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ABSTRACT: Much of our understanding of natural invasions is retrospective, based on data 

acquired after invaders become established. As a consequence, we know little about the 

characteristics of the early population growth and habitat use of the invaders during establishment. 

Here we report on experimental introductions of guppies into natural streams in which we conducted 

monthly censuses of each population. Two of the four introductions were in streams with thinned 

canopies, which mimics a common form of habitat disturbance. We conducted similar censuses of 

natural populations to characterize natural population densities and generate a null distribution against 

which we could test a priori hypotheses about the establishment of the experimental invaders. We 

constructed a pedigree for one population, which enabled us to quantify lifetime reproductive success. 

Population simulations predict that the nature of the introduced population’s life history, in 

combination with reduced risk of predation in the introduction sites, will result in explosive 

population growth; however, populations of introduced invaders instead grew to match densities 

observed in natural streams with intact canopies. Experimental populations in streams with thinned 

canopies grew to densities that often exceeded those of natural streams with intact canopies. High 

population densities were associated with the increased use of marginal habitat. Adult females and 

males that moved into marginal habitat suffered no apparent fitness loss, suggesting lower population 

densities found there compensated for lower habitat quality. Our results suggest that the ecological 

setting in which invasions occur plays a role at least comparable in importance to that of the invader’s 

inherent characteristics in shaping early population growth and habitat use. 

Key Words:  Poecilia reticulata, invasive species, habitat disturbance, enemy release, experimental 

introduction, habitat selection

Introduction
The growing prevalence of invasive species begs the question of why some succeed, in spite 

of the majority failing (Williamson 2006). Invasions are usually recognized after the invasive species 

becomes established, so the answers to this question are usually based on retrospective analyses of a 

reconstructed history of an invasion (Mack et al. 2000, Marsico et al. 2010, Simberloff 2010, Van 

Wilgen and Richardson 2012, Blackburn et al. 2015). Here we offer a prospective analysis of an 

invasion in the form of a replicated experimental introduction to natural communities that enables us 

to detail the population dynamics and habitat occupancy patterns associated with the initial A
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establishment of an invasive species. We focus on the role of a common form of habitat disturbance in 

shaping those dynamics.

The role of habitat disturbance in facilitating invasions was recognized first by Elton (1958). 

Hobbs and Hueneke (1992) note that certain disturbances, such as fire or herbivory, can be normal 

occurrences, so they refined Elton’s hypothesis to suggest that the best opportunities for invaders will 

be associated with novel disturbances or patterns of typical disturbance that exceed the normal regime 

in magnitude or frequency. Davis et al. (2000) proposed instead that the input of resources following a 

disturbance, such as tree cutting and the subsequent increase of light availability, creates opportunities 

for invaders. A common theme to such disturbances is the rapid, substantial increase in the 

availability of a limiting resource like space, nutrients, or light.

Empirical studies of well-established invasive species yield clues about the role of disturbance, 

relative to other factors, in facilitating species invasions. Insights gained from these studies are that 

disturbance can indeed facilitate invasions, but for diverse reasons that involve interactions among the 

properties of the invader, native species and the native ecosystem. One theme has been to address 

whether invaders succeed because they are competitively superior to natives or if they are instead 

better at exploiting disturbances. Seabloom et al. (2003) showed that native grasses are competitively 

superior to the invasive grasses in the Central Valley of California. The invasive species succeed 

despite their poor competitive ability because their seeds disperse more widely and they are better 

able to exploit disturbed habitats. Likewise, Prevey et al. (2010) showed that the dominant shrub 

(Artemesia tridentata) on the sagebrush steppe inhibits some invasive grasses. Removal of the shrub 

enables invasion by grasses because it increases the availability of soil moisture. Marvier et al. (2004) 

model such a balance between invasion and competitive ability and suggest that invasive species will 

tend to be habitat generalists that are better able to take advantage of the opportunities offered by 

habitat disturbance, despite being competitively inferior to specialists.

Other studies reflect a different balance between competitive ability and disturbance. Sebert-

Cuvillier et al. (2007) developed an empirical, demographic model of the population biology of the 

American black cherry (Prunus serotina) as it invaded European forests and showed that disturbance 

is a facilitator of seedling establishment. Once established, the tree is competitively superior and 

capable of converting a diverse woodland into a monoculture. MacDougal and Turkington (2005) A
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found invasive species of grasses in the understory of an oak woodland were competitively superior to 

the native grasses. Their invasion was facilitated by fire suppression. Native species were better 

adapted to the periodic disturbance caused by fires but were outcompeted by the invaders when this 

form of disturbance was removed.

More generally, Mack and D’Antonio (1998) argue that there can be a cascading relationship 

between invasion and disturbance. The establishment of invasive species can disrupt normal 

disturbance regime, either by increasing, decreasing or changing the nature of the disturbance and, in 

that way, make communities more susceptible to further invasion and permanently change the 

structure of the ecosystem.

A second feature of invasions is that the population growth that follows the establishment of 

an invader is often accompanied by a diversification of the habitats occupied (Simberloff 2010). The 

way habitat use diversifies can be a direct function of population density, especially if habitats differ 

in quality (Arim et al. 2006). At low population densities, organisms occupy the best available habitat. 

As population densities increase and absolute fitness declines with density, some individuals will 

emigrate to progressively less desirable habitat with lower densities, where their fitness may be 

comparable to those in more desirable habitats with higher densities (the ideal free distribution; 

(Fretwell and Lucas 1969).

The importance of density-dependent habitat expansion is supported by analyses of time series 

censuses of invading species as they spread over the landscape. Arim et al. (2006) report that 28 of 30 

well-characterized invasions bear a clear signature of population regulation, as inferred from the rate 

of invasion of new sites as the invaders range expanded. They suggest that, when a new locality is 

colonized, the invader’s population takes some time to grow to carrying capacity before it once again 

generates propagules that will colonize new localities. Starrfelt and Kokko (2008) show that Arim et 

al’s result may also be attributable to other processes, but other investigators report temporal patterns 

of invasion that are suggestive of density-dependent population expansion. For example, Pietrek and 

Gonzalez-Roglich (2015) used satellite imagery to track the invasion of the Patagonian steppe by 

beavers and found that they first occupied small watercourses in canyons and only later, after most 

canyons were occupied, colonized streams in plains or u-shaped valleys. Van Beest et al. (2014) 
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report that the invasive population of horses on Sable Island increased their use of less desirable 

habitat as the population expanded.

