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ABSTRACT 
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Ultrasound is widely used to image musculoskeletal tissues, and offers many 
benefits including low cost, portability, and non-invasiveness. However, the 
analysis of ultrasound images remains an area in need of development. Until 
very recently, all analyses were performed manually, which is very subjective 
and time-consuming. There are currently very few open source methods de-
signed for this purpose. Current approaches also tend to rely on rules-based 
analyses, and such methods tend to fail if images exhibit large deviations from 
those that were used to develop the method. In recent years, deep learning ap-
proaches to medical image analysis have been shown to yield excellent segmen-
tation results on various imaging modalities, but such approaches have not yet 
been broadly applied to musculoskeletal ultrasound images. In this thesis I pre-
sent a deep learning-based automated method that computes muscle architec-
tural parameters from ultrasound images and videos. The method is based on 
the U-net architecture, and models were trained using hand-labelled images of 
muscle fascicles and aponeuroses. These trained models were then used to per-
form pixel-wise semantic segmentation of new images, classifying each pixel as 
one of three possible classes (fascicle, aponeurosis, other). The results were 
compared to manual analysis performed by two independent researchers, as 
well as to an existing semi-automated method. In general, the method per-
formed very favourably when compared to manual and semi-automated analy-
sis, and was robust to images from different muscles and those obtained with 
different ultrasound systems and settings. The method is also able to detect 
multiple muscle fascicles in a given image. The approach presented here offers 
an objective, time-efficient method of segmenting ultrasound images that does 
not require any user input. The method and all labelled training data are avail-
able under an open source license, allowing others to use and extend this work.  
 
Keywords: Artificial intelligence, Deep learning, convolutional neural network, 
Keras, musculoskeletal ultrasound, muscle mechanics, aponeurosis, muscle fas-
cicle, Python, semantic segmentation, Tensorflow, U-net 
 
 
 



SUOMENKIELINEN TIIVISTELMÄ  

Ultraääntä käytetään paljon tuki- ja liikuntaelimistön kudosten kuvaamiseen, 
etuina ollen matalat kustannukset, siirrettävyys sekä ei-invasiivisuus. Ul-
traäänikuvien analysointi vaatii edelleen kehitystä. Viime aikoihin saakka kaik-
ki analyysit on tehty manuaalisesti, mikä on hyvin subjektiivista ja aikaa vievää. 
Tällä hetkellä on olemassa muutamia tähän tarkoitukseen suunniteltuja 
avoimen lähdekoodin menetelmiä. Tämänhetkiset lähestymistavat perustuvat 
yleensä sääntöpohjaisiin analyyseihin. Useat niistä tekevät virheitä, jos 
analysoitavissa kuvissa on suuria poikkeamia menetelmän kehityksessä käytet-
tyihin kuviin verrattuna. Viime vuosina syväoppimisen käyttäminen 
lääketieteellisissä kuva-analyyseissä on tuottanut erinomaisia segmentointit-
uloksia eri kuvantamistavoilla, mutta useimpia niistä ei ole vielä sovellettu 
laajemmin tuki- ja liikuntaelimistön ultraäänikuviin. Tässä tutkielmassa esittel-
en syväoppimiseen perustuvan automatisoidun menetelmän, joka laskee lihas-
ten rakenteeseen liittyviä parametreja ultraäänikuvista ja -videoista. Tämä 
menetelmä perustuu U-net arkkitehtuuriin, ja mallit on opetettu käsin merkity-
illä lihassolukimppujen ja aponeuroosien kuvilla. Näiden opetettujen mallien 
avulla tehtiin pikselitasoinen semanttinen segmentointi uusille kuville luokit-
telemalla jokainen pikseli yhteen kolmesta mahdollisesta luokasta 
(lihassolukimppu, aponeuroosi, muu). Tuloksia verrattiin kahden eri tutkijan 
tekemiin manuaalisiin analyyseihin sekä olemassa olevaan puoliautomaattiseen 
menetelmään. Kehitetty menetelmä suoriutui yleisesti hyvin verrattuna manu-
aaliseen ja puoliautomaattiseen analyysiin, ja toimi vakaasti eri ultraäänilaitteil-
la ja asetuksilla otetuilla kuvilla. Menetelmä kykeni myös havaitsemaan monia 
lihassolukimppuja samassa kuvassa. Esitelty lähestymistapa tarjoaa objek-
tiivisen, aikaa säästävän menetelmän ultraäänikuvien segmentointiin ilman 
käyttäjän syötettä. Menetelmä ja kaikki merkitty data ovat saatavilla avoimen 
lähdekoodin lisenssillä, mahdollistaen toisten hyödyntää ja laajentaa tätä työtä. 
 
Avainsanat: Tekoäly, syväoppiminen, konvoluutioneuroverkko, Keras, musku-
loskeletaalinen ultraääni, lihasmekaniikka, aponeuroosi, lihassyy, Python, se-
manttinen segmentointi, Tensorflow, U-net 
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1 INTRODUCTION 

Among many other applications, ultrasound has been used to examine muscle 
and tendon function for the past three decades. This imaging modality holds 
many advantages over other techniques, including its relatively low cost, port-
ability, and the ability to display real-time images non-invasively. It is currently 
the only technique that can be used to image dynamic muscle activity, e.g. dur-
ing muscle contraction or more complex human movements like walking and 
running (Cronin & Lichtwark, 2013; Leitner et al., 2019). 
 
Despite the widespread usage of the ultrasound method, the analysis of ultra-
sound images remains an area in need of development. Until very recently, all 
analyses were performed manually. This requires the user to place multiple 
markers on an image, and to repeat this for each image in a sequence. Given 
that many systems sample data at 50-100 Hz, and that a typical walking stride 
can last around 1 s, this process rapidly becomes unfeasible as the size of the 
dataset increases. 
 
There are several possible reasons why analysis approaches for ultrasound im-
ages lag behind those of other imaging modalities. In general, the spatial resolu-
tion and visual quality of ultrasound images is not very high. Moreover, unlike 
other imaging modalities such as MRI and CT scans, ultrasound imaging is 
usually performed with a freehand scanner, which means that there is a lack of 
standardisation between different users. The method can also be used to exam-
ine different muscles, which have quite different architecture. These factors all 
make it challenging to develop a single, robust analysis approach. 
 
To date, a few attempts have been made to release open source methods to 
semi- or fully automatically analyse ultrasound images (Cronin, Carty, Barrett, 
& Lichtwark, 2011; Drazan, Hullfish, & Baxter, 2019; Farris & Lichtwark, 2016). 
However, these approaches usually focus on a single parameter of interest 
and/or are developed for use with a specific muscle. Moreover, current ap-
proaches often rely on rules-based analyses, and such methods tend to fail if 
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images exhibit large deviations from those that were used to develop the meth-
od. In recent years, deep learning approaches to medical image analysis have 
been shown to yield excellent segmentation results on various imaging modali-
ties (e.g. Ronneberger, Fischer, & Brox, 2015). However, such approaches have 
not yet been applied to musculoskeletal ultrasound images. 

1.1 Research questions 

In this thesis I address the following specific research questions: 
 
1. Can an automated method be developed that uses deep learning to accurate-
ly extract key muscle architectural parameters (muscle thickness, muscle fasci-
cle length and pennation angle) from ultrasound images?  
2. More specifically, can a modified implementation of the U-net architecture 
(and a unique combination of hyperparameters) be used to perform accurate 
semantic segmentation of this type of image? 
2. Is this method robust enough to work with images from a range of different 
muscles and with different image settings? 
3. How does the performance of this approach compare to the current gold 
standard methods in this field? 

1.2 Thesis layout 

This thesis is at the interface between medical imaging, image processing, and 
artificial intelligence. The literature review gives an overview of the most rele-
vant themes, and details the current state-of-the-art in these areas. The methods 
section outlines the approach that was developed and tested in this thesis pro-
ject. The results section details various metrics related to the training and sub-
sequent inference performance of the approach, and comparisons are made 
with other similar methods. Finally, the discussion section places this work in 
the context of the field, and outlines future steps that could be taken on the ba-
sis of this work. 
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2 LITERATURE REVIEW 

In this section I first outline the ultrasound method, and describe the history of 
the analysis process. I then introduce the field of deep learning, and summarise 
recent developments in this area that are relevant to the topic of this thesis. Fi-
nally, I outline potential applications of deep learning-based analysis methods 
in relation to musculoskeletal ultrasound images.  

