-369.

A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computation.
Berlin, Germany: Springer-Verlag, 2003.

T. Béack, “The interaction rate of mutation rate, selection, and self-adaptation
within a genetic algorithm,” in Proceedings of Parallel Problem Solving from
Nature (PPSN-II). Elsevier Science, 1992, pp. 85-94.

[184]

[185]

[186]

[187]

A. E. Eiben, R. Hinterding, and Z. Michaelwicz, “Parameter control,” in
Evolutionary Computation 2, Advanced Algorithms and Operators, T. Baeck,
D. B. Fogel, and Z. Michaelwicz, Eds. Institute of Physics Publishing, 2000,
pp. 170-187.

J. M. Fitzpatrick and J. J. Grefenstette, “Genetic algorithms in noisy envi-
roments,” Machine Learning, vol. 3, pp. 101-120, 1988.

B. L. Miller and D. E. Goldberg, “Genetic algorithms, selection schemes, and
the varying effects of noise,” Ewvolutionary Computation, vol. 4, no. 2, pp.
113-131, 1996.

C. Schmidt, J. Branke, and S. E. Chick, “Integrating techniques from statis-
tical ranking into evolutionary algorithms,” in Applications of FEvolutionary
Computing, F. Rothlauf et al., Ed., vol. LNCS 3907. Springer, 2006, pp.
752-763.

PIX

MOBILE CHEDAR - A PEER-TO-PEER MIDDLEWARE FOR
MOBILE DEVICES

by

Niko Kotilainen, Matthieu Weber, Mikko Vapa and Jarkko Vuori 2005

In Proceedings of the Third IEEE International Conference on Pervasive
Computing and Communications Workshops, pages 86-90

Reproduced with kind permission of IEEE Computer Society.

Mobile Chedar - A Peer-to-Peer Middleware for Mobile Devices

Kotilainen N.", Weber M., Vapa M." and Vuori J.
University of Jyviskyld, P.O.Box 35 (Agora), 40014 University of Jyvdskyld
[npkotila, mweber, mikvapa, mimic] @jyu.fi

Abstract

This paper presents the Mobile Chedar Peer-to-Peer
middleware for mobile peer-to-peer applications. The
middleware is an extension to the Chedar peer-to-peer
network allowing mobile devices to access the Chedar
network and also to communicate with other Mobile
Chedar peers. Currently, Mobile Chedar uses Bluetooth to
connect to Chedar gateway peers, because Bluetooth is
now the most widespread short-range radio technology in
mobile phones. We also introduce in this paper one
example of a Mobile Peer-to-Peer application for
cooperative lecture notes taking, which is based on Mobile
Chedar.

1. Introduction

Coulouris et al. [3] define distributed system as a
system in which components located at networked
computers communicate and coordinate their actions only
by message passing. Peer-to-Peer networks (P2P) are an
instance of distributed systems.

P2P networks allow the sharing of resources over the
Internet. The resources can be for example, computing
power, storage space, network bandwidth, printers etc.
Another main feature of P2P networks is that all the tasks
and responsibilities for managing the network are shared
between the peers. This means that there is no single
control entity responsible for providing the services.

Middleware provides an application programming
interface (API) for accessing message passing
functionalities and other common services needed in
distributed systems. The main benefit is that by using
middleware programmers can speed up the development of
applications because the features needed for distribution
are already provided by the middleware.

This paper describes one implementation of a mobile
peer-to-peer (MP2P) middleware enabling information

sharing in a mobile environment. The proposed
middleware is an extension to a non-mobile Chedar P2P
network. In the following sections we discuss the related
work on MP2P, introduce the Chedar P2P middleware, the
Mobile Chedar MP2P middleware with an API for MP2P
applications and finally present a co-operative learning
application using the Mobile Chedar.

2. Related Work

Proem [5] is a mobile middleware providing solution
for developing and deploying applications for mobile ad
hoc networks. In Proem, middleware is responsible for
presence and discovery services as well as being an
identity, data space and community manager. Proem has
been designed for mobile peers in ad hoc networks whereas
in Mobile Chedar also peers with fixed P2P network
connections are supported. The current prototype of Proem
uses Wireless Local Area Network (WLAN) for
communication and has been implemented using Java.

7DS [12] is a Java based data prefetching tool for
mobile devices. It allows mobile users to advertise data
items of their mobile devices and to query other user’s data
items through WLAN connections. 7DS works only on IP
networks and is designed for disseminating rather static
content. IP multicast is used for querying the peers.

XMIDDLE [10] is a reflective middleware enabling
transparent sharing of XML documents between mobile
peers. XMIDDLE does not use a fixed P2P infrastructure
and therefore differs from our approach. Because data
structure consists of XML trees, modifications to the
branches of XML tree are fine-grain for example compared
to modification of files. In Mobile Chedar, resource
queries are matched using XPath expressions as in
XMIDDLE, but modifications to the data stream are not
guaranteed to have the same order in all peers. XMIDDLE
solves the problem by allowing user to resolve the update
conflicts. The current XMIDDLE prototype is based on
WLAN and has been implemented using Java.

" The work of N. Kotilainen is supported by Innovations in Business, Communication and Technology (InBCT) project.

* The work of M. Vapa is supported by Graduate School in Electronics, Telecommunications and Automation (GETA).

Proceedings of the 3rd Int'l Conf. on Pervasive Computing and Communications Workshops (PerCom 2005 Workshops)
0-7695-2300-5/05 $20.00 © 2005 IEEE

COMPUTER
5O

CIETY

MOBY [4] is a service network enabling access to
services on wide area networks. The framework is built
using Jini and Jini Technology Surrogate Architecture
Specification. MOBY’s approach seems to be the closest to
ours. However, there are some differences in the design
choices. In MOBY resources are registered to Jini Lookup
Service, which is located in the local area network. In
Mobile Chedar the mobile peers store their resources and
no registration of resources to external server is needed.
MOBY’s P2P network is based on super-peer architecture
i.e. the network is divided into domains by Mnode
super-peers whereas in Chedar all peers are equal.
Communication between Mnodes is handled using UDP,
but in Chedar network connections are established using
TCP. MOBY uses IP addresses to identify peers and
Mobile Chedar, relying on Bluetooth service discovery,
does not require IP addressing of mobile devices. Resource
discovery is handled in MOBY using expanding ring [9]
between Mnodes while Chedar currently uses breadth-first
search. In overall, MOBY is designed more like a fixed
overlay, because the links between Mnodes are
preconfigured compared to the autonomous overlay
approach used in Chedar P2P network.

Mobile Chedar is an extension to existing peer-to-peer
network and therefore differs from the MP2P software
presented in the literature. The middleware provides
mechanisms for data streaming which is unique feature
among the considered related work. Also Mobile Chedar
uses Bluetooth as a transmission technology in contrast to
‘WLAN used in other studies.

Mobile Chedar Node

Chedar Node

Chedar
on TCP/IP

Figure 1. Stream delivery between Chedar and Mobile Chedar

nodes

Proceedings of the 3rd Int'l Conf. on Pervasive Computing and Communications Workshops (PerCom 2005 Workshops)
0-7695-2300-5/05 $20.00 © 2005 IEEE

3. Mobile Chedar — A Mobile Peer-to-Peer
Middleware

3.1. Chedar

Chedar (CHEap Distributed ARchitecture) is a
peer-to-peer middleware designed for peer-to-peer
applications. The goal of the Chedar software is to provide
a convenient API for peer-to-peer application developers.
For example Chedar can be used to locate unused resources
in a computer network that could be used for a given
purpose; one could thus locate idle computers with a given
characteristics in order to run computationally intensive
calculations. Chedar nodes maintain resources of different
types: data (files), software (e.g. specific applications or
operating systems) and hardware (e.g. CPU, printers and
displays). It also provides platform independence and
quick adaptation to new hardware. Chedar has been
programmed with Java 2 Standard Edition and is currently
being used for speeding up the computations of
NeuroSearch resource discovery algorithm [13] with P2P
Distributed Computing application (P2PDisCo) [6] and for
studying distributed data fusion in peer-to-peer
environment [11].

Each Chedar node is identified with a unique identifier
(Chedar ID). The nodes maintain a database of locally
available resources shared by the owner of the device.
These resources can include for example files and
databases, software running on the device that can be
accessed or used by remote users, and hardware
characteristics of the device. Also, remote
resources discovered on the network can
be added to the database combined with
information about their owner identified
by Chedar ID and meta-information about
themselves. Meta-information can contain
e.g. type and path for the files, name and
version for applications or any useful
description for the hardware depending on
the application, which uses the
information. The resource database is
stored as an XML document using a
specific DTD. This organization of data
allows making rich and complex queries
to the database in the form of XPath
expressions.

3.2. Mobile Chedar

With the advent of mobile computing
and the inherent peer-to-peer properties of
mobile ad hoc networks, Chedar has been
extended to the mobile platform as Mobile
Chedar. It thus provides functionalities for

Com
SO

PUTER

CIETY

registering resources on the mobile device and for
querying resources from other peers. Mobile Chedar is
implemented using Java 2 Micro Edition (J2ME), which is
suitable for mobile wireless devices and has spread widely
among new mobile phone models. Mobile Chedar uses
Bluetooth [1] as a transmission technology for connecting
to other peers, because Bluetooth is the most common
available short-range radio frequency wireless protocol
stack on today's mobile devices.

Current Bluetooth implementations have a restriction
that nodes can be connected to only one piconet at a time
[8]. Therefore the only topology that is available for
constructing Bluetooth network is star-shaped. One device
functions as a master and others as slaves. In Mobile
Chedar one node connected to piconet can be e.g. a
workstation with a Bluetooth adapter and an Internet
connection working as a Mobile Chedar/Chedar gateway
node. Through the Internet connection it keeps contact
with other Chedar nodes and through Bluetooth it can
communicate with other Mobile Chedar peers.

