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Recent continuous task studies, such as narrative speech comprehension, show that fluctuations in brain functional 

connectivity (FC) are altered and enhanced compared to the resting-state. Here, we characterized the fluctuations in 

FC during comprehension of speech and time-reversed speech conditions. The correlations of Hilbert envelope of 

source-level EEG were used to quantify FC between spatially separate brain regions. A symmetric multivariate 

leakage correction was applied to address the signal leakage issue before calculating FC. The dynamic FC was 

estimated based on a sliding time window. Then, principal component analysis (PCA) was performed on individually 

concatenated and temporally concatenated FC matrices to identify FC patterns. We observed that the mode of FC 

induced by speech comprehension can be characterized with a single principal component. The condition-specific 

FC demonstrated decreased correlations between frontal and parietal brain regions and increased correlations between 

frontal and temporal brain regions. The fluctuations of the condition-specific FC characterized by a shorter time 

demonstrated that dynamic FC also exhibited condition-specificity over time. The FC is dynamically reorganized and 

FC dynamic pattern varies along a single mode of variation during speech comprehension. The proposed analysis 

framework seems valuable for studying the reorganization of brain networks during continuous task experiments. 

Keywords: Reorganization; functional connectivity; naturalistic speech; speech comprehension; natural paradigms. 

1. Introduction 

During real-life experiences (e.g., watching a movie or 

listening to a speech), it is necessary to continuously 

 
*
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integrate and parse information.1, 2 Previous studies have 

identified a group of high-order brain regions, including 

the temporal parietal junction, posterior cingulate cortex, 

temporal pole, and medial prefrontal cortex, which can 
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accumulate and integrate information during 

comprehension of a narrative story.3, 4 Although the 

neural correlation of local information processing has 

been well investigated in previous studies, integrating 

information at the whole-brain level may also be critical 

to understanding brain functions.5, 6 Advances in 

methodology and brain imaging technology have enabled 

us to examine how the brain mediates information flow 

in large-scale functional networks during continuous task 

execution.5, 7-10  

Function connectivity (FC), based on statistical 

interdependencies between signals recorded using 

neuroimaging technology,11-14 is a widely-used approach 

to describe the large-scale configuration of brain 

functional activity.15-18 FC modes provide fingerprints for 

the organization of functional brain networks during 

resting state19-21 and continuous task performance.22-25 

Recent studies have demonstrated that there is a robust 

relationship between the functional networks during the 

resting-state and continuous task execution.26-28 

Particularly, naturalistic task paradigms, such as movie-

watching29, 30 and comprehension of a narrative story,3, 4, 

31 are interesting because of their ecological validity. 

Some studies have shown that FC is much reliable to 

demonstrate distinct individual differences when subjects 

involved in the naturalistic paradigm. For example, 

Londei et al. found that dynamics of the connectivity 

patterns within and toward somatosensory and motor 

areas are modulated by the degree of reproducibility of 

auditory speech material.32 A systematic reconfiguration 

of the cortical interactions, with changes in functional 

network assignments, has been demonstrated during 

challenging listening situations.33 In addition, Broderick 

and colleagues applied an approach based on a 

computational model to low-frequency noninvasively 

electroencephalographic (EEG) data recorded from 

subjects when they listened to narrative speech; and a 

prominent component was produced, which was very 

sensitive to whether or not subjects understood the 

speech they heard. Their results showed that the human 

brain responds to the contextual semantic content when 

successfully comprehending naturalistic speech.34 

However, electrophysiological network connectivity 

between different brain regions for such low-frequency 

oscillations has been lacking for continuous speech. 

Furthermore, the condition-specific changes and 

increased reliability of functional brain connectivity may 

be induced by the task-dependent involvement of specific 

brain areas29, 35 and reconfiguration of brain network may 

emerge during successful comprehension of narrative 

speech.33 Based on these studies, we describe an 

approach for examining the brain network connectivity at 

low-frequency oscillations during speech 

comprehension. We hypothesized that distinct modes of 

brain networks would emerge and the reconfiguration of 

FC during comprehension of speech could be quantified 

in terms of systematic fluctuations in FC patterns.  

In the present study, we used correlation of Hilbert 

envelope as a means to quantify FC between spatially 

separate brain areas. This metric has been used widely in 

recent years36-38 and has been characterized as an 

‘intrinsic mode’ of functional coupling in the human 

brain. The high-density EEG were recorded and able to 

measure high spatiotemporal resolution networks.39, 40 

We calculated the whole-brain connectivity between 

separate brain regions, which are predefined based on 

Desikan-Killiany atlas.41 To examine the reconfiguration 

of FC, we analyzed the fluctuations in grand averaged 

(over time) and dynamic (time-resolved) FC during 

listening to narrative speech and time-reversed speech 

(TR-speech). Here, the TR-speech can be used as a 

control to exclude brain processes induced by the low-

level features of speech since it has the same long-term 

amplitude spectrum as normal speech but is not perceived 

as intelligible speech.42 Principal component analysis 

(PCA) was used to characterize the variations in FC 

patterns over subjects. PCA and related techniques have 

been applied to describe FC fluctuations during the 

resting-state,43 movie-watching29 and whole-brain 

connectivity dynamics.44, 45 Based on the projections of 

scores on the principal components (PCs) for the 

individual subject, we identified FC modes dependent on 

the successful comprehension of speech condition. 

