
Frankie Robertson

Word Sense Disambiguation for Finnish with an

Application to Language Learning

Master’s Thesis in Information Technology

March 17, 2020

University of Jyväskylä

Faculty of Information Technology

Author: Frankie Robertson

Contact information:
frankie.ray.robertson@student.jyu.fi,

frankie@robertson.name

Supervisor: Michael Cochez

Title: Word Sense Disambiguation for Finnish with an Application to Language Learning

Työn nimi: Saneiden alamerkitysten yksiselitteistäminen suomen kielelle ja sen soveltami-

nen kielen oppimiseen

Project: Master’s Thesis

Study line: Mathematical Information Technology

Page count: 191+0

Abstract: The task of automatically determining the correct meaning of a word within some

natural language utterance is referred to as Word Sense Disambiguation (WSD). This thesis

describes the implementation and evaluation of WSD for the Finnish language, motivated by

its novel application to Computer Aided Language Learning (CALL). To serve as training data

for Machine Learning (ML) based WSD techniques, a sense-annotated corpus is automati-

cally created based on a collection of bilingual subtitles. Next, several WSD algorithms are

adapted to Finnish and evaluated according to their F1-measure. Then, a Lexical Knowledge

Base (LKB) is constructed by clustering and aligning existing resources, and tools to extract

and analyse complex lexical units are created. Finally, TheWhatNow?!, a CALL tool which

uses WSD on this new lexical resource to offer in context help related to word structure and

meaning to language learners is introduced and the design principles guiding its construction

and user interface are expounded.

Keywords: Finnish language, Word sense disambiguation, Lexical semantics, Computer

aided language learning, Morphology

Suomenkielinen tiivistelmä: Tehtävää sanan oikean merkityksen määritämiseksi automat-

tisesti jossakin luonnollisen kielen ilmaisussa kutsutaan saneiden alamerkitysten yksiselit-

teistämiseksi. Tämä pro gradu -tutkielma kuvaa saneiden alamerkitysten yksiselitteistämisen

i

toimeenpanoa ja arviointia suomen kielelle, ja sitä motivoi tämän tehtävän uudenlainen soveltami-

nen tietokoneavusteiseen kielen oppimiseen. Tutkielmassa kaksikieliseen tekstitysaineistoon

pohjaava sanojen alamerkitysten mukaan annotoitu korpus on luotu automattisesti palvele-

maan opetusaineistona koneoppimiseen pohjautuville saneiden alamerkitysten yksiselitteistämisen

tekniikoille. Seuravaksi saneiden alamerkitysten yksiselitteistämisen algoritmeja on muokattu

suomen kielelle ja arvioitu niiden F1-mitan mukaan. Sen jälkeen on rakennettu sekä lek-

sikaalinen tietämyskanta klusteroimalla ja tunnistamalla vastaavuuksia että välineet kom-

pleksisten lekseemien poimimiseen ja analysointiin. Lopuksi on esitelty NiinMikäOli?!, ti-

etokoneavusteinen kielen oppimisen väline, joka käyttää saneiden alamerkitysten yksiselit-

teistämistä uudella leksikaalisella resurssilla tarjotakseen sanojen rakenteeseen ja merkityk-

seen liittyvää kontekstisidonaista apua kielenoppijoille. Lisäksi on selitetty NiinMikäOli?!:n

rakentamista ja käyttöliittymää ohjaavat suunnittelun periaatteet.

Avainsanat: Suomen kieli, Saneiden alamerkitysten yksiselitteistäminen, Sanasemantiikka,

Tietokoneavusteinen kielen oppiminen, Morfologia

ii

List of Figures
Figure 1. A conceptual map showing the relationship between WSD and CALL. 8
Figure 2. Edge labelled graph representation of the difference and similarities between

the concepts of “dog” and “cat”. 20
Figure 3. Diagram showing the major families of techniques for WSD. 27
Figure 4. Venn diagram showing the number of Finnish-Mandarin bitexts. 43
Figure 5. Confusion matrix showing character set classification of films in OpenSub-

titles2018 against their reclassification with the OpenCC based scheme. 44
Figure 6. Confusion network arising from the Finnish Multi-Word Expressions (MWEs)

“kirjoitettu kieli” and “olla yhtä paljon kuin”. 48
Figure 7. The overall pipeline of STIFF. 51
Figure 8. EuroSense to unified pipeline. 55
Figure 9. EuroSense fixing pipeline.. 56
Figure 10. A manually annotated snippet from OpenSubtitles2018. 59
Figure 11. Pipelines showing how STIFF stages are combined to form the different variants.63
Figure 12. A tree providing an ablation lineage structure to variants of STIFF. 64
Figure 13. A precision/recall plot showing variants of STIFF alongside the processed

version of EuroSense. 65
Figure 14. Distribution plots with histogram and kernel density estimate showing the

entropy distributions of instances in within training corpora. 70
Figure 15. Histogram of ambiguity levels of lemma, Part Of Speech (POS) pairs in

FinnWordNet (FiWN) and Princeton WordNet (PWN). 72
Figure 16. Histogram of ambiguity levels of lemma, POS pairs in Finnish and English

testing corpora. 73
Figure 17. An example to illustrate how the process of paired resampling of the results

from different WSD systems works for a single bootstrap iteration. 79
Figure 18. Parallel coordinate plot to emphasise the permutation structure of the ranks

of the systems on the different test corpora. 92
Figure 19. Graph showing an extrapolation estimating the p-values for a significant

level of difference between pairs of top performing systems decreasing with in-
creasing sample size. 94

Figure 20. Histograms comparing the context lengths in tokens of the development and
test section of STIFF and EuroSense. 97

Figure 21. Two definitions of pitää from Wiktionary. 101
Figure 22. The wikiparse pipeline. 102
Figure 23. An example of wikiparse’s JavaScript Object Notation (JSON) format. 104
Figure 24. The schema of wikiparse’s relational database format as an entity relation

diagram. 105
Figure 25. Diagram showing the data flow of the creation of the automatically created

gold standard. 114
Figure 26. Proportions related to words unknown to a simplified model of a language

learner. 131
Figure 27. Derivation tree produced by asafi for voileipäkakusta. 138

iii

Figure 28. Derivation tree produced by asafi for voimakkaammin. 141
Figure 29. Alignment of voimakkaammin across multiple generations . 143
Figure 30. Possible surface alignments of ‘kas’ onto ‘kkaa’. 146
Figure 31. A screenshot showing the Finnish Wikipedia page Turku being read using

the browser extension. 148
Figure 32. A composite screenshot showing different stages of the interaction resulting

when a user brushes over segments in the text analyser. 149
Figure 33. The architecture of TheWhatNow?! as a block entity diagram. 150
Figure 34. Diagram showing the runtime server side data flow of linguistic information

to the TheWhatNow?! client.. 152
Figure 35. Diagram showing the Extract Transform Load (ETL) data flow of linguistic

data for usage by TheWhatNow?! . 153

List of Tables
Table 1. Table showing the differences and similarities between the concepts of “dog”

and “cat”. 20
Table 2. Table showing a labelled latent feature matrix. 23
Table 3. Table showing a labelled entity matrix. 23
Table 4. Chinese character set detection scheme. 43
Table 5. Summary of Mandarin WordNets. 45
Table 6. Example showing how substring search on unsegmented Mandarin text can

produce extra lemmas. 46
Table 7. EuroSense problems automatically fixed.. 55
Table 8. Scope of manual sense annotation work. 57
Table 9. Results of manual sense annotation work. 60
Table 10. Basic information about the corpora and their sections as used in this evaluation.67
Table 11. Sense distribution information about training and test corpora as used in this

evaluation. 69
Table 12. Word embeddings and language models used. 74
Table 13. Baselines and calibration statistics for development corpora. 85
Table 14. Results for variants of cross lingual Lesk with frequency data tested against

development data. 87
Table 15. Results for variants of cross lingual Lesk without frequency data tested against

development data. 88
Table 16. Results for variants of Lesk++ tested against development data. 89
Table 17. Results for variants of SupWSD tested against development data. 89
Table 18. Results for variants of AWE-NN tested against development data. 90
Table 19. Baselines and calibration statistics for manually annotated corpora. 91
Table 20. Results for final variants of WSD systems. 93
Table 21. Table of possible outcomes for Wiktionary parser. 106
Table 22. Table of problems from running Wiktionary parser. 107

iv

Table 23. An extract of data given about the predicates forming different frames in
Finnish PropBank (FiPB). 113

Table 24. An extract of data from Predicate Matrix. 113
Table 25. English frame data with Finnish lemmas expanded from FiWN. 116
Table 26. Summary of gold standard clusterings. 119
Table 27. Contingency table showing how to interpret clustering as binary classification. . 119
Table 28. Results of the evaluation of sense clustering systems. 127

v

Contents
GLOSSARY . 1

ACRONYMS . 4

1 INTRODUCTION . 6
1.1 Word Sense Disambiguation . 7
1.2 Evaluation in NLP. 11

1.2.1 Framing . 11
1.2.2 Comparative evaluation. 12
1.2.3 Metrics . 12
1.2.4 Representative sampling . 15

1.3 Structure . 16

2 BACKGROUND . 17
2.1 Linguistic background & Finnish morphology . 17
2.2 Lexical resources: Lexical Knowledge Bases and embeddings 19

2.2.1 Lexical Knowledge Bases . 21
2.2.2 Embeddings . 22

2.3 WSD Techniques . 26
2.3.1 Word Sense Induction . 27
2.3.2 Gloss based WSD . 28
2.3.3 Graph based WSD . 29
2.3.4 Supervised . 30
2.3.5 Evaluation . 31

2.4 SLA and CALL. 33
2.4.1 Concordance and DDL based approaches . 35
2.4.2 Enhanced input approaches . 36
2.4.3 Reading assistants. 37

3 AUTOMATICALLY CONSTRUCTING A SENSE TAGGED CORPUS 38
3.1 Preprocessing and sense inventory of Mandarin Chinese . 41

3.1.1 Mandarin in OpenSubtitles2018 . 42
3.1.2 Mandarin WordNets . 44
3.1.3 Obtaining Mandarin lemmas . 45

3.2 Preprocessing and sense inventory of Finnish . 47
3.2.1 The problem of missing senses in FinnWordNet . 48
3.2.2 Estimating sense frequency of Finnish lemmas based on English data . . 49
3.2.3 Finnish WordNets used . 50

3.3 Obtaining sense tagged tokens . 50
3.3.1 Adding supports . 51
3.3.2 Tournament stages . 52

3.4 A second sense tagged corpus: EuroSense. 54
3.5 Creating a manually annotated corpus . 57

vi

3.5.1 Annotation software . 57
3.5.2 Annotation set up and guidelines . 58
3.5.3 Annotation results . 60

3.6 Evaluation of STIFF and EuroSense . 60

4 IMPLEMENTATION OF WSD TECHNIQUES . 66
4.1 Resources . 67

4.1.1 LKBs and corpora . 67
4.1.2 Word embeddings and language models . 71

4.2 Method . 75
4.2.1 Corpus division and model selection . 75
4.2.2 Corpus preprocessing . 76
4.2.3 Significance testing . 76

4.3 Systems . 80
4.3.1 Baseline . 81
4.3.2 UKB . 81
4.3.3 Lesk with cross lingual word embeddings . 81
4.3.4 Lesk++ . 82
4.3.5 SupWSD . 83
4.3.6 Nearest neighbour using word embeddings . 83
4.3.7 Nearest neighbour with Context2Vec . 84
4.3.8 Nearest neighbour with BERT . 84

4.4 Model Selection . 85
4.4.1 Cross lingual Lesk . 85
4.4.2 Lesk++ . 86
4.4.3 SupWSD . 89
4.4.4 AWE-NN . 89

4.5 Results . 91

5 CREATING AN ALIGNED FINNISH LEXICAL RESOURCE . 99
5.1 Scraping Wiktionary . 100

5.1.1 Structured data format . 102
5.1.2 Evaluation . 103
5.1.3 Results . 107

5.2 MWEs and schemas . 108
5.2.1 Obtaining schemas . 109
5.2.2 Headword extraction . 109

5.3 Sense clustering . 111
5.3.1 Partitions and same-different graphs . 112
5.3.2 Automatically created gold standard . 113
5.3.3 Manually created gold standard . 117
5.3.4 Evaluation . 118
5.3.5 Affinity propagation . 120
5.3.6 Systems . 122

vii

6 THE DESIGN OF THEWHATNOW?! . 129
6.1 Design criteria . 129

6.1.1 In context word definitions . 129
6.1.2 Grammatical approach. 130

6.2 Analytical segmentation of Finnish . 133
6.2.1 Normalised segments from Omorfi and Wiktionary . 135
6.2.2 Building a segmentation derivation tree . 136
6.2.3 Constraints upon rules . 138
6.2.4 Producing alignments. 140
6.2.5 Aligning MWEs and schemas . 146

6.3 User interface . 147
6.4 Architecture. 148

7 CONCLUSION . 155
7.1 Software and language resource contributions . 155
7.2 Research contributions . 158
7.3 Future work . 159

BIBLIOGRAPHY . 161

viii

Glossary

allomorph Any of two or more actual representations of a morpheme. 140, 145

clamping An operation which ensures a value falls within a specified range by moving it to

the nearest value within the available range:

clamp(x, rangemin, rangemax) = min(max(x, rangemin), rangemax). 122, 123

clique A complete subgraph. 80, 113

complete graph A graph where for all v1, v2 ∈ V, (v1, v2) ∈ E. 1, 112

confusion class A set of possible values which a prediction procedure may choose from for

a given input. 38–40, 68, 69

corpus A large, structured set of texts. i, iii, iv, vi, vii, 10, 15, 16, 23, 24, 27, 30, 32, 33, 35,

36, 38–41, 43–45, 49, 50, 54, 57, 58, 61, 66–71, 73, 75, 76, 81, 83, 85, 86, 91–93, 96,

98, 99, 132, 155, 157, 159

directed graph A graph where for e ∈ E, v1, v2 ∈ V , the edges have the form e = (v1, v2).

19

enclitic A word-like unit which barely any stress in speech, and is attached on to the previous

word in text. 18, 108, 137

fixed point Given a domain D and a function f : D → D, a fixed point is a value p ∈ D for

which f(p) = p. A value x ∈ D is said to reach its fixed point when we obtain a fixed

point x′ ∈ D by repeated application of f : x′ = f(. . . f(x) . . .). 47

gloss A translation, explanation, interpretation, or paraphrase of a piece of text. Usually

a gloss has the same POS and semantics as the unit which is glosses. 7, 27–29, 33,

81–83, 123, 124, 126

graph A tuple (V,E), where V is a set of vertices or nodes andE is a set of edges connecting

them. iii, 1, 2, 17, 20, 27, 29, 39, 80, 81, 94, 112, 120, 121, 126, 141, 142

L1 In Second Language Acquisition (SLA): A subject’s first or native language. 36

L2 In SLA: A subject’s second or target language. 34, 36

1

lexicon The vocabulary of a person or language; The abstract platonic ideal of the set of

those units (e.g., words, lemmas, or morphemes) which hold meaning in a language.

19, 40, 45, 134

overfitting When a ML procedure learns too much about specific features of its training

data that result from the sampling process, and not enough features about the whole

distribution underlying the training data. 75, 95

Pareto front Given dimensions x1, x2, ..xn each equipped with an order where x ≥ y can be

read as x is preferable or equal to y, the Pareto front is that set of points for which for

each member x there exists no solution x′ in which for every dimension is preferable,

x′
i ≥ xi. 61, 62, 65, 128

particle A word which has a grammatical function, but no definition in and of itself. 18, 53,

108, 137

partition Given a set S, its partition is a set P of nonempty subsets of S, such that each

member of S is a member of exactly one member of P . vii, 2, 19, 112, 115

pipeline A series of data processing stages operating upon data streams, where the output of

each feeds into the input of the next. The processes may be executed in parallel. iii, 44,

46, 50, 51, 54–56, 76, 102, 110, 153

scraping A procedure which extracts structured data from unstructured or semi-structured

data. vii, 100, 103, 106, 136, 151, 156

smoothing In the context of estimating probabilities based on count data: any procedure

which aims to adjust probabilities to account for unseen data. 50, 82, 108, 132

subgraph Given a graph (V1, E1), another graph (V2, E2) is a subgraph when V2 ⊆ V1 and

E2 ⊆ E1. 1, 29, 30

substantive In descriptions of Finnish grammar: any word to which a case ending can be

attached, including all nouns and adjectives. 108

undirected graph A graph where for e ∈ E, v1, v2 ∈ V , the edges have the form e = v1, v2.

80

2

wildcard Some part of a matching specification which is able to match anything in the do-

main of matchable objects freely e.g., * is commonly used as a wildcard character. 3,

109–111, 139, 147

3

Acronyms

AI Artificial Intelligence 6, 7, 19

AWE Average/Aggregate of Word Embeddings iv, vii, 29, 31, 71, 83–86, 89–91, 95

BLEU Bi-Lingual Evaluation Understudy 13, 14

BOW Bag Of Words 28, 31

BPE Byte Pair Encoding 85, 98, 134

CALL Computer Aided Language Learning i, iii, vi, 6–8, 17, 33, 35

EMD Earth Mover’s Distance 124, 125

ETL Extract Transform Load iv, 150, 153, 154

FiPB Finnish PropBank v, 22, 113, 115, 116

FiWN FinnWordNet iii, v, 21, 47–50, 53, 56–58, 60, 67, 68, 71, 72, 99, 109, 111, 113,

115–117, 122, 153, 156–158

FN False Negative 78, 80, 103, 106, 119, 120, 122, 126

FP False Positive 46, 78, 80, 103, 106, 119, 120, 126

FST Finite-State Transducer 110

HTML HyperText Markup Language 100

JSON JavaScript Object Notation iii, 102–104, 148, 151

LKB Lexical Knowledge Base i, vii, 6, 16, 21, 22, 29, 30, 48, 56, 67, 68, 80, 81, 99, 132

LSTM Long Short-Term Memory 25, 26, 84

ML Machine Learning i, 2, 15, 26, 80

MT Machine Translation 9–11, 13, 14

MWE Multi-Word Expression iii, vii, viii, 46–48, 74, 99, 103, 108, 109, 130, 132, 134, 146,

147, 151, 153, 154, 156–158

NLP Natural Language Processing vi, 9–11, 20, 67, 80, 155

NMT Neural Machine Translation 14

NN Nearest Neighbour iv, vii, 83–85, 89–91, 95

4

PBMT Phrase Based (statistical) Machine Translation 9, 10, 14, 25

POS Part Of Speech iii, 1, 9, 18, 32, 34, 36, 47, 52, 53, 58, 68, 69, 71–73, 76, 83, 100, 134,

138–140

PWN Princeton WordNet iii, 21, 22, 49, 68, 71, 72, 99, 139, 153, 157

RBMT Rule Based Machine Translation 14

RNN Recursive Neural Network 25

SLA Second Language Acquisition vi, 1, 6, 17, 33, 34

SVM Support Vector Machine 31, 83

TN True Negative 106, 119, 120

TP True Positive 46, 62, 78, 103, 106, 119, 120

WSD Word Sense Disambiguation i, iii, iv, vi, 6–11, 16, 17, 19, 26–33, 37–39, 48, 49, 54,

57, 66–68, 71, 76, 79–81, 83, 86, 91, 93, 96, 98, 99, 151, 155, 156, 159, 160

XML eXtensible Markup Language 54, 57, 58, 100

5

1 Introduction

What makes learning a second language hard? How can a computer help? These are central

questions in the fields of Second Language Acquisition (SLA) and Computer Aided Language

Learning (CALL) respectively. A language acquisition expert could as well ask “what makes

learning a second language easy?” After all, 60% of the world speak more than one language,

making multilingualism the norm (Richard 1999). How do we reconcile this with the fact

that so many language learners, particularly adults, report significant struggles learning a

new language and that high attrition rates are reported, both for self-study (Nielson 2011;

Mcquillan 1997) and in university level courses (Dupuy and Krashen 1998).

Here, the perspective is taken that a major barrier to language learning is that when language

is learnt in an artificial environment, the brain is less likely to retain the information since

it is less likely to seem truly relevant or important (Pearce 2016; Schmidt 1990). To move

away from the problems of language learning in a synthetic environment, it should be learnt

continually, and language help should be given within the contexts where the language learner

needs to use the second language.

In this thesis, I describe the motivation, implementation and evaluation of the TheWhatNow?!

system. TheWhatNow?! is a tool intended to assist language learners with text comprehen-

sion. The primary purpose of the tool is to allow learners to look up words while they are

reading Finnish language web pages. For a given part of a given text, TheWhatNow?! ranks

various information which may be useful to language learners, so as to place the most useful

information in the highest ranking position. In the current version of TheWhatNow?! the

information is limited to word definitions and word structure.

Ranking word definitions according to how useful they are to a learner is treated as equivalent

to ranking them according to how well they define a word usage within a context. This task

is referred to as Word Sense Disambiguation (WSD), formally the task of assigning words a

sense from a sense inventory, i.e., an electronic dictionary or Lexical Knowledge Base (LKB)

(Jurafsky and Martin 2019a; Navigli 2009). Like many natural language understanding tasks,

WSD has been referred to as AI-complete (Mallery 1988, p. 57), that is to say, it is considered

6

as hard as the central problems in Artificial Intelligence (AI), such as passing the Turing test

(Turing 1950).

Thus, the purpose of this thesis is to implement and evaluate WSD for the Finnish language,

motivated by its novel application to CALL. The connection between WSD and CALL is

shown in Figure 1. In order to achieve this objective, I approach the following research ques-

tions:

RQ1. How can WSD techniques be evaluated? How can they be compared in terms of their

approach? What are the main themes in previous WSD research?

RQ2. What steps are required to implement and evaluate the chosen WSD techniques?

RQ3. Comparatively, how well do the chosen WSD techniques work for the Finnish lan-

guage?

RQ4. What are the issues with presenting Finnish morphology and word definitions to Finnish

learners? How do current approaches fall short when used for this purpose? How can

an approach towards addressing these shortcomings be implemented?

1.1 Word Sense Disambiguation

To make the task of WSD concrete, consider an illustrative example: we may have a dictionary

containing the following word definitions, also referred to as glosses, for the word bank:

Bank.1 An institution where one can place and borrow money and take care of financial

affairs.

Bank.2 (hydrology) An edge of river, lake, or other watercourse.1

Additionally, we may have two sentence fragments: “...he created [a sculpture of a pair of

shoes] on the east bank of the Danube River...”, and, “[a]n account held in a foreign offshore

bank...”2.

1. Word senses were obtained from Wiktionary.
2. Reproduced from the Wikipedia articles Shoes on the Danube Bank (retrieved from https://en.

wikipedia.org/w/index.php?title=Shoes_on_the_Danube_Bank&oldid=932093964)
and Offshore Bank (retrieved from https://en.wikipedia.org/w/index.php?title=
Offshore_bank&oldid=928783206) respectively.

7

https://en.wikipedia.org/w/index.php?title=Shoes_on_the_Danube_Bank&oldid=932093964
https://en.wikipedia.org/w/index.php?title=Shoes_on_the_Danube_Bank&oldid=932093964
https://en.wikipedia.org/w/index.php?title=Offshore_bank&oldid=928783206
https://en.wikipedia.org/w/index.php?title=Offshore_bank&oldid=928783206

Learner need predic

tio
n

a
ty

pe
 o

f/
a

way
 o

f

ac
hi

vi
ng

a
su

bt
as

k
of

an
 a

pp
ro

ac
h

to
war

ds

Word
Sense

Disambig-
uation

(Intelligent) Computer Aided Language Le
arn

in

g

A
ssistive technologies for language le

ar
ne

rs

a
ty

pe
 o

f/
a

way
 o

f

ac
hi

vi
ng

a
su

bt
as

k
of

an
 a

pp
ro

ac
h

to
war

ds

Word
Sense

Disambig-
uation

Figure 1: A conceptual map showing the relationship between WSD and CALL.

8

As humans, we can assign the correct dictionary sense to these occurrences using various

contextual cues. For example, with the first sentence fragment, we can see that the concept

referred to by bank is bank.2 because there are shoes positioned on top of it, which is more

likely because bank.2 refers to a physical thing whereas bank.1 refers to an abstract thing.

Another approach would be to see that it is nearby the word “river”, which also appears in

the definition of bank.2. A third way would be to look only at the two words “east bank”

and know from statistical evidence that this is more likely to refer to bank.2. In fact, each of

these approaches forms the basis for a different family of WSD algorithms.

Beyond any intrinsic novelty or intellectual challenge, why should we care about the task

of WSD? Resnik (2006) argues that there have been three types of arguments made for the

importance of research into WSD, summarised here:

• Argument from faith/tradition: In this argument, the importance of WSD is “passed

from teacher to student and easily accepted on intuitive grounds” as “‘obviously essen-

tial for language understanding applications”’.

• Argument by analogy: In this argument, an analogy is made to other tasks and linguistic

representations such a Part Of Speech (POS) tagging, the task that involves determin-

ing, for example, whether a particular word is a verb or a noun. Since these tasks

are used as part of larger tasks and applications, they are referred to as intermediate

tasks. It is then assumed that treating WSD as an intermediate task will be beneficial

by analogy.

• Argument from specific applications: The previous two arguments fail to convince us

that performing WSD will ultimately have any practical benefit. This last argument

states that WSD is useful if we can find a specific application where a system can be

improved by performing WSD as an intermediate task.

The first two arguments are usually made because of difficulty successfully constructing the

third. That is to say, there is a disconnect between the traditional intuition that WSD is re-

quired for various Natural Language Processing (NLP) tasks and the current reality that it is

rarely used explicitly as an intermediate task in practice. Here, I briefly explore this discon-

nect by examining the application area of Machine Translation (MT) and the, until recently,

state of the art approach of Phrase Based (statistical) Machine Translation (PBMT). MT was

9

one of the first NLP applications to be explored and as early as 1947, word sense ambiguity

was noted as an obstacle to MT — surmountable or not. Warren Weaver wrote in a letter to

Norbert Wiener dated 4th March 1947: “Recognizing fully, even though necessarily vaguely,

the semantic difficulties because of multiple meanings, etc., I have wondered if it were un-

thinkable to design a computer which would translate.”, to which Wiener replied, “as to the

problem of mechanical translation, I frankly am afraid the boundaries of words in different

languages are too vague and the emotional and international connotations are too extensive

to make any quasi mechanical translation scheme very hopeful.”. Furthermore, the oft-told

apocryphal story of “The spirit is willing but the flesh is weak” being translated into Russian

as “The vodka is good but the meat is rotten” (Hutchins 1995) is arguably a problem of in-

correctly assigning the word senses “spirit (alcoholic beverage)” and “flesh (animal)” rather

than “spirit (mysticism)” and “flesh (human)” to the original text.

A PBMT system, such as Moses (Koehn et al. 2007), or the version of Google Translate rolled

out in April 2006 (Och 2006), finds statistical correspondences between phrases in a bilingual

corpus. First, sentences within a bilingual corpus are aligned, e.g., using the Gale-Church

alignment algorithm (Gale and Church 1993). Next, words within each pair of sentences are

aligned, e.g using an IBM word alignment model (Brown et al. 1993), as implemented within

Giza++ (Och and Ney 2003). Finally, chunks for which word alignment supports a phrase-to-

phrase correspondence within the aligned sentences are counted to form a phrase table with

probabilities. If there is sufficient evidence within an English-Finnish bilingual corpus, we

would find that the phrase “river bank” corresponds to “joen penkka”, while “bank account”

corresponds to “pankkitili”. Thus, some degree of WSD is performed, but as a side effect of

performing PBMT, rather than as a prerequisite for performing it. Alternatively stated, WSD

is needed for the task, but the intermediate representation of disambiguated text is not.

This trend away from human designed intermediate representations, corresponding to the

outputs of intermediate tasks, has only accelerated following the increased dominance of end

to end neural network based approaches for most NLP tasks, further eroding the argument of

analogy with other intermediate tasks. In this thesis, WSD is developed to help with the spe-

cific application of TheWhatNow?!. Thus it is the third argument, that a specific application

benefits from WSD, that is used to support its development here.

10

1.2 Evaluation in NLP

This section explores the topic of evaluation in NLP in a wider scope, beyond just the task

and frame of WSD, in order to expound the basic theoretical and methodological foundation

of this thesis. Here we take MT as an example to demonstrate some of the issues which NLP

evaluations must take into account. MT is used as an example since it is a very familiar NLP

application which presents a variety of challenges in terms of evaluation. The specifics of

evaluation in the context of WSD are discussed in Section 2.3.5.

1.2.1 Framing

Before we can even begin NLP system evaluation, we must address the framing of the task.

The frame tells us how the task fits in with the rest of the world. For example, whether it

is used as part of a larger application and where the interface with end users ultimately lies.

This gives us an idea both of what the evaluation should emphasise and how we can interpret

the results.

For example, we might have one MT frame where we are attempting to translate controlled

language for the exchange of patient records between countries. In this case, it is very undesir-

able that any mistakes are made in case they lead to misunderstandings that could ultimately

cause incorrect medical decisions to be made. However, we would be helped through the use

of controlled language, which may allow us to guarantee that translations are correct, leaving

only the potential drawbacks of doctors not being able to express their thoughts fully.

This is very different from the much wider frame of everyday personal usage of MT, such

as translating a portion of a website using a service such as Google Translate. In this case,

the text may be from any domain and users may come with varying levels of expectations.

At one extreme a user may expect an entirely correct and fluent translation. An intermediate

expectation could be that of obtaining a non-fluent, mostly comprehensible translation. The

minimal expectation would generally be to obtain a translation that is just comprehensible

enough to be able to discern the topic or the gist of what is being said.

In this latter type of frame, we usually abandon any attempt to make particular guarantees

about our system’s output, since we have similarly jettisoned any demand for constraints on

11

our input. We now may encounter any type of text and one translation may be better or worse

(or hard-to-say-either-way) than the other, according to one or more criteria. In order to make

a quantitative judgement about said criteria, we can take a comparative approach, comparing

the output of multiple systems.

1.2.2 Comparative evaluation

In a comparative evaluation, the outputs of multiple systems are compared, often against gold

standard inputs and outputs. The gold standard data should act as a representative sample

against which one or more hopefully representative metrics are measured. The degree of

representativeness is defined as how well it represents the task frame.

When a comparable system is not available, an additional — usually very simple system —

may be constructed as a baseline. In some cases, a baseline system does not even attempt to

achieve the task dictated by the frame but rather acts mainly as a floor to calibrate the chosen

metric(s) to the given data set. Another extreme possibility is to have a human attempt the

task and then measure the agreement to the gold standard. This would then give a ceiling on

a system’s performance on a given metric.

Due to the importance of comparative evaluation, the academic computational linguistics

community organises shared evaluations, in which a common frame and evaluation method,

including a choice of metrics and data set, is fixed ahead of time. These events have the imme-

diate benefit that we can directly compare several systems, which are documented in system

papers presented at the conference of the shared evaluation. They have the additional benefit

that they establish a standardised benchmark, which is an attractive target for developers of

future systems to include in their publications since it allows them to compare against at least

all the systems which were entered into the shared evaluation.

1.2.3 Metrics

An evaluation metric is intended to reflect how well a system performs within some frame.

Often, what dictates exactly how well a system performs in terms of the frame may be quite far

removed from the system itself, and measuring it may be expensive or otherwise undesirable.

12

For example, within the frame of the patient record MT system, we might actually want to

measure how many negative patient outcomes result from the use of the system. However,

this would be expensive and would not be ethical. Usually, we must instead accept some

surrogate designed to correlate with what we are truly interested in, and along with it some

imperfections.

One metric commonly used in MT, used here as an example of an imperfect metric, is Bi-

Lingual Evaluation Understudy (BLEU) (Papineni et al. 2002). We are given a sentence to

be scored, which has been machine translated from some source sentence as well as one or

more human produced reference translations of the same source sentence. BLEU is then de-

fined as the geometric mean of n-gram precisions3, with respect to the reference translations,

calculated with different sizes of n-grams from 1-grams to 4-grams, with a brevity penalty

for short translations:

BLEU = min(1,
output-length

reference-length
)(

4∏
i=1

precisioni)
1
4

where precisioni is the i-gram precision, that is the fraction of true positive i-grams over

the fraction of all guessed i-grams. An i-gram is a true positive when it matches any of the

reference translations. The brevity penalty is defined in terms of reference-length, which is

the length of the shortest reference translation.

An alternative would be to use human judgement of a machine translation. In this case,

humans may either rate translations with respect to the sentence in the source language or a

reference translation. Translations can be rated, for example on a five point scale, according

to adequacy, that is how understandable it is, and fluency, that is how good the use of language

is in terms of grammar and idiomatic word choice.

Why was BLEU created when we can use human judges? A readily apparent reason is that

blind human evaluation was too expensive. BLEU is used as a surrogate on the basis that

it was shown to correlate with human judgement. Not only is BLEU cheaper, but reference

translations can be reused by future systems to benchmark against. To do so with human

judges would require either re-rating the output of old systems or suffering the confounding

3. Precision is defined in Section 2.3.5.

13

effect of comparing scores across a different set of human judges. Following its introduc-

tion, BLEU became the standard measure in MT, overseeing the transition from Rule Based

Machine Translation (RBMT) to PBMT, many improvements in PBMT, and the subsequent

transition to Neural Machine Translation (NMT). However, the nature of BLEU gives many

pause. How can you score a translation by just comparing it to one or a few reference trans-

lations? The set of good translations of a sentence may be very large, and may include very

good translations dissimilar to the references. More practically, as Callison-Burch, Osborne,

and Koehn (2006) note, it does not always correlate with human judgement. When compared

with human judgements, BLEU systematically penalised RBMT versus PBMT.

While the advantages of BLEU come with a fair share of drawbacks, it nevertheless has

allowed people to conduct evaluations in small teams with limited resources. However, BLEU

may have come to the end of its usefulness. For example Wu et al. (2016) experiment with

a variant of their NMT system which is trained using an optimisation process specifically

tuned to the definition of BLEU and discover that while it increases BLEU, it decreases their

scores according to human annotators in comparison to their unmodified system. Increasing

their BLEU score made their system worse. That said, BLEU scores on standard benchmark

datasets are still being given4 in addition to human evaluators, as an extra evaluation which

can be conducted cheaply.

We might consider that the design of almost any evaluation will have to contend with some

set of trade offs. Järvinen (2012) formalises a very generalised trade off as the iso-epistemic

curve, noting that, particularly when attempting to answer research questions involving hu-

mans, we must trade off between rigour versus relevance. In this case, it may be easier to

get more rigorous results using an automatic metric, notably we have removed confounding

variables by using an evaluation technique which is completely repeatable. However, the

relevance of the results obtained this way can certainly be bought into question.

4. See for example Hassan et al. (2018).

14

1.2.4 Representative sampling

When we perform an evaluation metric based on some gold standard data, the choice of gold

standard becomes part of the choice of metric, and the same considerations about represen-

tativeness with regards to the frame need to be taken into account. We now introduce the

related notions of probability distribution and domain. Statistical learning theory treats all

data as being generated by a random process following some probability distribution. The

field of linguistics has long characterised different distributions of natural language text in

terms of domain. One domain of discourse could be for example talking about a patient’s

medical history. A coarser grained domain may be the genre of the text, for example, news

wire. At the coarsest level of domain, we have dialects and languages themselves.

When we train an Machine Learning (ML) based system on some data set, usually the best

case is that it will learn something about the distribution that data set comes from. If the

training data is from one or more domains, the resulting system will usually be to some extent

adapted to those domains. More broadly we may also have non-ML based systems which are

somehow adapted to some particular domain. It is quite common with ML evaluations, that

the gold standard will be from the same domain as the training data, since they are often

different sections of the same corpus, which may just be a single genre. Due to the domain

adaption property mentioned, this will usually show relatively good performance. However,

the gold standard data should be chosen to be a representation of the chosen frame rather

than out of convenience. If the gold standard’s distribution does not represent that of the

frame but does match the training data, the evaluation will dramatically overestimate the

performance, and may rank systems that show stronger domain adaptation properties above

those that generalise better and are thus more suitable for the frame.

Indeed, as mentioned, in many frames it is normal for a user to expect some kind of sensible

output for all sorts of inputs. Therefore when a system has been trained on data representing a

carefully chosen range of domains, it may still eventually encounter some out of domain text.

Thus for these frames, it may be important that some sort of out of domain performance is

given, perhaps in addition to in domain performance, since it can help to give a more realistic

expectation of a system’s performance in both favourable and unfavourable situations.

15

1.3 Structure

The structure of this thesis is as follows. Chapter 2 provides background and reviews related

work, as well as addressing RQ1: “How can WSD techniques be evaluated? How can they be

compared in terms of their approach? What are the main themes in previous WSD research?”

Then Chapters 3, 4, 5 and 6 proceed in a bottom up fashion. In each case, the foundations built

in the former chapters were required as infrastructure to implement the latter, summarised

now in reverse. Chapter 6 presents a reading assistant5 for learners of Finnish. To increase

the amount of material available to the reading assistant, and to reduce redundancy in said

material, Chapter 5 describes methods for aligning and clustering word senses from multiple

LKBs into a new, larger LKB. These two chapters address RQ4: “What are the issues with

presenting Finnish morphology and word definitions to Finnish learners? How do current

approaches fall short when used for this purpose? How can an approach towards addressing

these shortcomings be implemented?”

To improve the reading assistant so that it can offer the most relevant information, the assistant

should perform WSD. Chapter 4 describes the adaption, implementation and evaluation of

WSD algorithms for Finnish, addressing RQ2: “What steps are required to implement and

evaluate the chosen WSD techniques?” and RQ3: “Comparatively, how well do the chosen

WSD techniques work for the Finnish language?” To evaluate the WSD algorithms and to

implement supervised forms of WSD, sense tagged corpora were needed, and the process by

which these were obtained is given in Chapter 3, addressing RQ2. Finally, Chapter 7 finishes

with some concluding remarks and possibilities for future work.

5. See Section 2.4.3.

16

2 Background

This chapter lays some of the foundations needed for the rest of the thesis. Section 2.1 de-

fines some basic linguistic terms and their relationship to each other. Section 2.2 introduces

broad categories of lexical resources, those based on graphs and those based on vector spaces.

Section 2.3 builds on this to review Word Sense Disambiguation (WSD) techniques, some of

which are based on the resources introduced in Section 2.2. Section 2.2 provides foundational

background for Chapters 4 & 5, while Section 2.3 gives specific background for Chapter 4.

Finally Section 2.4 reviews some major ideas in Second Language Acquisition (SLA) the-

ory before moving onto cover the major approaches to Computer Aided Language Learning

(CALL) which are similar to or related to TheWhatNow?!. It serves as background for Chap-

ter 6.

2.1 Linguistic background & Finnish morphology

This section is based on Robertson (2016). In linguistics, morphology is the study of word

forms and word formation (Matthews 1991, p. 3). Within the field of morphology, there

are a number of different models corresponding to a variety of different types of analysis

which are performed for different purposes or reflect different views of language. There are

continuing fundamental debates in linguistics about how best to break down, abstract and

analyse language; whether there exist some natural, universal set of definitions and what they

might be (Aitchison, 2012, pp. 33-34; Lyons, 1968, pp. 196-197). However, for our purposes

the definitions of Matthews (2007), form a reasonable starting point:

• A morpheme is a minimal unit of grammar into which a sentence or a word within a

sentence can be divided. For example, in Finnish we could analyse “puhun” as made

up of the root morpheme “puhu” and the first person singular suffix morpheme “–n”.

• A word is the smallest of the units that make up a sentence and is marked as such in

writing. For our purposes, we take the definition of a word as that which is delimited

by whitespace or punctuation.

17

• A lexeme is a word considered as a lexical unit, in abstraction from the specific forms

it takes in specific constructions. One way of thinking of a lexeme is as being a set of

all inflections of a dictionary form of a word. The lexeme is identified by its dictionary

entry which consists of a lemma, also known as a headword, and a homonym ordinal.

Morphological parsing, morphological segmentation or morphological analysis is the task of

going from a word to a more structurally rich representation within the above framework. In

particular, we usually want to extract the lemma and a series of tags, describing the Part Of

Speech (POS) (e.g., verb) and a grammatical analysis of how the lexeme has been inflected.

In an agglutinative language like Finnish, in contrast to a fusional language like Latin, there

is a close relationship between the list of morphemes and the set of tags (Matthews 1991,

pp. 107-114). The list of all tags available for inclusion in an analysis and the rules for their

formatting form a data format called a tag set. In Finnish, for example, a tag could represent

the case (e.g., inessive “-ssa”) or the presence of an enclitic particle (e.g., interrogative “-ko”)

if it is present. Morphological generation is the opposite process: that of going from a lexeme

and some set of tags to a word form.

As well as inflection, morphological analysis might need to also consider processes of lexical

derivation1. This is when new lexemes, with new distinct meanings, are formed from old

ones. Here we consider two forms: morphological derivation and word compounding. Mor-

phological derivation is the process of a new lexeme being formed by affixing a morpheme

to an existing lexeme, possibly changing the POS in the process. A Finnish example is the

verb “ajaa” (en: to drive), and the agent morpheme “-ja” (Karlsson 2015, p. 275) forming

the agent noun ’‘ajaja” (en: driver). Derivational morphemes are described as productive

when they can be attached to more words of a particular POS, and result in a word which

is understandable and considered valid by a native speaker (Matthews 1991, p. 69). Word

compounding occurs when multiple words are attached to form new lexemes. In Finnish,

both types of lexical derivation happen in a mutually recursive manner and can mix with in-

flection. For example, given a compound word, each internal word can be inflected, and can

1. Also referred to as word formation.

18

have already undergone lexical derivation itself. Consider for example: praha:ssa=käy-mä-

ttöm-yys=kompleksi “complex about never having been to Prague”2.