While such results support the idea of density-dependent habitat expansion, they are 

inferences from patterns of range expansion made in the absence of a direct assessment of population 

dynamics or the fitness consequence of the habitat occupied. The limitations of such retrospective 

analyses leave some key ecological questions about the early phase of invasions unresolved. These 

are: 1) What role does habitat disturbance play in enabling invaders to establish then expand their 

range? 2) What are the population dynamics during the early phases of the invasion? Do populations 

approach the carrying capacity of the local environment or does rapid population growth produce an 

overshoot of carrying capacity? 3) If invaders do exceed carrying capacity, does this lead to the 

invasion of less preferred environments or are such habitats invaded as part of the process of 

population growth even before attaining carrying capacity?

Here we address these questions with an experimental study of the establishment of new 

populations of guppies, Poecilia reticulata, set in a natural environment. Our project is distinctive for 

three reasons. First, it represents a replicated range extension followed by a detailed quantification of 

population establishment. Second, the experiment includes a treatment that mimics a common form of 

habitat disturbance that has the potential to influence the demography of the invader and hence affect 

invasion success. Third, we contrast the results of our introductions with patterns of density and 

habitat use in comparable natural populations. The censuses of natural populations provide estimates 

of population density and distribution in natural environments and enable us to generate confidence 

limits for the expected distribution in similar habitats. Doing so makes it possible to statistically 

evaluate whether or not our experimental introductions exceed the population densities typical of 

natural, undisturbed streams. Our experiment thus provides unprecedented detail about this earliest 

critical phase of invasion.

Background: Guppies naturally occur in the Northern Range Mountains of Trinidad. They are 

frequent, successful invaders, often as a byproduct of their use for mosquito control (El-Sabaawi et al. 

2016). Guppies have successfully invaded all continents except Antarctica (Lever 1996, Deacon et al. 

2011). They are competitors and predators of native species of invertebrates, fish, and amphibians and 
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have altered native ecosystems in other ways (Holitzki 2010, Deacon et al. 2011, MacKenzie and 

Bruland 2012, El-Sabaawi et al. 2016).

 The colonization of new environments is an inherent feature of the natural history of guppies. 

In their native habitat, guppies range from the mouths of rivers up to small, headwater tributaries, 

where they are one of two fish species present. Patterns of genetic variation suggest that guppies 

originated in the main river, then colonized the upstream tributaries (Willing et al. 2010). We have 

witnessed such natural colonization events in our study sites.

In earlier experiments, we extended the range of guppies from downstream localities, where 

they co-occur with a diversity of predators, into guppy-free tributaries upstream, isolated by barrier 

waterfalls. These sites are occupied only by the killifish Rivulus hartii (Reznick et al. 1990, Reznick 

et al. 1997). These artificial transplants mimic natural colonization events. Introduced guppies readily 

multiply in their new setting. They reduce the abundance of the killifish by up to 70% and cause the 

evolution of killifish life histories (Walsh and Reznick 2011). They alter the abundance of aquatic 

insects, algae, and change nutrient cycling and other ecosystems processes (Bassar et al. 2010, Travis 

et al. 2014, Bassar et al. 2017a, Bassar et al. 2017b, Simon et al. 2017).

We performed a thought experiment in which we modeled the fate of guppy populations from 

high predation environments that invade previously guppy-free headwater streams (Reznick et al. 

2001b). Guppies from downstream, high predation localities suffer higher mortality rates (Reznick et 

al. 1996b, Reznick and Bryant 2007), but their life histories evolve in response to mortality risk. They 

are genetically predisposed to mature at an earlier age and produce more offspring than guppies 

adapted to the low predation environments represented by our experimental streams (Reznick 1982, 

Reznick and Bryga 1996). The introductions are thus a manifestation of the conditions envisioned by 

the “enemy release” hypothesis for invasion success (Colautti et al. 2004) because the introduced 

guppies experience release from predation risk.

In our simulations, we assumed that when guppies from high predation localities downstream 

invade predator and guppy-free headwater streams, their mortality rates decline, but they initially 

retain their genetic predisposition to mature at an early age and produce many offspring. We 

parameterized the simulations with real estimates of guppy mortality rates in low predation streams 

(Reznick et al. 1996a) and life history traits characteristic of guppies from high predation streams A
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(Reznick and Bryga 1996, Reznick et al. 1996c). The predicted consequence of this mismatch 

between the invaders’ life history and the mortality rate experienced in their new environment is that 

the introduced population will rapidly multiply and overshoot the population densities typical of the 

invaded locality. On this basis, we defined the three following questions.

(1) Do populations of invasive guppies grow to the population density typical of low predation 

habitats or overshoot it? Our model predicts the potential to exceed typical population densities 

because the invaders have high reproductive capacity but face reduced mortality risk.

(2) Do anthropogenic modifications of the habitat influence the time course and ultimate fate 

of an invasive population? Human activities often change the environment in ways that give invaders 

a competitive advantage over residents (e.g. (Winsome et al. 2006) and hence facilitate the invasion 

process (Didham et al. 2007). Tree cutting in the vicinity of streams is a common form of disturbance 

that increases primary productivity and the standing biomass of primary producers and invertebrates 

(Noel et al. 1986, Stone and Wallace 1998). Such increases in productivity can, in turn, facilitate 

increase the population density of guppies. This effect occurs in guppy streams (Kohler et al. 2012) 

and is sometimes enhanced by increased nutrient runoff from the surrounding terrain (Reznick et al. 

2001a, Collins et al. 2016).

(3) Does the increase of guppy population density in preferred habitats cause guppies to 

increase occupancy of less preferred habitats, as predicted by Rosenzweig (1981)? This prediction 

was upheld in experiments (Abramsky et al. 1990, Abramsky et al. 1991) and long-term observational 

studies (McLoughlin et al. 2006, Bradbury et al. 2015, Castagneyrol et al. 2016). The mountain 

streams occupied by guppies are naturally sub-divided into alternating pools and riffles. Guppy 

population densities are much higher in pools than riffles, suggesting that pools are the preferred 

habitat. We ask whether the increasing population density of guppies causes them to increase 

occupancies of riffles.

We mimicked natural invasions by introducing guppies derived from a high predation locality 

into four natural guppy-free streams, then followed their progress with monthly mark-recapture 

censuses. We mimicked habitat disturbance in two of the four streams by thinning the tree canopy 

while leaving the canopy intact in the other two streams. In addition, we censused native guppy 

populations in six natural streams with intact canopies, similar to the two introduction streams with A
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intact canopies. We used these censuses to characterize the natural densities of guppies in pools and 

riffles and to simulate 95% predicted intervals for these natural population densities. We addressed 

our questions by comparing the population densities attained in our introduced populations with those 

of natural populations. These data enabled us to follow population growth, monitor habitat choice and 

changes in habitat occupancy over time. We considered the population density observed in the 

introduced populations to exceed natural levels only when it was significantly greater than the range 

of densities observed in natural streams.  We collected scale samples for all founders and new recruits 

to provide DNA, then genotyped and developed a pedigree for one of the four introduced populations. 