A common use case for Mobile Chedar is the querying
of a resource located on Chedar nodes or on other Mobile
Chedar nodes through the gateway peer and then using the
found resource. Chedar nodes can provide streamable
resources to Mobile Chedar peers and depending on the
device capabilities of the Mobile Chedar node they can
subscribe to these streams. Currently text and picture are
supported and in the future also audio and video streams
will be supported also. Multiple peers can simultaneously
subscribe to the same stream and after subscribing they
also start to publish the stream as a resource. Therefore it is
enough for a peer to locate one peer that provides the
requested stream. This kind of a streaming is called end
system multicasting [2]. Also, because streams are duplex,
the data written to the streams by peers will be delivered to
all other peers currently subscribed. Duplex streams can be
realized by flooding all data inserted to the stream along
the multicast tree to all other participants in the tree.
However, the order of the data is not preserved and it is
handled in a First-In-First-Out manner. Totally ordered
delivery of data would require more complex
implementation in this kind of environment [3]. Figure 1
illustrates a stream delivery between Chedar and Mobile
Chedar peers.

Neighbor discovery is a prerequisite for resource
queries. Since the nodes are able to communicate with each
other using a wireless channel, it is easy to discover all
nodes within range of the radio frequency transceiver using
Bluetooth's Service Discovery Protocol (SDP). The
discovery of resources is performed as one hop query,
tagged with a unique Message-ID, to all the nodes within
Bluetooth range. If the query arrives to a Chedar/Mobile
Chedar gateway node, it checks whether the query has
already been received: if not, it is forwarded to all of its
Chedar neighbors with default time-to-live; otherwise, the

Proceedings of the 3rd Int'l Conf. on Pervasive Computing and Communications Workshops (PerCom 2005 Workshops)
0-7695-2300-5/05 $20.00 © 2005 IEEE

query is discarded. If the query message matches one of the
resources owned by the node, the node replies to the
neighbor from which it received the query with the same
Message-ID as in the query message. The reply message
then travels back to the originator of the query on the same
path as the query traveled on. Once the location of the
resource (or locations, if there exists multiple instances of
the same resource in the network) is known, Mobile
Chedar informs the application, which decides how to
acquire or use the resource.

4. Mobile Chedar Application Programming
Interface

Mobile Chedar provides the following API for MP2P
applications:
register(String resourceidentifier) Adds a resource to the
resource database.
unregister(String Removes a resource
resourceidentifier) from the resource
database.
Checks if ~ Mobile
Chedar is connected to
other Chedar nodes.
Executes a query.
Subscribes to the found
resource.
Unsubscribes from a
subscribed resource.
send(Resource resource, Message Sends data to the
data) subscribed resource.

connected()

query(String resourceidentifier)
subscribe(Resource resource)

unsubscribe(Resource resource)

The MP2P applications must implement the following

methods:
resourceFound(Resource resource) — Informs the application
when the query has
located a matching
resource.
Informs the application
when new data has
arrived to a subscribed
resource.

receive(Resource
Message data)

resource,

5. Mobile Peer-to-Peer Learning
Environment

Mobile Peer-to-Peer Learning Environment (MP2PLE)
[7] is designed for collaborative note taking during lectures
as a test application for Chedar peer-to-peer network and
Mobile Chedar middleware. The MP2PLE user interface
contains a text area displaying the current state of notes and
provides means for users to edit them. With MP2PLE, the

IEEE

COMPUTER
SOCIETY

mobile device user may create a new stream for other
participants to join or subscribe to an already existing one
by executing a query. After subscription the user is allowed
to modify any part of the notes by selecting a paragraph
and submitting the changes. Whenever the data is being
changed it is streamed to other participants subscribed to
the same stream. At the moment, each user can be only
subscribed to one stream at a time. The user interface of
MP2PLE is shown in figure 2.

There are two common use cases for such kind of an
application. Firstly, it serves as a personal note-taking tool
to store lecture notes. Secondly, people who do not take
notes can benefit from other user’s notes, either during the
lectures, or later, e.g. from home by accessing Mobile
Chedar nodes through a gateway node.

MP2PLE has certain limitations in the current design.
The tiny user interface is problematic and provides only
primitive means to take notes e.g., pictures cannot be
drawn and course presentation material cannot be
integrated with MP2PLE. Also, taking lecture notes is
difficult because of the small keypads in mobile phones.
These limitations can only be overcome if larger screen
sizes and more convenient input devices are being used.

Bluetooth does not allow multi-hop with current
mobile phones because the device can only belong to one
piconet at a time. To support multiple devices in a
classroom one solution would be to use the approach
presented in [8] and to equip Bluetooth base stations with
two radio chips. They could, for example, be plugged into
power supplies inside the classroom and equipped with
Mobile Chedar middleware to function as relaying devices
for queries. Another solution would be to use different
transmission technology e.g., WLAN, which however is
not yet available in low-cost mobile terminals.

6. Conclusion

Mobile peer-to-peer enables new kind of applications
taking advantage of emerging short-range radio
technologies and allowing collaborative resource sharing
between peers. This paper describes one way to construct
peer-to-peer networks with support for mobile devices and
demonstrates the feasibility ~with a prototype
implementation. The future work of Mobile Chedar and
MP2PLE includes the support of audio and video streams
and determining the feasibility of the approach with
practical experiments.

7. References

[11 Bluetooth Special Interest Group, “Bluetooth Core
Specification v1.2”, March 2004

[2] Y. Chu, S. G. Rao, and H. Zhang, "A Case for End System
Multicast", International conference on Measurement and
modeling of computer systems, SIGMETRICS, Proceedings,
2000, pp. 1-12.

[3] G. Coulouris, J. Dollimore, and T. Kindberg, "Distributed
Systems — Concepts and Design", 3" Edition, Addison-Wesley,
2001.

[4] T. Horozov, A. Grama, V. Vasudevan, and S. Landis,
"MOBY - A Mobile Peer-to-Peer Service and Data Network",
International Conference on Parallel Processing, Proceedings,
18-21 August 2002, pp. 437-444.

[5] G. Kortuem, "Proem: a middleware platform for mobile
peer-to-peer computing”, Mobile Computing and
Communications Review, ACM, Volume: 6, Issue: 4, October
2002, pp. 62-64.

The binary trez is an Ingenious mixture of the binary search and link lists. The link list is expanded
o include a left and right child, inclicating values |ess than or greater than the parent element
Filling in the structure with data yields atree like Structure, with one root "node’ and an unlimited

number of branches of data,

Searching from binary tress:
U] runction search(roothode key) ¢
=nully { return -1, }// not found

o Node.key) { return rootiode.value; }/ffound

if they<roothlode key) //search left
{ return search(rootNode:left key); |
else //search right

PO ®m™

Figure 2. User Interface for Mobile Peer-to-Peer Learning Environment

Proceedings of the 3rd Int’l Conf. on Pervasive Computing and Communications Workshops (PerCom 2005 Workshops)
0-7695-2300-5/05 $20.00 © 2005 IEEE

IEEE

COMPUTER
SOCIETY

[6] N. Kotilainen, M. Vapa, M. Weber, J. Toyryld, and J. Vuori,
"P2PDisCo — Java Distributed Computing For Workstations
Using Chedar Peer-to-Peer Middleware”, University of
Jyviskyld, 2004.

[7117. Kurhinen, M. Vapa, M. Weber, N. Kotilainen, and J. Vuori,
"Short Range Wireless P2P for Co-Operative Learning"”, The 3"
International Conference on Emerging Technologies and
Applications, Proceedings, 16-18 October 2004, pp. 141-145.

[8] M. Leopold, M. B. Dydensborg, and P. Bonnet, "Bluetooth
and Sensor Networks: A Reality Check", The First International
Conference on Embedded Networked Sensor Systems,
Proceedings, November 2003, pp. 103-113.

[9] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, "Search and
Replication in Unstructured Peer-to-Peer ~ Networks",
Proceedings of the 16" International Conference on
Supercomputing, ACM Press, 2002, pp. 84-95.

[10] C. Mascolo, L. Capra, S. Zachariadis, and W. Emmerich,
"XMIDDLE: A Data-Sharing Middleware for Mobile
Computing", International Journal on Wireless Personal
Communications, Kluwer Academic Publisher, Volume: 21,
Issue: 1, April 2002, pp. 77-103.

[11] S. Nazarko, "Evaluation of the data fusion methods using
Kalman filtering and Transferable Belief model”, Master’s
Thesis, University of Jyviskyld, 2002.

[12] M. Papadopouli, and H. Schulzrinne, "Design and
Implementation of a Peer-to-Peer Data Dissemination and
Prefetching Tool for Mobile Users", First New York Metro Area
Networking Workshop, IBM T. J. Watson Research Center,
Hawthorne, New York, 12 March 2002.

[13] M. Vapa, N. Kotilainen, A. Auvinen, H. Kainulainen, and J.
Vuori, "Resource Discovery in P2P Networks Using
Evolutionary Neural Networks", International Conference on
Advances in Intelligent Systems — Theory and Applications,
Proceedings, IEEE Press, Luxembourg, 15-18 November 2004.

IEEE

Proceedings of the 3rd Int'l Conf. on Pervasive Computing and Communications Workshops (PerCom 2005 Workshops) COMPU'TER
0-7695-2300-5/05 $20.00 © 2005 IEEE SOCIETY

PX

P2PDISCO - JAVA DISTRIBUTED COMPUTING FOR
WORKSTATIONS USING CHEDAR PEER-TO-PEER
MIDDLEWARE

by

Niko Kotilainen, Mikko Vapa, Matthieu Weber, Joni Toyryld and Jarkko Vuori
2005

In Proceedings of the 19th IEEE International Parallel and Distributed
Processing Symposium

Reproduced with kind permission of IEEE Computer Society.

P2PDisCo - Java Distributed Computing for Workstations
Using Chedar Peer-to-Peer Middleware

Kotilainen N.", Vapa M.*, Weber M., T6yryli J. and Vuori J.
University of Jyvdskyld, P.O.Box 35 (Agora), 40014 University of Jyviiskyld
[niko.kotilainen, mikko.vapa, mweber, joni.toyryla, jarkko.vuori] @jyu.fi

Abstract

This paper introduces Peer-to-Peer Distributed
Computing (P2PDisCo) software, which provides an
interface for distributing the computation of Java
programs to multiple workstations. P2PDisCo can be used
to distribute any Java program that uses files for storing
input and output parameters without significant code
modifications to the Java program itself. P2PDisCo has
been built over Chedar peer-to-peer middleware and is
currently being used for speeding up the training of neural
networks with evolutionary algorithm.