Derivation is traditionally considered distinct from inflection: inflection is said to be a gram-

matical phenomenon, whereas derivation is said to occur within the lexicon. It should be

mentioned that the distinction is based on multiple criteria and may not always be entirely

clear cut. Matthews (1991, p. 43) gives a number of edge cases and arguments against the

distinction, gradually bringing in more criteria to deal with the various edge cases. Given

the distinction is made on not entirely solid ground, alternative models have been formulated,

such as Booij (1996), who presents a tripartite model. An example of an edge case is the

English word “sands”, which has the sense desert, and thus here “-s” behaves more like a

derivational morpheme than an inflectional morpheme. In applied linguistics, the distinction

can be made on a pragmatic basis: we shouldn’t expect to find inflected forms in a normal

dictionary3, but we would expect to find at least the most common derived forms.

2.2 Lexical resources: Lexical Knowledge Bases and embeddings

To successfully perform WSD, we must have some kind of machine readable representation

of our word senses. We may also choose to make representations of surface forms or lemmas.

In general, machine knowledge representations can be roughly divided into symbolic “Good

old fashioned Artificial Intelligence (AI)” representations, which tend to be (mostly) manually

created on the one hand, and on the other hand, continuous or fuzzy representations, which

tend to be (mostly) derived from unstructured data which was originally created for a purpose

other than creating a lexical resource. This rough division is not an exact partition of the

possibilities, with hybridisation of the approaches being possible.

Within the former category, a common representation is that of an edge labelled directed

graph, referred to as a knowledge base. This representation is also sometimes referred to as

an ontology, especially when it is coupled with inference rules (in the style of a deductive or

active database) and consistency checking. In this representation, there is some set of rela-

2. “:” indicates inflection, “-” indicates morphological derivation, and “=” indicates compounding. Example
reproduced from Karlsson (2015).

3. For Finnish, however, we might expect to find their inflection class.

19

Feline

Dog

Canine

Cat

Domesticated Animal

Animal

su
bc

la
ss

sub
spe

cie
s

subclas
s

subspecies

subclasssu
bc

las
s

subclass

Figure 2: Edge labelled graph representation of the difference and similarities between the
concepts of “dog” and “cat”.

Table 1: Table showing a labelled data matrix D representing the differences and similarities
between the concepts of “dog” and “cat” in terms of cooccurring attributes.

Entity Barks Meows Can stroke Likes walks Likes string Lives in wild
Cat 0 1 1 0 1 0
Dog 1 0 1 1 0 0

tions that label the directed edges which can connect nodes, typically considered as entities.

Usually, entities may also have data attached as named properties, such as a string or number.

Within the latter category, a common representation is an embedding of concepts as vectors

in a high dimensional vector space. The dimensions may be unlabelled and could represent

latent or hidden features, or else the embedding has other desirable features, such as placing

similar concepts close to one another.

Figure 2 and Table 1 give an example of how the two representations might capture the simi-

larities and differences between the concepts “dog” and “cat”. In the general case, the cooc-

curring attributes introduced in Table 1 could be any type of thing which cooccurs with the

entity. For example, it could be that we make observations of different cats and dogs and

count how many times the different attributes apply. In the context of Natural Language Pro-

cessing (NLP), the observations can be, for example, counts of other surface forms or lemmas

within a fixed-size context window of a token referring to the entity. Notably, these types of

cooccurences can be collected automatically without human intervention.

20

2.2.1 Lexical Knowledge Bases

Princeton WordNet (PWN) (Fellbaum 1998) is a Lexical Knowledge Base (LKB) structured

around sets of synonyms, referred to as synsets. Each synset contains many lemmas. The

primary relationships are between synsets. Synsets can be related through links such as hy-

pernymy, an is-a type relationship and metonymy, a part-whole relationship. There are also

links between lemmas along morpho-semantic lines. So the sense of the verb “drive” which

means “to drive a car” is linked to “driver” as in “the driver of the car”, but the sense of

“drive” as-in “to drive one’s self mad” is not.

There have been WordNets created for languages other than English. A common approach is

to simply add extra lemmas in the new language to the existing synsets in PWN. FinnWordNet

(FiWN) (Lindén and Carlson 2010), the Finnish WordNet, takes a slightly different approach

and aligns at the lemma level. SALDO (Borin, Forsberg, and Lönngren 2013), a Swedish

LKB, typifies an even more divergent approach, where first an LKB is created without regard

to PWN’s structure and organising principles, and then as an additional step, an alignment

between its word senses and PWN synsets is created. Bond and Paik (2012) created Open-

MultiWordNet by finding WordNets under permissive licenses, including FiWN & SALDO,

and converting them to a common format.

Apart from WordNet style approaches, another common approach is to create an LKB fo-

cussed around predicate-argument structures. A typical example would be a subject-verb-

object sentence where the verb specifies and event and the subject and object specify partici-

pants “Freddy hit me”, which would have the logical predicate-argument structure “hit1(freddy,

me)” with hit1 being defined as taking two arguments: the first of type agent: an active par-

ticipant, and the second of type patient: a passive participant. This family of approaches in-

clude FrameNet, (Baker, Fillmore, and Lowe 1998) VerbNet (Schuler 2006) and PropBank,

(Palmer, Gildea, and Kingsbury 2005) which is explored further here. The verb senses in

PropBank are distinguished as frames or templates of a predicate−argument structure. The

underlying assumption is that the basic meaning of the verb, or predicate is determined chiefly

by the role its arguments have in relation to it. Here, assuming a predicate refers to an event,

its arguments tend to roughly be those other parts of the sentence that specify the “whats” and

“hows” in relation to it. The resulting verb senses are more coarse grained than WordNet.

21

Finnish PropBank (FiPB) (Haverinen et al. 2015) is an LKB based on the original English

PropBank (Palmer, Gildea, and Kingsbury 2005). Predicate frames are necessarily quite

particular to a language, and thus creating a PropBank for a new language is usually not

simply or only a matter of adding new labels in the new language to existing frames. That

said, in practice, many frames in FiPB are modelled after those in English PropBank.

Predicate Matrix version 1.3 (Lacalle et al. 2016) builds on top of other resources to create an

extensive mapping between, among other LKBs, English PropBank and PWN. No evaluation

was performed for Predicate Matrix 1.3, but Lacalle et al. (2016) estimated the precision of

the WordNet-PropBank mapping in Predicate Matrix 1.2 as 71.3%.

2.2.2 Embeddings

Embeddings, or vector space models, represent concepts in a high dimensional space. Early

work in this area started in the late 50s and early 60s in the application area of information

retrieval and many of the ideas from this time were implemented in the SMART document

retrieval system project, described in Salton (1971). These early term-document vector space

models were sparse, with each element in a document’s vector representing either a single

term or stem, or to combat data sparsity a manually created grouping of words representing

a synonym set or topic. Two techniques of note in the SMART system that are still in use

is the use of cosine similarity between document vectors (Salton 1971, p. 5) and automatic

thesaurus construction by correlating cooccurrences of words in documents (Salton 1971,

pp. 133-134).

In this section, we cover three categories of incrementally more complex embeddings, on the

basis that it is useful to cover simpler models since some degree of intuition about the more

complex models can be gained by extrapolating from them.

2.2.2.1 Word embeddings from count data and dimensionality reduction

In vector space models of word semantics, the semantics of a word are derived solely the

distribution of its occurrences in different lexical contexts, equivalently its collocations with

other words. Prototypically, they don’t make use of any extrinsic information such word-

22

Table 2: Table showing a labelled latent feature matrix, F . It is one part of a factoring of
Table 1.

Lat. feat. Barks Meows Can stroke Likes walks Likes string Lives in wild
More cat
like, less dog
like

−1 1 0 −1 1 0

Domesti-
cated animal
like

0 0 1 0 0 −1

Table 3: Table showing a labelled entity matrix E with the same entities as Table 1 defined
in terms of the latent feature matrix given in Table 2.

Entity More cat like, less dog like Domesticated animal like
Cat 1 1
Dog −1 1

definition dictionaries or dictionaries containing semantic links between words such as Word-

Net. The linguistic theory underlying the relation between distributional cooccurrence and

word meaning is called the distributional hypothesis, summarised pithily by Firth (1957) as

“You shall know a word by the company it keeps!”.

We now return to the example of Table 1 to see how it can be distilled into a more compact

representation using dimensionality reduction. Tables 1, 2 & 3, showing matrices D, F & E,

respectively are related by a simple linear equation:

D = F ∗ E

In general, for any D, we can always obtain some F and E by applying single value decom-

position. This approach can be refined in several ways4

Now we have covered an illustrative example which gives some intuition of the benefits of this

type of representation. However, to cover embeddings in the general case, we must relax our

definition. In general, a lexical embedding is a vector space in which each lexical element is

associated with a vector which somehow represents its meaning. Most typically this is derived

or learnt from a corpus. The representation can be thought of as compressing information

4. See for example Jurafsky and Martin (2019b).

23

about many local contexts of the lexical element. In principle, it follows that some information

about all of the local contexts of a lexical element could be recovered from the resulting vector.

Moving beyond the our example, we not always be able to assume that our embeddings actu-

ally contain latent features which explain our data according to our intuitions, but may obtain

latent features which do explain real phenomena in the distribution underlying the sampled

data but which do not have a straight forward intuitive interpretation, or we may recover fea-

tures which do not represent the underlying distribution but instead noise as a result of the

sampling process. Moreover, since they are obtained automatically, the features we recover

are unlabelled. However, despite these caveats, we may still find that similarity measures be-

tween some pair of vectors ei and ej will meaningfully correspond to the similarity between

the entities, which is the main property of embeddings used in this thesis.

2.2.2.2 Learnt word embeddings

Recent work in word embeddings is based on prediction rather than counting. Notable for its

simplicity and efficiency is one of the two algorithms included in the word2vec (Mikolov et

al. 2013) package: skip-gram with negative sampling. This technique learns two vectors for

each word form: a target embedding and a context embedding. Learning takes place across

many context windows, each consisting of a target word, and for example the two words to

its left and right. For each (target word, context word) pair, some number of negative sample

are taken. At each learning step, the target and context vectors are modified so as to move the

positive context vector and target vectors closer together while moving the negative context

vectors and target vector further apart.

This set up typifies the learning of word vectors. The representations were learnt from a

corpus based on an objective which captures properties of a local context. To see that they

really do capture these properties, we can imagine recovering local context properties of the

corpus using only the embedding. With the resulting embeddings we could, for example, use

a particular word’s target vector to find words likely to occur its context by querying the set

of context vectors for nearby vectors.

24

2.2.2.3 Language modelling and context sensitive word embeddings

We now turn to a family of tasks referred to as language modelling. The archetypal language

modelling task is to try and predict the next word given some limited window of context. This

type of task has historically been used for text generation: for example generating grammat-

ical nonsense or for improving the fluency of Phrase Based (statistical) Machine Translation

(PBMT) systems. Language modelling is a form of self-supervision. In contrast to a typi-

cal supervised setting where some input is mapped to some output, and the mapping must

be reproduced, or an unsupervised setting where different instances from an input space are

compared using metrics such as cosine distance, in self-supervision setting, some portion of

what would typically be the input is deleted, and treated as an output to be predicted from the

remaining part of the input.

Melamud, Goldberger, and Dagan (2016) pioneered the use of using gap based language mod-

elling to obtained a useful representation for other tasks with Context2Vec. Context2Vec first

makes contexts from sentences by replacing each token with a placeholder. A bidirectional

Long Short-Term Memory (LSTM) Recursive Neural Network (RNN) is then trained to pre-

dict the missing word from the context. This is a neural network that processes each token

twice, once from left-to-right and again from right-to-left and contains a memory like ele-

ment to capture long term dependencies. The outputs from the forward and backwards pass

are combined and used to predict the missing token. The resulting vector space includes both

contexts and word embeddings in the same space, with words ending up near contexts in

which they are likely to appear.

ELMo (Peters et al. 2018) also trains a bidirectional LSTM (Hochreiter and Schmidhuber

1997) RNN, but using a slightly different language modelling task: rather than going from

contexts to deleted tokens, in both the forward pass and backwards passes the next token is

predicted. The results of both passes are combined in the learning objective.

BERT (Devlin et al. 2019) learns to perform another type of language modelling task called

masked language modelling. Each input sentence has some percentage of its tokens masked,

and these are predicted by the model. An input can be reused many times with different

25

masks. BERT then used a transformer model (Vaswani et al. 2017) rather than an LSTM,

which is based on stacked layers of self-attention.

All of these models give us some possibility to represent either bare-contexts, (in the case

of Context2Vec) or words in context (in the case of ELMo and BERT) as vectors. These

contextual vectors may either be used as is, or feature selection may be used, essentially

learning which parts of the vector are useful to a particular task or by fine-tuning: retraining

part or whole of the neural network, or by combining these approaches. These approaches

are compared by Peters, Ruder, and Smith (2019).

2.3 WSD Techniques

Some of the major approaches to WSD are laid out in Figure 3 (Jurafsky and Martin 2019a).

Approaches towards the left require less structured or annotated data than those towards the

right. In a Machine Learning (ML) context, it’s common to talk of unsupervised and su-

pervised techniques (Russell and Norvig 2010, p. 694-695). Supervised techniques typically

have some labelled data and use this to train a model, which can label further data. Unsu-

pervised techniques, on the other hand, associate data points together in a fixed or variable

number of clusters. However, in WSD the terms are applied inconsistently, with unsupervised

sometimes referring only to induction,5 but other times referring additionally to knowledge

based techniques.6 For this reason, I will avoid referring to unsupervised WSD.

An in depth review of WSD techniques is given in Navigli (2009), while Jurafsky and Martin

(2019a) provide a pedagogical overview of the area. This background section proceeds in

ascending order of the amount of data required, from induction in Section 2.3.1 and knowl-

edge based techniques in sections 2.3.2 & 2.3.3 at the low end, up to supervised techniques

in Section 2.3.4 at the high end. Finally, Section 2.3.5 describes how different systems are

evaluated.
5. See for example Jurafsky and Martin (2019a, Section 7).
6. See for example Navigli and Lapata (2010).

26

Bootstrapping**

In
du

cti
on

*

Gl
os

s b
as

ed

Gr
ap

h b
as

ed

Su
pe

rv
ise

d

Data requirement

Knowledge based

AKA semi-supervised**
AKA unsupervised*

Figure 3: Diagram showing the major families of techniques for WSD. Gloss and graph based
techniques are collectively known as knowledge based techniques. Bootstrapping is posi-
tioned at the same place on the x-axis as the knowledge based techniques.

2.3.1 Word Sense Induction

Word Sense Induction (WSI) techniques require the least data, abandoning even the need for a

sense inventory. Rather, these techniques discover clusters of uses which share some common

context. WSI is part of a larger field called linguistic structure discovery,7 where language is

analysed “from scratch”, that is to say, the system is only allowed access to an unannotated

corpora. A downside of this approach is that the resulting clusters are not associated with a

dictionary definition, but rather only with a set of usages. However, recent work has focused

on increasing the interpretability of the clusters (Panchenko et al. 2017).

Schütze (1998) produced the seminal work within this category. In this algorithm, each usage

of a particular word is associated with a context vector made up of some words selected from

the same paragraph or sentence. Clustering is then performed on these vectors to group usages

into senses. Disambiguation can be performed by nearest neighbour classification. In this

work, three main parameters were considered: which words were included in the context;

whether the context vectors were subject to dimensionality reduction8; and the number of

clusters.

Véronis (2004) addressed two shortcomings of Schütze’s work. Firstly, that all words are

assumed to have a fixed number of senses given as a parameter to the algorithm. Secondly,

that each sense is assumed to have approximately the same frequency, which is not the case

in general since many words exhibit a skewed sense distribution. For each word to be dis-

7. See for example Biemann (2011).
8. For an overview of dimensionality reduction techniques, see Maaten, Postma, and Herik (2007).

27

ambiguated, this technique forms a weighted graph of words and word cooccurrences within

the same paragraph. A special-purpose heuristic is used to identify high density components,

which are assumed to correspond to word senses.

A recent thread of work in this area is unifying WSI with the improvements to word vectors

made by word2vec (Mikolov et al. 2013) and GloVe (Pennington, Socher, and Manning 2014).

For example, Pelevina et al. (2016) process pre-existing word vectors to produce sense specific

vectors. For each candidate word to be disambiguated, an ego-network is formed. It contains

edges between the candidate word and words nearby in the original vector space, as well

as second order edges between any given pair of these related words. This graph is then

clustered using Chinese whispers label propagation (Biemann 2006). The final sense specific

word vectors are obtained by averaging the word vectors within each cluster.

2.3.2 Gloss based WSD

The original gloss based WSD algorithm is due to Lesk (1986). This algorithm jointly as-

signs senses to all words in a sentence, so as to maximise the sum of the pair-wise overlapping

words between their glosses. In general, calculating this without resorting to heuristics and

approximations can be computationally intractable, and some subsequent approaches use a

simplified version (Kilgarriff and Rosenzweig 2000b), where each word is considered indi-

vidually, and a sense is chosen such that the overlap between its gloss and the other words in

the sentence is maximised. Both methods can be thought of in a spatial way as working in a

metric space with Jaccard (1926) distance on a Bag Of Words (BOW) representation. In this

case, simplified Lesk can be described as given the BOW of a word’s context, selecting the

sense with nearest neighbour (Peterson 2009) based on the BOW representation of its gloss.

In this setting, the original Lesk seeks a collection of sense assignments for a sentence so

as to minimise the sum of the distances between all pairs of all senses’ gloss BOWs. Since

simplified Lesk has become the preferred approach, it is often simply referred to as Lesk.

A big problem these approaches face is data sparsity. Often a gloss produces no interesting

overlap at all. These problems can be mitigated by expanding the context and/or gloss, or by

representing words by dense word vectors (Jurafsky and Martin 2019b). An example of the

28

first approach is Banerjee and Ted Pedersen (2003) expand the gloss of each term with the

glosses of related senses according to a computer thesaurus. Recent work takes the second

approach using dense word vectors which causes similar words to end up near to each other

in a vector space. In Basile, Caputo, and Semeraro (2014) each word is represented by a word

vector, and the words in the context and gloss are each averaged into two vectors. This type of

representation is sometimes referred to as Average/Aggregate of Word Embeddings (AWE).

WSD then operates as usual, by choosing the nearest neighbour.

2.3.3 Graph based WSD

Graph based WSD algorithms disambiguate by using a computer thesaurus, a type of LKB

which includes links between word senses, such as synonymy, hypernymy (an is-a relation-

ship) and metronymy (a part-whole relationship) forming a graph. WordNet (Miller 1995),

and more recently BabelNet (Navigli and Ponzetto 2012), which is a multilingual superset

of WordNet are commonly used LKBs for performing this type of WSD. An early piece of

work in this area was conducted by Quillian (1969), who used the path length in a graph of

this variety as a measure of semantic distance. The idea here is that is to say word senses

which are close in the graph are considered related, a key idea underlying graph based WSD

algorithms.

There are multiple ways to use this intuition for WSD. Navigli and Lapata (2010) present a

systematic comparison where two varieties of graph based WSD are considered. In the variety

based on a local connectivity measure, a graph is formed by considering the subgraph of the

LKB containing all senses of all words in a sentence. Next, for each word, the sense with

maximum local connectivity is chosen. Measures tested include a sense node’s out-degree,

that is the number of edges leaving a node, and PageRank (Page et al. 1999), the measure

originally used by Google to determine a web page’s important in a link graph. In the variety

based on a global connectivity measure, a graph is made for each possible combination of

word senses in a sentence, and the sense combination with the highest measure of the overall

graph connectivity is chosen. Note that this may be become intractable without resorting to

approximations or heuristics. An example of this type of measure is edge density, which is

29

the fraction of edges in the graph over the number of edges in a complete (full connected)

graph.

Moro, Raganato, and Navigli (2014) first preprocess the LKB to produce a semantic signa-

ture for each node by performing random walk with restart and including nodes visited over

a threshold number of times. Because this algorithm also performs named entity tagging, a

situation where multiple surface forms can refer to a single sense e.g., “IBM” and “Big Blue”,

another graph is constructed with all surface form, sense combinations as nodes, linked edges

according to each sense’s semantic signature. The rest of the algorithm proceeds as a combi-

nation of the local and global varieties of graph based WSD algorithms. The graph is pruned

to find a subgraph with high global connectivity according to the measure of average degree.

Nodes with the highest local connectivity score, which includes degree as a factor, are then

chosen.

2.3.4 Supervised

The typical approach for applying supervised WSD is to train individual models for each

word. Each model knows only have to disambiguate this single word. This approach is some-

times referred to as the word experts approach, as a reference to older systems where systems

of rules (expert systems) were written for each word to determine a sense.

The major caveat with this approach is we must face Heaps’ law at the word sense level (Heaps

1978, p. 208, sec. 7.5). Heaps’ law states that the size of the vocabulary grows in a concave

power law with the number of tokens in the corpus. Restated, increasing the size of our corpus

has diminishing returns in terms of increasing the coverage of the vocabulary. This law is a

consequence of the skewed distribution of words. However, word senses also tend to exhibit

heavily skewed distribution. Thus, even for very common polysemous words, it may become

difficult to get a good coverage of all senses. This situation has also been referred to as the

data-acquisition bottleneck.

As mentioned in Section 2.3.2, Simplified Lesk is, in fact, a nearest neighbour classifier, but

using data from the word definitions rather than labelled examples. Analogous to this we can

perform nearest neighbour classification with labelled examples. The analogy of Simplified

30

Lesk would then be a BOW classifier based on Jacquard distance. The next step would be

an AWE and cosine distance based classifier. Beyond this, there is the possibility of taking

account of whole contexts, as with Context2Vec, summarised in Section 2.2.2.3. Melamud,

Goldberger, and Dagan (2016) found that using a nearest neighbour classifier with their con-

text embeddings outperforms AWE to the point where it reaches comparable performance

with the state of the art WSD approaches they compare with.

Zhong and Ng (2010) introduce the popular WSD program ItMakesSense based on Support

Vector Machines (SVMs). ItMakeSense which has subsequently both become a baseline

for supervised WSD and also been extended due to its modular architecture. Specifically

different selections of features, which together make up the vector fed to the classifier can be

chosen. One type of feature there has been recent interest in is word embeddings. Iacobacci,

Pilehvar, and Navigli (2016) evaluated the effect of adding different word embedding features

to ItMakesSense.

2.3.5 Evaluation

For WSD, the measures of precision, recall and F1-measure are typically used (Manning,

Raghavan, Schütze, et al. 2008, sec 8.3). Consider a label produced by the system which

agrees with the ground truth to be a true positive, and denote the number of occurrences

thereof as tp. Consider also a label produced by the system but not in the ground truth as a

false positive, with count fp, and vice versa a label in the ground truth not produced by the

system as a false negative, with count fn. Precision and recall can now be defined as:

precision =
tp

tp+ fp
recall =

tp

tp+ fn

F1-measure is then the harmonic mean of these two measures:

F1 =
1

1
precision

+ 1
recall

31

One of the most commonly used metrics in classification is accuracy:

accuracy =
tp + tn

tp + tn + fp + fn

The F1-measure was developed for evaluating systems in the field of information retrieval.

The reason accuracy was not used in this context is that in a typical case there will be a large

number of false positives: irrelevant documents which are not retrieved. This creates an

unbalanced situation in which a system which returns no documents would get a quite high

accuracy due to the tn term in the numerator. A similar situation is in play with WSD, where

there is typically a large number of irrelevant senses that can be assigned to each token, hence

F1-measure is used.

Due to a lack of availability of gold standard corpora to compare against, early evaluation

of WSD systems consisted mainly of qualitative examples of how the system performed on

a few, hopefully indicative, examples. In the first quantitative evaluations, a few ambiguous

words were chosen, and a human annotator would disambiguate only these words in a corpus

so that the accuracy of the system could be measured. Gale, Church, and Yarowsky (1992)

note the drawbacks of this approach: “This technique is not without its problems, perhaps the

worst of which is that the sample may not be very representative of the general vocabulary”.

Gale, Church, and Yarowsky (1992) also note the difficulties of comparing results with pre-

vious work when there are so many potential confounding variables to control: “One feels

uncomfortable about comparing results across experiments, since there are many potentially

important differences including different corpora, different words, different judges, differ-

ences in treatment of precision and recall, and differences in the use of tools such as parsers

and POS taggers, etc.”. In response to these problems, the academic community began to

organise a series of shared evaluations for WSD. The first such workshop, SENSEVAL, was

organised in 1998 (Kilgarriff and Palmer 2000). In the shared evaluation model, research

groups or other interested parties evaluate their WSD systems against the same ground truth,

a corpus where all words have been manually labelled with the correct sense. Since the evalu-

ation step is shared, confounding variables can be controlled, and more effort can be invested

32

in producing a high quality ground truth. After the evaluation, the results and descriptions of

competing systems are disseminated.

As well as comparing the systems against each other, they are also compared against a se-

ries of baselines. Many of the knowledge based techniques have difficulty beating a simple

baseline that assigns each word its Most Frequent Sense (MFS). For example, in SemEval9

2015 task 13 (Moro and Navigli 2015) competing systems had to disambiguate a multilingual

corpus using the BabelNet sense inventory. For English, no system managed to beat the MFS

baseline. For Spanish and Italian, however, a PageRank based local connectivity measure

graph based WSD system performed best in terms of F1-measure (Manion 2015).

Raganato, Camacho-Collados, and Navigli (2017) recently performed an independent sys-

tematic comparison where they harmonised evaluation data from previous SENSEVAL and

SemEval WSD tasks into a common format. This included, for example, updating them all

to use the newest version of WordNet as a sense inventory. This allowed fair comparisons

both between systems and different evaluation ground truths. For all previous SENSEVAL

and SemEval evaluation ground truths, among the knowledge based systems evaluated, one

of three systems performed best: the dense vector gloss based system of Basile, Caputo, and

Semeraro (2014); the Babelfy graph based system of Moro, Raganato, and Navigli (2014);

or the MFS baseline.

2.4 SLA and CALL

In SLA, the seminal work of S. D. Krashen (1982) puts forward five hypotheses about how

language is acquired. Most famous is the input hypothesis, which states that language is ac-

quired when learners comprehend input just above their current level. This is also referred

to as the “i+1” hypothesis, where the learner follows an inductive process of acquiring “i+1”

comprehensible input. The acquisition-learning distinction and monitor hypotheses essen-

tially state that language acquisition is an unconscious act separate from conscious learning.

The former occurs only through the inductive process comprehending i+1 input. The later

is useful in so far as it helps the former, mainly via self-correction, but can also be harm-

9. Starting with SemEval-2007, the SENSEVAL workshops were renamed to SemEval to reflect a broadening
of the scope.

33

ful, causing overcorrection. The hypotheses are the theoretical basis of Krashen’s natural

approach, (Krashen and Terrell 1998) which includes the suggestion that authentic texts of

interest to the learner should be used for language learning.

More recent theories of SLA, have provided some evidence that input alone is not always suf-

ficient for older language learners to gain high precision of all grammatical features (Light-

bown and Spada 2013, pp. 168–175). Key to this is the idea that attention is required for

the new linguistic knowledge to enter the memory, formulated in the noticing hypothesis by

Schmidt (1990)10. The noticing hypothesis does not state that learners should be given ad-

ditional rules (which according to Krashen are only useful to the monitor). Rather, that if a

learner does not pay attention to certain features in a text, they may not acquire them. One

possible interpretation is that older language learners tend to have more selective attention

than younger learners.

The noticing hypothesis can be interpreted on both the micro level, for example noticing

which inflection a word is in in a particular context, and on the macro level, for example,

paying close attention to a text at all. The former suggests that when certain features have

not been acquired, we may need to bring them to the learner’s attention. The latter ties into

a more general point that learner’s input should be something they think is worthy of their

attention, for example, a text relevant to one of their interest, or material they have to read

to complete a task, such as reading tax regulations for completing a tax return. S. Krashen

(1989) refer to reading a wide variety of texts in the L2 language as extensive reading, but this

method has also been referred to as free reading to emphasise the aspect of learner freedom.

In an attempt to apply this, Sharwood Smith (1993) suggests input enhancement. It is sug-

gested that instructors should modify natural texts to draw attention to salient features such

as POSs or certain grammatical morphemes. If we wish to allow learners to direct their own

choice of texts, however, this input enhancement should be automatically generated as and

when it is needed by computer software.

This leads us to the related but distinct notion of electronic reading assistants. In contrast to

input enhancement, reading assistants are focussed on helping readers obtain the meaning of

10. This theory at least partially contracts Krashen’s ideas, and has a fair share of vocal detractors, including
Truscott (1998).

34

the text rather than helping them acquire particular largely grammatical knowledge which may

not be strictly necessary for understanding. If such systems ultimately assist comprehension,

they could potentially transform i+2 input into i+1 input.

Another related notation is that of Data-Driven Language Learning (DLL), a term coined by

Tim Johns. The modern process for authoring dictionaries and language learning materials

makes extensive use of data derived from corpora. This includes word frequency data as well

as concordances: long lists of words surrounded by context words. DDL “attempt[s] to cut

out the middleman as far as possible and to give the learner direct access to the data“ (Boulton

2009, quoting Tim Johns).

Meurers et al. (2010) suggests that software which produces enhanced input should be called

ATICALL (Authentic Text Intelligent Computer Aided Language Learning) systems. Related

to this are reading support tools, which offer access to some reference resource such as a

dictionary, alongside the text. The rest of this section reviews a few of these systems. Some

of these systems contain other CALL elements such as exercise generation, but this is not

covered here.

2.4.1 Concordance and DDL based approaches

The Sketch Engine (Kilgarriff et al. 2014) is probably the most prominent commercial system

of this type. While the main product is primarily marketed at lexicographers and research

linguists, Sketch Engine for Language Learners (SKELL)11 (Kilgarriff et al. 2015) is targeted

directly towards learners, in the tradition of DLL.

The Flax interactive language learning system12 (Fitzgerald, Wu, and Marín 2015) can display

collocations based on different collections of corpora. The collections include those chosen

by the authors, like the British National Corpus, as a section where users can upload new

content. The system can also automatically extract synonyms based on collocations.

There are various approaches to extracting collocations from corpora. Most systems try to

distinguish between different types of constructions e.g., when looking at collocations of

11. Accessible at https://skell.sketchengine.co.uk/.
12. Accessible at http://flax.nzdl.org/greenstone3/flax.

35

https://skell.sketchengine.co.uk/
http://flax.nzdl.org/greenstone3/flax

“say” we might like to distinguish between subjects e.g., “officials” and objects e.g., “noth-

ing”. Bhalla and Klimcikova (2019) gives an overview of the different approaches, which

include regular expression style pattern matching on POS tagged text and on parse trees.

Collocations which are particularly difficult for language learners can be extracted by refer-

ring to parallel corpora. Moirón and Tiedemann (2006) extracted idioms, that is groups of

words with non-compositional meanings, by extracting candidates of three words using pat-

terns in dependency trees and measuring when they are aligned to a single word with high

translation entropy, indicating that one word maps more or less uniformly to multiple. Graën

and Schneider (2017) predicted the most likely errors a native L1 learner of L2 will make for

particular verb preposition combinations (e.g., “suffer from”) by using frequency information

on a word aligned corpus to rank the possible prepositions after translation from L2 to L1 and

back to L2.

2.4.2 Enhanced input approaches

As well as showing concordances, Flax (Fitzgerald, Wu, and Marín 2015) also provides tools

for enhanced input. It can highlight particular POSs, groups of words by frequency and topic

specific words.

Zilio, Wilkens, and Fairon (2017) introduce the Smart and Intelligent Language Learning En-

vironment (SMILLE)13. SMILLE works by utilising a web crawler and presenting a modified

version of the fetched web page to the language learner. It can highlight different grammati-

cal structures, grouped by their Common European Framework of Reference for Languages

(CEFR) level.

WERTi14 (Working with English Real Texts interactively) (Meurers et al. 2010) has a similar

architecture in that it relies on crawling web pages. It can highlight POSs as well as different

grammatical structures. It can also display several annotations simultaneously. VIEW15 (Vi-

13. This system is not currently publicly accessible, It is being developed commercially with Altissia and is
indented to be made available to Erasmus+ exchange students at https://erasmusplusols.eu/.

14. Source code available at https://github.com/adimit/werti.
15. Available at http://sifnos.sfs.uni-tuebingen.de/VIEW/.

36

https://erasmusplusols.eu/
https://github.com/adimit/werti
http://sifnos.sfs.uni-tuebingen.de/VIEW/

sual Input Enhancement for the Web) Reynolds, Schaf, and Meurers (2014) is the successor

of WERTi, and is distributed as a browser extension.

2.4.3 Reading assistants

SMILLE (Zilio, Wilkens, and Fairon 2017) also acts as a reading assistant. It can provide

word definitions based on a user click from the freely available WordNet and the commercial

Merriam-Webster dictionaries. It can also show grammar reference information about the

user selected area when a construction from its database is recognised.

Nerbonne, Dokter, and Smit (1998) presents GLOSSER, a system for Dutch learners of

French. Both online16 and desktop versions of this program were developed, but only the

desktop version could work with reader selected texts. The authors noted the potential of

WSD for this type of system and implemented it such that words in manually chosen, unam-

biguous fixed phrases such as guerre mondiale “world war” are given the appropriate word

sense (this is a low recall, rule based WSD system).

16. Accessible at http://www.let.rug.nl/glosser/Glosser/.

37

http://www.let.rug.nl/glosser/Glosser/

3 Automatically constructing a sense tagged corpus

Both the training of supervised Word Sense Disambiguation (WSD) algorithms and the eval-

uation of any WSD algorithm requires a sense annotated corpus. The manual construction

of sense annotated corpora requires time and language specific expertise. This is sometimes

referred to as the knowledge acquisition bottleneck.

To avoid this manual work, some researchers have attempted to automatically generate sense

tagged corpora by reusing existing knowledge in different ways. Pasini and Camacho-Collados

(2018) give a recent overview of sense tagged corpora including ones generated using these

techniques. The existing knowledge can take the form of apriori knowledge about a text, such

as knowing that word definitions are likely to refer to the same sense that they are describing

or that a Wiktionary link refers to the sense it links to.

Another approach is to take advantage of the differences in word senses between different

languages. An ambiguous word in one language may be unambiguous in another. Given

two ambiguous words in two languages referring to the same thing, it may be that there is

only one possible unambiguous interpretation, or at least that there is less ambiguity left after

considering both languages together. Taghipour and Ng (2015) introduce OMSTI, a corpus

based on a technique introduced by Chan and Ng (2005) where English words are tagged with

a WordNet sense based on word aligned Mandarin Chinese words.

Mandarin Chinese is used as a disambiguating language for English because it is assumed

that corresponding English and Mandarin words have different etymologies and so may have

picked up different sets of senses, resulting in the confusion classs1 of two tokens referring

to a concept being small (ideally just one sense).

Other techniques use knowledge based WSD to generate a sense tagged corpus. Knowledge

based WSD can perform poorly in some cases, so to make this work, something else needs

to be added. Usually, the best algorithms provide reasonably reliable confidence scores, so

to improve the precision of the resulting corpus filtering can be applied to only keep those

annotations with some minimum confidence score (Pasini and Navigli 2017).

1. In this case the confusion class is the set of word senses a token can have.

38

Finally, EuroSense (Bovi et al. 2017) is a multilingual sense tagged corpus. It is constructed

using the EuroParl multilingual corpus. Words in European languages are more likely to

share a confusion class, since many of them have the same etymology, and thus this may

seem to be poor material for disambiguation. EuroSense sidesteps this issue in two ways.

First, it considers n-way parallel sentences rather than just sentence pairs, meaning if just one

of the n languages has a different confusion class, we can disambiguate. Secondly, the actual

disambiguation is based upon the Babelfy (Moro, Raganato, and Navigli 2014) graph based

WSD algorithm, which can take account of all words in the sentence. An extensive review

revealed this as the only publicly available sense tagged corpus of Finnish.

As part of this thesis, a second sense tagged corpus is constructed using a method similar to

OMSTI. The corpus is induced from Mandarin-Finnish parallel texts. It is argued here that

while this is not necessarily the best possible pair to choose, it is a reasonably good pair which

trades off the following factors:

• The level of mutual disambiguation the pair provides.

• The amount of parallel text available for the pair.

• The availability of language resources for the second language. The language must

have at least one WordNet with reasonable coverage.

Similar to Mandarin-English, this pair is hoped to provide a high level of mutual disam-

biguation. Knowing that Finnish is part of the Uralic language group, distinct from the Indo-

European language group which contains most other European languages, the question might

arise: why not use a European language? For example, why not use English-Finnish, since

this pair provides a very well resourced second language where a lot of parallel text is avail-

able. The answer is that it is unlikely to provide the level of mutual disambiguation which

may be assumed based upon the difference in language families.

Häkkinen (1992) looks at the etymology of Finnish words by selecting 1888 core common

lemmas and reducing them to 844 root stems by discarding words resulting from any form

of morphological derivation. Of the resulting lemmas, 49% are determined to originate from

Indo-European languages, while 46% appear to be in some sense original to Proto-Finnic.

Kallio (2012) notes that contact with Germanic and Proto-Germanic may stretch back as far

39

as the Neolithic period. Importantly Finnish has had multiple periods of contact with lan-

guages with higher prestige for almost a millennium: Swedish as a result of Swedish rule and

the resulting Swedish speaking merchant class; German as a result of the Hanseatic league;

Russian during Finland’s time as a Grand Duchy under Russian rule; and then in the 21st

century English as a result of the post-war Anglo-American hegemony. Contact with pres-

tige languages like this is known to accelerate the process of language mixing and synthesis2.

All this noted, we do not necessarily care about the source of the individual words in the

lexicon, but rather the degree of mutual disambiguation two tokens referring to the same

concept might provide. These notions are somewhat related but differ since the senses which

words refer to can evolve. One process through which word senses evolve is when new senses

are created by a sense extension process, using metaphor or analogy3. Here, the view is taken

that sense extension is essentially analogous to word derivation, e.g., by compounding or

morphological derivation. It is known that a word derivation process can transfer across

languages. An example of such a structural loan, or calque, is the Finnish “voileipä|kakku”

which is loaned from the Swedish “smörgås|tårta” (English: “sandwich cake”). It is assumed

by analogy then, that sense extensions can also travel across languages in close contact — just

the type of contact Finnish has had with other European languages. Thus, due to close contact

over a long period, a single European language may not provide a high level of disambiguation

for Finnish. In addition, a sense tagged corpus based on one of the largest and most popular

sources of parallel data of the European languages, EuroParl, already exists in the form of

EuroSense, removing an attractive potential source of parallel text.

Mandarin has also been in contact with the European languages since at least the 13th cen-

tury4. However, this language contact has occurred over a significantly longer distance, and

as we go back through history, earlier language contact is increasingly limited by geogra-

phy. Thus it is hoped that many Mandarin words retain reasonably distinct confusion classs

2. For a general account, see for example Thomason (2001). For a specific account of structural changes
resulting from Finnish-Swedish contact, see Häkkinen (1997) and De Smit (2006).

3. Different metaphorical processes are given and explored in a general context in Sweetser (1990). Srini-
vasan and Rabagliati (2015) give a recent empirical work comparing a battery of metaphorical processes across
languages.

4. For an overview see Vervaet (2017, Chapter 2).

40

with respect to Finnish. Additionally, Mandarin is a well resourced language with multiple

WordNets, introduced in Section 3.1.

Parallel corpora were obtained from the Open Parallel CorpUS (OPUS) (Tiedemann 2012).

OPUS contains many subcorpora. Some of the most extensive, highest quality parallel cor-

pora which are freely available are produced by those international organisations which rou-

tinely operate in a highly multilingual environment: the European Union (EU) and the United

Nations (UN). Unfortunately, Mandarin is not an official EU language, and, as noted, a sense

tagged Finnish corpus based on EuroParl is already available. Since Finnish is not an official

UN language, this also rules out parallel texts from the UN. The largest subcorpus of OPUS

containing Mandarin and Finnish is the OpenSubtitles2018 corpus (Lison, Tiedemann, and

Kouylekov 2018), which is composed of subtitles from films and television programmes. The

rest of this chapter outlines the creation of the Sense Tagged Instances For Finnish (STIFF)5

corpus from the raw material of the OpenSubtitles2018 corpus.

3.1 Preprocessing and sense inventory of Mandarin Chinese

Chinese, or Hànyǔ, is a language group6 spoken predominantly in East Asia. Many of the lan-

guages within the group never developed a standardised written form; they lack the status of

being an official language, as well as prestige within mainstream culture. Mandarin Chinese,

on the other hand, has not one, but two official writing systems stemming from two charac-

ter sets. Simplified Chinese characters are officially used in mainland China and Singapore,

while traditional Chinese characters are officially used in Taiwan, Hong Kong and Macau.

In practice, there are also small differences between the writing systems in Hong Kong and

Taiwan e.g., the preferred form of the Pinyin romanisation lǐ, meaning “inside” or “within”,

is裡 in Taiwan and裏 in Hong Kong.