We then combined the pedigree with the census data and estimated the fitness, in terms of lifetime 

reproductive success, of all individuals as a function of their habitat use.

Methods
Censuses of Natural Streams: We quantified the population densities and distributions of 

guppies in 50-meter portions of six natural streams in March, May (dry season), July and September 

(wet season) of 2013 to create a null distribution for comparison with the experimental streams (Fig. 

1). Sampling in the wet and dry seasons enabled us to incorporate seasonal variation in abundance in 

our assessment of natural population densities. These reference sites define density and habitat use in 

natural populations and thus provide a frame of reference for addressing whether the four 

experimental streams overshoot the densities seen in natural streams with intact canopies or change 

their habitat occupation relative to what we see in natural streams with intact canopies.

We sampled each stream on three consecutive days and applied a depletion sampling design to 

estimate population size. Our capture rates proved so high that the cumulative probability of capture 

exceeded 99% so we simply used the total number caught as the population size (See Appendix S1: 

Section S1).

Experiment: We introduced guppies into small sections of four headwater streams of the 

Guanapo River, two in March 2008 (Upper La Laja, UL, and Lower La Laja, LL) and two in March 

2009 (Taylor, TY, and Caigual, CA). We introduced thirty-eight pairs of fish to each of the first pair 

of streams in 2008. We introduced fifty-one pairs to each of the second pair of streams. We added 12 

additional pairs to the Caigual River to equalize the initial density with the Taylor; the Caigual has a 

larger benthic area. The introduced guppies were collected from high predation localities in the lower A
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portions of the Guanapo River for which the life history was representative of a typical high predation 

locality (Torres-Dowdall et al. 2012). The introduction sites have a waterfall on the downstream side 

that previously excluded all species of fish save Rivulus hartii. All replicates have a waterfall 

upstream that is a barrier to the upstream dispersal of guppies and hence defined the upstream 

boundary of the experimental populations. The length of the introduction sites varies from 68 to 156 

meters. We thinned the canopy of one randomly selected stream in each pair (UL and TY), which 

increased light levels and enhanced primary productivity (Kohler et al. 2012).  The thinning initially 

increased photosynthetically active radiation by 30% in the UL and 800% in the TY. The canopies 

were regularly re-thinned to maintain the differences in light level, but light levels were also affected 

by periodic treefalls.  By 2013 light levels were 388% higher in the UL than LL and 285% higher in 

the TY than CA.

All founders were individually marked with subcutaneous injections of colorized elastomer 

(Northwest Marine Technologies). All new recruits over 14 mm standard length also receive a unique 

mark. Guppies are 6 to 7 mm at birth and take 1-2 months to attain 14 mm. We cannot mark smaller 

guppies without increasing the risk of mortality so we must forego knowledge of their early life 

history.

We kept three scales from each founder and collected three scales from each new recruit. 

These scales are a source of DNA, from which we genotyped all individuals from one replicate (LL). 

We constructed a pedigree for this population that enabled us to quantify individual reproductive 

success. We quantified lifetime reproductive success (number of recruited offspring) for the founding 

females and all females born through December 2011. We quantified lifetime mating success (the 

number of females who sired young by that male) for all founding and recruited males through 

December 2011. The end dates were chosen to include cohorts for which we had complete 

reproduction and mating histories. All included individuals had died long enough before the end of 

2013 (which represents the latest time point for which pedigree reconstruction is currently available) 

for all offspring who could have been sired by stored sperm to grow large enough to be included in 

the mark-recapture study. Further details on the experimental design, genotyping, pedigree 

construction and estimation of lifetime reproductive success appear in Appendix S1: Section S2.
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Censuses of Experimental Populations: All populations were censused once per month. We 

kept the fish from each pool and riffle separate from each other plus separated males and females as 

they were collected. In the laboratory, we identified each fish by its individual mark, weighed it, and 

photographed it for later quantification of standard length. Successive length and weight 

measurements enabled us to quantify growth rate. We returned fish to the site of capture either one or 

two days after being caught. Formal analyses reveal that we have, on average, a greater than 90% 

probability of seeing every fish >14 mm each time we census the population. See Appendix S1: 

Section S2 for additional details.

Stream Morphology: Streams are naturally subdivided into discrete pools and riffles. A riffle 

has a steeper gradient than pools and a linear water flow. Pools are bracketed by riffles and lack linear 

flow. Water instead flows into the pool from a riffle upstream and out of the pool through a riffle 

downstream. Within the pool, there are regions of turbulent flow or no flow. Streams also have 

sidepools, disconnected from the main channel, and backwaters, or peripheral embayments, with null 

or circular flow and a single, restricted connection with the main channel. The physical characteristics 

of riffles cause them to be more different from any other habitat type. All others share similar features 

of still or partially still water with higher detritus deposits. Therefore, we merged the habitat types 

different from riffles into a single category hence referred to as pool. Guppies tend to be more 

abundant in pools.

 We quantified benthic area by representing each stream surface as a polygon, then dividing 

the polygon into triangles. Each triangle had two sides crossing the stream and one side on the shore. 

We measured the length of the three sides of the triangle. For the two sides that cross the stream, we 

measured three depths at 0.25, 0.5, and 0.75 of side length. With these measurements, we were then 

able to quantify the surface area and volume of each section of stream. Using geometry, we estimate 

the top (surface) and bottom (benthic) areas and the volume of the stream by dividing it into slices and 

then added slice values to get the stream section totals by type of habitat. Area and volume of 

boulders or logs interrupting any triangular section of the stream were accounted for by subtracting 

their volume and benthic surface and adding submerged lateral surfaces to benthic area. Further 

details on these methods are presented in Appendix S1: Section S3. Habitat size was calculated using 

custom code in R (R Development Core Team, 2016), available in Data S1.A
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Tests of Hypotheses About the Invaders in Experimental Streams: We estimated population 

size by dividing the number of captured individuals by the estimated probability of being captured if 

alive. Capture probabilities were estimated separately per each of the eight stream-by-habitat type 

combination, and for males and females separately. To do so, we implemented a multistate Cormac-

Jolly-Seber (CJS) capture-recapture model, where the state variable denoted the habitat in which a 

given individual was captured (pool or riffle). Capture probability, transition probability, and survival 

probability were set as state (habitat), time and sex-dependent. Models were fit using the crm function 

in the R package marked ((Laake et al. 2013)version 3.2.4). Capture probability, and therefore 

population size, were estimated in four different months (March, May, July, and September) in order 

to capture seasonal fluctuations and to match the sampling scheme of the natural streams. Each target 

month was bracketed by data from 3 months before and 3 months after to allow for robust capture 

probability estimates. The estimated number of males and females in a specific habitat (pools or 

riffles) within a stream in a given month were summed to obtain the estimated population size in that 

habitat at that time point. We then estimated population density as individuals/m2 for each stream, 

habitat type, and time point by dividing the estimates of population size by the estimated total benthic 

area of that habitat (see Appendix S1: Section S3 for details on this estimation). These calculations 

give us the mean and variance of population density for pools and riffles separately, for each stream 

and each month.   