Keywords: peer-to-peer, distributed computing, Java,
P2PDisCo, Chedar P2P middleware

1. Introduction

Peer-to-Peer (P2P) networks allow sharing of resources
over the Internet. The resources can be for example,
computing power, storage space, network bandwidth,
printers etc. For sharing computing power, peer-to-peer
networks are a natural choice, because many workstations
are running idle most of the time.

In contrast to clusters, in P2P networks all the tasks and
responsibilities for managing the network are shared
between the peers. This means that there exists no single
control entity responsible for providing the services. Also,
because P2P networks do not require a dedicated hardware,
distributing computation among workstations is usually a
cost-effective solution.

Distributed computing on workstations is mostly known
of SETI@home [1], which uses master-slave architecture
for distributing the analysis of radio signals obtained from
space to workstations. In this paper we present a
peer-to-peer system, in which all the connected peers can
work as master nodes initiating computations and also as
slaves processing computations when idling.

The paper is structured as follows. Section 2 describes
the related work in the area of P2P distributed computing.
Section 3 introduces Chedar peer-to-peer middleware and
section 4 the P2PDisCo peer-to-peer distributed computing
software and its application programming interface (API).
In section 5 we discuss the experiences gained from the use
of P2PDisCo for distributing the training of neural network
with evolutionary optimization algorithm and the planned
future work. Section 6 concludes the paper.

2. Related Work

Nowadays there are many alternatives for distributed
computing using Java programming language. One class of
software is formed by programming language independent
distributed computing tools that support Java. An example
of such software is Globus Toolkit [2], in which Java
Commodity Grid kit [3] provides an interface for accessing
Globus services using Java programs. Globus contains
mechanisms for code mobility which poses risks on
security because the downloaded code needs to come from
a trusted source or otherwise guaranteed to not be
malicious. In our approach we have avoided the use of
mobile code and the installation of the executed Java
Archive file (jar) is done semiautomatically using copying
scripts or by the user who donates computing power for the
Chedar peer-to-peer network. Also Globus uses centralized
indexes for resource discovery whereas in P2PDisCo the
resource discovery is decentralized and provided by the
Chedar peer-to-peer network.

Programming language dependent class of Java
distributed computing can be divided in two: Java
extensions and Java libraries. Java extensions such as
JavaParty [4] provide special distribution mechanisms
requiring changes to the Java compiler and/or Java Virtual
Machine (JVM). This is a drawback considering the
difficulty of executing the distributed code. Java libraries
provide special class libraries for the distribution without

“ The work of N. Kotilainen is supported by Innovations in Business, Communication and Technology (InBCT) project.
*The work of M. Vapa is supported by Graduate School in Electronics, Telecommunications and Automation (GETA).

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)

1530-2075/05 $ 20.00 IEEE

an

COMPUTER
SOCIETY

need for modifications to the Java compiler or JVM.
Therefore Java libraries are easier to deploy. An example
of such library is JavaSymphony [5] as well as P2PDisCo
presented in this paper. In JavaSymphony all the
computing resources are centrally configured under
JS-Shell whereas in P2PDisCo no central management
exists.

There are also some implementations of Java
distributed computing that use peer-to-peer network for
locating the resources. In such design the resource index
has been decentralized and peers cooperatively route
resource queries among each other. An example of such
system is GT-P2PRMI [6] which allows Remote Method
Invocation (RMI) lookups to be performed through an
extended version of RMIRegistry called P2PRMIRegistry.
P2PRMIRegistry is used to form the overlay network, for
binding and publishing the remote methods and for looking
up the published remote methods.

3. Chedar P2P Middleware

Chedar (CHEap Distributed ARchitecture) s
peer-to-peer middleware designed for peer-to-peer
applications. Chedar constructs a pure peer-to-peer
network using topology management algorithms and
provides functionalities for locating resources in the
network. The original goal of Chedar was to locate unused
resources in a computer network that could be used for a
given purpose; one could thus locate idle computers with a
given characteristics in order to run computationally
intensive calculations. It has then been extended to handle
any type of resource: data (files), software (e.g. operating
systems or specific applications) and hardware (e.g.
computers, printers and displays). Implementation of
Chedar is based on Java programming language, thus the
software is platform independent and provides easy
adaptation to different hardware.

Chedar nodes are identified with a pseudo-unique
identifier called Chedar ID. Each node maintains a
database of locally available resources shared by the owner
of the device. These resources can include for example
files and databases, software running on the device that can
be accessed or used by remote users, and hardware
characteristics of the device. Also, remote resources
discovered on the network can be added to the database
combined with information about their owner identified by
Chedar ID and meta-information about themselves.
Meta-information can contain e.g. type and path for the
files, name and version for applications or any useful
description for the hardware depending on the application,
which is using the information. The resource database is
stored as an XML document using a specific DTD. This
organization of data allows making rich and complex
queries to the database in the form of XPath expressions.

Chedar node keeps a list of neighbors it is connected to

through TCP sockets. TCP provides reliable data delivery
between the end points and thus also the disappearance of a
neighbor can be detected. The neighbor list is updated
based on heuristics such as the number of relayed query
replies and the actual query replies provided by the
neighbor to form an efficient topology for resource
discovery. Currently, we use as a query mechanism
breadth-first search algorithm (BFS), where query is
forwarded to each neighbor except the one from which the
query was received. Also, if the query has already been
received it is not forwarded further. The number of hops
that a query can take is limited in BFS with a time-to-live
value. BFS is suitable for small-sized networks and
guarantees to locate all resources from the network within
the time-to-live horizon, but if the network grows larger
the time-to-live value has to be decreased. In our
experiments the network size of 200 workstations with 100
Mb/s Ethernet connections the query traffic has not yet
posed a significant problem and therefore a more efficient
version of the query algorithm has not been implemented.

Each query contains a Message-ID and a query XPath
description. Whenever a query enters a Chedar node, the
node checks its resource database whether it contains a
resource matching the XPath expression. If resource is
found, a reply message is sent back using the route, which
the query came from. To properly relay the reply message
back to the query originator, the message needs to contain
the same Message-ID as the query did. After the query
originator receives replies, it notifies P2PDisCo
application, which can react to collected replies. Because
the replies also contain the address of replying node, the
intermediate nodes along the path as well as the querier
learns new nodes in the network without being directly
connected to them. This information can be later used for
topology updates.

For communicating between two peers, Chedar
provides a point-to-point communication protocol
allowing basic message passing primitives to be executed
by P2P applications. The protocol uses the same path as
reply message to deliver messages between peers.

4. P2PDisCo

Peer-to-Peer Distributed Computing (P2PDisCo) was
developed for distributing computationally intensive
evolutionary ~ optimization method to university
workstations. The workstations are basically staying idle
most of the time and therefore utilizing their processing
power only at times when they are not in use does not
interfere normal use of the computers.

P2PDisCo provides Distributed-interface definition
with methods for starting and stopping the distributed
application and checking whether the application is
currently running. This interface needs to be implemented
by the distributed application and is invoked by P2PDisCo.

VI'I'F

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05) COMPU.TER
1530-2075/05 $ 20.00 IEEE SOCIETY

The application is also required to read its parameters from
a file and write its output to a file provided by P2PDisCo.
The idea is that P2PDisCo pretends to the application that
the application is reading all input data from files, but
instead the file is delivered from Chedar and thus the
application does not see a difference whether it is running
remotely or locally. Also this ensures that the computing
node does not need to store any data on its hard drive
because Chedar delivers the data produced by application
through TCP connections to the master node. After
receiving data, master writes the received data to files on
hard drive. The architecture of P2PDisCo and Chedar is
shown in Figure 1.

Master

4
queryResource leceivedData
sendData

queryResource
resourceReply
sendData

5. Application Experiences And Future Work

P2PDisCo is at the moment used for speeding up the
computations of NeuroSearch resource discovery
algorithm [7] and it is deployed to more than 200
workstations of University of Jyviskyld in Agora building.
NeuroSearch is a neural network algorithm, which is
optimized using iterative evolutionary algorithm. It has
been found that the evolutionary algorithm is a stable
optimizer, but it requires much more computing power
than for example back-propagation algorithms
traditionally used for neural network training. The
selection of evolutionary algorithm was needed because in

Application

startApplication
stopApplication writeFile
applicationRunning v

P2PDisCo |

. A
receivedData

readFile

registerResource
sendData

Chedar |+

> Chedar

Figure 1. Architecture of P2PDisCo and Chedar.

The process of distributing the computation and
collecting results using P2PDisCo is shown in Figure 2.
When a peer (denoted as Master) joins the network, it
needs to locate other peers to connect. This is currently
handled by using a predetermined list of IP addresses and
ports. If the peer has already been connected earlier to
Chedar network it uses history data for connecting to
already learned peers’ addresses. Then master starts a
query looking for idle computing resource and those peers
that are ready for computing answer. Master selects which
of the located nodes it uses for computing and distributes
tasks to these nodes, which start the computing. During the
computation, results are sent when memory buffer is full
(currently at 256 KB) to master node and therefore no data
is written to computing nodes. Also, this ensures that if the
computing node is reset the computation results are still
saved to the point of last full memory buffer update.

Because of security concerns the distributed application
has been beforehand installed to the computers and it is not
automatically delivered during the task distribution. In the
task distribution only the execution parameters i.e.
configuration files are transferred. Also, currently the IP
addresses of master nodes are restricted such that only
certain IP addresses are allowed to start computations.

the peer-to-peer resource discovery problem good
input-output pairs are unknown and therefore no proper
data for supervised training is available.

Based on half a year’s usage of P2PDisCo it seems that
the only major problem with P2PDisCo is the updating of
the distributed application. Now it requires that Windows
computers are updated with a script and the service running
in Windows needs to be stopped and started again. At the
moment there is no good solution how to avoid this.
Fortunately, the computers are under central
administration and the updating can be done from one
computer.