5. The source code has been made available at https://github.com/frankier/STIFF.
6. Although its constituent languages are sometimes referred to as dialects of a single language, this is not

the linguistic perspective. DeFrancis (1984) writes “To call Chinese a single language composed of dialects
with varying degrees of difference is to mislead by minimizing disparities that according to Chao are as great as
those between English and Dutch. To call Chinese a family of languages is to suggest extralinguistic differences
that in fact do not exist and to overlook the unique linguistic situation that exists in China.“

41

https://github.com/frankier/STIFF

Here, only the simplified and traditional forms of standard Mandarin Chinese are used. At

first blush, mapping between traditional and simplified characters might be assumed to be a

matter of performing a simple character-by-character operation. Halpern and Kerman (1999)

point out some pitfalls of this approach. Neither the character-by-character traditional to

simplified (hereafter t2s) conversion nor the simplified to traditional mapping (hereafter

s2t) are completely functional/many-to-one. For example, in s2t 发 can map to either

發 or 髮7, and in t2s 徵 can map to either 徵 or 征. Moreover, neither mapping, when

performed character-wise, is fully idempotent. 薴, when the t2s mapping is applied once,

will map to苧; when applied again, it will map to苎. However, this triple of characters is

the only case of this.

3.1.1 Mandarin in OpenSubtitles2018

Each film subtitled in Finnish and Mandarin in OpenSubtitles2018 forms a bilingual text or

bitext. There are two Mandarin language codes in OpenSubtitles2018: zh_CN and zh_TW,

referring to Mandarin as used in mainland China, and Taiwan respectively, i.e., Mandarin

Chinese written with simple and traditional characters respectively. Figure 4 shows how many

bitexts are tagged with each language code.

How accurate are these labels? To verify this a simple detection scheme was created. The

detection scheme was built on top of OpenCC (Open Chinese Converter)8, which performs

Chinese character set conversion. The detection scheme proceeds by converting each sen-

tence using both the t2s and s2t converters from OpenCC, then classifying according to

Table 4. To determine whether a film subtitle was written with a particular character set,

character set detection was run sentence-wise. If the fraction of sentences detected as either

traditional or ambiguous is above 2
3
, the subtitle is classified as traditional. Correspondingly,

if the fraction of sentences detected as either simplified or ambiguous is above 2
3
, the subtitle

is classified as simplified. A film meeting neither or both of these criteria is classified as

neither.
7. This and the following examples are derived from data in the Unicode Han Database. See

https://www.unicode.org/reports/tr38/.
8. Obtained from https://github.com/BYVoid/OpenCC.

42

https://www.unicode.org/reports/tr38/
https://github.com/BYVoid/OpenCC

24194915 999zh_CN
7334

zh_TW
3418

8333

Figure 4: A Venn diagram showing the number of Finnish-Mandarin bitexts (films) tagged
as zh_TW and zh_CN within the OpenSubtitles2018 corpus.

Table 4: Chinese character set detection scheme.

sentence = s2t sentence = t2s detected as
3 3 ambiguous
3 7 traditional
7 3 simplified
7 7 neither

43

Neither Simple Traditional
OpenCC based classification

zh_CN

zh_TW

Op
en

Su
bt

itl
es

20
18

 la
ng

ua
ge

 c
od

e

14 6819 501

77 294 3047

Confusion Matrix

1000

2000

3000

4000

5000

6000

Figure 5: Confusion matrix showing character set classification of films in OpenSubtitles2018
against their reclassification with the OpenCC based scheme.

A confusion matrix showing the result of this character set detection is shown in Figure 5.

Manual inspection of a few subtitles classified as neither reveals that the phenomenon is at

least partially due to encoding problems: in particular, it appears that in some cases more than

one text encoding has been used within a particular file resulting in a failure to fully convert

the file to UTF-8. Assuming it is possible to recover usable text, doing so would require

going back to the original source subtitle files used to create OpenSubtitles2018, which are

not readily available, and fixing the OPUS processing pipeline9. However, since it only affects

a small part of the corpus (∼1%) overall doing so is not essential to the task at hand.

3.1.2 Mandarin WordNets

There are two freely available manually created Mandarin WordNets. The Chinese Open

WordNet (Wang and Bond 2013) was produced in Singapore and is based on the simplified

9. Which can be obtained from http://opus.nlpl.eu/tools.php.

44

http://opus.nlpl.eu/tools.php

Table 5: Table showing the pseudo language code, as well as the number of synsets, words,
senses, and single character words of the considered Mandarin WordNets. Partially repro-
duced from http://compling.hss.ntu.edu.sg/omw/.

WordNet Code Synsets Words Senses Chars
Chinese Open WordNet cmn 42,312 61,533 79,809 1297
Chinese WordNet (Taiwan) qcn 4913 3206 8069 965
Extended Chinese WordNet qwc 12,130 16,171 19,079 1236

character set, while the Chinese WordNet (C.-R. Huang et al. 2010) was produced in Taiwan

and is based on the traditional character set. Additionally, Bond and Foster (2013) created

another simplified character set Mandarin WordNet automatically based on data obtained

from Wiktionary.

Some information about the size of the WordNets, as well as the codes they are referred to

by subsequently, are given in Table 5. As can be seen, cmn is by far the largest WordNet.

However, in terms of coverage of single character lemmas, which occur more frequently than

multi character lemmas, (note that every multi character lemma contains single character

lemmas) it is of a similar size to the others. All WordNets are considered collectively so as

to give good coverage of single character lemmas.

3.1.3 Obtaining Mandarin lemmas

As we have seen in sections 3.1.1 and 3.1.2, considering both traditional and simplified

characters together increases the size of the corpus and lexicon respectively as well as side

stepping any potential problems caused by incorrectly classifying the character set of some

text. Thus, character conversion is used. All text, including sentences from subtitles and lem-

mas from WordNet, regardless of its original script, is converted t2s character by character.

As noted previously, this is not entirely without pitfalls, (it is a one-to-many, non-idempotent

mapping) but is a simple scheme which works sufficiently well in this case. In particular, one

failure case is that a character which is in traditional is mapped to the wrong simplified char-

acter and therefore cannot be matched with the character it should have been mapped to. This

is a consequence of the one-to-many nature of the mapping. However, there are only three

characters that are one-to-many,鍾,願 &餘. Another failure case is that a traditional char-

acter could be mapped to a simplified character, but it cannot be matched with the simplified

45

http://compling.hss.ntu.edu.sg/omw/

Table 6: Example showing how substring search on unsegmented Mandarin text can produce
extra lemmas: both True Positives (TPs) and False Positives (FPs).

Type Text Extracted

Segmented 到处 都 是 幽灵
到处: everywhere,都: all,是: to be,
幽灵: ghosts

Unsegmented 到处都是幽灵 +到处都是: to swarm 3

Segmented 修复 工作 修复: repair,工作: task
Unsegmented 修复工作 +复工: rework 7

character it was mapped to because this character is simplified again to a different simplified

character. This is a consequence of the non-idempotent nature of the mapping, but as noted

there is only 1 idempotent character. Given the low supposed frequency of these cases, they

are not dealt with specially.

Words in written Mandarin text are not delimited by any space. As such, the first stage of

many Mandarin text processing systems is word segmentation: splitting sentences into words.

OpenSubtitles2018 contains both segmented and unsegmented versions of the Mandarin text.

To obtain Mandarin lemmas, both are used.

The segmented text is used because word alignments based upon the segmentation are used

in later steps. For single words, extraction can proceed by looking up each word directly.

However, cmn also contains Multi-Word Expressions (MWEs), separated by a +. These are

both looked up as single words, by removing the +, and also tried as MWEs in a similar way

to Finnish as described in Section 3.2.

To obtain lemmas from the unsegmented text, they are extracted according to substring search.

This can produce erroneous words formed from the end of one true word with the beginning

of another, however, the aim is to generate everything possible and then eliminate low quality

annotations later on in the pipeline. That is to say, the extraction step is high recall/low

precision. This type of extraction allows lemmas to be extracted even if a segmentation error

has been made in the segmented text. A library implementing an Aho-Corasick automaton

(Aho and Corasick 1975) is used for efficient substring search 10. Table 6 shows how substring

search can produce extra lemmas, both TPs and FPs.

10. Obtained from https://github.com/WojciechMula/pyahocorasick.

46

https://github.com/WojciechMula/pyahocorasick

3.2 Preprocessing and sense inventory of Finnish

Finnish is a language with rich morphology. Thus, to find potential word senses from a

text, at very least lemmatisation should be performed. Omorfi (Pirinen 2015b) is a freely

available morphological analyser for Finnish, which can be used for lemmatisation. Omorfi is

a high recall system, including even some rarely used forms. For systems which need higher

precision output, on possibility is to combine it with a morphological disambiguator/Part

Of Speech (POS) tagger. FinnPOS (Silfverberg et al. 2016) is one such system which also

includes a guesser to guess out of vocabulary lemmas.

The design of STIFF is to generate everything possible as the first step, including all relevant

lemmas. This should include lemmas removing derivational morphemes as far as possible11.

Sometimes, Omorfi will not remove all levels of derivational morphemes. To increase recall,

each time lemmas are extracted from an Omorfi analysis, they are analysed again, until the

set of found lemmas reaches a fixed point. Ultimately, all of the lemmas from this process,

the lemma from FinnPOS and the original surface form are used to look up word senses from

FinnWordNet (FiWN).

FiWN also contains MWEs. Here a shallow method is used, which can only extract MWEs

which are contiguous in running text. However, apart from this caveat, it is high recall. We

consider both the tokens in one of FiWN’s MWEs and the tokens in the text under analysis

to be any of the lemmas which result from analysing it. This naturally leads to a confusion

network structure, illustrated in Figure 6. We now seek all paths that span a FiWN MWE and

also occur anywhere in the confusion network corresponding to the analysed text. To achieve

this, the FiWN MWE confusion network is made into an Aho-Corasick automaton (Aho and

Corasick 1975), similar to Section 3.1. The library used12 was modified to so that it could be

used with edges at the token level rather than the character level.

Multiple pointers are kept into the MWE automaton, and every possible transition which

matches a transition out of the current node in the confusion network corresponding to the

analysed text is taken. This can result in redundant pointers into the Aho-Corasick automaton.

11. Currently, this is not always possible since Omorfi’s derivational morphology is less developed relative to
its other features.

12. Obtained from https://github.com/WojciechMula/pyahocorasick.

47

https://github.com/WojciechMula/pyahocorasick

10 2

kirjoitettu

kirjoittaa

kieli

kieliä

10 32 4
kuin

kuu

paljo

paljon
olla

yhtä

yksi

Figure 6: Confusion network arising from the Finnish MWEs “kirjoitettu kieli” and “olla
yhtä paljon kuin”.

The key property of an Aho-Corasick automaton is that it can continue accepting any string

which begins at any of its previous states. In practice, this that it a particular node it will

accept any string beginning with any suffix of the path between the current node and the start

node. This leads to a notion of domination which can be used to eliminate redundant pointers.

Given some pointer which has some route r1 from the start node, it is dominated by a pointer

with route r2 from the start node if r1 is a suffix of r2. Here, this property is only used to

remove the root node when some other node is in the current set of pointers.

3.2.1 The problem of missing senses in FinnWordNet

FiWN follows the structure of WordNet, and thus has some notable word sense omissions.

WordNet focusses on words that clearly denote one or more concepts, however, there are many

words that play a more grammatical role. The most reliable way of distinguishing between

words with a more or less grammatical role is whether they are part of a closed class of words

or not. A closed class of words is one where it is not usually possible to coin a new word

within the class, e.g., the class of articles or the class of prepositions in English.

When a word is ambiguous between a sense in WordNet and a sense not in WordNet, it may

not be possible to assign the word the correct sense. Many WSD algorithms assume that if

a token has a set of senses available in the Lexical Knowledge Base (LKB), it must belong

to one of them; It is not possible to skip tagging a token if it belongs to none of the senses.

This is an example of closed world reasoning and ultimately means that it is not possible to

recover from missing information in the LKB. In English, this is not a significant problem in

48

practice since the surface forms missing from two major categories omitted from WordNet,

pronouns and modal verbs, such as she and must respectively, do not usually have another

sense in WordNet. For Finnish, however, we are left in an undesirable situation for multiple

surface forms. Pitää can be used in certain constructions as a modal verb13 as in ‘mun pitää

tiskata’ (I must do the dishes) but has additional, non-modal senses — which are in FiWN

— such as in ‘mä pidän tiskaamisesta’ (I like doing the dishes). Ambiguities resulting from

ambiguous surface forms can also occur. Siitä can either be the quite common elative form

of ‘se’ (it) or the infinitive form of ‘siitä’, a quite uncommon verb which nonetheless has a

sense in FiWN where ‘se’ does not. To overcome this, it is necessary to determine whether a

word is in a closed class, and if it is, remove it from consideration.

3.2.2 Estimating sense frequency of Finnish lemmas based on English data

Many techniques based on WordNet assume it is possible to pick the most likely sense of a

particular set of word senses by picking the “first sense”. The reason this works with Princeton

WordNet is that word senses are numbered based on descending order of sense frequency

based on data in SemCor (George A Miller et al. 1993), a sense tagged corpus based on the

Brown corpus. Specific examples of usages of this technique are in OMSTI, where it is used

to remove any ambiguity left after mutual disambiguation and as in the “first sense” baseline

- a WSD algorithm which works by just picking the first sense.

Since this data is potentially needed even before a sense tagged corpus is available, it is es-

timated based on the frequency data in Princeton WordNet (PWN). FiWN is aligned with

PWN at the lemma level. Unlike most PWN aligned WordNets, which are aligned at the

synset level, FinnWordNet is aligned with PWN at the lemma level. An example of when this

distinction takes effect is when lemmas are structurally similar. For example, in the synset

”singer, vocalist, vocalizer, vocaliser”, the Finnish lemma laulaja is mapped only to singer

rather than to every lemma in the synset. When there is no clear distinction to be made,

whole synsets are mapped. This reasoning fits with the existing structure of PWN: Relations

between synsets encode purely semantic concerns, whereas relations between lemmas encode

so called morpho-semantic relationships, such as morphological derivation.

13. For a full account of modal verbs in Finnish, see Hansen and De Haan (2009).

49

Let the Finnish-English lemma mapping be denoted L, the specific frequency estimate for a

Finnish lemma is then defined like so:

freq(lfin) =
∑

(lfin, leng)∈L

freq(leng)
|{(lother−fin, leng) ∈ L}|

The rationale being that this causes the frequencies of English lemmas to be evenly distributed

across all the Finnish lemmas which they map to.

To integrate the resulting synthetic frequency data into as many applications as possible, it

is made available in the WordNet format14. The WordNet format requires sense occurrence

counts, meaning the frequency data must be converted to integer values. To perform this

conversion all frequencies are multiplied by the lowest common multiple of the divisors in

the above formula. Some care must be taken in downstream applications since the resulting

counts are no longer true counts, but rescaled probabilities. For example, if some application

uses +1 smoothing, it should be rescaled to a larger constant, in this case +1000 is reasonable

given the magnitude of the numbers involved.

3.2.3 Finnish WordNets used

Multiple Finnish WordNets were used. Their codes are: qf2, FiWN version 2; fin, FiWN as

included in OpenMultiWordNet (Bond and Paik 2012) which is based upon FiWN version 1,

but lossily modified to promote the lemma level links explained in Section 3.2.2 to synset level

links; and qwfwhich was created by Bond and Foster (2013) based on data from Wiktionary.

3.3 Obtaining sense tagged tokens

The STIFF pipeline, which starts from a bilingual corpus and ends up with sense tagged

tokens is based on a generate and filter technique. First, all possible tags are generated. Next,

each possible tag is annotated with different types of evidence which support it. Later stages

in the pipeline then choose which tags to keep based on their supporting evidence. This means

14. Made available at https://github.com/frankier/fiwn.

50

https://github.com/frankier/fiwn

Generate Add supports STIFFFold Tournament

Figure 7: The overall pipeline of STIFF.

different choices for how to consider the evidence for each annotation can be generated by

recombining later pipeline stages in different ways. The pipeline is shown in Figure 7.

During the generate stage, lemmas are extracted from the text and matched with potential

WordNet lemmas, as described in sections 3.1 and 3.2. After this, supports are added by

matching lemmas in various ways. Next, information about one language is removed, and

any relevant information folded onto the other. Finally, a cascade of tournaments removes

certain annotations when other annotations out rank them in some criteria.

3.3.1 Adding supports

Different types of support can be added to annotations. To add the supports for each sentence,

first all relevant synsets from Finnish and Mandarin are taken synsetsfin and synsetscmn.

The intersection synsetsfin ∪ synsetscmn then corresponds to the set of annotations that

receive support. When adding a synset annotation to either language, word alignments are

referred to, and if an alignment aligns two words, all annotations of these aligned words with

matching synsets are marked as aligned.

To improve recall, relations in WordNet can be expanded so that we can obtain some set of

extra, less well supported synsets. That is we consider:

expand(synsetsfin) ∪ synsetscmn/synsetsfin ∪ synsetscmn

Currently, the only relationship type expanded in STIFF are derivational morphological links.

Princeton WordNet has the most complete set of these links, so these are used. This means

that English lemmas are used as an intermediary. So a synset is expanded by first fetching

all of its English lemmas, then following derivational links to obtain another set of English

lemmas, and then finally finding their synsets.

51

The reason for focussing in on derivational morphological relationships is that they tend to

connect the same concept through different POSs. Due to grammar differences, as well as

differences between the idiomatic ways of expressing a concept in different languages, it is not

unusual that a concept may change POS during translation between languages. A noteworthy

caveat here is that the ability of this scheme to expand these cross POS relations is limited by

the structure of English derivational morphology.

3.3.2 Tournament stages

Now that the annotations are tagged with supports, several tournament stages can be applied.

These can be combined in different ways to obtain different points on a precision/recall curve.

The stages consist of:

1. Ranking tournaments, in which all annotations for each span are considered. Annota-

tions are compared, most often pairwise, to determine whether some subset is prefer-

able to some other subset. When this is the case the members of the former subset is

said to dominate the members of the latter, and only the dominant annotations are kept.

• Based on grammatical information of the target:

– pos-dom Prefer tokens which have the correct POS according to FinnPOS.

– lemma-dom Prefer tokens which have the correct lemma according to FinnPOS.

– recurs-dom Prefer tokens not generated by recursive lemmatisation.

• Based on the lexical or graphical information of the target:

– freq-dom Keep only most frequent annotation.

– wiki-trg-dom Prefer annotations with support from WordNets other than

qwf over those with only support from qwf.

– hyp-dom Where there is a synset and its hypernym ancestor, prefer the hy-

pernym.

• Based on the transfer process:

– sup-dom Prefer tokens with some support to those with none.

52

– deriv-dom Prefer non-derived token to derived tokens.

– align-dom Prefer aligned tokens to non-aligned tokens.

• Based on the lexical or graphical information of the source:

– wiki-src-dom Prefer annotations with support from WordNets other than

qwc over those with only support from qwc.

– src-span-dom Prefer annotations with some source A which spans some

source B to those that have source B.

– src-len-dom Prefer annotations with some source A which has a longer length

than some source B to those that have source B.

• Filtered ranking tournaments, where only a subset of annotations participate in

the tournament, and others are left as they are.

– sup-freq-dom This is freq-dom filtered by sup-dom. It keeps the most fre-

quent annotation for those annotations which have some support.

• ___-span: Remove annotations outspanned by other annotations.

– char-span-dom Prefer annotations which outspan others on the character

level.

– tok-span-dom Prefer annotations which outspan others on the token level.

2. Removal of annotations which are heuristically likely to be incorrect.

• rm-pos-norm Remove annotations covering tokens with certain POSs accord-

ing to FinnPOS. The justification is that these POSs are not included in FiWN.

Removes pronouns, numerals, interjections, conjunctions, particles, punctuation

and nouns which are tagged as proper nouns.

• rm-pos-agg As above but additionally remove adpositions. The reason for not

always removing these is some adpositions are included in FiWN, tagged as ad-

verbs.

• rm-pos-soft As above, except only remove pronouns.

• rm-ambg Remove ambiguous annotations altogether.

53

• -rm/-dom Many ranking tournaments can be reinterpreted as removing any pos-

sible tournament loser, without requiring a winner exists. These are denoted -rm

instead of -dom, e.g., recurs-rm instead of recurs-dom.

3.4 A second sense tagged corpus: EuroSense

EuroSense (Bovi et al. 2017) is a multilingual sense tagged corpus, obtained by running the

knowledge based Babelfy (Moro, Raganato, and Navigli 2014) WSD algorithm on multilin-

gual texts. To use this corpus in a way which is compatible with the maximum number of

systems and in line with the standards of previous evaluations, it first has to be preprocessed.

The preprocessing pipeline is shown in Figure 8.

Before anything else, the fix up stage is run. This stage is run in order to try and fix some

problems found with the EuroSense 1.0 release15. The sub pipeline for this stage is shown

in Figure 9. The drop unanchorable stage drops any annotations which have anchors which

do not occur in any texts. The reorder cognates stage corrects a common error which occurs

when annotations with the same anchor text end up with the wrong language tag (these are

often cognates: the same word in different languages). The reordering is performed using

the fact that the annotation elements seem to occur in the same order as their anchors within

the ordered text elements within the eXtensible Markup Language (XML) document. Other

problems are fixed in the re tag languages stage which works by looking for annotations

whose anchors can not be found within the corresponding text. These often have the incorrect

language tag and thus simply need to be associated with another text. A search to find a new

anchor point and thus language is performed between two anchor points: those of the prior

and subsequent correctly anchored annotations. The first possible match is always chosen.

Finally, the remove empty stage removes any annotations which are left empty as a result of

prior processing. Counts and proportions of annotation problems, both fixable and not are

summarised in Table 7. As per the table, less than 1 in 10,000 annotations are dropped by

this fixing process.16

15. Obtained from http://lcl.uniroma1.it/eurosense/.
16. The fixing script and fixed corpus is made available at https://github.com/frankier/

eurosense.

54

http://lcl.uniroma1.it/eurosense/
https://github.com/frankier/eurosense
https://github.com/frankier/eurosense

EuroSense

Fix up

Drop non-Finnish

BabelNet lookup
−5%

Re-anchor

Re-lemmatise
−18%

Remove empty

Format conversion

EuroSense.Fi.Unified

88.2M annotations

83.9M annotations

68.5M annotations

Figure 8: A diagram showing the pipeline to convert EuroSense to the unified format used
for training and evaluation data.

Table 7: EuroSense problems automatically fixed. Figures are given for the high precision and high
recall variants of EuroSense as counts and proportions. Columns detail: the number of annotations which could
not be found within any text; the number of cognates reordered in the reorder cognates stage; and the further
problems encountered in the re tag languages stage; how many of these could not ultimately be fixed.

Variant Unanchor Reorder Problems Unfix

Precision 257 3,350,417 8,247,578 3738
(%) 0.00 2.72 6.71 0.00
Coverage 426 5,643,646 30,203,097 6374
(%) 0.00 2.61 13.99 0.00

55

EuroSense

Drop unanchorable

Reorder cognates

Re tag languages

Remove empty

EuroSense fixed

Figure 9: A diagram showing the pipeline to fix problems identified with EuroSense 1.0.

In the first stage, drop non-Finnish, all non-Finnish text and annotations are removed from

the stream. EuroSense is tagged with synsets from the BabelNet LKB (Navigli and Ponzetto

2012). This knowledge base is based on the WordNets of many languages enriched and mod-

ified according to other sources, such as Wikipedia and Wiktionary. However, here the LKB

to be used is FiWN. A mapping file was extracted from BabelNet using its Java API and a

local copy, obtained through direct communication with its authors17. The Babelnet lookup

stage applies this mapping. The stage will drop annotation which do not exist in FiWN ac-

cording to the mapping. A BabelNet synset can also map to multiple FiWN synsets, and in

this case, an ambiguous annotation can be produced.

The re-anchor and re-lemmatise stages clean up some problems with the grammatical analy-

ses in EuroSense. EuroSense anchors sometimes include help words associated with certain

verb conjugations, for example, negative forms, e.g., “ei mene”, or the perfect construction

“on käynyt”. Re-anchor removes these words from the anchor, taking care of the cases in

which the whole anchor could actually refer to a lemma form in WordNet, e.g., “olla merki-

tystä”. Re-lemmatise checks that the current lemma is associated with the annotated synsets

in FiWN. In case there are no matching synsets, we look back at the surface form and check

17. Made available at https://github.com/frankier/babelnet-lookup.

56

https://github.com/frankier/babelnet-lookup

Corpus Genre Original language Sentences Instances
OpenSubtitles2018
(STIFF)

Film and TV series
subtitles

Film language —
usually not Finnish

40 120

EuroParl
(EuroSense)

Parliamentary
proceedings

Speaker language
— usually not
Finnish

9 127

Total 49 247

Table 8: Scope of manual sense annotation work.

all possible lemmas obtained from Omorfi (Pirinen 2015a)18 for matches against FiWN. At

this point, any annotations which do not have exactly one lemma and one synset which exist

in FiWN are dropped. In the penultimate stage, remove empty, any sentences without any

annotations are removed entirely. Finally, the XML format is converted from the back-off an-

notations of the EuroSense format to the inline annotations of the unified format of Raganato,

Camacho-Collados, and Navigli (2017).

3.5 Creating a manually annotated corpus

To assist with evaluating the quality of the automatically created corpora, and to provide

a reliable way of assessing the quality of WSD systems, a manually annotated corpus was

created. The annotation was performed jointly by the author, who is a Finnish learner at

the A2 level, and a native Finnish speaker with no linguistic background. The manually

annotated corpus was created by first annotating 40 sentences of the test section of STIFF,

and then annotating enough sentences from test section of EuroSense that at least as many

instances were annotated for EuroSense as for STIFF. The scope of the work is summarised

in Table 8.

3.5.1 Annotation software

Linguistic annotation is repetitive and time consuming. Special purpose annotation software

could potentially speed up the process by reducing the number of repeated actions. Existing

software for word sense annotation includes: Stamp (Hovy et al. 2006); Satanic (Passonneau

18. As obtained from https://github.com/flammie/omorfi.

57

https://github.com/flammie/omorfi

et al. 2012); and WebAnno (Yimam et al. 2013). Of these, only WebAnno is publicly available

at the time of writing. While WebAnno has been used for sense annotation previously, there

is no documentation available explaining how to create a word sense tag set. Thus, no usable

word sense annotation software was found.

Because the amount of annotation to be done was relatively modest, and there is no require-

ment for advanced features like multi user annotation, a quite simple system sufficed. The

annotation was created by writing a program, based on the same library code as STIFF, to

generate an XML file with all possible annotations for a corpus. The human annotators then

picked the correct annotations by deleting all other annotations.

So that the annotators could choose between senses, information was added to the XML file

as a comment. A sample of an annotated sentence is given in Figure 10. Of note is that each

annotation tag contains the lemma (wnlemma) along with the POS as well as information

about the token it comes from and the WordNets the lemma comes from. Each comment

contains the synonyms in Finnish and English, the definition in English, the direct hypernym,

the root hypernym and the lexicographer file.

3.5.2 Annotation set up and guidelines

Annotation guidelines were created during the annotation process, as and when annotation

issues arose. The final guidelines were:

• Make sure not to give word types that aren’t in WordNet an annotation. This includes

pronouns, modal verbs and verbs that are part of a tense e.g., participles “on ollut”.

• Don’t annotate with an annotation obtained only from qwf unless it is the only possible

candidate.

• Pay attention to the English lemmas in the synset. Prefer annotations where the English

is a good translation. The reason this is important is that FiWN suffers from shifts in

meaning due to the fact it is created through an inherently subjective translation process,

where various types of semantic shifts are possible (Osimo 2008).

• Make sure to pay attention to the lemma, POS and lexicographer file.

• If there is no good annotation available, remove all annotations.

58

<sentence id="fi/1920/10323/6416158.xml.gz
zh_cn/1920/10323/5937327.xml.gz; 10323; 17">↪→

<text id="fi-tok" lang="fi">Hyvä ystäväni Alan .</text>
<annotations>

<annotation type="man-ann" lang="fi" anchor="Hyvä"
anchor-positions="from_id=fi-
tok&char=0&token=0" lemma="Hyvä"
wnlemma="hyvä" wordnets="fin qf2"
lemma-path="whole">dear.s.02 hyvä.s.18</annotation>

↪→

↪→

↪→

↪→

<!-- dear, good, hyvä, läheinen, near, rakas, tärkeä:
with or in a close or intimate relationship (root:
dear.s.02; lexname: adj.all) -->

↪→

↪→

<annotation type="man-ann" lang="fi" anchor="ystäväni"
anchor-positions="from_id=fi-
tok&char=5&token=1" lemma="ystäväni"
wnlemma="ystävä" wordnets="fin qf2 qwf"
lemma-path="whole">friend.n.01
ystävä.n.03</annotation>

↪→

↪→

↪→

↪→

↪→

<!-- frendi, friend, kaveri, ystävä: a person you know
well and regard with affection and trust (hyp:
person.n.01; root: entity.n.01; lexname: noun.person)
-->

↪→

↪→

↪→

</annotations>
</sentence>

Figure 10: A manually annotated snippet from OpenSubtitles2018.

59

Corpus Notes Sentences
skipped

Idiom Ambiguities Time taken
(hours:mins)

OpenSubti-
tles2018
(STIFF)

18 3 4 10 4:35

EuroParl
(EuroSense)

8 0 5 10 5:45

Total 26 3 9 20 10:20

Table 9: Results of manual sense annotation work.

• If there is an idiom which cannot be annotated, note this and move on.

• If there is not enough context to disambiguate, note this and move on. Later this sen-

tence will be discarded.

• Try and pick exactly one annotation for each word. If there are multiple equally suitable

annotations, then:

– If they are related by hypernymy take this into account and choose the one at the

appropriate level of specificity given the context.

– Otherwise, both can be kept, but this should only be done rarely and as a last

resort.

3.5.3 Annotation results

The results of the annotation work are summarised in Table 9. The table includes counts

of annotator notes, which were often used to indicate an annotation problem had occurred.

These are broken down into two common cases: the case of skipping a sentence due to lack

of context and the case of encountering an idiom that is not included in FiWN. Separately,

ambiguous annotations are counted.

3.6 Evaluation of STIFF and EuroSense

Several variants of STIFF are made, by combining the tournament stages introduced in Sec-

tion 3.3.2 in different ways. They are referred to by code names, introduced shortly. They

are arranged into a tree of ablation tests, where each child variant introduces some change to

60

its parent. The tree is given in Figure 12. The full sequence of operations for each terminal

variant is given in Figure 11.

Each variant is evaluated against the manually annotated corpus of Section 3.5. The results

are plotted on a precision/recall plot in Figure 13. STIFF variants on the Pareto front are

highlighted as blue.

The high precision and high coverage versions of EuroSense are shown on the same plot as

EP and EC respectively. There is much less direct comparability between the STIFF variants

and the EuroSense variants than within their own groups. The biggest difference is that the

statistics are calculated based on two different gold standard corpora. Differences between

the scores can occur due to sampling, e.g., STIFF could get lucky and be evaluated based

upon a part where it did well and EuroSense could get unlucky and get evaluated based upon

just the part where it did poorly. This is particularly relevant here since the gold standard

is relatively small. Differences between the scores could also be due to difference in the

domains. The domains of film subtitles and parliamentary proceedings are quite different

and it could be that one is simply easier than the other. For example, it could be that if we

found Chinese-Finnish parliamentary proceedings, then the techniques behind STIFF may

perform quite differently when compared to film subtitles. What is perhaps somewhat more

comparable between groups is the trade off between precision and recall different variants

make. Two lines with a constant ratio of precision/recall are shown through EP and EC.

We start by comparing the results of the evaluation of the Finnish section of EuroSense per-

formed here with the evaluation of its original authors. Bovi et al. (2017) evaluated 50 sen-

tences each from the English, French, German and Spanish sections of EuroSense and found

precisions of 81.5%, 71.8%, 89.3% and 82.5% respectively for the high precision variant. The

corresponding result obtained here (EP) is just 43.6%, however, there are significant differ-

ences in evaluation method which make direct comparison difficult. Firstly, Bovi et al. (2017)

used two independent annotators to produce two annotated corpora with a disagreement rate

of around 15% as compared to the annotation team approach used here which results in a sin-

gle annotated corpus. It is not reported how Bovi et al. (2017) handled disagreements. One

possibility is that they are discarded, which would prevent more difficult cases from being

evaluated, boosting precision. More likely, however, is that when a disagreement occurs, a

61

TP was be awarded to EuroSense when it matched either of the senses chosen the two annota-

tors, which would also boost the resulting precision. Secondly, the change of sense inventory

from BabelNet to WordNet performed in Section 3.4 is likely to make quite a big difference.

BabelNet contains far more named entities — proper nouns that are likely to have an entry in

an encyclopedia rather than those words likely to have an entry in a dictionary — than Word-

Net. These items have fewer senses, often just one, and therefore changing sense inventory

from BabelNet to WordNet drops these easy cases from consideration, lowering precision.

Thirdly, the need for the fixing process described on page 54 brings up further questions such

as whether the version of EuroSense the authors performed their evaluation against had the

same problems and if not, whether their evaluation can be said to be valid for the publicly

available version of EuroSense.

We now compare variants of STIFF starting from the unambiguous variant (U), which re-

moves all ambiguous annotations, leaving only those which were not ambiguous to begin

with. We then go down the first branch of Figure 12, attempting to improve the precision

with the monolingual precision (MP_) systems. These improve precision by concentrating

on improving the quality of the target language lemmas; They take no account of data from

the source language. The bilingual precision (BP_) variants start to trade off precision for

recall by adding in tournaments based on supports from the source language.

The next branch starts with a high monolingual recall system (MR), which just selects the

most frequent annotation for a span. The bilingual recall (BR_) systems take account of

support from the source language and progressively attempt to trade off decreasing recall for

increasing precision. Together the precision and recall series show it is possible to trace out

a Pareto front by progressively making adjustments to the stages which make up the different

variants.

Ultimately, the BP4 system is selected for usage in Chapter 4. Firstly, it is on the Pareto

front, a necessary criterion for selection. Secondly, keeping in mind the caveats of comparing

between the two groups of systems, it seems like it may have a similar level of precision and

recall as EP, or at very least represent a similar choice in terms of trading off between precision

and recall to it. This is useful since this is the variant of EuroSense used in Chapter 4, and

thus choosing BP4 allows for a more direct comparison.

62

U:
rm-ambg

BP3:
recurs-rm

rm-pos-agg

lemma-rm

sup-dom

align-dom

deriv-dom

rm-ambg

SP:
sup-rm

rm-ambg

BP5:
recurs-rm

rm-pos-agg

lemma-rm

sup-dom

align-dom

deriv-dom

src-span-dom

sup-freq-dom

wiki-trg-dom

hyp-dom

rm-ambg

BR4:
sup-dom

align-dom

rm-pos-agg

pos-dom

lemma-dom

freq-dom

rm-ambg

SR:
sup-rm

freq-dom

rm-ambg

MXP:
sup-rm

align-rm

rm-pos-agg

lemma-rm

rm-ambg

Figure 11: Pipelines showing how STIFF stages are combined to form the different variants.
Only the terminal variants are shown.

63

U

MP1 +recurs-rm, +rm-pos-norm, +lemma-dom

MP2 rm-pos-agg / rm-pos-norm

MP3 lemma-rm / lemma-dom

BP1 +sup-dom

BP2 +align-dom

BP3 +deriv-dom

BP3A +sup-freq-dom

BP4 +wiki-trg-dom

BP5 +deriv-dom, +src-span-dom, +hyp-dom

MR +freq-dom

BR1 +sup-dom, +align-dom, +pos-dom, +lemma-dom

BR2 +rm-pos-soft

BR3 rm-pos-norm / rm-pos-soft

BR4 rm-pos-agg / rm-pos-norm

SP +sup-rm

SR +sup-rm, +freq-dom

MXP +sup-rm, +align-rm, +rm-pos-agg, +lemma-rm

Figure 12: A tree providing an ablation lineage structure to the STIFF variants presented here.
+ denotes the addition of a stage while x / y indicates replacing y with x. Since operations are not reordered,
the order can be found from the terminal node by referring to Figure 11.

64

1.000

0.400

0.425

MR

BR1
BR2 BR3 BR4

0.00
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.25 0.30 0.35 0.40 0.45 0.50

U

BP1
BP2

BP3

BP3A
BP4

BP5

SP

SR

MXP

EC

EP

0.70 0.75 0.80

MP1
MP2

MP3

1.00
Precision

Re
ca

ll

Figure 13: A precision/recall plot showing variants of STIFF alongside the processed version of EuroSense. Note the discontinuities in the
axes. The pink lines indicate lines of constant precision/recall ratio, passing through EC and EP. STIFF variants on the Pareto front are highlighted in blue, while
EuroSense variants are coloured yellow.

65

4 Implementation of WSD techniques

This chapter is based on, and presents an extended version of, the evaluation of Robertson

(2019). The evaluation has been extended to take full advantage of the resources developed

in Chapter 3, including the STIFF automatically induced corpus and the manually annotated

corpus. Additional systems based on contextual word vectors derived from language mod-

elling have been added. Finally, experiments based on training on English language data have

been performed.

This evaluation is based on the all words variant of the Word Sense Disambiguation (WSD)

task. In this task, the aim is to identify and disambiguate all words in some corpus. This is

contrasted with the lexical sample approach, where a fixed set of words are chosen for eval-

uation. As we have seen in Section 2.3, there are many systems and approaches which have

been proposed for performing WSD. To select techniques for this evaluation, the following

criteria were used:

• Prefer techniques which have been used in previous evaluations for English.

• Prefer techniques with existing open source code that can be adapted, or with existing

resources which can be downloaded to avoid a lengthy training step.

• Apart from this, include also simple schemes, especially if they represent an approach

to WSD not covered otherwise.

The last two criteria have led to the inclusion of multiple techniques based upon representa-

tion learning, where some representation of words or groups of words is learned in an un-

supervised manner from a large corpus. To perform WSD based on these representations, a

relatively simple classifier, such as a nearest neighbour classifier is then used. This approach

to WSD additionally acts as a grounded extrinsic evaluation of the quality of the representa-

tions.

66

Table 10: Basic information about the corpora and their sections as used in this evaluation.

Corpus Section Type Sentences Instances Synsets

EuroSense
train Automatic 1,564,967 6,675,180 30,814
dev Automatic 991 4461 1463
test Manual 9 117 102

STIFF BP4
train Automatic 9,179,742 8,216,011 34,481
dev Automatic 960 525 332
test Manual 40 95 85

SemCor train Manual 37,176 226,695 25,916
WordNet (v3.1) LKB 117,659
FinnWordNet (v2) LKB 120,449

4.1 Resources

In order to conduct a WSD evaluation, we need a Lexical Knowledge Base (LKB), which pro-

vides the word senses themselves and an evaluation corpus, for scoring the different systems

against. For supervised systems, we additionally need a training corpus. These are covered

in Section 4.1.1.

The current generation of Natural Language Processing (NLP) systems make copious usage

of word embeddings, and other resources which compress massive raw corpora into a form

which is directly useful form as a lexical resource such as language models, as do some of

the systems evaluated here. Section 4.1.2 goes into more depth about the particular word

embeddings and language models used in this evaluation.

4.1.1 LKBs and corpora

The corpora used in this evaluation are already described to some extent in Chapter 3. In par-

ticular, the STIFF automatically induced sense annotated corpus is developed in Section 3.3,

the manually annotated corpus is developed in Section 3.5, and the Finnish section of the

EuroSense corpus (Bovi et al. 2017) is described in Section 3.4. In terms of LKBs, the

FinnWordNet (FiWN) LKB (Lindén and Carlson 2010) first mentioned in Section 2.2.1 and

extended with pseudo word frequency data in Section 3.2.2 is used. In some experiments, the

manually sense annotated English language corpus SemCor (George A. Miller et al. 1994) is

used as training data. Within this section, an English language evaluation corpus, SemEval-

67

ALL, compiled from the evaluation corpora of SENSEVAL and SemEval WSD shared tasks

by Raganato, Camacho-Collados, and Navigli (2017) is included as an extra point of compar-

ison.

The process by which the corpora are divided into segments is described in more detail in

Section 4.2.1. Basic statistics about all the corpora and their segments are given in Table 10:

the number of sentences, how many sense tagged instances there are in the corpus segment

and how many unique synsets there are. The number of synsets in WordNet and FinnWordNet

are given for comparison: in all cases, only a fraction of synsets available in the LKBs are

tagged.

We now turn to the matter of the distribution of senses within the different corpora and LKBs

since this can make a significant difference to the difficulty of an evaluation corpus and the

usefulness of a training corpus as well as the overall difficulty of performing WSD on an LKB.

In particular, we look at different measures of ambiguity and information entropy. Ambiguity

is the number of senses within a confusion class, defined here as arising from attempting to

disambiguate a lemma, Part Of Speech (POS) pair. Information entropy, measured in bits, is

defined as:

H(γ) = −
∑
s∈γ

γ(s) log2(γ(s))

Given a discrete probability distribution γ, information entropy can be used as a measure of

skew in a distribution. A uniform distribution will have an entropy of log2(|γ|), whereas a

distribution with all its probability mass on a single s will have an entropy of 0.