Furthermore, to examine whether fluctuations in grand 

averaged FC reflected a constant (temporally stationary) 

functional state or the occurrence of functional patterns 

altering over time, we extended our analysis beyond 

grand-average FC states and investigated the temporal 

fluctuations in FC states using dynamic FC based on a 

sliding-window technique. To examine the role of time-

locked events on dynamic FC during speech-

comprehension condition (similar to inter-subject 

synchronization), we estimated the similarity between 

instantaneous dynamic FC (each windowed FC) across 

conditions and runs. 
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2. Material and methods 

2.1.  Study design 

The open access EEG data used in this paper have been 

described in details elsewhere.34, 42 There were 10 

subjects and they took part in two experiments. During 

the experiments, subjects were introduced to listen to a 

narrative speech and time-reversed speech, separately. 

The EEG data were recorded during listening task. In the 

first experiment (condition), subjects underwent 20 runs 

(trials), each of which was of the same length (less than 

180 seconds), in which they listened to a professional 

audio-book edition of a classic American work of fiction 

(in this study we just used 2 runs to examine the dynamic 

organization during natural speech-comprehension). The 

audio was read by a single American English speaker. 

The runs retained the storylines, with neither duplicates 

nor discontinuities. During the audio-playing, the mean 

speech rate was 210 words/min. In a similar way, during 

the second experiment subjects were presented with the 

same runs in the same order, but with each of the speech 

stimuli played in reverse (time-reversed speech). All 

speech stimuli were played monophonically at a 

sampling rate of 44.1 kHz using Sennheiser headphones 

in a sound-attenuated room when participants maintained 

fixation on a cross centered on a screen and minimized 

eye blinking and other movement activities. 

2.2. Data description and preprocessing 

During all experiments, dense array 128-channel EEG 

data (plus two mastoid channels) were recorded at a 

sampling rate of 512 Hz using a BioSemi ActiveTwo 

system. Offline, the data were filtered with a band-pass 

filter between 1 and 30 Hz since initial investigation of 

the frequency range uncovered that no useful information 

was observed in higher frequencies, and down-sampled 

to 128 Hz. We then re-referenced EEG data to the 

common average channels46 in MATLAB2016b. To 

identify bad channels with artifacts noise, the EEG 

signals were visually inspected and the standard 

deviation of each channel time series was compared with 

that of the spherical surrounding channels. Bad channels 

with excessive noise were interpolated using a spherical 

spline model in EEGLAB.47 Independent component 

analysis (ICA) was performed to remove ocular EEG 

artifacts.48, 49 

2.3. Source reconstruction 

Following preprocessing, source localization was 

performed using an open access software Brainstorm.50 

The forward model, describing the signal mode produced 

by the unit dipole at each predefined position on the brain 

model surface, was computed using the symmetric BEM 

method51 based on default Colin27 MRI template 

provided by the Montreal Neurological Institute (MNI). 

Preprocessed data were adopted to compute the inverse 

model, which was estimated by the weighted Minimum-

norm Estimation (wMNE).52 It has been proved that 

wMNE is well-established to estimate large-scale FC 

networks since it solves the volume conduction problems 

and thus reduces the correlation of spurious signal.53, 54 

When calculating the inverse operator, we adopted the 

configuration of parameters described in the previous 

study53: (1) the current source orientations were 

constrained to perpendicular to the cortical surface; (2) 

the depth weighting algorithm was adopted to 

compensate for any deviations affecting the computation 

of superficial sources53, 55; and (3) a regularization 

parameter, 𝜆2 = 0.1 was adopted to minimize numerical 

instability, reduce the wMNE sensitivity to noise, and 

effectively achieve a spatially smoothing estimation.53 In 

this procedure, source-level time series at 15,002 voxels 

were obtained. The cortical surface was then parcellated 

into 68 anatomical regions of interest (ROIs) based on the 

Desikan-Killiany atlas56 and the center of mass of each 

area was defined as a representative time series to be used 

to calculate FC. 

