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Abstract
We study a measure-theoretic notion of connectedness for sets of finite perimeter in the
setting of doubling metric measure spaces supporting a weak (1, 1)-Poincaré inequality. The
two main results we obtain are a decomposition theorem into indecomposable sets and a
characterisation of extreme points in the space of BV functions. In both cases, the proof
we propose requires an additional assumption on the space, which is called isotropicity and
concerns the Hausdorff-type representation of the perimeter measure.
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Introduction

The classical Euclidean theory of functions of bounded variation and sets of finite
perimeter—whose cornerstones are represented, for instance, by [6,15,17,22,29,36] – has
been successfully generalised in different directions, to several classes of metric structures.
Amongst the many important contributions in this regard, we just single out the pioneer-
ing works [9–11,16,25,28]. Although the basic theory of BV functions can be developed
on abstract metric measure spaces (see, e.g., [5]), it is in the framework of doubling spaces
supporting a weak (1, 1)-Poincaré inequality (in the sense of Heinonen–Koskela [30]) that
quite a few fine properties are satisfied (see [1,2,38]).

The aimof the present paper is to study the notion of indecomposable set of finite perimeter
on doubling spaces supporting a weak (1, 1)-Poincaré inequality (that we call PI spaces for
brevity). By indecomposable set we mean a set of finite perimeter E that cannot be written as
disjoint union of two non-negligible sets F,G satisfying P(E) = P(F)+P(G). This concept
constitutes themeasure-theoretic counterpart to the topological notion of ‘connected set’ and,
as such, many statements concerning connectedness have a correspondence in the context of
indecomposable sets.

In the Euclidean framework, the main properties of indecomposable sets have been sys-
tematically investigated byAmbrosio et al. in [4]. The results of this paper aremostly inspired
by (and actually extend) the contents of [4]. In the remaining part of the Introduction, we will
briefly describe our two main results: the decomposition theorem for sets of finite perime-
ter and the characterisation of extreme points in the space of BV functions. In both cases,
the natural setting to work in is that of PI spaces satisfying an additional condition—called
isotropicity—which we are going to describe in the following paragraph.

Let (X, d,m) be a PI space and E ⊂ X a set of finite perimeter; we refer to Sect. 1 for
the precise definition of perimeter and the terminology used in the following. The perime-
ter measure P(E, ·) associated to E can be written as θE H�∂e E , where H stands for the
codimension-one Hausdorff measure on X, while ∂eE is the essential boundary of E (i.e.,
the set of points where neither the density of E nor that of its complement vanishes) and
θE : ∂eE → [0,+∞) is a suitable density function; cf. Theorem 1.23. The integral represen-
tation formula was initially proven in [1] only for Ahlfors-regular spaces, and this additional
assumption has been subsequently removed in [2]. It is worth to point out that the weight
function θE might (and, in some cases, does) depend on the set E itself; see, for instance,
Example 1.27. In this paper, we mainly focus our attention on those PI spaces where θE is
independent of E , which are said to be isotropic (the terminology comes from [7]). As we
will discuss in Example 1.31, the class of isotropic PI spaces includes weighted Euclidean
spaces, Carnot groups of step 2 and non-collapsed RCD spaces. Another key feature of the
theory of sets of finite perimeter in PI spaces is given by the relative isoperimetric inequality
(see Theorem 1.17 below), which has been obtained by M. Miranda in the paper [38].

Our main result (namely, Theorem 2.14) states that on isotropic PI spaces any set of finite
perimeter E can be written as (finite or countable) disjoint union of indecomposable sets.
Moreover, these components—called essential connected components of E—are uniquely
determined and maximal with respect to inclusion, meaning that any indecomposable subset
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of E must be contained (up to null sets) in one of them. We propose two different proofs of
this decomposition result, in Sects. 2 and 4, respectively. The former is a variational argu-
ment that was originally carried out in [4], while the latter is adapted from [33] and based on
Lyapunov’s convexity theorem. However, both approaches strongly rely upon three funda-
mental ingredients: representation formula for the perimeter measure, relative isoperimetric
inequality, and isotropicity. We do not know whether the last one is in fact needed for the
decomposition to hold (see also Example 2.16).

Furthermore, in Sect. 3 we study the extreme points in the space BV(X) of functions of
bounded variation defined over X; we are again assuming (X, d,m) to be an isotropic PI
space. More precisely: call K(X; K ) the family of all those functions f ∈ BV(X) supported
in K , whose total variation satisfies |Df |(X) ≤ 1 (where K ⊂ X is a fixed compact set).
Thenwe can completely characterise (under a few additional assumptions) the extreme points
of K(X; K ) as a convex, compact subset of L1(m); see Theorem 3.8. It turns out that these
extreme points coincide (up to a sign) with the normalised characteristic functions of simple
sets (cf. Definition 3.1). In the Euclidean case, the very same result was proven by W. H.
Fleming in [23,24] (see also [13]). Part of Sect. 3 is dedicated to some equivalent definitions
of simple set: in the general framework of isotropic PI spaces, a plethora of phenomena
concerning simple sets may occur, differently from what happens in R

n (see [4]). For more
details, we refer to the discussion at the beginning of Sect. 3.1.

1 Preliminaries

For our purposes, by metric measure space we mean a triple (X, d,m), where (X, d) is a
complete and separable metric space, while m �= 0 is a non-negative, locally finite Borel
measure on X. For any open set � ⊂ X we denote by LIPloc(�) the space of all R-valued
locally Lipschitz functions on�, while LIPbs(X) is the family of all those Lipschitz functions
f : X → R whose support spt( f ) is bounded. Given any f ∈ LIPloc(X), we define the
functions lip( f ), lipa( f ) : X → [0,+∞) as

lip( f )(x) := lim
y→x

∣
∣ f (y) − f (x)

∣
∣

d(y, x)
, lipa( f )(x) := lim

y,z→x

∣
∣ f (y) − f (z)

∣
∣

d(y, z)

whenever x ∈ X is an accumulation point, and lip( f )(x), lipa( f )(x) := 0 elsewhere. We
call lip( f ) and lipa( f ) the local Lipschitz constant and the asymptotic Lipschitz constant of
f , respectively.
We denote by L0(m) the family of all real-valued Borel functions on X, considered up to

m-a.e. equality. For any given exponent p ∈ [1,∞], we indicate by L p(m) ⊂ L0(m) and
L p
loc(m) ⊂ L0(m) the spaces of all p-integrable functions and locally p-integrable functions,

respectively. Given an open set � ⊂ X and any E ⊂ �, we write E � � to specify that E
is bounded and dist(E,X\�) > 0.

1.1 Functions of bounded variation

In the framework of general metric measure spaces, the definition of function of bounded
variation—which is typically abbreviated to ‘BV function’—has been originally introduced
in [38] and is based upon a relaxation procedure. Let us recall it:
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Definition 1.1 (Function of bounded variation) Let (X, d,m) be a metric measure space. Fix
any function f ∈ L1

loc(m). Given any open set � ⊂ X, we define the total variation of f on
� as

|Df |(�) := inf

{

lim
n→∞

∫

�

lip( fn) dm

∣
∣
∣
∣
( fn)n ⊂ LIPloc(�), fn → f in L1

loc(m��)

}

.

(1.1)

Then f is said to be of bounded variation—briefly, f ∈ BV(X)—if f ∈ L1(m) and
|Df |(X) < +∞.

We can extend the function |Df | defined in (1.1) to all Borel sets via Carathéodory construc-
tion:

|Df |(B) := inf
{|Df |(�)

∣
∣ � ⊂ X open, B ⊂ �

}

for every B ⊂ X Borel.

This way we obtain a finite Borel measure |Df | on X, which is called the total variation
measure of f .

Proposition 1.2 (Basic properties of BV functions) Let (X, d,m) be a metric measure space.
Let f , g ∈ L1

loc(m). Let B ⊂ X be Borel and � ⊂ X open. Then the following properties
hold:

(i) Lower semicontinuity. The function |D · |(�) is lower semicontinuous with respect
to the L1

loc(m��)-topology: namely, given any sequence ( fn)n ⊂ L1
loc(m) such that

fn → f in the L1
loc(m��)-topology, it holds |Df |(�) ≤ limn |Dfn |(�).

(ii) Subadditivity. It holds that
∣
∣D( f + g)

∣
∣(B) ≤ |Df |(B) + |Dg|(B).

(iii) Compactness. Let ( fn)n ⊂ L1
loc(m) be a sequence satisfying supn |Dfn |(X) < +∞.

Then there exist a subsequence (ni )i and some f∞ ∈ L1
loc(m) such that fni → f∞ in

L1
loc(m).

It follows from item (i) of Proposition 1.2 that the space BV(X) is a Borel subset of L1(m).

Remark 1.3 Let (X, d,m) be a metric measure space. Fix f ∈ BV(X) and m > 0. Then

f ∧ m ∈ BV(X) and
∣
∣D( f ∧ m)

∣
∣(X) ≤ |Df |(X). (1.2)

Indeed, pick any ( fn)n ⊂ LIPloc(X) such that fn → f in L1
loc(m) and

∫

lip( fn) dm →
|Df |(X). Therefore, it holds that the sequence ( fn ∧ m)n ⊂ LIPloc(X) satisfies fn ∧ m →
f ∧ m in L1

loc(m) and lip( fn ∧ m) ≤ lip( fn) for all n ∈ N. We thus conclude that

∣
∣D( f ∧ m)

∣
∣(X) ≤ lim

n→∞

∫

lip( fn ∧ m) dm ≤ lim
n→∞

∫

lip( fn) dm = |Df |(X),

which yields the statement. 	

We conclude this subsection by briefly recalling an alternative (but equivalent) approach

to the theory of BV functions on abstract metric measure spaces, which has been proposed
in [18,19].

A derivation over ametricmeasure space (X, d,m) is a linearmap b : LIPbs(X) → L0(m)

such that the following properties are satisfied:

(i) Leibniz rule. b( f g) = b( f ) g + f b(g) for every f , g ∈ LIPbs(X).
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(ii) Weak locality. There exists a non-negative function G ∈ L0(m) such that
∣
∣b( f )

∣
∣ ≤ G lipa( f ) m-a.e. for every f ∈ LIPbs(X).

The least function G (in the m-a.e. sense) having this property is denoted by |b|.
The space of all derivations over (X, d,m) is denoted by Der(X). The support spt(b) ⊂ X
of a derivation b ∈ Der(X) is defined as the essential closure of the set

{|b| �= 0
}

. Given
any b ∈ Der(X) with |b| ∈ L1

loc(m), we say that div(b) ∈ L p for some p ∈ [1,∞]
provided there exists a (necessarily unique) function div(b) ∈ L p(m) such that

∫

b( f ) dm =
− ∫

f div(b) dm for every f ∈ LIPbs(X). The space of all derivations b ∈ Der(X) with
|b| ∈ L∞(m) and div(b) ∈ L∞ is denoted by Derb(X).

Theorem 1.4 (Representation formula for |Df | via derivations) Let (X, d,m) be a metric
measure space. Let f ∈ BV(X) be given. Then for every open set � ⊂ X it holds that

|Df |(�) = sup

{∫

�

f div(b) dm

∣
∣
∣
∣
b ∈ Derb(X), |b| ≤ 1 m-a.e., spt(b) � �

}

.

For a proof of the above representation formula, we refer to [18, Theorem 7.3.4].

1.2 Sets of finite perimeter

The study of sets of finite perimeter on abstract metric measure spaces has been initiated
in [38] (where, differently from here, the term ‘Caccioppoli set’ is used). In this subsection
we report the definition of set of finite perimeter and its basic properties, more precisely the
ones that are satisfied on any metric measure space (without any further assumption).

Definition 1.5 (Set of finite perimeter) Let (X, d,m) be a metric measure space. Fix any
Borel set E ⊂ X. Let us define

P(E, B) := |D1E |(B) for every Borel set B ⊂ X.

The quantity P(E, B) is called perimeter of E in B. Then the set E has finite perimeter
provided

P(E) := P(E,X) < +∞.

The finite Borel measure P(E, ·) on X is called the perimeter measure associated to E .

Remark 1.6 Given a Borel set E ⊂ X satisfying m(E) < +∞, it holds that E has finite
perimeter if and only if 1E ∈ BV(X). 	

Proposition 1.7 (Basic properties of sets of finite perimeter) Let (X, d,m) be a metric mea-
sure space. Let E, F ⊂ X be sets of finite perimeter. Let B ⊂ X be Borel and � ⊂ X open.
Then:

(i) Locality. If m
(

(E�F) ∩ �
) = 0, then P(E,� ∩ B) = P(F,� ∩ B). In particular, it

holds that P(E, ·) = P(F, ·) whenever m(E�F) = 0.
(ii) Lower semicontinuity. The function P(·,�) is lower semicontinuous with respect

to the L1
loc(m��)-topology: namely, if (En)n is a sequence of Borel subsets of � such

that the convergence 1En → 1E holds in L1
loc(m��) as n → ∞, then P(E,�) ≤

limn P(En,�).
(iii) Subadditivity. It holds that P(E ∪ F, B) + P(E ∩ F, B) ≤ P(E, B) + P(F, B).
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vi) Complementation. It holds that P(E, B) = P(Ec, B).
(v) Compactness. Let (En)n be a sequence of Borel subsets ofX with supn P(En) < +∞.

Then there exist a subsequence (ni )i and a Borel set E∞ ⊂ X such that 1Eni
→ 1E∞

in the L1
loc(m)-topology as i → ∞.

1.3 Fine properties of sets of finite perimeter in PI spaces

The first aim of this subsection is to recall the definition of PI space and itsmain properties; we
refer to [31] for a thorough account about this topic. Thereafter, we shall recall the definition
of essential boundary and the main properties of sets of finite perimeter in PI spaces—among
others, the isoperimetric inequality, the coarea formula, and the Hausdorff representation of
the perimeter measure. Finally, we will discuss the class of isotropic PI spaces, which plays
a central role in the rest of the paper.

Definition 1.8 (Doubling measure) A metric measure space (X, d,m) is said to be doubling
provided there exists a constant CD ≥ 1 such that

m
(

B2r (x)
) ≤ CD m

(

Br (x)
)

for every x ∈ X and r > 0.

The least such constant CD is called the doubling constant of (X, d,m).