Hypothesis 1 –To construct predicted confidence intervals for expected population densities in 

natural streams we performed Monte Carlo simulations on the natural stream GLMMs by drawing 

100,000 month- (March, May, July, September) and habitat-specific (pools, riffles) predictions at the 

level of the stream (see Appendix S1: Section S4). We then asked if the density estimate for the 

experimental streams was significantly higher than the null expectation. Doing this involves making 

multiple comparisons (one-tailed tests), one for each year, month, habitat and stream combination, for 

a total of 240 tests. We used Holm’s step-down procedure to correct for multiple testing (Holm 1979, 

Rice 1989). See Table S2 for the results of statistical tests for individual stream-month combinations.

Hypothesis 2 –We tested whether the predicted increase in population density under thinned 

canopies was attained by fitting a GLMM with a negative binomial error distribution. We used the 

estimated number of guppies from our Cormac-Jolly-Seber model as our response variable, canopy A
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treatment (thinned vs. natural), habitat (pool vs. riffle), and month (March, May, July, or September) 

as fixed effects and year and stream as random effects. We included benthic area as an offset to 

express the results in terms of density, which is the same procedure used for the analyses of natural 

streams (see  Appendix S1: Section S4).

Hypothesis 3 – To test for increased use of riffle habitats after the invasion, we compared the 

estimates of habitat density with the habitat-specific reference levels produced by our simulation 

(Appendix S1: Section S4). We again calculated the p-value, corrected for multiple comparisons, by 

counting the proportion of times the null model described above exceeded the focal stream estimate 

(one-tailed test). We tested for changes in riffle use with time with a one-way analysis of variance on 

the average proportion of an individual’s lifetime spent in riffles as a function of cohort and using an a 

priori contrast for a linear trend.

Assessment of performance in experimental streams with intact versus thinned canopies: 

Because canopy thinning had a strong impact on our results for population density under Hypothesis 2, 

we assessed the demographic consequences of canopy thinning. We analyzed adult lifespan and 

recruitment rates under thinned and intact canopy streams. Thinning increases primary productivity, 

which likely increased resource availability at all trophic levels (Kohler et al. 2012), so we also 

examined two measures of individual performance, growth rate of immature females and size at 

maturity in males, that reflect the consequences of increased productivity under open canopies. We 

know from diverse prior laboratory experiments and manipulations of population density in the field 

that growth rate and male size at maturity both increase in response to increased food availability (e.g. 

(Reznick 1982, Reznick 1983, Reznick 1990, Reznick and Bryga 1996)). Our linear mixed model for 

female growth had growth increment (mass t2 – mass t1) as a response variable, standard length 

(initial size) as a covariate, habitat and canopy treatment as discrete explanatory factors, and stream 

identity as a random effect. Our measure for male size at maturity was the mass when an individual 

was first recorded as being sexually mature. We inferred maturity from the development of the 

gonopodium, which is the metamorphosed anal fin used as an intromittent reproductive organ. We 

analyzed male size in pools and riffles separately because size at maturity was density-dependent in 

pools but not riffles. For pools, we used an analysis of covariance, with biomass density as covariate 

and stream as a fixed effect. We tested the effect of canopy type with an a priori single-degree-of-A
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freedom contrast between the adjusted means of the two streams with intact canopies and the two with 

thinned canopies. For riffles, we used an analysis of variance and the same a priori contrast.

Assessment of population structure and fitness in pools and riffles: The lower population 

densities in riffles may be a simple consequence of this habitat type being more accessible to some 

fish; e.g. larger fish are better able to navigate in higher currents. To assess the effects of habitat on 

population structure, we examined sex ratios (proportion of fish that were male) and, for each gender, 

average body sizes of fish found on each sampling date in each habitat. We applied a general linear 

model to the factorial combination of stream and habitat, treating sampling date as a stratum so that 

the analyses contrast habitats accounting for stream differences and temporal variation. (See 

Appendix S1: Section S5).

The higher densities typically found in pools (Reznick et al. 1996a) suggest that guppies prefer 

pools to riffles. Preferred habitats are often those where individuals have higher fitness because of 

improved reproductive success and or/survival (McLoughlin et al. 2006). To assess the effects of 

habitat type on fitness, we quantified and compared the consequences of pool versus riffle occupancy 

on lifetime reproductive success for females and lifetime mating success for males. The latter 

analyses were done for the one replicate (LL) for which we have a pedigree and hence a capacity to 

quantify individual reproductive success. We employed generalized linear models with fixed, 

continuous predictors and a quasi-Poisson error structure (See Appendix S1: Section S5 for additional 

detail).

Ethical Considerations:  Given the expected ecological implications of introducing guppy 

populations in guppy-free environments, we considered the ethical issues surrounding this experiment 

carefully.  We extended the range of guppies in streams in which they already occurred, simulating 

the natural colonization of upstream locations by guppies, which has defined the natural history of 

guppies in the Northern Range of Trinidad and still occurs naturally.  Over the course of our research 

careers, we have witnessed guppy populations disappear from upstream locations and successfully re-

colonize from sites downstream. Therefore this experiment follows the natural pattern of colonization 

of tributaries and does not alter the natural range of guppies.  

We presented our methodological proposal to representatives of the Fisheries Division, 

Ministry of Agriculture, Land, and Fisheries of Trinidad and Tobago, which oversees all work on fish, A
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and to scientific colleagues at the University of the West Indies at St. Augustine.  The Fisheries 

Division informed us that no permits were required to transplant guppies.  Our colleagues at the 

University of West Indies did not object to our proposed experimental manipulation once they 

understood the nature of the experiment.

Results
Analysis of six natural streams: We first assessed guppy population densities in six natural 

populations to provide a frame of reference for evaluating the densities of guppies in the experimental 

introductions. Our sampling dates included two dry-season (March, May) and two wet-season (July, 

September) censuses to provide estimates of seasonal variation in population size.

