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Abstract: Lyme disease, recognized as one of the most important vector-borne diseases worldwide,
has been increasing in incidence and spatial extend in United States. In the Northeast and Upper
Midwest, Lyme disease is transmitted by Ixodes scapularis. Currently, many studies have been
conducted to identify factors influencing Lyme disease risk in the Northeast, however, relatively few
studies focused on the Upper Midwest. In this study, we explored and compared the climatic and
landscape factors that shape the spatial patterns of human Lyme cases in these two regions, using the
generalized linear mixed models. Our results showed that climatic variables generally had opposite
correlations with Lyme disease risk, while landscape factors usually had similar effects in these two
regions. High precipitation and low temperature were correlated with high Lyme disease risk in
the Upper Midwest, while with low Lyme disease risk in the Northeast. In both regions, size and
fragmentation related factors of residential area showed positive correlations with Lyme disease risk.
Deciduous forests and evergreen forests had opposite effects on Lyme disease risk, but the effects
were consistent between two regions. In general, this study provides new insight into understanding
the differences of risk factors of human Lyme disease risk in these two regions.

Keywords: lyme disease; Borrelia burgdorferi; forest fragmentation; climate

1. Introduction

Lyme disease, caused by spirochete Borrelia burgdorferi sensu stricto (B. burgdorferi hereafter),
is recognized as one of the most important vector-borne diseases in United States [1,2]. Since Lyme
disease was first reported in Connecticut in 1975 [3,4], it has been increasing in incidence and spatial
extend in United States [5,6]. Now, Lyme disease is endemic in the Northeast, Upper Midwest
and West Coast [1]. In the Northeast and Upper Midwest, Lyme disease is vectored by deer ticks
(Ixodes scapularis), which maintain B. burgdorferi in a horizontal transmission cycle between ticks and
multiple vertebrate hosts [7]. Disease ecologists have made great efforts to understand the transmission
processes of B. burgdorferi and identified many biotic and abiotic risk factors that attribute to Lyme
disease expansion and spread in United States [1,3,8], and these efforts have yielded a wide range of
control strategies. However, the number of Lyme cases have steadily increased, with about 30,000 cases
of Lyme disease (according to CDC reports) occurred annually now in United States [9]. As currently
no human vaccines are available [10], a better understanding of the epidemiology and risk factors of
Lyme disease is still needed.

As the process of Lyme disease spread involves hosts, vectors and pathogens, any factors that
can potentially influence their survivals, distributions and movements may affect the risk of disease
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transmission [11,12]. Previous studies have identified many climatic and landscape factors that may
attribute to Lyme disease risk [1,13–16]. For climatic factors, laboratory studies had shown that
ticks are highly vulnerable to desiccation and generally had high mortality in conditions with low
humidity and high temperature [17,18]. Thus, temperature and humidity may affect Lyme disease
risk indirectly through the impacts on tick survivals and population dynamics [19–21]. For example,
when investigating Lyme incidence in seven northeastern states, Subac found a positive relationship
between disease incidence and the June moisture index in previous years [22]. This result might be
explained by a later field work study which showed that heavy precipitation in late spring or early
summer precipitation was the most favorable climatic factor for tick survival in the Northeast [21].
Besides precipitation and humidity, temperature has also been correlated to Lyme disease risk. A recent
study exploring the county-level Lyme spread across the United States found that the mean temperature
was negatively correlated with Lyme disease spread [6], which was consistent to a previous study
which also showed a negative correlation between the county-level Lyme incidence and the maximum
annual temperature in the Northeast [3].

For landscape factors, a previous review had suggested that the presence of forest was consistently
associated with increased Lyme disease risk [1]. Besides, forest habitat configurations can also be
important in affecting Lyme disease risk due to its impacts on host movements and distributions,
as well as the contact rates between human and ticks [23–26]. Human activity like urbanization
induced fragmentation, increasing the amount of edge habitats between residential development and
forests [3,27]. These edge habitats serve as preferred habitats for many host species of ticks, particularly
the white-tailed deer that is the main host for adult ticks [28], and thus can increase the entomological
risk of Lyme disease [29]. Forest fragmentation may also increase the contact rates between human
population and ticks, which can elevate human exposure to Lyme disease [30]. However, there is also
a different mechanism, suggesting that the spread of pathogens and tick vectors may be slowed down
in fragmented patches due to the restriction on host movements [31].