Now we consider different ways of aggregating these measures across whole corpora and

LKBs. The values of the resulting aggregates are shown in Table 11. We can average the

entropy per lemma, POS pair, abbreviated as H or we can weight by the number of occurrences

in the corpus, denoted WH. We can then consider ambiguity A, which is how many senses

are available in the corpus for each lemma, POS pair and its corresponding weighted version

WA. Finally, there is lexical ambiguity LA, which is how many senses are available from the

LKB for each lemma, POS pair and its weighted version WLA. The lexical ambiguity can be

given directly for the LKBs. The entropy figures for the LKBs are based on the count data

included with Princeton WordNet (PWN) and transferred to FiWN in Section 3.2.2.

68

Table 11: Sense distribution information about training and test corpora as used in this eval-
uation. SemEval-ALL is only used for comparison within this section and not used elsewhere in this chapter.
H = entropy; WH = weighted entropy; A = (corpus) ambiguity; WA = weighted (corpus) ambiguity; LA = lexical
ambiguity; WLA = weighted lexical ambiguity

Corpus Language H WH A WA LA WLA

EuroSense train Finnish 0.39 1.04 2.1 8.0 2.2 8.6
STIFF BP4 train Finnish 0.13 0.61 1.3 5.1 3.1 9.5
SemCor English 0.32 1.20 1.6 5.8 2.4 6.8
EuroSense test Finnish 0.04 0.08 1.0 1.1 9.0 10.7
STIFF BP4 test Finnish 0.01 0.02 1.0 1.0 7.2 7.5
SemEval-ALL English 0.26 0.59 1.4 2.1 4.3 5.8
FinnWordNet Finnish 0.31 1.12 1.5
WordNet English 0.28 1.02 1.3

Pasini and Camacho-Collados (2018), give values of two similar measures for many English

language annotated corpora. However, their figures do not entirely agree with the ones given

here. Their figures for ambiguity are equivalent to and agree with those LWA figures given

here. However, their entropy figures, which should be equivalent to H here, given for SemCor

and SemEval-ALL are 0.27 and 0.18 respectively. The reason for this discrepancy is unclear.

We now analyse the figures from Table 11 in more detail. We are particularly in figures which

tell us about the coverage and therefore the quality of our training corpora and measures which

tell us the difficulty of our testing corpora. We begin by noting that the training segment of

STIFF has a low H and WH compared to the training segment of EuroSense and SemCor,

meaning it has a skewed coverage of the senses of each lemma. Concordantly, the gap between

WA and WLA is relatively small for the training segment of EuroSense and SemCor — 0.6

and 1.0 respectively — compared to the training segment of STIFF — 4.4. This suggests

that STIFF has relatively poor coverage of the different senses of the lemma, POS pairs it

includes. We now move from considering only the mean of the entropy distribution of a

corpus to considering the whole distribution. Figure 14 shows the distributions of the entropy

of the sense distributions of different instances of the training corpora — the mean of these

distributions is WH. Noting the different y-axes, it becomes apparent that a large part of the

reason for the low mean WH of STIFF is that it has about twice the number of instances with

0 entropy. These instances are necessarily part of a confusion class where there is exactly one

69

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Eu
ro

Se
ns

e
in

st
an

ce
de

ns
ity

0

1

2

3

4

5

ST
IF

F
in

st
an

ce
de

ns
ity

0 1 2 3 4
Entropy

0.0

0.5

1.0

1.5

2.0

2.5

Se
m

C
or

in
st

an
ce

de
ns

ity

Figure 14: Distribution plots with histogram and kernel density estimate showing the entropy
distributions of instances in within training corpora. Note the separate y-axes.

70

sense available in the training corpus. This means a supervised system based upon the word

expert assumption1 has no ability to associate different contexts with different senses, and is

instead forced to always tag with this sense.

Figure 15 shows a histogram of lexical ambiguity levels of lemmas, POS pairs in FiWN and

PWN, corresponding to LA in Table 11. Figure 16 shows two histograms of the weighted

lexical ambiguity in the manually annotated test segments of the Finnish language STIFF and

EuroSense and the English language subcorpora of SemEval-ALL, corresponding to WLA

in Table 11. Both of these figures are in agreement Table 11 in showing that there is a greater

degree of lexical ambiguity both in FiWN when compared to PWN and in the Finnish man-

ually sense annotated evaluation corpora versus SemEval-ALL and its subcorpora, making

them inherently more difficult for WSD systems.

4.1.2 Word embeddings and language models

Table 12 summarises the word embeddings and language models used. Due to the large num-

ber of word forms a Finnish lemma can take, it is of note here whether the word embedding

represents word forms or lemmas, and if it represents word forms, whether it uses any charac-

ter level information, which should help to combat data sparsity. Despite the use of subword

information, none of these embeddings can analyse out of vocabulary word forms. Cross lin-

gual word embeddings embed words from multiple languages in the same space, a property

utilised in Section 4.3.3.

To extend word representations to sequences of words such as sentences, taking the Arith-

metic mean of Word Embeddings AWE has been commonly used as a baseline (Arora, Liang,

and Ma 2017). Various incremental modifications have been suggested. Rücklé et al. (2018)

suggest concatenating the vectors formed by multiple power means, including the arithmetic

mean. Variants CATP3 and CATP4 are used here. The former is the concatenation of the

minimum, arithmetic mean, and the maximum, while the latter contains also the 3rd power

mean. Arora, Liang, and Ma (2017) proposed Smooth Inverse Frequency (SIF), by taking

a weighted average according to a
a+p(w)

, where a is a parameter and p(w) is the probability

1. See Section 2.3.4.

71

1 2 3 4 5 6 7 8 910 15 20 25 30 35 40 45 50 55
Ambiguity

100

101

102

103

104

105

Le
m

m
as

FiWN
PWN

Figure 15: Histogram of ambiguity levels of lemma, POS pairs in FiWN and PWN. Note the logarithmic scale on the y-axis.

72

0

5

10

15

20

25

30

35

Fi
nn

is
h

in
st

an
ce

s

EuroSense
STIFF

1 2 3 4 5 6 7 8 9 10 15 20 25 30 35 40 45
Ambiguity

0

200

400

600

800

1000

1200

En
gl

is
h

in
st

an
ce

s

senseval2
senseval3
semeval2007
semeval2013
semeval2015

Figure 16: Histogram of ambiguity levels of lemma, POS pairs in Finnish and English testing corpora. SemEval-ALL has been broken down
by the subcorpus from which it came. Note the separate y-axes.

73

Table 12: Word embeddings and language models used. Columns include the number of dimensions, whether the representation takes account of sub
word structure and whether it is cross lingual.

Name Type Training data Dim Represents Sub X-ling

MUSE Supervised fastTextab Word vectors Wikipedia & bilingual dictionary 300 Word forms Yes Yes

ConceptNet Numberbatch 17.06cd Word vectors Wikipedia & ConceptNet 300 Lemmas & MWEs — Yes

NLPL word2vecef Word vectors Wikipedia & CommonCrawlg 100 Word forms No No

BERT-Base, Multilingual Casedh Language model Wikipedia 768 Word forms Yes Yes

Context2Vecjk Language model CommonCrawl g 600 Word forms No No

a Conneau et al. (2018)
b https://github.com/facebookresearch/MUSE
c Speer, Chin, and Havasi (2017)
d https://github.com/commonsense/conceptnet-numberbatch
e Fares et al. (2017)
f http://vectors.nlpl.eu/repository/
g https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1989
h Devlin et al. (2019)
i https://github.com/google-research/bert/blob/master/multilingual.md
j Melamud, Goldberger, and Dagan (2016)
k Trained as part of this thesis. See Section 4.3.7.

74

https://github.com/facebookresearch/MUSE
https://github.com/commonsense/conceptnet-numberbatch
http://vectors.nlpl.eu/repository/
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1989
https://github.com/google-research/bert/blob/master/multilingual.md

of the word, and then performing common component removal. In the variant used here,

(referred to as pre-SIF) a is set to the suggested value of 1 × 10−3 and common component

removal is not performed, while p(w) is estimated based upon the word frequency data of

Speer et al. (2018)2.

4.2 Method

This section describes some of the methodological considerations taken in this evaluation.

4.2.1 Corpus division and model selection

In some cases many variants of a single system are possible. We would like to select the

variant which performs best to represent each system. However, this model selection step

can be considered as another training step. Therefore if we were to use our testing data to

perform it, we would be essentially training on our testing data. This would mean out final

scores would not be admissible since although the individual system would not have access

to the instances from the testing data, it may be that we end up choosing a system particularly

suited for the distribution of the testing data. Another tempting possibility is to reuse the

training data, however, this would tell us nothing about how well our model generalises, only

how well it can memorise the training data and is therefore likely to result in overfitting. The

solution is to make a third dataset which is neither the training nor testing data set, known as

the development data set.

Thus each corpus is ultimately split into three sections. First, the first 1000 sentences are split

out from each corpus with the rest being training data (train). From these 1000 sentences, the

manually annotated part that was annotated in Section 3.5 is deleted to form the development

section (dev) which is used for model selection. Finally, the testing section is formed from

the manually annotated data (test). Refer back to Table 10 for the basic information about

these sections.
2. Obtained from https://github.com/LuminosoInsight/wordfreq.

75

https://github.com/LuminosoInsight/wordfreq

4.2.2 Corpus preprocessing

The resulting corpus is already sentence and word segmented. Additionally, the instance to

be disambiguated is passed to each system with the correct lemma and POS tag, meaning the

evaluation only tests the disambiguation stage of a full WSD pipeline and not the candidate

extraction or POS tagging stage. The corpus is further processed with FinnPOS (Silfverberg

et al. 2016)3 for systems that need POS tags and/or lemmas for the words in the context.

4.2.3 Significance testing

Function Mk-Schedule
(random seed s, number of bootstrap iterations b, length of gold standard n) returns
schedule t

seed random number generator with s
let t be an array of dimension b× n
for i from 1 to b do

for j from 1 to n do
ti,j := a number uniformly sampled from 1 to n

end
end

end
Algorithm 1: Function to make a resampling schedule for the bootstrapping procedure.

Function Bootstrap-Gen
(schedule t of dimension b× n, system results x of dimension n, gold standard g)
returns F1-measure f , resampled F1-measures f ∗

f = F1-measure of x against g
let f ∗ be an array of dimension b
for i from 1 to b do

let x∗ be an array of dimension n
for j in 1 to n do

x∗
j := xti,j

end
f ∗
i = F1-measure of x∗ against g

end
end

Algorithm 2: Function to create a bootstrapped distribution of F1-measures.

3. Obtained from https://github.com/mpsilfve/FinnPos.

76

https://github.com/mpsilfve/FinnPos

Function Bootstrap-Cmp
(system a’s F1-measures fa and fa∗,
system b’s F1-measures f b and f b∗) returns directionality c, p-value p

d := f b − fa

if d < 0 then
d := −d
c := system a has a larger F1-measure

else
c := system b has a larger F1-measure

end
s := 0
for i from 1 to b do

if c says system b has larger F1-measure then
d∗ := f b∗

i − fa∗
i

else
d∗ := fa∗

i − f b∗
i

end
if d∗ > 2d then

increment s
end

end
p := s

b

end
Algorithm 3: Function to compare two bootstrapped distributions to determine direction
and significance level.

77

While we can calculate the F1 score for an individual run, it may be that this somehow due to

the “luck of the draw” in which a certain lucky system gains an advantage due to the test set

containing more instances which are easier for it to classify correctly. Bootstrapping resam-

ples the results from each system with replacement many times to synthesise a distribution

from the sample, essentially creating an estimate of many “luck of the draw” scenarios. The

probability that one system really is better than another can then be estimated by considering

the distribution formed by taking the difference between the two systems’ synthetic distri-

butions and seeing how its probability mass compares to 0. The probability that we should

reject the null hypothesis, that the distributions are the same, is called a p-value. The pro-

cedure used here roughly follows that of Berg-Kirkpatrick, Burkett, and Klein (2012)4. The

bootstrapping significance testing is based on paired resampling. This means that all the re-

sults of all systems are joined or paired together and so each sample draws information about

each instance from all systems. A worked example is given in Figure 17.

The specific procedure used here is outlined in detail in Algorithms 1, 2 & 3. In Algorithm 1,

a list of resamplings acting as a to do list, agenda or schedule is built, to be used by the later

steps. This schedule is reused per gold standard, meaning that in this case there are separate

schedules created for STIFF and EuroSense and for the automatically annotated development

sections and manually labelled test sections thereof (introduced in Section 4.2.1).

In Algorithm 2 a distribution of F1-measures is generated by using the schedule to create

many guesses and scoring them. Worth noting here is that contrary to a usual set up of calcu-

lating F1-measure, a single instance occurring multiple in a guess will be counted multiply.

A conventional scoring program, such as the one released alongside Raganato, Camacho-

Collados, and Navigli (2017) and used in previous shared tasks only count True Positives

(TPs), False Positives (FPs) and False Negatives (FNs) once. Here, in keeping with the idea

of resampling with replacement, these are all counted multiply.

Finally, Algorithm 3 calculates the final p-value calculation. The comparison is two sided.

This means the null hypothesis is that the two systems have identical F1-measures, and re-

jecting it can lead to the conclusion that either system is better.

4. Note in particular the algorithm listing on page 2 and the footnote on page 3.

78

Iteration i of schedule, ti
Line no.
53
74
53
...

Gold
N ID Synset
1 W-1 02603699-v
… … …
53 W-80 05611302-n
… … …
74 W-90 02499036-a
… … …

System A
N ID Synset
1 W-1 00941990-v
… … …
53 W-80 05611302-n
… … …
74 W-90 01038332-a
… … …

System B
N ID Synset
1 W-1 02603699-v
… … …
53 W-80 05611302-n
… … …
74 W-90 02499036-a
… … …

…

System Z
N ID Synset
1 W-1 02603699-v
… … …
53 W-80 06341340-n
… … …
74 W-90 02499036-a
… … …

Resampled
N ID Gold A B … Z
1 W-80 05611302-n 05611302-n 05611302-n … 06341340-n
2 W-90 02499036-a 01038332-a 02499036-a … 02499036-a
3 W-80 05611302-n 05611302-n 05611302-n … 06341340-n

Figure 17: An example to illustrate how the process of paired resampling of the results from
different WSD systems works for a single bootstrap iteration.

79

The p-value used here is 0.05. In statistical test theory, FPs and FNs are referred to as type I

and type II errors respectively, while those items being compared (in this case WSD systems)

are referred to as treatments. The p-value is the chance of making a type I error. When we

consider that we are making multiple comparisons in our analysis, the chance that there is a

type I error on one of the comparisons becomes quite probable since it is the chance of a type

I error per-comparison. There exist various compensating procedures that attempt to bound

the probability of one or more type I errors occurring across all comparisons. In line with

previous NLP comparisons, no such compensation is made here.

Piepho (2004) proposes presenting the result of an all pairs comparison by ranking results

and labelling each treatment with one or more letters denoting its membership of a class of

treatments which are not significantly different. The implementation developed as part of this

thesis finds the letters by forming an undirected graph of treatments with edges between treat-

ments that have non-significantly different p-values and finding cliques in the graph, using

the networkx5 Python library.

4.3 Systems

This section describes the systems and configurations under evaluation. A simple baseline

is presented first, then some knowledge based WSD systems followed by some supervised

systems.

Knowledge based WSD systems use only information in the LKB. In almost all dictionary

style resources, this can include the text of the definitions themselves. In WordNet style

resources, this can include also the graphical structure of the LKB. Sometimes knowledge

based systems incorporate frequency information. Here, where there is a possibility to do so,

variants with and without are selected.

Supervised WSD systems are based on supervised Machine Learning (ML). Most typically

in WSD a separate classifier is learned for each individual lemma. Another approach is to

classify at the synset level. Here, all supervised systems were able to fall back to the 1st sense

baseline for unseen tokens.
5. Obtained from https://networkx.github.io/.

80

https://networkx.github.io/

4.3.1 Baseline

We can define limits to calibrate the performance of the WSD systems which also tell us

about the sense distributions in our corpora and LKB. We may consider the proportion of

unambiguous test instances, unambg. In a supervised setting, we can consider the proportion

of test instances which have their lemma associated with the true sense in the training data,

known — i.e., the maximum accuracy of a system based upon the word expert assumption.

Baselines both tell us about the sense distributions of the corpora and act as trivial WSD

system. The most common WSD baseline simply picks the most frequent sense for each

instance, which in many LKBs is the first numbered sense. Here the data from Section 3.2.2,

is used for this 1st baseline. Picking a random sense is another baseline, referred to as rand.

4.3.2 UKB

UKB (Agirre, Lacalle, and Soroa 2014) is a knowledge based system, representing the graph

based approach to WSD. Since it works on the level of synsets, the main algorithm is es-

sentially language independent, with the candidate extraction step being the main language

dependent component. UKB can also make use of language specific word sense frequencies.

As noted in Agirre, López de Lacalle, and Soroa (2018), depending on the particular con-

figuration, it is easy to get a wide range of results using UKB. The configurations used here

are based on the recommended configuration given by Agirre, López de Lacalle, and Soroa

(2018). For all configurations, the ppr w2w algorithm is used, which runs personalised page

rank for each target word. One notable change here is that contexts are fixed to a single sen-

tence, since this the same input as is given to the other systems. Variations with and without

access to word sense frequency information are given, (freq & no freq) with the latter assumed

to similar to the configuration given in Raganato, Camacho-Collados, and Navigli (2017).

4.3.3 Lesk with cross lingual word embeddings

A variant of Lesk — Lesk with cross lingual word embeddings — is included to represent

the gloss based approach to WSD. The system is also referred to here as cross lingual Lesk

81

and xLesk. The variant presented here is loosely based upon Basile, Caputo, and Semeraro

(2014). The technique is a derivative of simplified Lesk (Kilgarriff and Rosenzweig 2000a), in

that words are disambiguated by comparing contexts and glosses. For each candidate defini-

tion, the word vectors of each word in the definition text are aggregated to obtain a definition

vector. The word vectors of the words in the context of the word being disambiguated are

also aggregated to obtain a context vector. Definitions are then ranked from best to worst in

descending order of cosine similarity between their definition vector and the context vector.

Frequency data (freq) can be incorporated by multiplying the obtained cosine similarities by

the smoothed probabilities6 of the synset given the lemma.

Since the words in the context are Finnish, but the words in the definitions are English, cross

lingual word vectors are required. The embeddings used are fastText, Numberbatch and the

concatenation of both. Other variations are made by the choice of aggregation function,

choosing whether or not to only include words which occur in a WordNet, and whether glosses

are expanded by adding also the glosses of related synsets. The gloss expansion procedure

applied follows Banerjee and Pedersen (2002, Chapter 6).

4.3.4 Lesk++

Oele and Noord (2017) introduced Lesk++. The system is based on word sense embeddings

which are enriched with word sense vectors based on the graphical structure of WordNet using

the AutoExtend retrofitting method Rothe and Schütze (2017)7. To create these vectors, the

ConceptNet Numberbatch vectors introduced in Table 12 are used as a starting point. The

final embedding contains surface lemmas, synsets and WordNet lemmas: (synset, lemma)

pairs embedded in a single space.

Lesk++ works sentence wise, representing the sentence context as an average of vectors of

disambiguated and undisambiguated words: surface lemma vectors for those that have not

yet been disambiguated, and (synset, lemma) vectors for those that have not. Glosses are

also represented using an average of word vectors. The sentence is processed from the least

6. This smoothing procedure is given in Section 3.2.2.
7. Using their software obtained https://github.com/casaro/AutoExtend. The preprocessing

script and resulting vectors are made available at https://github.com/frankier/AutoExtend.

82

https://github.com/casaro/AutoExtend
https://github.com/frankier/AutoExtend

ambiguous word to the most. For each word, the sense which maximises the cosine similarity

of the context vector and the sense vector and the context vector and the sense’s gloss vector is

chosen. Here, similar to cross lingual Lesk, there are variants which use different aggregation

functions, and gloss expansions. Additionally here there is the choice of using only the gloss

vector similarity term, only the sense vector similarity term, or using both, as in the original

paper. Since the paper is unclear on whether the context vector should include the word

currently being disambiguated, variants with both options are included.

4.3.5 SupWSD

SupWSD (Papandrea, Raganato, and Bovi 2017) is a supervised WSD system following the

traditional paradigm of combining manually created features (“feature engineering”) with a

linear classifier, in this case, a Support Vector Machine (SVM). SupWSD is largely a reim-

plementation of ItMakesSense8 (Zhong and Ng 2010), and as such uses the same feature

templates and its results should be largely comparable. It was chosen over ItMakesSense

since it can handle larger corpora.

All variants include the POS tag and local collocation feature templates, and the default con-

figuration includes also the set of words in the sentence. Variants incorporating the most

successful configuration of Iacobacci, Pilehvar, and Navigli (2016), exponential decay aver-

aging of word vectors with a window size of 10, are also included for each applicable word

embedding from Section 4.1.2. For each configuration incorporating word vectors, variants

without the set of words in the sentence are included, denoted e.g., word2vec-s.

4.3.6 Nearest neighbour using word embeddings

Nearest neighbour using word embeddings (AWE-NN) has been used previously by Mela-

mud, Goldberger, and Dagan (2016) as a baseline. As in Section 4.3.3, contexts are repre-

sented using an aggregation of word embeddings, but word senses are now represented by the

aggregation of word embeddings of tagged instances, moving the technique from the realm

of knowledge based WSD to supervised WSD. Since both tagged instances and the untagged

8. Summarised in Section 2.3.4.

83

context to be disambiguated are in Finnish, the constraint that word embeddings must be cross

lingual is removed.

A cross lingual variant (xAWE-NN) was created based on training on SemCor (George A.

Miller et al. 1994). In this variant, rather than creating an individual nearest neighbour clas-

sifier per word, during training, each example is associated with its synset. Then, during

testing, for each word to be disambiguated, a list of candidate synsets is and all the associated

vectors are searched for the example with the nearest neighbour vector to that of the word

being disambiguated, tagging the example with the associated synset.

4.3.7 Nearest neighbour with Context2Vec

Melamud, Goldberger, and Dagan (2016) introduced Context2Vec9 (Ctx2Vec), which models

contexts using a bidirectional Long Short-Term Memory (LSTM) neural network. The model

was trained as part of this thesis for 3 epochs on pre-tokenised Finnish language data originally

from CommonCrawl10. Training was performed on surface forms, with no segmentation

performed, and because of this a minimum word frequency of 100 was set so the vocabulary

was small enough so that the model could be fit in memory. Language models are potentially

reusable for many tasks, and this model is made available so it can be reused by others with

the hope of saving the time and electrical power needed to retrain from scratch11.

4.3.8 Nearest neighbour with BERT

BERT (Devlin et al. 2019) uses a neural network based on multiple layers of stacked atten-

tion on a task called masked language modelling12. A multilingual model pretrained on 104

languages made publicly available by the authors. In this model, all languages are embedded

into the same space, rather than tagged or associated with a language vector. This model

was used as is without further fine tuning. The model comes with a wordpiece based seg-

9. See sections 2.2.2.3 & 2.3.4.
10. See https://commoncrawl.org/ and https://lindat.mff.cuni.cz/repository/

xmlui/handle/11234/1-1989.
11. Available at https://archive.org/download/ctx2vec-b100-3epoch/

ctx2vec-b100-3epoch.zip.
12. See Section 2.2.2.3.

84

https://commoncrawl.org/
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1989
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1989
https://archive.org/download/ctx2vec-b100-3epoch/ctx2vec-b100-3epoch.zip
https://archive.org/download/ctx2vec-b100-3epoch/ctx2vec-b100-3epoch.zip

Table 13: Baselines and calibration statistics for development corpora (%). Within each column,
results are sorted in descending order.

Euro STIFF
Known in 99.9 Known in 100.0
Known out 82.1 Known out 77.3
1st 50.4 1st 74.3
Rand 29.7 Rand 45.7
Unambg 13.1 Unambg 36.6

mentation model which is a variant of the Byte Pair Encoding (BPE) segmentation method

(Sennrich, Haddow, and Birch 2016). The segmentation is shared between all languages and

is non-grammatical. It is mainly focussed on reducing the vocabulary size so as to reduce

sparsity and make the model fit use less memory.

Each example was associated with the vector associated with the first segment making up the

surface form of the unit to be disambiguated and classification was performed by finding the

nearest neighbour (BERT-NN). As with AWE-NN, a cross lingual variant was created based

on training on SemCor (xBERT-NN).

4.4 Model Selection

This section describes the model selection stage on the development data. For each of the

comparison matrix tables, cells in bold type have the maximum score, while those with a

light blue background were not found to score significantly less than the maximum scor-

ing system. When variants that may or may not use frequency data exist, these are treated

as completely different systems and model selection is run both with and without frequency

data, resulting in two configurations which will both be run on the test data. Corpus calibra-

tion figures, explained in Section 4.3.1, for the development corpora used here are given in

Table 13.

4.4.1 Cross lingual Lesk

Tables 14 & 15 show the results of different variants of cross lingual Lesk, with and without

frequency data respectively, tested against the development data.

85

For the variants with frequency data, four variants are found to be not significantly different

than the maximum across both training sets: pre-SIF+Concat, Average/Aggregate of Word

Embeddings (AWE)+Concat, pre-SIF+fastText, pre-SIF+fastText+Expand. Of these AWE+

Concat scores maximum with on the STIFF development set while pre-SIF+fastText+Expand

score maximum on EuroSense. To break this tie, we now look at the p-values with which these

variants are significantly different from the maximum when tested on the other development

set. AWE+Concat has p=0.09 versus the maximum variant on EuroSense, whereas pre-SIF+

fastText+Expand has p=0̃.08 versus either maximum variant. We select the larger p-value.

This means that Freq+AWE+Concat is more likely to be not significantly different than the

maximum EuroSense variant and therefore it is selected.

For the variants without frequency data, there are no variants in common between those vari-

ants that are not significantly different from the maximum at a p=0.05 significance level.

Failing this, we opt to select the variant which is a maximum for one development set while

maximally sufficing for the other development set. CATP3+Concat+Expand is maximum on

STIFF while CATP3+Concat+Expand+Filter is maximum on EuroSense. The p-values ver-

sus the respective maxima in the opposing development set are 0.04 and <0.01. The variant

with the larger p-value, No Freq+CATP3+Concat+Expand is chosen.

4.4.2 Lesk++

Table 16 show the results for different variants of Lesk++, tested against the development

data. pre-SIF+Defn+Incl. cand+Expand is significantly better than all other techniques for

both corpora. Notable here is that those variants based on the distance between the lemma

vector and the context vector, denoted performs similarly to the random baseline for both

corpora (see Table 13) meaning that this similarity term is not acting to perform WSD at all

in this case. We can conclude that both variants are thus dragged down by the inclusion of

this similarity.

86

Table 14: Results for variants of cross lingual Lesk with frequency data tested against devel-
opment data (%). Cells in bold type have the maximum score, while those with a light blue background
were not found to score significantly less than the maximum scoring system.

No expand Expand
No filter Filter No filter Filter

EuroSense

fastText

pre-SIF 52.2 52.2 52.4 52.3
AWE 51.9 52.0 51.7 52.2
CATP3 51.7 51.8 51.7 51.7
CATP4 51.8 51.8 51.5 51.6

Numberbatch

pre-SIF 52.0 51.9 51.9 52.1
AWE 51.6 51.8 51.6 51.7
CATP3 51.6 51.7 51.9 51.9
CATP4 51.6 51.8 51.8 51.8

Concat

pre-SIF 52.3 52.0 51.6 51.7
AWE 52.2 52.1 51.6 51.9
CATP3 51.6 51.8 51.9 51.8
CATP4 51.7 51.8 51.6 51.8

STIFF

fastText

pre-SIF 57.5 54.5 57.5 54.2
AWE 57.7 54.2 57.8 54.2
CATP3 57.7 54.5 58.1 54.5
CATP4 57.7 54.6 57.8 54.3

Numberbatch

pre-SIF 53.9 52.7 55.7 53.9
AWE 55.4 53.6 55.2 54.8
CATP3 55.1 53.9 55.1 54.2
CATP4 55.8 54.6 55.7 54.6

Concat

pre-SIF 57.4 54.2 57.5 54.9
AWE 58.1 54.8 57.8 54.9
CATP3 57.8 54.9 58.0 54.9
CATP4 57.8 55.1 57.8 54.8

87

Table 15: Results for variants of cross lingual Lesk without frequency data tested against de-
velopment data (%). Cells in bold type have the maximum score, while those with a light blue background
were not found to score significantly less than the maximum scoring system.

No expand Expand
No filter Filter No filter Filter

EuroSense

fastText

pre-SIF 35.3 34.5 41.7 40.1
AWE 37.6 34.9 39.9 40.0
CATP3 37.5 35.4 45.9 46.8
CATP4 37.1 35.2 44.0 45.0

Numberbatch

pre-SIF 33.4 33.4 35.2 35.9
AWE 34.3 32.8 33.0 34.4
CATP3 35.9 35.6 47.1 47.7
CATP4 35.6 35.4 45.5 46.0

Concat

pre-SIF 33.9 34.1 39.8 39.0
AWE 36.7 33.1 37.0 38.3
CATP3 36.3 35.2 47.7 48.2
CATP4 36.3 35.4 45.8 46.6

STIFF

fastText

pre-SIF 39.1 36.1 43.8 42.7
AWE 40.3 36.2 43.2 42.9
CATP3 38.9 36.8 41.1 39.2
CATP4 39.1 37.1 40.2 38.3

Numberbatch

pre-SIF 36.7 36.2 39.7 38.9
AWE 37.1 35.9 39.5 38.9
CATP3 38.3 36.5 43.9 42.1
CATP4 38.2 36.5 41.4 39.7

Concat

pre-SIF 39.2 35.2 42.3 41.8
AWE 40.5 35.9 42.9 42.3
CATP3 39.7 37.1 45.7 41.8
CATP4 40.0 37.4 43.6 40.0

88

Table 16: Results for variants of Lesk++ tested against development data (%). Cells in bold
type have the maximum score, while those with a light blue background were not found to score significantly
less than the maximum scoring system.

No expand Expand
Incl. cand Excl. cand Incl. cand Excl. cand

EuroSense

pre-SIF
Both 32.3 32.9 35.5 34.3
Defn 34.6 33.7 41.3 36.0
Lemma 28.7 29.4 28.5 29.3

AWE
Both 31.8 32.2 31.5 31.5
Defn 34.4 33.9 34.5 32.6
Lemma 28.0 28.9 27.7 28.6

STIFF

pre-SIF
Both 48.8 50.1 54.3 53.0
Defn 49.7 49.7 58.5 54.7
Lemma 49.7 50.5 49.7 50.3

AWE
Both 50.1 50.1 52.8 53.9
Defn 49.3 50.5 55.2 54.7
Lemma 48.4 50.1 48.8 50.5

Table 17: Results for variants of SupWSD tested against development data (%). Cells in bold
type have the maximum score, while those with a light blue background were not found to score significantly
less than the maximum scoring system.

default fasttext word2vec fasttext-s word2vec-s

EuroSense trained EuroSense 62.8 63.2 63.1 63.2 63.1
STIFF 53.9 54.1 53.3 53.5 53.3

STIFF trained EuroSense 36.4 36.6 36.6 36.6 36.6
STIFF 63.4 62.9 62.5 62.9 62.9

4.4.3 SupWSD

Table 17 shows the results for different variants of SupWSD, tested against the development

data. Overall the results do not give much to choose from, given only a single test/training

configuration of word2vec performs significantly worse than the best. Ultimately fasttext is

chosen since it performs as well as the best system for three out of four train/testing configu-

rations.

4.4.4 AWE-NN

The results of all AWE-NN variants tested against the development data are shown in Ta-

ble 18. The aim is to select a variant which performs well across all testing and training set

89

Table 18: Results for variants of AWE-NN tested against development data (%). Cells in bold
type have the maximum score, while those with a light blue background were not found to score significantly
less than the maximum scoring system.

Training set Testing set fastText Numberbatch word2vec CC2a CC3b

EuroSense

EuroSense

pre-SIF 74.1 74.2 73.6 74.8 74.4
AWE 74.0 74.2 73.1 74.8 73.5
CATP3 74.0 74.9 72.9 75.4 73.2
CATP4 74.0 74.7 73.1 75.4 73.3

STIFF

pre-SIF 40.0 39.4 41.1 39.0 41.3
AWE 40.6 40.4 41.1 43.0 41.3
CATP3 40.2 41.0 42.1 42.7 42.7
CATP4 41.1 41.1 41.9 42.9 42.5

STIFF

EuroSense

pre-SIF 31.8 31.8 32.2 32.1 32.3
AWE 31.4 31.7 32.5 31.9 32.4
CATP3 31.5 31.5 31.6 31.9 31.7
CATP4 31.5 31.5 31.7 31.9 31.9

STIFF

pre-SIF 83.6 81.9 85.0 83.8 84.6
AWE 84.0 82.5 84.4 85.0 84.4
CATP3 84.8 81.7 84.0 83.8 84.2
CATP4 84.2 82.1 84.0 84.4 84.4

a Concatenation of fastText and Numberbatch
b Concatenation of fastText, Numberbatch and word2vec

90

Table 19: Baselines and calibration statistics for manually annotated corpora (%). Within each
column, results are sorted in descending order.

Euro STIFF
Known in 85.5 Known out 84.2
Known out 75.2 Known in 81.1
1st 44.4 1st 55.8
Rand 30.8 Rand 28.4
Unambg 16.2 Unambg 15.8

combinations. Three variants using the CC2 word vectors were not found to be significantly

different from the maximum across all: AWE, CATP3 and CATP4. Of these, AWE addi-

tionally achieves the maximum score when tested on STIFF data with both training sets, so

CC2+AWE is selected to represent AWE-NN.

4.5 Results

This section presents the final results of the selected variants of the systems on the automat-

ically annotated development and manually annotated test sections of both the EuroSense

and STIFF corpora. Corpus calibration figures, explained in Section 4.3.1, for the manually

annotated corpora used here are given in Table 19, while the final WSD results are given in

Table 20. The rankings of the systems vary across the different evaluation corpora and this

permutation structure is illustrated in Figure 18.

Firstly we note that the test set size was not big enough to differentiate the top systems. For

EuroSense and STIFF we estimate how many sense tagged instances would be required to

find a significant difference between the top system and the next two systems scoring at least

percentage point less. This was done by repeating the bootstrapping procedure described in

Section 4.2.3 but modifying Algorithm 1 to vary the size of the schedule matrix t from the

actual sample size n to an extrapolated sample size. The resulting plot is shown in Figure 19.

Note that this analysis is an extrapolation and only says that we would reach a p-value of

0.05 if we annotated more data and found that the score distribution remained the same on

this new annotated data. It is possible that the new annotated data could change ranking of

the top systems. Using this plot, and adding a small safety margin, to obtain significance

91

Euro dev STIFF dev Euro test STIFF test

AWE-NN in

Ctx2Vec in

BERT-NN in
SupWSD in

UKB freq

Lesk freq

UKB

1st

Lesk

xBERT-NN

BERT-NN out

xAWE-NN

Ctx2Vec out

AWE-NN out

Lesk++
SupWSD out

Rand

UKB freq

Ctx2Vec in

1st
Lesk freq

xBERT-NN

BERT-NN in

Lesk++

AWE-NN in

xAWE-NN

AWE-NN out

BERT-NN out

Ctx2Vec out

UKB

Lesk
SupWSD in

SupWSD out

Rand

Figure 18: Parallel coordinate plot to emphasise the permutation structure of the ranks of the
systems on the different test corpora. See also Table 20.

92

Table 20: Results for final variants of WSD systems tested against development and manually annotated sections of both corpora (%).
Within each column, systems are sorted in descending order of their F1-score. The permutation structure is emphasised in the accompanying parallel coordinate
plot in Figure 18. Systems with the same letter next to their score are not found to have a significant difference between their results, as described on page 80.
Manually annotated corpora are indicated as bold to emphasise their reliability over the development corpora. Results in italics are the development corpus result
of a system which has had model selection performed on that same development corpus.

Euro dev STIFF dev Euro test STIFF test

AWE-NN in 74.9a AWE-NN in 86.1a UKB freq 51.5a,b UKB freq 57.9a

Ctx2Vec in 67.6b Ctx2Vec in 81.1b xBERT-NN 51.3b,c Ctx2Vec in 56.8a,b

BERT-NN in 67.3b BERT-NN in 79.8b xLesk 49.6b,c,d,e 1st 55.8a,b

SupWSD in 63.2c 1st 74.3c UKB 48.9a,b,c,d,e,f,g xLesk freq 55.8a,b

UKB freq 54.4d xLesk freq 73.3c Ctx2Vec out 47.9a,b,c,e,g xBERT-NN 55.8a,b

xLesk freq 52.2e xBERT-NN 68.4d xLesk freq 47.0c,d,e,f,g,h BERT-NN in 55.8a,b

UKB 51.7e UKB freq 65.3e AWE-NN in 45.3a,b,c,d,e,f,g,h Lesk++ 54.7a,b

1st 50.4f xAWE-NN 64.0e,f BERT-NN in 45.3a,b,c,d,e,f,g,h AWE-NN in 54.7a,b

xLesk 47.7g AWE-NN out 64.0e Ctx2Vec in 45.3a,b,c,d,e,f,g,h xAWE-NN 50.5a,b,c

xBERT-NN 44.1h SupWSD in 62.9e,f,g 1st 44.4c,d,e,f,g,h AWE-NN out 50.5a,b,c

BERT-NN out 44.1h BERT-NN out 62.3e,f,g AWE-NN out 44.4c,d,e,f,g,h BERT-NN out 50.5b,c

xAWE-NN 43.6h Ctx2Vec out 61.3f,g,h Lesk++ 42.7a,f,g,h Ctx2Vec out 50.5b,c

Ctx2Vec out 43.6h UKB 60.2g,h xAWE-NN 42.7d,e,f,g,h UKB 50.3b,c

AWE-NN out 43.5h Lesk++ 58.5h BERT-NN out 42.7d,f,h xLesk 45.3c,d

Lesk++ 41.3i xLesk 57.9h SupWSD in 41.9d,e,f,g,h SupWSD in 40.0d,e

SupWSD out 36.6j SupWSD out 54.1i SupWSD out 38.5h SupWSD out 35.8e

Rand 29.7k Rand 45.7j Rand 30.8i Rand 28.4f

93

0 1000 2000 3000 4000 5000
Test set instances

0.0

0.1

0.2

0.3

0.4
p-

va
lu

e

4881

95, 0.43

673

95, 0.27

2506

117, 0.35

869

117, 0.26

p=0.05

STIFF: UKB freq vs Ctx2Vec
STIFF: UKB freq vs 1st
Eurosense: UKB freq vs Lesk
Eurosense: UKB freq vs UKB

Figure 19: Graph showing an extrapolation estimating the p-values for a significant level of difference between pairs of top performing
systems decreasing with increasing sample size. Lines of the form a

((x+b)d)+c
have been fitted.

94

between UKB freq and 1st on STIFF and UKB freq and xLesk on EuroSense we would need

to obtain in total 1000 sense tagged instances for each of STIFF and EuroSense, or about

90 more hours/2 full time weeks of annotation. To obtain a difference between UKB freq

and Ctx2Vec for STIFF and UKB freq and UKB for EuroSense would require in total 5000

instances, or about 490 more hours/12 full time weeks of annotation.

In terms of statistically significant results, UKB freq manages to clear the 1st sense baseline on

the EuroSense test data — the only system to do so on either test section. All systems managed

to clear the random baseline on all sections. SupWSD performed worse than the 1st sense

baseline on both test sections, except for the in domain variant on EuroSense. Acknowledging

that more manually annotated data is required to obtain statistical significance, the rest of this

section relaxes adherence to the p=0.05 level.

Now we examine the effect on in and out of domain training data and evaluating on automat-

ically versus manually annotated data. It is evident that the in domain supervised systems are

better able to fit the systematic errors from the automatically annotated development sets than

the manually annotated test sets, while the out of domain and cross lingual trained versions

of the supervised systems fall behind or perform similarity to non-supervised systems. When

testing on the manually annotated data the effect of domain becomes much less pronounced,

with cross lingual BERT systems beating any in domain systems and the margin between in

and out of domain variants of the same systems being much smaller. The fact that in domain

AWE-NN is the best system on the development data but is nowhere near on the test data

indicates that this system has overfitted the data, possibly due to the model selection stage.

Secondly, we turn to what degree systems are able to beat the 1st sense baseline. For both

development and test sections, many more systems clear the baseline for EuroSense than for

STIFF. In fact, for the test section of STIFF, the only system to actually beat the 1st sense

baseline, UKB freq, actually incorporates it. The likely explanation for this difference stems

from the choice of sentence length contexts. Being derived from parliamentary transcripts,

EuroSense contains lengthy, formal language and thus quite long sentences/contexts, whereas

STIFF is derived from subtitles and thus contains quite short sentences/contexts (often sen-

tence fragments or even single words). Figure 20 presents a histogram showing frequently

different context sizes appear for different instances. Since all systems apart from the 1st

95

sense baseline rely on the context to disambiguate, STIFF is quite strongly disadvantaged

here. Another reason may be that both the development and test sections of EuroSense have

sense frequencies distributions less in line with the data the 1st sense baseline is ultimately

derived from when compared to STIFF. Referring to information about the test sections of

EuroSense and STIFF presented in Table 19, the unambiguous, random sense and known to-

kens are roughly comparable, all being within 5 percentage points, but the 1st sense baseline

is 10 percentage points more for STIFF. This may be because the EuroSense data represents

are narrower domain than STIFF.