2.1 Musculoskeletal ultrasound 

The ultrasound method has been used in medicine since the mid-1950’s 
(Nicolson & Fleming, 2013). Traditionally, the main use of this method has been 
to examine a developing foetus in the maternal womb, helping to identify any 
obvious signs of developmental disorders at different stages of the pregnancy. 
 
More recently, the value of this method was recognised in the musculoskeletal 
field, and with very little modification, essentially the same technology began to 
be used to study muscle and tendon function in vivo. Whereas previous ap-
proaches relied on static imaging or estimates of muscle function based on joint 
kinematics, the first studies in this area provided vital new information about 
how muscles actually function during dynamic settings.  
 
Muscle architecture was first examined in vivo during rest (Narici et al., 1996; 
Rutherford & Jones, 1992) and different levels of voluntary contraction 
(Fukashiro, Itoh, Ichinose, Kawakami, & Fukunaga, 1995; Herbert & Gandevia, 
1995). Since then, a vast array of studies have extended the analysis to more 
complex tasks such as walking and running (see below). Although the key find-
ings of all of these studies are beyond the scope of this thesis, the common 
thread among all studies is a desire to quantify muscle architectural parameters 
(figure 1). 
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FIGURE 1 Example of an ultrasound image taken from the medial gastrocnemius muscle of 
the lower leg.  

In figure 1 the key structures of interest are all visible. Depending on the study 
aims, one or more of the following parameters may be computed from this type 
of image: 
 
- Muscle fascicle length: This usually involves visually identifying a striation 
that runs between the two aponeuroses, and where necessary, extrapolating it 
so that its ends meet the aponeuroses. In the case of figure 1, the lower end of 
each of the three identified fascicles extends beyond the edge of the image. In 
such cases it is necessary to extrapolate both the fascicle and lower aponeurosis 
trajectories, and estimate where they coincide. 
- Pennation angle: This angle represents the angle at which muscle force is 
produced relative to the tendon that the muscle attaches to. It is usually ob-
tained by identifying a muscle fascicle, and then calculating the angle of this 
fascicle relative to the corresponding aponeurosis (the lower aponeurosis in 
figure 1). 
- Muscle thickness: This is determined as the distance between the two apo-
neuroses of a muscle, and can be determined in various ways, e.g. as the mean 
distance between aponeuroses across the width of the image, or taken only 
from the centre of the image. 
 
The musculoskeletal ultrasound method has many application areas. For exam-
ple, numerous studies have examined muscle architectural parameters before 
and after some kind of intervention, such as resistance training (Seynnes, De 
Boer, & Narici, 2007) or as a result of chronic activity over many months or 
years (Sipila & Suominen, 1991). The method has also been used to examine the 
effects of ageing on muscle (and tendon) architecture (Narici, Maganaris, 
Reeves, & Capodaglio, 2003; Reeves, Narici, & Maganaris, 2004), and studies are 
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beginning to appear involving other human populations (e.g. Körting et al., 
2019).  
 
In addition to static assessments of muscle architecture, many studies have 
sought to examine the dynamic function of a muscle. As an ultrasound probe 
can be secured to the skin, it is possible to examine muscle mechanics at reason-
ably high temporal resolution during tasks such as walking (Fukunaga et al., 
2001; Lichtwark & Wilson, 2006), running (Lai et al., 2015; Lichtwark, 
Bougoulias, & Wilson, 2007) and different types of jumping (Sousa, Ishikawa, 
Vilas-Boas, & Komi, 2007). 
 
It should be noted that in addition to muscle architecture, ultrasound can also 
be used to track tendon and aponeurosis behaviour. These applications are not 
covered in detail in this thesis, since the main focus is on muscle architecture 
assessment. However, the interested reader is referred to several publications 
that address the applications of the method in this area (Franz & Thelen, 2016; 
Seynnes et al., 2015), as well as associated methods of analysing the images 
(Karamanidis, Travlou, Krauss, & Jaekel, 2016; Zhou et al., 2018).  
 
Given the broad scope of application areas of the ultrasound method, it is clear 
that there is a need for efficient analysis methods, in order to cope with the ev-
er-increasing volumes of data. In particular, when ultrasound is used to assess 
dynamic muscle behaviour, the resulting video sequences require each individ-
ual frame to be processed, and it is often infeasible to perform this process 
manually, as has traditionally been done in this field. 

2.2 Analysis of musculoskeletal ultrasound images 

Until quite recently, the only way to analyse musculoskeletal ultrasound imag-
es was to manually place tracking markers in each image. This process is ex-
tremely time-consuming, but also introduces a lot of potential bias and inter-
individual variability into the results. The reliability of the analysis process has 
been examined in several studies. As shown in table 1 below, the results of such 
studies generally yield high levels of reliability for the metrics of interest (see 
also Kwah, Pinto, Diong, & Herbert, 2013). 

TABLE 1 Measurements of reliability/reproducibility of the ultrasound technique. 

Reference Parameter(s) Coefficient(s) Comments 

Kawakami, 
Abe, & 
Fukunaga, 1993 

thick, penn 
r = 0.978, r = 
0.906 

Measurement error: <1mm, <1˚ 

Narici et al., 
1996 

thick, penn, FL 
CV 4.8%, 9.8%, 
5.9% 

Variation: <2mm, <2º, <4mm 

Caresio, Salvi, thick ICC 0.99 4 muscles tested, mean difference 
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Molinari, 
Meiburger, & 
Minetto, 2017 

-0.05±0.22 mm 

Kurokawa, 
Fukunaga, & 
Fukashiro, 2001 

FL, penn 
r = 0.994, r = 
0.998 

Variation: 0-3% 

Kawakami, 
Ichinose, & 
Fukunaga, 1998 

FL, penn CV 0-2%  

Ito, Kawakami, 
Ichinose, 
Fukashiro, & 
Fukunaga, 1998 

FL, penn CV 2%, 7%  

Fukunaga, 
Ichinose, & Ito, 
1997 

FL, penn 
CV 0-6.8%, 0-
3.8%  

Kubo et al., 2000 FL, penn 
CV 0-3.8%, 0-
4.5% 

Inter-trial variation: 0.2-6.2%, 0.4-
5.4% 

Cronin et al., 
2009; Cronin et 
al., 2009, 2008 

FL CV 4-6%  

thick = muscle thickness; penn = pennation angle; FL = fascicle length; CV = coefficient of 
variation; r = correlation coefficient. 

 
However, one difficulty of such analyses is that they are invariably performed 
by a single researcher. It seems likely that if the same images were to be manu-
ally interpreted by a group of different people (e.g. from different labs), the var-
iability of the results would increase, making the method appear less reliable. In 
this respect, methods that allow some degree of automation could potentially 
help to reduce the variability of results between different research groups, mak-
ing it easier to compare the results of different studies. 
  
Early attempts to automate (or at least semi-automate) the analysis of ultra-
sound images tended to focus on a single parameter. For example, Magnusson 
et al. (2003) used a pyramidal implementation of the Lukas-Kanade feature 
tracking method (Bouguet & Bouguet, 2000) to track the 2D displacement of 
tendinous tissue during passive joint rotation and isometric voluntary contrac-
tions. Loram et al. (Loram, Maganaris, & Lakie, 2004, 2006) introduced a meth-
od based on spatial cross-correlation that was designed to track small longitu-
dinal displacements in muscle tissue, e.g. during quiet standing. Both of the 
above-mentioned methods provide excellent tracking within the context that 
they were developed. However, in both cases, there is a requirement that the 
structures being tracked are visible in all images. This is often not the case dur-
ing dynamic tasks like walking or running. 
 