We initially fit a model that included the natural streams as a random effect with two habitat 

types (pool vs. riffle) and the four sampling times (March, May, July and September) as fixed effects, 

together with the interaction between habitat and time. We fit two additional models that included two 

rather than four time-periods. Our prior research revealed that the rate of reproduction tends to be 

higher during the dry than the wet season because food is more abundant (Reznick 1989) so it was 

reasonable to expect that population density could be higher during the dry season as well. We 

combined March and May (dry season) as one-time period and July and September (wet season) as 

the second to model the effects of the dry versus wet season, respectively (the Season model). The 

nature of the data (Fig. 2) inspired us to fit a second wet-dry season model (the Lag model) with a 

built-in time lag. There is a lag in the increase in census population size after the onset of the dry 

season because guppies are 6 to 7mm at birth but we only sampled and marked fish >14 mm long 

because of risk of mortality associated with handling smaller fish. Newborn fish grow to 14 mm in 

one to two months (Reznick et al. 1996a). Since the dry-season extends from approximately February 

until May, the lag between when the dry-season increase in resources begins and when we see an 

increase in population density via the recruitment of unmarked fish 14 mm or larger would cause the 

increase in census population size to appear in May, rather than March. Likewise, a lag between when 

the dry-season ends and recruitment slows down would cause the population decline to become 

apparent in September rather than July. Our second model thus contrasted May and July (expected 
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peak season) versus March and September (expected low season) to accommodate this time lag 

(Table 1).

The best model included the effects of habitat (pool vs. riffle) and the Lag Model for the 

effects of time (Table 2). The next three models fall within or close to ΔAICc values of 4 and hence 

merit some consideration. The next best-fit model (the Month Model, Table 2) treats each month 

separately, followed by a Lag Model that includes an interaction between lag and habitat then a month 

model that includes an interaction between month and habitat. These analyses reveal that population 

densities were significantly higher in pools than riffles. Densities in pools were typically 3-5 times 

higher than those in riffles, although in some streams at some censuses they were as much as an order 

of magnitude higher (e.g. Quare in July and September) and as little as 50% higher (e.g. Tumbason 

River in September; Fig. 2).

 Patterns in Experimental Streams: Our GLMM analyses of the experimental streams revealed 

effects of habitat and time on density that closely mirror those of the natural streams (Table 3). Guppy 

population densities are considerably higher in pools than riffles in three of the four streams, typically 

three- to four-fold higher in LL and UL and an order of magnitude higher in CA (Fig. 3). The 

exception was TY, in which pool densities were typically about two-thirds higher than riffle densities, 

but sometimes very similar. Population density increased significantly from March to May, remained 

high in July, and then declined significantly in August. This close match with the Lag Model in 

natural streams supports the legitimacy of using the censuses of natural streams as a basis for 

comparison with the experimental streams. We also found that population densities tended to be 

higher in the two streams with thinned canopies, and hence higher light availability.

Comparison of Natural vs. Experimental Streams: Pools and riffles in the two experimental 

streams with thinned canopies (UL and TY) had population densities that often significantly exceeded 

those of natural streams. By contrast, on only two occasions did the experimental streams with intact 

canopies (LL and CA) display significantly higher population densities than the natural streams (Fig. 

3, Appendix S1: Table S2). 

All experimental streams had lower population densities than the natural streams during the 

first two years of the introduction. Thereafter, all experimental streams exhibited seasonal cycles of 
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abundance similar to those of natural streams, with the highest population densities appearing in the 

dry seasons and in 2009-2010 and 2014-2015.

Why do population densities exceed expectations in streams with thinned canopies? Higher 

light levels in the two streams with thinned canopies are associated with increased primary 

productivity and invertebrate abundance (Kohler et al. 2012, Travis et al. 2014, Simon et al. 2017), 

suggesting that these higher densities reflect higher carrying capacities in these streams.

Demographic analyses reveal that the higher population densities under thinned canopies are 

attributable to increased recruitment rather than lower mortality rates. Adult male monthly survival 

averaged 0.74 + 0.009 (1 se) and was independent of biomass density (F1,386 = 0.06, NS) and canopy 

treatment (F1,386 = 0.59, NS). We use biomass density when analyzing growth, survival, and 

recruitment because biomass density is a more accurate measure of the pressure of population 

numbers on resources than the number of individuals. Adult female survival was independent of 

biomass density (F1,386 = 2.02, NS) but was slightly higher in streams with intact canopies (F1,386 = 

3.97, P = 0.047; LS MEANS - Open: 0.838 + 0.007; Closed: 0.858 + 0.007). Per capita recruitment 

decreased as total biomass density increased; however, the rate of decrease in recruitment with 

increasing density was much steeper under intact than thinned canopies (Fig. 4: F1,337 = 5.73, P < 

0.02). The intercepts were statistically indistinguishable (F1,337 = 0.36, NS). These relationships have 

two consequences. First, while recruitment rates converged at the lowest densities, thinned canopy 

sites had much higher recruitment rates through nearly the full range of observed densities. Second, 

the biomass density at which monthly recruitment is predicted to be zero is nearly four-fold higher in 

the thinned canopy streams (2.68 g/m2 ) than in the closed canopy streams (0.73 g/m2). These 

densities are at or slightly beyond the maximum densities observed in thinned and intact canopies 

(2.80 and 0.70 g/m2 respectively) so the extrapolation in this deduction is minimal.

Did canopy thinning cause higher productivity and leave a signature of higher per capita 

resource availability on individual performance? Canopy thinning is indeed associated with increased 

primary productivity (Kohler et al. 2012, Collins et al. 2016), higher per capita resource availability, 

more rapid growth of individual guppies, higher rates of recruitment and higher population densities.

We focused first on the growth rate of juvenile females because they, unlike males, have 

indeterminate growth and have not yet initiated investment in reproduction, so all available energy is A
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invested in growth. The rate of growth is indeed significantly higher in streams with thinned vs. intact 

canopies by about 9% (Table 4).

Second, we asked if the size of males at maturity was larger under the thinned canopy because, 

in the laboratory, male size at maturity increases with food availability (Reznick 1982, 1990, Reznick 

and Bryga 1996). We had to analyze male size separately for pools and riffles because size at maturity 

was density-dependent in pools but not in riffles.

In pools, higher biomass densities two months prior to maturation led to smaller male size at 

maturity (F1,79 = 12.02, P < 0.001). There was no interaction among streams between biomass density 

and male size (F3,76 = 1.10). The lagged density reflects the density experienced by a male during the 

initial period of juvenile growth. After adjusting for biomass density, there was a significant 

difference among the four streams in male size at maturity (F3,79 = 13.83, P < 0.001). We examined 

the effect of canopy by the a priori contrast between the two thinned-canopy streams (UL and TY) 

and the two intact canopy streams (CA and LL). After adjusting for biomass density, male size in 

pools was larger in the thinned canopy streams (F1,79 = 25.72, P < 0.0001) by about 17% (intact 

canopy: 0.079 + 0.002 g, thinned canopy: 0.093 + 0.003 g).

In riffles, where the biomass densities were much lower than in pools, there was no 

relationship between size at maturity and biomass density two months earlier (F1,61 = 0.27) so we 

made no adjustment for biomass density. Male size at maturity in riffles differed among the four 

streams (F3,62 = 5.49, P < 0.003). The same a priori contrast between thinned and intact canopy 

streams showed that, as in pools, males in riffles were larger in the thinned-canopy streams (F1,62 = 

15.75, P < 0.0005) by about 21% (intact canopy: 0.075 + 0.003 g, thinned canopy: 0.091 + 0.003 g). 