Now we turn to comparison with previous results, in particular, we compare the results of the

English language evaluation of Raganato, Camacho-Collados, and Navigli (2017) on all con-

catenated test sets (Raganato, Camacho-Collados, and Navigli 2017, Table 4) to the results on

the manually annotated test corpora sections. In Raganato, Camacho-Collados, and Navigli

(2017) evaluation all configurations of ItMakesSense, as well as Context2Vec, outperform the

1st sense baseline, while UKB falls short of it. Noting that SupWSD and ItMakesSense con-

tain identical implementation approaches to WSD and thus should be comparable, how can

we explain this discrepancy? Firstly, we reiterate from Section 4.3.2 that Raganato, Camacho-

Collados, and Navigli (2017) presents a version of UKB which does not incorporate any fre-

quency information. Even so, UKB without frequency information is quite competitive for

the EuroSense test section. This may be due to EuroSense’s contexts being larger than the

test corpora in that evaluation. Indeed it was noted by Agirre, López de Lacalle, and Soroa

(2018) that UKB needs quite a bit of context to perform well, to the point where the context

was extended beyond a single sentence in their experiments.

Less clear is why for example, SupWSD and Context2Vec (Melamud, Goldberger, and Dagan

2016)13, which were shown to perform well for English fare so poorly here. One possibility

is that there are negative effects due to unique features of the Finnish language or due to the

way FinnWordNet is created. We could also bring the manually annotated corpus created in

Section 3.5 into doubt. However, the most seemingly likely explanation is that training solely

on automatically induced corpora leads to poor performance for these systems. We need only

13. The result for Context2Vec on the concatenated dataset of Raganato, Camacho-Collados, and Nav-
igli (2017) is available at http://nlpprogress.com/english/word_sense_disambiguation.
html. It was communicated directly by the author.

96

http://nlpprogress.com/english/word_sense_disambiguation.html
http://nlpprogress.com/english/word_sense_disambiguation.html

150 100 50 0 50
0

20

40

60

80

100

9.0

26.2

Dev

20 10 0 10
0

10

20

30

40

50

8.9

32.4

Test

STIFF
EuroSense

Figure 20: Histograms comparing the context lengths in tokens of the development and test section of STIFF and EuroSense. The mean
is indicated with a dashed line.

97

refer to Figure 13 to see that both training corpora have quite low precision and recall, and in

particular, the figures obtained for EuroSense are much lower in the evaluation of its Finnish

section presented here than the other languages evaluated in their paper. In the experiments

of Bovi et al. (2017) all supervised systems were trained on the concatenation of manually

annotated corpora and automatic corpora which might mitigate the worst biasing effects of

using the automatic corpora. The good results for cross lingual BERT support this, showing

that in this case, using a manually annotated corpus from another language outperforms using

an automatically induced one from the same language.

In the case of Context2Vec, it is possible a different training setup would result in a better

language model and therefore better results here. Namely cutting off words with a frequency

of less than 100 is clearly quite undesirable, and particularly with an agglutinative language

like Finnish performing segmentation, either grammatically motivated or purely aimed at

reducing vocabulary size like BPE could well improve the result since it would address the

sparsity caused by using surface forms.

Another result which we were not able to replicate here is Lesk++ (Oele and Noord 2017).

The main difficulty seems to be that the cosine similarity between the context vector and

lemma vector. This was a reimplementation, so one possibility is bugs in the implementation,

however, given the other term appears to work correctly and the implementation was checked

over several times this seems unlikely. It could also result from the fact that the exact process

the word vectors were made was quite different, using Numberbatch vectors as a starting point

rather than word2vec vectors, resulting in the vector space which contains surface lemmas,

synsets (synset, lemma) pairs not working as intended. However, in Section 5.3 it is used as

the basis of an approach to word sense clustering which is competitive with other approaches

and so it appears that this embedding is not completely broken.

The implementations of the techniques reimplemented for this evaluation and the scripts

and configuration files for the adapted open source systems are publicly available under the

Apache v2 license. To ease replicability further, the entire evaluation framework, includ-

ing all the requirements, WSD systems and lexical resources are made available as a Docker

image14.

14. Available at https://github.com/frankier/finn-wsd-eval.

98

https://github.com/frankier/finn-wsd-eval

5 Creating an aligned Finnish lexical resource

This chapter introduces a lexical resource made by combining automatically extracted Wik-

tionary definitions, extracted in Section 5.1, with FinnWordNet (FiWN). There are two ad-

vantages to basing TheWhatNow?! on a resource like this:

• It increases the coverage of Finnish vocabulary;

• It allows prioritisation of Wiktionary definitions where possible. These tend to be of

higher quality. The reason for this is:

– They are written for humans first, whereas FiWN is arranged around synsets first,

resulting in overly fine grained senses;

– They are written for the particular Finnish word, rather than for a synset, and may,

therefore, be more precise;

– They can contain other information not available in FiWN, such as grammati-

cal information about common inflections of associated words, explored in Sec-

tion 5.2.

On the other hand, as we have seen, FiWN has advantages too. Being based on Princeton

WordNet (PWN), it is linked to other languages, a fact used to induce a sense tagged cor-

pus in Chapter 3. Being somewhat of a standard among Lexical Knowledge Bases (LKBs),

means that is it compatible with the greatest number of Word Sense Disambiguation (WSD)

techniques, a fact used in Chapter 4. Therefore we would like to combine Wiktionary defini-

tions and FiWN to gain the benefits of both resources. The approach used here is to jointly

align and cluster senses, and this is done in Section 5.3. Another important issue is that of

lexical items more complex than simply a single lemma, including for example Multi-Word

Expressions (MWEs) in the LKB which need to be recognised and extracted from free text

as part of the implementation of the TheWhatNow?!, and this is addressed in Section 5.2.

99

5.1 Scraping Wiktionary

Wiktionary definitions are typically edited as a mixture of unstructured text alongside semi-

structured markup written in with the MediaWiki markup language. The MediaWiki markup

language allows for semi-structured data entry using templates. However, there is very little

structure of a Wiktionary page which is strictly enforced by the MediaWiki software. Instead,

what consistent structure there is created by convention and moderation, with some editors

dedicating much of their energy to ‘cleaning up’ the edits of others. Typically each Wik-

tionary page can one or more language headings. Within each language heading, there may

be one or more etymologies, and within each etymology, there may be one or more Part Of

Speech (POS) headings. Most commonly, however, a word has only a single etymology, and

in this case, POS headings sit directly below language headings.

Under each POS heading, there are one or more definitions. These are usually formatted

as a nested list, possibly in combination with templates. This nested list may also include

examples, grammar notes and collocations. A typical example is given in Figure 21. Notable

is that a definition may contain either subsenses or examples underneath it.

The scraping software, created as part of this thesis, reads Wiktionary dumps. The dumps

are formatted as eXtensible Markup Language (XML), read using the mwxml library1, while

the MediaWiki markup within is parsed using the mwparserfromhell library2. The choice to

work on the raw MediaWiki markup rather than the resulting HyperText Markup Language

(HTML) on the one hand makes things easier, since it gives access to templates, which can

contain structured information in their arguments. On the other hand, it can mean that more

variants need to be handled, since in some cases, inexperienced editors do not use templates,

but instead use MediaWiki markup equivalent to the output of the template. In addition in

some cases, there are multiple templates with the same purpose.

The main difficulty for the parser is the problem of determining whether some text is part

of the definition text itself, part of a grammar note or collocation for a definition (such as +

elative, or kuin + elative), part of a note not concerning grammar (e.g., a tag such as “dated”

or domain such as “aeronautics”), or part of a usage example. When the text is part of a

1. Obtained from https://github.com/mediawiki-utilities/python-mwxml.
2. Obtained from https://github.com/earwig/mwparserfromhell.

100

https://github.com/mediawiki-utilities/python-mwxml
https://github.com/earwig/mwparserfromhell

{{lb|fi|transitive|_|+ elative}} To [[like]],
[[be]] [[fond]] of.↪→

#: ''[[minä|Minä]] '''pidän'''
[[appelsiini|appelsiineista]].''↪→

#:: ''I '''like''' oranges.''
#: ~ ''+ elative'' [[enemmän]] (kuin ''+

elative'') = to [[prefer]] something (to
something), [[be]] [[fonder]] of something
than of something.

↪→

↪→

↪→

#:: '''''Pidän''' omenoista enemmän kuin
appelsiineista.''↪→

#::: ''I '''prefer''' apples to oranges.''
{{lb|fi|transitive|impersonal}} ''genitive'' +

3rd-pers. singular + ''[[infinitive]]'' = to
[[have]] (to do); (''in conditional mood'')
[[should]] (do), [[ought]] (to do), [[be]]
[[suppose]]d (to do), [[would]] [[have]] (to
do).

↪→

↪→

↪→

↪→

↪→

#: ''[[sinä|Sinun]] '''pitää''' [[mennä]]
[[työ|töihin]].''↪→

#:: ''You '''have''' to go to work.''
#: ''[[meidän|Meidän]] '''pitäisi''' [[mennä]]

[[työ|töihin]].''↪→

#:: ''We '''should''' go to work.''

Figure 21: Two definitions of pitää from Wiktionary. On the left: as written using MediaWiki markup. On the right: as rendered in a
web browser.

101

MediaWiki markup

JSON file per Wiktionary page

Relational database

wikiparse parser

wikiparse indexer

Figure 22: The wikiparse pipeline.

usage example, there is further the question of whether it is a Finnish language usage, which

all Finnish word examples should have, or an English language translation, which many but

not all Finnish usage examples have.

In some cases, this is clear, due to certain template tags being used, such as the defn template

tag for definition text. In other cases, the presence of certain words or symbols, such as elative,

or + are used. When there is a problem, such as no heuristic can be applied, then the part of

the definition tree being processed is discarded.

5.1.1 Structured data format

There are two levels of structured data format output by wikiparse. A JavaScript Object

Notation (JSON) output and a relational database output. The parser program is structured

as a cascade of nested iterators, forming a coroutine structure, where inner levels yield more

detailed information, while outer levels have access to more context to integrate the results

of the inner level. This naturally leads to producing a nested structure as a result. The JSON

format is the outermost level of this structure. The relational database is created primarily for

the purpose of efficient access, acting in principle as a series of indexes and views on top of

the JSON data. The pipeline is shown in Figure 22.

An example of the JSON format for the senses of pitää, previously shown in MediaWiki

format in Figure 21, is shown in Figure 23. Many empty or null fields are omitted, as are

subsenses. Within the defns key, definitions are structured according to the tree structure

of the Wiktionary page. The definition text itself is extracted into several forms: the raw

102

MediaWiki markup raw_defn, saved for further parsing; a version with only basic Medi-

aWiki markup and templates either expanded or removed, cleaned_defn; and a plain text

version, stripped_defn. Usage examples are placed under definitions. The assoc entry

gives information, which is used for creating extraction schemas in Section 5.2. Within the

heads key, headword level information is extracted: etymology heading grouped etymologies

and relations.

The schema of the relational database is shown in Figure 24. Fields labelled extra are popu-

lated the JSON fragment the row is derived from, to allow access to all data from the JSON

format. The schema has some degree of denormalisation since different tables have been cre-

ated specifically to support different users. The headword and word_sense tables are the

main tables, and are used to obtain the actual definition text for display by TheWhatNow?!

in Chapter 6 as well as for definition clustering in Section 5.3. While the headword table is

sufficient for looking up most definitions, for some complex lexical items such as MWEs, spe-

cial purpose indexing is need, and this is constructed in Section 5.2. The inflection_of

table is primarily used for determining whether senses are lemma senses, for example, to

make sure the manually clustered senses of Section 5.3.3 are lemmas. The relation ta-

ble encodes relations such as misspellings and dialectical forms and is used by TheWhat-

Now?! to pull in extra relevant definitions. Finally, the etymology, derivation and

derivation_seg tables contain headword level etymology and word formation informa-

tion, including compounding, word derivation and inflection. These are used as part of the

analytical segmenter of Section 6.2.

5.1.2 Evaluation

Due to the variation in formatting, it is likely that we cannot entirely accurately scrape all

information from Wiktionary. Table 21 shows the possible outcomes for some datum to be

extracted. In this setting, we now abandon any notion of a gold standard. Since we cannot

refer to any best possible system, we cannot successfully determine the difference between

True Positives (TPs) and False Positives (FPs), only the number of data, corresponding to all

positives, the actual system returns (TP + FP). In some cases, we can identify all cases in

which we might extract some information but failed to, i.e., the False Negatives (FNs). With

103

{"defns": {"Verb": [
{"raw_defn": " {{lb|fi|transitive|_|+ elative}} To

[[like]], [[be]] [[fond]] of.\n",↪→

"cleaned_defn": " To [[like]], [[be]] [[fond]] of.\n",
"stripped_defn": "To like, be fond of.",
"assoc": {

"verb": ["transitive"],
"obj": ["elative"]

},
"bi_examples": [{

"fi": ["Minä pidän appelsiineista."],
"en": ["I like oranges."]
}],
"subsenses": [{...}]},
{"raw_defn": " {{lb|fi|transitive|impersonal}}

''genitive'' + 3rd-pers. singular + ''[[infinitive]]''
= to [[have]] (to do)",

↪→

↪→

"cleaned_defn": " to [[have]] (to do)",
"stripped_defn": "to have (to do)",
"assoc": {

"subj": ["genitive"],
"verb": ["transitive", "impersonal", "3rd-pers.

singular", "infinitive"],↪→

},
"bi_examples": [{

"fi": ["Sinun pitää mennä töihin."],
"en": ["You have to go to work."]

}],
"subsenses": [{...}]}]},

"heads": [{
"ety_idx": null,
"poses": ["Verb"],
"tag": "etymology-heading",

}]}

Figure 23: An example of wikiparse’s JSON format.

104

etymology

id [INTEGER]

etymology_index [INTEGER]

headword_id [INTEGER]

poses [JSON]

derivation

id [INTEGER]

etymology_id [INTEGER]

type [ENUM]

extra [JSON]

1
0..N

derivation_seg

id [INTEGER]

derivation_id [INTEGER]

derived_seg_id [INTEGER]

alt [VARCHAR]

1
0..N

headword

id [INTEGER]

name [VARCHAR]

1

0..N

1

0..N

inflection_of

id [INTEGER]

lemma_id [INTEGER]

inflection [JSON]

0..N

word_sense

id [INTEGER]

inflection_of_id [INTEGER]

headword_id [INTEGER]

etymology_index [INTEGER]

pos [VARCHAR]

sense [VARCHAR]

sense_id [VARCHAR]

extra [JSON]

1

0..N

relation

id [INTEGER]

parent_id [INTEGER]

child_id [INTEGER]

type [ENUM]

extra [JSON]

0..N
1

0..N
1

1
0..N

Figure 24: The schema of wikiparse’s relational database format as an entity relation diagram.

105

Table 21: Table of possible outcomes for Wiktionary parser.

Best possible system
Positive Negative

Actual system Positive TP FP
Negative FN TN

the information we can calculate metric is known as coverage:

coverage =
TP + FP

TP + FP + FN

Because coverage doesn’t take into account FPs, it should be noted as such and the develop-

ment of the system undertaken in such a way as to minimise them. During the development

of the project, FPs must be checked for manually and considered as bugs. To this end, some

of the most popular words were manually checked for incorrect extracted information (FPs)

during the development of the scraper. Based on this an automated test suite was created so

that there would not be regressions for these particular classes of FPs. When the resulting

data is integrated into an end system, further FPs can be fed back. In summary, although

overall recall and precision are not measured, the development process is directed towards

building a high precision system, if this is done successfully, the coverage measurement can

then be used to approximate recall since:

recall =
TP

TP + FN

≈ TP + FP

TP + FP + FN
(when FP is small)

Using this approach makes coverage a useful measure for consulting during the development

of the scraper. However, without reference to a gold standard, there is no real possibility of

quantitative comparison between alternative approaches, due to the issue of the FNs.

Ideally, we would convert FPs into FNs, usually at the cost of also converting TPs into FNs,

i.e., trading recall for precision, since we can find out more information about FNs. In par-

ticular, when the system encounters something that it does not know how to process, such as

a template it doesn’t recognise, or some text it can not determine whether it is an example

106

Table 22: Table of problems from running Wiktionary parser (%).

Problem Importance

unknown structure 43.0
unknown structure / unknown-template-ety 34.7
unknown structure / unknown-template-ety / m 24.3
unknown structure / unknown-template-ety / cog 13.4
unknown structure / unknown-template-ety / inh 12.0
unknown structure / unknown-template-ety / der 9.5
unknown structure / not-ux-lb 7.0
unknown structure / expect-only 5.3
unknown structure / not-ux-lb / n-g 4.4
unknown structure / mwe-ety 4.2
unknown structure / expect-only / fi examples / unk examples / senses 4.1
defns empty 3.9
unknown structure / no-grammar-= 2.4
unknown structure / not-ux-lb / lb|fi 2.2
unknown structure / non-fin-assoc 1.6
unknown structure / unknown-template-ety / bor 1.2
unknown structure / not-ux-lb / q 1.1
unknown structure / expect-only / bi examples / senses 0.9
unknown structure / unknown-template-ety / fi-form of 0.7
unknown structure / not-ux-lb / uxi 0.6

or a definition then details of this event can be logged. Later, the events can be grouped and

aggregated so as to find which parts of the system should be focussed on next to maximally

increase coverage.

5.1.3 Results

The dump used in this section is from the 6th of April 2019. In this dump, there are 158 227

pages with a Finnish section. Some data is extracted from 97.4% of pages, whereas data

is extracted without encountering any problems for 89.8% of pages. Note again that as ex-

plained in Section 5.1.2, this figure is merely the proportion of pages where the parser has

not encountered a known error — it does not mean that there are definitely no problems with

the data extracted from these pages.

107

Those problems that do occur are broken down in Table 22. The importance measure is

obtained by weighting the word for which the problems occurs by its frequency:

importance =
∑
w∈p

freq(w)

.

The resulting measure is presented as a percentage, however, since they are not mutually ex-

clusive, they do not sum to 100%. The word frequencies used are those of Speer et al. (2018)3.

Note that smoothing is used, so out of vocabulary words are assigned a small, non-zero fre-

quency.

The problems are arranged into a tree like structure to allow identification of the largest

problems as a coarse and finer grained level. The most common type of problem is some

kind of unknown structure. In particular, the high rate of occurrence of unknown-

template-ety results shows that templates in the etymology are not yet all handled yet.

While not-ux-lb errors are generally caused by unknown templates within a sense defini-

tion.

5.2 MWEs and schemas

Finnish has a rich morphology4. Substantives are declined for case and number and verbs are

conjugated for person, tense and voice. Finnish word formation is also rich5. It includes a

number of highly productive derivational morphemes, including many deverbal morphemes

which is characteristic of the language. Compounding also plays a major role in Finnish

word formation, with many of the compounds being semantically transparent. Compared to

a language like English for example, Finnish word formation may be more predictable since

it draws root words from a smaller pool and has a richer set of primitives to combine them.

Finnish also has a number of enclitic particles such as the question forming “-ko”. Finally,

it has MWEs such as idioms. In Finnish these may take the form of schemas, defined here

3. Obtained from https://github.com/LuminosoInsight/wordfreq.
4. See for example Karlsson (2015) and Section 2.1.
5. See for example Hyvärinen (2019).

108

https://github.com/LuminosoInsight/wordfreq

as MWEs with gaps such as “pitää ___-sta” which could occur in a form such as “pidän

voileipäkakusta”.

From this point forward, we refer to any item which can be given a definition, including lem-

mas, individual morphemes, combinations of morphemes and MWE expressions including

schemas as headwords.

5.2.1 Obtaining schemas

Word definitions are obtained two sources: FiWN (Lindén and Carlson 2010) and the Wik-

tionary definitions from Section 5.1. Both Wiktionary and FiWN contain data which can be

used to create schemas. On Wiktionary, the data is included within the text of a definition,

for example, the headword pitää has the entry “(transitive + elative) To like, be fond of”. In

this case, the schema headword “pitää ___-sta” is extracted and associated with this defini-

tion. FiWN has separate headwords for schemas. They are marked using abbreviated forms

of pronouns. For example in the headword “pitää_kiinni_jstak” jstak is short for jostakin,

allowing the schema “pitää kiinni ___-sta” to be extracted.

5.2.2 Headword extraction

In order to extract headwords from free text, two approaches were taken: one for MWEs,

schemas and inflected headwords and one for single word lemma headwords including head-

words which are part of a word, e.g., a constituent words of a compound. The former is

described here, while the latter is performed as part of the segmentation process described in

Section 6.2.

To find inflected headwords and MWEs including schemas, each headword is first prepro-

cessed into a list of lemmas and required features. For an inflection this list will consist of a

single item, for example, vahingossa (accidentally) will become the lemma vahinko and the

feature case=inessive. An MWE will be much the same as an inflection, but the list will have

multiple entries. For a schema, one or more entries have a gap in place of the lemma, this

gap acts as a wildcard able to match any lemma. Next, of the words with a lemma, the least

common according to a frequency list of Finnish lemmas, is chosen as the key lemma.

109

The lemmatisation process is based upon Omorfi (Pirinen 2015b). At run time Omorfi anal-

yses Finnish words using a Finite-State Transducer (FST): an automaton which acts as a two

way mapping between surface forms and analyses. The source data for Omorfi is a list of

lemmas and their paradigms, a category which determines how different forms of the lemma

will be realised in the surface form. The source data is obtained from historical versions of

Finnish and English Wiktionary, the new Finnish word list produced by the Institute for the

Languages of Finland, and Joukahainen which is a dictionary created for usage by the open

source Finnish spell checker Voikko.6

Unlike Omorfi, the objective here is to produce only lemmas that span the whole token. This

means that only inflections should be removed, not derivational morphemes, and also that

non-final constituent words in compounds should be left as is. To achieve this, first, an Omorfi

analysis is performed. Next, it is stripped back as far as, but no further than, the last derivation

boundary. Finally, the ending of a lemma analysis is appended and an Omorfi generation is

performed upon the resulting analysis. The features are taken from that part of the analysis

which is removed. This process is performed by the finntk Python library7.

There are then two possible procedures for extracting the headword. The first works on to-

kenised text and relies on the headword appearing in order in the text. This method lemmatises

each token in the text using the same lemmatisation procedure as above. If there is a match-

ing key, the features of the key are checked to make sure they are present in the token being

matched. Next, the same check is performed towards the left and right of the match point.

For wildcards lemmas, no lemma matching is performed, only feature matching. Wildcards

can also match against more than one token.

The second procedure operates on dependency trees, obtained using the Turku Finnish de-

pendency parser pipeline8. After finding a key match in the same manner as the token based

method, the process continues to match any other part of the headword against any neigh-

bour, extending the neighbourhood in the process until the whole headword is matched or it

6. For further analysis of Omorfi, see also Robertson (2016).
7. Available at https://github.com/frankier/finntk.
8. Obtained from https://github.com/TurkuNLP/Finnish-dep-parser.

110

https://github.com/frankier/finntk
https://github.com/TurkuNLP/Finnish-dep-parser

is impossible to proceed. Special care is taken of wildcards so that they can only match across

multiple tokens which are contiguous within the dependency tree.

The performance of this technique relies upon the matching lemmas occurring relatively ir-

regularly within normal texts, meaning the full matching procedure does not occur in the

common case. This approach is related to one from the string matching literature, where for

example Tarhio, Holub, and Giaquinta (2017) show that given an efficient procedure to scan

for a single character, searching for a literal string by searching first for its rarest character

can outperform more complex methods. The headword indexing and extraction methods are

part of the lextract Python library9.

5.3 Sense clustering

FiWN is modelled after WordNet, and as such has very fine grained sense distinctions. This

results in potentially overwhelming the learner with too much information. Furthermore,

some Wiktionary senses are likely to essentially duplicate FiWN. Thus, to try and display the

most relevant information first in TheWhatNow?! in Chapter 6, similar definitions should be

clustered together and only the best definition displayed by default.

The section compares a few approaches. A significant piece of work with a similar objective

for English is that of Snow et al. (2007). They use a supervised approach to select features

from many different sources of information, including for example resources which are only

freely available for non-commercial use such as that of Navigli (2006) who automatically

align WordNet synsets with word definitions from Oxford dictionary (which are more coarse

grained). The approach of Snow et al. (2007) uses hierarchical clustering so that any num-

ber of clusters can be chosen. In comparison to that work, here a completely unsupervised

approach is taken, meaning no feature selection is used. Secondly, some experiments also in-

clude Wiktionary senses in the clustering alongside WordNet senses. Thirdly, the resources

used here are all liberally licensed. Finally, the perspective here is that there is some best

clustering with a fixed number of clusters which allows the use of non-hierarchical clustering

algorithms.

9. Available at https://github.com/frankier/lextract.

111

https://github.com/frankier/lextract

5.3.1 Partitions and same-different graphs

We now introduce the notion of a same-different graph as an interpretation of a partition as

a device used in sections 5.3.2 and 5.3.4. Given a set S, its partition P , and a function from

a member of S to the member in the partition P which contains S, c : S → P , its same-

different graph is a complete graph with S as its set of nodes. Each edge has a type given by

a function t : S × S → {same, different}:

t(x, y) =

same c(x) = c(y)

different c(x) 6= c(y)

We can consider multiple partitions of multiple sets, where the sets may overlap. These have

a correspondence with non-complete same-different graphs. It is possible to consider a same-

different graph which does not represent a consistent set of multiple partitions. For example:

a

c

b

same
different

same

Logically, this is inconsistent since by transitivity of the ∼same∼ relation we can find,

a ∼same∼ b ∼same∼ c

⇒a ∼same∼ c

which contradicts

a ∼different∼ c.

More generally, a contradiction exists when there is a different edge between two nodes con-

nected by a path of same edges. To correct a contradiction it would be possible to either

remove the different edge or else remove one or more same edges until there is no longer a

path of same edges between the nodes attached by the different edge — however the choice of

which facts to remove would be arbitrary. A more conservative approach is to remove facts

112

Table 23: An extract of data given about the predicates forming different frames in Finnish
PropBank (FiPB).

lemma frame note link_original synset_id

ajaa 1 (tags: …) none.01 02333424
ajaa 2 (tags: model:chase.01 …) chase.01 01915724
ajatella 1 (tags: …model:ponder.01) none.01 00599167, 02049238
alleviivata 1 (tags: …model:stress.01) NULL NULL
ennakoida 1 NULL foresee.01 NULL

Table 24: An extract of data from Predicate Matrix.

11_WN_SENSE 16_PB_ROLESET

wn:chase%2:38:00 pb:chase.01
wn:chase%2:41:00 pb:chase.01
wn:stress%2:32:00 pb:stress.01
wn:stress%2:32:01 pb:stress.01
wn:foresee%2:41:00 pb:foresee.01
wn:foresee%2:31:00 pb:foresee.01
NULL pb:ponder.01

directly participating in the contradiction: the different edge and every edge on every simple

path between the nodes directly connected by the different edge. A simple path is defined as

a path which does not contain the same node twice.

Here, “clustering” is used as a noun to refer to a single assignment of items to one or more

clusters. Finally, we would like to go back from some consistent same-different graph to one

or more clusterings. This can be done by first decomposing the graph into cliques. Each

clique will end up as a single clustering. Then for each clique, all different edges can be

removed and the resulting connected components are the clusters. Equivalently, if a node a

is reachable from a node b via same edges, they are in the same cluster, otherwise, they are

in separate clusters.

5.3.2 Automatically created gold standard

In this section, a gold standard is automatically created from existing data. The resulting gold

standard only contains verbs in FiWN; It does not contain any Wiktionary definitions. The

113

Make synth
(contradictions 3 7)

Filter smap
(matchings: 804 7)

link_original

Filter duplicates
(synsets: 1 7)

Filter duplicates
(synsets: 8 7)

auto

⊗

Filter smap
(matchings: 1276 7)

joined-link

Predicate Matrix

Filter smap
(matchings: 81 7)

synset-rel

Priority union (matchings: 801 3, 3 7)

⊗
synset_id

synth

joined-model

model

Filter duplicates
(synsets: 8 7)

Filter smap
(matchings: 1724 7)

Priority union (matchings: 21 3, 0 7)

Figure 25: Diagram showing the data flow of the creation of the automatically created gold
standard. Elliptical nodes indicate some piece of data. Rectangles indicate data processing steps. The

⊗
symbol indicates a relational join. Dashed lines indicate the lower priority inputs to a priority union.

114

automatically derived gold standard is derived from FiPB and Predicate Matrix10. The overall

data flow for creating these gold standard is summarised in Figure 25. There are three pieces

of information given in FiPB which can be used to link frames to other resources, however,

each piece of information is given for only some of the frames. An illustrative extract is given

in Table 23. The first is that for some frames, a list of WordNet synset ids is given directly

in the synset_id field. The second is that some frames have a link_original field

which specifies an English PropBank frame. Finally, some contain a model field embedded

inside their note field.

Three FiPB to FiWN mappings can then be derived, synset-rel directly from the synset_id

field and joined-link and joined-model derived by joining respectively the link_original

and model fields of FiPB with Predicate Matrix. An illustrative extract of the part of Predi-

cate Matrix used is given in Table 24. The WordNet lemma ids given by Predicate Matrix are

then mapped to synset ids using data from WordNet itself. At this point, some of the result-

ing clusterings may not form a partition. In particular, some synset ids may be included in

multiple clusters. To correct this, for each lemma, all mentions of multiply mentioned synset

ids are removed by filter duplicates. Figure 25 summarises how many duplicates are found

in each case.

We now try to agglomerate all of the clusterings from synset-rel, joined-link and joined-model

into a big collection of clusterings auto. Since all of these clusterings consist of synset ids

being mapped to the same set of FiPB frames, it should be possible to simply treat each set

of clusterings as a relation and take their union directly11. It is, however, possible for the

different sources of data to disagree with one another. Therefore we make use of a priority

union which adds rows from a secondary relation to a primary relation, as long as they do not

contradict the primary relation by assigning a synset to a different frame. The priority order

from highest to lowest is synset-rel, joined-link, joined-model. The reasoning for this order

is: synset-rel is the most reliable since it is given directly by FiPB without needing to map

through English PropBank and therefore not suffering from any semantic drift, and does not

need to map through Predicate Matrix, which has less than perfect precision. Then joined-

link is considered to be more reliable than joined-model by inspection. Figure 25 summarises

10. Introduced in Section 2.2.1.
11. In particular without using of any of the machinery of Section 5.3.1.

115

Table 25: English frame data with Finnish lemmas expanded from FiWN.

English PropBank lemma Frame Synset FiWN lemmas

assure 1 00662589-v tarkistaa …varmistaa
assure 1 00890590-v luvata …varmistaa
insure 1 00890590-v luvata …varmistaa
insure 2 00662589-v tarkistaa …varmistaa
ascertain 1 00721302-v vahvistaa …varmistaa
ascertain 1 00662589-v tarkistaa …varmistaa

how many duplicate rows or agreements and how many contradictions were found during the

priority union. Note that there were only 3 contradictions during the whole process.

The resulting joined clustering, auto links between FiPB lemmas, FiPB frame ids and FiWN

synsets, however, it is not necessarily the case that each of the FiWN synsets contains the

FiPB lemma. These matching are therefore irrelevant and so for auto, as well as synset-rel,

joined-link and joined-model, all matchings which do not “self-map” are removed by filter

smap in Figure 25.

Following this line of reasoning, an extra synthetic clustering, synth is made directly from

Predicate Matrix by considering first the clusterings resulting from grouping by English

lemma, and then taking a contradiction safe union based on the same-different graph ab-

straction after regrouping by Finnish lemma. Consider for example getting clustering data

for the lemma varmistaa. First, we look at the frame data in Predicate Matrix, and expand

each WordNet synset id with a set of Finnish lemmas from FiWN as shown in Table 25 to ob-

tain three clusterings: {{00662589-v, 00890590-v}}; {{00890590-v}, {00662589-v}}; and

{{00721302-v, 00662589-v}} . We can then combine these clusterings by converting them

to same-different graphs and combining them, while conservatively deleting contradictions

as outlined in Section 5.3.1. First, convert each to a same-different graph:

00721302-v

00662589-v

00890590-v00890590-v

00662589-v00662589-v

samesame different

116

Then take a union of all same edges and different edges separately:

00662589-v

00890590-v

00662589-v

00721302-v 00890590-v

samesame different

Then whenever there exists a simple path between nodes directly connected by a different

edge, delete the path and the different edge:

00662589-v 00721302-v
same

This same-different graph can be represented as a single clustering: {{00662589-v, 00721302-

v}}. Only three such contradictions are found across the whole of Predicate Matrix, by make

synth in Figure 25.

5.3.3 Manually created gold standard

In this section, a gold standard is created manually. It contains only nouns with definitions

from both FiWN and Wiktionary. The man gold standard was created manually by the author,

who is a Finnish learner at the A2 level, based primarily on the English language definitions.

At a later date, the clusterings were revised with the help of a native Finnish speaker. Since

the automatically created clustering focusses on verbs, the manual clustering was made up of

nouns. To ensure that multiple clusters were likely, words with multiple etymology sections in

Wiktionary were selected, in order of the decreasing word frequency of Speer et al. (2018)12.

Initially, there were two annotation sessions. During the first, the most frequent 32 lemmas

were annotated over about 90 minutes. In the second, at a later date, a further 96 were an-

notated over another 90 minutes. Later, the two annotation sets were checked, taking 45

minutes each. During this session, two clusterings were modified from the first set, and 11

were modified from the second set.
12. Obtained from https://github.com/LuminosoInsight/wordfreq.

117

https://github.com/LuminosoInsight/wordfreq

A few principles were applied during annotation in order to try and create a consistent clus-

tering:

• Keep senses from different Wiktionary etymologies in separate clusters.

– It would be possible to violate this rule if the etymology sections were inaccurate

or, for example, two distinct but related etymologies ended up producing defini-

tions with very close meanings. Neither of these cases occurred for the manually

annotated words.

• Usually, keep senses within a single Wiktionary etymology within the same cluster.

– The usual reason that this is not done is that metaphorical extension has changed

the meaning enough that it should be in a new cluster. Obvious, regular sense

extensions which end up with a directly related sense such as a people/nation and

their language or an activity or profession and the place where it is performed

are kept within the same cluster. Non-obvious, irregular sense extensions which

dramatically change the sense such as kana meaning a female chicken but also

by extension meaning (in an offensive manner) an unintelligent, talkative woman

are given different clusters.

• Where there exists a continuum of definitions, this can be used as justification to keep

two possibly distinct senses in the same cluster. For example, the first Wiktionary

etymology of baari has two senses: public house and cafeteria. Although these may

seem quite distinct, there is a continuum of establishments from those focussed more

on serving food to those focussed on serving drinks and therefore these two senses are

put in the same cluster.

5.3.4 Evaluation

The gold standard clusterings used in this section, from sections 5.3.2 & 5.3.3 are summarised

in Table 26.

One possible choice for an evaluation metric is to reuse precision, recall and the F1-measure,

introduced in Section 2.3.5. One way to apply these measures to clustering is to score the

118

name lemmas matchings edges same diff

auto 305 839 970 699 271
synset-rel 101 259 253 107 146
joined-link 157 402 391 353 38
joined-model 149 374 345 323 22

synth 992 2568 1606 1602 4
man 128 861 4114 1731 2383

man-wn 118 460 1510 784 726
man-wiki 128 401 635 168 467
man-link 118 3938 1969 779 1190

Table 26: Summary of gold standard clusterings.

Table 27: Contingency table showing how to interpret clustering as binary classification.

Gold
Same Different

System Same TP FP
Different FN TN

edges of the predicted same-different graph against the gold same-different graph. Each edge

in the graph is interpreted as in Table 27. Put another way, we reframe clustering as a binary

classification task classifying whether each pair of examples belong in the same cluster. Snow

et al. (2007) uses this method of evaluation together with the F1-measure. Problematic with

the use of the F1-measure here is that it takes no account of True Negatives (TNs) and so

becomes unbalanced: a system which puts all senses in separate clusters will always obtain

an F1-measure of 0, while a system which clusters all senses together will not. For Snow

et al. (2007), the raw data set had a large number of different edges versus a small number

of same edges, which mitigates the problems of using F1-measure since a system always

guessing same will obtain a relatively low F1-measure, however as per Table 26 that is not

the case here.

Also worth considering is accuracy13, which does take account of TNs. When accuracy is

applied to clustering with TPs, TNs, FPs & FNs defined this way, accuracy is equivalent to

the Rand index.
13. See Section 2.3.5.

119

There is the possibility of adjusting the Rand index for clusterings created by chance. The

adjusted Rand index ranges from −1 to 1. The expected value of the Rand index is 0 under

the distribution of random clusterings. It was formulated by Vinh, Epps, and Bailey (2009)

as:

adjusted-rand-index =
2 (tn · tp− fn · fp)

(tn+ fp) (fp+ tp) + (tn+ fn) (fn+ tp)

Bootstrapping is used to obtain significance levels, and follows a similar procedure to Sec-

tion 4.2.3. In this case, each bootstrapping schedule is first taken by resampling from the list

of (word, cluster, word sense) tuples, hereafter referred to as cluster assignments, that make

up the gold standard. For each system, each cluster assignment is scored individually by con-

sidering its edges and thus the number of TPs, FPs, FNs and TNs that it contributes to and

halving it, since the responsibility for each of these outcomes is shared between two clus-

ter assignments. The bootstrapped evaluation measure distribution is then formed by based

on considering the sums of outcomes of cluster assignments chosen according to the boot-

strap schedule. This procedure makes the strong assumption that each cluster assignment is

independent.

5.3.5 Affinity propagation

The clustering and alignment is created using affinity propagation (Frey and Dueck 2007) as

implemented in scikit-learn (Pedregosa et al. 2011). Affinity propagation takes a similarity

graph and attempts to find a configuration that assigns all nodes to an exemplar such that there

is a high sum of similarities between nodes and their exemplar. Exemplars are representative

points which lie close to the centre of a cluster. In affinity propagation, every node starts

off as a potential exemplar. The algorithm then proceeds as an iterated message passing

procedure where exemplars compete to own points while receiving responsibility messages

from them and points gather evidence from candidate exemplars about which is best sent to

them as availability messages. As well as similarities between nodes, affinity propagation can

be given different preferences for different nodes, to increase the chance they will become an

exemplar.

120

Given many clustering algorithms have been proposed in the literature, why pick affinity

propagation? The requirements here are:

R1. The clustering algorithm must work with similarity or distance matrices, rather than

requiring real values vectors as inputs as is the case for k-means.

R2. The clustering algorithm should produce an exemplar for each cluster, which can be

used as the definition to display to the user to represent the cluster.

R3. The clustering algorithm should not require a fixed number of clusters beforehand, but

rather discover how many clusters there are naturally for each word.

Affinity propagation satisfies these requirements, however, it is not the only, nor necessarily

the best, clustering method for this task. Many clustering algorithms satisfy R1, with k-means

being somewhat unusual for having such a strict requirement on the format of its inputs. One

example is k-medoids, which is conceptually similar to k-means and works with distance

matrices. K-medoids also satisfies R2. Indeed it seems reasonable to suppose that finding an

exemplar could be done as a post-processing step for any procedure which did not naturally

produce them by using a graph centrality measure such as betweenness centrality on the

similarity graph.

With regards to R3, a big advantage of affinity propagation is that it does not require deciding

upon a certain number of clusters upfront. However, despite the fact that no particular num-

ber of clusters is chosen for affinity propagation, the number of clusters it produces is quite

sensitive to the specific preference values nodes are passed, meaning we are still potentially

left with the problem that we have a parameter we have to choose the value of. One possible

alternative would be to run an algorithm with a fixed number of clusters such as k-medoids,

for several values of k, and then choose k according to some intrinsic evaluation measure such

as silhouette score. Alternatively, we could follow Galdi, Napolitano, and Tagliaferri (2014),

who adapted affinity propagation to produce clusterings with a given number of clusters and

then, similarly, tuned the number of clusters using silhouette score.

Instead, a small amount of tuning of a uniform preference value was performed manually.

By default, the implementation of affinity propagation in scikit-learn gives each node a fixed

preference set to the median similarity, but preliminary experiments revealed that this pro-

121

duced too many clusters, revealed as a high proportion of FNs. Thus the preference of each

node is set to 0, which produced higher adjusted rand scores on the gold data. Note that

strictly this constitutes parameter turning on gold data, as warned against in Section 4.2.1.

However, the preference values were not turned further beyond this.

To summarise, although affinity propagation is not necessarily the best possible clustering

method, it suffices for the requirements. Thus, to allow more resources to focus on comparing

different ways of finding similarities between word senses, there is no comparison between

different clustering methods.

Affinity propagation may not converge, to make sure a result is always available it is retried

with damping levels of 0.5, 0.7 & 0.9. If all of these parameters fail to converge, all instances

are placed in separate clusters.

5.3.6 Systems

Some systems use information which only available for a FiWN sense, or synset. In particular,

the Label and Sensevec systems both only work in this case. Others work only for Wiktionary

senses, in particular Ety. The other systems work for both kinds of senses, and can also be

used for sense alignment.

The Sensevec system is based on word sense vectors. These vectors are the same Numberbatch

Speer, Chin, and Havasi (2017) and AutoExtend (Rothe and Schütze 2017) vectors described

in Section 4.3.4. Synset vectors are simply clustered based on cosine similarity clamped

to non-negative values. Clamping was performed after preliminary experiments showed it

performed on the chosen metrics.