When retrospecting studies on the risk factors of Lyme disease in the United States, we may find
that relatively fewer studies focused on the Upper Midwest, comparing to the Northeast. It has been
suggested that Lyme disease in these two regions originated from different places (Connecticut for
the Northeast, and Wisconsin for the Upper Midwest) [4]. Besides, the seasonality in tick feeding
also showed some differences, though B. burgdorferi is typically transmitted by the same tick species
I. scapularis in these two regions. In the Northeast, nymphs feed predominantly during May and July,
and larvae mainly take their bloodmeals from June to September, while the seasonal timing of larval
and nymphal feeding coincide in the Upper Midwest [32]. This seasonal synchrony in nymphal and
larval feeding may make the Lyme dynamics and risk factors different to those in the Northeast. In this
study, we explore the climatic and landscape factors that influence the spatial patterns of Lyme cases
and compare the risk factors in the Northeast and Upper Midwest United States. Our results suggested
that climatic variables generally showed opposite correlations with Lyme disease risk, while landscape
factors usually had similar effects in these two regions.

2. Materials and Methods

2.1. Lyme Disease Data

The study area (Figure 1) includes 13 states in the Northeast (Connecticut, Delaware, Maine,
Maryland, Massachusetts, New Hampshire, New Jersey, New York, North Carolina, Pennsylvania,
Rhode Island, Vermont, and Virginia; not all of these states are considered to be in the Northeast,
but here we follow a previous study [3], including all 13 states due to their geographical contiguity
and high Lyme incidence) and six states in the Upper Midwest (Illinois, Indiana, Iowa, Michigan,
Minnesota, Wisconsin) of United States. The annual number of human Lyme disease cases for
each county during 2012–2016 were obtained from the Centers for Disease Control and Prevention
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(CDC; http://www.cdc.gov/lyme/stats/). According to a previous study [11], we limited our study area
to those counties with established or reported I. scapularis populations.

Figure 1. Map of study area. A—the Upper Midwest; B—the Northeast of United States.

2.2. Data of Predictors

For each county in each year, we calculated the mean temperature (MeanTem),
maximum temperature (MaxTem) and mean precipitation (Pre) of each season (spring, summer,
autumn, and winter) in previous year (Table 1), based on the Climate Research Unit (CRU) datasets [33],
a time-series dataset that yields month-by-month variations in climate. The processing of climatic data
was carried out in ArcGIS 10.2.2.

Table 1. Description of climatic and landscape factors used in this study.

Predictors Descriptions

Climatic predictors
Pre_1 Mean precipitation in previous spring
Pre_2 Mean precipitation in previous summer
Pre_3 Mean precipitation in previous autumn
Pre_4 Mean precipitation in previous winter

MeanTem_1 Mean temperature in previous spring
MeanTem_2 Mean temperature in previous summer
MeanTem_3 Mean temperature in previous autumn
MeanTem_4 Mean temperature in previous winter
MaxTem_1 Mean maximum temperature in previous spring
MaxTem_2 Mean maximum temperature in previous summer
MaxTem_3 Mean maximum temperature in previous autumn
MaxTem_4 Mean maximum temperature in previous winter

Landscape factors
CA_X 1 Total area of a land cover class X

PLAND_X 1 Percentage of area of a land cover class X
TE_X 1 Total edge length of a land cover X at the region
ED_X 1 Edge density of a land cover X at the region
DIST_O Distance to the origin area of Lyme disease

1 X—(21–24, 41, 42, and 43). 21, developed-open space; 22—developed-low intensity space; 23—developed-medium
intensity space; 24—developed-high intensity space; 41—deciduous forest; 42—evergreen forest; 43—mixed forest.

Land cover data of 2013 was accessed from the National Land Cover Database (NLCD) [34].
Following a previous study [3], we focused on seven particular land cover classes: deciduous

http://www.cdc.gov/lyme/stats/
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forest (class 41), evergreen forest (class 42), mixed forest (class 43), developed-open space (class
21), developed-low intensity space (class 22), developed-medium intensity space (class 23), and
developed-high intensity space (class 24). For each county, we then derived several landscape
indicators for each land cover class (Table 1), including CA (total area of a specific land cover class),
PLAND (percentage of a land cover respect to the total county area), TE (total edge length), ED (edge
density, total edge length divided by the total county area). Following a previous study [5], we also
include, in addition to climatic and landscape predictors, the distance to the origin areas of Lyme
disease (Connecticut for Northeast and Wisconsin for Upper Midwest). The processing of landscape
data was carried out in ArcGIS 10.2.2 and Fragstats 4.2.