Remark 1.9 Let (X, d,m) be a doubling metric measure space. Then spt(m) = X. Indeed, it
holds thatm

(

Br (x)
)

> 0 for every x ∈ X and r > 0, otherwisemwould be the null measure.
Moreover, the metric space (X, d) is proper (i.e., bounded closed subsets of X are compact).

	

Doubling spaces do not have a definite dimension (not even locally), but still are ‘finite-
dimensional’—in a suitable sense. In light of this, it makes sense to consider the codimension-
one Hausdorff measure H, defined below via Carathéodory construction, which takes into
account the local change of dimension of the underlying space.

Definition 1.10 (Codimension-one Hausdorff measure) Let (X, d,m) be a doubling metric
measure space. Given any set E ⊂ X and any parameter δ > 0, we define

Hδ(E) := inf

{ ∞
∑

i=1

m
(

Bri (xi )
)

2 ri

∣
∣
∣
∣
(xi )i ⊂ X, (ri )i ⊂ (0, δ], E ⊂

⋃

i∈N
Bri (xi )

}

.

Then we define the codimension-one Hausdorff measure H on (X, d,m) as

H(E) := lim
δ↘0

Hδ(E) for every set E ⊂ X.

Both Hδ and H are Borel regular outer measures on X.

Definition 1.11 (Ahlfors-regularity) Let (X, d,m) be a metric measure space. Let k ≥ 1 be
fixed. Then we say that (X, d,m) is k-Ahlfors-regular if there exist two constants ã ≥ a > 0
such that

ark ≤ m
(

Br (x)
) ≤ ãr k for every x ∈ X and r ∈ (

0, diam(X)
)

. (1.3)

It can be readily checked that any Ahlfors-regular space (X, d,m) is doubling, with CD =
2k ã/a.
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Definition 1.12 (Weak (1, 1)-Poincaré inequality) A metric measure space (X, d,m) is said
to satisfy aweak (1, 1)-Poincaré inequality provided there exist constantsCP > 0 and λ > 1
such that for any function f ∈ LIPloc(X) and any upper gradient g of f it holds that

∫

Br (x)
| f − fx,r | dm ≤ CP r

∫

Bλr (x)
g dm for every x ∈ X and r > 0,

where fx,r := m
(

Br (x)
)−1 ∫

Br (x)
f dm stands for the mean value of f in the ball Br (x).

Lemma 1.13 (Poincaré inequality forBVfunctions)Let (X, d,m)beapropermetricmeasure
space satisfying a weak (1, 1)-Poincaré inequality. Let f ∈ L1

loc(m) be such that |Df |(X) <

+∞. Then it holds that
∫

Br (x)
| f − fx,r | dm ≤ CP r |Df |(Bλr (x)

)

for every x ∈ X and r > 0, (1.4)

where the constants CP and λ are chosen as in Definition 1.12.

Proof A standard diagonalisation argument provides us with a sequence ( fn)n ⊂ LIPloc(

Bλr (x)
)

such that fn → f in L1
loc(m�Bλr (x)) and |Df |(Bλr (x)

) = limn
∫

Bλr (x)
lip( fn) dm.

Given that the local Lipschitz constant lip( fn) is an upper gradient of the function fn , it holds
that

∫

Br (x)

∣
∣ fn − ( fn)x,r

∣
∣ dm ≤ CP r

∫

Bλr (x)
lip( fn) dm for every n ∈ N. (1.5)

Since the closure of Br (x) is a compact subset of Bλr (x), we know that 1Br (x) f ∈
L1(m�Br (x)) and 1Br (x) fn → 1Br (x) f in L1(m�Br (x)), so that ( fn)x,r → fx,r as n → ∞.
Moreover, for some function g ∈ L1(m�Br (x)) we have (up to a not relabelled subsequence)
that

∣
∣ fn(y)

∣
∣ ≤ g(y) for every n ∈ N and m-a.e. y ∈ Br (x). We can further assume that

fn(y) → f (y) for m-a.e. y ∈ Br (x). Given that
∣
∣ fn(y) − ( fn)x,r

∣
∣ ≤ g(y) + gx,r for

every n ∈ N and m-a.e. y ∈ Br (x), we deduce (by dominated convergence theorem) that
∫

Br (x)

∣
∣ fn − ( fn)x,r

∣
∣ dm → ∫

Br (x)
| f − fx,r | dm as n → ∞. Therefore, by letting n → ∞

in (1.5) we conclude that the claim (1.4) is verified. 	

For the purposes of this paper, we shall only consider the following notion of PI space (which
is strictly more restrictive than the usual one, where a weak (1, p)-Poincaré inequality is
required for some exponent p that is possibly greater than 1):

Definition 1.14 (PI space) We say that a metric measure space (X, d,m) is a PI space pro-
vided it is doubling and satisfies a weak (1, 1)-Poincaré inequality.

We introduce the concept of essential boundary in a doubling metric measure space and
its main features. The discussion is basically taken from [1,2], apart from a few notational
discrepancies.

Given a doubling metric measure space (X, d,m), a Borel set E ⊂ X and a point x ∈ X,
we define the upper density of E at x and the lower density of E at x as

D(E, x) := lim
r↘0

m
(

E ∩ Br (x)
)

m
(

Br (x)
) , D(E, x) := lim

r↘0

m
(

E ∩ Br (x)
)

m
(

Br (x)
) ,

respectively. Whenever upper and lower densities coincide, their common value is called
density of E at x and denoted by D(E, x). We define the essential boundary of the set E as

∂eE :=
{

x ∈ X
∣
∣
∣ D(E, x) > 0, D(Ec, x) > 0

}

.
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It clearly holds that the essential boundary ∂eE is contained in the topological boundary ∂E .
Moreover, we define the set E 1/2 ⊂ ∂eE of points of density 1/2 as

E1/2 := {

x ∈ X
∣
∣ D(E, x) = 1/2

}

.

Finally, we define the essential interior E1 of E as

E1 := {

x ∈ X
∣
∣ D(E, x) = 1

}

.

Clearly, it holds that ∂eE ∩ E1 = ∅: if x ∈ ∂eE then D(E, x) = 1 − D(Ec, x) < 1, so
x /∈ E1.

Remark 1.15 Let F ⊂ E ⊂ X be given. Then

∂eF ⊂ ∂eE ∪ E1. (1.6)

Indeed, fix any x ∈ ∂eF\∂eE . Then D(E, x) ≥ D(F, x) > 0, thus accordingly D(Ec, x) =
0. This forces D(E, x) = 1 − D(Ec, x) = 1, so that x ∈ E1. Hence, the claim (1.6) is
proven. 	

The following result is well-known.We report here its full proof for the reader’s convenience.

Proposition 1.16 (Properties of the essential boundary) Let (X, d,m) be a doubling metric
measure space. Let E, F ⊂ X be sets of finite perimeter. Then the following properties hold:

(i) It holds that ∂eE = ∂eEc.
(ii) We have that

∂e(E ∪ F) ∪ ∂e(E ∩ F) ⊂ ∂eE ∪ ∂eF . (1.7)

(iii) If m(E ∩ F) = 0, then ∂eE ⊂ ∂eF ∪ ∂e(E ∪ F).
(iv) If m(E ∩ F) = 0, then ∂eE ∪ ∂eF = ∂e(E ∪ F) ∪ (∂eE ∩ ∂eF).

Proof (i) It trivially stems from the very definition of essential boundary.
(ii) First of all, fix x ∈ ∂e(E ∪ F). Note that D(E ∪ F, x) ≤ D(E, x) + D(F, x), as it

follows from

D(E ∪ F, x) = lim
r↘0

m
(

(E ∪ F) ∩ Br (x)
)

m
(

Br (x)
) ≤ lim

r↘0

[
m

(

E ∩ Br (x)
)

m
(

Br (x)
) + m

(

F ∩ Br (x)
)

m
(

Br (x)
)

]

≤ lim
r↘0

m
(

E ∩ Br (x)
)

m
(

Br (x)
) + lim

r↘0

m
(

F ∩ Br (x)
)

m
(

Br (x)
) = D(E, x) + D(F, x).

Therefore, the fact that D(E ∪ F, x) > 0 implies either D(E, x) > 0 or D(F, x) > 0.
Furthermore, we have that D(Ec, x), D(Fc, x) ≥ D(Ec ∩ Fc, x) = D

(

(E ∪ F)c, x
)

>

0, whence x ∈ ∂eE ∪ ∂eF .
In order to prove that even the inclusion ∂e(E ∩ F) ⊂ ∂eE ∪ ∂eF is verified, it is just
sufficient to combine the previous case with item (i):

∂e(E ∩ F) = ∂e(E ∩ F)c = ∂e(Ec ∪ Fc) ⊂ ∂eEc ∪ ∂eFc = ∂eE ∪ ∂eF .

Hence, the proof of (1.7) is complete.
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(iii) Pick any point x ∈ ∂eE . First of all, notice that D(E∪F, x), D(Fc, x) ≥ D(E, x) > 0.
Moreover, it holds that

D
(

(E ∪ F)c, x
) + D(F, x) = lim

r↘0

m
(

Ec ∩ Fc ∩ Br (x)
)

m
(

Br (x)
) + lim

r↘0

m
(

F ∩ Br (x)
)

m
(

Br (x)
)

≥ lim
r↘0

[
m

(

Ec ∩ Fc ∩ Br (x)
)

m
(

Br (x)
) + m

(

F ∩ Br (x)
)

m
(

Br (x)
)

]

= lim
r↘0

m
(

Ec ∩ Br (x)
)

m
(

Br (x)
) = D(Ec, x) > 0,

whence eitherD
(

(E∪F)c, x
)

> 0orD(F, x) > 0.This shows that x ∈ ∂eF∪∂e(E∪F).
(iv) Item (ii) grants that ∂e(E ∪ F) ∪ (∂eE ∩ ∂eF) ⊂ ∂eE ∪ ∂eF . Conversely, item (iii)

yields

∂eE ∪ ∂eF⊂(

∂e(E ∪ F) ∪ ∂eE
)∩(

∂e(E ∪ F) ∪ ∂eF
)=∂e(E ∪ F)∪(∂eE ∩ ∂eF),

thus obtaining the identity ∂eE ∪ ∂eF = ∂e(E ∪ F) ∪ (∂eE ∩ ∂eF). 	

In the setting of PI spaces, functions of bounded variation and sets of finite perimeters present
several fine properties, as we are going to describe.

Theorem 1.17 (Relative isoperimetric inequality on PI spaces [38]) Let (X, d,m) be a PI
space. Then there exists a constant CI > 0 such that the relative isoperimetric inequality is
satisfied: given any set E ⊂ X of finite perimeter, it holds that

min
{

m
(

E ∩ Br (x)
)

,m
(

Ec ∩ Br (x)
)} ≤ CI

(
rs

m
(

Br (x)
)

)1/s−1

P
(

E, B2λr (x)
)s/s−1 (1.8)

for every x ∈ X and r > 0, where s > 1 is any exponent greater than log2(CD).

As an immediate consequence of Theorem 1.17, we have that a given set of finite perimeter
E in a PI space (X, d,m) has null perimeter if and only if either m(E) = 0 or m(Ec) = 0.

Theorem 1.18 (Global isoperimetric inequality on Ahlfors regular PI spaces) Let (X, d,m)

be a k-Ahlfors regular PI space, with k > 1. Then there exists a constant C ′
I > 0 such that

min
{

m(E),m(Ec)
} ≤ C ′

I P(E)
k/k−1 for every set E ⊂ X of finite perimeter. (1.9)

Proof As proven in [38], there exists a constant C ′
I > 0 such that

min
{

m
(

E ∩ Br (x)
)

,m
(

Ec ∩ Br (x)
)} ≤ C ′

I P
(

E, B2λr (x)
)k/k−1 (1.10)

for every x ∈ X and r > 0. By letting r → +∞ in (1.10), we conclude that (1.9) is satisfied.
	


Theorem 1.19 (Coarea formula [38]) Let (X, d,m) be a PI space. Fix f ∈ L1
loc(m) and an

open set � ⊂ X. Then the function R � t �→ P
({ f > t},�) ∈ [0,+∞] is Borel measurable

and it holds

|Df |(�) =
∫ +∞

−∞
P
({ f > t},�)

dt . (1.11)

In particular, if f ∈ BV(X), then { f > t} has finite perimeter for a.e. t ∈ R.
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Remark 1.20 Given a PI space (X, d,m) and any point x ∈ X, it holds that the set Br (x) has
finite perimeter for a.e. radius r > 0. This fact follows from the coarea formula (by applying
it to the distance function from x). Furthermore, it also holds thatH(

∂Br (x)
)

< +∞ for a.e.
r > 0, as a consequence of [2, Proposition 5.1]. 	

A function f ∈ BV(X) is said to be simple provided it can be written as f = ∑n

i=1 λi 1Ei ,
for some λ1, . . . , λn ∈ R and some sets of finite perimeter E1, . . . , En ⊂ X having finite
m-measure. It holds that any function of bounded variation in a PI space can be approximated
by a sequence of simple BV functions (with a uniformly bounded total variation), as we are
going to state in the next well-known result. Nevertheless, we recall the proof of this fact for
the sake of completeness.

Lemma 1.21 (Density of simple BV functions) Let (X, d,m) be a PI space and K ⊂ X a
compact set. Fix any f ∈ BV(X) with spt( f ) ⊂ K. Then there exists a sequence ( fn)n ⊂
BV(X) of simple functions with spt( fn) ⊂ K such that fn → f in L1(m) and |Dfn |(X) ≤
|Df |(X) for all n ∈ N.

Proof Given that f m := ( f ∧ m) ∨ (−m) → f in L1(m) as m → ∞ and |Df m |(X) ≤
|Df |(X) for all m > 0 by Remark 1.3, it suffices to prove the statement under the additional
assumption that the function f is essentially bounded, say that −k < f < k holds m-a.e.
for some k ∈ N. Let us fix any n ∈ N. Given any i = −kn + 1, . . . , kn, we can choose
ti,n ∈ (

(i − 1)/n, i/n
)

such that

P
({ f > ti,n}

)

n
≤

∫ i/n

(i−1)/n
P
({ f > t}) dt . (1.12)

Then we define the simple BV function fn on X as

fn := −k + 1

n

kn
∑

i=−kn+1

1{ f >ti,n}.