These values for male size in riffles in intact and thinned canopies are similar to those found in pools.

Are riffles marginal habitats? Do guppies that occupy riffles suffer a loss of fitness? The 

persistently low population densities of guppies in riffles, compared to the very high densities often 

seen in pools, suggests that riffles are a less desirable habitat. Nevertheless, as population densities 

increased in pools, more guppies appeared in riffles (Fig. 3). This pattern of movement from pools 

into riffles suggests that elevated densities in pools caused migration into riffles and inspired us to 

evaluate the consequences of occupying pools versus riffles. We found that the substantially lower 
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population densities in riffles compensate for what appears to be lower quality habitat, such that the 

fitness of guppies occupying riffles is similar to the fitness of guppies occupying pools.

First, we examine patterns in the use of pools and riffles over time, along with the differences 

observed between fish found in pools and those in riffles. Second, we examine the fitness 

consequences of pool vs. riffle occupancy for fish in the LL (intact canopy), for which we have a 

pedigree and hence can estimate reproductive success. We only have a pedigree for this locality 

because of funding limitations. Here we present a summary of our results; we present the details in 

Appendix S1: Section S5.

In any given month, riffles are decidedly more male-biased than pools. The least squares mean 

proportion of males in pools was 0.31 and for riffles was 0.40 (se = 0.008). Streams differ in the 

magnitude of this effect so there was a strong stream by habitat interaction. In the LL, individual 

males spent a greater proportion of their lives in riffles than females but, over time, as overall 

densities increased, females increased the proportion of their lives spent in riffles (Fig. 5). The 

average proportion of a female’s life spent in riffles exceeded 0.10 only three times in the course of 

the study and was usually much lower; about half the males in our study spent more than 10% of their 

time in riffles.

For both genders, the increase in riffle use with time was statistically significant. We tested the 

pattern of riffle use by performing a one-way analysis of variance on the proportion of time in riffles 

as a function of cohort and then doing an a priori contrast for a linear trend. “Cohort” refers to those 

individuals marked for the first time in any given month. For females, there was a significant effect of 

cohort (F29,727 = 1.65, P < 0.02), which was driven by the strong, positive linear trend with time (F1,727 

= 14.14, P < 0.002). For males, the difference among cohorts in pool vs. riffle use was close to 

significant (F(28,221) = 1.48, P = 0.06) but there was a significant linear trend towards increasing riffle 

use over time (slope = 0.004 + 0.001, t = 3.62, P < 0.001); this proportion increased slowly over time 

(Fig. 5).

While the mass of males at maturity was not different between pools and riffles, once we 

adjusted for the higher densities in pools (see above), mean female mass was slightly lower in riffles. 

Females have indeterminate growth so here we are examining the average body mass of adult females 

in each month. The overall difference is small (0.235 g in pools vs. 0.212 g in riffles, se = 0.002) but A
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significant because of the large sample sizes. The magnitude of difference varies among streams so 

there is an interaction of stream and habitat. The analysis accounted for 43 % of the total variation.

We analyzed data on whether riffle use affected lifetime reproductive success for females and 

lifetime mating success for males. For each female, her lifetime reproductive success is the number of 

surviving offspring; for each male, lifetime mating success is the number of females with which he 

produced at least one surviving offspring. We analyzed lifetime reproductive success and lifetime 

mating success separately for the earliest period (June 2008-May 2009) and the last period for which 

we had complete pedigree data (January 2010-December 2010). We divided the data in this fashion 

for two reasons. First, population density and riffle use co-vary with each other and with time, which 

compromises our statistical power to distinguish the effect of each factor in the data taken as a whole. 

Population densities during the early phase of the study ranged from 0.184 to 1.052 grams of fish (wet 

weight) per m2. Densities in the late phase ranged from 2.523-3.760 g/m2. Riffle use in females 

ranged from about 6% in the early period to 11% in the later period (Fig. 5). Second, the relationships 

among the putative predictors of reproductive success, lifespan, riffle use, and density, changed 

during the course of the experiment (see Appendix S1: Section S5). Were we to combine the periods 

into a single analysis, these differences could lead to inaccurate results and a reduction in statistical 

power to separate the contributions of density and riffle use.

 We estimated each individual’s lifespan as the number of months between its first and last 

capture. We also estimated each individual’s “experienced density”, which is the density regime 

experienced by an individual during its lifetime. An individual’s experienced density is calculated as 

density of the habitat (pool or riffle) in which it was captured each month, averaged across all months 

of its lifespan. For example, if an individual’s capture history across months 7-11 were “(7) pool, (8) 

pool, (9) riffle, (10) riffle, and (11) pool, then its experienced density would be the average of the 

densities in pools at months 7, 8, and 11 and in riffles at months 9 and 10.

We analyzed lifetime reproductive success and lifetime mating success with generalized linear 

models, using a quasi-Poisson error structure, with riffle use, lifespan, experienced density, and their 

squared values, as continuous predictors. We included quadratic terms in the initial model in order to 

allow for the possibility of Allee effects (for experienced density), an optimal level of riffle use, or a 

plateau of lifetime reproductive success or lifetime mating success with lifespan. We began with a A
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model including all six predictors and used backward elimination to find the best model, which we 

defined as the model from which further deletion did not significantly change the deviance. We 

eliminated one outlier for males in the late period (see Appendix S1: Section S5).

For females, once lifespan and experienced density were taken into account in our best model, 

there was no significant effect of habitat use on lifetime reproductive success either in the early or late 

period (Fig. 6; t (early)=-0.66, p = 0.51; t (late) = 1.85, p = 0.07). In both periods, lifetime reproductive 

success increased as lifespan increased and decreased as experienced density increased, with the final 

models for the two periods being very similar to each other.

The results for males were mostly the same as for females but differed from females in a few 

details. For males, as for females, there was no effect of habitat use on lifetime mating success in 

either period once lifespan and experienced density were taken into account (Fig. 6; t (early) = -0.27, p 

= 0.79; t( late) = -0.77, p = 0.44). The effects of lifespan and experienced density on lifetime mating 

success differed between periods. In the early period, just as was the case for lifetime reproductive 

success in females, lifetime mating success increased as lifespan increased but, unlike females, 

reached a plateau at and beyond about 13 months lifespan (Appendix S1: Section S5). In general, just 

as for females, as experienced density increased, lifetime mating success decreased, although there is 

a hint of an Allee effect at very low values of experienced density (Appendix S1: Section S5). In the 

later period, lifetime mating success decreased as experienced density increased, but the effect was 

not statistically significant (t = -1.66, p = 0.10)). As in the early period, lifetime mating success 

increased as lifespan increased, with evidence for a plateau in lifetime mating success occurring at 

and beyond a lifespan of 13 months (Appendix S1: Section S5).