As a future work, we are planning to add automatic
resuming mechanism for computation, if computing node
leaves the network. Now the computing is only restarted,
but by checkpointing the state of current execution the
computation could be resumed in another computing node
from the point when connection was lost. Perhaps, in the
future P2PDisCo also allows master to be disconnected for
a while and collecting results afterwards from the
computing nodes. Also, in the future we are extending the
API of P2PDisCo to allow direct communication between
computing nodes. This makes it possible to parallelize the
evolutionary algorithm for multiple computers with other
architectures than master-slave, such as the panmictic
model [8].

VI'I'F

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05) COMPU.TER
1530-2075/05 $ 20.00 IEEE SOCIETY

a) A new Chedar node (Master)
containing distributed computation
tasks joins the network.

¢) Master starts a distributed query to
locate an idle computing resource.

d) Two idle Chedar nodes answer
with a reply

e) Master distributes tasks and two
Chedar nodes start the processing.

f) After computation Chedar nodes
send the results back to Master node.

Figure 2. The process of distributing computation and gathering the results using P2PDisCo.

6. Conclusion

P2PDisCo provides decentralized architecture for
distributed computing of Java programs. P2PDisCo is built
on top of Chedar P2P middleware and requires only minor
modifications to turn an existing Java application to a
distributed one. Based on the experience of training
NeuroSearch neural network algorithm, the system seems
to perform well in a network of few hundred workstations.
As future work resuming mechanism and extension of API
to support direct communication between computing
nodes is planned.

7. References

[1] SETI@home - The Search for Extraterrestrial
Intelligence, http://setiathome.ssl.berkeley.edu/

2] Foster 1. and Kesselman C., “Globus: A
Metacomputing Infrastructure Toolkit”, The
International Journal of Supercomputer Applications
and High Performance Computing, 11(2), 1997, pp.
115-128.

3] Von Laszewski G., Foster I., Gawor J., and Lane P., "A
Java Commodity Grid Kit”, Concurrency and
Computation: Practice and Experience, 13(8-9), 2001,
pp. 643-662.

[4]

[5]

[6]

(7]

(8]

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

Philippsen M. and Zenger M., “JavaParty: Transparent
Remote Objects in Java”, Concurrency and
Computation: Practice and Experience, 9(11), 1997,
pp. 1225-1242.

Fahringer T., “JavaSymphony: A System for
Development of Locality-Oriented Distributed and
Parallel Java Applications”, [EEE International
Conference on Cluster Computing, 2000.

Chang T. and Ahamad M., “GT-P2PRMI: Improving
Middleware Performance Using Peer-to-Peer Service
Replication”, 10" IEEE International Workshop on
Future Trends of Distributed Computing Systems,
2004.

Vapa M., Kotilainen N., Auvinen A., Kainulainen H.,
and Vuori J., "Resource Discovery in P2P Networks
Using Evolutionary Neural Networks", [EEE
International Conference on Advances in Intelligent
Systems — Theory and Applications, 2004.

Alba E. and Tomassini M., "Parallelism and
Evolutionary Algorithms", IEEE Transactions on
Evolutionary Computation, 6(5), 2002, pp. 443-462.

COMPUTER
SOCIETY

PXI

P2PREALM - PEER-TO-PEER NETWORK SIMULATOR

by

Niko Kotilainen, Mikko Vapa, Teemu Keltanen, Annemari Auvinen and Jarkko
Vuori 2006

In Proceedings of the 11th International Workshop on Computer-Aided
Modeling, Analysis and Design of Communication Links and Networks

Reproduced with kind permission of IEEE Communications Society.

P2PRealm — Peer-to-Peer Network Simulator

Niko Kotilainen, Mikko Vapa®, Teemu Keltanen, Annemari Auvinen® and Jarkko Vuori

Department of Mathematical Information Technology, University of Jyviskyld
P.O.Box 35 (Agora), 40014 University of Jyviskyld, Finland
firstname.lastname @jyu.fi

Abstract—Peer-to-Peer Realm (P2PRealm) is an efficient peer-to-
peer network simulator for studying algorithms based on neural
networks. In contrast to many s, which phasize on
detailed network si the speed of simulation in P2PRealm
is essential, because neural networks require a time consuming
training phase. Efficiency has been obtained by optimizing training
loops inside the simulator, using Java Native Interface (JNI) as well
as distributing the simulator to hundreds of workstations using the
P2PDisCo platform. In this paper we describe the architecture of
P2PRealm and its input/output interfaces. Also, we present the
mechanisms used for internally optimi: the impl ion and
the configuration used for distribution. Finally, we present the use
of P2PRealm with the P2PStudio network visualization tool.

Keywords - peer-to-peer; P2PRealm; network simulation;
research infrastructure; neural networks, optimization methods;

I INTRODUCTION

Peer-to-Peer (P2P) algorithms have been studied at least
using three different approaches. These are crawlers, emulators
and simulators. Crawler is an implementation of a peer node
specially designed for P2P networks research. A crawler can
collect data passing through it to get a local view of the P2P
network. By deploying multiple crawlers, a bigger part of the
peer-to-peer network can be monitored. However, this approach
is not able to gather the global view of the network, because the
behavior of nodes which are not connected to crawlers is
unknown. This problem is solved by emulators, which contain
the implementation of a peer node and are used to build a
complete P2P network. Multiple emulators can be deployed
inside one workstation usually providing quite large P2P
networks with only a few workstations.

Even though emulators can be used to get the global view,
they are restricted to slow execution, because messages need to
be passed between emulator processes through network
protocols such as TCP. The third option, simulator, contains an
abstracted implementation of peer nodes equivalent to
emulators, but uses local data structures for message passing.
The use of local data structures significantly increases the speed
of execution and therefore is well-suited approach for
computationally intensive algorithm studies. The downside of
the approach is the inaccuracy of results compared to real-world

P2P networks and the difficulty of modeling user behavior. This
knowledge can only be obtained using crawlers or by
monitoring network traffic inside routers.

Developing peer-to-peer resource discovery and topology
management algorithms based on neural networks are
computationally intensive tasks. For example, it takes a week
for one low-cost workstation to train a good neural network
based resource discovery algorithm for a rather small P2P
network [23]. Therefore, in computationally intensive
algorithmic research the most important factor to consider for a
simulator is speed.

This paper describes an end product of a process where
emulators were first used for studying P2P algorithms and later
re-implemented as an efficient simulator to decrease the time
used for execution. Latest improvement of the simulator is the
distributed execution on a Peer-to-Peer Distributed Computing
platform (P2PDisCo) [11] allowing us to parameter sweep
different features of neural network based P2P algorithms.

The paper is structured as follows. Section 2 compares
existing P2P simulators with our work and states their
differences. Section 3 introduces P2PRealm network simulator
and section 4 describes its input and output interfaces. Section 5
describes the main use case of P2PRealm: the training of
evolutionary neural networks for P2P resource discovery.
Section 6 describes the internal modifications used for
optimizing the code and the combination of P2PRealm with
P2PDisCo platform. Section 7 illustrates the use of P2PStudio
for visualizing the output of P2PRealm and section 8 concludes
the paper.

II. RELATED WORK

There are various network simulators available for studying
P2P networks. However, many of these simulators are not
primarily designed for speed and none of them contains
functionalities for neural networks. Because the speed is the
most important factor in our simulation environment, it is
obvious that abstractions on the level of details are necessary.
Packet-level simulators model the P2P protocols with precise
protocol headers and field structures, whereas message-level
simulators only take into account the number and sizes of the

* The works of M. Vapa and A. Auvinen are supported by Graduate School in Electronics, Telecommunications and Automation (GETA).

0-7803-9536-0/06/$20.00 ©2006 IEEE.

93

packets. While packet-level simulation is a desirable feature, it
is still often too expensive in terms of computing resources. In
addition to speed, other desirable features in our simulations are
compilation of statistics on simulation results and visualization
of P2P networks. From this viewpoint, we next overview some
of the existing P2P simulators.

A. NS-2

NS-2 [15] is one of the most widely used network
simulators. The NS-2 is object-oriented discrete event
simulator, which closely follows the architecture of the OSI
model. It suits well for simulating packet switched networks and
small scale networks. The Parallel and Distributed Simulation
(PADS) research group has developed an extension that allows
network simulation to be run in parallel on multiple machines
[17]. Being very detailed simulator, it still does not scale well
enough and is slow from a computational point of view. In
addition, adding new modules is not straightforward, because of
it's complex module structure [14].

B. PLP2P

Packet-level Peer-to-Peer Simulator (PLP2P) [6] provides a
framework for other packet-level simulators, e.g. NS-2, in order
to provide detailed model of the underlying network. This is
done with wrappers, which translate P2P events into underlying
packet-level simulator. The authors assert that abstracting low-
level details can impact the simulation results to a large extent.
The scalability problem of packet-level simulations is solved by
running simulations on parallel machines. Nevertheless, as
training neural networks requires substantial part of available
computing power in order to get result within reasonable time,
we need to abstract the level of details of the P2P network.

C. QueryCycle

The QueryCycle simulator [19] is specialized to file-sharing
simulations. It has realistic models for content distribution,
query activity, download behavior etc. The content distribution
is based on a model, where each file belongs to one category
and that category is defined by the popularity of the file.
Simulations proceed in query cycles representing the time
period between issuing a query and receiving a response.
Generated queries are passed into a queue and handled on a
First-In-First-Out basis.

D. 3LS

3LS [21] is an open-source simulator for overlay networks
designed to overcome the problems of extensibility and
usability. The system is separated to three architectural levels: a
network model, a protocol model and a user model. The
network model uses a two-dimensional matrix as a storage of
distances between the nodes. The protocol model defines the
current protocol being simulated. The user model is the input
interface for the user. The 3LS uses most of the memory

resources to a graphical interface as the simulator uses main
memory to store each event executed for visualization and this
limits the system to less than a thousand nodes on a low-cost
workstation [14].