It can be readily checked that |Dfn |(X) ≤ |Df |(X). Indeed, notice that

|Dfn |(X) ≤ 1

n

kn
∑

i=−kn+1

P
({ f > ti,n}

) (1.12)≤
∫ k

−k
P
({ f > t}) dt (1.11)= |Df |(X).

Furthermore, let us define Ei,n := {ti,n < f ≤ ti+1,n} for every i = −kn + 1, . . . , kn − 1.
Moreover, we set E−kn,n := {−k < f ≤ t−kn+1,n} and Ekn,n := {tkn,n < f < k}.
Therefore, it holds that

fn = −k + 1

n

kn
∑

i=−kn+1

kn
∑

j=i

1E j,n = −k + 1

n

kn
∑

i=−kn+1

(i + kn)1Ei,n

= −k 1E−kn,n +
kn
∑

i=−kn+1

i

n
1Ei,n ,

thus accordingly | f − fn | = | f − i/n| ≤ 1/n on Ei,n for all i = −kn, . . . , kn. This ensures
that

∫

| f − fn | dm =
kn
∑

i=−kn

∫

Ei,n

| f − i/n| dm ≤ m(K )

n
n−→ 0.
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Therefore, we have that fn → f in L1(m). Since spt( fn) ⊂ K for every n ∈ N by construc-
tion, the proof of the statement is achieved. 	

Remark 1.22 In the proof of Lemma 1.21 we obtained a stronger property: each approxi-
mating function fn (say, fn = ∑kn

i=1 λni 1En
i
) can be required to satisfy

∑kn
i=1 |λni | P(En

i ) ≤
|Df |(X). 	

The following result states that, in the context of PI spaces, the perimeter measure admits an
integral representation (with respect to the codimension-one Hausdorff measure):

Theorem 1.23 (Representation of the perimeter measure) Let (X, d,m) be a PI space. Let
E ⊂ X be a set of finite perimeter. Then the perimeter measure P(E, ·) is concentrated on
the Borel set

�τ (E) :=
{

x ∈ X

∣
∣
∣
∣
lim
r↘0

min

{
m

(

E ∩ Br (x)
)

m
(

Br (x)
) ,

m
(

Ec ∩ Br (x)
)

m
(

Br (x)
)

}

≥ τ

}

⊂ ∂eE, (1.13)

where τ ∈ (0, 1/2) is a constant depending just on CD, CP and λ. Moreover, the set
∂eE\�τ (E) isH-negligible and it holds thatH(∂eE) < +∞. Finally, there exist a constant
γ > 0 (depending on CD, CP , λ) and a Borel function θE : ∂eE → [γ,CD] such that
P(E, ·) = θE H�∂e E , namely

P(E, B) =
∫

B∩∂e E
θE dH for every Borel set B ⊂ X. (1.14)

Weshall sometimes consider θE as aBorel function definedon thewhole spaceX, by declaring
that θE := 0 on the set X\∂eE.
Proof The result is mostly proven in [2, Theorem 5.3]. The fact that the measure P(E, ·)
is concentrated on the set �τ (E) is shown in [2, Theorem 5.4]. Finally, the upper bound
θE ≤ CD has been obtained in [7, Theorem 4.6]. 	

Lemma 1.24 Let (X, d,m) be a PI space. Let F ⊂ E ⊂ X be two sets of finite perimeter
such that P(E) = P(F) + P(E\F). Then H(∂eF\∂eE) = 0.

Proof By using item (iii) of Proposition 1.7 we deduce that

P(E) = P(E, ∂eE) ≤ P(F, ∂eE) + P(E\F, ∂eE) ≤ P(F) + P(E\F) = P(E),

which forces the identity P(F, ∂eE) = P(F). This implies (θFH)(∂eF\∂eE) =
P
(

F, (∂eE)c
) = 0 by Theorem 1.23, whence accordingly H(∂eF\∂eE) = 0, as required.

	

Thedensity function θE that appears in theHausdorff representation formula forP(E, ·)might
depend on the set E itself (cf. Example 1.27 below for an instance of this phenomenon). On
the other hand, the new results that we are going to present in this paper require the density
θE to be ‘universal’– in a suitable sense. The precise formulation of this property is given in
the next definition, which has been proposed in [7, Definition 6.1].

Definition 1.25 (Isotropic space) Let (X, d,m) be a PI space. Then we say that (X, d,m)

is isotropic provided for any pair of sets E, F ⊂ X of finite perimeter satisfying F ⊂ E it
holds that

θF (x) = θE (x) for H-a.e. x ∈ ∂eF ∩ ∂eE . (1.15)
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In order to provide examples and counterexamples, it will be convenient to consider the
metric measure space we are going to construct. Given any n ∈ N, we define the n-spider Sn
as

Sn := {o} 
 (R1 ∪ · · · ∪ Rn), where Ri := {i} × (0,+∞) for every i = 1, . . . , n.

(1.16)

We say that o is the origin of Sn , while R1, . . . , Rn are the rays of Sn . We identify o with
(i, 0) for every i = 1, . . . , n. It holds that (Sn, d,m) is an Ahlfors-regular PI space, where d
is given by

d
(

(i, t), ( j, s)
) :=

{ |t − s|
t + s

if i = j,
if i �= j

and m stands for the 1-dimensional Hausdorff measure on (Sn, d).

Lemma 1.26 Let E be a set of finite perimeter in the n-spider (Sn, d,m). Let o and R1, . . . , Rn

be the origin and the rays of Sn, respectively. Then the essential boundary ∂eE is a finite set
and each intersection E ∩ Ri is m-a.e. equivalent to the union of finitely many subintervals
of Ri .

Moreover, calling I the family of all i ∈ {1, . . . , n} such that E∩Ri contains (up tom-null
sets) a set of the form {i} × (0, ε) for some ε > 0, and k ∈ {1, . . . , n} the cardinality of I , it
holds that

P(E, ·) = λ δo +
∑

p∈∂e E\{o}
δp, where λ := min{k, n − k}. (1.17)

Proof Possibly replacing E with its complement Ec—an operation which does not affect
P(E, ·) nor ∂eE—we can suppose without loss of generality that k ≤ n − k, thus λ = k.
The first statement readily follows from the fact that P(E, ·) is absolutely continuous with
respect to the counting measure on Sn . Indeed, the Ahlfors-regularity of (Sn, d,m) grants
that H is equivalent to the 0-dimensional Hausdorff measure, whence Theorem 1.23 yields
the previous claim. To prove the last statement, first observe that—since each ray Ri can be
identified with (0,+∞)—it holds

P(E, ·)�Ri =
∑

p∈∂e E∩Ri

δp for every i = 1, . . . , n.

It thus remains to characterise P(E, ·)�� for some open neighbourhood � of o. To this aim,
take any r ∈ (0, 1/2) such that {i} × (0, r) is m-a.e. contained in E for every i ∈ I and call
� := Br (o). It is then clear by construction that ∂eE ∩� ⊂ {o}. Therefore, in order to prove
(1.17) it just suffices to show that P(E,�) = k. On the one hand, we define the sequence
(g j ) j≥3 ⊂ LIP(�) as

g j (x) :=
{

min{ j t, 1}
0

if x ∈ � ∩ Ri for some i ∈ I and x = (i, t),
if x ∈ �\⋃

i∈I Ri .

Hence, it holds that g j → 1E in L1(m��) and
∫

�
lip(g j ) dm = k for all j ≥ 3, thus

P(E,�) ≤ k.
On the other hand, fix any sequence ( f j ) j ⊆ LIPloc(�) satisfying f j → 1E in L1

loc(m��)

and for which the limit lim j
∫

�
lip( f j ) dm exists. Up to a subsequence, we can also assume

that f j → 1E in the m��-a.e. sense. Now let ε ∈ (0, r) be given. Then for any j ∈ N

sufficiently large we can find points xi ∈ Bε(o)∩ Ri with i ∈ {1, . . . , n}, such that ∣∣ f j (xi )−

123



Indecomposable sets of finite perimeter in doubling metric… Page 13 of 39    63 

1
∣
∣ ≤ ε for all i ∈ I and

∣
∣ f j (xi )

∣
∣ ≤ ε for all i /∈ I . Given that

∣
∣1I (i) − c

∣
∣ ≤ ∣

∣ f j (xi ) − c
∣
∣ + ε

for all i ∈ {1, . . . , n} and c ∈ R, we see that

k = min
c∈R

n
∑

i=1

∣
∣1I (i) − c

∣
∣ ≤ nε + min

c∈R

n
∑

i=1

∣
∣ f j (xi ) − c

∣
∣ ≤ nε +

n
∑

i=1

∣
∣ f j (xi ) − f j (o)

∣
∣

≤ nε +
n

∑

i=1

∫

�∩Ri
lip( f j ) dm = nε +

∫

�

lip( f j ) dm.

By first letting j → ∞ and then ε → 0, we finally conclude that lim j
∫

lip( f j ) dm ≥ k and
thus accordingly P(E,�) = k. Therefore, the proof of the last statement is completed. 	

Example 1.27 The 4-spider (S4, d,m) is not isotropic: calling o its origin and R1, R2, R3, R4

its rays, we know from Lemma 1.26 that θR1(o) = 1 and θR1∪R2(o) = 2. 	

We shall also sometimes work with PI spaces satisfying the following property:

Definition 1.28 (Two-sidedness property) Let (X, d,m) be a PI space. Then we say that
(X, d,m) has the two-sidedness property provided it holds that

H(

∂eE ∩ ∂eF ∩ ∂e(E ∪ F)
) = 0 for any disjoint sets E, F ⊂ X of finite perimeter.

(1.18)

It immediately follows from [7, Proposition 6.2] that every PI space having the two-sidedness
property is isotropic, while the converse implication might fail (as shown by the following
example).

Example 1.29 The 3-spider (S3, d,m) is an isotropic space: indeed, if E ⊂ S3 is any set of
finite perimeter such that o ∈ ∂eE , then θE (o) = 1 by Lemma 1.26. Moreover, the space
(S3, d,m) does not have the two-sidedness property, as ∂e R1 ∩ ∂e R2 ∩ ∂e(R1 ∪ R2) = {o}
and H({o}) > 0.

The same arguments show that, given a radius r > 0, the closure Xr of the ball Br (o) in
S3 (endowed with the restricted distance dXr×Xr and measurem�Xr ) is an isotropic, Ahlfors-
regular PI space which does not have the two-sidedness property. 	

A sufficient condition for the two-sidedness property to hold is provided by the following
result:

Lemma 1.30 Let (X, d,m) be a PI space with the following property:

H(∂eE\E1/2) = 0 for every set E ⊂ X of finite perimeter (1.19)

(or, equivalently, the measure P(E, ·) is concentrated on E 1/2). Then the space (X, d,m) has
the two-sidedness property.

Proof Fix two disjoint sets E, F ⊂ X of finite perimeter. Given any x ∈ E 1/2 ∩ F 1/2, we
have

D(E ∪ F, x) = lim
r↘0

m
(

E ∩ Br (x)
)

m
(

Br (x)
) + lim

r↘0

m
(

F ∩ Br (x)
)

m
(

Br (x)
) = D(E, x) + D(F, x) = 1,

thus in particular x /∈ (E ∪ F)
1/2. This shows that E1/2 ∩ F 1/2 ∩ (E ∪ F)

1/2 = ∅, whence we
can conclude thatH(

∂eE ∩ ∂eF ∩ ∂e(E ∪ F)
) = 0. This proves the two-sidedness property.
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Example 1.31 (Examples of isotropic spaces) Let us conclude the section by expounding
which classes of PI spaces are known to be isotropic (to the best of our knowledge):

(i) Weighted Euclidean spaces (induced by a continuous, strong A∞ weight).
(ii) Carnot groups.
(iii) RCD(K , N ) spaces, with K ∈ R and N < ∞. In particular, all (weighted) Riemannian

manifolds whose Ricci curvature is bounded from below.

Isotropicity of the spaces in (i) and (ii) is shown in [7, Section 7] and [8], respectively. Also, it
follows from the rectifiability results in [26,27] that all Carnot groups of step 2 satisfy (1.19),
so also the two-sidedness property. About item (iii), it follows from the results in [3,14] that
all RCD(K , N ) spaces satisfy (1.19), whence they have the two-sidedness property (and
thus are isotropic). 	


2 Decomposability of a set of finite perimeter

This section is entirely devoted to the decomposability properties of sets of finite perimeter in
isotropic PI spaces.An indecomposable set is, roughly speaking, a set of finite perimeter that is
connected in a measure-theoretical sense. Section 2.1 consists of a detailed study of the basic
properties of this class of sets. In Sect. 2.2 we will prove that any set of finite perimeter can be
uniquely expressed as disjoint union of indecomposable sets (cf. Theorem 2.14). The whole
discussion is strongly inspired by the results of [4], where the decomposability of sets of finite
perimeter in the Euclidean setting has been systematically investigated. Actually, many of the
results (and the relative proofs) in this section are basically just a reformulation—in themetric
setting – of the corresponding ones in R

n , proven in [4]. We postpone to Remark 2.19 the
discussion of the main differences between the case of isotropic PI spaces and the Euclidean
one.

2.1 Definition of decomposable set and its basic properties

Let us begin with the definition of decomposable set and indecomposable set in a general
metric measure space.

Definition 2.1 (Decomposable and indecomposable sets) Let (X, d,m) be a metric measure
space. Let E ⊂ X be a set of finite perimeter. Given any Borel set B ⊂ X, we say that E
is decomposable in B provided there exists a partition {F,G} of E ∩ B into sets of finite
perimeter such that m(F),m(G) > 0 and P(E, B) = P(F, B) + P(G, B). On the other
hand, we say that E is indecomposable in B if it is not decomposable in B. For brevity, we
say that E is decomposable (resp. indecomposable) provided it is decomposable in X (resp.
indecomposable in X).

Observe that the property of being decomposable/indecomposable is invariant under modi-
fications on m-null sets and that any m-negligible set is indecomposable.