In summary, habitat use had little effect on females either early or late in the study. The 

persistently lower rate of riffle use suggests that they represent lower quality habitat; however, for 

females, any potential loss of fitness associated with migrating into riffles was compensated for by 

lower population densities. Riffle use did not affect male mating success, which largely decreased as 

population density increased. For both genders, fitness increased as lifespan increased but male fitness 

appeared to reach a plateau at and beyond 13 months lifespan.
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Discussion 
 Do invaders exceed expected population densities? We predicted, based on simulations 

(Reznick et al. 2001b) and expectations of the “enemy release” hypothesis, that all introduced 

populations would explode because of the mismatch between the guppy phenotype and the 

environment. Guppies from high predation environments in general (Reznick and Bryga 1996) and 

from the locality used as a source for the introduction (Torres-Dowdall et al. 2012) have adapted to 

predation by evolving earlier ages at maturity and a higher rate of offspring production. When this life 

history is paired with the low predation and low mortality rates in the introduction sites, the prediction 

is rapid population growth and possibly an overshoot of the population densities typical of this habitat 

type. Prior studies suggest that this mismatch between local adaptation and risk of predation plays an 

important role in population establishment. All attempted introductions of guppies derived from high 

predation localities to guppy-free, low predation environments have been successful, while two 

attempts to introduce guppies from low predation environments into a guppy-free high predation 

environment failed (Reznick et al. 2004). However, the populations of introduced guppies in streams 

with intact forest canopies did not exceed the population sizes predicted by our assessments of natural 

streams. Instead, we found that “enemy release” failed and ecology prevailed in the sense that the 

populations grew to the same densities as those observed in natural streams.

This study presents only the short-term population dynamics of the invader, which includes 

the run up to population densities typical of this habitat type in the first few years after the invasion. 

We know from past and ongoing research that the story of the invasion does not end here. More 

generally, Strayer et al. (2006) offer compelling arguments for why a longer-term perspective is 

required to understand the impact of invasive species because the nature of an invader’s full impact 

can take so long to develop. Elsewhere, we and others have shown that the attainment of population 

sizes typical of low predation habitats imposes significant selection on the introduced guppies, 

causing their life histories (Reznick et al. 1990, Reznick et al. 1997) and other aspects of their 

phenotypes (Endler 1980, O'Steen et al. 2002) to evolve, but also causing changes in habitat use in 

ways that impact the structure of the ecosystem (Bassar et al. 2010, Simon et al. 2017). We have also 

found that introduced guppies change the population dynamics, growth rate, and cause the evolution A
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of the life history of the other fish found in this community (Walsh et al. 2011, Walsh and Reznick 

2011). More generally, invasions are known to be associated with the evolution of the invasive 

species (Reznick and Ghalambor 2001) and native species in response to invaders (Strauss et al. 2006). 

There is good cause to think that the ultimate consequences of invasions will often include such 

complex interactions between ecology and evolution that will take years to decades to mature (Strauss 

2014, Faillace and Morin 2017).

Does habitat disturbance influence the density attained by the invader? Elton (1958), Hobbs 

and Huenneke (1992), Lonsdale (1999), Davis et al. (2000) and many others argue that anthropogenic 

disturbance can facilitate invasion. It can do so by creating ecological vacancies in the form of 

patches of habitat with reduced species abundance, disrupting trophic networks or creating 

opportunities by increasing the availability of some resources. Canopy thinning is a disturbance, albeit 

a mild one, that can have important ecological consequences. Casatti et al (2009) found that streams 

surrounded by grassy vegetation had less diverse fish communities, dominated by invasive guppies, in 

comparison to streams surrounded by riparian forest. 

We found that canopy thinning produced an increase in primary productivity with cascading 

effects through the ecosystem (Kohler et al. 2012), causing populations to exceed the expected 

population density of streams with intact canopies. The high population growth rates were primarily 

attributable to increased recruitment, which is in turn a function of a higher rate of reproduction 

and/or increased juvenile survival, both of which could be attributable to higher resource availability. 

Juvenile females grew faster and males were larger at maturity, which are again typical responses to 

our experimental reductions of population density in natural populations (Reznick et al. 2012, Bassar 

et al. 2013) or augmentation of food availability in laboratory experiments (Reznick 1982, 1990, 

Reznick and Bryga 1996). Population outbreaks in our system were thus a product of habitat 

modification, which in turn increased primary productivity, rather than the biological properties of the 

invader or the fact that the invasion was associated with “enemy release” in the form of reduced risk 

of predation. In the context of our experiment, canopy thinning only caused a local increase in 

primary productivity (Kohler et al. 2012) which in turn facilitated an increase in population density. 

In a less restrictive setting, it could also cause an increase in the rate of spread of the invasive species 

across the landscape.A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Does the population expansion of the invader cause it to occupy marginal habitat? As guppy 

populations increased over time, the rate of increase was higher in pools than riffles, causing the 

differences in population density between the two types of habitat to magnify and become statistically 

significant. At the same time, at higher overall densities, females were spending a greater proportion 

of their lives in riffles. The persistently lower population densities of guppies in riffles and slower rate 

of increase in density suggests that this habitat type is less preferred. Nevertheless, the number of 

guppies in riffles increased and the individuals that chose to move into riffles fared as well as those 

that remained in pools. They sustained fitness because of the much lower population densities in 

riffles. Our results thus conform well to the ideal free distribution hypothesis (Fretwell and Lucas 

1969) in the sense that there is little evidence of a loss of fitness in those that move to the less-well 

occupied and presumably less preferred habitat.

It is of interest to speculate on what the consequences of such behavior might be if played out 

on a larger geographical scale and for a longer interval of time. In our setting, the spatial pattern of 

habitats is fine grained. Individuals can readily move among habitat patches (pools and riffles) and 

each patch is too small to sustain a viable population, so there is little chance of local adaptation or 

differentiation among populations. If this same pattern of dispersal occurred on a larger geographical 

scale, with habitat patches being larger and better separated from one another, then it is possible to 

imagine the density-dependent dispersal of an invader resulting in the filling of vacant ecological 

niches. Such a scenario is what we see fulfilled in observations of natural invasions (e.g.(Pietrek and 

Gonzalez-Roglich 2015). It is also among those proposed by Schluter (2000) as a cause of the 

adaptive radiations that have followed the invasion of new habitats.

Conclusion
When invaders succeed, how much of it is attributable to the invader vs. the ecosystem? Some 

analyses suggest that ecosystems differ in their susceptibility to invasion (Lonsdale 1999, Davis et al. 