Rana et al. (2009) used multiscale vessel enhancement in combination with ei-
ther wavelet analysis or Radon transform to automatically detect the orientation 
of muscle fascicles. Both methods yielded similar results to manual analysis 
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(difference less than 0.02°). Thus, this method has potential to automate muscle 
architectural measurements, but would need to be combined with additional 
processing in order to do so. 
 
Cronin et al. (2011) developed a Lucas-Kanade optical flow algorithm with an 
affine optic flow extension, and used the method to estimate muscle fascicle 
length (see also Farris & Lichtwark, 2016). One important advantage of this 
method is that the specific structures being tracked do not necessarily need to 
be within the image field of view, since the affine optic flow tracking deter-
mines flow within a region of interest that is always visible. Thus, this method 
is well suited to tracking images where large displacements of the muscle occur, 
as is often the case in human movement. With this approach it is possible to 
process videos efficiently, but importantly, this method does require the user to 
manually label the trajectory of a single muscle fascicle in the first image of the 
sequence (see also Drazan et al., 2019). Thus, this method is not fully automated, 
nor does it provide all of the possible parameters of interest. 
 
As a general rule, most methods assume that muscle fascicles are linear struc-
tures, and that they always visibly extend between the superficial and deep ap-
oneuroses. However, in practice, this is often not the case. Marzilger et al. (2018) 
used an approach whereby their algorithm identified any visible fascicle-like 
structures, regardless of whether they fully extended between the two aponeu-
roses or not. The structures that were identified, referred to as ‘snippets’, could 
then be extrapolated once the aponeuroses had been identified. However, this 
latter step was performed manually, so again, the process of identifying all rel-
evant parameters was not fully automated. 
 
Very few studies have documented full automation of the analysis process. 
Caresio et al. (2017) reported a promising method that involved a multi-stage 
filtering approach to identify the aponeuroses, and used this information to 
compute muscle thickness in several different muscles. Although they also de-
tected the orientation of muscle fascicles automatically, they did not use this 
information to determine muscle fascicle length or pennation angle. Conversely, 
Zhou et al. (2015) detailed an approach involving multi-resolution analysis and 
line feature extraction (using Gabor wavelets) to determine both fascicle length 
and pennation angle fully automatically. In theory, either of the above-
mentioned approaches could potentially be expanded to provide all parameters 
of interest. 
 
Recently, Seynnes and Cronin (2019) detailed an open-source approach built in 
ImageJ/Fiji, which was designed to compute all of the relevant parameters 
(muscle thickness, fascicle length and pennation angle) without any user in-
volvement. This approach solves many of the limitations in this field, but it was 
primarily designed for processing single images rather than videos. Although 
video analysis is possible, the algorithm treats individual images as being inde-
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pendent, so processing videos- where there is a strong correlation between con-
secutive frames- can result in inconsistent results. Jahanandish et al. (2019) also 
developed an automated approach to compute all relevant parameters. Howev-
er, this method was developed for a single muscle (rectus femoris) and makes 
assumptions about the spatial location of tissues that may not always be valid. 
Moreover, the approach assumes straight muscle fascicles, which is not always 
the case. Thus, the robustness of this approach to other muscles and test condi-
tions may not be sufficient. 
 
Clearly there are numerous methods in existence that go some way to solving 
the problem of fully automated analysis of musculoskeletal ultrasound images. 
However, there are several limitations that serve to hinder development in this 
field. Firstly, many of the methods outlined above require at least some degree 
of user input, either to identify a structure at the start of a sequence, or to cor-
rect mistakes due to erroneous tracking performance. Secondly, most algo-
rithms are developed to track a single parameter, so for a comprehensive as-
sessment of muscle architecture, it would be necessary to use multiple algo-
rithms. Many methods are developed using images from a single muscle or a 
single ultrasound device, and both of these factors could limit the robustness of 
the method to different types of images. Moreover, the methods outlined above 
generally rely on a rules-based approach, e.g. detecting pixel values that exceed 
a certain threshold, and may thus not be robust to images recorded with differ-
ent settings. In the case of fascicle detection, most methods also do not take into 
the curved nature of the fascicles. Although this is unlikely to yield large errors 
at low force levels, it is known that fascicle curvature can be quite high in some 
conditions such as maximal force contractions (see Darby, Li, Costen, Loram, & 
Hodson-Tole, 2013 for one attempt to solve this problem). Finally, and crucially, 
the vast majority of published studies have not released any code that would 
allow other researchers to build upon these approaches. As well as hindering 
any efforts to replicate previous work, this also likely slows down development 
in this field.  
 
Thus, one of the aims of this thesis was to develop a method that could solve as 
many of the issues outlined above as possible, resulting in an open source ap-
proach that could be used and extended by other researchers. However, based 
on the above-mentioned limitations, it may be that a different conceptual 
framework is required in order to achieve these goals. One potential solution to 
the ongoing challenge in this area that has not yet been introduced is the use of 
artificial intelligence-based approaches. This issue will be examined in the fol-
lowing sections. 
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2.3 Introduction to deep learning 

In recent years, the concept of machine learning has gained widespread recog-
nition in broad society, thanks to numerous success stories spanning various 
fields. Machine learning involves the use of mathematical principles to derive 
patterns from data. One of the most commonly used tools in this area is the so-
called artificial neural network, which was originally inspired by networks of 
nerve cells in the human brain (Schmidhuber, 2015).  
 
Until quite recently, most neural networks used a feed forward architecture that 
included a single hidden layer, where each node (or neuron) in the input layer 
is connected to each node in the hidden layer, and each node in the hidden lay-
er is in turn connected to each node in the output layer (figure 2A). A non-linear 
activation function (e.g. sigmoid) is then applied to the output of each node. If 
the network is being used for classification, the number of nodes in the output 
layer is equal to the number of possible classes. In this case, a softmax function 
is used to assign a probability to each of the possible classes. If instead the goal 
is to predict a continuous output, a single linear output neuron is typically used.  
 
In the case of deep neural networks, the same principles are essentially just ex-
tended across multiple hidden layers instead of just one (Hinton & 
Salakhutdinov, 2006), whereby each node of a given layer is connected to each 
node of both the previous and subsequent layers (figure 2B). In this kind of ar-
chitecture, hidden layers are often also referred to as ‘dense’ layers, because 
each layer is fully connected to the previous one. 

 

 
FIGURE 2. A: A simple neural network that contains a single hidden layer. B: A ‘deep’ 
neural network containing multiple hidden layers.  
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During training, data are fed into the network (see the left-hand side of figure 2; 
modified from Mitchell Waldrop, 2019), and the hidden layers ‘learn’ common 
features of the training images. This ‘knowledge’ is then used to predict the ex-
istence of the learned features in new, previously unseen images. Note that in 
figure 2B, the features become gradually more abstract in later layers, as sim-
pler features learned in previous layers are gradually merged.  
 
The popularity of deep neural networks has increased in recent years, in part 
because of the increased availability of large datasets, but also because of im-
provements in hardware capabilities (e.g. GPUs) that have made it feasible to 
train larger and deeper neural networks within a reasonable timeframe. One 
particularly popular approach involves convolutional neural networks (CNNs), 
which were first used in 2012 to outperform previous approaches on image 
recognition tasks (Krizhevsky, Sutskever, & Hinton, 2012) (figure 3). CNNs of-
fer several potential advantages for image processing, namely the use of local 
receptive fields, weights sharing, and subsampling. These mechanisms combine 
to enable CNNs to learn spatially invariant features, meaning that the learned 
features can be detected in new images regardless of where they appear within 
the image. Moreover, the CNN approach requires fewer parameters to be 
learned, thus reducing the computational requirements. 
 
 

 
 
FIGURE 3. A convolutional neural network.  

The general concept of a CNN is shown in part A of figure 3. The number of 
convolution/pooling layers and the number of filters are modifiable. The math-
ematical details of convolution are shown in part B of the same figure (modified 
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from Dumoulin & Visin, 2016). Each filter is applied to a patch of the input im-
age (matrix multiplication) and the sum of the result is added to the output fea-
ture map. The filter is then moved to the next image patch (in this case with a 
stride of 1). In this example, the filter is applied to 9 different image patches, 
resulting in a single output map with shape 3 x 3. 
 