Remark 2.2 Let E ⊂ X be a set of finite perimeter. Let {En}n∈N be a partition of E into sets
of finite perimeter and let � ⊂ X be any open set. Then it holds that:

P(E,�) =
∞
∑

n=0

P(En,�) ⇐⇒ P(E,�) ≥
∞
∑

n=0

P(En,�).
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Indeed, it can be readily checked that 1⋃

n≤N En → 1E in L1
loc(m) as N → ∞, whence items

(ii) and (iii) of Proposition 1.7 grant that the inequality

P(E,�) ≤ lim
N→∞

P
( ⋃

n≤N

En,�
)

≤ lim
N→∞

N
∑

n=0

P(En,�) =
∞
∑

n=0

P(En,�)

is always verified. 	


Lemma 2.3 Let (X, d,m) be an isotropic PI space. Let E, F ⊂ X be sets of finite perimeter
and let B ⊂ X be any Borel set. Then the following implications hold:

(i) If P(E ∪ F, B) = P(E, B) + P(F, B), then H(∂eE ∩ ∂eF ∩ B) = 0.
(ii) Ifm(E ∩ F) = 0 andH(∂eE ∩ ∂eF ∩ B) = 0, then P(E ∪ F, B) = P(E, B)+P(F, B).

Proof (i) Suppose that P(E ∪ F, B) = P(E, B) + P(F, B). A trivial set-theoretic argument
yields

(θE∪FH)
(

(∂eE ∪ ∂eF) ∩ B
)

= (θE∪FH)
(

(∂eE\∂eF) ∩ B
) + (θE∪FH)

(

(∂eF\∂eE) ∩ B
)

+ (θE∪FH)(∂eE ∩ ∂eF ∩ B)

= (θE∪FH)(∂eE ∩ B) + (θE∪FH)(∂eF ∩ B) − (θE∪FH)(∂eE ∩ ∂eF ∩ B).

Given that θE∪F is assumed to be null on the complement of ∂e(E ∪ F), we deduce that

(θE∪FH)(∂eE ∩ B)

= (θE∪FH)
(

∂eE ∩ ∂e(E ∪ F) ∩ B
) (1.15)= (θEH)

(

∂eE ∩ ∂e(E ∪ F) ∩ B
)

,

(θE∪FH)(∂eF ∩ B)

= (θE∪FH)
(

∂eF ∩ ∂e(E ∪ F) ∩ B
) (1.15)= (θFH)

(

∂eF ∩ ∂e(E ∪ F) ∩ B
)

.

Accordingly, it holds that

P(E ∪ F, B)
(1.14)= (θE∪FH)

(

∂e(E ∪ F) ∩ B
) (1.7)≤ (θE∪FH)

(

(∂eE ∪ ∂eF) ∩ B
)

= (θE∪FH)(∂eE ∩ B) + (θE∪FH)(∂eF ∩ B) − (θE∪FH)(∂eE ∩ ∂eF ∩ B)

≤ (θEH)(∂eE ∩ B) + (θFH)(∂eF ∩ B) − (θE∪FH)(∂eE ∩ ∂eF ∩ B)

(1.14)= P(E, B) + P(F, B) − (θE∪FH)(∂eE ∩ ∂eF ∩ B)

= P(E ∪ F, B) − (θE∪FH)(∂eE ∩ ∂eF ∩ B),

which forces the equality (θE∪FH)(∂eE ∩ ∂eF ∩ B) = 0. Since θE∪F ≥ γ ′
E∪F > 0 on

∂e(E ∪ F), we obtain that H(

∂eE ∩ ∂eF ∩ ∂e(E ∪ F) ∩ B
) = 0. Moreover, we have that

P(E, B) = (θEH)
(

∂eE ∩ ∂e(E ∪ F) ∩ B
) + (θEH)

(

(∂eE ∩ B)\∂e(E ∪ F)
)

= (θE∪FH)
(

∂eE ∩ ∂e(E ∪ F) ∩ B
) + (θEH)

(

(∂eE ∩ B)\∂e(E ∪ F)
)

= P(E ∪ F, ∂eE ∩ B) + (θEH)
(

(∂eE ∩ B)\∂e(E ∪ F)
)
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and, similarly, that P(F, B) = P(E ∪ F, ∂eF ∩ B) + (θFH)
(

(∂eF ∩ B)\∂e(E ∪ F)
)

. This
yields

P(E ∪ F, B) = P
(

E ∪ F, ∂e(E ∪ F) ∩ B
) ≤ P(E ∪ F, ∂eE ∩ B) + P(E ∪ F, ∂eF ∩ B)

= P(E, B) + P(F, B) − (θEH)
(

(∂eE ∩ B)\∂e(E ∪ F)
) − (θFH)

(

(∂eF ∩ B)\∂e(E ∪ F)
)

= P(E ∪ F, B) − (θEH)
(

(∂eE ∩ B)\∂e(E ∪ F)
) − (θFH)

(

(∂eF ∩ B)\∂e(E ∪ F)
)

.

Hence, we conclude that (θEH)
(

(∂eE ∩ B)\∂e(E ∪ F)
) = 0 and (θFH)

(

(∂eF ∩ B)\∂e(E ∪
F)

) = 0. Since θE ≥ γ ′
E > 0 on ∂eE and θF ≥ γ ′

F > 0 on ∂eF , we get that H(

(∂eE ∩
B)\∂e(E ∪ F)

) = 0 and H(

(∂eF ∩ B)\∂e(E ∪ F)
) = 0. In particular, we have H(

(∂eE ∩
∂eF∩B)\∂e(E∪F)

) = 0. Consequently, we have finally proven thatH(∂eE∩∂eF∩B) = 0,
as required.

(ii) Let us suppose thatm(E ∩ F) = 0 andH(∂eE ∩∂eF ∩ B) = 0. We already know that
the inequality P(E ∪ F, B) ≤ P(E, B)+P(F, B) is always verified. The converse inequality
readily follows from our assumptions, item (iv) of Proposition 1.16 and the representation
formula for the perimeter measure:

P(E, B) + P(F, B) = (θEH)(∂eE ∩ B) + (θFH)(∂eF ∩ B)

= (θEH)
(

(∂eE\∂eF) ∩ B
) + (θEH)(∂eE ∩ ∂eF ∩ B)

+ (θFH)
(

(∂eF\∂eE) ∩ B
) + (θFH)(∂eF ∩ ∂eE ∩ B)

= (θE∪FH)
(

(∂eE\∂eF) ∩ B
) + (θE∪FH)

(

(∂eF\∂eE) ∩ B
)

= (θE∪FH)
(

(∂eE�∂eF) ∩ B
) ≤ (θE∪FH)

(

∂e(E ∪ F) ∩ B
)

= P(E ∪ F, B).

Therefore, it holds that P(E ∪ F, B) = P(E, B) + P(F, B), as required. 	

Remark 2.4 Item (i) of Lemma 2.3 fails for the non-isotropic space in Example 1.27: it holds
that P(R1 ∪ R2) = P(R1) + P(R2), but ∂e R1 ∩ ∂e R2 = {o} with H({o}) > 0. 	

In the setting of PI spaces having the two-sidedness property, the fact of being an indecom-
posable set of finite perimeter can be equivalently characterised as illustrated by the following
result, which constitutes a generalisation of [21, Proposition 2.12].

Theorem 2.5 Let (X, d,m) be a PI space. Then the following properties hold:

(i) Let E ⊂ X be a set of finite perimeter such that

f ∈ L1
loc(m), |Df |(X) < +∞, |Df |(E1) = 0 �⇒ f = t holds m-a.e. on E,

for some constant t ∈ R.

(2.1)

Then E is indecomposable.
(ii) Suppose (X, d,m) has the two-sidedness property. Then any indecomposable subset of

X satisfies (2.1).

Proof (i) Suppose E ⊂ X is decomposable. Choose two disjoint sets of finite perimeter
F,G ⊂ X having positive m-measure such that E = F ∪ G and P(E) = P(F) + P(G).
Then let us consider the function f := 1F ∈ L1

loc(m). Notice that |Df |(X) = P(F) <

+∞. Moreover, we know from Lemma 1.24 that H(∂eF\∂eE) = 0, thus accordingly

|Df |(E1) = (θFH)(∂eF ∩ E1) ≤ (θFH)(∂eE ∩ E1) = 0.
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Nevertheless, f is notm-a.e. equal to a constant on E , whence E does not satisfy property
(2.1).

(ii) Fix an indecomposable set E ⊂ X. Consider any function f ∈ L1
loc(m) such that

|Df |(X) < +∞ and |Df |(E1) = 0. First of all, we claim that

P(E ∩ A, E1) ≤ P(A, E1) for every set A ⊂ X of finite perimeter. (2.2)

Indeed, by exploiting the inclusion ∂e(E ∩ A) ⊂ ∂eE ∪ ∂e A and the isotropicity of
(X, d,m) we get

P(E ∩ A, E1)=(θE∩AH)
(

∂e(E ∩ A) ∩ E1)=(θE∩AH)
(

∂e(E ∩ A)∩(∂eE ∪ ∂e A)∩E1)

≤ (θE∩AH)
(

∂e(E ∩ A) ∩ (∂eE ∩ E1)
) + (θE∩AH)

(

∂e(E ∩ A) ∩ ∂e A∩E1)

= (θE∩AH)
(

∂e(E ∩ A) ∩ ∂e A ∩ E1) = (θAH)
(

∂e(E ∩ A) ∩ ∂e A ∩ E1)

≤ (θAH)(∂e A ∩ E1) = P(A, E1),

whence the claim (2.2) follows. Now let us define the finite Borel measure μ on X as

μ(B) :=
∫

R

P
({ f > t}, B)

dt for every Borel set B ⊂ X.

Since |Df |(�) = μ(�) for every open set � ⊂ X by Theorem 1.19, we deduce that
|Df | = μ by outer regularity. In particular, it holds that

∫

R
P
({ f > t}, E1

)

dt =
|Df |(E1) = 0, which in turn forces the identity P

({ f > t}, E1
) = 0 for a.e. t ∈ R.

Calling E+
t := E ∩ { f > t} for all t ∈ R, we thus infer from (2.2) that P(E+

t , E1) = 0
for a.e. t ∈ R, so that in particular H(∂eE+

t ∩ E1) = 0 for a.e. t ∈ R. Also, we have
H(

∂eE+
t ∩ ∂e(E\E+

t ) ∩ ∂eE
) = 0 for a.e. t ∈ R by (1.18), whence

H(

∂eE+
t ∩ ∂e(E\E+

t )
)

(1.6)≤ H(

∂eE+
t ∩ ∂e(E\E+

t ) ∩ ∂eE
) + H(

∂eE+
t ∩ ∂e(E\E+

t ) ∩ E1)

= H(

∂eE+
t ∩ ∂e(E\E+

t ) ∩ E1) ≤ H(∂eE+
t ∩ E1) = 0

holds for a.e. t ∈ R. Therefore, item (ii) of Lemma 2.3 grants that P(E) = P(E+
t ) +

P(E\E+
t ) for a.e. t ∈ R. Being E indecomposable, we deduce that for a.e. t ∈ R we

have that eitherm(E+
t ) = 0 orm(E\E+

t ) = 0. Define E−
t := E ∩{ f < t} for all t ∈ R.

Pick a negligible set N ⊂ R such that

either m(E+
t ) = 0 or m(E−

t ) = 0 for any t ∈ R\N . (2.3)

Let us define t−, t+ ∈ R as follows:

t− := sup
{

t ∈ R\N ∣
∣ m(E−

t ) = 0
}

,

t+ := inf
{

t ∈ R\N ∣
∣ m(E+

t ) = 0
}

.

We claim that m(E−
t−) = m(E+

t+) = 0. Indeed, given any sequence (tn)n ⊂ R\N such
that tn ↗ t− andm(E−

tn ) = 0 for all n ∈ N, we have that E−
t− = ⋃

n E
−
tn and accordingly

m(E−
t−) = 0. Similarly for E+

t+ . In light of this observation, we see that t− ≤ t+,
otherwise we would have E = E−

t− ∪ E+
t+ and thus m(E) ≤ m(E−

t−) +m(E+
t+) = 0. We

now argue by contradiction: suppose t− < t+. Then it holds that m(E−
t ),m(E+

t ) > 0
for every t ∈ (t−, t+)\N by definition of t±. This leads to a contradiction with (2.3).
Then one has t− = t+, so that m

(

E ∩ { f �= t−}) = m(E−
t−) +m(E+

t+) = 0. This means
that f = t− holds m-a.e. on E , which finally shows that E satisfies property (2.1). 	
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Remark 2.6 In item (ii) of Theorem 2.5, the additional assumptions on (X, d,m) cannot be
dropped. For instance, let us consider the space described in Example 1.29. Calling E the
indecomposable set R1∪R2, it holds E1 = E\{o}, thus1R1 ∈ BV(X) satisfies |D1R1 |(E1) =
0, but it is not m-a.e. constant on E . This shows that E does not satisfy (2.1).

Corollary 2.7 Let (X, d,m) be a PI space. Let � ⊂ X be an open, connected set of finite
perimeter. Then � is indecomposable.

Proof Let f ∈ L1
loc(m) satisfy |Df |(X) < +∞ and |Df |(�1) = 0. Being � open, it

holds �1 ⊃ �, whence |Df |(�) = 0. Given any x ∈ �, we can choose a radius r > 0
such that Bλr (x) ⊂ � and accordingly |Df |(Bλr (x)

) = 0, where λ ≥ 1 is the constant
appearing in the weak (1, 1)-Poincaré inequality. Consequently, Lemma 1.13 tells us that
∫

Br (x)
| f − fx,r | dm = 0, thus in particular f ism-a.e. constant on Br (x). This shows that f

is locallym-a.e. constant on �. Since � is connected, we deduce that f ism-a.e. constant on
�. Therefore, we finally conclude that� is indecomposable by using item (i) of Theorem 2.5.

	

Lemma 2.8 Let (X, d,m) be an isotropic PI space. Fix a set E ⊂ X of finite perimeter and
a Borel set B ⊂ X. Suppose that {F,G} is a Borel partition of E such that P(E, B) =
P(F, B) + P(G, B). Then it holds that P(A, B) = P(A ∩ F, B) + P(A ∩ G, B) for every set
A ⊂ E of finite perimeter.