2.3. Statistical Analyses

Following previous studies [3,5,35], we applied generalized linear mixed models (GLMM) with
negative binomial regression to investigate the relationships between Lyme disease cases and predictors,
as negative binomial regression allows for the overdispersion that was commonly encountered in
reported cases of Lyme disease [29,36]. We included state and year as random factors to control for the
variations between years and states. Before performing GLMMs, we scaled all predictor variables to
have a mean of zero and a standard deviation of one.

With GLMMs, we first conducted univariate regression analyses to test the association of each
predictor with Lyme disease risk. Predictors with a p-value < 0.05 were identified as potential risk
factors which were used to conduct model averaging. Before performing model averaging, we checked
for the multicollinearity by examining the correlation coefficients (r) between potential risk factors.
For highly correlated factors (r > 0.7) [37], we only included the variable with the smaller p-value in
model averaging. After removing highly correlated predictors, we constructed a full model with all
remained potential risk factors. Based on the changed Akaike information criterion (AICc) values [38],
we then ranked the candidate models and considered the models within ∆AICc < 2 as competing
models, which were used to average the regression coefficient of each predictor variable. For both
univariate analyses and model averaging analyses, the county area (AREA) was retained in the model
to control for the effect of area size. All statistical analyses were conducted in RStudio®version 1.1.463
(RStudio, Inc., Boston, MA, USA) with lme4 [39] and MuMIn [40] packages.

3. Results

3.1. Univariate Regression Analyses

Our results from univariate analyses (Table 2) showed that the distance to original disease area
(Dist_O) had a negative correlation with Lyme cases in both the Northeast and Upper Midwest.
The mean summer precipitation in previous year (Pre_2) was positively correlated with Lyme cases in
Upper Midwest, while the mean autumn precipitation (Pre_3) was negatively correlated with Lyme
disease risk in Northeast. The seasonal maximum temperature in previous year generally had a better
predictive power than the seasonal mean temperature. The maximum temperature generally had
negative effects on Lyme disease risk in Upper Midwest, while had positive effects in Northeast.
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Table 2. Summary (Mean ± S.D.) and univariate regression results (standardized regression coefficient,
b, and t) for the predictors correlated with the Lyme cases in the Northeast and Upper Midwest
United Sates.

Variables
Upper Midwest Northeast

Mean ± S.D. b t Mean ± S.D. b t

Dist_O 125 ± 157 −1.39 −12.9 *** 296 ± 248 −1.25 −12.5 ***
Climatic predictors 1

Pre_1 100 ± 35.4 −0.073 −1.0 90.6 ± 29.3 −0.056 −1.15
Pre_2 82.2 ± 24.5 0.23 3.51 *** 114 ± 38.7 −0.006 −0.095
Pre_3 72.0 ± 29.6 −0.072 −1.02 87.0 ± 26.7 −0.098 −2.09 *
Pre_4 54.9 ± 23.4 −0.56 −5.62 *** 85.9 ± 18.7 0.067 1.13

MeanTem_1 13.4 ± 5.41 −0.066 −1.07 13.2 ± 5.50 0.024 0.52
MeanTem_2 24.4 ± 3.43 −0.15 −2.56 * 24.3 ± 3.76 0.076 1.67
MeanTem_3 13.9 ± 4.36 −0.039 −0.66 13.8 ± 4.36 0.003 0.07
MeanTem_4 0.39 ± 6.99 0.008 0.13 2.41 ± 6.83 −0.016 −0.36
MaxTem_1 15.1 ± 4.02 −1.21 −8.54 *** 17.4 ± 3.88 0.58 4.12 ***
MaxTem_2 28.6 ± 2.07 −0.74 −6.47 *** 28.6 ± 2.39 0.66 6.61 ***
MaxTem_3 16.40 ± 2.29 −0.82 −7.62 *** 18.3 ± 3.02 0.44 3.73 ***
MaxTem_4 2.55 ± 4.67 −1.33 −9.32 *** 6.25 ± 5.18 0.041 0.29