2.4. Functional connectivity estimation 

We aimed to perform an all-to-all whole-brain FC 

analysis by estimating connectivity between all possible 

pairs of Desikan-Killiany regions. In M/EEG, a 

significant confound of source level connectivity is that 

the ill-posed inverse problem plus inaccuracies in the 

forward solution, leads to a degree of spatial blurring and 

mislocalization of sources.57, 58 This confound means that 

two source-reconstructed time series (e.g. from two brain 

regions) may be significantly correlated, purely due to 

‘signal leakage’ (for review see Ref.38). The estimated 

connectivity between separate brain regions may not be 

accurate without careful control.58 Signal leakage issue 

has been well investigated and there are now a lot of 

techniques for leakage reduction.37, 57, 59 Most approaches 

are based on the fact that leakage manifests as a zero-time 

lag linear superposition of underlying signals so that 
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although the true zero-lag connection is sacrificed, 

orthogonalization of source-reconstructed signals can 

effectively remove leakage.58 Colclough et al. recently 

proposed an effective method of simultaneously 

orthogonalizing over a set of multiple brain regions.60 

Based on their study, here, signals (time-courses) from 

all N=68 brain areas are symmetrically orthogonalized in 

a single calculation. The complete mathematical details 

of the procedure can be found in previous study.60 In 

brief, two steps need to be conducted in the method: First, 

find a set of orthogonal time-courses that are closest to 

the data matrix and have a simple analytical solution. 

Second, the solution is finessed by iteratively adjusting 

the lengths and orientations of the corrected vectors until 

the solution is as close as possible to the uncorrected 

time-courses.61 This results in a set of matrices, whose 

rows consist of the orthogonalized time-courses for all 68 

Desikan-Killiany brain areas. Following signal leakage 

correction, the Hilbert transformation was applied to 

extract the amplitude envelopes of the time-courses. The 

FC matrices were constructed based on Pearson 

correlation coefficient between all pairs of the amplitude 

envelopes of ROIs in terms of grand average FC.  To 

extract dynamic FC (time-resolved FC), we applied a 

sliding window approach.44, 62 The window length was 

set as 5 s and the overlap was 4 s between two adjacent 

windows. Within each window, we calculated 

connectivity between all pairs of Desikan–Killiany 

regions. It should be noted that the signal leakage 

reduction step was performed on each time window 

separately (separate orthogonalization for each window), 

rather than on the whole time series during grand average 

FC analysis. This conduction can be explained in 

previous study,63 where it has proved that leakage relies 

heavily on signal to noise ratio (SNR) and the SNR is 

different in different time windows.   

2.5. Principal component analysis 

During grand averaged FC analysis, the FC matrices 

were calculated based on Pearson correlation between all 

pairs of the amplitude envelopes of 68 ROIs (over whole 

time) for all subjects and runs (see Section Functional 

connectivity estimation).  

To perform PCA, the lower triangular parts of FC (i.e. 

68 × (68 − 1)/2  connections) matrices were 

concatenated across subjects/runs (10 × 4 subjects/runs) 

resulting in the group-level connectivity matrix with 

dimensions 2278 × 40  (number of connections × 

number of subjects/runs). PCA was then performed to the 

resulting group-level connectivity matrix. To determine 

the components which reflect only noise, the PCA 

analyses were repeated for 1000 surrogate time-courses 

for each subject/run. The surrogate time-courses of each 

individual subject were phase-randomized and the 

properties of the surrogate time-courses were preserved 

in spectral domain.29, 64 The dimensionality of the data 

was represented by the proportion of explained variance 

of the principal components (PCs) that are greater than 

those of the surrogates. Since the data were decomposed 

by PCA into orthogonal axes with related projections 

(scores) of each individual observation (subject or run in 

this study), we used these projections scores to 

characterize the principal components. The PC 

associated with speech-comprehension condition was 

considered as the one demonstrating clear separation 

between different conditions and significant difference 

levels based on the PC projection scores (i.e., the scores 

higher than 0 represented the speech-comprehension 

runs, whereas the scores less than 0 presented the time-

reversed speech runs).  

To examine the consistency of PCs, the analysis was 

repeated using 2 separate runs. For both runs, the group-

level connectivity matrices contained the concatenated 

lower triangular FC matrices of 1 time-reversed speech 

run and 1 speech-comprehension run (i.e., 2278 × 20 

matrices). The consistency was characterized as Pearson 

Correlation of the components and their projection scores 

across runs (See Figure 1G-H). 
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2.6. PCA trajectories of dynamic FC 

The PCA was repeated for average dynamic FC to 

establish the link between grand averaged FC (whole 

time correlation) and dynamic FC. After determining the 

grand average condition-specific dynamic FC 

component, we applied PCA to concatenated dynamic 

FC matrices over time for each subject (i.e., 2 time-

reversed speech and 2 speech-comprehension runs). The 

condition-specific temporal components (connectivity) 

were determined as the PC exhibiting the highest 

similarity to the grand average condition-specific 

dynamic FC components. Then, we measured the 

trajectories (i.e., fluctuations of PC scores over time) of 

the condition-specific temporal components of 

individuals. In this study, the term “trajectory” was better 

than “scores” to highlight the fact that the PCA was 

applied to time-concatenated connectivity matrices. We 

examined whether the PC exhibiting highest similarity to 
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Fig. 1. A The analysis pipeline using principal component analysis (PCA). The time-courses of ROIs were firstly corrected to remove 

signal leakage; then, the FC matrix was constructed using Hilbert envelope correlation; finally, the PCA was performed over FCs of 2 

time-reversed speech and 2 speech-comprehension condition concatenated across 10 subjects. B Explained variance by each PC (black 

line) and phase-random surrogates (gray line). The first 4 PCs were above the noise level (Surrogate data); the first PC (E) explained 