Proof First of all, note that H(

(∂eF ∪ ∂eG) ∩ (∂eE)c ∩ B
) ≤ H(∂eF ∩ ∂eG ∩ B) = 0 by

item (iv) of Proposition 1.16 and item (i) of Lemma 2.3. This forces the identity

H
((

∂eE�(∂eF ∪ ∂eG)
) ∩ B

)

= 0. (2.4)

Now fix any set A ⊂ E of finite perimeter. By using again the property (1.7) we see that

∂e A ∩ B ⊂ (

∂e(A ∩ F) ∪ ∂e(A ∩ G)
) ∩ B. (2.5)

On the other hand, we claim that

(∂e A)c ∩ B ⊂
((

∂e(A ∩ F) ∪ ∂e(A ∩ G)
)c ∪ (∂eE)c

)

∩ B. (2.6)

Indeed, pick any x ∈ (∂e A)c, thus either D(A, x) = 0 or D(Ac, x) = 0. In the former casewe
deduce that D(A∩ F, x), D(A∩G, x) ≤ D(A, x) = 0, so that x /∈ ∂e(A∩ F)∪ ∂e(A∩G).
In the latter case we have D(Ec, x) ≤ D(Ac, x) = 0, whence x /∈ ∂eE . This shows the
validity of (2.6).

Moreover, notice that (∂e A)c ∩ (∂eF)c ⊂ (

∂e(A∩ F)
)c and (∂e A)c ∩ (∂eG)c ⊂ (

∂e(A∩
G)

)c hold by property (1.7), thus accordingly we have that

(∂e A)c ∩ (∂eF ∪ ∂eG)c ∩ B ⊂ (

∂e(A ∩ F) ∪ ∂e(A ∩ G)
)c ∩ B. (2.7)

By combining (2.4), (2.5), (2.6) and (2.7), we deduce that

H
((

∂e A�
(

∂e(A ∩ F) ∪ ∂e(A ∩ G)
)) ∩ B

)

= 0. (2.8)

Since P(E, B) = P(F, B) + P(G, B), we know from item (i) of Lemma 2.3 that H(∂eF ∩
∂eG∩B) = 0. Property (1.7) ensures that ∂e(A∩F)∩∂e(A∩G) ⊂ ∂e A∩(∂eF∩∂eG), which
together with the identitiesH(∂eF ∩ ∂eG ∩ B) = 0 and (2.8) yieldH(

∂e(A ∩ F) ∩ ∂e(A ∩
G)∩B

) = 0. Therefore, item (ii) of Lemma 2.3 gives P(A, B) = P(A∩F, B)+P(A∩G, B),
thus proving the statement. 	
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Corollary 2.9 Let (X, d,m) be an isotropic PI space. Fix E ⊂ X of finite perimeter and � ⊂
X open. Suppose that (En)n is a Borel partition of E such that P(E,�) = ∑∞

n=0 P(En,�).
Then

P(F,�) =
∞
∑

n=0

P(F ∩ En,�) for every Borel set F ⊂ E with P(F) < +∞.

Proof Fix any N ∈ N. By repeatedly applying Lemma 2.8 we obtain that

P(F,�) =
N

∑

n=0

P(F ∩ En,�) + P
( ⋃

n>N

F ∩ En,�
)

≥
N

∑

n=0

P(F ∩ En,�).

By letting N → ∞wededuce thatP(F,�) ≥ ∑∞
n=0 P(F∩En,�), which gives the statement

thanks to Remark 2.2. 	

Proposition 2.10 (Stability of indecomposable sets) Let (X, d,m) be an isotropic PI space.
Fix a set E ⊂ X be of finite perimeter. Let (En)n be an increasing sequence of indecomposable
subsets of X such that E = ⋃

n En. Then E is an indecomposable set.

Proof We argue by contradiction: suppose there exists a Borel partition {F,G} of the set
E such that m(F),m(G) > 0 and P(E) = P(F) + P(G). Given that we have limn m(F ∩
En) = m(F) and limn m(G ∩ En) = m(G), we can choose an index n ∈ N so that m(F ∩
En),m(G ∩ En) > 0. By Lemma 2.8 we know that P(En) = P(F ∩ En)+P(G ∩ En). Being
{F ∩ En,G ∩ En} a Borel partition of En , we get a contradiction with the indecomposability
of En . This gives the statement. 	

Lemma 2.11 Let (X, d,m) be an isotropic PI space and E ⊂ X a set of finite perimeter. Fix
two Borel sets B, B ′ ⊂ X. Suppose that E ⊂ B ⊂ B ′ and that E is indecomposable in B.
Then it holds that the set E is indecomposable in B ′.

Proof We argue by contradiction: suppose that there exists a Borel partition {F,G} of E such
that m(F),m(G) > 0 and P(E, B ′) = P(F, B ′) + P(G, B ′). Then item (i) of Lemma 2.3
implies that

H(∂eF ∩ ∂eG ∩ B) ≤ H(∂eF ∩ ∂eG ∩ B ′) = 0,

whenceP(E, B) = P(F, B)+P(G, B) by item (ii) of the same lemma.This is in contradiction
with the fact that E is indecomposable in B, thus the statement is proven. 	


2.2 Decomposition theorem

The aim of this subsection is to show that any set of finite perimeter in an isotropic PI space
can be uniquely decomposed into indecomposable sets.

Remark 2.12 Let {ani }i,n∈N ⊂ (0,+∞) be a sequence that satisfies limn ani = ai for every
i ∈ N and lim j limn

∑∞
i= j a

n
i = 0. Then

∑∞
i=0 ai = limn

∑∞
i=0 a

n
i . Indeed, for every j ∈ N

we have that
j

∑

i=0

ai = lim
n→∞

j
∑

i=0

ani ≤ lim
n→∞

∞
∑

i=0

ani ≤ lim
n→∞

∞
∑

i=0

ani = lim
n→∞

[ j
∑

i=0

ani +
∑

i> j

ani

]

=
j

∑

i=0

ai + lim
n→∞

∑

i> j

ani ,
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whence by letting j → ∞ we conclude that
∑∞

i=0 ai ≤ limn
∑∞

i=0 a
n
i ≤ limn

∑∞
i=0 a

n
i ≤

∑∞
i=0 ai , which proves the claim. 	


Proposition 2.13 Let (X, d,m) be an isotropic PI space. Let E ⊂ X be a set of finite
perimeter. Fix x̄ ∈ X and r > 0 such that Br (x̄) has finite perimeter. Then there is a
unique (in the m-a.e. sense) at most countable partition {Ei }i∈I of E ∩ Br (x̄), into inde-
composable subsets of Br (x̄), such that P(Ei ) < +∞, m(Ei ) > 0 for every i ∈ I and
P
(

E, Br (x̄)
) = ∑

i∈I P
(

Ei , Br (x̄)
)

. Moreover, the sets {Ei }i∈I are maximal indecomposable
sets, meaning that for any Borel set F ⊂ E∩Br (x̄)with P(F) < +∞ that is indecomposable
in Br (x̄) there is a (unique) i ∈ I such that m(F\Ei ) = 0.

Proof Existence. Fix an exponent s > max
{

1, log2(CD)
}

and any α ∈ (

1, s
s−1

)

. For
brevity, call � := Br (x̄). For simplicity, let us set

μ(B) := m(B)
1/α for every Borel set B ⊂ �.

Let us denote by P the collection of all Borel partitions (Ei )i∈N of E ∩ � (up to m-null
sets) such that

(

m(Ei )
)

i∈N is non-increasing,
∑∞

i=0 P(Ei ,�) ≤ P(E,�), and
∑∞

i=0 P(Ei ) ≤
P(E)+P(�). Note that the familyP is non-empty, as it contains the element (E∩�,∅,∅, . . .).
Let us call

M := sup

{ ∞
∑

i=0

μ(Ei )

∣
∣
∣
∣
{Ei }i∈N ∈ P

}

. (2.9)

Choose any
(

(En
i )i∈N

)

n ⊂ P such that limn
∑∞

i=0 μ(En
i ) = M . Since P(En

i ) ≤ P(E) +
P(�) < +∞ for every i, n ∈ N, we know by the compactness properties of sets of finite
perimeter that we can extract a (not relabelled) subsequence in n in such a way that the
following property holds: there exists a sequence (Ei )i∈N of Borel subsets of E ∩ � such
that 1En

i
→ 1Ei in L1(m��), thus

lim
n→∞ μ(En

i ) = μ(Ei ) for every i ∈ N. (2.10)

Given any i, j ∈ N such that i �= j , we also have that μ(Ei ∩ E j ) = limn μ(En
i ∩ En

j ) = 0,
thus accordingly m(Ei ∩ E j ) = 0. Moreover, by lower semicontinuity of the perimeter we
see that

∞
∑

i=0

P(Ei ,�) = lim
j→∞

j
∑

i=0

P(Ei ,�) ≤ lim
j→∞

j
∑

i=0

lim
n→∞

P(En
i ,�)

≤ lim
j→∞ lim

n→∞

j
∑

i=0

P(En
i ,�) ≤ P(E,�)

and, similarly, that
∑∞

i=0 P(Ei ) ≤ P(E) + P(�) for every i ∈ N. To prove that (Ei )i∈N ∈ P
it only remains to show that m

(

(E ∩ �)\⋃

i Ei
) = 0. We claim that

lim
j→∞ lim

n→∞

∞
∑

i= j

μ(En
i )α ≤ lim

j→∞ lim
n→∞

∞
∑

i= j

μ(En
i ) = 0. (2.11)

Observe that the inequality m(En
i ) ≤ m(�\En

i ) holds for every i ≥ 1. Let us define

η := 1

α
− s − 1

s
> 0, C := CI

(
rs

m(�)

)1/s−1

.
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We readily deduce from the relative isoperimetric inequality (1.8) that for all j ≥ 1 we have

j m(En
j ) ≤

j
∑

i=1

m(En
i ) ≤ C

j
∑

i=1

P
(

En
i , B2λr (x̄)

)s/s−1 = C
j

∑

i=1

P(En
i )

s/s−1

= C
[

P(E) + P(�)
]s/s−1

j
∑

i=1

(
P(En

i )

P(E) + P(�)

)s/s−1

≤ C
[

P(E) + P(�)
]s/s−1

j
∑

i=1

P(En
i )

P(E) + P(�)

≤ C
[

P(E) + P(�)
]s/s−1

.

Furthermore, by using the previous estimate and again (1.14) we obtain that

∞
∑

i= j

μ(En
i ) =

∞
∑

i= j

m(En
i )

1/α =
∞
∑

i= j

m(En
i )η m(En

i )
(s−1)/s ≤ m(En

j )
η

∞
∑

i= j

m(En
i )

(s−1)/s

≤ Cη
[

P(E) + P(�)
]ηs/s−1

jη

∞
∑

i= j

m(En
i )

(s−1)/s

≤ Cη
[

P(E) + P(�)
]ηs/s−1

jη
C (s−1)/s

∞
∑

i= j

P
(

En
i , B2λr (x̄)

)

= C1/α
[

P(E) + P(�)
]ηs/s−1

jη

∞
∑

i= j

P(En
i )

= C1/α
[

P(E) + P(�)
]ηs/s−1+1

jη
= C1/α

[

P(E) + P(�)
]s/α(s−1)

jη
.

Consequently, we deduce that the claim (2.11) is verified. By recalling also (2.10) and
Remark 2.12, we can conclude that

μ
( ⋃

i∈N
Ei

)α = m
( ⋃

i∈N
Ei

)

=
∞
∑

i=0

m(Ei ) =
∞
∑

i=0

μ(Ei )
α

= lim
n→∞

∞
∑

i=0

μ(En
i )α = μ(E ∩ �)α.

This forces m
(

(E ∩ �)\⋃

i Ei
) = 0 and accordingly (Ei )i∈N ∈ P . Hence,

∞
∑

i=0

μ(Ei ) = lim
n→∞

∞
∑

i=0

μ(En
i ) = M, (2.12)

in other words (Ei )i∈N is a maximiser for the problem in (2.9). Finally, we claim that each set
Ei is indecomposable in�. Suppose this was not the case: then for some j ∈ Nwewould find
a partition {F,G} of E j into sets of finite perimeter having positivem-measure and satisfying
the identity P(E j ,�) = P(F,�) + P(G,�). We can relabel the family {Ei }i �= j ∪ {F,G} as
(Fi )i∈N in such a way that

(

m(Fi )
)

i∈N is a non-increasing sequence. Given that
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∞
∑

i=0

P(Fi ,�) =
∑

i �= j

P(Ei ,�) + P(F,�) + P(G,�) =
∞
∑

i=0

P(Ei ,�) ≤ P(E,�),

we see that (Fi )i∈N ∈ P . On the other hand, given that α > 1 and μ(F), μ(G) > 0 we have
the inequality μ(F) + μ(G) > μ(E j ), so that

∞
∑

i=0

μ(Fi ) =
∑

i �= j

μ(Ei ) + μ(F) + μ(G) >

∞
∑

i=0

μ(Ei ) = M .

This leads to a contradiction with (2.9), whence the sets Ei are proven to be indecomposable
in �. Therefore, the family {Ei }i∈I , where I := {

i ∈ N : m(Ei ) > 0
}

, satisfies the required
properties.

Maximality. Let F ⊂ E ∩� be a fixed Borel set with P(F) < +∞ that is indecomposable
in �. Choose an index j ∈ I for which m(F ∩ E j ) > 0. By Corollary 2.9 we know that

P(F ∩ E j ,�) + P
(

F ∩
⋃

i �= j

Ei ,�
)

= P(F ∩ E j ,�) +
∑

i �= j

P(F ∩ Ei ,�) = P(F,�).

Given that F is assumed to be indecomposable in�, we finally conclude that F∩⋃

i �= j Ei has
nullm-measure, so thatm(F\E j ) = 0. This shows that the elements of {Ei }i∈I are maximal.

Uniqueness. Consider any other family {Fj } j∈J having the same properties as {Ei }i∈I .
By maximality we know that for any i ∈ N there exists a (unique) j ∈ N such that
m(Ei�Fj ) = 0, thus the two partitions {Ei }i∈I and {Fj } j∈J are essentially equivalent
(up to m-negligible sets). This proves the desired uniqueness. 	