In CNNs, information still flows in a feed forward manner, but the nodes of the 
network are not fully connected. Instead, filters with different weights are 
moved across the input (usually an image), and the resulting feature maps are 
fed to the following layer (figure 3). The filters are thereby able to identify fea-
tures in the input images regardless of precisely where those features appear 
spatially. Pooling such as max or mean pooling (averaging of nearby positions 
in the feature maps) enables the network to become invariant to small local de-
formations in the input. A CNN architecture will generally include several fil-
ters and may also have multiple convolution and pooling layers, allowing more 
abstract image features to be identified (Lecun, Bengio, & Hinton, 2015).  
 
Mathematically, the output of any given node or layer in a standard neural 
network can be summarised as follows: 
 
Output = σ(xW + b) 
 
where σ is a nonlinear activation function applied to the result of the calculation 
in brackets, x is the input (or for a hidden layer, the output from the previous 
layer), W represents the weight(s), and b is a bias value that is often set to a con-
stant. In the case of a CNN, the same logic applies, but the main difference is 
that a convolutional operator is added between the input/previous layer and 
the weight instead of a matrix multiplication, i.e. 
 
Output = σ(x*W + b) 
 
where * denotes a convolution operation. 
 
Methods built on CNN architectures have consistently been shown to perform 
well at a wide range of feature detection tasks, including cases where the input 
images are not well standardised (Girshick, Donahue, Darrell, & Malik, 2014; 
Szegedy et al., 2015). The success of CNN-based approaches lies partly in the 
depth of the network architecture. This allows features to be identified at mul-
tiple levels of abstraction, which is important in complex images that don’t al-
ways contain clearly identifiable structures. Accordingly, this kind of approach 
may be well suited to the segmentation and analysis of medical images. 
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2.4 Deep learning for medical image processing 

In recent years, CNN-based methods have been applied extensively in the med-
ical domain (Litjens et al., 2017; Shen, Wu, & Suk, 2017). The success of these 
applications is often staggering, with several algorithms demonstrating human 
or even superhuman performance (Topol, 2019). The breadth of application ar-
eas is beyond the scope of this thesis. Instead, the following sections outline 
broad methodological approaches and associated issues, and then detail appli-
cations of deep learning relevant to the specific topic of this thesis. 
 

2.4.1 Deep CNN architectures 

One of the earliest examples of a CNN architecture gaining traction in the 
broader scientific community was that of AlexNet (Krizhevsky et al., 2012), 
which used five convolutional layers, kernels with large receptive fields in lay-
ers close to the input and smaller kernels closer to the output, as well as recti-
fied linear (ReLu) activation function. This paper began a hugely productive era 
that is still ongoing, whereby new architectures were developed, and nowadays 
the newest models almost always use far deeper architectures than AlexNet. 
Newer models also tend to use smaller kernels stacked together, rather than a 
single layer with a large receptive field. This offers the advantage of fewer 
learned parameters, and thus lower memory requirements during inference.  
 
Simonyan and Zisserman (2015) were among the first to use an architecture 
with many hidden layers and smaller, fixed-size kernels. This model, referred to 
as VGG19, won the 2014 ImageNet challenge. Subsequent models such as 
GoogLeNet (Szegedy et al., 2015) also used a deep architecture but added novel 
layer structures designed to improve efficiency, namely the so-called Inception 
module, which uses multiple sets of convolutions of different sizes to again re-
duce the number of learned parameters. Similarly, He et al. (2015) won the 
ImageNet challenge in 2015 using an architecture that contained so-called Res-
Net-blocks, which learn residuals rather than entire functions, thereby tending 
to learn mappings that are close to the identity function values.  
 
Importantly, in many medical applications, the speed of inference is often sec-
ondary to performance, since most analysis has traditionally been done manual-
ly, so any accurate computational approach would likely offer time savings. As 
a result, there is less of a need to always adopt the latest and fastest approach, 
and somewhat older models such as VGG are still widely used in this field.  
 
In addition to standard CNN architectures, it is sometimes advantageous to 
employ a so-called multistream or dual pathway approach (Kamnitsas et al., 
2016), e.g. for the purpose of multi-scale image analysis. In many medical appli-
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cations, contextual information may be necessary to enable accurate image 
segmentation. Context can be provided by feeding larger image patches 
through the network, although this generally also increases computational re-
quirements. Alternatively, context can be added by combining a down-scaled 
representation with high-resolution local information, as has been achieved in 
several medical imaging studies (e.g. Kamnitsas et al., 2016). For a review of 
performance metrics of different deep learning architectures, see Canziani, 
Paszke, & Culurciello, 2016). 

2.4.2 Image segmentation 

The task of interest in this thesis is essentially a segmentation problem. In the 
medical domain, many tasks are based on a binary classification of each image, 
e.g. diseased versus healthy. In such cases, the entire image may be scanned, 
but a single decision (prediction) is made based on the image as a whole. How-
ever, in the application being addressed in this thesis, the task is a labelling of 
features, which is more suited to an approach like semantic segmentation, 
where the network’s task is essentially to apply a binary label to each pixel of an 
image. In doing so, each pixel is labelled as either belonging to or not belonging 
to a specific structure.  
 
CNNs can be used for pixel-wise labelling of an image, for example using a 
sliding-window approach whereby the network focuses on a small patch of the 
image at one time, with each patch centred around the target pixel. In 2015, the 
first attempts to use fully convolutional neural networks for semantic segmen-
tation began to appear. Long et al. (2015) successfully replaced fully connected 
layers with convolutional layers, and included an upsampling layer to allow 
dense inference and pixel-wise labelling. Shelhamer et al. (2017) also used a ‘ful-
ly convolutional’ approach that takes in images of any size and returns a same-
sized output that includes pixel-wise labels. Their model included a skip archi-
tecture that combines semantic information from a deep, coarse layer with ap-
pearance information from a shallow, fine layer. This approach yielded superior 
results to the previous state-of-the-art whilst also improving inference time. 
 
Many recent advances have built upon the concept of fully convolutional se-
mantic segmentation (e.g. Chen, Papandreou, Kokkinos, Murphy, & Yuille, 
2018; Wu, Zhang, Huang, Liang, & Yu, 2019; for review see Garcia-Garcia, Orts-
Escolano, Oprea, Villena-Martinez, & Garcia-Rodriguez, 2017). Of particular 
interest to this thesis is the work of Ronneberger et al. (2015), who proposed the 
U-net architecture, comprising a fully convolutional neural network (termed the 
contractive pathway) and a subsequent upsampling (or expansive) pathway 
where upsampling convolutions were used to increase the image size. This 
network also included so-called skip-connections to directly connect contracting 
and expanding convolutional layers. The U-net method was particularly tai-
lored for and tested with medical images, providing the major advantage of 
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accurate segmentation using only small datasets (see section ‘U-net’ below). 
More recently, Milletari et al (2016) proposed a variant of the U-net architecture 
for use with 3D images, called V-net, although the current thesis will only con-
sider 2D image segmentation, since this is currently far more common in ultra-
sound imaging. 
 

2.4.3 CNN limitations: Overfitting 

In spite of the obvious power of CNN approaches, there are several limitations 
associated with the basic CNN approach (Greenspan, Van Ginneken, & 
Summers, 2016) within this field. Firstly, as is often the case in deep learning, 
this type of network tends to require a large labelled dataset. This can be a ma-
jor obstacle in medical domains, where the labelling process may be very ex-
pensive, there may be a lack of data due to the rarity of a condition, and/or 
there may be ethical restrictions on the availability of data. Moreover, in the 
case of ultrasound imaging, there may be large variability within the dataset 
because the scanning process is not well standardised. This tends to require an 
even larger labelled dataset. 
 