39.8% of the variation, while the second (F) explained 14.6%. C The projections of first two PCs and D Boxplot of first 2 PCs projections, 

showing that the first component is dependent to speech-comprehension condition.  E-F The first 2 components and their 3-D 

representations with threshold (top 5%) for visualization. G-H The similarity of the first 2 PC between two separated run analysis. 
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the condition-specific connectivity differentiated 

between time-reversed speech and speech-

comprehension trajectories. We characterized the 

condition-specific differences by computing the average 

Euclidean distance between the median trajectories of the 

time-reversed speech and speech-comprehension 

conditions. The Euclidean distances between median 

trajectories were defined as the squared difference 

between median PC projection scores of time-reversed 

speech and speech-comprehension trajectories. For each 

subject, to evaluate the significance of the distinction, we 

compared the condition-specific Euclidean distance with 

those of the surrogates. We randomly shuffled the 

trajectories of each individual subject and then 

reassigned them into two groups. The p-values were 

assessed by comparing the distance between condition-

specific trajectories with the distance of the surrogates. 

Since the trajectories of each individual PC are time-

dependent, we evaluated the distinction between 

different conditions across subjects by computing the 

median distances across runs and conditions. For each 

individual subject, the median distance of trajectory 

between time-reversed speech and speech-

comprehension conditions was computed. Next, the 

distances between two separate runs of time-reversed 

speech and speech-comprehension conditions were 

computed. Finally, we adopted permutation tests to 

compare the average distance across runs and conditions. 

2.7. Dynamic FC similarity across conditions and 

runs 

During continuous perception, human brain 

automatically divides experiences into discrete events.65 

To examine the role of time-locked events on dynamic 

FC in speech-comprehension condition (similar to inter-

subject synchronization), we estimated the Pearson 

similarity between instantaneous dynamic FC (each 

windowed FC) across conditions and runs. For each time 

window, we computed the Pearson similarity between the 

FC matrix of a single subject (k) and the average FC 

across the remaining of the subjects (n ≠ k). The average 

dynamic FC was computed to test the FC similarity in 3 

different circumstances: across conditions (i.e., if subject 

k is at time-reversed speech run 1, the average dynamic 

FC was computed for speech-comprehension run 1), 

across runs (i.e., if subject k is at time-reversed speech 

run 1, the average dynamic FC was computed for time-

reversed speech run 2) and within runs (i.e., if subject k 

is at time-reversed speech run 1, the average dynamic FC 

was computed for time-reversed speech run 1) (Fig 3A). 

2.8. Statistical analysis 

The comparisons between conditions (time-reversed 

speech vs. speech-comprehension) were performed using 

permutation tests since the size of samples remines 

relatively small. During the permutation tests, the 

randomization was also carefully controlled to keep the 

dependence across two conditions.  

To evaluate the association between measures, 

Spearman’s correlations were used due to limited number 

of samples. Pearson correlation was applied as a measure 

of similarity between connectivity matrices. (i.e., PC 

scores, FCs, and dynamic FCs). 

3. Results 

To characterize the fluctuations in FC across subjects 

during time-reversed speech and speech-comprehension 

conditions, PCA was applied over subjects (Figure 1A). 

PCA decomposed high-dimensional group-level 

connectivity matrices into orthogonal principal 

components that explained the most variance of the data. 

The projections provided a score for each individual 

observation (i.e., subject/run) along the PCs. We 

performed PCA on concatenated vectorized connectivity 

matrices for all subjects during two separate runs of time-

reversed speech and speech-comprehension conditions. 

We then examined the scores (i.e., projections of PCs by 

individual subjects) during two conditions. 

3.1.  Distinct modes of variation in FC during 

speech comprehension 

The first principal component (PC-1), explaining 39.8% 

of the variance (Fig. 1B), was able to distinguish the 

speech-comprehension condition from time-reversed 

speech condition. The projection scores of PC-1 were 

significantly different between two conditions (p < 

0.001) (Fig. 1C-D). We considered this principal 

component as a condition-specific PC. This result 

demonstrated that the condition-specific changes in FC 

can be explained with a single pattern of variation (PC-

1). The second principal component (PC-2) (Fig .1B), 

explaining 14.6% of the variance, reflected a FC mode 

that was preserved across runs. There was no significant 

difference in the scores of PC-1 between two conditions 

(Fig. 1C-D). This result showed that the principal 
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component of variation in FC reflected the common 

connectivity pattern over two conditions.  