We are now ready to prove the main result of this section:

Theorem 2.14 (Decomposition theorem) Let (X, d,m) be an isotropic PI space. Let E ⊂ X
be a set of finite perimeter. Then there exists a unique (finite or countable) partition {Ei }i∈I
of E into indecomposable subsets of X such that m(Ei ) > 0 for every i ∈ I and P(E) =
∑

i∈I P(Ei ), where uniqueness has to be intended in the m-a.e. sense. Moreover, the sets
{Ei }i∈I are maximal indecomposable sets, meaning that for any Borel set F ⊂ E with
P(F) < +∞ that is indecomposable there is a (unique) i ∈ I such that m(F\Ei ) = 0.

Proof Let x̄ ∈ X be a fixed point. Choose a sequence of radii r j ↗ +∞ such that
� j := Br j (x̄) has finite perimeter for all j ∈ N. Let us apply Proposition 2.13: given

any j ∈ N, there exists an m-essentially unique partition {E j
i }i∈I j of E ∩ � j , into sets of

finite perimeter that are maximal indecomposable subsets of � j , with m(E j
i ) > 0 for all

i ∈ I j and P(E,� j ) = ∑

i∈I j P(E
j
i ,� j ).

Given any j ∈ N and i ∈ I j , we know from Lemma 2.11 that E j
i is indecomposable

in � j+1, thus there exists � ∈ I j+1 for which m(E j
i \E j+1

� ) = 0. This ensures that—

possibly choosing different m-a.e. representatives of the sets E j
i ’s under consideration—we

can assume that:

For every j ∈ N and i ∈ I j there exists (a unique) � ∈ I j+1 such that E
j
i ⊂ E j+1

� .

(2.13)

Given any x ∈ E , let us define the set Gx ⊂ E

Gx :=
⋃{

E j
i

∣
∣ j ∈ N, i ∈ I j , x ∈ E j

i

}

.
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One clearly has that m(Gx ) > 0. Moreover, it readily follows from (2.13) that

Gx =
⋃ {

E j
i

∣
∣ j ∈ N, j ≥ j0, i ∈ I j , x ∈ E j

i

}

for every j0 ∈ N. (2.14)

We claim that:

For every x, y ∈ E it holds that either Gx ∩ Gy = ∅ or Gx = Gy . (2.15)

In order to prove it, assume that Gx ∩ Gy �= ∅ and pick any z ∈ Gx ∩ Gy . Then there exist

some indices jx , jy ∈ N, ix ∈ I jx and iy ∈ I jy such that {x, z} ⊂ E jx
ix

and {y, z} ⊂ E
jy
iy
.

Possibly interchanging x and y, we can suppose that jy ≤ jx . Given that E jx
ix

∩ E
jy
iy

is not

empty (as it contains z), we infer from (2.13) that E
jy
iy

⊂ E jx
ix
. Consequently, property (2.14)

ensures that the sets Gx and Gy coincide, thus proving the claim (2.15).
Let us define F := {Gx : x ∈ E}. It turns out that the family F is at most countable:

the map sending each element ( j, i) of
⊔

j∈N I j to the unique element of F containing E j
i

is clearly surjective. Then rename F as {Ei }i∈I . Observe that {Ei }i∈I constitutes a Borel
partition of E . Now fix i ∈ I . We can choose j(i) ∈ N and �(i, j) ∈ I j for all j ≥ j(i) such

that Ei = ⋃

j≥ j(i) E
j
�(i, j). Let us also call

F j
i :=

{

∅
E j

�(i, j)

if j < j(i),
if j ≥ j(i).

Therefore, Ei = ⋃

j∈N F j
i . Given any j ∈ N, we have P(Ei ∩ � j ,� j ) = P(Ei ,� j ) as � j

is open. Then P(Ei ,� j ) = P(Ei ∩ � j ,� j ) = P(F j
i ,� j ) ≤ P(E,� j ) ≤ P(E) holds for

every j ≥ j(i), so that

P(Ei ) = lim
j→∞ P(Ei ,� j ) ≤ P(E).

This shows that the sets {Ei }i∈I have finite perimeter, while the fact that they are indecom-
posable follows from Proposition 2.10. Now fix any finite subset J of I . Similarly to the
estimates above, we see that for every j ≥ max

{

j(i) : i ∈ J
}

it holds that
∑

i∈J

P(Ei ,� j ) =
∑

i∈J

P(Ei ∩ � j ,� j ) =
∑

i∈J

P(F j
i ,� j ) ≤

∑

�∈I j
P(E j

� ,� j )

≤ P(E,� j ) ≤ P(E),

whence
∑

i∈J P(Ei ) = lim j
∑

i∈J P(Ei ,� j ) ≤ P(E). By arbitrariness of J ⊂ I this yields
the inequality

∑

i∈I P(Ei ) ≤ P(E), thus accordingly P(E) = ∑

i∈I P(Ei ) by Remark 2.2.
Finally, maximality and uniqueness can be proven by arguing exactly as in Proposition 2.13.
Therefore, the statement is achieved. 	

Definition 2.15 (Essential connected components) Let (X, d,m) be an isotropic PI space.
Let us fix a set E ⊂ X of finite perimeter. Then we denote by

CCe(E) := {Ei }i∈I
the decomposition of E provided by Theorem 2.14. (We assume the index set is either I = N

or I = {0, . . . , n} for some n ∈ N.) The sets Ei are called the essential connected components
of E .
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Example 2.16 Although we do not know if the Decomposition Theorem 2.14 holds without
the assumption on isotropicity, one can see that the assumption on (1, 1)-Poincaré inequality
cannot be relaxed to a (1, p)-Poincaré inequality with p > 1. As an example of this, one can
take a fat Sierpiński carpet Sa ⊂ [0, 1]2 with a sequence a ∈ �2\�1, as defined in [35]. The set
Sa, equipped with a natural measurem and distance d, is a 2-Ahlfors-regular metric measure
space supporting a (1, p)-Poincaré inequality for all exponents p > 1. Nevertheless, given
any vertical strip of the form Ix,ε := (x−ε, x+ε)×[0, 1], where x = ∑n

i=1 xi 3
−i +2−1 3−n

with xi ∈ {0, 1, 2} and n ∈ N, we have m(Ix,ε)/ε → 0 as ε → 0. Thus, any set of
finite perimeter E ⊂ Sa can be decomposed into the union of E ∩ ([0, x] × [0, 1]) and
E ∩ ([x, 1]× [0, 1]). Since the family of coordinates x for which this holds is dense in [0, 1],
no set of positive measure in Sa can be decomposed into countably many indecomposable
sets. 	


Remark 2.17 Given an isotropic PI space and a set E ⊂ X of finite perimeter, it holds that

H(∂eF\∂eE) = 0 for every F ∈ CCe(E). (2.16)

This property is an immediate consequence of Lemma 1.24. 	


Proposition 2.18 (Stability of indecomposable sets, II)Let (X, d,m)be an isotropicPI space.
Fix two indecomposable sets E, F ⊂ X. Suppose that either m(E ∩ F) > 0 or H(∂eE ∩
∂eF) > 0. Then E ∪ F is an indecomposable set.

Proof Denote CCe(E∪F) = {Gi }i∈I . Choose i, j ∈ I such thatm(E\Gi ) = m(F\G j ) = 0,
whose existence is granted by themaximality of the connected components of E∪F . Ifm(E∩
F) > 0 then i = j , whence CCe(E∪F) = {E∪F} and accordingly E∪F is indecomposable.
Otherwise, we have i �= j and CCe(E ∪ F) = {E, F}, so that H(∂eE ∩ ∂eF) = 0 by item
(i) of Lemma 2.3. 	


Remark 2.19 Let us highlight the two main technical differences between the proofs we
carried out in this section and the corresponding ones for R

n that were originally presented
in [4]:

(i) There exist isotropic PI spaces X where it is possible to find a set of finite perimeter E
whose associated perimeter measure P(E, ·) is not concentrated on E 1/2. For instance,
consider the space described in Example 1.29: it is an isotropic PI space where (1.18)
fails, thus in particular property (1.19) is not verified (as a consequence of Lemma 1.30).
Some of the results of [4]—which have a counterpart in this paper—are proven by using
property (1.19). Consequently, the approaches we followed to prove some of the results
of this section provide new proofs even in the Euclidean setting.

(ii) An essential ingredient in the proof of the decomposition theorem [4, Theorem 1] is the
(global) isoperimetric inequality. In our case, we only have the relative isoperimetric
inequality at disposal, thus we need to ‘localise’ the problem: first we prove a local
version of the decomposition theorem (namely, Proposition 2.13), then we obtain the
full decomposition by means of a ‘patching argument’ (as described in the proof of
Theorem 2.14). Let us point out that in the Ahlfors-regular case the proof of the decom-
position theorem would closely follows along the lines of [4, Theorem 1] (thanks to
Theorem 1.18).

Finally, an alternative proof of the decomposition theorem will be provided in Sect. 4. 	
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3 Extreme points in the space of BV functions

The aim of Sect. 3.1 is to study the extreme points of the ‘unit ball’ in the space of BV
functions over an isotropic PI space (with a uniform bound on the support). More precisely,
given an isotropic PI space (X, d,m) and a compact set K ⊂ X, we will detect the extreme
points of the convex set made of all functions f ∈ BV(X) such that spt( f ) ⊂ K and
|Df |(X) ≤ 1, with respect to the strong topology of L1(m); cf. Theorem 3.8. Informally
speaking, the extreme points coincide—at least under some further assumptions—with the
(suitably normalised) characteristic functions of simple sets, whose definition is given in
Definition 3.1. In Sect. 3.2 we provide an alternative characterisation of simple sets (cf.
Theorem 3.17) in the framework of Alhfors-regular spaces, a key role being played by the
concept of saturation of a set, whose definition relies upon the decomposition properties
treated in Sect. 2.

3.1 Simple sets and extreme points in BV

A set of finite perimeter E ⊂ R
n having finite Lebesgue measure is a simple set provided

one of the following (equivalent) properties is satisfied:

(i) E is indecomposable and saturated, the latter term meaning that the complement of E
does not have essential connected components of finite Lebesgue measure.

(ii) Both E and R
n\E are indecomposable.

(iii) If F ⊂ R
n is a set of finite perimeter such that ∂eF is essentially contained in ∂eE

(with respect to the (n − 1)-dimensional Hausdorff measure) and Ln(F) < +∞, then
it holds that F = E (up to Ln-null sets).

We refer to [4, Section 5] for a discussion about the equivalence of the above conditions. In
themore general setting of isotropic PI spaces, (the appropriate reformulations of) these three
notions are no longer equivalent. The one that well captures the property we are interested
in (i.e., the fact of providing an alternative characterisation of the extreme points in BV) is
item (iii), which accordingly is the one that we choose as the definition of simple set in our
context:

Definition 3.1 (Simple sets) Let (X, d,m) be a PI space. Let E ⊂ Xbe a set of finite perimeter
with m(E) < +∞. Then we say that E is a simple set provided for every set F ⊂ X of
finite perimeter with H(∂eF\∂eE) = 0 it holds m(F) = 0, m(Fc) = 0, m(F�E) = 0, or
m(F�Ec) = 0.

It is rather easy to prove that—under some additional assumptions—the definition of simple
set we have just proposed is equivalent to (the suitable rephrasing of) item (ii) above:

Proposition 3.2 (Indecomposability of simple sets) Let (X, d,m) be an isotropic PI space.
Let us consider a set E ⊂ X of finite perimeter such that m(E) < +∞. Then:

(i) If E is a simple set, then E and Ec are indecomposable.
(ii) Suppose that (X, d,m) has the two-sidedness property. If E and Ec are indecomposable,

then E is a simple set.

Proof (i) Assume E ⊂ X is a simple set. First, we prove by contradiction that E is indecom-
posable: suppose it is not, thus it can be written as E = F ∪G for some pairwise disjoint sets
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F,G of finite perimeter such thatm(F),m(G) > 0 and P(E) = P(F)+P(G). By combining
item (iv) of Proposition 1.16 with item (ii) of Lemma 2.3, we obtain that

H(

(∂eF ∪ ∂eG)\∂eE) ≤ H(

∂eF ∩ ∂eG
) = 0.

In particular, we have that H(∂eF\∂eE) = H(∂eG\∂eE) = 0. Being E simple, we get
F = G = E , which leads to a contradiction. Then E is indecomposable. In order to show
that also Ec is indecomposable, we argue in a similar way: suppose Ec = F ′∪G ′ for pairwise
disjoint sets F ′,G ′ offinite perimeterwithm(F ′),m(G ′) > 0 andP(Ec) = P(F ′)+P(G ′). By
arguing as before we obtain thatH(∂eEc\∂eF ′) = H(∂eEc\∂eF ′) = 0. Being ∂eEc = ∂eE ,
we can conclude (again since E is simple) that F ′ = G ′ = Ec, whence the contradiction.
Therefore, Ec is indecomposable.

(ii) Assume that (X, d,m) has the two-sidedness property and that E, Ec are indecom-
posable sets. Take a set F ⊂ X of finite perimeter such that H(∂eF\∂eE) = 0. We know
from (1.18) that

H(

∂e(E ∩ F) ∩ ∂e(E\F) ∩ ∂eE
) = 0 = H(

∂e(Ec ∩ F) ∩ ∂e(Ec\F) ∩ ∂eEc).

Consequently, we deduce that

H(

∂e(E ∩ F) ∩ ∂e(E\F)
) ≤ H(∂e(E ∩ F)\∂eE) = H(∂eF\∂eE) = 0,

H(

∂e(Ec ∩ F) ∩ ∂e(Ec\F)
) ≤ H(∂e(Ec ∩ F)\∂eEc) = H(∂eF\∂eE) = 0.

Then item (ii) of Lemma 2.3 yields P(E) = P(E ∩ F)+P(E\F) and P(Ec) = P(Ec ∩ F)+
P(Ec\F). Being E (resp. Ec) indecomposable, we conclude that either m(E ∩ F) = 0 or
m(E\F) = 0 (resp. either m(Ec ∩ F) = 0 or m(Ec\F) = 0). This implies that m(F) = 0,
m(Fc) = 0, m(F�E) = 0 or m(F�Ec) = 0, thus proving that E is a simple set. 	

Remark 3.3 In item (ii) of Proposition 3.2, the additional assumption on the space can-
not be dropped. To show it, let us consider the closed unit ball X1 centered at o of the
3-spider (S3, d,m). We claim that the conclusion of item (ii) of Proposition 3.2 fails in
(X1, dX1×X1 ,m�X1).