One common side effect of using smaller datasets is the issue of overfitting, 
which essentially means that the trained model performs well on the training 
dataset, but often fails to make accurate predictions when it is used to make 
inferences on new, previously unseen images. To overcome this issue, various 
tools have been developed recently, including transfer learning and fine-tuning. 
One benefit of transfer learning in particular is that it is often possible to get 
good results using a much smaller dataset than with a standard CNN approach. 
As already stated, this is useful in domains where large labelled datasets are not 
common. Fine-tuning allows supervised correction of image labelling, whereby 
the new labels are fed back into the network to improve the quality of the final 
trained network. These two approaches, transfer learning and fine-tuning, have 
been shown to be important when dealing with relatively small medical image 
datasets (e.g. Tajbakhsh et al., 2016).  
 
Various other approaches are now commonly used in medical deep learning 
applications, with the aim of helping to reduce overfitting. For example, appro-
priate initialisation and use of momentum can serve to improve the efficiency of 
the training process (Sutskever, Martens, Dahl, & Hinton, 2013). Dropout is an-
other common technique, whereby a portion of the nodes are effectively re-
moved from a neural network, in an attempt to help improve the robustness of 
the learned features by decreasing the reliance of the network on individual 
nodes (Wan, Zeiler, Zhang, Lecun, & Fergus, 2013). Batch normalisation (Ioffe & 
Szegedy, 2015) is also used to reduce the amount of variation in the weights of 
hidden layers, which can help to make training more robust and reduce overfit-
ting.  
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2.4.4 Deep learning with ultrasound images 

A surprising variety of model types and architectures have already been ap-
plied to the broader field of ultrasound imaging. This includes recurrent neural 
networks that take into account the influence of time (e.g. video sequences), 
unsupervised approaches such as autoencoders and deep belief networks, and 
CNN-based approaches (for review see Liu et al., 2019). These approaches are 
generally used to perform classification, detection or segmentation within an 
image, and they have been applied to a wide range of tissues (e.g. breast, liver, 
heart, fetus). In this section I outline work done specifically in segmentation. 
 
Ultrasound imaging is a modality that would strongly benefit from automated 
analyses, because there is commonly variability between different analysers, 
and because the contrast between structures within an image (as well as overall 
image quality) is not necessarily very high. As a result, the manual labelling 
process is often slow and costly, making it difficult to access large labelled da-
tasets. Another difficulty is the issue of boundary incompleteness, whereby a 
structure is only partially visible, making automated analyses more difficult. 
Two solutions to this problem have been offered: a bottom-up, supervised ap-
proach of classifying each pixel (binary); and a top-down approach that uses 
prior shape information to guide the segmentation. In fact, pixel-wise segmen-
tation has been achieved for various tissues in the human body, including 
lymph nodes (Zhang, Ying, Yang, Ahuja, & Chen, 2017) and bone (Baka, 
Leenstra, & Van Walsum, 2017), and such approaches have been found to be 
superior compared to previous state-of-the-art methods, whilst also offering 
improvements in computational speed. 
 
Ravishankar et al. (2017) combined the bottom-up and top-down methods by 
using a previously learned shape to refine the predicted segmentation result 
obtained from a fully convolution segmentation network. The results on ultra-
sound images of kidneys demonstrated that the addition of the prior shape in-
formation improved segmentation accuracy by around 5%. Wu et al. (2017) 
used an auto-context scheme combined with a fully convolutional architecture 
to take advantage of local contextual information. The helped to deal with 
boundary incompleteness and improved segmentation accuracy. Ma et al. (2017) 
used a different approach, whereby an image was divided into patches and 
each patch was classified, with the potential advantage of decreased computa-
tional and memory requirements. 
 
Although the focus of this thesis is the analysis of 2D images, some attempts to 
analyse 3D data are relevant, since 3D sequences represent a stack of 2D images, 
and thus some methods may be applicable to both data types. Ghesu et al. (2016) 
used a typical non-rigid segmentation method (rigid object localisation and 
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non-rigid object boundary estimation) to detect and segment the aortic valve in 
3D US volumes (essentially 2D images stacked together). They combined deep 
learning with marginal space learning. After detecting an object, the non-rigid 
shape was estimated, followed by a sparse adaptive deep neural network-based 
active shape model to detect the shape deformation. The results on almost 3000 
3D transesophageal echocardiogram images demonstrated the efficiency and 
robustness of the approach for 3D detection and segmentation of the aortic 
valve, with a significant improvement of up to 42.5% over the state of the art.  
 
Milletari et al. (2016) used a patch-wise CNN method (Hough-CNN) to segment 
transcranial ultrasound volumes. The approach combined the CNN predictions 
with voting by exploiting the features learned by the later layers of the network. 
They also examined the importance of training data volume and data dimen-
sionality. The proposed method was shown to be superior to voxel-wise seman-
tic segmentation of 3D images. This method could thus offer potential for the 
analysis of 2D images. 
 
In the context of this thesis, the most relevant study performed to date is that of 
Cunningham et al. (2018). In this work, the authors used a deep CNN approach 
combined with deconvolutional layers to predict muscle fibre pennation angle 
in lower limb muscles. The authors compared their results to the ground truth, 
i.e. hand-labelled images. The results indicated an improvement in the predic-
tive accuracy of pennation angle compared to a previous approach based on 
wavelet analysis. However, the mean difference between the results of their 
method and that of the ground truth was quite large, ranging between about -6 
to almost 11°. Whilst this attempt represents a big step forward in the analysis 
of musculoskeletal ultrasound images, this error amplitude is too large for the 
approach to be useful for longitudinal studies. Moreover, this method was only 
designed to compute pennation angle values, and not all possible architectural 
parameters (see section 2.1 above). Thus, there is still scope for a deep learning 
approach that provides all of the necessary information with sufficient accuracy. 
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3 METHODS 

3.1.1 Experimental approach 

 
For the present thesis, I chose to implement the U-net method (Ronneberger et 
al., 2015). Although there are many possible approaches that could be used, U-
net was specifically developed for use with biomedical images, and is well suit-
ed to the current application, where large annotated datasets are not currently 
available. U-net makes extensive use of data augmentation by applying elastic 
deformations to the training images, helping to reduce the size of the training 
dataset.  
 
As shown in figure 4, the network architecture is made up of a contracting path 
on the left and an expansive path on the right. The contracting path consists of 
blocks of two 3x3 convolutions, each of which is followed by a rectified linear 
unit (ReLU) and 2x2 max pooling to downsample the feature maps. Each 
downsampling stage doubles the number of feature channels. The expansive 
path serves to upsample the feature channels, and in correspondence with the 
contracting path, each upsampling layer is followed by 2x2 up-convolution that 
halves the number of feature channels. Each upsampling layer is then concate-
nated with the corresponding feature map from the contracting path (grey ar-
rows in figure 4), and followed by two 3x3 convolutions and a ReLU. The final 
layer is a 1x1 convolution that is used to map the component feature vectors to 
the required number of classes, in this case two per model (see details below). 
Training is performed in a supervised manner by inputting original images and 
corresponding hand-crafted segmentation maps.  
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FIGURE 4. The modified U-net architecture used in this thesis.  

 
In figure 4, which is modified from Ronneberger et al. (2015), convolutional lay-
ers are denoted by ‘conv’. Blue boxes represent multi-channel feature maps; the 
number of channels is denoted above each box. The x-y sizes are shown at the 
lower left edge of each box on the contracting side, and these are identical for 
the expanding side. White boxes represent copied feature maps from the con-
tracting side, which are concatenated with those from the expanding side. 
 
The output of the U-net model is a pixelwise binary label, i.e. every pixel of an 
image is predicted to belong to one of two possible classes. In my approach 
these classes were aponeurosis/not aponeurosis, and fascicle/not a fascicle, 
since I trained two separate models designed to detect different tissues (see be-
low). 

3.1.2 Data 

I compiled a large volume of anonymised single image and video data from 
different leg muscles (medial and lateral gastrocnemius, vastus lateralis, tibialis 
anterior) and with 4 different ultrasound devices, as well as from different hu-
man populations (athletes, older people, young healthy individuals) and differ-
ent movements/muscle contraction types. Individual frames were extracted 
from this dataset at random using a custom-written function in Python (Python 
Software Foundation, v3.6), resulting in a set of around 570 images for aponeu-
rosis training and 310 for fascicle training. All data were acquired in previous 
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studies, all of which received ethical approval from the relevant committees. I 
manually annotated all images, generating binary masks that denoted the two 
aponeuroses (for the aponeurosis model), or all instances of muscle fascicles (for 
the fascicle model). 
 