Landscape predictors 2

CA_21 7180 ± 4421 0.874 18.2 *** 1.0E5 ± 7205 0.70 17.2 ***
PLAND_21 4.51 ± 2.75 0.68 14.2 *** 7.14 ± 5.22 0.51 11.9 ***

TE_21 4.6E6 ± 2.3E6 0.95 18.3 *** 6.1E6 ± 3.9E6 0.82 17.8 ***
ED_21 28.9 ± 13.2 0.72 15.0 *** 42.2 ± 23.1 0.56 12.8 ***
CA_22 4786 ± 6960 0.76 17.6 *** 5206 ± 5775 0.69 18.1 ***

PLAND22 3.21 ± 4.59 0.68 15.8 *** 4.12 ± 4.97 0.56 13.1 ***
TE_22 3.1E6 ±3.3E6 0.76 17.7 *** 3.7E6 ± 3.8E6 0.73 18.5 ***
ED_22 20.6 ± 22.7 0.70 16.0 *** 28.4 ± 29.9 0.60 13.9 ***
CA_23 1887 ± 4573 0.84 19.2 *** 2655 ± 4094 0.67 16.9 ***

PLAND_23 1.30 ± 0.64 0.67 14.9 *** 2.51 ± 4.88 0.43 10.0 ***
TE_23 1.3E6 ± 2.5E6 0.77 17.8 *** 1.7E6 ± 2.4E6 0.70 17.5 ***
ED_23 8.84 ± 17.1 0.66 15.1 *** 15.6 ± 26.1 0.49 11.2 ***
CA_24 759 ± 2354 0.88 19.8 *** 998 ± 1729 0.52 12.8 ***

PLAND_24 0.52 ± 1.37 0.64 14.1 *** 1.24 ± 4.28 0.16 3.62 ***
TE_24 3.6E5 ± 9.0E5 0.83 18.9 *** 5.1E5 ± 7.8E5 0.59 14.3 ***
ED_24 2.49 ± 5.80 0.65 14.5 *** 5.44 ± 13.5 0.28 6.32 ***
CA_41 3.2E5 ± 3.2E5 −0.05 −0.64 4.8E5 ± 4.9E5 0.03 0.40

PLAND_41 17.7 ± 13.9 −0.19 −2.91 ** 26.3 ± 18.7 0.094 1.66
TE_41 6.8E6 ± 6.1E6 0.19 1.96 9.7E6 ± 8.5E6 0.32 3.46 ***
ED_41 37.0 ± 19.7 0.053 0.77 55.1 ± 27.7 0.22 4.24 ***
CA_42 3293 ± 1.0E5 −0.26 −3.85 *** 1.7E5 ± 3.5E5 −0.75 −7.27 ***

PLAND_42 1.21 ± 2.58 −0.19 −2.95 ** 8.36 ± 8.81 −0.57 −9.74 ***
TE_42 1.3E6 ± 3.8E6 −0.23 −3.43 *** 5.5E6 ± 9.4E6 −0.78 −6.45 ***
ED_42 4.98 ± 9.60 −0.14 −2.16 * 27.7 ± 23.1 −0.47 −8.02 ***
CA_43 9616 ± 1.9E5 −0.19 −2.61 ** 2.6E5 ± 4.7E5 −0.52 −4.41 ***

PLAND_43 4.11 ± 5.37 −0.18 −2.71 ** 13.2 ± 9.62 −0.097 −1.67
TE_43 4.3E6 ± 7.2E6 −0.16 −1.97 * 1.0E7 ± 1.4E7 −0.22 −1.70
ED_43 19.5 ± 20.4 −0.12 −1.78 54.4 ± 31.9 0.002 0.044

Note: * p < 0.05; ** p < 0.01, *** p < 0.001; 1 Pre_X, seasonal mean precipitation in previous year, X—(1, spring;
2, summer; 3, autumn; 4, winter); MeanTem_X, mean temperature in pervious year; MaxTem, mean maximum
temperature in previous year; 2 CA_X, Total area of a land cover class X, X—(21, developed-open space; 22,
developed-low intensity space; 23, developed-medium intensity space; 24, developed-high intensity space; 41,
deciduous forest; 42, evergreen forest; 43, mixed forest); PLAND_X, Percentage of area of a land cover class X; TE_X,
Total edge length of a land cover X; ED_X, Edge density of a land cover X.