By Example 1.29 we know that the two-sidedness property is not satisfied. Now call
R′
1, R

′
2, R

′
3 the intersections of the rays of S3 with X1. It thus holds that R′

1∪R′
2 andX1\(R′

1∪
R′
2) = R′

3 ∪ {o} are indecomposable, but the set R′
1 ∪ R′

2 is not simple. 	

Let (X, d,m) be a metric measure space. Let K ⊂ X be a compact set. Then we define

K(X; K ) := {

f ∈ BV(X)
∣
∣ spt( f ) ⊂ K , |Df |(X) ≤ 1

}

.

Remark 3.4 It holds that

K(X; K ) is a convex, compact subset of L1(m).

First of all, its convexity is granted by item (ii) of Proposition 1.2. To prove compactness, fix
any sequence ( fn)n ⊂ K(X; K ). Item (iii) of Proposition 1.2 says that fni → f in L1

loc(X)

for some subsequence (ni )i and some limit function f ∈ L1
loc(m). Given that spt( fn) ⊂ K

for every n ∈ N, we know that spt( f ) ⊂ K , thus f ∈ L1(m) and fni → f in L1(m). Finally,
by using item (i) of Proposition 1.2we conclude that |Df |(X) ≤ limi |Dfni |(X) ≤ 1, whence
f ∈ K(X; K ). 	

Recall that extK(X; K ) stands for the set of all extreme points ofK(X; K ); cf. “AppendixA”.
Furthermore, observe that |Df |(X) = 1 holds for every f ∈ extK(X; K ). In the remaining
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part of this subsection, we shall study in detail the family extK(X; K ). Our arguments are
strongly inspired by the ideas of the papers [23,24].

Let (X, d,m) be a PI space. Given a set E ⊂ X of finite perimeter satisfying 0 < m(E) <

+∞ and m(Ec) > 0 (so that P(E) > 0), let us define

�±(E) := ± 1E

P(E)
∈ BV(X).

Observe that
∣
∣D�+(E)

∣
∣(X) = ∣

∣D�−(E)
∣
∣(X) = 1. For any compact set K � X, we define

F(X; K ) := {

�±(E)
∣
∣ E ⊂ K is a set of finite perimeter with m(E) > 0

}

,

I(X; K ) := {

�±(E)
∣
∣ E ⊂ K is an indecomposable set with m(E) > 0

}

,

S(X; K ) := {

�±(E)
∣
∣ E ⊂ K is a simple set with m(E) > 0

}

.

Observe thatS(X; K ), I(X; K ) ⊂ F(X; K ) ⊂ K(X; K ). Given any function f ∈ F(X; K ),
we shall denote by E f ⊂ X the (m-a.e. unique) Borel set satisfying either f = �+(E f ) or
f = �−(E f ). If, in addition, the space (X, d,m) is isotropic, then S(X; K ) ⊂ I(X; K ) by
item (i) of Proposition 3.2.

Proposition 3.5 Let (X, d,m) be a PI space and K � X a compact set. Then the closed
convex hull of the set F(X; K ) coincides with K(X; K ).

Proof We aim to show that any function f ∈ K(X; K ) can be approximated in L1(m) by
convex combinations of elements in F(X; K ). Let us apply Lemma 1.21: we can find a
sequence ( fn)n of simple BV functions supported on the set K , say fn = ∑kn

i=1 λni 1En
i
, so

that fn → f in L1(m) and
∑kn

i=1 |λni | P(En
i ) ≤ 1 (recall Remark 1.22). Given that we have

�sgn(λni )
(En

i ) ∈ F(X; K ) and

fn
q

=
kn∑

i=1

|λni | P(En
i )

q
�sgn(λni )

(En
i ), where we set q :=

kn∑

i=1

|λni | P(En
i ) ∈ [0, 1],

we conclude that the functions fn/q belong to the convex hull of F(X; K ). Given that
F(X; K ) is symmetric, we know that its convex hull contains the function 0 and accordingly
also all the functions fn . The statement follows. 	

Lemma 3.6 Let (X, d,m) be a PI space and let K � X be a compact set. Then it holds that

{

λ f
∣
∣ λ ∈ [−1, 1], f ∈ F(X; K )

}

is strongly closed in L1(m).

Proof Let us call B := {

λ f : λ ∈ [−1, 1], f ∈ F(X; K )
}

. Fix a sequence ( fn)n ⊂ B
converging to some function f ∈ L1(m) in L1(m). We aim to show that f ∈ B as well.
Given any n ∈ N, we can find λn ∈ [−1, 1] and a set of finite perimeter En ⊂ K such that
m(En) > 0 and fn = λn�+(En). We subdivide the proof into three different cases:

(1) Suppose limn P(En) = 0. Then there exists a set of finite perimeter E ⊂ K such
that (up to a not relabelled subsequence) it holds 1En → 1E in L1(m). In particular,
P(E) ≤ limn P(En) = 0 and accordingly limn m(En) = m(E) = 0. Possibly passing to
a further subsequence, we may thus assume that m(En) < 1/2n for all n ∈ N. Since the
identity fk(x) = 0 holds for every k ≥ n > 0 and x ∈ K\ ⋃

m≥n Em , we deduce that
limk fk(x) = 0 for every x ∈ K\ ⋂

n
⋃

m≥n Em . This implies that f = 0 ∈ B, as the
set

⋂

n
⋃

m≥n Em is m-negligible by Borel–Cantelli lemma.
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(2) Suppose that limn P(En) = +∞. Then it holds that

lim
n→∞

∫

| fn | dm ≤ lim
n→∞

|λn |m(En)

P(En)
≤ lim

n→∞
m(K )

P(En)
= 0,

whence accordingly f = 0 ∈ B.
(3) Suppose limn P(En) > 0 and limn P(En) < +∞. Then there exist λ ∈ [−1, 1] and

c ∈ (0,+∞) such that—up to a not relabelled subsequence—one has that λn → λ and
limn P(En) = c. We can further assume that 1En → 1E strongly in L1(m), for some set
of finite perimeter E ⊂ K . Therefore, we deduce that f = λ1E/c. If m(E) = 0, then
f = 0 ∈ B. Ifm(E) > 0, thenwe canwrite f asλ′ �+(E), wherewe setλ′ := λ P(E)/c.
Since P(E) ≤ limn P(En) = c by lower semicontinuity of the perimeter, we conclude
that λ′ ∈ [−1, 1] and accordingly f ∈ B. 	


Theorem 3.7 Let (X, d,m) be a PI space and let K � X be a compact set. Then it holds
that

extK(X; K ) ⊂ I(X; K ).

Proof ByMilman Theorem A.1, Proposition 3.5, and Lemma 3.6, we know that any extreme
point of K(X; K ) can be written as λ f for some λ ∈ [−1, 1] and f ∈ F(X; K ). Moreover,
it is clear that λ f /∈ extK(X; K ) for every λ ∈ (−1, 1) and f ∈ F(X; K ), since λ f =
1+λ
2 f + 1−λ

2 (− f ). This shows that extK(X; K ) ⊂ F(X; K ). It only remains to prove
that if f = �σ (E) ∈ extK(X; K ), then E is indecomposable. We argue by contradiction:
suppose the set E is decomposable, so that there exist disjoint Borel sets F,G ⊂ E such
that m(F),m(G) > 0 and P(E) = P(F) + P(G). Therefore, we can write

�σ (E) = P(F)

P(E)
�σ (F) + P(G)

P(E)
�σ (G).

This contradicts the fact that f is an extreme point of K(X; K ), thus the set E is proven to
be indecomposable. Hence, we have that extK(X; K ) ⊂ I(X; K ), as required. 	

Theorem 3.8 Let (X, d,m) be an isotropic PI space. Let K � X be a compact set. Then:

(i) It holds that

S(X; K ) ⊂ extK(X; K ). (3.1)

(ii) Suppose that (X, d,m) has the two-sidedness property. Suppose also that K has
finite perimeter, that H(∂K\∂eK ) = 0 and that K c is connected. Then S(X; K ) =
extK(X; K ).

Proof (i) Let f ∈ S(X; K ) be fixed. Thanks to Choquet Theorem A.2, there exists a Borel
probability measure μ on L1(m), concentrated on extK(X; K ), such that

∫

f ϕ dm =
∫∫

g ϕ dm dμ(g) for every ϕ ∈ L∞(m). (3.2)

We claim that, given any Borel set B ⊂ X, the functional �B : L1(m) → [0,+∞) given by

�B(g) := 1BV(X)(g) |Dg|(B) for every g ∈ L1(m)

is Borel measurable. To prove it, call D the family of all Borel sets B ⊂ X such that �B is a
Borel measurable function. Observe that:
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(a) X ∈ D by item (i) of Proposition 1.2.
(b) If A, B ∈ D satisfy A ⊂ B, then |Dg|(B\A) = |Dg|(B)− |Dg|(A) for all g ∈ BV(X).

This implies that �B\A = �B − �A is Borel measurable and thus B\A ∈ D.
(c) Given any increasing sequence (An)n ⊂ D, we have that |Dg|(⋃

n An
) =

limn |Dg|(An) for all g ∈ L1(m) thanks to the continuity from below, whence accord-
ingly �∪n An is Borel measurable (so that

⋃

n An ∈ D) as it is the pointwise limit of �An

as n → ∞.

All in all, we have proven that D is a Dynkin system. Given that the topology of (X, d) is
contained in D (again by item (i) of Proposition 1.2), we conclude that D coincides with
the Borel σ -algebra of X by the Dynkin π -λ Theorem. This proves that �B is Borel for any
B ⊂ X Borel, as claimed.

With this said, it makes sense to define the Borel measure ν on X as ν := ∫ |Dg| dμ(g),
namely

ν(B) =
∫

|Dg|(B) dμ(g) for every Borel set B ⊂ X.

Given that |Dg|(X) = 1 for every g ∈ extK(X; K ), we know that |Dg|(X) = 1 forμ-a.e. g ∈
L1(m) and accordingly ν is a probability measure. Now fix any open set � ⊂ X containing
∂eE f . Thanks to Theorem 1.4, we can find a sequence of derivations (bn)n ⊂ Derb(X) such
that |bn | ≤ 1 in them-a.e. sense, spt(bn) � � and

∫

�
f div(bn) dm → |Df |(�). Therefore,

it holds that

|Df |(�)
(3.2)= lim

n→∞

∫∫

�

g div(bn) dm dμ(g) ≤
∫

|Dg|(�) dμ(g) = ν(�). (3.3)

Given that |Df | and ν are outer regular, we can pick a sequence (�n)n of open subsets of X
containing ∂eE f such that |Df |(∂eE f ) = limn |Df |(�n) and ν(∂eE f ) = limn ν(�n). By
recalling the inequality (3.3), we thus obtain that

1 = P(E f , ∂
eE f )

P(E f )
= |Df |(∂eE f ) = lim

n→∞ |Df |(�n) ≤ lim
n→∞

ν(�n) = ν(∂eE f ) = 1.

This forces the equality
∫ |Dg|(∂eE f ) dμ(g) = ν(∂eE f ) = 1. Given that |Dg|(∂eE f ) ≤ 1

holds for μ-a.e. g ∈ L1(m), we infer that actually |Dg|(∂eE f ) = 1 for μ-a.e. g ∈ L1(m).
Since g ∈ I(X; K ) for μ-a.e. g ∈ L1(m) by Theorem 3.7, it makes sense to consider Eg for
μ-a.e. g ∈ L1(m). Therefore, we have that

(θH)(∂eEg\∂eE f ) = P
(

Eg, (∂
eE f )

c) = P(Eg)

(

1 − P(Eg, ∂
eE f )

P(Eg)

)

= P(Eg)
(

1 − |Dg|(∂eE f )
) = 0

holds for μ-a.e. g ∈ L1(m). This implies that H(∂eEg\∂eE f ) = 0 for μ-a.e. g ∈ L1(m).
Since E f is a simple set, we deduce that m(Eg�E f ) = 0 for μ-a.e. g ∈ L1(m). This forces
μ = t δ f + (1 − t) δ− f for some t ∈ [0, 1]. Given that μ is concentrated on the symmetric
set extK(X; K ), we finally conclude that f ∈ extK(X; K ), as required. This proves the
inclusion (3.1).

(ii) Let f ∈ extK(X; K ) be fixed. Take a set F ⊂ X of finite perimeter with
H(∂eF\∂eE f ) = 0. We claim that either m(F\K ) = 0 or m(Fc\K ) = 0. To prove it,
notice that (1.7), (1.18) give

H(

∂e(F\K ) ∩ ∂e(Fc\K )
) ≤ H(

(∂eF ∪ ∂eK )\K ) + H(

∂e(F\K ) ∩ ∂e(Fc\K ) ∩ ∂K
)

≤ H(

∂eF\∂eE f
) + H(

∂e(F\K ) ∩ ∂e(Fc\K ) ∩ ∂eK
) = 0.
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Accordingly, item (ii) of Lemma 2.3 yields P(Kc) = P(F\K ) + P(Fc\K ). Being Kc inde-
composable by Corollary 2.7, we conclude that either m(F\K ) = 0 or m(Fc\K ) = 0, as
desired. Now call

G :=
{

F
Fc

if m(F\K ) = 0,
if m(Fc\K ) = 0.

We aim to prove that either m(G) = 0 or m(G�E f ) = 0. Suppose that m(G) > 0. Observe
that

1E f = 1G∪E f − 1G\E f = 1E f ∩G + 1E f \G .

Thanks to the two-sidedness property, we also know that

H(

∂e(G ∪ E f ) ∩ ∂e(G\E f ) ∩ ∂eEc
f

) = 0 = H(

∂e(E f ∩ G) ∩ ∂e(E f \G) ∩ ∂eE f
)

.

Therefore, item (ii) of Lemma 2.3 grants that

P(E f )=P(Ec
f , ∂

eEc
f )=P(G ∪ E f , ∂

eE f )+P(G\E f , ∂
eE f )=P(G ∪ E f )+P(G\E f ),

P(E f )=P(E f , ∂
eE f )=P(E f ∩ G, ∂eE f )+P(E f \G, ∂eE f )=P(E f ∩ G)+P(E f \G).