E. PeerSim

PeerSim [18] has been developed especially with scalability
and support for dynamicity in mind. PeerSim is Java-based and
has two simulation engines, one is cycle-based and the other is
event driven. Cycle-based engine allows scalable simulation but
is not very accurate. Handling large-scale overlay networks
requires simplifying assumptions about the simulation details.
For example, the details of the transport communication
protocol stack are not taken into account. Event driven engine
supports dynamicity and is more realistic, but decreases the
scalability of the simulation. The abstractions of cycle-based
simulations are similar to ours. The difference is that when
PeerSim uses the benefits of abstraction for high scalability, we
use it to increase the computational efficiency. Parallel
execution is a necessity in order to PeerSim to be useful for our
research.

F. NeuroGrid

The NeuroGrid simulator [8] was initially designed to
support comparative resource search simulations between
FreeNet [5], Gnutella [16] and NeuroGrid [8] systems. The
simulator is single-threaded, Java-based and uses discrete
events. Several protocols are now available for NeuroGrid e.g.,
Domain Name Service (DNS) and a distributed e-mail protocol.
NeuroGrid supports property files that specify the parameters of
the simulation to run. This includes the protocol to simulate, the
parameters of the network and the amount of searches.

NeuroGrid would be a promising simulator for our research
if it wasn’t single-threaded and non-parallel.

G. GPS

The General Peer-to-Peer Simulator (GPS) [24] is aiming to
respond to a call for extensible framework for simulating P2P
networks efficiently and accurately. Efficiency is accomplished
with message-level simulation instead of packet-level
simulation. Improvement to the level of detail is achieved by
tracking the network infrastructure and using a macroscopic
mathematical model to obtain accurate estimate of the message
behavior, e.g. TCP. The GPS also models downloads of the
files, which is often left out from the simulators. GPS is
extensible for modeling any P2P protocol, integration with a
GUI and network visualization and provides support for
topology generation tools.

The GPS is still in it’s early stages and details about
scalability, usability and performance are scarce. The GPS has
also only been used for simulating BitTorrent, where resource
discovery is not an essential problem. It is single-threaded, but

94

according to the authors their aim is to include multi-threading
into the simulator in the future.

H. Summary

A comparison of the different characteristics for reviewed
P2P simulators is shown in Table 1. Overlay with Routers
column tells if the simulator contains both the logical overlay
network topology and the underlying router structure of the
physical network. After surveying the existing literature about
P2P simulators it is obvious that there is a need for
standardization in the area of P2P simulation [7]. The field is
highly fragmented and most of the current projects use their
own simulators tailor-made for their purposes. One of the
problems of the widely used simulators is their complexity and
therefore poor scalability for P2P simulation purposes.

Although our project strongly supports the call for general
open-source P2P simulator that is easily extensible and even
some attempts for such a simulator have recently appeared, our
research area is still too specified to be implemented
satisfactorily in any other way than building a specifically
optimized simulator. Training neural nets is computationally
very demanding and requires parallel computing and simplified
network simulation. To the best of our knowledge P2PRealm is
the only message-level simulator that allows simulations on
parallel machines. In addition, there is no other neural networks
based P2P algorithms that we know of and neither simulators
supporting neural network algorithms.

The problem of specifically built simulators is that the
results are not exactly similar with the ones made by other
simulators. This is a compromise that had to be made. In
P2PRealm the most common P2P resource discovery algorithms
are implemented to allow comparison with the ones neural
networks create. This provides the baseline for results obtained
in other simulators.

1L

Peer-to-Peer Realm (P2PRealm) is a Java based peer-to-peer
network simulator designed for optimizing neural networks used
in P2P networks. The simulator has been developed in Cheese
Factory peer-to-peer research project [4]. With the simulator, it
is possible to determine a certain P2P network scenario and
requirements for a resource discovery or topology management
algorithm and get as an output a neural network optimized for
that scenario. For example, a P2P network scenario could
contain Gnutella’s [16] topology, resource distribution and
query pattern and the requirements could state that we want an
algorithm, which needs to locate certain amount of resources
(say 150) using as few query packets as possible. The end result
would be an adapted resource discovery algorithm for that
particular P2P network scenario. The first results of this kind of
an algorithm development was reported in [23]. Also, the
simulator contains implementations of various P2P resource
discovery algorithms such as Breadth-First Search [13],
Random Walker [12], Highest Degree Search [1,22] and
optimal path K-Steiner Tree approximation [22]. These
algorithms can be used as performance measures for neural
network based algorithms or for studying their performance in
different P2P network scenarios. The simulator has also been
used for studying topology management algorithms for P2P
networks [3].

PEER-TO-PEER REALM

The simulator is divided into four parts: P2P network, P2P
algorithms, neural network optimization and input/output
interface. P2P network contains the characteristics of a P2P
network including the network topology, distribution of
resources and query patterns of P2P network users. P2P
algorithms contains the implementations of various resource
discovery and topology management algorithms. Neural
network optimization takes care of neural network structure and
different optimization algorithms used for training the neural
network structure. Input/output interface is used for reading
configuration files and for outputting the statistics of training
and final results. The final results consist of the optimized

TABLE L. CHARACTERISTICS OF THE CURRENT UNSTRUCTURED P2P NETWORK SIMULATORS
Overlay with Dynamic
Level of Detail Parallel Scalability Routers Network Progr L
NS-2 Packets Yes Very low Yes No C++
PLP2P Packets Yes Medium - - C++
QueryCycle Messages No ? Yes Yes Java
Very low
3LS M 7 No (<1000 peers) Yes ? Java
Very high
PeerSim M No (1076 peers) Yes Yes Java
High
NeuroGrid M No (300 000 peers) No Yes Java
GPS M No ? No Yes Java
Medium
P2PRealm Messages Yes (100 000 peers) No Yes Java

95

neural network and the used query paths for different queries.

IV. INPUT AND OUTPUT INTERFACES

The following information is required as an input to
P2PRealm (described in a configuration file):

e P2P network
distribution

topologies containing the resource

e Query pattern
e P2P resource discovery algorithm

e Percentage of available resource instances to be located
in each query

e Number of queries executed in each training generation
e Neural network inputs

e Number of training generations, number of neural
networks and the neuron structure of neural networks

e Optimization method

As an output Peer-to-Peer Realm (P2PRealm) provides the
following files:

e The used topology and neighbor distribution

e A trace of training process with separate files for
training and generalization sets

e The best and all neural networks of each generation
e Query routes started from each node of the P2P network

e Configuration file, which was given as an input

V. TRAINING NEUROSEARCH

Next, we briefly describe how P2PRealm can be used for
P2P algorithm development. As an example we use
NeuroSearch resource discovery algorithm [23], but other
algorithms for example topology management algorithms based
on neural networks could be used [9].

NeuroSearch resource discovery algorithm uses local
information about query situation in a peer-to-peer network to
decide if query should be forwarded to a neighboring peer node
or not. The local information can be e.g. number of hops the
query has traveled, number of replies still needed to be located
etc. The forwarding process is illustrated in the following
algorithm:

1. One peer node starts a query specifying a
resource it wants to locate.
2. For each neighbor the node has, do the

following:
2.1 Fill all the input fields of neural network.
2.2 Compute the output of neural network.

2.3 If output is greater than zero, then forward

the query to neighbor and increase the
number of sent query packets by one.

3. A forwarded query packet arrives to peer node. If
this is the first query packet arriving to this node,
check whether the peer node contains a resource
being queried. If peer has the queried resource
then increase the number of found resources by
one.

4. Goto step 2.

The algorithm terminates when there are no more query
packets to process. At the end the quality of neural network is
determined by the number of found resources and the number of
query packets used.

To get good neural networks, they need to be trained so the
algorithm has to be executed many times (typically millions
query executions). There are various neural network weight
adjusting algorithms and depending on the used methods the
training times can vary a lot. Still, all optimization methods
have in common iterative behavior and therefore executing the
algorithm efficiently is an important feature of the simulator.

The internal execution loops of P2PRealm used for training
NeuroSearch are illustrated in Fig. 1. Each simulation run can
have multiple simulation cases, where each case has its own
environment parameters according to the input information
described in section 4. Furthermore, each case produces
NeuroSearch resource discovery algorithm optimized to this
environment accordingly. With multiple cases it is possible to
do parameter sweeps and to eliminate the need of starting the
simulator manually each time one wants to use multiple training
environments. The execution of different cases can also be
distributed on Peer-to-Peer Distributed Computing platform
[11] further described in section 6.

Execution of one case is divided into three different

sections:
e Training of the neural networks

e Analyzing the training of best neural network in
generalization environment

e Analyzing routes of the best neural network after the
training

First, the case has its P2P networks, neural networks and
other parameters initialized. Then the simulator proceeds to the
training phase. In each generation multiple neural networks are
evaluated by forwarding queries according to the resource
discovery algorithm presented above. The queries are forwarded
in one or more P2P networks and statistics of the query
performance of each neural network is recorded at the same
time. Usually between generations it is worth to do more
specific analysis of the best neural network in generalization

96

Initialize
environment

¢ Yes

Save
performance

best neural net to
log files

attributes of the (¢

Generalization

- PR P .
Initialize P S Create P2P ore P2P ™. .
generalization ~More cases ™. . . Initialize neural
N 4 No— —Yes Next case or read it networks >—No
environment for o lft? p networks
bect h | N , from file __needed?
est neural net | | .
|
| |
[v
v ; ; AN
e
Do route analysis| | | p “ nitialize each Exeoute queries
for trained neural | | H / More P2p in training
- / network as :
netin | H No generations o >—Yes trainin »
generalization | | “.go through? aining using one neural
. i environment
envionment | || network
[
b A ves L
v Training
i N Save
| H Do
L1 Variate neural e analyse neural performance
Stop simulation | | i No—< > attributes of
P nets . netduring
[“raining? neural netviorks
o ~ to log files
[
I e e B
Route ' |
oute | | —
. [Initialize in generalization
analysis | | neraizaton b
[b N } environment for using the best
| best neural net neural network of
| this generation
|
i
|
i
i
i
I
i
i
i
i
1

Figure 1.

environment, where we can determine how the same neural
network performs in an unknown environment. Generalization
environment can be used to control when neural network is
specializing too much on training environment and loses the
ability to perform well in unknown but similar environments
than the training environment.