 

PCA analysis was repeated for 1000 surrogate FC 

matrices across all subjects to determine the components 

explaining a significant fraction of variance (see section 

Principal component analysis). The explained variance 

of the first 4 components was larger than the explained 

variance of surrogate FC matrices. Considering a large 

amount of variance explained by the first 2 PCs, we chose 

the 2 PCs for further analysis. The rest of the components 

did not exhibit any specificity regarding the speech-

comprehension condition and were not presented.  

To examine the consistency of the condition-specific 

PCs over runs, PCA analysis was repeated for each run 

separately and the Pearson similarities between PCs 

across runs were quantified. For each run, the condition-

specific PCs showing high consistency across runs were 

identified. The similarities between PCs were 

significantly correlated across runs for condition-specific 

FC and common FC (r=0.885 for PC-1 component, 

r=0.794 for PC-2 component) (Fig. 1G-H). These results 

showed that the condition-specific PC and the related 

projection scores were consistent across runs.  

Median trajectories distance histogram

Median trajectories distance histogram

Principal component 1 (PC-1)

0.05 0.1 0.15 0.2 0.25

PC-1 scores

-0.4

-0.2

0

0.2

0.4

P
C

-3
 s

c
o
re

s

Speech
TRspeech

0.75

0.8

0.85

0.9

0.95

S
im

ila
ri
ty

Average vs. dynamic PC

0.02 0.04 0.06 0.08 0.1 0.12

PC-1 scores

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

P
C

-2
s
c
o
re

s

Example trajectories

 (Subject 4)        

Speech

TRspeech

Speech

(Single subject)                      

0 0.02 0.04 0.06 0.08 0.096

Distance

0

20

40

60

80

100

120

C
o
u
n
t

Surrogate distance

TR-Speech TR-TR Speech-Speech

0

0.05

0.1

0.15

D
is

ta
n
c
e

Distance between median trajectories 

across run                           (All subject)                         

0 0.02 0.04 0.06 0.08 0.091

Distance

0

200

400

600

800

1000

1200

C
o
u
n
t

Surrogate distance

Median trajectories

Rest-Speech distance 

Rest-Speech distance 

Time

Speech

TRspeech

Distance

Speech-1 Speech-2 TRspeech-1 TRspeech-2

Time PC-1 scores

P
C

-2
 s

c
o

re
s

T
ra

je
c
to

ri
e

s

Median trajectories

Time-reserved correlation

Time

PCA

Average FC component

Dynamic FC component

A

B

C

D E

F
G

H
I

***

***

n.s
C

o
n

d
itio

n
 s

p
e

c
ific

 F
C

R
O
Is  

Averaged FC

All to all 

correlation

Preprocessed 

time courses
Window 

time courses

Leakage 

reduction
Hilbert

envelope

TRspeech

PCA

TR speech Speech

Subjects

... ... ... ... ...

C
o
n

n
e

c
tiv

ity
 p

a
irs

Components
... ...

... ...

...

...

C
o
n

n
e

c
tiv

ity
 p

a
irs

Time

 

Fig. 2. FC based on a sliding-window approach. A The pipeline of dynamic FC analysis.  The source-reconstructed time-courses were 

leakage-corrected within each window (window length 5 s, overlap 4 s). Dynamic FCs were estimated based on windowed Hilbert 

envelop correlation. B The pipeline describing the PCA applied to average dynamic FCs across subjects (top), where the static adjacent 

matrixes were concatenated across subjects, and dynamics FCs across time for each subject (bottom). A condition-specific component 

was determined based on the maximum similarity between dynamic FC components and average condition-specific FC component (D). 

The grand average component and dynamic condition-specific component were very similar across subjects (E). C Based on the 

trajectories of condition-specific dynamic FC components, the distance between the median trajectories of time-reversed speech (TR 

speech) and speech-comprehension (Speech) conditions were computed. F Example trajectory for single individual (Subject 4). G The 

distance between the median trajectories of TR speech and Speech conditions compared to the histogram of the distances for 1000 

randomly split trajectories (Subject4) and I for all subjects. H The median trajectory distances between TR speech and Speech conditions, 

between 2 TR speech runs and between 2 Speech runs. The distance between conditions was significantly higher than the distance 

between runs (permutation tests, 10000 permutations). *** represents p < 0.0001, n.s. represents p > 0.05. 
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3.2. Condition-specific FC trajectories in dynamic 

FC 

The grand average FC metric is not able to distinguish 

between a temporally stationary pattern of FC and 

fluctuations in FC. Thus, we analyzed dynamic 

fluctuations in FC (also known as time-resolved FC). In 

the current study, we examined the hypothesis that brain 

FC continuously reconfigured during speech-

comprehension. The dynamic FC was estimated based on 

a sliding window technique. We used envelope 

correlation as a means to quantify connectivity between 

spatially separate brain regions (see section Functional 

connectivity estimation). This metric has been used 

extensively in recent years and has been described as an 

‘intrinsic mode’ of functional coupling in the human 

brain. Here, we set window length as 5 s and overlapped 

with 4 s between adjacent frames (see section Discussion 

about the window length). First, the source-localized 

time series of separate brain regions were segmented into 

overlapping time windows. Second, leakage reduction 

step was applied to each window, separately. Hilbert 

envelope was extracted from the corrected time series. 