2000). Disturbance is one factor thought to increase susceptibility to invasion because it creates novel 

niches and increases resource availability (Hobbs and Huenneke 1992, Davis et al. 2000) while at the 

same time disrupting the balance of native communities (Hobbs and Huenneke 1992, Jauni et al. 

2015). An alternative perspective is that invasion success is an attribute of the species (Williamson 

and Fitter 1996, Ehrenfeld 2010, van Kleunen et al. 2015, Iles et al. 2016, Lee 2016). One outcome of A
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all of the efforts to determine if we can predict which species will be successful invaders is that one of 

the best predictors is whether or not a species has been a successful invader elsewhere (Ewel et al. 

1999, Caley and Kuhnert 2006). This result suggests that successful invasion is indeed an attribute of 

the species, but does not reveal what that attribute might be. Successful invasion may instead be a 

product of some interaction between the properties of the organism and invaded community (Didham 

et al. 2007, Pearson et al. 2012, Godoy and Levine 2014). For example, Godoy and Levine (2014) and 

Pearson et al. (2012) found that successful invaders differed from the native flora in phenology and/or 

morphology in ways that either gave them a competitive edge or enabled them to occupy different 

ecological niches.

The success of guppies as invaders may be attributable to features of their life history, with 

invasion being part of their natural history, but our results also suggest that the interaction between 

their attributes and the invaded community are important. Their distribution in Trinidad suggests they 

are better at penetrating natural barriers than other species found further downstream. Our mark-

recapture studies reveal that adult females are best able to penetrate upstream barriers. They store 

sperm, are often mated to multiple males and give birth to well-developed offspring, so a single 

female can initiate a new population with a modicum of genetic diversity (e.g. (Hughes et al. 2013). 

This study reveals that these attributes alone will enable them to establish a new population, but 

habitat disturbance enhanced establishment because it caused an increase in population density The 

added effects of canopy thinning were required to sustain explosive population growth, which is a 

likely precursor to the range expansion and invasion of new ecological niches characteristic of the 

most damaging invasions. (9,126 words)
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Table 1:  The AIC values, delta AIC and weight for the different models fit to the analyses of 

population distributions in natural streams.  The models include three different treatments of time – 

Month, in which each of the four censuses are treated separately, Season, in which we contract the dry 

(March, May) versus wet season, and Lag, in which we accommodate the anticipated time lag 

between the beginning and end of the dry season and the increase and decrease in population size 

(March and September vs. May and July).

formula   df      AICc         ΔAICc   weight

~ lag+habitat 5 2286.99 0.000  0.49

~ month+habitat 7 2288.57    1.58  0.23

~ lag*habitat 6 2289.04 2.05  0.17

~ month*habitat 10 2291.22 4.23  0.06

~ habitat 4 2293.08    6.09  0.02

~ season*habitat 6 2293.80    6.81  0.02

~ season+habitat 5 2294.58 7.59  0.01

~1 3 2397.43   110.44  0.00

~ lag 4 2399.34   112.35  0.00

~ season 4 2399.41   112.42  0.00

~ month 6 2405.97   118.98  0.00
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Table 2.  Parameter estimates derived from the two models that best fit the data.  We fit models with 

either a negative binomial or Poisson distribution.  The negative binomial models provide a far better 

fit to the data than a Poisson distribution (all ΔAICc > 100) so we only report results for the Negative 

Binomial models.

Lag Model Estimate Std. Error ZValue P-Vale

(Intercept) 0.782 0.131 5.984 <0.001**

Habitat(riffle) -1.471 0.135 -10.854 <0.001***

Month(lag) 0.376 0.131 2.872 0.004**

Month Model

(Intercept) 0.720 0.169 4.270 <0.01**

Habitat(riffle) -1.503 0.136 -11.009 <0.001***

Month (05) 0.594 0.195 3.040 0.002**

Month (07) 0.322 0.184 1.752 0.079

Month (09) 0.188 0.183 0.646 0.517
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Table 3:  Parameter estimates from the GLMM analysis of the four experimental streams

Estimate Std. Error Z value P-value

(Intercept) 0.491 0.310 1.582 0.114

Canopy(Open) 0.847 0.181 4.692 <0.001 ***

Habitat(riffle) -1.371 0.091 -15.069 <0.001 ***

month(05) 0.603 0.125 4.822 0.001 **

month(07) 0.414 0.126 3.281 <0.001 ***

month(09) 0.068 0.124 0.549 0.583
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Table 4.  Analysis of growth between first and second capture for juvenile females.  The complete 

results show that growth rate (SL= standard length) decelerates with increasing body size, is higher 

under thinned canopies (Canopy(Open)) and there is no difference in growth rate in fish from pools vs. 

riffles (Habitat(Riffle)).

Value Std. Error DF t-value p-value

(Intercept) 7.458 0.175 7674 42.456 0.0001

SL -0.308 0.006 7674 -46.452 0.0001

Canopy(Open) 0.687646 0.140111 7674 4.907 0.0001

Habitat(Riffle) 0.040235 0.033752 7674 1.19208 0.2333
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Figure Legends

Figure 1. (a) Trinidad, with box outlining the portion of the island represented in Fig. 1b. (b) The 

Northern Range Mountains, illustrating the locations of the six natural streams used to provide 

estimates of guppy population densities and the four experimental streams. (c) Magnification of the 

location of the four experimental streams, all of which  are tributaries of the Guanapo River. CA = 

Caigual River (intact canopy), LL = Lower La Laja River (intact canopy), TY = Taylor River (thinned 

canopy), UL = Upper La Laja River (thinned canopy).

Figure 2; Population densities of the six natural streams, all with intact canopies, across the four 

sampling periods. The habitat types are pools (P, solid line) versus riffles (R, stippled line)

Figure 3: Observed time series of population sizes in pools and riffles in the four experimental 

streams (solid lines) in comparison with the mean and 95% confidence intervals for the seasonal 

changes in population size in the six natural streams (broken lines). Points marked with an asterisk 

represent individual monthly censuses in which the experimental populations significantly exceeded 

the range of population sizes observed in natural streams. Table S2 reports the statistical results for 

each stream-month comparison.

Figure 4. Regression lines for recruitment rate as a function of biomass density under the thinned 

canopy treatment (blue line: slope = -0.380 ± 0.121, t = -3.313, p = 0.002) and the intact canopy 

treatment (red line: slope = -1.977 ± 0.282, t = -7.02, p < 0.0001). 

Figure 5: Average use of riffles by males and females in all four experimental streams. Males spend 

more time in riffles, on average, than females.

Figure 6: Lifetime Reproductive Success for females (top two panels) and Lifetime Mating Success 

for Males (bottom two panels) as a function of riffle use in the early period (left-hand panels) and the 

late period (right-hand panels).
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