After the evolution has proceeded the predetermined amount
of generations, the simulator moves to the last phase of the
process: route analysis. In the route analysis the same
generalization environment is initialized as earlier for the best
neural network, but now the queries start from each peer node at
a time. The query paths produced by these queries are recorded
and written to files to get accurate data about input and output
values of neural network during a query. Finally, when routes
have been recorded, the simulation ends.

V1. SPEEDING THE EXECUTION WITH P2PDisCO

The first implementation of P2PRealm used approximately
one week for training the neural networks on a desktop
computer. This was a severe limitation in research because it

Execution Loops of P2PRealm

forced to study only small P2P networks and still getting results
was very time consuming.

We started the internal code optimization process to see how
much can be saved by optimizing internal loops of the
simulator. After P2PRealm was profiled we found that the use
of Vector object instead of Array in Java consumed lots of time
(in particular getting the size of a vector through method call).
Java container classes such as HashMap and HashTable can
contain only objects and therefore reimplementing them to store
only primitive values saved some execution time. Also we found
that caching results of different method calls to avoid new
method calls resulted in significantly faster execution times. The
total time decreased to about 60% with these optimizations.

Java bytecode is interpreted in Java virtual machine yielding
slower execution compared to compiled code. Java Native
Interface [20] has been developed to allow native code for
example compiled C++ to be executed from a Java program.
We reimplemented the calculation of neural network output
with C yielding an execution time about 70-80% compared to
first version of P2PRealm. Combining both the internal code

97

optimization techniques and Java Native Interface
implementation of neural network output calculation, we thus
achieved execution time of about 50% compared to first version
of P2PRealm.

This was however not enough, because reducing execution
time of one simulation case from a week to 3-4 days was still
quite slow. As a solution, we started developing Peer-to-Peer
Distributed Computing platform (P2PDisCo) [11] allowing the
distribution of simulation cases to multiple machines.

Earlier in our project [4] we had developed Chedar P2P
middleware [2], which provided the basis for building
P2PDisCo on top of it. P2PDisCo allows the workstations
joined in a Chedar P2P network to publish certain distributed
computing application as a resource in Chedar P2P network.
‘When other Chedar nodes find this resource, it can be used to
deliver needed input files to computing nodes and the produced
output files to the node, which started the computations. For
further information on the behavior of P2PDisCo the reader is
referred to [11].

The speed up of execution with P2PDisCo is nearly linear,
because each simulation case is delivered to different
workstation. In university environment it is easy to locate
machines, which are idle most of the time, so getting hundred of
machines (and thus 100 times faster execution) was relatively
easy scaling the research process to much faster rates. The
resulting architecture is shown in the Fig. 2. Master denotes the
peers, which create simulation cases and P2PRealm denotes the
peers, which compute these cases.

VII. VISUALIZATION OF DATA USING P2PSTUDIO

Peer-to-Peer Studio (P2PStudio) [10] is a monitoring,
controlling and visualization tool for P2P networks research.
When combined with P2PRealm only visualization features can
be used, because current version of simulator does not provide
monitoring data during execution of a simulation. For
visualization, P2PStudio provides functionalities to draw
network topology and different graphs e.g., neighbor
distribution of the topology. Also, the location of resources and
query paths can be illustrated on a screen to qualitatively
analyze how algorithms are performing. In case, that the
simulation contains neural network, the input and output values
of a certain query will be shown in a separate table. A
screenshot of P2PStudio is shown in Fig. 3 and the specific
features of P2PStudio are described in separate article [10].

VIII. CONCLUSIONS

Peer-to-Peer Realm is a simulator for studying P2P
networks. Its unique functionalities contain training methods for
neural networks and optimized speed of execution. By
combining P2PRealm with other tools developed in our project,
the simulator can grow to a large-scale distributed P2P research
environment.

RN

P2PRealm
P2PDisCo
TN Chedar TN
p2PReam|\ TC&~ " P /[PoPReaim
P2PDisCo P2PDisCo
Chedar TCP Chedar
N N
TcP cP cP
N
Master Master
P2PDisCo P2PDisCo
Chedar

TCP Chedar
P2PStudio

Figure 2. Architecture of P2PRealm combined with P2PDisCo, Chedar and
P2PStudio

The future work of P2PRealm includes the parallelization of
simulation such that multiple computers can process the same
simulation task. Now only one simulation task can be allocated
to a certain computer and speed ups are gained only when
multiple cases are being simulated. Also, with the advent of
multi-core processors for desktop machines, we are going to
implement threaded version of simulator to support multiple
processors within a single computer. For P2P network
visualization, P2PStudio’s user interface can be replaced in the
future to support large P2P networks to be visualized and better
usability of the program. Also the list of improvements for
P2PRealm contain different query distributions and new input
types for neural networks. As a longer term goal, we are aiming
to combine neural network based topology management
algorithms with neural network based resource discovery
algorithms to study optimal construction of P2P networks.

REFERENCES

[1] Adamic L., Lukose R. and Huberman B., Local Search in Unstructured
Networks, Handbook of Graphs and Networks: From the Genome to the
Internet, Wiley-VCH, 2003, 295-317.

Auvinen A., Vapa M., Weber M., Kotilainen N. and Vuori J., "Chedar:

Peer-to-Peer Middleware”, Proceedings of the 20" IEEE International

Parallel and Distributed Processing Symposium (IPDPS 2006), Rhodes

Island, Greece, 2006.

[3] Auvinen A., Vapa M., Weber M., Kotilainen N. and Vuori J., "New
Topology Management Algorithms for Unstructured —Peer-to-Peer
Networks", unpublished.

[4] Cheese Factory —project, http:/tisu.it.jyu.fi/cheesefactory

[5] Clarke I, Sandberg O., Wiley B. and Hong T., "Freenet: A distributed
anonymous information storage and retrieval service", Proceedings of
Workshop on Design Issues in Anonymity and Unobservability (ICSI),
Berkeley, CA, USA, 2000.

[6] He Q., Ammar M., Riley G., Raj H. and Fujimoto R., "Mapping Peer
Behavior to Packet-level Detai A Framework for Packet-level
Simulation of Peer-to-Peer Systems", Proceedings of the 11 " JEEE/ACM
International Symposium on Modeling, Analysis and Simulation of
Computer Telecommunications Systems (MASCOTS 2003), Orlando,
USA, 2003.

[2

98

[71

[8]

191

[10]

[11]

[12]

[13]
[14]

[15]

L=1oix)
File Nodes Preferences Help
“Logical | Graphs | Commands | Lo |
Refresh
Refresh: 0] secs
Timeout: | 600] secs ©
8
Show... a
de names: 1
nnections ¢ 0
10
e :
6 78 1 @
40
Last query
First reply: -1ms.) 1
Last rephy: -1ms. 89 ;
_re &= ! o S £
Replies: 17 B ; \\(I <
e 7
o W7 a0 SN N
TrafficLimit: 2 0 |
TratficMeter: g0 24
Overload levol:) !/ T 0 T N b 4 e ©
Selected nodes: | an
53 63 A r 3 — 77
79 1} H
Pe \ 5 71 54
44
@ o | k 3
5\ 62 5952
oz \ 5 67 T 1
1 88
41
49 70 L4 1
92
73
68
aloty, Bone 1 2765 ot Connected
Figure 3. P2PStudio User Interface for P2PRealm
Joseph S., "An Extendible Open Source P2P Simulator", P2P Journal, [16] Oram A., Peer-to-Peer: Harnessing the Power of Disruptive
November 2003, 1-15. Technologies, O'Reilly Media, 2001.
Joseph S. and Hoshiai T., "Decentralized Meta-Data Strategies: Effective [17] PDNS - Parallel/Distributed NS,
Peer-to-Peer Search”, IEICE Ty ions on C icati Vol.E86- http://www.cc.gatech.ed ing/compass/pdns/
B, No.6, 1740-1753. [18] PeerSim, http://peersim.sourceforge.net/
Keltanen T “NeuroTopology: Topology Management Algorithm for P2P [19] Schlosser M., Condie T. and Kamvar S., "Simulating a P2P File-Sharing
Networks”, unpublished. Network", Ist Workshop on Semantics in Grid and P2P Networks, 2002.
Kotllalqen N Vapa M., _Auvmen A.,_Wel?er M and Vuori J., "P2PStudio [20] Sun Microsystems, Java Native Interface Specification,
- Monitoring, Controlling anili Visualization Tool for Peer-to-Peer http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/jni TOC. html
N ks Research” blished. . .
ettvo.r s Research, unpublishe L o . [21] Ting N. and Deters R., "3LS - A Peer-to-Peer Network Simulator”,
Koulalpen‘ N., Vapa M., Weber M, Toyryla 1. aﬂfi Vuori J., "P2PDisCo - Proceedings of the 3rd International Conference on Peer-to-Peer
Java Distributed Computing for Workstations Using Chedar Peer-to-Peer Computing (P2P 2003), IEEE Press, 2003, 212-213.
Middleware", Proceedings of the 19th IEEE International Parallel & [22] Vapa M., Auvinen A., Ivanchenko Y. Kotilainen N. and Vuori J
Distributed Processing Symposium (IPDPS 2005), Denver, Colorado, "Oglimal”Resource Disc.;avery Paths of GﬁulellaZ” unpubiishe d ”
USA, 2005. N :
Lv Q., Cao P., Cohen E., Li K. and Shenker S., Search and Replication in [23] Vapa M., Kotilainen N., Auvinen A., Kainulainen H. and Vuori J.,
Unstructured . Peer-to-Peer Networks Prol;eedings of the 16" "Resource Discovery in P2P Networks Using Evolutionary Neural
International Conference on Supercomputing, ACM Press, 2002, 84-95. N;Z\Zzitslmgx;;’;:z:‘;iJ_C;Z%e;jnzcgaj'; iﬁ;‘;"mc;;":glzlgéﬁgem Systems
Lynch N. Distributed Algorithms, Morgan Kauffmann Publishers, 1996. [24] Yang W and Abu-Ghazaleh N.. "GPS: ‘;‘ General Pee;‘-to-Peer Simulator

Montresor A., Di Caro G. and Heegaard P., "Architecture of the
Simulation Environment", Technical Report: D11, BISON project,
University of Bologna, 2003.