Finally, we computed ‘all-to-all’ connectivity between 

separate brain regions (Fig. 2A).  

To establish the link between the dynamic FC 

analyses and grand average FC (whole time correlation). 

The average dynamic FC across time was calculated and 

PCA was performed over subjects. The analysis results 

suggested that the PC based on averaged dynamic FC 

also showed condition specificity (Fig. 2). In addition, 

condition-specific PC of average dynamic FC was similar 

to those grand average FCs (r=0.92) (Fig. 2E). Thus, the 

condition specific FC patterns from average dynamic 

connectivity were in line with those based on grand 

average FC.  

For each participant, PCA was applied to the dynamic 

FCs over time (Fig. 2B). We considered the condition-

specific component for each individual subject as the one 

that was the highest correlated with the grand average 

condition-specific component (Fig. 2D). For most 

subjects, the trajectories (PC projection scores) of the 

condition-specific components reflected a significant 

difference between conditions (Fig. 2H). For each 

subject, we characterized the condition-specificity by 

comparing the median of trajectories (median PC 

projection scores) during the time-reversed speech and 

the speech-comprehension conditions (Fig. 2C). Then, 

we measured the Euclidean distance between the median 

trajectories of TR-speech and speech conditions (Fig. 

2C). We compared the distance between TR-speech and 

speech median trajectories with the distance between 

1000 trajectories of randomly shuffled groups (Fig. 2G-

I). The results of all subjects demonstrated a significantly 

larger distance between TR-speech and speech 

trajectories than any other trajectories of randomly 

shuffled groups (p<0.0001) (Fig. 2I). Due to the time-

dependence of the condition-specific PC trajectories, we 

evaluated the significance of the median distances of 

trajectory between conditions/runs across subjects. We 

observed that the median distance across conditions (i.e., 

TR-speech/speech conditions) was significantly greater 

than the median distance across runs (i.e. TR-speech-

run1/TR-speech-run2 and speech-run1/speech-run2) 

(p<0.0001, permutation tests, 10000 permutation runs) 

(Fig. 2H). We observed no significant difference between 

the median distance across runs for time-reversed speech 

and speech-comprehension conditions (Fig. 2H). These 

results suggested the emergence of a preserved FC mode 

during speech-comprehension condition at a short time 

scale. 

3.3. Condition-specific FC patterns within and 

across runs 

The first principal component (PC-1), explaining 39.8% 

of the variance (Fig. 1B), was able to distinguish the 

speech-comprehension condition from time-reversed 

speech condition. The projection scores of PC-1 were 

significantly different between two conditions (p < 

0.001) (Fig. 1C-D). To investigate the role of time-

locked events on FC dynamics during speech-

comprehension (similar to inter-subject synchronization 

analysis), we computed the Pearson similarity between 

dynamic FCs over conditions and runs. Briefly, for each 

time window, we calculated the similarity between the 

FC matrix of an individual subject (k) and the average 

FCs across the remaining subjects (n ≠ k). The average 

FCs were computed to examine the FC matrix similarity 

in 3 different cases: across conditions (e.g. if subject k is 

at time-reversed speech run 1, the average FC matrix was 

computed for speech-comprehension run 1), across runs 

(e.g., if subject k is at time-reversed speech run 1, the 

average FC matrix was computed for time-reversed 

speech run 2) and within runs (e.g., if subject k is at time-

reversed speech run 1, the average FC matrix was 

computed for time-reversed speech run 1) (Fig. 3A).  
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Fig. 3. Time-resolved similarity between dynamic FCs across conditions and runs. A The analysis pipeline. For each individual subject 

the dynamic FC at each window was compared to the average dynamic FC across the rest of subjects at the same window. Blue 

lines/shades represent that the average dynamic FCs were computed for different condition (i.e. if subject k is TR speech, average 

dynamic FC were computed across subjects for Speech condition (excluding subject k)). Red lines/shades represent that the average 

dynamic FCs were computed for the same condition but different runs (i.e. if subject k is at TR Speech in run 1, average dynamic FC 

were computed for the TR speech run 2). Green lines/shades represent that the average dynamic FCs were computed for the same 

condition and the same run (i.e. if subject k is at TR speech in run 1, average PLVs were computed for the TR speech run 1). B-C During 

speech-comprehension, the similarity between dynamic FCs was significantly lower across conditions, but the similarity between FCs 

was significantly higher within runs compared to across runs. D-E During TR speech the similarity between dynamic FCs were 

significantly lower across conditions, but there was no significant difference between the similarities across runs. The histograms indicate 

the distributions of similarity measures over time, whereas *** represents the p < 0.0001, ** represents the p < 0.001 assessed by 

permutation tests across subjects. n.s. represents p > 0.05. 
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The similarity across runs both for TR-speech and 

speech-comprehension conditions was significantly 

larger than the similarity across conditions (p<0.001 for 

both runs: permutation tests, 10000 permutation runs) 

(Fig. 3). This result confirmed the continuous functional 

reconfiguration during speech-comprehension condition. 