3.1.3 Neural network training  

I trained two separate models, each using the same U-net architecture. Images 
were imported and resized to 512*512 pixels for training. In general, neural 
networks perform faster with smaller images, but in this case I chose the largest 
possible image size given RAM limitations, since the quality of ultrasound im-
ages is typically quite low, and further reductions in spatial resolution due to 
image downsampling would likely compromise the ability to successfully train 
a neural network for pixelwise labelling. I used a 90/10% training/validation 
data split. Training was performed using an RTX2070 GPU, and took less than 
one hour per model using 50 epochs and a batch size of 1, with Adam optimizer 
and the binary cross-entropy loss function. Training was stopped early if over-
fitting was evident, as characterised by a decrease in the training error and a 
concomitant stagnation or increase in the test error. The code runs in Python 
and uses Keras frontend with a Tensorflow backend.  
 
All code and data from this project are available from Github 
(https://github.com/njcronin/DL_Track). 
 
For each of the aponeurosis training images, I manually identified all instances 
of aponeuroses using the polygon tool in Fiji software (Schindelin et al., 2012) to 
create a binary mask, whereby individual pixels belonging to an aponeurosis 
were white, and all other pixels were black. This process was repeated separate-
ly for the fascicle training set, where all instances of muscle fascicles (or parts of 
fascicles) were identified (1-20 per image). The binary masks were used as 
ground truth labels to train two deep neural networks; one to identify aponeu-
roses and one to identify muscle fascicles (figure 5). 
 

 
FIGURE 5. Examples of the input to the two U-net models.  

 

https://github.com/njcronin/DL_Track


26 

3.1.4 Post-processing 

When processing a new image or video, the trained neural networks identify 
aponeuroses and muscle fascicles. Aponeuroses below a user-defined threshold 
length are removed, and where necessary, those that satisfy the length con-
straint are extrapolated laterally, since this can assist in finding the intersection 
with muscle fascicles. The trained network very rarely identifies muscle fasci-
cles that extend from superficial to deep aponeuroses (this is to be expected 
given the complex anatomy of muscles and the 2D nature of imaging). Instead it 
identifies portions of fascicles, referred to as ‘snippets’ by Marzilger et al. (2018). 
Those snippets that are beyond a threshold length are extrapolated proximally 
and distally using a 1st (straight) or 3rd (curved) order polynomial fitted to the 
identified structure. The intersection points between aponeuroses and fascicles 
are identified, and fascicle length is determined. Pennation angle is computed 
as the difference between the local slope of the lower aponeurosis and each fas-
cicle.  
 
As multiple ‘fascicles’ are usually detected per image, the median fascicle 
length and pennation angle are computed for each image, although other met-
rics such as mean or maximum can easily be used instead or in addition. In ad-
dition, data are shown where all detected fascicles are included, rather than 
computing an average metric. Muscle thickness is determined from the central 
portion of the image, as the perpendicular distance from the superficial to deep 
aponeurosis. These metrics are saved for every frame, converted to a Python 
dataframe and exported to excel. By choosing a higher order polynomial fit to 
each fascicle, it is possible to take fascicle curvature into account, although this 
will naturally sometimes result in an inaccurate fit to the ‘actual’ fascicle that 
can be seen visually. It may be possible to address this issue using more sophis-
ticated analyses (e.g. Darby et al., 2013), but this was not implemented here. 
 

3.1.5 Analysis metrics 

To determine the overlap between manually created labels from the training 
sets and the labels predicted by the neural network, I used a custom implemen-
tation of intersection over union (IoU). A set of 35 test images unseen during 
training represented a test set, all of which were processed using the trained 
networks, to estimate muscle thickness, and median muscle fascicle length and 
pennation angle. The same test set and parameters were also analysed manually 
by 2 individuals using Fiji software. Comparisons between the neural network 
and human results for this test set were done using Bland-Altman plots (Bland 
& Altman, 1986;  
https://www.mathworks.com/matlabcentral/fileexchange/45049-bland-
altman-and-correlation-plot). For a set of videos, I also compared the results of 
my method with those of Ultratrack (Cronin et al., 2011; Farris & Lichtwark, 

https://www.mathworks.com/matlabcentral/fileexchange/45049-bland-altman-and-correlation-plot
https://www.mathworks.com/matlabcentral/fileexchange/45049-bland-altman-and-correlation-plot
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2016), which is arguably the most commonly used (and open source) semi-
automated approach for analysing ultrasound videos. As Ultratrack does not 
take fascicle curvature into account, I analysed these videos with my approach 
using both straight and curved fascicle models. 
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4 RESULTS 

The results section is broken down into several sub-sections. First, some metrics 
related to the trained neural networks are presented. Then, some example im-
ages and analysed results are shown, followed by the results of the comparison 
between algorithm- and human-labelled images. The performance of the 
trained algorithms is then examined for video data, and the results are com-
pared to an existing semi-automated algorithm. Finally, some failure cases are 
demonstrated. 

4.1 Neural network training 

Figure 6 shows the loss function and IoU values as a function of epoch number 
during training. For both models, the optimum was reached after around 20 
epochs. Training time for each model was less than one hour. 
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FIGURE 6. Loss function/IoU curves for the two trained models. 

Using the trained models, inference time for a single image with a CPU was 
around 4.6s, compared to around 0.7s with GPU.  

4.2 Analysis of single images 

In the post-processing phase, I combined the predictions of the two models so 
that all of the relevant tissues could be detected in a single image. An example 
of the initial predictions of the neural network models is shown in figure 7. 
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FIGURE 7. Example of trained neural network predictions for a single image. 

In this example, the aponeurosis detection is essentially perfect, and a third ap-
oneurosis is even detected below the two target aponeuroses (this corresponds 
to the border of a deeper muscle). For the example in figure 7, the IoU value for 
the algorithm-generated aponeuroses versus human manual analysis was 0.82. 
Only a few candidate muscle fascicles are detected, but several of these could be 
extrapolated in order to estimate the muscle fascicle parameters. This image is 
also of particularly poor quality, so the fascicle results are quite encouraging. 
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Figure 8 shows examples of single images successfully tracked with the trained 
models, after post-processing. These images were obtained from three different 
muscles: medial gastrocnemius (A), tibialis anterior (B) and vastus lateralis (C). 
None of these images were seen by the algorithm during the training process. It 
is noteworthy that in two of these examples, some of the fascicle endpoints ex-
tend beyond the field of view of the image, and their locations must be extrapo-
lated. The analysis results are displayed on each image, and saved simultane-
ously to an excel file. Fascicle length and thickness results are displayed in pix-
els, but there is an option to scale the results. 
 

 
FIGURE 8. Examples of images annotated by the trained neural networks.  
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4.3 Comparison between neural network and human tracking 

Figure 9 shows correlation and Bland-Altman plots of fascicle length data, 
demonstrating the similarity in predictive performance of two researchers and 
the newly developed deep learning approach (based on a set of 35 test images). 
On the correlation plots (left column), the following metrics are displayed as 
text: slope and intercept equation, Pearson r-squared value, sum of squared er-
rors (SSE), and the number of data points.  

 
 

 
FIGURE 9. Correlation and Bland-Altman plots of the fascicle length data comparing 
human and algorithm labelling (values are in mm). 
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In the Bland-Altman plots shown in Figure 9 (right column), the reproducibility 
coefficients (RPC, 1.96 * standard deviation) and percentages are displayed, 
along with the coefficient of variation (CV). 
 
Figure 10 shows the same parameters for pennation angle, and figure 11 for 
muscle thickness. It can be seen that the RPC values are generally highest for 
fascicle length estimates and lowest for muscle thickness. CV values were high-
est for pennation angle, and again lowest for muscle thickness. 
 