For landscape predictors (Table 2), all four indicators (CA, PLAND, TE, ED) related to the
developed area (land cover class: 41,42,43,44) generally had positive effects on Lyme disease risk in
both the Upper Midwest and Northeast. The percentage of deciduous forest (PLAND_41) showed
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negative correlation with Lyme disease risk in the Upper Midwest, while the total edge length (TE_41)
and edge density (ED_41) showed positive correlations in the Northeast. For evergreen forest, all four
indicators had negative effects on Lyme disease risk in both regions. For mixed forest, the total
forest area (CA_43), the percentage of forest area (PLAND_43) and the total edge length (TE_43) were
negatively associated with Lyme disease risk in the Upper Midwest, while only the CA_43 had a
significant negative effect in the Northeast.

3.2. Model Averaging Analyses

The results of model averaging (Table 3) showed that the distance to original disease area (Dist_O)
had a negative correlation with Lyme cases in both the Northeast and Upper Midwest. Besides of
Dist_O, the total edge length (TE_21), the edge density of open space developed area (ED_21), and the
percentage of deciduous forests (PLAND_41) were positively associated with Lyme cases in the Upper
Midwest. In the Northeast, the total edge length of low intensity developed area (TE_22), the edge
density of deciduous forests (ED_41) and the percentage of high intensity developed area (PLAND_24)
had positive effects on Lyme disease risk; while the percentage of evergreen forests (PLAND_42) have
a negative effect.

Table 3. Summary statistics (averaged regression coefficient, b, Z-statistics, and p-values) for the
predictors correlated with the Lyme cases in model averaging in the Northeast and Upper Midwest
United Sates. For explanation of the variables, see Table 1.

Variables
Upper Midwest Northeast

b Z p-Value b Z p-Value

Dist_O −1.12 12.8 *** <0.001 −0.60 5.02 *** <0.001
Climatic predictors 1

PRE_2 −0.004 0.22 0.827
PRE_3 −0.003 0.21 0.831

MeanTem_2 0.02 0.565 0.827
MaxTem_2 0.14 2.07 * 0.038
MaxTem_4 0.001 0.073 0.942

Landscape predictors 2

TE_21 0.42 4.66 *** <0.001
ED_21 0.36 5.09 *** <0.001

PLAND_22 −0.022 0.471 0.637
TE_22 0.72 11.76 *** <0.001
CA_24 0.05 1.10 0.270

PLAND_24 0.16 4.85 *** <0.001
PLAND_41 0.34 6.65 *** <0.001

TE_41 0.060 0.469 0.638
ED_41 0.30 4.09 *** <0.001
CA_42 −0.002 0.118 0.906 0.036 0.34 0.731

PLAND_42 −0.22 3.03 ** 0.002
PLAND_43 0.003 0.165 0.869

Note: * p < 0.05; ** p < 0.01, *** p < 0.001. 1 Pre_X, seasonal mean precipitation in previous year, X—(2, summer; 3,
autumn; 4, winter]; MeanTem_X, mean temperature in pervious year; MaxTem, mean maximum temperature in
previous year. 2 CA_X, Total area of a land cover class X, X—(21, developed-open space; 22, developed-low intensity
space; 24, developed-high intensity space; 41, deciduous forest; 42, evergreen forest; 43, mixed forest); PLAND_X,
Percentage of area of a land cover class X; TE_X, Total edge length of a land cover X; ED_X, Edge density of a land
cover X.

4. Discussion

In this study, we explored the correlations of climatic and landscape factors with the Lyme cases at
county level in the Northeast and Upper Midwest United States. The results from univariate analyses
suggested that the landscape factors related to developed area and forests generally had similar effects
on Lyme disease risk in the two regions. In contrast, climatic factors generally showed opposite
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relationships with Lyme disease risk in the two regions. The results from model averaging analyses in
two regions only identified several but quite different risk factors. As many climatic and landscape
factors were highly correlated with each other, the significant effect of a specific factor in multiple
models might also be caused by other highly correlated factors. Therefore, we here focus more on
discussing the results from univariate analyses.