The Label system uses data from OpenMultiWordNet (Bond and Paik 2012). In particular, it

uses the lemma labels given to synset from many languages. Languages were filtered to only

those which include at least 1000 lemmas. The reason for this is that languages WordNets

smaller than this are assumed to be essentially unfinished, and so likely to just add noise. The

122

similarity between two senses s and t in a group of senses S is then defined:

label-sim(s, t) =
|labels(s) ∩ labels(t)|

maxu∈S,v∈S |labels(u) ∩ labels(v)|

The Ety system uses etymology headings from Wiktionary and simply places all senses which

occur under the same etymology heading in the same cluster (without using affinity propaga-

tion). When there is only one etymology, which is common for Wiktionary entries, all senses

are placed in this cluster. Note, however, that the manually created evaluation set is not typical

in this respect. It has been created only from words with a Wiktionary entry with more than

one etymology section — the minority of Wiktionary entries. In addition, the etymology was

used as a guide during annotation — definitions from different etymologies were generally

kept separate unless there was a good reason to do otherwise.

The remaining systems work for both WordNet and Wiktionary, and can produce an alignment

between them. Because of this, they all use the only common shared structure, which is the

gloss of each sense.

The BERT based system, SentBert uses a version of BERT finetuned by Reimers and Gurevych

(2019) for sentence similarity. The authors make pretrained models available. The model

used was named bert-large-nli-stsb-mean-tokens14. This model starts from the

larger BERT model made available by, Devlin et al. (2019) which was trained on BooksCor-

pus and English Wikipedia. Reimers and Gurevych (2019) then finetuned this model twice:

first on a natural language inference task, and then on semantic text similarity task. Senses

are clustered based on clamped cosine similarity of their glosses according to this model.

The SoftCos system uses the soft cosine similarity measure (Sidorov et al. 2014) as imple-

mented in GenSim (Řehůřek and Sojka 2010; Novotný 2018). Soft cosine similarity is a

generalisation of cosine similarity. Recall cosine similarity can be calculated given two col-

umn vectors u and v, with their transpose row vectors written as u′ and v′ as:

cos-sim(u, v) =
u′v√

u′u
√
v′v

.

14. Obtained from https://github.com/UKPLab/sentence-transformers/blob/
master/docs/pretrained-models/sts-models.md.

123

https://github.com/UKPLab/sentence-transformers/blob/master/docs/pretrained-models/sts-models.md
https://github.com/UKPLab/sentence-transformers/blob/master/docs/pretrained-models/sts-models.md

Here each dimension of u and v represents the number of occurrences of a word, as in the bag

of words representation. Soft cosine similarity considers u and v in as being specified in a

non-orthogonal basis α with N basis vectors eα,1 . . . eα,N i.e., we allow that i 6= j, eα,i ·eα,j 6=

0. We can then consider the similarity between the basis vectors sij = cos(ei, ej). In the bag

of words representation, this similarity matrix S can be constructed based on word similarity.

Now to calculate u′v in the basis of α we note that:

u′v = u · v

= (
N∑
i=1

uα,ieα,i) · (
N∑
j=1

vα,jeα,j)

=
N∑
i=1

N∑
j=1

uα,ivα,jeα,ieα,j

=
N∑
i=1

uα,i

N∑
j=1

sijvα,j

= u′
αSvα

And so soft cosine similarity can be defined as:

soft-cos-simS(u, v) =
u′Sv√

u′Su
√
v′Sv

.

Note that when S is the identity matrix, we end up with an orthogonal basis and so soft cosine

similarity is equal to cosine similarity. Before calculating the soft cosine similarity, we must

build a vocabulary of all words under consideration. In this case, this is repeated for each

headword for which a clustering should be produced a vocabulary is built by considering the

words in the glosses of all senses. S is then filled cosine similarities between these words

according to the fastText MUSE vectors described in Table 12.

The Wmd system uses word mover’s distance (Kusner et al. 2015). It builds a vocabulary for

all definitions associated with each headword in the same way as SoftCos, but forms a cosine

distance matrix, D, rather than a similarity matrix. The problem is now reduced to the Earth

Mover’s Distance (EMD). Intuitively, the EMD is based on the amount of work that must be

done moving piles of earth from dimensions of u into holes making up each of the dimensions

124

of v, given distances between their dimensions specified in D. To calculate EMD we must

first solve the following find a flow matrix F which is a solution to the optimisation problem

based minimising work, which is the Frobenius inner product of F and D:

work(F,D) =
∑
i,j

FijDij

min
F

[work(F,D)] such that

Fij ≥ 0
∑
j

Fij ≤ ui

∑
i

Fij ≤ vj
∑
i,j

Fij = min

(∑
i

ui,
∑
j

vj

)
.

Here, the EMD is calculated with pyemd 15, which is a Python wrapper around the fast EMD

implementation of Pele and Werman (2009). The function of this library used simply returns

the work term:

EMDD(u, v) = work(F,D) .

Note that this is only a metric if the sum of the elements of u and v are the same. Normally,

when preparing the definitions for use, we length normalise

WmdD(s, t) = EMDD

(
s∑
i si

,
t∑
j tj

)
.

A variation system WmdPart performs partial matching, by computing a non-metric distance.

Note the definition of EMD given here means that intuitively, once we have moved as much

earth as we can, we can fill in any leftover space in the holes without any extra effort. Thus,

we length normalise according to the shorter definition to allow ignoring part of the longer

definition:

min-length = min

(∑
i

ui,
∑
j

vj

)
,

WmdPartD(s, t) = EMDD

(
s

min-length
,

t

min-length

)
.

The distances are then converted to similarities using similarity = 1− distance.

15. Obtained from https://github.com/wmayner/pyemd.

125

https://github.com/wmayner/pyemd

One disadvantage of both the SoftCos and Wmd is that they do not make use of any of the

synset labels from WordNet. Versions which append all English labels to the WordNet gloss

are denoted SoftCosSyn, WmdSyn and WmdPartSyn.

Next, combination systems are created. The final system should deal with both WordNet and

Wiktionary, and so one of SentBert, SoftCos, Wmd & WmdPart should be chosen. Looking

ahead to the results in Table 28, we can see that for both the verb and noun datasets, Sent-

Bert performs best overall, while WmdSynset and WmdPartSynset are competitive for some

datasets. Thus, at least one of these, denoted Sb, Ws & Wps, are used as the basis of all

combination systems, while WmdSynset & WmdPartSynset are never combined since they

are variants of the same system. These systems are incorporated with each other and Label

by simply taking the maximum of their similarities e.g., max(Bert, Label). Max was cho-

sen following the observation that across most test sets most individual systems had a larger

problem with FNs than FPs.

To incorporate the Ety system, we must first recast it so it can be used in our similarity graph.

Here, edge weights are set to 0 between senses from different etymology sections. Preliminary

experiments were conducted where edge weights were set to 1 between all senses within

the same etymology section, however this decreased performance across the board. These

methods are combined with others by overwriting whichever weights are set by the systems

they are combined with.

Results are given in Table 28. The first horizontal line separates those systems which can

only cluster one of WordNet or Wiktionary definitions from the rest. The second horizontal

line separates individual systems from combination systems. Out of those systems which

can cluster both WordNet and Wiktionary, cells in bold type have the maximum score, while

those with a light blue background were not found to be significantly less than the maximum

scoring system at a p=0.05 level.

We first note that within the combination systems, the Ety+Ex variants perform better over-

all than those variants without. Secondly, we note that there is no one system which per-

formed best across all configurations or indeed best across the overall join and man datasets.

We then consider those systems that perform best for one dataset. For the man dataset,

126

Table 28: Results of the evaluation of sense clustering systems in adjusted rand index (%).
Results on the fake data set are shown with non-adjusted rand index (%). Systems which only work for one of
WordNet or Wiktionary appear above the first horizontal rule, while combination systems appear after the second
horizontal rule. Cells in bold type have the maximum score, while those with a light blue background were
not found to score significantly less than the maximum scoring system. Significance testing is only performed
for systems which support both Wiktionary and WordNet.

System Verbs, Automatic Nouns, Manual
join ss link mod fake man wn wiki link

Label 57.9 40.1 60.8 59.7 92.5 — 13.0 — —
Sensevec 20.7 25.6 4.8 3.4 72.3 — 9.0 — —
Ety — — — — — — — 53.5 —

SentBert 47.9 51.2 23.0 13.2 81.9 39.9 45.8 17.0 41.3
SoftCos 18.0 21.1 12.4 4.3 58.3 6.9 -0.1 8.0 8.4
SoftCosSyn 31.2 39.9 11.2 11.8 71.8 16.5 11.9 9.8 19.5
WmdPart 21.8 27.5 8.1 4.4 68.1 16.0 16.4 6.0 20.1
WmdPartSyn 32.3 35.1 18.6 10.5 77.9 25.3 34.6 12.7 24.6
Wmd 27.4 34.2 15.2 4.0 69.6 9.8 2.0 9.1 15.9
WmdSyn 37.2 40.8 14.8 8.1 78.7 12.4 8.2 9.4 16.9

Sb+Ety 47.9 51.2 23.0 13.2 81.9 43.7 46.5 28.6 44.3
Sb+Ety+Ex 47.9 51.2 23.0 13.2 81.9 51.7 50.4 39.7 53.0
Sb+Lbl 52.9 60.4 26.4 21.7 83.9 39.2 44.5 16.7 41.6
Sb+Lbl+Ety 52.9 60.4 26.4 21.7 83.9 40.9 44.9 24.2 41.9
Sb+Lbl+Ety+Ex 52.9 60.4 26.4 21.7 83.9 46.3 44.7 35.0 48.1
Sb+Wps 44.0 43.9 28.9 15.5 83.0 28.1 40.6 10.7 26.2
Sb+Wps+Ety 44.3 43.9 28.9 15.5 82.9 44.2 47.2 36.5 42.9
Sb+Wps+Ety+Ex 44.3 43.9 28.9 15.5 83.0 50.4 46.4 48.3 52.5
Sb+Wps+Lbl 44.6 39.2 34.0 17.3 82.3 29.6 42.8 9.2 28.1
Sb+Wps+Lbl+Ety 44.3 39.2 33.2 16.7 82.3 41.7 45.1 35.2 40.3
Sb+Wps+Lbl+Ety+Ex 44.6 39.2 34.0 17.3 82.3 50.0 47.8 45.1 51.5
Sb+Ws 47.8 53.1 17.7 11.6 82.8 22.0 25.7 15.2 23.7
Sb+Ws+Ety 48.1 53.1 17.7 11.6 82.8 33.7 34.4 29.9 33.4
Sb+Ws+Ety+Ex 48.2 53.1 18.3 12.1 82.8 48.0 38.5 59.2 50.4
Sb+Ws+Lbl 51.6 58.7 24.5 17.0 82.7 23.9 31.6 8.1 24.6
Sb+Ws+Lbl+Ety 51.6 58.7 24.5 17.0 82.7 38.0 40.9 29.4 37.2
Sb+Ws+Lbl+Ety+Ex 51.6 58.7 24.5 17.0 82.7 42.5 36.3 45.9 44.2
Wps+Ety 32.1 34.2 18.6 10.5 77.9 42.0 40.5 39.4 43.5
Wps+Ety+Ex 32.1 34.2 18.6 10.5 77.9 45.2 40.5 45.3 48.1
Wps+Lbl 27.6 23.1 18.0 12.3 76.0 24.1 32.5 12.0 24.0
Wps+Lbl+Ety 27.6 23.1 18.0 12.3 76.1 40.7 40.1 39.4 41.0
Wps+Lbl+Ety+Ex 27.6 23.1 18.0 12.3 76.1 43.8 40.1 45.6 45.0
Ws+Ety 37.2 40.8 14.8 8.1 78.7 31.9 19.9 43.5 34.9
Ws+Ety+Ex 37.2 40.8 14.8 8.1 78.7 35.2 19.9 50.1 39.5
Ws+Lbl 44.6 35.6 30.5 17.6 77.1 8.6 9.9 8.2 8.7
Ws+Lbl+Ety 44.6 35.6 30.5 17.6 77.0 25.4 18.8 44.7 20.8
Ws+Lbl+Ety+Ex 44.6 35.6 30.5 17.6 77.0 27.9 18.8 52.8 23.0

127

Sb+Ety+Ex performs best scoring 51.7, and scoring 47.9 on the join dataset. For the join

dataset, Sb+Lbl+Ety+Ex performs best scoring 52.9, and scoring 46.3 on the man dataset.

We can then consider other systems on the Pareto front: those that score at least 47.9 for join

and 46.3 for man of which there is one: Sb+Ws+Ety+Ex. So we have three potential best

systems: Sb+Ety+Ex, Sb+Lbl+Ety+Ex and Sb+Ws+Ety+Ex.

Sb+Ws+Ety+Ex performed the best in terms of clustering between the Wiktionary part of the

man dataset. A qualitative analysis of the results reveals that in the cases that Sb+Ws+Ety+Ex

system beats the Sb+Lbl+Ety+Ex system for this subset of the results, most often the differ-

ence is that Sb+Lbl+Ety+Ex forms too few clusters. On the other hand, we have reason to

prefer Sb+Lbl+Ety+Ex over Sb+Ety+Ex a priori since it incorporates the strong Label sys-

tem, however Sb+Lbl+Ety+Ex performs relatively poorly on the manually created dataset.

Ultimately, it is the manually created dataset which should be given greatest consideration

since it is made with the final application in mind, and for this reason, the Sb+Ety+Ex system

is chosen the provide the final set of clusterings for usage in Chapter 6.

128

6 The design of TheWhatNow?!

There is increasing interest in contextualised learning of vocabulary (Godwin-Jones 2018).

This chapter presents TheWhatNow?!, which is an intelligent reading assistant aiming to fa-

cilitate Finnish vocabulary learning in the context of web pages. The system presents word

and idiom definitions alongside the context in which they occur. The system can be used

through a web interface either as a dictionary or by manually entering or copying text into a

text field, or ideally, as a browser extension to assist with reading Finnish web pages. When

used as a browser extension, TheWhatNow?! presents word definitions in a sidebar. The-

WhatNow?! can be classified as an ATICALL (Authentic Text Intelligent Computer Aided

Language Learning) system, defined by Meurers et al. (2010) as software which produces

enhanced input based on real texts.

The focus of this chapter is upon TheWhatNow?!’s simplified, unified view of the Finnish

language, which nevertheless draws attention to morphological and word formation features

which are useful for a language learner’s development. Built upon these semantic and gram-

matical analyses, the user interface visualises the connection between surface forms, analytic

forms and definitions.

6.1 Design criteria

In order to make a useful tool for Finnish language learners we take some knowledge or ideas

comprising theories about language acquisition as a starting point, and synthesise these into

design criteria used to construct the final system. This section presents and justifies the design

criteria for TheWhatNow?!.

6.1.1 In context word definitions

This section presents the main function of TheWhatNow?!, which is to present word defini-

tions in context, and justifies its design in terms of the benefit it can bring language learners.

As a language learner, one of the most common things you might do when reading a text is

look up new words or words that you do not remember. This process often requires a switch

129

of context to looking up the word and then switching back. The whole process can be cum-

bersome, involving many steps including copying and pasting the word or retyping it as well

as the context switches. Suppose we consider the speedup we can gain in the process of read-

ing a text. We follow a similar type of reasoning to Amdahl’s law (Amdahl 1967). Here we

use it as a general law about speeding up a part of any multi part process rather than as a law

that is only about parallelising parts of a computer program. In particular, if we speed up a

fractional part p of a process by a factor of n, we gain a total speedup of:

speedup(p, n) =
1

(1− p) + p
n

So for example, if looking up words takes 50% of the time spent reading a text, and it is sped

up by a factor of two, then the total whole reading process is sped up by 33%. Moreover, a

larger fraction of the time is now spent on the tasks of text comprehension and learning new

words rather than other tasks.

6.1.2 Grammatical approach

As in Section 5.2, we aim to deal with the entirety of the rich morphology of Finnish (Karlsson

2015) and we refer to any item which can be given a definition, including lemmas, individ-

ual morphemes, combinations of morphemes and Multi-Word Expression (MWE) including

schemas as headwords.

Why bother going to the effort to make a comprehensive treatment of word formation and

complex word types? After all, these lexical items occur relatively infrequently in running

text and so it may seem like a poor allocation of effort to spend time dealing with them. One

assumption here is that these elements become more important after the beginner stage of lan-

guage learning. If we assume a very simplified model of lexical acquisition where words are

learnt in descending order of frequency, we can analyse properties of words that the language

learner does not know and therefore may like to look up. Figure 26 shows two such properties

varying as the number of words the learner knows increases: the proportion of all words seen

which are unknown, and the proportion of unknown words which are compounds. The data is

based on 1.5 billion tokens of analysed Finnish text from the Turku Internet Parsebank (Laip-

130

100 101 102 103 104 105 106 107

Rank

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Remaining proportion
Compounds per token

Figure 26: Proportions related to words unknown to a simplified model of a language learner. The x-axis gives the rank of the word that the
learner has learned all words up to. Remaining proportion is the proportion of words in running text unknown to the language learner. Compounds per token is the
proportion of unknown words which are compounds.

131

pala and Ginter 2014) and since there is so much text, no smoothing is performed. Taken as a

whole, the corpus is 9.8% compounds. An advanced learner may know somewhere between

1 000 and 10 000 words. After 1000 words, they would be unfamiliar with 38.0% of words,

which would be 23.9% compounds. After 10 000 words they would be unfamiliar with about

15.4% of words, which would be 42.0% compounds. The proportion of compounds reaches a

maximum when the learner knows 50 541 words, and at this point, they would be unfamiliar

with 7.7% of words, of which 48.0% would be compounds. It is assumed that other com-

plex lexical items such as MWEs follow a similar pattern, but the analysis is not extended

to include these since our ability to detect MWEs is limited by the coverage of our Lexical

Knowledge Base (LKB).

Chenu and Jisa (2009) and MacWhinney (2008) note that while in the early stages of learning

a language, it may be useful to employ links between concepts from the mother tongue onto

the target language, at later stages, it becomes important for learners to begin to form links

between concepts in the target language without direct reference to the mother tongue. As

noted, Finnish contains many word associations that are marked as part of word formation,

readily available to the language learner.

Lightbown and Spada (2013, pp. 168–175) state that input alone is not sufficient for language

acquisition in older learners. Key to this is the idea that attention is required for new linguistic

knowledge to enter the memory, formulated in the noticing hypothesis by Schmidt (1990).

Following this concept, systems such as those of Meurers et al. (2010) and Reynolds, Schaf,

and Meurers (2014) were created to automatically enhance input in web pages in order to

promote noticing. These systems draw attention to, for example, the part of speech of a word.

TheWhatNow?! draws attention to the connection and overlap between analytic and surface

forms, to promote learning of morphology, as well as to the formation of the word itself, to

help the formation of morpho-semantic links in the target language.

Finnish is quite agglutinative, meaning it is reasonably normal for morphemes to preserve

most of their surface form when combined. However, sound changes, as well as the sheer

number of morphemes that can be included in a word (as marked delimited by spaces in

text), can provide a barrier for learners to begin to find familiar lemmas and morphemes.

Any kind of segmentation and normalisation could help learners find familiar lexical items.

132

A lot of reference material for Finnish makes use of rather technical language by, for example,

using latinate names for case endings. Bleyhl (2009) notes that treatments of language which

are heavy on grammatical analysis and the associated linguistic terminology can be counter

productive in language instruction since they waste time on material other than the compre-

hensible input needed for true language acquisition. This large amount of extra material can

lead to reduced confidence from learners.

The approach taken here is to treat as many morphemes as possible as lexical items. Taking

case endings as an example and assuming English as a mother tongue language1, most Finnish

case endings have a fairly good correspondence in terms of function with prepositions in

English. Since many of the case endings, most notably the locative case endings, occur mostly

in the same form at all times, morphemes are referred to by a normalised form. So for example

rather than saying ‘voileipäkakusta‘ is in elative form, we just present the fact that -sta is one

of its constituent morphemes. The names of the most common case endings, partitive and

genitive, are named in the interface on the basis that their usage is more grammatical. That

is to say that it is more often the case that their usage is obligated rather than they are used

intentionally to convey extra information. Plural is also named on the basis it is likely to be

familiar from English.

No major distinction is made between different types of morphemes in the user interface,

to present the rich morphology of Finnish in a way which allows a learner to find familiar

morphemes, promotes attention to word formation, and doesn’t require the introduction of

too much terminology. All morphological analyses are normalised segmentations.

6.2 Analytical segmentation of Finnish

This section develops asafi: An analytical segmenter with alignments for Finnish. Asafi is

made with the particular requirements of TheWhatNow?! in mind. The main requirements

are:

1. The assumptions will hold for many other languages also.

133

R1. Produces analytical or normalised forms of grammatical morphemes. This means, for

example, segmenting kakusta as kakku -sta rather than kaku -sta. As discussed in

Section 6.1.2, this allows a less technical presentation of word structure.

R2. Produces multiple ranked analyses so as to degrade gracefully when for example an

MWE is spuriously found or a Part Of Speech (POS) tagger produces an incorrect

result. This means that we would like for example kuusi to be segmented into both

kuusi (spruce tree) and kuu -si (moon + 2nd person possessive; your moon).

R3. Produces analyses which are as segmented as possible. This means that we should

segment a word like voimakas as far as voida -ma -kas. This shows the learner the

internal structure of the Finnish lexicon as much as possible.

R4. Produces analyses in which the final segmentations are related with all lexical items

that make them up, so even though voileipäkakusta is segmented as voi leipä kakku -

sta, we also want to know that voileipä and voileipäkakku are constituent lemmas. This

means we can display all relevant word definitions.

R5. Where possible, attempts to add tags to the grammatical morphemes, such as POS

tags for lemmas, since this will allow associating only relevant definitions with the

morpheme.

R6. Produces an alignment between the surface and analytical forms. Since this information

will be used to draw attention to form, as discussed in Section 6.1.2 in the user interface

shown in Section 6.3.

Because of R1, approaches such as Morfessor (Creutz and Lagus 2005) (Virpioja et al. 2013)

or Omorfi’s segmenter which produce grammatical surface morphemes are not appropriate.

Approaches such as Byte Pair Encoding (BPE) (Sennrich, Haddow, and Birch 2016) produce

segmentations which may not consist of grammatical morphemes and are thus also not useful

in this case. It may seem that we must simply map from Omorfi’s analyses to analytical

segments, however, Omorfi’s analyses do not deal with most derivational morphemes, instead,

it adds derived word forms into its full form list of lemmas, meaning it does not meet R3.

This task is quite similar to that of Kann, Cotterell, and Schütze (2016), who use an encoder-

decoder model followed by a reranker to produce normalised segmentations of English, Ger-

man and Indonesian. However, the task here is broader due to the additional requirements

134

of R4, R5 and R6. Additionally, Finnish tends towards a greater number of morphemes per

token than these languages, having a similar level of compounding to German, but a greater

number of inflectional and derivational morphemes.

The overall approach is somewhat related to that of Shapiro (2016), who starts from segmen-

tations produced by Morfessor 2.0 (Virpioja et al. 2013), and classifies whether boundaries

between segments are compound boundaries or not. Note that constituent words of com-

pounds are a case where analytical segments are the same as surface segments since com-

pounding does not usually cause sound changes in Finnish. There, the task is solved using a

mix of language modelling and morphophonological constraints.

Non-goals are:

• Morphological generation. There is no need to go from analyses back to surface forms

for our purposes.

• Optimised implementation. There is no need for the implementation to be fast enough

to analyse large batches of text quickly, but only small groups of words at a time. There-

fore the system may be built by using a slow language like Python to integrate the results

of other systems.

The basic approach is to combine analyses from Omorfi’s analyser and information from Wik-

tionary together to produce segmentation trees. Grammatical constraints are used to remove

spurious analyses. The analyses are coupled with alignment information. In some cases, extra

hard coded rules are used to produce the desired type of analytical segmentations.

6.2.1 Normalised segments from Omorfi and Wiktionary

Omorfi’s morphological analyser produces analyses in its own format, which has some degree

of compatibility with tags from the universal dependencies project (Pyysalo et al. 2015). As

an example, kakusta may be analysed as [WORD_ID=kakku][UPOS=NOUN][NUM=SG]

[CASE=ELA]. A series of mappings for each category map relevant tags to analytical mor-

phemes so that [CASE=ELA] is output as -sta, while WORD_ID is passed through. The

order in which the tags appear is the same order as the surface morphemes appear, meaning

135

our analytical morphemes are in the same order as the surface morphemes. This mapping is

part of finntk.

Wiktionary contains various tags which give information about word formation. The Wik-

tionary scraper of Section 5.1 adds this information to its database so that each etymology

section can have a piece of derivation information. While there are quite a few different tem-

plate tags used for etymology, they are normalised so that every etymology is either an inflec-

tion, derivation or compound consisting of normalised segments. For compounds, the nor-

malised segments are given as arguments to the template tag, and this is also the case for most

derivation template tags. There are some derivation template tags which must be mapped to

normalised segments, such as the agent noun of template tag, which is mapped to “-ja”.

Finally, the form of template tag makes use of grammatical terms such as elative, and these

are mapped to normalised segments such as “-sta”. This is done as part of normal wikiparse

processing, but the mapping data is part of finntk.

6.2.2 Building a segmentation derivation tree

At first glance it would appear that as far as obtaining normalised segments is concerned, the

process is already finished at this point. All we need to do is look up our word with either the

from either the Wiktionary or Omorfi data and we are done. However, complex words may

have several levels of compounding or word derivation and inflection. Thus, we may have

to make use of several lookups to fully segment a word form. We also want to make sure

a completely segmented word form can be associated with all lexical items that make it up.

We thus shift our perspective to think of these analyses as rules and the segmenter as a rule

engine which applies them to produce derivation trees subject to constraints. Each rule can

match any segment and produce many segments.

The basic rule engine operates by recursively applying rules. It keeps track of the current

front of the derivation tree. At each iteration, each node from the front is considered and one

or more steps consisting of applying one or more rules are taken to create child nodes from

each node to create a new front. There may be multiple rules which can match a segment.

In this case, all combinations of rules matching each matchable segment are applied. When

136

either there are no more rules which match, or there is a match which does not expand any

segments, the node is marked as terminal. Note that a rule may match, but not produce any

more segments, instead explicitly preventing further segmentation. Consider for example

leipä, which has a Wiktionary entry with two etymologies: leipä as a noun (bread), and leipä

as a Hawaiian lei + the enclitic particle -pa/-pä. The first etymology produces a rule which

matches leipä but is marked as not performing any further segmentation.

A simple approach would be to allow all rules to apply at once. However, Omorfi analyses do

not work very well as rules as is in our case, for example for voileipäkakusta Omorfi produces

the following analyses:

[WORD_ID=voi][UPOS=NOUN][NUM=SG][CASE=NOM] c

[BOUNDARY=COMPOUND][WORD_ID=leipä][UPOS=NOUN][NUM=SG] c

[CASE=NOM][BOUNDARY=COMPOUND][WORD_ID=kakku][UPOS=NOUN] c

[NUM=SG][CASE=ELA]

↪→

↪→

↪→

[WORD_ID=voileipä][UPOS=NOUN][NUM=SG][CASE=NOM] c

[BOUNDARY=COMPOUND][WORD_ID=kakku][UPOS=NOUN][NUM=SG] c

[CASE=ELA]
↪→

↪→

[WORD_ID=voileipäkakku][UPOS=NOUN][NUM=SG][CASE=ELA]

If we were to apply each of these analyses as rules we would end up with 3 final segmentations.

However, for our purposes, they are all the same analysis, but with lexical items made from

multiple segments from the final analysis attached, as per R4.

Therefore we take the following approach:

• First, apply Wiktionary based rules recursively.

• Fetch all Omorfi rules resulting from looking up the whole word form (i.e., no recursive

lookup is performed)

• While there are Omorfi rules left:

– Try to match all Omorfi rules with an existing node using the rule’s output. Those

which matched are removed from consideration.

– If any rules did not match, apply the shortest ones starting from the root node and

discard.

– Apply Wiktionary based rule recursively.

137

voileipäkakku sta

voileipäkakusta

voi leipä kakku sta

voileipä kakku sta

voi lei pä kakku sta

omor: voileipäkakusta → voileipäkakku -sta

wiki: voi → None
wiki: leipä → lei -pä

wiki: voileipäkakku → voileipä kakku

wiki: voileipä → voi leipä

Figure 27: Derivation tree produced by asafi for voileipäkakusta. Terminal states, corresponding
to outputs are highlighted in yellow . In this example, leipä is incorrectly split into lei and pä.

• Apply any reverse rules (see Section 6.2.4)

An example of a tree produced using this approach for voileipäkakusta is shown in Figure 27.

6.2.3 Constraints upon rules

Applied as is, this scheme will produce a large number of impossible segmentations. This

is because each segment is considered only as a string. However, if we consider the POS of

each segment, we can place constraints to avoid some impossible segmentations. Consider

Figure 27. At the second from last node, voi could be considered as a form of ”voida”.

138

Indeed there is an etymology entry from Wiktionary for this case. However, we can consider

the space of possible compound word POS patterns to narrow this down.

We start by moving everything to a common set of POS tags. The tags are based on the

POSs in Princeton WordNet (PWN) and are: Verb, Noun, Adverb, Adjective & Unknown.

Universal dependency POS tags are mapped into this schema so that Omorfi analyses can be

used. Wiktionary POS headings are also mapped. Since this set is so small, multiple source

POS tags are mapped onto a single target POS. For example, adpositions (prepositions or

postpositions) are mapped onto the Adverb class. All closed classes, as well as interjections

and the prefix heading from Wiktionary, are mapped to Unknown. Note that constituent

words of Finnish compounds can be inflected words, and so here inflected forms are treated

as having the POS of their lemma.

The permissible compound POS patterns can then be produced by a list of production rules,

obtained by studying Hyvärinen (2019):

Verb → Noun Verb (e.g., koe+lentää)

Verb → Adverb Verb (e.g., edes+auttaa)

Noun → Noun Noun (e.g., voi+leipä)

Noun → Adjective Noun (e.g., puna+viini)

Adjective → Adjective Adjective (e.g., hyvän+näköinen)

Note that verb and adjective compounds are much rarer than noun compounds in Finnish.

We usually start by treating the whole token as having Unknown POS. Unknown acts as a

wildcard, able to match any POS. We may consider a segment as having one of a set of

POS tags. In case we receive information splitting a compound into more than two parts, we

can obtain the possible POS patterns by producing a set of expanded rules by applying the

grammar formed by the production rules.

We now follow a worked example following the derivation path of Figure 27:

1. We start with voileipäkakusta, which has Unknown POS.

139

2. We receive an Omorfi rule which removes the inflection to produce voileipäkakku -sta.

This is permitted since Unknown can match anything. We label voileipäkakku as a

Noun based on Omorfi’s tag.

3. We receive a segmentation of voileipäkakku (Noun) as voileipä kakku from a Wik-

tionary rule. This is permitted because we know voileipäkakku is a Noun. Based on

the production rules we know that voileipä may be an Adjective or a Noun and kakku

must be a Noun.

4. We receive a segmentation of voileipä (Noun) as voi leipä. This is permitted since

voileipä is a Noun or an Adjective. Based on the production rules we know that voi

may be an Adjective or a Noun and leipä must be a Noun.

5. We receive an analysis of voi (Verb) as voida (3rd pers.) from a Wiktionary rule. This

is not permitted since voi may only be an Adjective or a Noun.

6. We receive two analyses of leipä (Noun):

(a) We receive one etymology from Wiktionary which says that leipä (Noun) can

exist with no further segmentation and so the current node is set as a terminal.

This is permitted since the POS matches.

(b) We receive another etymology which has a segmentation of leipä (Noun) as lei pä.

This is permitted since the POS matches — although the resulting segmentation

of voileipäkakusta is spurious. Since there are no more rules to match, the new

node is set as a terminal.

6.2.4 Producing alignments

As per R6, we would like to produce alignments between surface forms, headwords and an-

alytical morphemes to be used in the user interface shown in Section 6.3. The alignments

consist of two spans: a surface span, denoted with strong highlighting in the user interface,

and a logical span, denoted with weaker highlighting in the user interface. An analytical

morpheme produces a logical span across that span of the surface form or headword which is

logically responsible for it. In linguistic terms, it should cover exactly its corresponding mor-

pheme or allomorph within the surface form. In all cases, every surface character should be

covered by at least one logical span. In most cases, logical spans should be disjoint. Indeed,

140

voimakkaasti mpi

voimakkaammin

voima kas sti mpi

voimakas sti mpi

voida ma kas sti mpi

voimakas mmin

wiki: voimakas → voima kas

syn: mmin → sti mpi

back: voimakkaammin
→ voimakas mmin

wiki: voimakkaasti
→ voimakas sti

wiki: voimakkaammin
→ voimakkaasti -mpi

wiki: voima → voida ma

Figure 28: Derivation tree produced by asafi for voimakkaammin. Terminal states, corresponding
to outputs are highlighted in yellow . The dashed line denotes the retroactively added synthetic node is a
secondary parent of its child, thus allowing the structure to be used as a tree or a directed acyclic graph.

141

this is a feature of agglutinative languages: a one to one correspondence between the gram-

matical features of a word form such as case and number and morphemes. However, some

morphemes in Finnish are more fusional such as -mme which encodes person and number

within one morpheme and -mmin which is logically the combination of the adverb forming

derivational morpheme -sti and the comparative -mpi. These are handled on a case by case

basis: with -mme left as is due to how common it is, and -mmin broken into -sti and -mpi as

a special case, with both logical spans covering the whole fusional surface morpheme. In the

case of -mmin, we retroactively add a second tree producing a directed acyclic graph structure

see Figure 28.

In the common case, we produce a logical alignment by working backwards from each final

analytical morpheme through the derivation path leading back to the surface form. At each

step of the derivation path, we first consider each of the rules applied to reach that step from

its parent. If a segment is unchanged by a rule, there is no change to its logical span. If there is

a rule, and it is not a rule which gives any alignment information, the Force-Align procedure

is used to attempt to find the logical spans of each child segment given the parent segment.

Force-Align aims to find an alignment consisting of a matching between child segments and

spans across parts of the parent segment, such that a prefix of each child segment is matched

with ordered, non-overlapping spans of the parent segment — with gaps between the spans

of the parent being possible. Matches are performed after normalisation. All strings are

lowercased and the front vowels ä, ö and y are mapped to the respective back vowel a, o and

u. As defined so far, Force-Align could trivially just return a list of empty spans, however,

we would additionally like to skip as few characters as possible, and so we define a cost for

solutions so as to prefer lower cost solutions over higher cost ones:

cost = (parent characters skipped)2 + (child characters skipped)2

An example showing the type of alignments produced by Force-Align made between each

generation of the derivation tree of voimakkaammin (previously shown in Figure 28) is shown

in Figure 29.

142

v o i m a k k a a m m i n

v o i m a k a s m m i n

v o i m a k a s s t i m p i

v o i d a m a

cost: 13

cost: N/Acost: 0

cost: 4

Figure 29: Alignment of voimakkaammin across multiple generations of the derivation tree
of Figure 28. The tree is drawn upwards instead of downwards to emphasise the path from child back to
parent. Dark yellow portions denote surface spans, while each of the whole yellow portions including dark
and light denote the whole logical span. The cost of each alignment according to Force-Align is shown next to
the parent segment. The dashed lines indicate the alignment is not produced by Force-Align but instead obtained
from the underlying rule. In this case: the synthetic rule -mmin → -sti -mpi.

143

Function Force-Align
(normalised parent string p, array of normalised children strings c1 . . . cn)
returns alignment a

Create a bounded priority queue pq with the lowest cost paritial solution at its front
Add an empty partial solution into pq
while The solution at the front of pq is not complete do

Take a partial solution j from the front of pq
/* Try to make a match */
if j’s cursor into c has not reached end and j’s cursor into p has not reached end
and p(j’s cursor into p) = c(j’s cursor into c) then

Add copy of j into pq with its cursors into p and c incremented
end
/* Try to skip a parent character */
if j’s cursor into p is not at beginning or end then

Add copy of j into pq with its cursor into p and its parent characters skipped
incremented

end
/* Try to skip the rest of the current child segment

*/
if j’s cursor into p is not at beginning and j’s cursor into c has not reached end
then

Add copy of j into pq with its cursor into c and its child characters skipped
incremented

end
end
a := alignment formed by solution at front of pq

end
Algorithm 4: The Force-Align procedure to find an alignment between a parent string and
its segmented children strings.

144

Force-Align is implemented as a dynamic programming style procedure given as pseudocode

in Algorithm 4. At each step, Force-Align keeps track of candidate solutions in a priority

queue, with the lowest cost partial solution always being at the front. The priority queue is

bounded at length 100 to bound the running time — making the procedure a form of beam

search. Whenever a partial candidate solution is taken from the front of the queue, all appli-

cable out of three possible new partial solutions are created and added to the priority queue:

making a single character match; skipping a single character from the parent string; and skip-

ping the rest of the characters in the current child segment. The procedure ends when there

is a complete solution at the front of the queue. Each child segment’s logical span covers

the characters from the beginning of its first character match to just before the first character

match of the next child segment, or until the end of the parent segment in the case of the last

child segment.

Next, we extend the logical alignment that now exists between segments separated by a sin-

gle generation in the derivation tree to multiple generations. We do this by at each generation

considering a current working logical span together with the logical span formed by the cur-

rent child segment onto the parent segment. First, the working span is shifted right according

to the position of the left edge of the logical span of the parent segment. Next, we consider

whether the original segment is still on the right edge of the current child segment. This is

the case to begin with and continues to be the case as long as we have followed the rightmost

child segment previously. If it is on the right edge, then we replace its right edge with the

right edge of the parent segment. If not, we leave its right edge as is.

Consider again the example of Figure 29 and the analytical morpheme -kas. It begins on

the right edge. We consider its alignment onto voimakas and find we must shift its left edge

by five characters. We replace its right edge with a that of its parent which happens to be

identical to its current right edge. -kas is still on the right edge of voimakas when we consider

the alignment of voimakas and voimakkaammin. At this step, we do not have to shift the

left edge. The right edge is replaced with the right edge of the alignment of voimakas onto

voimakkaammin, shifting it right by one character. The final span contains the characters

‘kkaa’ — which is the allomorph corresponding to ‘kas’, as required.

145

k a s
k a s

k k a a
Figure 30: Possible surface alignments of ‘kas’ onto ‘kkaa’. Aligned characters are indicated in red.

We now turn to the problem of finding surface spans. This is done by moving the child seg-

ment across the part of its parent segment which it logically spans and choosing the position

with the longest common prefix. For example, we choose the second alignment shown in

Figure 30. Notice that surface alignments already exist in Figure 29 which could be readily

used, however performing a second surface matching pass produces superior results. The

first pass, performed as a side effect of Force-Align, chose the first option of Figure 30, but

in cases such as these, where a strong grade kk is produced from a weak grade k we should

prefer solutions similar to the second option. An additional benefit is that this scheme extends

nicely to situations where Force-Align is not needed, such as when logical span information

is available from Wiktionary – although this information is not used by the current version of

asafi.

6.2.5 Aligning MWEs and schemas

We can now produce normalised segmentations of individual tokens from some text and ob-

tain alignments of the analytical morphemes with the surface token. We can also obtain

alignments of the analytical morphemes with all headwords in its derivation path, as per R4.

However, for the purposes of TheWhatNow?! we need to extend these abilities to deal with the

MWEs obtained in Section 5.2. In particular, we should like to be able to treat the extracted

MWEs as headwords and thus obtain alignments between them and analytical morphemes.

Aligning analytical morphemes with MWE headwords is done by starting from derivation

trees of each surface token and aligning each token within the MWE headword with them as

146

a second step. Each token within the MWE is accompanied by an Omorfi analysis, and thus

can be segmented by mapping it through the same map mentioned in Section 6.2.1. In the

case of wildcards, we are always dealing with the wildcard plus a single morpheme and so

segmentation is trivial. For each MWE token we can then find steps in the derivation tree

in its corresponding surface token it is compatible with. We walk down the derivation tree,

and if any node has an ordered superset of the segments of the MWE token then the whole

subtree is compatible. A mapping between the segments in the MWE token and the node

within the derivation tree can then be created. Now highlighting parts of an MWE headword

based on an analytical morpheme is simply a matter of going ascending the derivation tree.

If we hit a node associated with an MWE then we can map from the analytical morpheme to

the corresponding MWE morpheme.

In the user interface, it is the terminal segmentations which serve as section headings for

headword definitions. However, it would not make sense in terms of hierarchy to display the

MWE headwords under only one of the tokens which make it up. Thus we would like to be

able to create segmentations which span multiple tokens. We do this by starting from the

MWE and taking all combinations of terminal segmentations of each non-wildcard token.

Any wildcard tokens are not expanded.

6.3 User interface

A screenshot of the user interface is shown in Figure 31. Definitions are grouped by nor-

malised segmentation. Within each normalised segmentation there are defined headwords,

each corresponding to one or more of the normalised segments. They are ordered in decreas-

ing order of coverage of the normalised segmentation, meaning those definitions which define

the meaning of the surface form most closely appear closest to the top. Within each defined

headword appears one or more clusters of definitions, each with an exemplar.