For fascicle length, there is no evidence of a systematic basis in fascicle length 
estimates, and for all correlation plots in figure 9, the r2 values are still quite 
high (0.64-0.79). In terms of pennation angle, the variation in estimates between 
human and algorithm values are sometimes up to about 5°. However, again, 
there is no evidence of systematic bias, although interestingly the two human 
observers showed greater similarity to each other’s estimates than either com-
pared to the algorithm results.  
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FIGURE 10. Correlation and Bland-Altman plots of the pennation angle data comparing 
human and algorithm labelling (values are in °). 

The parameter yielding the most consistent results between humans and the 
algorithm was muscle thickness. In fact, differences were always less than or 
equal to 1.2 mm (CV: 1.7-2.9%), and the slope of the correlation plots was al-
ways close to 1 (0.96-1), with r2 values of at least 0.98.  
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FIGURE 11. Correlation and Bland-Altman plots of the muscle thickness data comparing 
human and algorithm labelling (values are in mm). 

One additional (experimental) feature of my approach is the ability to take 
muscle fascicle curvature into account, as this is often not done with other 
methods. In figure 12, the same images are analysed manually (using Fiji), as 
well as using the deep learning approach with both a straight and a curved fas-
cicle model, and the resulting fascicle lengths are displayed on each panel. All 
of these images were selected on the basis that fascicle curvature was visually 
evident in some portions of the image. 
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FIGURE 12. Effects of straight versus curved fascicle model on fascicle length.  

 
For the three examples in figure 12, using a curved model with the algorithm 
(DL curved) resulted in very similar values to those produced using a straight-
line model (DL straight), with relative differences between -1.2 and 0.5%. The 
manual estimates with a straight model were also very similar to those generat-
ed by the algorithm (relative differences: -0.2 to 0.4%). However, comparisons 
of the two manual models resulted in much larger differences, between -14.3 to 
2.7%. The direction of differences was also not consistent, i.e. using a curved 
model resulted in a longer or a shorter fascicle length compared to a straight-
line model, depending on the image being analysed. 

4.4 Comparison of the new approach with Ultratrack 

Ultratrack (Cronin et al., 2011; Farris & Lichtwark, 2016) is arguably the current 
gold standard in (semi-)automated analyses of muscle fascicle length in video 
sequences. Here I compared the performance of my algorithm with Ultratrack 
on several different videos involving different types of muscle contraction.  
 
Figure 13 shows time-series traces of fascicle length tracked using the two 
methods during human walking at preferred speed (note that Ultratrack does 
not reliably track pennation angle or muscle thickness, so these parameters 
were not compared). All of the data in this section are from the medial gas-
trocnemius muscle.  
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FIGURE 13. Fascicle length traces from walking obtained via the deep learning approach 
(DL) and using Ultratrack. 

  
In Figure 13, the overlap of the two traces is generally quite good, especially 
considering that Ultratrack is designed to track a single fascicle, whereas my 
approach tracks all fascicles visible in the image, and in this case outputs the 
mean length. In this figure, four full walking strides are shown (approximate 
heel contact of each stride is denoted by a vertical dotted line). The mean differ-
ence between traces within the white region of figure 13 was -0.91 mm, with a 
correlation value of r = 0.82. 
 
Figure 14 shows a similar comparison but this time for a passive rotation of the 
ankle joint while the participant sat in an ankle dynamometer with a fully ex-
tended knee and the foot strapped to the foot plate of the dynamometer. The 
ankle joint starts from 10° of plantar flexion, and is then driven through plantar-
dorsiflexion cycles. Note that the discrepancy between methods is most evident 
at the longest muscle lengths. The mean absolute difference between traces in 
this figure was -0.40 mm, with a correlation between traces of r = 0.98. 
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FIGURE 14. Fascicle length traces during passive ankle rotation obtained via the deep 
learning approach (DL) and using Ultratrack. 

 

In figure 15, the two methods are again compared, but this time for a maximal 
isometric voluntary contraction, which usually requires large deformations of 
the muscle. For the data in this figure, the mean absolute difference between 
traces was -0.37 mm, with a correlation between traces of r = 0.96. 
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FIGURE 15. Fascicle lengths during a maximal voluntary isometric contraction obtained via 
the deep learning approach (DL) and using Ultratrack. 

4.5 Tracking multiple fascicles instead of a mean value 

With the DL method, the trained algorithm usually detects more than one fasci-
cle. For simplicity, the previous data and figures show the median values (fasci-
cle length, pennation) computed from all detected fascicles in a given frame. 
However, in some cases, it may be desirable to retain information about all de-
tected fascicles. In figure 16, three different conditions are analysed, this time 
showing the fascicle length (left column) and x location of the start of each fas-
cicle (right column). The software also records the x location of the end point of 
each fascicle, but this information is not shown in Figure 16. In the left column 
of this figure, each grey point denotes the length (in pixels; y-axis) of an indi-
vidual fascicle within a given frame (x-axis). The black traces denote the mean 
of all detected fascicles for a given frame. 
 



40 

 
FIGURE 16. Analysis of walking, passive and maximal isometric voluntary contraction 
(MVC), showing data from all detected fascicles. 

As can be seen in the figure, a large number of fascicles are often detected, with 
fascicle starting points at a wide range of different locations on the x axis of the 
image (negative pixel values in the right column of figure 16 denote a start 
point outside of the visible image). This figure also reveals why the median (or 
mean) value of all detected fascicles may not be the most appropriate metric; in 
the walking trial in particular, there are several frames where only a few fasci-
cles are detected, and this has a big effect on any average metric, as shown by 
the large deviations in the black mean trace. 

4.6 Failure cases 

The deep learning approach was trained to perform a very narrow task within 
certain constraints. For example, all of the training images were oriented so that 
the fascicles extend in the same direction, since it proved difficult to train a 
model that was indifferent to the horizontal orientation of the image. In figure 
16, an example is given of the tracking results when an image is both correctly 
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and incorrectly flipped on the horizontal axis and then analysed with the 
trained model.  
 

 
 
FIGURE 17. Using the trained model to analyse the same image that has been correctly (A) 
and incorrectly (B) flipped along the horizontal axis. 

 
Figure 17A shows muscle fascicles with the correct orientation appearing in the 
most superficial muscle (medial gastrocnemius), which is consistent with the 
training data. In figure 17B, the same image has been flipped horizontally so 
that the fascicles are oriented in the opposite direction to those in the training 
images. In this case, the aponeurosis tracking is similar (but reversed), whereas 
fascicles are only detected in a deeper muscle (soleus), since the orientation of 
these fascicles is now consistent with those identified in the training set. 
 
Figure 18 shows two further possible failure cases. In A, only a single fascicle is 
detected by the trained model. This fascicle could be extrapolated and used to 
denote fascicle length, but this result may not be representative, and it is prefer-
able to detect as many fascicles as possible. In figure 18B, several candidate ap-
oneuroses are detected, and in cases like this, it is surprisingly difficult to filter 
the unwanted candidates out. 
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FIGURE 18. Failure cases where too few fascicles are detected (A) or too many aponeuroses 
are detected (B). 

Additional failures may occur during tracking of videos, especially when the 
task is dynamic in nature. In some frames, the trained model was unable to 
identify any fascicle or aponeurosis candidates. These failures can easily be fil-
tered if they occur in 1 or 2 consecutive frames, but if large sections of video are 
untrackable, then the approach will not yield satisfactory results. 
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5 DISCUSSION 

In this work I present a deep learning-based method that provides full automa-
tion of muscle architecture from single ultrasound images as well as videos. In 
general, the method performs very favourably when compared to manual anal-
ysis and existing semi-automated methods, and is robust to images from differ-
ent muscles and those obtained with different ultrasound systems and settings. 
This method therefore offers a more objective, time-efficient method of seg-
menting ultrasound images. The method and all labelled training data will also 
be released under an open source license, allowing others to use and extend this 
work.  