In both regions, the seasonal mean maximum temperature in previous year were better than the
mean temperature in previous year in explaining the spatial patterns of Lyme cases. Increasing the mean
maximum temperature in previous year was associated with a decrease in the number of Lyme cases in
Upper Midwest, while associated with an increase in Lyme disease risk in Northeast. The precipitation
in previous summer was positively correlated with Lyme disease risk in Upper Midwest, while the
precipitation in previous autumn showed a negative association in Northeast. The results from
the Upper Midwest seems consistent to the expectation that low humidity and high temperatures
could regulate tick abundance [21,22]. In contrast, the results from the Northeast conflicted with this
expectation, but consistent with a previous study which also suggested a tick abundance when there
was a high temperature at ground level [41]. These results confirmed the conclusion from a previous
study which suggest that the effects of weather variables can vary considerably among different
regions [42].

In contrast to climatic factors, most landscape factors showed similar effects on Lyme disease
risk in the Northeast and Upper Midwest. Both the area size related indices (CA and PLAND) and
fragmentation indices (TE and ED) of developed area (land cover class: 21–24) showed very strong
positive correlations with Lyme disease risk (as seen in Table 2). As these indices were generally
positively correlated with each other, we could not draw the conclusion which factors had true causal
effects on Lyme disease risk. However, we found that in both regions, the multiple regression models
included the fragmentation related indices of developed area (TE22 for Northeast; TE21 and ED21
for Upper Midwest; see Table 3), which might indicate that Lyme disease risk generally increased
in fragmented developed area. These results were consistent to a previous study [3]. According to
the NLCD 2013 classification, the open developed area (land cover class 21) and the low intensity
developed area (class 22) are most likely single family housing units. The fragmentation of these
types of land covers indicated a high chance of the occurrence of surrounding forests or herbaceous
cover. Therefore, the contact rates between human and ticks might be enhanced in these areas [3].
Besides, edge habitats of residential area usually can provide more food resources for white tailed deer,
the major host for adult ticks, increasing tick abundance [29]. Both of these two mechanisms could
result in a higher Lyme disease risk in fragmented residential habitats.

The fragmentation of deciduous forests generally increases the number of Lyme cases (see Table 2).
Previous studies have proposed that tick abundance is generally higher in fragmented deciduous
forests, as forest fragmentations may provide ideal habitats for many reservoir hosts of ticks [1,30].
In fact, it had been shown that the entomological risk of Lyme disease risk was usually higher in small
forest fragments due to the high abundance of white-footed mouse [29,30,43]. Moreover, edges in
fragmented forests might be utilized more frequently by humans, resulting in higher contact rates
between human and infected ticks [23]. After controlling for other factors in multiple regression
models, the percentage of area of deciduous forests (PLAND 41) also had a positive effect in the Upper
Midwest, consistent with many previous studies that had demonstrated the important role of forest
cover in determining Lyme disease risk at landscape level. These studies suggested that more forest
generally means more habitats for hosts, providing the blood meals for ticks, and thus the density
of infected questing ticks [8,12,28]. In contrast to deciduous forests, the number of Lyme cases was
lower in evergreen forests (class 42) in both regions. These results were also consistent to a previous
study that suggested evergreen forests were located in mountainous areas, poor environments for ticks
regarding to temperature and precipitation [3].

We must admit that the Lyme case number obtained from CDC might be an underestimate of
actual human cases [1]. Particularly, different states may apply different approaches to gather case
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data. Including state as a random effect in our analyses was able to control for, to some extent, the
differences in surveillance way among states.

5. Conclusions

In this study, we explored and compared the roles of climatic and landscape factors in shaping the
spatial patterns of Lyme cases in the Upper Midwest and Northeast United States. Our results showed
that climatic variables generally showed opposite correlations with Lyme disease risk, while landscape
factors usually had similar effects in these two regions. High Lyme disease risk was correlated with
high precipitation and low temperature in the Upper Midwest, while with low precipitation and high
temperature in the Northeast. In both regions, area size related and fragmentation related indices of
developed area showed strong positive correlations with Lyme disease risk. Deciduous forests and
evergreen forests had opposite effects on Lyme disease risk, but the effects were consistent between two
regions. Our study is the first study, to our knowledge, comparing the risk factors for Lyme disease
in the Upper Midwest and the Northeast, and thus may provide new insight into understanding the
differences of risk factors of Lyme disease risk in these two regions.
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