Additionally, this result also demonstrated that during 

speech-comprehension, the similarity between dynamic 

FC was higher, even when the subjects were listening to 

different semantic content. The average similarity 

between dynamic FCs demonstrated no significant 

difference across runs for resting-state runs (p=0.54 for 

run 1, p=0.28 for run 2, permutation tests, 10000 

permutations) (Fig. 3D-E). In contrast, the average 

similarity between dynamic FCs was significantly higher 

for the same speech run than across runs (p<0.0001 for 

run 1, p<0.001 for run 2, permutation tests, 10000 

permutations) (Fig. 3B-C). These results showed that the 

dynamics of FC during speech-comprehension reflected 

both the effects of time-locked events and a continuous 

reorganization of brain networks. 

4. Discussion 

This paper has investigated the reconfiguration of 

functional connectivity (FC) during speech-

comprehension condition. The results demonstrated that 

FC dynamic pattern under speech-comprehension varies 

along with a single mode of variation. During the 

comprehension of natural speech, the connectivity 

pattern captures the variations over subjects, which 

emerges as a continuous brain functional state across 

time.  

We adopted PCA to characterize the variations in FC 

across subjects and conditions. We found that one of the 

PCs (PC-2) reflected the common pattern of variations in 

both conditions, whereas another PC (PC-1) reflected the 

difference between time-reversed speech and speech-

comprehension conditions. The patterns of the 

components characterized the intra- and inter-

hemispheric connectivity within occipital and temporal 

regions as well as their connections with frontal and 

parietal regions, which are line with increased brain 

connectivity in language/auditory networks.66, 67 These 

results demonstrated that the increased communication 

between separate brain regions associated with auditory 

processing and attention are primarily driven by the time-

locked events during comprehension of natural speech. 

This characterization is consistent with the large-scale 

auditory and sensory-motor networks emerging during 

comprehension of natural, narrative speech.32 The 

condition-specific component (PC-1) demonstrated 

increased connectivity within sensory-motor areas and 

reduced connectivity between frontal-parietal brain 

regions and cingulate. The enhanced sensory-motor areas 

connectivity reflects the ability to transform auditory 

speech into appropriate sensory and motor 

representations. These results are in line with previous 

studies showing brain functional reorganization during 

comprehension of speech.32, 33 Furthermore, the 

enhanced frontal-temporal connectivity may indicate a 

strong functional cross-talk between ventral attention and 

auditory regions. Previous studies also observed the 

reconfiguration of a frontal-temporal network in 

adaptation to cued speech comprehension, where related 

frontal-temporal cortical regions were referred to as the 

auditory-control network.33  

The result about emerging of a condition-specific 

pattern in grand averaged FC may be not sufficient to 

draw a conclusion about the reorganization of FC during 

speech comprehension. Therefore, we examined how the 

condition-specific component relates to the dynamic FC. 

We applied a sliding window approach combining with 

Hilbert envelop correlation between brain regions to 

characterize dynamic FC over time. The findings also 

showed condition-specific PC on grand average dynamic 

FC across subjects and individual dynamic FC over time. 

The trajectories of the condition-specific PCs 

demonstrated that this PC might emerge as a stationary 

pattern during comprehension of speech. This conclusion 

was resulted from analyzing the similarity between 

instantaneous dynamic FC and the average dynamic FC 

across individuals under different runs/conditions. The 

similarity was significantly higher when the individuals 

were involved in the same conditions (i.e., TR-

speech/TR-speech and speech/speech) than they were in 

different conditions (i.e. TR-speech/speech). In addition, 

only during speech comprehension, the similarity of the 

dynamic FC was higher for individuals in the same run 

(i.e. run 1/run 2) than in the different runs (i.e. run 1/run 

2). Overall, these results demonstrated that whole-brain 

connectivity is reorganized over time. Previous studies 

also observed that dynamics of FC states are highly stable 

relying on the narrative of a story although the 

connectivity patterns were similar over time.4 Our results 

showed that the dynamics of the distinct connectivity 
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states might display time-locked events. Previous studies 

also demonstrated that humans automatically segment 

experiences into discrete events during realistic, 

continuous perception.65 We speculated that the 

reconfiguration of the brain networks in higher-order 

regions might reflect the adaptation of the brain's intrinsic 

networks to coordinate the large-scale flow of 

information during speech comprehension. The 

dynamics of the condition-specific component may 

suggest that these changes of the FC patterns are related 

to higher-level processing of the narrative.  