NS-2, http://www.isi.edu/nsnam/ns/

99

and its Use for Modeling BitTorrent",
Meeting of the IEEE I ional
and Simulati of Comp
(MASCOTS '05), Atlanta, USA, 2005.

Proceedings of the 13th Annual
ium on Modeling, Analysis,
Systems

N

ndrT’

PXII

P2PSTUDIO - MONITORING, CONTROLLING AND
VISUALIZATION TOOL FOR PEER-TO-PEER NETWORKS
RESEARCH

by

Niko Kotilainen, Mikko Vapa, Annemari Auvinen, Matthieu Weber and Jarkko
Vuori 2006

In Proceedings of the ACM international workshop on Performance monitoring,

measurement, and evaluation of heterogeneous wireless and wired networks,
pages 9-12

Reproduced with kind permission of the Association for Computing Machinery.

P2PStudio — Monitoring, Controlling and Visualization Tool
for Peer-to-Peer Networks Research

Niko Kotilainen, Mikko Vapa, Annemari Auvinen, Matthieu Weber, Jarkko Vuori
Department of Mathematical Information Technology
University of Jyvaskyla, Finland
firstname.lastname@jyu. fi

ABSTRACT

Peer-to-Peer Studio has been developed as a monitoring, controlling
and visualization tool for peer-to-peer networks. It uses a centralized
architecture to gather events from a peer-to-peer network and can be
used to visualize network topology and to send different commands
to individual peer-to-peer nodes. The tool has been used with
Chedar Peer-to-Peer network to study the behavior of different peer-
to-peer resource discovery and topology management algorithms
and for visualizing the results of NeuroSearch resource discovery
algorithm produced by the Peer-to-Peer Realm network simulator.
This paper presents the features, the architecture and the protocols
of Peer-to-Peer Studio and the experience gained from using the tool
for peer-to-peer networks research.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques

General Terms: Measurement, Performance.

Keywords

peer-to-peer; P2PStudio; monitoring tool; research infrastructure.

1. INTRODUCTION

Peer-to-Peer (P2P) networks consist of a set of peer nodes. Each
peer node makes decisions on where to connect and where to
forward resource queries resulting in a complex self-organizing
network. Studying how different algorithms are performing requires
collecting data from the entire P2P network to obtain a global view.
In P2P networks research people have used crawlers [5,9] to collect
data locally available for some peer nodes. This approach however
is only able to gather a portion of the P2P network’s behavior,
because some of the peers might not accept any new connections
requested by the crawlers. Also, the crawlers can only gather
information, which is accessible by the P2P protocol and thus they
do not have direct means to control the peer’s actions.

In our approach, we use a centralized server to contact peers in the
P2P network and to set filters to the peers for what events the peers
need to report back to the server. This allows measuring different
properties from the P2P network extensively and globally. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

PM’HW’N'2006, October 2, 2006, Torremolinos, Malaga, Spain.
Copyright 2006 ACM 1-59593-502-9/06/0010...85.00.

graphical user interface presents the collected data visually thus
making the interpretation easier compared to reading plain text log
files. In contrast to crawlers, we note that our work is the first
attempt to create a P2P research environment, which provides strict
control mechanisms and accurate measurements for studying the
behavior of different P2P algorithms.

To monitor the events of a P2P network a specific monitoring
interface needs to be implemented in the peer nodes. This interface
is used for setting different event logging options and for accepting
incoming connections for data delivery from the centralized server.
However, in presence of a large P2P network the centralized server
can have lots of connections to manage and presents a potential
performance bottleneck in our approach compared to local gathering
of data done by crawlers. This architecture can however be scaled
up by using multiple servers as is common in studies with crawlers

[9].

The rest of the paper is organized as follows. Section 2 presents
P2PStudio, its features, architecture and protocols. Section 3
describes how P2PStudio has been used in peer-to-peer networks
research for studying the performance of peer-to-peer resource
discovery and topology management algorithms. Conclusions and
future work are discussed in Section 4.

2. PEER-TO-PEER STUDIO

The Cheese Factory —project [3] has implemented a Java-based
peer-to-peer computing platform called Chedar [1]. Chedar can be
used to build a network of workstations where each node provides
and consumes resources such as computing power, files and devices.
Currently, Chedar is used as a middleware for P2P Distributed
Computing applications [7]. Chedar has also been extended to
support mobile devices [8]. In order to test and monitor the Chedar
network there was a need for a tool that enables to remotely control
and monitor each peer and workstation in a centralized way. By
executing the Guardian student project [4], the first version of Peer-
to-Peer Studio was developed in 2002.

i
! Peer-to-Peer Studio
I

1 User
| Interface H server
1

Figure 1. Components of Peer-to-Peer Studio.

P2PStudio is Java-based and it is divided into two separate
programs as shown in Fig. 1: the user interface (UI) and the
server. The graphical UI connects to the server program and uses

it to carry out the commands entered by the user. The server
program takes care of all of the communication between the UI
and Chedar nodes. It also manages the data sent from Chedar
nodes. Dividing the application into two programs allows mobility
of the UI from the dedicated hardware of the server. For example
the server might have privileges to connect to Chedar nodes
through firewalls and an UI residing on a laptop only needs to be
able to connect to the server.

UI communicates with the server, sends requests to Chedar nodes,
displays data from the server to the user e.g., by visualizing the
network topology and showing diagrams. The UI also allows the
management of Chedar nodes. Server forwards the commands sent
by the UI, gathers information from the Chedar network and passes
on requested data to the UL

2.1 User Interface

The user interface draws a logical topology of the monitored
network as shown in Fig. 2. From the zoomable topology view the
user can select nodes and for example check their values, command
queries to be sent and modify the resources owned by the nodes.
Nodes can also be grouped together to ease the execution of a

© > Peer-To-Peer Studio
File Nodes Preferences Help

Logical | Graphs | Commands | Log |

certain action to multiple nodes. Information on the last executed
query is also shown in the topology view. The topology is generated
using the WTS Veivi component from WTS Networks [12]. The
component creates a visualization of network topology from a set of
nodes and links optimized to minimum number of overlapping links.
The topology is refreshed whenever the user desires or after a set
interval.

Another feature of the UI is to show graphs of the monitoring data
as shown in Fig. 3. Currently, the only graph implemented is the
neighborhood distribution, but other graphs are relatively easy to be
plugged in. Graphs are formed by combining multiple events into a
single value, like in the neighborhood distribution, where individual
neighbor amount notifications are counted and the frequency of
certain value creates one data point in the graph. Graphs can be
zoomed and shown also in a logarithmic scale.

The log feature of the UI allows the user to keep track of the Chedar
network's actions almost in real time. Log presents the event
messages coming from the Chedar nodes. The events are
notifications of certain network events, for example forwarded
queries, new neighbor connections or dropped messages because of
congestion in a Chedar node.

=lolx

Refresh

Refresh topology.
Refresh: 0] secs

Timeout: | 600| secs

Show...
Hode names

Connections,
Routes

acket amounts

Ty

First reply: -1ms.
Last rephz -Ams. 89
Total Messages: 18

Replies: 17
Node
Name:

TraffieLimit: 2
TrafficMeter: g9
Overload level: 40

Selected nodes: | Al

v

opology done in 2765 milliseconds.

[Not Connected

Figure 2. Topology view.

The user can also send commands to the server or to Chedar nodes
via the server by typing commands in the User Interface-to-Server
Message Protocol (UMP) format (for more details see the Section
2.3). The Commands view allows the user to see the sent data and
the received messages from the nodes. Also batch files can be
executed via the commands view. Batch files are useful when a
certain peer-to-peer query pattern and measurement scenario needs
to be executed multiple times.

~To-Peer Studio =z

Nodes Preferences Help

=10l x|

Logical | Graphs | Commands | Log |

Grapht E [] Logarithmic scale Refresh interval: 0] seconds | Refresh graph

Neighborhood distribution

Nodes

2 4 8 8 10 12 14 18 18 20 22
Neighbors per nods

opology done in 18480 milliseconds [Not Connected |

Figure 3. Graph view.

The UI can be run online as well as offline especially for
demonstrations. For offline use there is a recording feature allowing
the user to record actual monitoring data coming from the server to a
file and later retrieve the recorded data in offline state. The UI also
allows the user to create Chedar node groups and manage
connections.

The functioning of the Ul is quite simple. When data is received
from the server it is checked and forwarded to the addressed
component of the UL The data will be presented to the user in a
form of topology, graph or text depending on the view. Sending data
is also rather straightforward. The user assigns a command and it is
sent to the server for further handling.

2.2 Server

The server program is divided into two main components: stateless
connection manager and stateful data manager. The connection
manager is the part of the server which takes care of all connections.
It forwards the contents of the packets without interpreting them,
only adding metadata about the time the packet was received and
Chedar node’s IP address and port. A packet can arrive to the server
either from the UI or from a Chedar node. It arrives first to the
connection manager which forwards it to the data manager if
necessary, otherwise directly to UI or to Chedar node(s).

The data manager is responsible for temporarily saving data coming
from Chedar nodes and for combining multiple individual replies to
a single reply for UL For example to construct a neighbor
distribution graph, data manager needs to collect individual
neighbor amounts from Chedar nodes and build the graph data for

UL This lightweight architecture of the server allows scaling to
hundreds of Chedar nodes.

2.3 Protocols

User Interface, Server and Chedar nodes use three different
protocols for communication. One binary protocol was developed as
a container for two message protocols, one XML protocol for
communication between the server and the Chedar nodes as well as
one XML protocol for communication between the UI and the
server. Both XML protocols are on the top of the binary protocol as
illustrated in Table 1. The binary protocol is always on the top of
TCP.

Table 1. LAYERS OF THE PROTOCOLS.