To bring attention back to surface forms from the normalised forms, the interface highlights

the surface forms, as the learner hovers over the segmented forms. See Figure 32. The in-

teraction recalls a one dimensional “hover scrub” action. Initially, the whole word or phrase

is lightly highlighted. As the learner scrubs over analytic morphemes, the surface span of

147

Figure 31: A screenshot showing the Finnish Wikipedia page Turku being read using the
browser extension.

the surface form is highlighted in a dark shade, while the remainder of the logical span is

highlighted lightly.

To show the connection between the normalised segmentation and its definitions, parts of the

defined headwords are highlighted when normalised segments are hovered over, as shown in

Figures 31 & 32. The whole interaction serves to link the different views of surface form,

analytical form and headwords.

6.4 Architecture

This section gives an overview of the architecture of the final TheWhatNow?! web application

and browser extension. A block diagram of the main architectural components is shown in

Figure 33. The web application is built on top of Nuxt2. Nuxt has both client and server com-

ponents allowing a Vue3 based front end to be pre-rendered before delivery to the browser.

Both of the web application and browser extension clients connect to the broker over a Web-

Socket, which acts as the main entry point to the server side. The WebSocket abstraction

provides reliable, message based two way transmission of text or binary data. Here, type

tagged JavaScript Object Notation (JSON) messages are sent. The WebSocket connection is

2. See https://nuxtjs.org/.
3. See https://vuejs.org/.

148

https://nuxtjs.org/
https://vuejs.org/

Figure 32: A composite screenshot showing different stages of the interaction resulting when
a user brushes over segments in the text analyser.

149

Client Server

Pre
render

Broker
(Flask)

Browser
extension Websocket

Finnish-
dep-parser

Postgres wikiparse

Web
page

Nuxt

HTTPS

finn-sense
-clustasafi

ETL

lextract

nltk
WordNet

omorfi

ukbserv

UKB

Figure 33: The architecture of TheWhatNow?! as a block entity diagram. The arrows show
the direction of travel of linguistic analyses. Solid arrows designate communication that happens across pro-
cesses, while dashed arrows happen between a program and a library, within the same process. The diagram
is separated into three sections. Clients run on the user’s device. Servers run on a server machine concur-
rently with the clients, providing linguistic information to the clients. Extract Transform Load (ETL) batch jobs
also run on the server machine as one off or occasional tasks, independently of clients. Components with a
light green background are external and were not written as part of this thesis.

150

stateful; The broker keeps track of state related to the document the user is currently using

the client with.

When a user requests an analysis for a word in a document, the first thing the client does

is push the paragraph or similar fragment in which the word is contained to the broker in a

ParagraphPush message. As part of this, the client computes a hash of the paragraph to

use as an identifier in later requests. This is immediately followed by a CursorAnalysis-

Request message specifying the paragraph and character position to be analysed. If the

user requests another word analysis from the same paragraph, only a CursorAnalysis-

Request message will be sent, since the client knows the broker has already been sent the

paragraph and thus already has access to the paragraph and possibly some linguistic analyses

related to it. When the paragraph will no longer be used, for example, the language learner

navigates away from the page, a ParagraphInvalidatemessage is sent to tell the broker

it can delete the paragraph and any analyses of it it has performed. The client can also send a

SingleAnalysisRequest message containing a single word. This is used by the single

word lookup page on the web page client.

In response to a CursorAnalysisRequest or SingleAnalysisRequest, a stream

of replies wrapped in JSON container tagged as either CursorAnalysisResponse or

SingleAnalysisResponse are sent containing: word definitions from Wiktionary4 or

FinnWordNet; sense clusterings5; sense weights from UKB6; any MWEs at the user’s cursor7;

and aligned analytical segmentations from asafi8. The client then displays this information

to the language learner. The overall flow of this linguistic information on the server side is

shown in Figure 34.

The broker is free to eagerly perform tasks for a whole paragraph at a time, or else to de-

lay them until a CursorAnalysisRequest comes and potentially only perform the part

of the task relevant to the cursor position, or to mix both strategies. Currently, tokenisa-

tion, dependency parsing, MWE extraction and Word Sense Disambiguation (WSD) are per-

4. Scraped with wikiparse in Section 5.1.
5. Created with the Sb+Ety+Ex system from Section 5.3.
6. Determined to be the best of the evaluated systems overall in Chapter 4.
7. Extracted using lextract; See Section 5.2.
8. Developed in Section 6.2.

151

UKB context

lextract tokens

Segments

Omorfi tokenise finn-dep-parse

Token TokenToken

MWEs

Client

Client

Cluster lookup

lextract dependencies

UKB

ParagraphPush

Dependency tree

WordNet defns

WordNet lookup

asafi

SynsetsClusters

Wiktionary lookup

ukbserv

Wiktionary defns

Paragraph

Analyses

Figure 34: Diagram showing the runtime server side data flow of linguistic information to the
TheWhatNow?! client. Elliptical nodes indicate some piece of data. Rectangles indicate data processing
steps. The client indicated as a diamond.

152

Clusters

Wiktionary dump

MWEs

FiWN database

WordNet defns

broker

Wiktionary defns

wikiparse

asafi

Schemas

Etymologies finn-sense-clust lextract ETL

NLTK WordNetReader

lextract

Postgres

Figure 35: Diagram showing the ETL data flow of linguistic data for usage by TheWhatNow?!
Elliptical nodes indicate some piece of data. Rectangles indicate data processing steps. Diamonds indicate
downstream, non-ETL processes. Most of the data is loaded into Postgres before usage by the downstream
processes, however the red line indicates this is not the case for FinnWordNet (FiWN) definitions, which are
loaded directly from the PWN format database files.

formed eagerly, while analytical segmentation and definition and cluster lookup is performed

on demand. This may seem impossible since UKB requires lemmas for the whole paragraph

context, which would necessitate running asafi for this whole context in advance. To work

around this, there is the ukbserv component which creates contexts for UKB by performing

fixed point Omorfi extraction as described on page 47. Note that it is not always necessary

to block until all of the eagerly executed tasks are complete before sending some kind of re-

sponse to the client. For example, if a CursorAnalysisRequest comes when a parse

tree from Finnish-dep-parser is already available, it is used together with lextract for MWE

extraction, otherwise, the procedure which works on tokenised text is used first, and the de-

pendency tree procedure deferred until the response from Finnish-dep-parser is ready. This

approach allows for lower latency since we are not forced into a situation where we must

always go linearly through the entire pipeline of linguistic analyses.

153

The ETL layer, shown in more detail in Figure 35 consists of first of running wikiparse,

described in Section 5.1 so that Wiktionary definitions are available in the Postgres database.

The word formation etymologies are then ready for use by asafi, described in Section 6.2.

Wiktionary definitions and WordNet definitions are used together by to create sense clusters

by the finn-sense-clust sense clustering component, described in Section 5.3, and to create

indices for extracting MWEs by lextract’s ETL component, described in Section 5.2.

154

7 Conclusion

This thesis began with an idea: Finnish language learners would be able to benefit from

extended reading more readily and more extensively given in context help. From this idea,

the thesis has followed a path of constructing and evaluating resources aiming to offer help

focussed on word meaning and formation.

This conclusion first summarises the practical contributions made as part of this thesis in

the form of software and language resources. Next, research contributions and findings are

summarised. We finish by considering some possibilities for future work.

7.1 Software and language resource contributions

The following open source software resources were created as part of this thesis:

• STIFF: https://github.com/frankier/STIFF

The main software package behind Chapter 3. It automatically creates the STIFF sense

tagged corpus of Finnish. It includes and corpus stream format conversion tools to

convert STIFF, EuroSense and the manually annotated corpus into a format usable by

the Word Sense Disambiguation (WSD) tools as well as evaluation and plotting code.

• finntk: https://github.com/frankier/finntk

Simple, high level toolkit for Finnish Natural Language Processing (NLP), mainly pro-

viding convenience methods for, and gluing together other tools. It can, for example,

process information from Omorfi, FinnPOS, Wiktionary and FinnWordNet into com-

parable forms. The cores of some of the WSD techniques used are finn-wsd-eval is

implemented here.

• expcomb: https://github.com/frankier/expcomb

Python library with support code for evaluations which compare many combinations

of experiments. It includes LaTeX table generation code and code to perform boot-

strapping. The library integrates with SnakeMake (Köster and Rahmann 2012). It is

used by finn-wsd-eval and finn-sense-clust.

155

https://github.com/frankier/STIFF
https://github.com/frankier/finntk
https://github.com/frankier/expcomb

• finn-wsd-eval: https://github.com/frankier/finn-wsd-eval

The main software package behind Chapter 4. It contains code to apply expcomb and to

set up the different WSD systems such as fetching any resources needed and converting

between different result formats. Ultimately the process is automated to the extent that

the whole evaluation can be rerun by simply running a command in a Docker container.

• wikiparse: https://github.com/frankier/wikiparse

The main software package behind Section 5.1. It scrapes Wiktionary into structured

data for use by lextract, finn-sense-clust and TheWhatNow?!

• lextract: https://github.com/frankier/lextract

A software package developed in Section 5.2 to extract schemas and Multi-Word Ex-

pressions (MWEs) from Finnish text.

• finn-sense-clust: https://github.com/frankier/finn-sense-clust

The main software package behind Section 5.3. It contains code to apply expcomb

to evaluating different sense clustering methods on FinnWordNet (FiWN) and Wik-

tionary. It includes the implementation of all clustering techniques, as well as code to

build the automatic evaluation data set and the manual evaluation data.

• asafi: https://gitlab.com/frankier/asafi/

The main software package behind Section 6.2. It provides the type of word analyses

required by TheWhatNow?!

• STIFF-explore: https://github.com/frankier/STIFF-explore

Exploratory coding and plotting code related to this thesis.

Plugins and forks were made to the following open source software, and an attempt was made

to contribute them back to the original authors where possible:

• extjwnl_fiwn: https://github.com/frankier/extjwnl_fiwn

Java code to make extjwnl 1 interoperate with FiWN, so that SupWSD can be used

together with FiWN.

• AutoExtend: https://github.com/frankier/AutoExtend

AutoExtend fork to support FiWN and ConceptNet Numberbatch, used in sections 4.3.4 & 5.3.6.

1. Available at https://github.com/extjwnl/extjwnl.

156

https://github.com/frankier/finn-wsd-eval
https://github.com/frankier/wikiparse
https://github.com/frankier/lextract
https://github.com/frankier/finn-sense-clust
https://gitlab.com/frankier/asafi/
https://github.com/frankier/STIFF-explore
https://github.com/frankier/extjwnl_fiwn
https://github.com/frankier/AutoExtend
https://github.com/extjwnl/extjwnl

• babelnet-lookup: https://github.com/frankier/babelnet-lookup

babelnet-lookup fork to obtain the BabelNet-WordNet mapping used on page 56.

• FinnWordNet: https://github.com/frankier/fiwn

A fork of FinnWordNet 2.0 made to fix the database so that it can interoperate with other

tools. Other changes include the addition of the synthetic counts of Section 3.2.2, as

well as adding extra data to make it easy to map between Princeton WordNet (PWN)

and FiWN synsets.

• EuroSense: https://github.com/frankier/eurosense

This repository contains a script attempting to fix EuroSense as described on page 54.

In particular, the version of EuroSense obtained from http://lcl.uniroma1.

it/eurosense/ has the incorrect language associated with some annotations. The

fixed corpus, which is the one described in Section 3.4 is also made available.

• aho-corasick: https://github.com/frankier/pyahocorasick/commits/

stiff-2018-09-20-3

This fork adds word/vocabulary based Aho-Corasick automata for extracting Finnish

MWEs in Section 3.2. The original library could only operate with character based

automata.

The following language resources were created:

• Sense annotated corpora for Finnish:

– The STIFF corpus created in Chapter 3. The high recall and high precision vari-

ants are available athttps://archive.org/details/stiff-br4-bp4.

– The fixed high precision EuroSense corpus is available athttps://archive.

org/details/eurosense-hp.fixed.xml.

– The manual corpus created in Section 3.5 is available fromhttps://github.

com/frankier/finn-man-ann.

• A Context2Vec model (see Section 4.3.7) for Finnish, made available at https://

archive.org/details/ctx2vec-b100-3epoch.

• An extracted version of Finnish definitions from English Wiktionary created in Sec-

tion 5.1 made available as an SQLite database athttps://github.com/frankier/

wikiparse/releases/download/all190406to1223/.

157

https://github.com/frankier/babelnet-lookup
https://github.com/frankier/fiwn
https://github.com/frankier/eurosense
http://lcl.uniroma1.it/eurosense/
http://lcl.uniroma1.it/eurosense/
https://github.com/frankier/pyahocorasick/commits/stiff-2018-09-20-3
https://github.com/frankier/pyahocorasick/commits/stiff-2018-09-20-3
https://archive.org/details/stiff-br4-bp4
https://archive.org/details/eurosense-hp.fixed.xml
https://archive.org/details/eurosense-hp.fixed.xml
https://github.com/frankier/finn-man-ann
https://github.com/frankier/finn-man-ann
https://archive.org/details/ctx2vec-b100-3epoch
https://archive.org/details/ctx2vec-b100-3epoch
https://github.com/frankier/wikiparse/releases/download/all190406to1223/
https://github.com/frankier/wikiparse/releases/download/all190406to1223/

• Clustered and aligned word sense resources for Finnish:

– The automatically created verb cluster evaluation data created in Section 5.3.2,

which is available athttps://github.com/frankier/finn-sense-clust/

releases/download/downloads/eval.tar.gz.

– The manually created noun cluster evaluation data also described in Section 5.3.3,

which is available athttps://github.com/frankier/finn-sense-clust/

tree/master/manclus.

– Sense clusters resulting from the Sb+Ety+Ex system, chosen in Section 5.3.6,

distributed as part of the aforementioned Wiktionary SQLite database.

• A list of MWEs extracted from Wiktionary and FiWN in Section 5.2, which is also

distributed as part of the aforementioned Wiktionary SQLite database.

Additionally, the TheWhatNow?! web application and browser extension were created and

are made available at https://thewhatnow.fi/.

7.2 Research contributions

During the course of creating this thesis, the following was found in relation to trying to

replicate and utilise previous work:

• OpenSubtitles2018 contains encoding errors in∼1% of its Mandarin text. See page 44.

• According to an evaluation conducted as part of this thesis, EuroSense appears to have

much lower precision and recall for Finnish as compared to the authors’ own evaluation

for other languages. See Figure 13 on page 65.

• Both Lesk++ and SupWSD produced results that were significantly worse than ex-

pected based on the English language evaluations of their authors. See Section 4.5.

• The sense clustering work of Snow et al. (2007) made inappropriate use of F1-measure.

See Section 5.3.4.

In terms of the results of evaluations performed as part of this thesis, the following is worth

highlighting again:

158

https://github.com/frankier/finn-sense-clust/releases/download/downloads/eval.tar.gz
https://github.com/frankier/finn-sense-clust/releases/download/downloads/eval.tar.gz
https://github.com/frankier/finn-sense-clust/tree/master/manclus
https://github.com/frankier/finn-sense-clust/tree/master/manclus
https://thewhatnow.fi/

• The STIFF corpus produced in Chapter 3 is competitive with at least one other auto-

matically induced corpus, EuroSense, despite the simplicity of the technique used to

produce it.

• The strongest WSD system according to Chapter 4 was UKB with frequency data —

appearing to contradict previous results which show supervised systems outperform-

ing knowledge based systems by some margin. However, there were promising initial

results for using the manually created English training data of SemCor together with

systems based on BERT.

• The similarity tuned BERT of Reimers and Gurevych (2019), used in Section 5.3 pro-

duces quite a strong system for clustering word senses based on definition alone.

7.3 Future work

More than once, this thesis breaks some new ground, but ultimately leaves quite a bit on the

table. To some degree that is because it has been directed towards achieving a particular end

goal for a particular application: TheWhatNow?! This results in quite a wide area in which it

would be possible to go deeper. This section therefore concentrates only on the broadest and

most obvious future directions.

In terms of creating a WSD system for Finnish, there is much that could be done. For example,

the techniques of Scarlini, Pasini, and Navigli (2020), L. Huang et al. (2019) or Vial, Lecou-

teux, and Schwab (2019), which were published during the writing of this thesis, could be

tried for Finnish. In terms of improving upon systems tried in the evaluation, the BERT sys-

tem could be updated to use a more conventional final linear layer for feature selection rather

than using nearest neighbour. Figure 19 showed that there is a need for more WSD evaluation

data for Finnish, and making sure this is in place should be a priority for any future work in

Finnish WSD.

In terms of sense clustering, reasonably strong results were obtained in Section 5.3 based on

SentBert, and it may be interesting to try these approaches for English for comparison with

previous work.

159

The analytical segmenter of Section 6.2 is rule based, and thus cannot handle out of vocabu-

lary words. A machine learning approach such as that of Kann, Cotterell, and Schütze (2016)

could be combined with the data developed here to address this.

For TheWhatNow?! the possible space of new features is also very large. We therefore con-

sider possibilities which keep its scope to that of helping language comprehension with a

“zoomed in” lexical focus on words and idioms. One direction would be to take into account

learner vocabulary jointly with the most important words in the text to provide their defi-

nitions in line with the original text automatically, or produce a word list from a document

for the reader to learn beforehand. TheWhatNow?! could be applied to new media such as

the subtitles of a film. In terms of defining words, currently, this is done with English trans-

lations or definitions, but there are other possibilities such as Finnish definitions, showing

related words such as synonyms and antonyms showing the word in additional disambiguat-

ing contexts, or making use of text simplification. The WSD task would then be extended to

including deciding which type of word meaning hint to show based on both the context of the

word and the learner’s knowledge level.

Ideally TheWhatNow?! would take account of users’ intentions and energy levels to direct

its reading assistance. For example, a reader might in some cases be reading the text in

order to achieve some external task and therefore have less energy for analysing the text or

incidental learning. In this case the best strategy might be to present chunks of translated text

beyond single words in line with the text without further linguistic information to minimise

distraction. Other times a learner could be reading with the particular intention of studying

the language. In this case, features like extracting word lists and displaying morphological

analyses and usage notes become more relevant. Making a tool automatically choose the

correct settings depending on the user’s state like this is an open problem, but a starting point

here could be to make use of how goal oriented the text itself appears.

The question of whether systems such as TheWhatNow?! truly help language learners is

a pertinent one. To minimise confounders, and thus obtain valid data, any experiment is

likely to have limited scope. Further research into this direction including qualitative and

quantitative user evaluations to validate existing features and point to new ones is thus an

important piece of future work.

160

Bibliography

Agirre, Eneko, Oier Lopez de Lacalle, and Aitor Soroa. 2014. ”Random walks for knowledge-

based word sense disambiguation”. Computational Linguistics 40 (1): 57–84. doi:10.1162

/COLI_a_00164.

Agirre, Eneko, Oier López de Lacalle, and Aitor Soroa. 2018. ”The risk of sub-optimal use

of Open Source NLP Software: UKB is inadvertently state-of-the-art in knowledge-based

WSD”. In Proceedings of Workshop for NLP Open Source Software (NLP-OSS), 29–33. Mel-

bourne, Australia: Association for Computational Linguistics. doi:10.18653/v1/W18-

2505. arXiv: 1805.04277.

Aho, Alfred V., and Margaret J. Corasick. 1975. ”Efficient string matching: an aid to bibli-

ographic search”. Communications of the ACM 18 (6): 333–340. issn: 00010782. doi:10.

1145/360825.360855.

Aitchison, J. 2012. Words in the mind: An introduction to the mental lexicon. 4th. New York,

NY: John Wiley & Sons. isbn: 9780470656471.

Amdahl, Gene M. 1967. ”Validity of the Single Processor Approach to Achieving Large Scale

Computing Capabilities”. In Proceedings of the April 18-20, 1967, Spring Joint Computer

Conference, 483–485. AFIPS ’67 (Spring). Atlantic City, New Jersey: ACM. doi:10.1145/

1465482.1465560.

Arora, Sanjeev, Yingyu Liang, and Tengyu Ma. 2017. ”A Simple but Tough-to-Beat Baseline

for Sentence Embeddings”. In Proceedings of the 5th International Conference on Learning

Representations, ICLR 2017. https://openreview.net/forum?id=SyK00v5xx.

Baker, Collin F, Charles J Fillmore, and John B Lowe. 1998. ”The berkeley framenet project”.

In Proceedings of the 17th international conference on Computational linguistics-Volume 1,

86–90. Association for Computational Linguistics. doi:10.3115/980451.980860.

Banerjee, Satanjeev, and T Pedersen. 2002. ”Adapting the Lesk algorithm for word sense

disambiguation to WordNet”. Master’s thesis, University of Minnesota. doi:10.1007/3-

540-45715-1_11.

161

http://dx.doi.org/10.1162/COLI_a_00164
http://dx.doi.org/10.1162/COLI_a_00164
http://dx.doi.org/10.18653/v1/W18-2505
http://dx.doi.org/10.18653/v1/W18-2505
https://arxiv.org/abs/1805.04277
http://dx.doi.org/10.1145/360825.360855
http://dx.doi.org/10.1145/360825.360855
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/1465482.1465560
https://openreview.net/forum?id=SyK00v5xx
http://dx.doi.org/10.3115/980451.980860
http://dx.doi.org/10.1007/3-540-45715-1_11
http://dx.doi.org/10.1007/3-540-45715-1_11

Banerjee, Satanjeev, and Ted Pedersen. 2003. ”Extended Gloss Overlaps As a Measure of

Semantic Relatedness”. In Proceedings of the 18th International Joint Conference on Arti-

ficial Intelligence, 3:805–810. IJCAI’03. Acapulco, Mexico: Morgan Kaufmann Publishers

Inc. doi:10.5555/1630659.1630775.

Basile, Pierpaolo, Annalina Caputo, and Giovanni Semeraro. 2014. ”An Enhanced Lesk Word

Sense Disambiguation Algorithm through a Distributional Semantic Model.” In Proceedings

of COLING 2014, the 25th International Conference on Computational Linguistics: Technical

Papers, 1591–1600. http://www.aclweb.org/anthology/C14-1151.

Berg-Kirkpatrick, Taylor, David Burkett, and Dan Klein. 2012. ”An Empirical Investigation

of Statistical Significance in NLP”. In Proceedings of the 2012 Joint Conference on Empirical

Methods in Natural Language Processing and Computational Natural Language Learning,

995–1005. Jeju Island, Korea: Association for Computational Linguistics. https://www.

aclweb.org/anthology/D12-1091.

Bhalla, Vishal, and Klara Klimcikova. 2019. ”Evaluation of automatic collocation extraction

methods for language learning”. In Proceedings of the Fourteenth Workshop on Innovative

Use of NLP for Building Educational Applications, 264–274. Florence, Italy: Association for

Computational Linguistics. doi:10.18653/v1/W19-4428.

Biemann, Chris. 2006. ”Chinese Whispers: An Efficient Graph Clustering Algorithm and Its

Application to Natural Language Processing Problems”. In Proceedings of the First Workshop

on Graph Based Methods for Natural Language Processing, 73–80. TextGraphs-1. Strouds-

burg, PA, USA: Association for Computational Linguistics. doi:10.3115/1654758.

1654774.

. 2011. Structure discovery in natural language. Springer Science & Business Media.

doi:10.1007/978-3-642-25923-4.

Bleyhl, Werner. 2009. ”The hidden paradox of foreign language instruction. Or: Which are

the real foreign language learning processes”. Input Matters in SLA. Clevedon: Multilingual

Matters: 137–55. doi:10.21832/9781847691118-010.

162

http://dx.doi.org/10.5555/1630659.1630775
http://www.aclweb.org/anthology/C14-1151
https://www.aclweb.org/anthology/D12-1091
https://www.aclweb.org/anthology/D12-1091
http://dx.doi.org/10.18653/v1/W19-4428
http://dx.doi.org/10.3115/1654758.1654774
http://dx.doi.org/10.3115/1654758.1654774
http://dx.doi.org/10.1007/978-3-642-25923-4
http://dx.doi.org/10.21832/9781847691118-010

Bond, Francis, and Ryan Foster. 2013. ”Linking and Extending an Open Multilingual Word-

net”. In Proceedings of the 51st Annual Meeting of the Association for Computational Lin-

guistics (Volume 1: Long Papers), 1352–1362. Sofia, Bulgaria: Association for Computa-

tional Linguistics. https://www.aclweb.org/anthology/P13-1133.

Bond, Francis, and Kyonghee Paik. 2012. ”A Survey of WordNets and their Licenses”. In

Proceedings of the 6th Global WordNet Conference (GWC 2012), 64–71. December. Tribun

EU. isbn: 9788026302445. http://web.mysites.ntu.edu.sg/fcbond/open/

pubs/2012-gwc-wn-license.pdf.

Booij, G. 1996. ”Inherent versus contextual inflection and the split morphology hypothesis”.

In Yearbook of morphology 1995, 1–16. Dordrecht, Netherlands. doi:10.1007/978-94-

017-3716-6_1.

Borin, Lars, Markus Forsberg, and Lennart Lönngren. 2013. ”SALDO: a touch of yin to

WordNet’s yang”. Language Resources and Evaluation 47 (4): 1191–1211. issn: 1574-0218.

doi:10.1007/s10579-013-9233-4.

Boulton, Alex. 2009. ”Data-driven Learning: Reasonable Fears and Rational Reassurance”.

Indian Journal of Applied Linguistics 35 (1): 81–106. issn: 0379-0037. https://hal.

archives-ouvertes.fr/hal-00326990.

Bovi, Claudio Delli, Jose Camacho-Collados, Alessandro Raganato, and Roberto Navigli.

2017. ”Eurosense: Automatic harvesting of multilingual sense annotations from parallel text”.

In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics

(Volume 2: Short Papers), 2:594–600. doi:10.18653/v1/P17-2094.

Brown, Peter F, Vincent J Della Pietra, Stephen A Della Pietra, and Robert L Mercer. 1993.

”The mathematics of statistical machine translation: Parameter estimation”. Computational

linguistics 19 (2): 263–311. https://www.aclweb.org/anthology/J93-2003.

Callison-Burch, Chris, Miles Osborne, and Philipp Koehn. 2006. ”Re-evaluating the Role

of Bleu in Machine Translation Research”. In 11th Conference of the European Chapter of

the Association for Computational Linguistics. Trento, Italy: Association for Computational

Linguistics. https://www.aclweb.org/anthology/E06-1032.

163

https://www.aclweb.org/anthology/P13-1133
http://web.mysites.ntu.edu.sg/fcbond/open/pubs/2012-gwc-wn-license.pdf
http://web.mysites.ntu.edu.sg/fcbond/open/pubs/2012-gwc-wn-license.pdf
http://dx.doi.org/10.1007/978-94-017-3716-6_1
http://dx.doi.org/10.1007/978-94-017-3716-6_1
http://dx.doi.org/10.1007/s10579-013-9233-4
https://hal.archives-ouvertes.fr/hal-00326990
https://hal.archives-ouvertes.fr/hal-00326990
http://dx.doi.org/10.18653/v1/P17-2094
https://www.aclweb.org/anthology/J93-2003
https://www.aclweb.org/anthology/E06-1032

Chan, Yee Seng, and Hwee Tou Ng. 2005. ”Scaling up Word Sense Disambiguation via Paral-

lel Texts”. In Proceedings of the 20th National Conference on Artificial Intelligence - Volume

3, 1037–1042. AAAI’05. Pittsburgh, Pennsylvania: AAAI Press. isbn: 157735236x.https:

//dl.acm.org/doi/10.5555/1619499.1619500.

Chenu, Florence, and Harriet Jisa. 2009. ”Reviewing some similarities and differences in L1

and L2 lexical development”. Acquisition et interaction en langue étrangère, number Aile...

Lia 1: 17–38. http://journals.openedition.org/aile/4506.

Conneau, Alexis, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé Jé-

gou. 2018. ”Word Translation Without Parallel Data”. In International Conference on Learn-

ing Representations. arXiv: 1710.04087. https://openreview.net/forum?id=

H196sainb.

Creutz, Mathias, and Krista Lagus. 2005. ”Unsupervised Morpheme Segmentation and Mor-

phology Induction from Text Corpora Using Morfessor 1.0”. In Publications in Computer

and Information Science, Report A, 81:1–27. Helsinki University of Technology. https://

tuhat.helsinki.fi/ws/portalfiles/portal/62462066/Creutz05tr.

pdf.

De Smit, Merlijn. 2006. Language contact and structural change: An Old Finnish case study.

Studia Fennica Stockholmiensia. Acta Universitatis Stockholmiensis. isbn: 9185445533.

DeFrancis, John. 1984. ”The Chinese language: Fact and fantasy”. Language 62 (3): 346.

issn: 1535-0665.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. ”BERT: Pre-

training of Deep Bidirectional Transformers for Language Understanding”. In Proceedings

of the 2019 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 4171–4186.

Minneapolis, Minnesota: Association for Computational Linguistics. doi:10.18653/v1/

N19-1423.

Dupuy, Beatrice, and Stephen D. Krashen. 1998. ”From Lower-Division to Upper-Division

Foreign Language Classes”. ITL - International Journal of Applied Linguistics 119-120 (1):

1–7. issn: 0019-0829. doi:10.1075/itl.119-120.01dup.

164

https://dl.acm.org/doi/10.5555/1619499.1619500
https://dl.acm.org/doi/10.5555/1619499.1619500
http://journals.openedition.org/aile/4506
https://arxiv.org/abs/1710.04087
https://openreview.net/forum?id=H196sainb
https://openreview.net/forum?id=H196sainb
https://tuhat.helsinki.fi/ws/portalfiles/portal/62462066/Creutz05tr.pdf
https://tuhat.helsinki.fi/ws/portalfiles/portal/62462066/Creutz05tr.pdf
https://tuhat.helsinki.fi/ws/portalfiles/portal/62462066/Creutz05tr.pdf
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.1075/itl.119-120.01dup

Fares, Murhaf, Andrey Kutuzov, Stephan Oepen, and Erik Velldal. 2017. ”Word vectors,

reuse, and replicability: Towards a community repository of large-text resources”. In Pro-

ceedings of the 21st Nordic Conference on Computational Linguistics, 271–276. Gothenburg,

Sweden: Association for Computational Linguistics. https://www.aclweb.org/

anthology/W17-0237.

Fellbaum, Christiane. 1998. WordNet: An Electronic Lexical Database, 71:423. 3. MIT Press.

isbn: 026206197X. doi:10.1139/h11-025.

Firth, J. 1957. ”A Synopsis of Linguistic Theory 1930-1955”. In Studies in Linguistic Anal-

ysis. Reprinted in Palmer, F. (ed. 1968) Selected Papers of J. R. Firth, Longman, Harlow.

Philological Society, Oxford.

Fitzgerald, Alannah, Shaoqun Wu, and María José Marín. 2015. ”FLAX: Flexible and open

corpus-based language collections development”. 10 years of the LLAS elearning symposium:

case studies in good practice: 215–227. doi:10.14705/rpnet.2015.000281.

Frey, Brendan J., and Delbert Dueck. 2007. ”Clustering by Passing Messages Between Data

Points”. Science 315 (5814): 972–976. issn: 0036-8075. doi:10.1126/science.11368

00.

Galdi, Paola, Francesco Napolitano, and Roberto Tagliaferri. 2014. ”A comparison between

Affinity Propagation and assessment based methods in finding the best number of clusters”.

In Proceedings of CIBB.

Gale, William A., and Kenneth W. Church. 1993. ”A Program for Aligning Sentences in

Bilingual Corpora”. Computational Linguistics 19 (1): 75–102. https://www.aclweb.

org/anthology/J93-1004.

Gale, William, Kenneth Ward Church, and David Yarowsky. 1992. ”Estimating Upper and

Lower Bounds on the Performance of Word-sense Disambiguation Programs”. In Proceed-

ings of the 30th Annual Meeting on Association for Computational Linguistics, 249–256.

ACL ’92. Newark, Delaware: Association for Computational Linguistics. doi:10.3115/

981967.981999.

165

https://www.aclweb.org/anthology/W17-0237
https://www.aclweb.org/anthology/W17-0237
http://dx.doi.org/10.1139/h11-025
http://dx.doi.org/10.14705/rpnet.2015.000281
http://dx.doi.org/10.1126/science.1136800
http://dx.doi.org/10.1126/science.1136800
https://www.aclweb.org/anthology/J93-1004
https://www.aclweb.org/anthology/J93-1004
http://dx.doi.org/10.3115/981967.981999
http://dx.doi.org/10.3115/981967.981999

Godwin-Jones, Robert. 2018. ”Contextualized vocabulary learning”. Language Learning &

Technology 22 (3): 1–19. doi:10125/44651.

Graën, Johannes, and Gerold Schneider. 2017. ”Crossing the border twice: Reimporting prepo-

sitions to alleviate L1-specific transfer errors”. In Proceedings of the joint workshop on NLP

for Computer Assisted Language Learning and NLP for Language Acquisition, 18–26. Gothen-

burg, Sweden: LiU Electronic Press. doi:10.5167/uzh-137099.

Häkkinen, Kaisa. 1992. ”Suomen perussanaston etymologiset kerrostumat [The etymological

strata of the Finnish lexicon]”. Document in Finnish, Virittäjä 96 (1). https://journal.

fi/virittaja/article/view/38498.

. 1997. ”Kuinka ruotsin kieli on vaikuttanut suomeen? [How has the Swedish language

influenced Finnish?]” Document in Finnish, Sananjalka: Suomen kielen seuran vuosikirja:

31–53. doi:10.30673/sja.86585.

Halpern, Jack, and Jouni Kerman. 1999. ”Pitfalls and Complexities of Chinese to Chinese

Conversion”. In International Unicode Conference (14th) in Boston. http://www.mt-

archive.info/MTS-1999-Halpern.pdf.

Hansen, Björn, and Ferdinand De Haan. 2009. ”Modal verbs in Balto-Finnic”. In Modals in

the languages of Europe: A reference work, 363–402. Walter de Gruyter. doi:10.1515/

9783110219210.3.363.

Hassan, Hany, Anthony Aue, Chang Chen, Vishal Chowdhary, Jonathan Clark, Christian Fe-

dermann, Xuedong Huang, et al. 2018. ”Achieving Human Parity on Automatic Chinese to

English News Translation”. arXiv: 1803.05567.

Haverinen, Katri, Jenna Kanerva, Samuel Kohonen, Anna Missilä, Stina Ojala, Timo Vilja-

nen, Veronika Laippala, and Filip Ginter. 2015. ”The Finnish proposition bank”. Language

Resources and Evaluation 49 (4): 907–926. doi:10.1007/s10579-015-9310-y.

Heaps, H. S. 1978. Information retrieval, computational and theoretical aspects. Academic

Press. isbn: 0123357500. https://archive.org/details/informationretr

i0000heap.

166

http://dx.doi.org/10125/44651
http://dx.doi.org/10.5167/uzh-137099
https://journal.fi/virittaja/article/view/38498
https://journal.fi/virittaja/article/view/38498
http://dx.doi.org/10.30673/sja.86585
http://www.mt-archive.info/MTS-1999-Halpern.pdf
http://www.mt-archive.info/MTS-1999-Halpern.pdf
http://dx.doi.org/10.1515/9783110219210.3.363
http://dx.doi.org/10.1515/9783110219210.3.363
https://arxiv.org/abs/1803.05567
http://dx.doi.org/10.1007/s10579-015-9310-y
https://archive.org/details/informationretri0000heap
https://archive.org/details/informationretri0000heap

Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. ”Long Short-Term Memory”. Neural Com-

putation 9 (8): 1735–1780. doi:10.1162/neco.1997.9.8.1735.

Hovy, Eduard, Mitchell Marcus, Martha Palmer, Lance Ramshaw, and Ralph Weischedel.

2006. ”OntoNotes: The 90% Solution”. In Proceedings of the Human Language Technology

Conference of the NAACL, Companion Volume: Short Papers, 57–60. New York City, USA:

Association for Computational Linguistics. doi:10.3115/1614049.1614064.

Huang, Chu-Ren, Shu-Kai Hsieh, Jia-Fei Hong, Yun-Zhu Chen, I-Li Su, Yong-Xiang Chen,

and Sheng-Wei Huang. 2010. ”Chinese WordNet: Design and Implementation of a cross-

lingual knowledge processing infrastructure”. (Document in Chinese), Journal of Chinese

Information Processing 24 (2): 14–23. http://jcip.cipsc.org.cn/EN/abstrac

t/abstract1340.shtml.

Huang, Luyao, Chi Sun, Xipeng Qiu, and Xuanjing Huang. 2019. ”GlossBERT: BERT for

Word Sense Disambiguation with Gloss Knowledge”. In Proceedings of the 2019 Confer-

ence on Empirical Methods in Natural Language Processing and the 9th International Joint

Conference on Natural Language Processing (EMNLP-IJCNLP), 3509–3514. Hong Kong,

China: Association for Computational Linguistics. doi:10.18653/v1/D19-1355.

Hutchins, John. 1995. ”The whisky was invisible” or persistent myths of MT”. MT News

International 11:17–18. http://www.hutchinsweb.me.uk/MTNI-11-1995.

pdf.

Hyvärinen, Irma. 2019. ”Compounds and multi-word expressions in Finnish: Compounds

and Multi-Word Expressions”, 307–336. isbn: 9783110632446. doi:10.1515/97831106

32446-011.

Iacobacci, Ignacio, Mohammad Taher Pilehvar, and Roberto Navigli. 2016. ”Embeddings

for Word Sense Disambiguation: An Evaluation Study”. In Proceedings of the 54th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 897–907.

Berlin, Germany: Association for Computational Linguistics. doi:10.18653/v1/P16-

1085.

Jaccard, Paul. 1926. Le coefficient generique et le coefficient de communaute dans la flore

marocaine. Impr. Commerciale.

167

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.3115/1614049.1614064
http://jcip.cipsc.org.cn/EN/abstract/abstract1340.shtml
http://jcip.cipsc.org.cn/EN/abstract/abstract1340.shtml
http://dx.doi.org/10.18653/v1/D19-1355
http://www.hutchinsweb.me.uk/MTNI-11-1995.pdf
http://www.hutchinsweb.me.uk/MTNI-11-1995.pdf
http://dx.doi.org/10.1515/9783110632446-011
http://dx.doi.org/10.1515/9783110632446-011
http://dx.doi.org/10.18653/v1/P16-1085
http://dx.doi.org/10.18653/v1/P16-1085

Järvinen, Pertti. 2012. On research methods. Tampereen yliopistopaino. isbn: 9789529923342.

Jurafsky, Dan, and James H Martin. 2019a. ”19. Word Senses and WordNet”. In 3rd ed. draft

of Speech and language processing. https://web.stanford.edu/~jurafsky/

slp3/.

. 2019b. ”6. Vector Semantics and Embeddings”. In 3rd ed. draft of Speech and lan-

guage processing. https://web.stanford.edu/~jurafsky/slp3/.

Kallio, Petri. 2012. ”The Prehistoric Germanic Loanword Strata in Finnic”. In A Linguistic

Map of Prehistoric Northern Europe, 225–238. isbn: 978-9525667424. https://www.

sgr.fi/sust/sust266/sust266_kallio.pdf.

Kann, Katharina, Ryan Cotterell, and Hinrich Schütze. 2016. ”Neural Morphological Anal-

ysis: Encoding-Decoding Canonical Segments”. In Proceedings of the 2016 Conference on

Empirical Methods in Natural Language Processing, 961–967. Austin, Texas: Association

for Computational Linguistics. doi:10.18653/v1/D16-1097.

Karlsson, Fred. 2015. Finnish: an essential grammar. 343. isbn: 1138821586. doi:10.432

4/9781315743233.

Kilgarriff, Adam, Vı́t Baisa, Jan Busta, Milos Jakubícek, Vojtech Kovár, Jan Michelfeit, Pavel

Rychlý, and Vít Suchomel. 2014. ”The Sketch Engine: ten years on”. Lexicography 1 (1): 7–

36. doi:10.1007/s40607-014-0009-9.

Kilgarriff, Adam, Fredrik Marcowitz, Simon Smith, and James Thomas. 2015. ”Corpora and

language learning with the Sketch Engine and SKELL”. Revue française de linguistique ap-

pliquée 20 (1): 61–80. doi:10.3917/rfla.201.0061.

Kilgarriff, Adam, and Martha Palmer. 2000. ”Introduction to the special issue on SENSE-

VAL”. Computers and the Humanities 34 (1-2): 1–13. doi:10.1023/A%3A1002619001

915.

Kilgarriff, Adam, and Joseph Rosenzweig. 2000a. ”English Senseval: Report and Results”. In

Proceedings of the Second International Conference on Language Resources and Evaluation

(LREC’00). Athens, Greece: European Language Resources Association (ELRA). https:

//www.aclweb.org/anthology/L00-1005.

168

https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/slp3/
https://www.sgr.fi/sust/sust266/sust266_kallio.pdf
https://www.sgr.fi/sust/sust266/sust266_kallio.pdf
http://dx.doi.org/10.18653/v1/D16-1097
http://dx.doi.org/10.4324/9781315743233
http://dx.doi.org/10.4324/9781315743233
http://dx.doi.org/10.1007/s40607-014-0009-9
http://dx.doi.org/10.3917/rfla.201.0061
http://dx.doi.org/10.1023/A%3A1002619001915
http://dx.doi.org/10.1023/A%3A1002619001915
https://www.aclweb.org/anthology/L00-1005
https://www.aclweb.org/anthology/L00-1005

Kilgarriff, Adam, and Joseph Rosenzweig. 2000b. ”Framework and results for English SEN-

SEVAL”. Computers and the Humanities 34 (1): 15–48. doi:10.1023/A%3A100269320

7386.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico,

Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, et al. 2007.