The PCA analysis in our study revealed two different 

modes of fluctuations that were related to the FC 

condition-specific variations. Although the PC-2 was 

consistent with the variations in empirical and model data, 

the PC-1 demonstrated a substantial condition-

dependence. Furthermore, the PC-1 exhibited a similar 

pattern with typical of default mode network (DMN), 

which involves the medial frontal, temporal, and 

cingulate cortices. These local regions continuously 

change their module property in adaptation to the 

comprehension of speech.33 We speculated a group of 

temporal and cingulate cortices merge with other 

temporal regions from the default mode network and 

form a new common mode during comprehension of 

speech. This result is consistent with the robust and 

reproducible reconfiguration of default mode network 

during narrative comprehension.4  

From the methodological considerations, although a 

lot of methods have been proposed to EEG analysis for 

various applications, such as detection of epilepsy, 

Alzheimer’s disease and so on,68-71 the approach 

proposed in the current paper provided an analysis 

framework that used M/EEG imaging technique to 

investigate the reorganization of brain connectivity 

during naturalistic paradigm (e.g. music-listening, 

movie-watching, story-listening and speech 

comprehension). During analysis for the dynamic FC, the 

window length (here 5 s), one core parameter, requires 

setting. This parameter setting warrants further 

discussion. An appropriate selection of window length is 

important and stands for a trade-off between temporal 

resolution and the accuracy of the derived connectivity 

matrices.38, 58 In this study, elements of the connectivity 

matrices are derived from the temporal correlation of 

envelope time-courses within the window. It is well 

known that the accuracy of the correlation between two 

signals (r) is associated with the number of degrees of 

freedom (η ). Specifically, if assuming no underlying 

correlation between two time series then the standard 

deviation of correlation, σ(𝑟) = 1 √𝜂⁄ . In other words, 

the noise in adjacency matrices is increased as η  is 

decreased. Furthermore, the number of degrees of 

freedom in a fixed-window time series is independent of 

the numbers of sample points. In the view of Fourier 

theory, an upper limit on degree of freedom for envelope 

data is given by η = 𝐵𝑤𝛿 , in which 𝛿  is the window 

length and 𝐵𝑤  denotes bandwidth of the carrier signal. 

Typically, bandwidth is set by the scientific question to 

be asked. For example, previous studies were interested 

in beta band networks for self-paced motor study.58, 72 

Here, σ(𝑟) = 0.08 , which was deemed acceptable. 

Future studies should keep this computation in mind.  

Finally, it should be noted that there are several 

limitations when interpreting the results in the current 

study. The most important limitation of the current study 

is the small number of the sample even though our results 

are validated using both surrogate data and permutation 

tests. Therefore, the results need replication in a separate 

independent dataset. Furthermore, the design of this 

study from previous studies did not allow us to compare 

the obtained results with other conditions (i.e. different 

narrative speech). Also, the current study did not allow 

us to compare the results with resting-state since the open 

access data did not include the resting-state condition. 

Future studies may study the variants of speech-

comprehension condition, different task performance or 

other naturalistic paradigms (e.g., free music-listening, 

movie-watching, etc.). When analyzing large-scale 

neurophysiological networks using MEG/EEG, the 

common problem is non-physiological spread of 

electrical activity through volume conduction causing 

spurious correlations between signals.73 Here, we used 

signal leakage reduction technique to address this 

problem. This technique has been well studied and 

believed to be an optimal approach for large-scale 

functional connectivity analysis.38, 58, 60 Yet, it should be 

noted that the technique can only reduce the volume 

conduction problem, not address it completely. Another 

limitation of this study is the use of coarse (34 regions 

per hemisphere), anatomically defined parcellation based 

on default MNI MRI template. The simultaneous 

individual MRI scanning may facilitate the co-

registration for EEG electrode. Additionally, we only 

examined the functional connectivity at the band of 1-30 

Hz as it has been shown low-frequency oscillations 
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contribute to the naturalistic speech comprehension.34, 42 

Recently it has been suggested that functional 

connectivity is dependent on frequency band during the 

task execution such as working-memory and self-paced 

motor task.61, 74 In a future study, we will examine 

whether functional connectivity during speech 

comprehension is frequency-dependent or not.  

5. Conclusion 

The brain FC is highly dynamic and able to adjust 

topology on a very fine time-scale during changing 

environment. Here, we proposed an analytical approach 

and investigated the reconfiguration of the brain 

functional networks during comprehension of natural, 

narrative speech. Our findings demonstrated that FC 

dynamic patterns under speech-comprehension vary 

along with a single mode of variation. Furthermore, our 

analysis method seems valuable for studying the 

reorganization of dynamic brain networks based on 

M/EEG data during natural task experiments. 
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