5.1 Comparisons with manual analysis 

Fascicle length estimates were generally well correlated between the DL meth-
od and manually-derived results. Naturally however, the results between the 
two methods were not identical for several reasons. Firstly, the DL method 
computed the fascicle trajectories of multiple fascicles across the width of each 
image, but for the comparison with manual analysis, I only used the median 
value output by the DL method. This median value thus includes a lot of varia-
bility because of differences in fascicle lengths in different parts of the image (or 
muscle). On the contrary, for the manual analysis, only a single fascicle was de-
tected from the central part of the image, because it would not be feasible to 
manually analyse as many fascicles per image as the DL algorithm. An alterna-
tive approach to using a median (or mean) value is to use the data computed 
from all fascicles, regardless of their location in the image, as discussed below.  
 
Out of the three architectural parameters that were assessed, fascicle length es-
timates varied the most between computer and human. Fascicle length esti-
mates are indeed likely to vary the most because even very slight differences in 
the interpretation of fascicle angle can have a substantial effect on the length of 
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an extrapolated fascicle, especially for long fascicles. Furthermore, parts of a 
fascicle often extend beyond the visible image, so different methods of extrapo-
lation could have large effects on length estimates. 
 
Similarly, this variation is also seen in pennation angle, with differences of up 
to 5° in some cases. A difference of this size could be very significant, since 
changes in pennation angle due to long-term training interventions would like-
ly be much smaller than this (Aagaard et al., 2001). However, this comparison 
does not imply that the deep learning approach is not sufficient for determining 
this parameter. Rather, it likely represents the difference in approach, as men-
tioned above. When determining pennation angle from multiple fascicles in 
different parts of a muscle, it is very likely that the values will differ in different 
regions. The results presented here simply give the mean pennation angle of all 
fascicles taken into consideration, which is not the same as only selecting a sin-
gle fascicle from the middle of the image, as the human labelers did. A simple 
solution to this problem would be to constrain the deep learning method to on-
ly select fascicles from the central portion of the image. However, in some im-
ages, e.g. those where there are no clear fascicle-like structures in the middle of 
the image, this may result in the algorithm failing to detect anything.  
 
Thickness measures were very similar between the two human analysers, as 
well as between humans and the algorithm. This is unsurprising because the 
analysis was constrained to the central region of the image, and so similar re-
sults would be expected as long as the algorithm is able to successfully detect 
the aponeuroses. 
 
Curvature tracking with deep learning doesn’t currently work well enough 
based on this implementation. Although the use of a curved model often result-
ed in different fascicle lengths compared to the straight-line model, these differ-
ences were usually small. Moreover, when comparing the output to manually 
analysed data, it is clear that the algorithm often underestimates the degree of 
curvature. In the results shown in figure 12, this led to an under- or overestima-
tion of fascicle length of up to about 14% by the algorithm. Clearly, for cases 
where curvature is a significant problem, a more sophisticated approach of 
quantifying the curvature is needed than a polynomial fit to the identified 
points (Darby et al., 2013).  

5.2 Comparisons with Ultratrack 

In comparison to the results from Ultratrack, my approach yielded traces that 
were more variable (i.e. less smooth), probably because multiple fascicles were 
being tracked, and fascicles from slightly different regions are detected in dif-
ferent images. This differs from the approach of Ultratrack, where a single fasci-
cle is first identified, and this location information is then used to update the 
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fascicle endpoints in subsequent images of the sequence. In other words, Ul-
tratrack does not treat each image in the sequence as being independent, 
whereas my approach does. It is debatable which approach is superior, but it 
would be of interest to build in the effect of time to my approach, using some 
form of recurrent model. This would allow a model to be trained that takes into 
account the fascicle length (or other parameter) from n previous frames, and use 
this to help inform the result of the current frame. 
 
An additional possibility would be to constrain the identification of fascicles to 
only the middle portion of the image, since this is a rule that is commonly used 
when manually analysing the data. However, this could result in failure in cas-
es where few or no candidate fascicles are identified in the middle portion of 
the image. Moreover, in some cases it may be a specific goal to identify differ-
ences in muscle architecture within different muscle regions. With the current 
approach, this could be achieved by retaining the information from all detected 
fascicles (see following sub-section), and then averaging the values from specif-
ic image regions. 
 
Regarding the noisiness of the fascicle length traces, it would of course be pos-
sible to smooth the traces. However, when computing a simple mean of all de-
tected fascicles, smoothing the trace would result in some loss of data, and it 
would not be immediately clear how to define the boundary between signal 
and noise. Therefore, I refrained from filtering the traces in the results of this 
thesis. As stated below, one option is to simply output the lengths of all detect-
ed fascicles, allowing a range of lengths to be identified.  
 
It should be noted that the approach presented here is likely slower than Ul-
tratrack when analysing videos, partly due to the post-processing rather than 
the actual inference time of the neural network models. All of the work present-
ed in this thesis was done using a Geforce GTX 2070 GPU, whereas the average 
user would likely run this software using a CPU. Nonetheless, given the time 
requirements of manual analysis, my approach is still likely to offer huge time 
savings in comparison. 

5.3 Tracking multiple fascicles 

During analysis, the current DL approach treats each individual frame of a vid-
eo as being independent from other frames. As a result of this, combined with 
the fact that multiple fascicles are usually detected, the mean fascicle traces ob-
tained when computing the mean or median per frame are often much less 
smooth than the equivalent trace produced by Ultratrack. As an alternative, I 
also output data from all detected fascicles. This approach allows the user to 
determine the metric used to quantify fascicle length, as well as filtering and/or 
filling missing data if they so choose. 
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Given the rather large variations in fascicle lengths in different muscle regions, 
it may often be preferable to include all data, providing a range of values across 
both the spatial direction of the muscle and the time dimension of the activity. 
Moreover, in cases where it is a specific study aim to examine region-dependent 
muscle architecture, this method is clearly superior to the manual labelling of 
individual fascicles in different parts of the image. In principle, the current ap-
proach could be used to analyse extended field of view scans, where a series of 
longitudinal images are stitched together to allow imaging of a region that is 
longer than the ultrasound probe.  

5.4 Limitations 

One limitation that is common to many applications of this kind is that the ap-
proach does not actually exhibit intelligence in the sense that we associate with 
human thinking (Lake, Ullman, Tenenbaum, & Gershman, 2016). This is 
demonstrated by some of the common failure cases presented here. These cases 
would be generally simple to solve for a human, and demonstrate that the ap-
proach can be quite brittle when presented with data that is even slightly differ-
ent to what is present in the training set. The likelihood of some of these failures 
could be somewhat offset by increasing the size and diversity of the training set, 
but without any built-in ability to generalise knowledge or contextual infor-
mation, this kind of approach is unlikely to ever achieve perfect tracking in all 
cases. 
 
An additional limitation of the current implementation is the lack of an option 
to manually correct the tracking, e.g. when the human researcher sees an obvi-
ous tracking error. In theory, this could be implemented in a future version. I 
made no attempt to do so here because one of the main goals was to determine 
whether it is feasible to develop a fully automated approach built on deep 
learning principles. Moreover, the implications of allowing manual corrections 
should be considered; the more human intervention there is, the higher the risk 
of biasing the results, since the human doing the analysis is usually aware of the 
study context, aims and hypotheses. 
 
Finally, it should be noted that this approach was only trained to analyse data 
from superficial muscles, and to provide results for a single muscle. This was 
done because it is sufficient for the majority of studies performed in this field. 
In future, this could be overcome by training a broader model that is able to 
detect fascicles and other structures anywhere in an image, regardless of the 
orientation of the structures or their spatial locations. Alternatively, the user 
could define a region of interest, allowing the analyses to be localised. 
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6 CONCLUSION 

 
 
In this work I present a deep learning approach that allows full automation of 
the analysis of muscle architecture from ultrasound images and videos. The 
results produced by this method generally correspond well with those from 
manual analysis or existing algorithmic approaches. The new method provides 
fast and objective results, and can be used to analyse different superficial mus-
cles. Certain aspects of this approach, such as the ability to analyse curved mus-
cle fascicles, require further development, as the current implementation often 
underestimates the degree of curvature (compared to manual analysis). None-
theless, the code and training data from this project are publicly available 
(https://github.com/njcronin/DL_Track), allowing other users to benefit from 
and potentially extend upon this work.  
 

https://github.com/njcronin/DL_Track
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