”Moses: Open source toolkit for statistical machine translation”. In Proceedings of the 45th

annual meeting of the ACL on interactive poster and demonstration sessions, 177–180. As-

sociation for Computational Linguistics. doi:10.3115/1557769.1557821.

Köster, Johannes, and Sven Rahmann. 2012. ”Snakemake—a scalable bioinformatics work-

flow engine”. Bioinformatics 28 (19): 2520–2522. issn: 1367-4803. doi:10.1093/bioin

formatics/bts480. eprint: http://oup.prod.sis.lan/bioinformatics/

article-pdf/28/19/2520/819790/bts480.pdf.

Krashen, Stephen. 1989. ”We Acquire Vocabulary and Spelling by Reading: Additional Evi-

dence for the Input Hypothesis”, 73 (4): 440–464. issn: 15404781. doi:10.1111/j.1540-

4781.1989.tb05325.x.

Krashen, Stephen D. 1982. Principles and Practice in Second Language Acquisition. http:

//www.sdkrashen.com/content/books/principles_and_practice.

pdf.

Krashen, Stephen D., and Tracy D. Terrell. 1998. The Natural Approach. http://www.

sdkrashen.com/content/books/the_natural_approach.pdf.

Kusner, Matt, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. 2015. ”From word embed-

dings to document distances”. In International conference on machine learning, 957–966.

Lacalle, Maddalen Lopez de, Egoitz Laparra, Itziar Aldabe, and German Rigau. 2016. ”A

Multilingual Predicate Matrix”. In Proceedings of the Tenth International Conference on

Language Resources and Evaluation (LREC’16), 2662–2668. Portorož, Slovenia: European

Language Resources Association (ELRA).https://www.aclweb.org/anthology/

L16-1423.

169

http://dx.doi.org/10.1023/A%3A1002693207386
http://dx.doi.org/10.1023/A%3A1002693207386
http://dx.doi.org/10.3115/1557769.1557821
http://dx.doi.org/10.1093/bioinformatics/bts480
http://dx.doi.org/10.1093/bioinformatics/bts480
http://oup.prod.sis.lan/bioinformatics/article-pdf/28/19/2520/819790/bts480.pdf
http://oup.prod.sis.lan/bioinformatics/article-pdf/28/19/2520/819790/bts480.pdf
http://dx.doi.org/10.1111/j.1540-4781.1989.tb05325.x
http://dx.doi.org/10.1111/j.1540-4781.1989.tb05325.x
http://www.sdkrashen.com/content/books/principles_and_practice.pdf
http://www.sdkrashen.com/content/books/principles_and_practice.pdf
http://www.sdkrashen.com/content/books/principles_and_practice.pdf
http://www.sdkrashen.com/content/books/the_natural_approach.pdf
http://www.sdkrashen.com/content/books/the_natural_approach.pdf
https://www.aclweb.org/anthology/L16-1423
https://www.aclweb.org/anthology/L16-1423

Laippala, Veronika, and Filip Ginter. 2014. ”Syntactic n-gram collection from a large-scale

corpus of internet finnish”. In Human Language Technologies-The Baltic Perspective: Pro-

ceedings of the Sixth International Conference Baltic HLT, 268:184.

Lesk, Michael. 1986. ”Automatic Sense Disambiguation Using Machine Readable Dictionar-

ies: How to Tell a Pine Cone from an Ice Cream Cone”. In Proceedings of the 5th Annual

International Conference on Systems Documentation, 24–26. SIGDOC ’86. Toronto, Ontario,

Canada: ACM. isbn: 0-89791-224-1. doi:10.1145/318723.318728.

Lightbown, P. M., and N. Spada. 2013. How languages are learned. 3rd ed, edited by Nina

Spada, 249. Oxford handbooks for language teachers. Oxford: Oxford University Press. isbn:

0194370003. doi:10.1017/CBO9781107415324.004.

Lindén, Krister, and Lauri Carlson. 2010. ”FinnWordNet–Finnish WordNet by Translation”.

LexicoNordica–Nordic Journal of Lexicography 17:119–140. http://www.ling.hels

inki.fi/~klinden/pubs/FinnWordnetInLexicoNordica-en.pdf.

Lison, Pierre, Jörg Tiedemann, and Milen Kouylekov. 2018. ”OpenSubtitles2018: Statistical

Rescoring of Sentence Alignments in Large, Noisy Parallel Corpora”. In Proceedings of the

Eleventh International Conference on Language Resources and Evaluation (LREC 2018).

Miyazaki, Japan: European Language Resources Association (ELRA). https://www.

aclweb.org/anthology/L18-1275.

Lyons, J. 1968. Introduction to Theoretical Linguistics. Cambridge, England: Cambridge Uni-

versity Press. doi:10.1017/CBO9781139165570.

Maaten, L.J.P. van der, E. O. Postma, and H. Jaap van den Herik. 2007. ”Dimensionality

Reduction: A Comparative Review”.

MacWhinney, Brian. 2008. ”A unified model”.

Mallery, John C. 1988. ”Thinking About Foreign Policy: Finding an Appropriate Role for

Artificially Intelligent Computers”. Master’s thesis, Massachusetts Institute of Technology.

170

http://dx.doi.org/10.1145/318723.318728
http://dx.doi.org/10.1017/CBO9781107415324.004
http://www.ling.helsinki.fi/~klinden/pubs/FinnWordnetInLexicoNordica-en.pdf
http://www.ling.helsinki.fi/~klinden/pubs/FinnWordnetInLexicoNordica-en.pdf
https://www.aclweb.org/anthology/L18-1275
https://www.aclweb.org/anthology/L18-1275
http://dx.doi.org/10.1017/CBO9781139165570

Manion, Steve L. 2015. ”SUDOKU: Treating Word Sense Disambiguation & Entitiy Linking

as a Deterministic Problem-via an Unsupervised & Iterative Approach”. In Proceedings of

the 9th International Workshop on Semantic Evaluation (SemEval 2015), 365–369. Denver,

Colorado: Association for Computational Linguistics. doi:10.18653/v1/S15-2062.

Manning, Christopher D, Prabhakar Raghavan, Hinrich Schütze, et al. 2008. Introduction to

information retrieval. Volume 1. 1. Cambridge university press. doi:10.1017/CBO97805

11809071. https://nlp.stanford.edu/IR-book/.

Matthews, P. H. 1991. Morphology. Cambridge Textbooks in Linguistics. Cambridge, Eng-

land: Cambridge University Press. doi:10.1017/CBO9781139166485.

, editor. 2007. The concise Oxford dictionary of linguistics. Oxford, England: Oxford

University Press.

Mcquillan, Jeff. 1997. ”Does anyone finish the Berlitz tapes? A novel measure of perseverance

for commercial language courses”. http://backseatlinguist.com/blog/wp-

content/uploads/2012/01/Berlitz%7B%5C_%7DTape.pdf.

Melamud, Oren, Jacob Goldberger, and Ido Dagan. 2016. ”context2vec: Learning Generic

Context Embedding with Bidirectional LSTM”. In Proceedings of The 20th SIGNLL Confer-

ence on Computational Natural Language Learning, 51–61. Berlin, Germany: Association

for Computational Linguistics. doi:10.18653/v1/K16-1006.

Meurers, Detmar, Ramon Ziai, Luiz Amaral, Adriane Boyd, Aleksandar Dimitrov, Vanessa

Metcalf, and Niels Ott. 2010. ”Enhancing authentic web pages for language learners”. In

Proceedings of the NAACL HLT 2010 Fifth Workshop on Innovative Use of NLP for Building

Educational Applications, 10–18. Association for Computational Linguistics. http://ww

w.aclweb.org/anthology/W/W10/W10-1002.

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. ”Efficient Estimation of

Word Representations in Vector Space”. In Proceedings of the First International Confer-

ence on Learning Representations, volume abs/1301.3781, 1–13. Scottsdale, Arizona, USA.

arXiv: 1301.3781.

171

http://dx.doi.org/10.18653/v1/S15-2062
http://dx.doi.org/10.1017/CBO9780511809071
http://dx.doi.org/10.1017/CBO9780511809071
https://nlp.stanford.edu/IR-book/
http://dx.doi.org/10.1017/CBO9781139166485
http://backseatlinguist.com/blog/wp-content/uploads/2012/01/Berlitz%7B%5C_%7DTape.pdf
http://backseatlinguist.com/blog/wp-content/uploads/2012/01/Berlitz%7B%5C_%7DTape.pdf
http://dx.doi.org/10.18653/v1/K16-1006
http://www.aclweb.org/anthology/W/W10/W10-1002
http://www.aclweb.org/anthology/W/W10/W10-1002
https://arxiv.org/abs/1301.3781

Miller, George A. 1995. ”WordNet: A Lexical Database for English”. Communications of the

ACM (New York, NY, USA) 38 (11): 39–41. issn: 0001-0782. doi:10.1145/219717.

219748.

Miller, George A., Martin Chodorow, Shari Landes, Claudia Leacock, and Robert G. Thomas.

1994. ”Using a Semantic Concordance for Sense Identification”. In Proceedings of the Work-

shop on Human Language Technology, 240–243. HLT ’94. Plainsboro, NJ: Association for

Computational Linguistics. isbn: 1558603573. doi:10.3115/1075812.1075866.

Miller, George A, Claudia Leacock, Randee Tengi, and Ross T Bunker. 1993. ”A semantic

concordance”. In Proceedings of the workshop on Human Language Technology, 303–308.

Association for Computational Linguistics.

Moirón, Begoña Villada, and Jörg Tiedemann. 2006. ”Identifying idiomatic expressions using

automatic word-alignment”. In Proceedings of the Workshop on Multi-word-expressions in a

multilingual context. https://www.aclweb.org/anthology/W06-2405.

Moro, Andrea, and Roberto Navigli. 2015. ”SemEval-2015 Task 13: Multilingual All-Words

Sense Disambiguation and Entity Linking”. In Proceedings of the 9th International Work-

shop on Semantic Evaluation (SemEval 2015), 288–297. Denver, Colorado: Association for

Computational Linguistics. doi:10.18653/v1/S15-2049.

Moro, Andrea, Alessandro Raganato, and Roberto Navigli. 2014. ”Entity Linking meets Word

Sense Disambiguation: a Unified Approach”. Transactions of the Association for Computa-

tional Linguistics 2:231–244. doi:10.1162/tacl_a_00179.

Navigli, Roberto. 2006. ”Meaningful Clustering of Senses Helps Boost Word Sense Disam-

biguation Performance”. In Proceedings of the 21st International Conference on Computa-

tional Linguistics and 44th Annual Meeting of the Association for Computational Linguistics,

105–112. Sydney, Australia: Association for Computational Linguistics. doi:10.3115/

1220175.1220189.

. 2009. ”Word Sense Disambiguation: A Survey”. ACM Computing Surveys (New

York, NY, USA) 41 (2): 10:1–10:69. issn: 0360-0300. doi:10.1145/1459352.145935

5.

172

http://dx.doi.org/10.1145/219717.219748
http://dx.doi.org/10.1145/219717.219748
http://dx.doi.org/10.3115/1075812.1075866
https://www.aclweb.org/anthology/W06-2405
http://dx.doi.org/10.18653/v1/S15-2049
http://dx.doi.org/10.1162/tacl_a_00179
http://dx.doi.org/10.3115/1220175.1220189
http://dx.doi.org/10.3115/1220175.1220189
http://dx.doi.org/10.1145/1459352.1459355
http://dx.doi.org/10.1145/1459352.1459355

Navigli, Roberto, and Mirella Lapata. 2010. ”An Experimental Study of Graph Connectivity

for Unsupervised Word Sense Disambiguation”. IEEE transactions on pattern analysis and

machine intelligence (Washington, DC, USA) 32 (4): 678–692. issn: 0162-8828. doi:10.

1109/TPAMI.2009.36.

Navigli, Roberto, and Simone Paolo Ponzetto. 2012. ”BabelNet: The Automatic Construction,

Evaluation and Application of a Wide-coverage Multilingual Semantic Network”. Artificial

Intelligence (Essex, UK) 193:217–250. issn: 0004-3702. doi:10.1016/j.artint.201

2.07.001.

Nerbonne, J., D. Dokter, and P. Smit. 1998. ”Morphological processing and computer-assisted

language learning”. Computer Assisted Language Learning 11 (5): 543–559. issn: 0958-

8221. doi:10.1076/call.11.5.543.5660.

Nielson, Katharine B. 2011. ”Self-Study with Language Learning Software in the Workplace:

What Happens?” Language Learning & Technology 15 (3): 110–129. issn: 1094-3501. htt

p://llt.msu.edu/issues/october2011/nielson.pdf.

Novotný, Vít. 2018. ”Implementation Notes for the Soft Cosine Measure”. Proceedings of

the 27th ACM International Conference on Information and Knowledge Management - CIKM

’18. doi:10.1145/3269206.3269317.

Och, Franz. 2006. Statistical machine translation live. https://ai.googleblog.

com/2006/04/statistical-machine-translation-live.html.

Och, Franz Josef, and Hermann Ney. 2003. ”A Systematic Comparison of Various Statistical

Alignment Models”. Computational Linguistics 29 (1): 19–51. doi:10.1162/08912010

3321337421.

Oele, Dieke, and Gertjan van Noord. 2017. ”Distributional Lesk: Effective Knowledge-Based

Word Sense Disambiguation”. In IWCS 2017 — 12th International Conference on Computa-

tional Semantics — Short papers. https://www.aclweb.org/anthology/W17-

6931.

Osimo, Bruno. 2008. ”Meaning in translation: A model based on translation shifts”. Linguis-

tica Antverpiensia, New series–Themes in translation studies, number 7.

173

http://dx.doi.org/10.1109/TPAMI.2009.36
http://dx.doi.org/10.1109/TPAMI.2009.36
http://dx.doi.org/10.1016/j.artint.2012.07.001
http://dx.doi.org/10.1016/j.artint.2012.07.001
http://dx.doi.org/10.1076/call.11.5.543.5660
http://llt.msu.edu/issues/october2011/nielson.pdf
http://llt.msu.edu/issues/october2011/nielson.pdf
http://dx.doi.org/10.1145/3269206.3269317
https://ai.googleblog.com/2006/04/statistical-machine-translation-live.html
https://ai.googleblog.com/2006/04/statistical-machine-translation-live.html
http://dx.doi.org/10.1162/089120103321337421
http://dx.doi.org/10.1162/089120103321337421
https://www.aclweb.org/anthology/W17-6931
https://www.aclweb.org/anthology/W17-6931

Page, Lawrence, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The PageRank

Citation Ranking: Bringing Order to the Web. Technical Report 1999-66. Previous number

= SIDL-WP-1999-0120. Stanford InfoLab. http://ilpubs.stanford.edu:8090/

422/.

Palmer, Martha, Daniel Gildea, and Paul Kingsbury. 2005. ”The Proposition Bank: An Anno-

tated Corpus of Semantic Roles”. Computational Linguistics 31 (1): 71–106. doi:10.1162/

0891201053630264.

Panchenko, Alexander, Eugen Ruppert, Stefano Faralli, Simone Paolo Ponzetto, and Chris

Biemann. 2017. ”Unsupervised Does Not Mean Uninterpretable: The Case for Word Sense

Induction and Disambiguation”. In Proceedings of the 15th Conference of the European

Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, 86–98.

Valencia, Spain: Association for Computational Linguistics.

Papandrea, Simone, Alessandro Raganato, and Claudio Delli Bovi. 2017. ”SUPWSD: A Flex-

ible Toolkit for Supervised Word Sense Disambiguation”. In Proceedings of the 2017 Confer-

ence on Empirical Methods in Natural Language Processing: System Demonstrations, 103–

108.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. ”Bleu: a Method for

Automatic Evaluation of Machine Translation”. In Proceedings of the 40th Annual Meeting of

the Association for Computational Linguistics, 311–318. Philadelphia, Pennsylvania, USA:

Association for Computational Linguistics. doi:10.3115/1073083.1073135.

Pasini, Tommaso, and José Camacho-Collados. 2018. ”A Short Survey on Sense-Annotated

Corpora for Diverse Languages and Resources”. CoRR abs/1802.04744. arXiv: 1802.047

44.

Pasini, Tommaso, and Roberto Navigli. 2017. ”Train-O-Matic: Large-Scale Supervised Word

Sense Disambiguation in Multiple Languages without Manual Training Data”. In Proceed-

ings of the 2017 Conference on Empirical Methods in Natural Language Processing, 78–88.

Copenhagen, Denmark: Association for Computational Linguistics. doi:10.18653/v1/

D17-1008.

174

http://ilpubs.stanford.edu:8090/422/
http://ilpubs.stanford.edu:8090/422/
http://dx.doi.org/10.1162/0891201053630264
http://dx.doi.org/10.1162/0891201053630264
http://dx.doi.org/10.3115/1073083.1073135
https://arxiv.org/abs/1802.04744
https://arxiv.org/abs/1802.04744
http://dx.doi.org/10.18653/v1/D17-1008
http://dx.doi.org/10.18653/v1/D17-1008

Passonneau, Rebecca J., Collin F. Baker, Christiane Fellbaum, and Nancy Ide. 2012. ”The

MASC Word Sense Corpus”. In Proceedings of the Eighth International Conference on Lan-

guage Resources and Evaluation (LREC’12), 3025–3030. Istanbul, Turkey: European Lan-

guage Resources Association (ELRA). https://www.aclweb.org/anthology/

L12-1335.

Pearce, Sarah. 2016. ”Authentic learning: what, why and how?”, 2016 (April): 2. http:

//www.acel.org.au/acel/ACEL_docs/Publications/e-Teaching/

2016/e-Teaching_2016_10.pdf.

Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,

Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. 2011.

”Scikit-learn: Machine learning in Python”. Journal of machine learning research 12 (Oct):

2825–2830.

Pele, Ofir, and Michael Werman. 2009. ”Fast and robust earth mover’s distances”. In 2009

IEEE 12th International Conference on Computer Vision, 460–467. IEEE. doi:10.1109/

ICCV.2009.5459199.

Pelevina, Maria, Nikolay Arefiev, Chris Biemann, and Alexander Panchenko. 2016. ”Making

Sense of Word Embeddings”. In Proceedings of the 1st Workshop on Representation Learning

for NLP, 174–183. Berlin, Germany: Association for Computational Linguistics. doi:10.

18653/v1/W16-1620.

Pennington, Jeffrey, Richard Socher, and Christopher Manning. 2014. ”Glove: Global Vectors

for Word Representation”. In Proceedings of the 2014 Conference on Empirical Methods in

Natural Language Processing (EMNLP), 1532–1543. Doha, Qatar: Association for Compu-

tational Linguistics. doi:10.3115/v1/D14-1162.

Peters, Matthew E., Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton

Lee, and Luke Zettlemoyer. 2018. ”Deep contextualized word representations”. doi:10.18

653/v1/N18-1202.

175

https://www.aclweb.org/anthology/L12-1335
https://www.aclweb.org/anthology/L12-1335
http://www.acel.org.au/acel/ACEL_docs/Publications/e-Teaching/2016/e-Teaching_2016_10.pdf
http://www.acel.org.au/acel/ACEL_docs/Publications/e-Teaching/2016/e-Teaching_2016_10.pdf
http://www.acel.org.au/acel/ACEL_docs/Publications/e-Teaching/2016/e-Teaching_2016_10.pdf
http://dx.doi.org/10.1109/ICCV.2009.5459199
http://dx.doi.org/10.1109/ICCV.2009.5459199
http://dx.doi.org/10.18653/v1/W16-1620
http://dx.doi.org/10.18653/v1/W16-1620
http://dx.doi.org/10.3115/v1/D14-1162
http://dx.doi.org/10.18653/v1/N18-1202
http://dx.doi.org/10.18653/v1/N18-1202

Peters, Matthew E., Sebastian Ruder, and Noah A. Smith. 2019. ”To Tune or Not to Tune?

Adapting Pretrained Representations to Diverse Tasks”. In Proceedings of the 4th Workshop

on Representation Learning for NLP (RepL4NLP-2019), 7–14. Florence, Italy: Association

for Computational Linguistics. doi:10.18653/v1/W19-4302. https://www.aclwe

b.org/anthology/W19-4302.

Peterson, L. E. 2009. ”K-nearest neighbor”. Revision #136646, Scholarpedia 4 (2): 1883.

doi:10.4249/scholarpedia.1883.

Piepho, Hans-Peter. 2004. ”An Algorithm for a Letter-Based Representation of All-Pairwise

Comparisons”. Journal of Computational and Graphical Statistics 13 (2): 456–466. doi:10.

1198/1061860043515.

Pirinen, Tommi A. 2015a. ”Development and Use of Computational Morphology of Finnish

in the Open Source and Open Science Era: Notes on Experiences with Omorfi Development.”

SKY Journal of Linguistics 28:381–393.

. 2015b. ”Omorfi — Free and open source morphological lexical database for Finnish”.

In Proceedings of the 20th Nordic Conference of Computational Linguistics (NODALIDA

2015), 313–315. Vilnius, Lithuania: Linköping University Electronic Press, Sweden. http

s://www.aclweb.org/anthology/W15-1844.

Pyysalo, Sampo, Jenna Kanerva, Anna Missilä, Veronika Laippala, and Filip Ginter. 2015.

”Universal Dependencies for Finnish”. In Proceedings of the 20th Nordic Conference of Com-

putational Linguistics (NODALIDA 2015), 163–172. Vilnius, Lithuania: Linköping Univer-

sity Electronic Press, Sweden. https://www.aclweb.org/anthology/W15-

1821.

Quillian, M. Ross. 1969. ”The Teachable Language Comprehender: A Simulation Program

and Theory of Language”. Communications of the ACM (New York, NY, USA) 12 (8): 459–

476. issn: 0001-0782. doi:10.1145/363196.363214.

176

http://dx.doi.org/10.18653/v1/W19-4302
https://www.aclweb.org/anthology/W19-4302
https://www.aclweb.org/anthology/W19-4302
http://dx.doi.org/10.4249/scholarpedia.1883
http://dx.doi.org/10.1198/1061860043515
http://dx.doi.org/10.1198/1061860043515
https://www.aclweb.org/anthology/W15-1844
https://www.aclweb.org/anthology/W15-1844
https://www.aclweb.org/anthology/W15-1821
https://www.aclweb.org/anthology/W15-1821
http://dx.doi.org/10.1145/363196.363214

Raganato, Alessandro, Jose Camacho-Collados, and Roberto Navigli. 2017. ”Word Sense

Disambiguation: A Unified Evaluation Framework and Empirical Comparison”. In Proceed-

ings of the 15th Conference of the European Chapter of the Association for Computational

Linguistics: Volume 1, Long Papers, 99–110. Valencia, Spain: Association for Computational

Linguistics. doi:10.18653/v1/E17-1010.

Řehůřek, Radim, and Petr Sojka. 2010. ”Software Framework for Topic Modelling with Large

Corpora”. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frame-

works, 45–50. Valletta, Malta: ELRA. http://is.muni.cz/publication/88489

3/en.

Reimers, Nils, and Iryna Gurevych. 2019. ”Sentence-BERT: Sentence Embeddings using

Siamese BERT-Networks”. In Proceedings of the 2019 Conference on Empirical Methods

in Natural Language Processing and the 9th International Joint Conference on Natural Lan-

guage Processing (EMNLP-IJCNLP), 3982–3992. Hong Kong, China: Association for Com-

putational Linguistics. doi:10.18653/v1/D19-1410.

Resnik, Philip. 2006. ”WSD in NLP Applications”. In Word Sense Disambiguation: Algo-

rithms and Applications, 300–302. doi:10.1007/978-1-4020-4809-8_11.

Reynolds, Robert, Eduard Schaf, and Detmar Meurers. 2014. ”A VIEW of Russian: Visual

Input Enhancement and Adaptive Feedback”. In Proceedings of the third workshop on NLP

for computer-assisted language learning, 98–112. Uppsala, Sweden: LiU Electronic Press.

https://www.aclweb.org/anthology/W14-3508.

Richard, G. 1999. ”A global perspective on bilingualism and bilingual education”. http:

//www.cal.org/content/download/1803/19986/file/AGlobalPerspec

tiveonBilingualism.pdf.

Robertson, Frankie. 2016. ”Morphological parsing with lexical transducers: a case study of

OMorFi”. Bachelor’s Thesis. http://urn.fi/URN:NBN:fi:jyu-201606012807.

. 2019. ”A Contrastive Evaluation of Word Sense Disambiguation Systems for Finnish”.

In Proceedings of the Fifth International Workshop on Computational Linguistics for Uralic

Languages, 42–54. Tartu, Estonia: Association for Computational Linguistics. https://

www.aclweb.org/anthology/W19-0304.

177

http://dx.doi.org/10.18653/v1/E17-1010
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en
http://dx.doi.org/10.18653/v1/D19-1410
http://dx.doi.org/10.1007/978-1-4020-4809-8_11
https://www.aclweb.org/anthology/W14-3508
http://www.cal.org/content/download/1803/19986/file/AGlobalPerspectiveonBilingualism.pdf
http://www.cal.org/content/download/1803/19986/file/AGlobalPerspectiveonBilingualism.pdf
http://www.cal.org/content/download/1803/19986/file/AGlobalPerspectiveonBilingualism.pdf
http://urn.fi/URN:NBN:fi:jyu-201606012807
https://www.aclweb.org/anthology/W19-0304
https://www.aclweb.org/anthology/W19-0304

Rothe, Sascha, and Hinrich Schütze. 2017. ”Autoextend: Combiningword embeddings with

semantic resources”. Computational Linguistics 43 (3): 593–617. issn: 15309312. doi:10.

1162/COLI_a_00294.

Rücklé, Andreas, Steffen Eger, Maxime Peyrard, and Iryna Gurevych. 2018. ”Concatenated

p-mean Word Embeddings as Universal Cross-Lingual Sentence Representations”. arXiv:

1803.01400.

Russell, Stuart Jonathan, and Peter Norvig. 2010. Artificial intelligence: a modern approach.

3rd edition. Upper Saddle River, N.J., Harlow: Pearson Education. isbn: 0136042597.

Salton, Gerard, editor. 1971. The SMART Retrieval System – Experiments in Automatic Doc-

ument Processing. Prentice-Hall, Inc. isbn: 0138145253.

Scarlini, Bianca, Tommaso Pasini, and Roberto Navigli. 2020. ”SensEmBERT: Context-Enhanced

Sense Embeddings for Multilingual Word Sense Disambiguation”. In Proceedings of the

Thirty-Fourth Conference on Artificial Intelligence. Association for the Advancement of Ar-

tificial Intelligence. https://pasinit.github.io/papers/scarlini_etal_

aaai2020.pdf.

Schmidt, Richard W. 1990. ”The Role of Consciousness in Second Language Learning”. Ap-

plied Linguistics 11 (2): 129–158. issn: 0142-6001. doi:10.1093/applin/11.2.129.

Schuler, Karin Kipper. 2006. ”VerbNet: A Broad-Coverage, Comprehensive Verb Lexicon”.

PhD thesis, University of Pennsylvania. http://verbs.colorado.edu/~kipper/

Papers/dissertation.pdf.

Schütze, Hinrich. 1998. ”Automatic Word Sense Discrimination”. Computational Linguistics

24 (1): 97–123. https://www.aclweb.org/anthology/J98-1004.

Sennrich, Rico, Barry Haddow, and Alexandra Birch. 2016. ”Neural Machine Translation of

Rare Words with Subword Units”. In Proceedings of the 54th Annual Meeting of the Associ-

ation for Computational Linguistics (Volume 1: Long Papers), 1715–1725. Berlin, Germany:

Association for Computational Linguistics. doi:10.18653/v1/P16-1162.

178

http://dx.doi.org/10.1162/COLI_a_00294
http://dx.doi.org/10.1162/COLI_a_00294
https://arxiv.org/abs/1803.01400
https://pasinit.github.io/papers/scarlini_etal_aaai2020.pdf
https://pasinit.github.io/papers/scarlini_etal_aaai2020.pdf
http://dx.doi.org/10.1093/applin/11.2.129
http://verbs.colorado.edu/~kipper/Papers/dissertation.pdf
http://verbs.colorado.edu/~kipper/Papers/dissertation.pdf
https://www.aclweb.org/anthology/J98-1004
http://dx.doi.org/10.18653/v1/P16-1162

Shapiro, Naomi Tachikawa. 2016. ”Splitting compounds with ngrams”. In Proceedings of

COLING 2016, the 26th International Conference on Computational Linguistics: Technical

Papers, 630–640. Osaka, Japan. https://www.aclweb.org/anthology/C16-

1061.

Sharwood Smith, Michael A. 1993. ”Input Enhancement in Instructed SLA View project”.

doi:10.1017/S0272263100011943.

Sidorov, Grigori, Alexander Gelbukh, Helena Gómez-Adorno, and David Pinto. 2014. ”Soft

similarity and soft cosine measure: Similarity of features in vector space model”. Computación

y Sistemas 18 (3): 491–504. doi:10.13053/cys-18-3-2043.

Silfverberg, Miikka, Teemu Ruokolainen, Krister Lindén, and Mikko Kurimo. 2016. ”FinnPos:

an open-source morphological tagging and lemmatization toolkit for Finnish”. Language Re-

sources and Evaluation 50 (4): 863–878. doi:10.1007/s10579-015-9326-3.

Snow, Rion, Sushant Prakash, Daniel Jurafsky, and Andrew Y. Ng. 2007. ”Learning to Merge

Word Senses”. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natu-

ral Language Processing and Computational Natural Language Learning (EMNLP-CoNLL),

1005–1014. Prague, Czech Republic: Association for Computational Linguistics. https:

//www.aclweb.org/anthology/D07-1107.

Speer, Robyn, Joshua Chin, and Catherine Havasi. 2017. ”ConceptNet 5.5: An Open Mul-

tilingual Graph of General Knowledge”. In Proceedings of the Thirty-First AAAI Confer-

ence on Artificial Intelligence, 4444–4451. AAAI’17. San Francisco, California, USA: AAAI

Press. arXiv: 1612.03975. https://dl.acm.org/doi/10.5555/3298023.

3298212.

Speer, Robyn, Joshua Chin, Andrew Lin, Sara Jewett, and Lance Nathan. 2018. LuminosoIn-

sight/wordfreq: v2.2. doi:10.5281/zenodo.1443582.

Srinivasan, Mahesh, and Hugh Rabagliati. 2015. ”How concepts and conventions structure

the lexicon: Cross-linguistic evidence from polysemy”. Lingua 157:124–152. issn: 00243841.

doi:10.1016/j.lingua.2014.12.004.

179

https://www.aclweb.org/anthology/C16-1061
https://www.aclweb.org/anthology/C16-1061
http://dx.doi.org/10.1017/S0272263100011943
http://dx.doi.org/10.13053/cys-18-3-2043
http://dx.doi.org/10.1007/s10579-015-9326-3
https://www.aclweb.org/anthology/D07-1107
https://www.aclweb.org/anthology/D07-1107
https://arxiv.org/abs/1612.03975
https://dl.acm.org/doi/10.5555/3298023.3298212
https://dl.acm.org/doi/10.5555/3298023.3298212
http://dx.doi.org/10.5281/zenodo.1443582
http://dx.doi.org/10.1016/j.lingua.2014.12.004

Sweetser, Eve. 1990. From Etymology to Pragmatics: Metaphorical and Cultural Aspects

of Semantic Structure. Cambridge Studies in Linguistics v. 54. Cambridge University Press.

isbn: 9780521324069. doi:10.1017/CBO9780511620904.

Taghipour, Kaveh, and Hwee Tou Ng. 2015. ”One Million Sense-Tagged Instances for Word

Sense Disambiguation and Induction”. In Proceedings of the Nineteenth Conference on Com-

putational Natural Language Learning, 338–344. Beijing, China: Association for Computa-

tional Linguistics. doi:10.18653/v1/K15-1037.

Tarhio, Jorma, Jan Holub, and Emanuele Giaquinta. 2017. ”Technology beats algorithms (in

exact string matching)”. Software: Practice and Experience 47 (12): 1877–1885. doi:10.

1002/spe.2511.

Thomason, Sarah G. 2001. ”Contact-Induced Language Change: Results”. In Language Con-

tact: An Introduction. Edinburgh University Press. isbn: 0748607196.

Tiedemann, Jörg. 2012. ”Parallel Data, Tools and Interfaces in OPUS.” In Proceedings of

the Eighth International Conference on Language Resources and Evaluation (LREC’12),

2012:2214–2218. Istanbul, Turkey: European Language Resources Association (ELRA). h

ttps://www.aclweb.org/anthology/L12-1246.

Truscott, John. 1998. ”Noticing in second language acquisition: a critical review”. Second

Language Research 14 (2): 103–135. doi:10.1191/026765898674803209. eprint:

http://sdkrashen.com/content/articles/noticing{_}1998.pdf.

Turing, Alan M. 1950. ”Computing machinery and intelligence”. Mind 59 (236): 433–460.

doi:10.1093/mind/LIX.236.433.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Łukasz Kaiser, and Illia Polosukhin. 2017. ”Attention is all you need”. In Advances in Neural

Information Processing Systems, 5999–6009. Curran Associates, Inc. arXiv: 1706.03762.

http://papers.nips.cc/paper/7181-attention-is-all-you-need.

pdf.

180

http://dx.doi.org/10.1017/CBO9780511620904
http://dx.doi.org/10.18653/v1/K15-1037
http://dx.doi.org/10.1002/spe.2511
http://dx.doi.org/10.1002/spe.2511
https://www.aclweb.org/anthology/L12-1246
https://www.aclweb.org/anthology/L12-1246
http://dx.doi.org/10.1191/026765898674803209
http://sdkrashen.com/content/articles/noticing{_}1998.pdf
http://dx.doi.org/10.1093/mind/LIX.236.433
https://arxiv.org/abs/1706.03762
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Véronis, Jean. 2004. ”HyperLex: lexical cartography for information retrieval”. Computer

Speech & Language 18 (3): 223–252. issn: 0885-2308. doi:10.1016/j.csl.2004.05.

002.

Vervaet, Ruth. 2017. ”English loanwords in the Chinese lexicon”. Master’s thesis, Ghent Uni-

versity. https://lib.ugent.be/catalog/rug01:002349097.

Vial, Loïc, Benjamin Lecouteux, and Didier Schwab. 2019. ”Sense Vocabulary Compression

through the Semantic Knowledge of WordNet for Neural Word Sense Disambiguation”. In

Proceedings of the 10th Global Wordnet Conference. Wroclaw, Poland. arXiv: 1905.0567

7.

Vinh, Nguyen Xuan, Julien Epps, and James Bailey. 2009. ”Information Theoretic Mea-

sures for Clusterings Comparison: Is a Correction for Chance Necessary?” In Proceedings

of the 26th Annual International Conference on Machine Learning, 1073–1080. ICML ’09.

Montreal, Quebec, Canada: Association for Computing Machinery. isbn: 9781605585161.

doi:10.1145/1553374.1553511.

Virpioja, Sami, Peter Smit, Stig-Arne Grönroos, and Mikko Kurimo. 2013. Morfessor 2.0:

Python Implementation and Extensions for Morfessor Baseline. Report, Aalto University pub-

lication series SCIENCE + TECHNOLOGY 25. Helsinki, Finland: Department of Signal

Processing and Acoustics, Aalto University. http://urn.fi/URN:ISBN:978-952-

60-5501-5.

Wang, Shan, and Francis Bond. 2013. ”Building the Chinese Open Wordnet (COW): Starting

from Core Synsets”. In Proceedings of the 11th Workshop on Asian Language Resources,

10–18. Nagoya, Japan: Asian Federation of Natural Language Processing. https://www.

aclweb.org/anthology/W13-4302.

Wu, Yonghui, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang

Macherey, Maxim Krikun, et al. 2016. ”Google’s Neural Machine Translation System: Bridg-

ing the Gap between Human and Machine Translation”. CoRR. arXiv: 1609.08144.

181

http://dx.doi.org/10.1016/j.csl.2004.05.002
http://dx.doi.org/10.1016/j.csl.2004.05.002
https://lib.ugent.be/catalog/rug01:002349097
https://arxiv.org/abs/1905.05677
https://arxiv.org/abs/1905.05677
http://dx.doi.org/10.1145/1553374.1553511
http://urn.fi/URN:ISBN:978-952-60-5501-5
http://urn.fi/URN:ISBN:978-952-60-5501-5
https://www.aclweb.org/anthology/W13-4302
https://www.aclweb.org/anthology/W13-4302
https://arxiv.org/abs/1609.08144

Yimam, Seid Muhie, Iryna Gurevych, Richard Eckart de Castilho, and Chris Biemann. 2013.

”WebAnno: A Flexible, Web-based and Visually Supported System for Distributed Annota-

tions”. In Proceedings of the 51st Annual Meeting of the Association for Computational Lin-

guistics: System Demonstrations, 1–6. Sofia, Bulgaria: Association for Computational Lin-

guistics. https://www.aclweb.org/anthology/P13-4001.

Zhong, Zhi, and Hwee Tou Ng. 2010. ”It makes sense: A wide-coverage word sense disam-

biguation system for free text”. In Proceedings of the ACL 2010 system demonstrations, 78–

83. Association for Computational Linguistics.

Zilio, Leonardo, Rodrigo Wilkens, and Cédrick Fairon. 2017. ”Using NLP for Enhancing

Second Language Acquisition”: 839–846. issn: 13138502. doi:10.26615/978-954-

452-049-6_107.

182

https://www.aclweb.org/anthology/P13-4001
http://dx.doi.org/10.26615/978-954-452-049-6_107
http://dx.doi.org/10.26615/978-954-452-049-6_107

	Glossary
	Acronyms
	1 Introduction
	1.1 Word Sense Disambiguation
	1.2 Evaluation in NLP
	1.2.1 Framing
	1.2.2 Comparative evaluation
	1.2.3 Metrics
	1.2.4 Representative sampling

	1.3 Structure

	2 Background
	2.1 Linguistic background & Finnish morphology
	2.2 Lexical resources: Lexical Knowledge Bases and embeddings
	2.2.1 Lexical Knowledge Bases
	2.2.2 Embeddings
	2.2.2.1 Word embeddings from count data and dimensionality reduction
	2.2.2.2 Learnt word embeddings
	2.2.2.3 Language modelling and context sensitive word embeddings

	2.3 WSD Techniques
	2.3.1 Word Sense Induction
	2.3.2 Gloss based WSD
	2.3.3 Graph based WSD
	2.3.4 Supervised
	2.3.5 Evaluation

	2.4 SLA and CALL
	2.4.1 Concordance and DDL based approaches
	2.4.2 Enhanced input approaches
	2.4.3 Reading assistants

	3 Automatically constructing a sense tagged corpus
	3.1 Preprocessing and sense inventory of Mandarin Chinese
	3.1.1 Mandarin in OpenSubtitles2018
	3.1.2 Mandarin WordNets
	3.1.3 Obtaining Mandarin lemmas

	3.2 Preprocessing and sense inventory of Finnish
	3.2.1 The problem of missing senses in FinnWordNet
	3.2.2 Estimating sense frequency of Finnish lemmas based on English data
	3.2.3 Finnish WordNets used

	3.3 Obtaining sense tagged tokens
	3.3.1 Adding supports
	3.3.2 Tournament stages

	3.4 A second sense tagged corpus: EuroSense
	3.5 Creating a manually annotated corpus
	3.5.1 Annotation software
	3.5.2 Annotation set up and guidelines
	3.5.3 Annotation results

	3.6 Evaluation of STIFF and EuroSense

	4 Implementation of WSD techniques
	4.1 Resources
	4.1.1 lkb and corpus
	4.1.2 Word embeddings and language models

	4.2 Method
	4.2.1 Corpus division and model selection
	4.2.2 Corpus preprocessing
	4.2.3 Significance testing

	4.3 Systems
	4.3.1 Baseline
	4.3.2 UKB
	4.3.3 Lesk with cross lingual word embeddings
	4.3.4 Lesk++
	4.3.5 SupWSD
	4.3.6 Nearest neighbour using word embeddings
	4.3.7 Nearest neighbour with Context2Vec
	4.3.8 Nearest neighbour with BERT

	4.4 Model Selection
	4.4.1 Cross lingual Lesk
	4.4.2 Lesk++
	4.4.3 SupWSD
	4.4.4 AWE-NN

	4.5 Results

	5 Creating an aligned Finnish lexical resource
	5.1 Scraping Wiktionary
	5.1.1 Structured data format
	5.1.2 Evaluation
	5.1.3 Results

	5.2 MWEs and schemas
	5.2.1 Obtaining schemas
	5.2.2 Headword extraction

	5.3 Sense clustering
	5.3.1 Partitions and same-different graphs
	5.3.2 Automatically created gold standard
	5.3.3 Manually created gold standard
	5.3.4 Evaluation
	5.3.5 Affinity propagation
	5.3.6 Systems

	6 The design of TheWhatNow?!
	6.1 Design criteria
	6.1.1 In context word definitions
	6.1.2 Grammatical approach

	6.2 Analytical segmentation of Finnish
	6.2.1 Normalised segments from Omorfi and Wiktionary
	6.2.2 Building a segmentation derivation tree
	6.2.3 Constraints upon rules
	6.2.4 Producing alignments
	6.2.5 Aligning MWEs and schemas

	6.3 User interface
	6.4 Architecture

	7 Conclusion
	7.1 Software and language resource contributions
	7.2 Research contributions
	7.3 Future work

	Bibliography