Message Protocol (GMP or UMP) XML
Packet Tt Protocol (GPTP) Binary
TCcP

1) Guardian Packet Transmission Protocol (GPTP)

The Guardian Packet Transmission Protocol (GPTP) is a binary
protocol used between the Ul and the server as well as between the
server and the Chedar nodes. The GPTP packets are composed of a
fixed-size 64-bit header and a data part, which varies in size. The
header identifies the packet as a part of the Guardian-to-Chedar
protocol and specifies the size of the data part in bytes. Without a
specified data size, parsing an incoming XML message from a
stream would be harder. An example of a GPTP message is shown
in Table 2.

Table 2. GUARDIAN PACKET TRANSMISSION

PROTOCOL.
32 bit synchronization header, 0x47324350
(G2CP)
32 bit size field, network byte order, (1234)
Byte data

2) Guardian Message Protocol (GMP)

The Guardian Message Protocol (GMP) is used between the server
and the Chedar nodes on the top of the Guardian Packet
Transmission Protocol. Each GMP message is a complete XML
document. The header is a standard XML declaration, and the body
is composed of a root element which specifies the type of message,
and a variable content.

Here is the structure of GMP message:
Header: XML declaration
<?xml version="1.0" encoding="UTF-8"?>
Body
Root element: <request/> OR <reply/> OR <event/>
Content: various requests, replies or events as
XML elements and/or attributes

There are three types of messages in the Guardian Message
Protocol:

Request message is sent by the server to a Chedar or a Workstation
node.

Reply message is sent by a Chedar or a Workstation node to the
server.

Event message is sent by a Chedar node to the server.

The request/reply pair forms a synchronous message exchange
initiated by the server. The reply is not mandatory. Event messages
can arrive from the Chedar nodes at any time.

3) User Interface-to-Server Message Protocol (UMP)

The User Interface-to-Server Message Protocol (UMP) is used
between the UI and the server on top of the Guardian Packet
Transmission Protocol. UMP uses similar message structure as
GMP. The difference between UMP and GMP is in the XML
elements and attributes. For example the UMP contains elements for
sending a certain GMP message to all Chedar nodes.

3. P2PSTUDIO IN PEER-TO-PEER

NETWORKS RESEARCH

At first, P2PStudio was developed to collect data from a Chedar
network [1] consisting of tens of workstations. Experimenting with
self-organization of topology and different resource discovery
algorithms however usually requires a controlled environment to
obtain results that are repeatable. Creating exactly same starting
conditions for each test in a network of workstations is problematic,
because of differencies in hardware and network traffic. Also,
having each Chedar node pack and send data over the network is
significantly slower than executing algorithms in a simulator, where
only local data structures are being used.

Therefore, the use of P2PStudio was extended by creating the Peer-
to-Peer Realm (P2PRealm) network simulator [10,6]. P2PRealm is
Java-based and contains functionalities for creating peer-to-peer
network scenarios with different topologies, resource distributions
and query patterns, executing different resource discovery and
topology management algorithms, and collecting various statistics of
the execution to log files. In addition to textual viewing of log files,
P2PStudio can be used for graphical viewing e.g., to plot how
queries spread in the network and what kind of topologies emerge
from the execution of algorithms.

A special use case for P2PStudio and P2PRealm is the development
of the NeuroSearch resource discovery algorithm [11], which is
based on neural networks. Optimizing neural networks requires not
only simulation of a certain scenario once, but usually thousands of
times to reach a near-optimum state in learning. Therefore network
simulators, such as Ns-2 [2], which are based on scripting languages
and mainly developed for detailed protocol studies are not fast
enough. For studying the behavior of neural networks, P2PStudio
provides a view containing the inputs of neural network and the
corresponding output decisions.

4. CONCLUSIONS AND FUTURE WORK

P2PStudio is a well-established research tool for peer-to-peer
networks research providing functionalities for peer-to-peer network
monitoring, controlling and visualization. P2PStudio has been used
with two different peer-to-peer software, Chedar and P2PRealm, for
algorithm development. The centralized architecture of P2PStudio is
a potential bottleneck for scalability in the future when the size of
the P2P networks being studied grows. As a future work we
envision changes in the architecture to support multiple servers as

well as adding new functionalities to UI to determine certain
network characteristics such as diameter, shortest paths and multiple
distinct paths between nodes.

5. ACKNOWLEDGMENTS

The authors would like to thank the other members of the Guardian
student project: Joni Toyryld, Jussi Rastas and Ville Pentti. Niko
Kotilainen was supported by the InBCT-project and Mikko Vapa
and Annemari Auvinen were supported by the GETA graduate
school.

6. REFERENCES

[1] A. Auvinen, M. Vapa, M. Weber, N. Kotilainen, and J. Vuori,
“Chedar: Peer-to-Peer Middleware”, Proceedings of the 20th
IEEE International Parallel & Distributed Processing
Symposium (IPDPS 2006), Rhodes Island, Greece, Arpil 2006.

L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A.
Helmy, P. Huang, S. McCanne, K. Varadhan K. , X. Ya, and
Y. Haobo, “Advances in network simulation”, IEEE Computer,
Vol. 33, Issue 5, pp. 59-67, 2000.

[2]

[3]

Cheese Factory — Peer-to-Peer Computing Project,
tisu.it.jyu.fi/cheesefactory.

[4]

Guardian project,
www.mit.jyu.fi/opiskelu/sovellusprojektit/guardian/.

M. A. Jovanovic, F. S. Annexstein, and K. A. Berman,
“Scalability Issues in Large Peer-to-Peer Networks — A Case
Study of Gnutella”, Technical report, University of Cincinnati,
2001.

[5]

[6] N.Kotilainen, M. Vapa, A. Auvinen, T. Keltanen, and J.
Vuori, "P2PRealm — Peer-to-Peer Network Simulator”,

of the 11th Inter | Workshop on Computer-
Aided Modeling, Analysis and Design of Communication Links

and Networks (CAMAD 2006), Italy, June 2006 .

N. Kotilainen, M. Vapa, M. Weber, J. T6yryld, and J. Vuori,
"P2PDisCo — Java Distributed Computing for Workstations
Using Chedar Peer-to-Peer Middleware”, Proceedings of the
19th IEEE International Parallel & Distributed Processing
Symposium (IPDPS 2005), Denver, Colorado, USA, 2005.

N. Kotilainen, M. Weber, M. Vapa, and J. Vuori, "Mobile
Chedar - A Peer-to-Peer Middleware for Mobile Devices",
Workshops Proceedings of the Third IEEE Conference on
Pervasive Comy and C ications (Percom 2005),
pp. 86-90, Kauai Island, Hawaii, USA, 2005.

D. Stutzbach, R. Rejaie, “Capturing Accurate Snapshots of the
Gnutella Network™, Proceedings of the 8th IEEE Global
Internet Symposium, Miami, Florida, 2005.

P,
Proc

[7]

[8]

9

[10] J. T6yryld, "Building NeuroSearch - Intelligent Evolutionary
Search Algorithm For Peer-to-Peer Environment", Master's
Thesis, University of Jyviskyld, 3.9.2004.

[11] M. Vapa, N. Kotilainen, A. Auvinen, H. Kainulainen, and J.
Vuori, "Resource Discovery in P2P Networks Using
Evolutionary Neural Networks", International Conference on
Advances in Intelligent Systems - Theory and Applications
(AISTA 2004), Luxembourg, 2004.

[12] WTS Networks, www.wts.fi

	ABSTRACT
	ACKNOWLEDGEMENTS
	ACRONYMS
	LIST OF FIGURES
	LIST OF TABLES
	CONTENTS
	LIST OF INCLUDED ARTICLES
	1 INTRODUCTION
	1.1 Problem Formulation
	1.2 Author Contribution

	2 NETWORKING TECHNOLOGIES
	2.1 Related network architectures
	2.2 Peer-to-Peer Networks
	2.3 Mobile Ad-Hoc Networks
	2.4 Mobile Encounter Networks
	2.5 Mobile Peer-to-Peer Networks
	2.6 Social Networking Applications in Mobile P2P Networks

	3 CHALLENGES IN PEER-TO-PEER NETWORKING
	3.1 Resource Discovery
	3.2 Routing in Mobile Encounter Networks
	3.3 Location Sensing

	4 RESEARCH TOOLS
	4.1 Mobile Peer-to-Peer middleware
	4.2 Distributed computing middleware
	4.3 Network Simulators

	5 CONTRIBUTIONS
	5.1 Social Mobile Peer-to-Peer
	5.2 Algorithms for Resource Discovery and Routing
	5.3 Location sensing
	5.4 Tools

	6 CONCLUSION
	YHTEENVETO (FINNISH SUMMARY)
	REFERENCES
	ORIGINAL PAPERS
	PI LOCATION-BASED MEDIA SHARING IN A MP2P NETWORK
	PII MOBILE SEARCH – SOCIAL NETWORK SEARCH USING MOBILE DEVICES
	PIII FINDR: LOW COST INDOOR POSITIONING USING FM RADIO
	PIV YOU’VE GOT PHOTOS! THE DESIGN AND EVALUATION OF A LOCATION-BASED MEDIA-SHARING APPLICATION
	PV A GENETIC-NEURAL APPROACH TO MOBILITY-ASSISTED ROUTING IN A MOBILE ENCOUNTER NETWORK
	PVI RESOURCE DISCOVERY IN P2P NETWORKS USING EVOLUTIONARY NEURAL NETWORKS
	PVII AN ADAPTIVE GLOBAL-LOCAL MEMETIC ALGORITHM TO DISCOVER RESOURCES IN P2P NETWORKS
	PVIII A MEMETIC-NEURAL APPROACH TO DISCOVER RESOURCES IN P2P NETWORKS
	PIX MOBILE CHEDAR – A PEER-TO-PEER MIDDLEWARE FOR MOBILE DEVICES
	PX P2PDISCO – JAVA DISTRIBUTED COMPUTING FOR WORKSTATIONS USING CHEDAR PEER-TO-PEER MIDDLEWARE
	PXI P2PREALM – PEER-TO-PEER NETWORK SIMULATOR
	PXII P2PSTUDIO – MONITORING, CONTROLLING AND VISUALIZATION TOOL FOR PEER-TO-PEER NETWORKS RESEARCH

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