Suppose by contradiction thatm(G\E f ) > 0. Then we have P(G\E f ) > 0 and accordingly

f =
{

P(G ∪ E f ) P(E f )
−1 �+(G ∪ E f ) + P(G\E f ) P(E f )

−1 �−(G\E f )

P(G ∪ E f ) P(E f )
−1 �−(G ∪ E f ) + P(G\E f ) P(E f )

−1 �+(G\E f )

if f = �+(E f ),

if f = �−(E f ).

This contradicts the fact that f ∈ extK(X; K ), whence m(G\E f ) = 0. Similarly, suppose
by contradiction that m(E f \G) > 0. Then we have P(E f \G) > 0 and accordingly

f =
{

P(E f ∩ G) P(E f )
−1 �+(E f ∩ G) + P(E f \G) P(E f )

−1 �+(E f \G)

P(E f ∩ G) P(E f )
−1 �−(E f ∩ G) + P(E f \G) P(E f )

−1 �−(E f \G)

if f = �+(E f ),

if f = �−(E f ).

This contradicts the fact that f ∈ extK(X; K ), whence m(E f \G) = 0. This yields
m(G�E f ) = 0, thus the set E f is proven to be simple. We conclude that f ∈ S(X; K ), as
required. 	


3.2 Holes and saturation

The decomposition theorem can be used to define suitable notions of hole and saturation for
a given set of finite perimeter in an isotropic PI space:

Definition 3.9 (Hole) Let (X, d,m) be an isotropic PI space such that m(X) = +∞. Let
E ⊂ X be an indecomposable set. Then any essential connected component of X\E having
finite m-measure is said to be a hole of E .

Definition 3.10 (Saturation) Let (X, d,m) be an isotropic PI space such that m(X) = +∞.
Given an indecomposable set F ⊂ X, we define its saturation sat(F) as the union of F and
its holes. Moreover, given any set E ⊂ X of finite perimeter, we define

sat(E) :=
⋃

F∈CCe(E)

sat(F).

We say that the set E is saturated provided it holds that m
(

E�sat(E)
) = 0.

Observe that an indecomposable set E ⊂ X is saturated if and only if it has no holes.
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Remark 3.11 Given an isotropic PI space (X, d,m) such thatm(X) = +∞, it holds that any
simple set E ⊂ X is indecomposable and saturated. Indeed, item (i) of Proposition 3.2 grants
that both E , Ec are indecomposable; since m(Ec) = +∞, we also conclude that E has no
holes. 	

Proposition 3.12 (Main properties of the saturation) Let (X, d,m) be an isotropic PI space
such thatm(X) = +∞. Let E ⊂ X be an indecomposable set. Then the following properties
hold:

(i) Any hole of E is saturated.
(ii) The set sat(E) is indecomposable and saturated. In particular, sat

(

sat(E)
) = sat(E).

(iii) It holds that H(

∂esat(E)\∂eE) = 0. In particular, one has that P
(

sat(E)
) ≤ P(E).

(iv) If F ⊂ X is a set of finite perimeterwithm
(

E\sat(F)
) = 0, thenm

(

sat(E)\sat(F)
) = 0.

Proof

(i) Let F be a hole of E . Denote CCe(Ec) = {F} ∪ {Gi }i∈I . We know from Remark 2.17
thatH(∂eGi ∩∂eE) = H(∂eGi ) > 0 for all i ∈ I , thus E∪⋃

i∈J Gi is indecomposable
for any finite set J ⊂ I by Proposition 2.18. Therefore, the set Fc = E ∪ ⋃

i∈I Gi is
indecomposable by Proposition 2.10. Given that m(Fc) = +∞, we conclude that F
has no holes, as required.

(ii) Let us call {Fi }i∈I the holes of E . By arguing exactly as in the proof of item (i), we
see that the set sat(E) = E ∪ ⋃

i∈I Fi is indecomposable. Moreover, CCe(sat(E)c
) =

CCe(Ec)\{Fi }i∈I , so that sat(E) has no holes. In other words, the set sat(E) is saturated.
(iii) Calling {Fi }i∈I the holes of E , we clearly have that ∂esat(E) ⊂ ∂eE ∪ ⋃

i∈I ∂eFi by
(1.7). Given that H(∂eFi\∂eE) = 0 for all i ∈ I by Remark 2.17, we conclude that
H(

∂esat(E)\∂eE) = 0 as well. Furthermore, observe that the latter identity also yields

P
(

sat(E)
) = (θsat(E)H)

(

∂esat(E)
) (1.15)= (θEH)

(

∂esat(E)
) ≤ (θEH)(∂eE) = P(E).

(iv) Let us denote CCe(sat(F)c
) = {Fi }i∈I . Given any i ∈ I , we have that Fi is indecom-

posable, has infinitem-measure, and satisfiesm(E∩Fi ) = 0. Then there exists a unique
set Gi ∈ CCe(Ec) such thatm(Fi\Gi ) = 0, thus in particularm(Gi ) = +∞. This says
that the sets {Gi }i∈I cannot be holes of E , whence⋃

i∈I Gi ⊂ sat(E)c and accordingly
m

(

sat(E)\sat(F)
) = 0. 	


Lemma 3.13 Let (X, d,m) be an isotropic PI space such that m(X) = +∞. Let E ⊂ X be
a set of finite perimeter. Then it holds that H(

∂esat(E)\∂eE) = 0.

Proof Given any F ∈ CCe(E), we have H(

∂esat(F)\∂eF) = 0 by item (iii) of Propo-
sition 3.12. Moreover, since sat(E) = ⋃

F∈CCe(E) sat(F) we know that ∂esat(E) ⊂
⋃

F∈CCe(E) ∂esat(F) as a consequence of (1.7). Therefore, we deduce that

H(

∂esat(E)\∂eE) ≤
∑

F∈CCe(E)

H(

∂esat(F)\∂eE) ≤
∑

F∈CCe(E)

H(∂eF\∂eE)
(2.16)= 0,

thus proving the statement. 	

Let us now focus on the special case of Ahlfors-regular, isotropic PI spaces. In this context,
simple sets can be equivalently characterised as those sets that are both indecomposable and
saturated (cf. Theorem 3.17). In order to prove it, we need some preliminary results:
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Proposition 3.14 Let (X, d,m) be a k-Ahlfors regular, isotropicPI spacewith k > 1. Suppose
thatm(X) = +∞. Let E ⊂ X be an indecomposable set such thatm(E) < +∞. Then there
exists exactly one essential connected component F ∈ CCe(Ec) satisfying m(F) = +∞.

Proof Let us prove that at least one essential connected component of Ec has infinite m-
measure. We argue by contradiction: suppose m(Ei ) < +∞ for all i ∈ I , where we set
CCe(E) = {Ei }i∈I . In particular, we have that m(Ec

i ) = +∞ holds for every i ∈ I , whence
Theorem 1.18 yields

∑

i∈I
m(Ei )

k−1/k ≤ C ′
I

∑

i∈I
P(Ei ) = C ′

I P(E) < +∞.

By using the Markov inequality we deduce that J := {

i ∈ I : m(Ei ) ≥ 1
}

is a finite family,
thus the set

⋃

i∈J Ei has finite m-measure. This leads to a contradiction, as it implies that

+∞ = m
( ⋃

i∈I\J
Ei

)

=
∑

i∈I\J
m(Ei ) ≤

∑

i∈I\J
m(Ei )

k−1/k
(1.9)≤ C ′

I P(E) < +∞.

Hence, there exists i ∈ I such thatm(Ei ) = +∞. Suppose by contradiction to havem(E j ) =
+∞ for some j ∈ I\{i}. Then E j ⊂ Ec

i and accordingly m(Ec
i ) = +∞, which is not

possible as we have that min
{

m(Ei ),m(Ec
i )

} ≤ C ′
I P(Ei )

k/k−1 < +∞ by Theorem 1.18.
The statement follows. 	

Remark 3.15 The Ahlfors-regularity assumption in Proposition 3.14 cannot be dropped, as
shown by the following example. Let us consider the strip X := R × [0, 1] ⊂ R

2, endowed
with the (restricted) Euclidean distance and the 2-dimensional Hausdorff measure, which is
an isotropic PI space. Then the square E := [0, 1]2 ⊂ X is an indecomposable set having
finite measure, but its complement consists of two essential connected components having
infinite measure. 	

Remark 3.16 If (X, d,m) is a k-Ahlfors regular, isotropic PI space with k > 1 and m(X) =
+∞, then for any indecomposable set E ⊂ X with m(E) < +∞ it holds that m

(

sat(E)
)

<

+∞.
Indeed, we know that m

(

sat(E)c
) = +∞ by Proposition 3.14, whence the set sat(E)

must have finite m-measure (otherwise we would contradict Theorem 1.18). 	

Theorem 3.17 (Simple sets on Ahlfors-regular spaces) Let (X, d,m) be a k-Ahlfors regular
PI space with k > 1 and m(X) = +∞. Suppose (X, d,m) has the two-sidedness property.
Let E ⊂ X be a set of finite perimeter with m(E) < +∞. Then E is simple if and only if it
is both indecomposable and saturated.

Proof Necessity stems from Remark 3.11. To prove sufficiency, suppose that E is inde-
composable and saturated. Proposition 3.14 grants that Ec is the unique element of CCe(E)

having infinitem-measure, thus in particular Ec is indecomposable. By applying item (ii) of
Proposition 3.2, we finally conclude that the set E is simple, as desired. 	


4 Alternative proof of the decomposition theorem

We provide here an alternative proof of the Decomposition Theorem 2.14, in the particular
case in which the set under consideration is bounded (the boundedness assumption is added
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for simplicity, cf. Remark 4.6 for a few comments about the unbounded case). The inspiration
for this approach is taken from [33].We refer to “Appendix B” for the language and the results
we are going to use in this section.

Let (X, d,m) be an isotropic PI space. Given any open set � ⊂ X and any set E ⊂ �

having finite perimeter in X, we define the family ��(E) as

��(E) := {

F ⊂ E of finite perimeter in X
∣
∣ P(E,�) = P(F,�) + P(E\F,�)

}

.

Observe that ��(E) = ��′(E) holds whenever �,�′ ⊂ X are open sets with E � � and
E � �′.

Remark 4.1 It holds that E is indecomposable in � if and only if ��(E) is trivial, i.e.,

��(E) = {

F ⊂ E Borel
∣
∣ m(F) = 0 or m(E\F) = 0

}

.

The proof of this fact is a direct consequence of the very definition of indecomposable set.
	


Lemma 4.2 Let (X, d,m) be an isotropic PI space. Let� ⊂ X be an open set withH(∂�) <

+∞. Let E ⊂ � be a set of finite perimeter inX. Then��(E) is a σ -algebra of Borel subsets
of E. Moreover, if E � �, then the assumption H(∂�) < +∞ can be dropped.

Proof Trivially,we have that E ∈ ��(E) and��(E) is closed under complement.Moreover,
fix any two sets F,G ∈ ��(E). Since P(E,�) = P(F,�) + P(E\F,�) = P(G,�) +
P(E\G,�), we deduce that P(G,�) = P(F ∩ G,�) + P(G\F,�) and P(E\G,�) =
P(F\G,�) + P

(

E\(F ∪ G),�
)

by Lemma 2.8. Consequently, the subadditivity of the
perimeter yields

P(E,�) ≤ P(F ∪ G,�) + P
(

E\(F ∪ G),�
)

≤ P(F ∩ G,�) + P(G\F,�) + P(F\G,�) + P
(

E\(F ∪ G),�
)

= P(G,�) + P(E\G,�) = P(E,�).

This forces the equality P(E,�) = P(F ∪ G,�) + P
(

E\(F ∪ G),�
)

. Given that F ∪ G
has finite perimeter, we have proved that F ∪G ∈ ��(E). This shows that ��(E) is closed
under finite unions. Finally, to prove that ��(E) is closed under countable unions, fix any
(Fi )i ⊂ ��(E). Calling F := ⋃

i∈N Fi , we aim to prove that F ∈ ��(E). We denote
F ′
i := F1 ∪ · · · ∪ Fi ∈ ��(E) for all i ∈ N. Given that F = ⋃

i∈N F ′
i , we have 1F ′

i
→ 1F

and 1E\F ′
i

→ 1E\F in L1
loc(m��). Hence, by lower semicontinuity and subadditivity of the

perimeter we can conclude that

P(E,�) ≤ P(F,�) + P(E\F,�) ≤ lim
i→∞

P(F ′
i ,�) + lim

i→∞
P(E\F ′

i ,�)

≤ lim
i→∞

(

P(F ′
i ,�) + P(E\F ′

i ,�)
) = P(E,�),

which forces P(E,�) = P(F,�) + P(E\F,�). Notice also that 1F ′
i

→ 1F in L1
loc(m),

whence

P(F) ≤ lim
i→∞

P(F ′
i ) = lim

i→∞
(

P(F ′
i ,�) + P(F ′

i , ∂�)
) ≤ P(E,�) + lim

i→∞
(θF ′

i
H)(∂�)

≤ P(E,�) + CD H(∂�) < +∞.

This says that the set F has finite perimeter in X, thus F belongs to ��(E), as desired.
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To prove the last statement, let us assume that E � �. By exploiting Remark 1.20 and the
boundedness of E , we can find an open ball B ⊂ X such that E � B and H(∂B) < +∞,
thus accordingly the family ��(E) = �B(E) is a σ -algebra by the previous part of the
proof. 	

Remark 4.3 Let (X, d,m) be an isotropic PI space and � ⊂ X an open set. Then we claim
that

��(G) = {

F ∈ ��(E)
∣
∣ F ⊂ G

}

for every E ⊂ � Borel with P(E)

< +∞ and G ∈ ��(E).

We separately prove the two inclusions. Fix F ∈ ��(G). Since P(E,�) = P(G,�) +
P(E\G,�), we know from Lemma 2.8 that P(E\F,�) = P(G\F,�)+P(E\G,�). There-
fore, we have that

P(E,�) = P(G,�) + P(E\G,�) = P(F,�) + P(G\F,�) + P(E\G,�)

= P(F,�) + P(E\F,�),

thus proving that F ∈ ��(E). Conversely, let us fix any set F ′ ∈ ��(E) such that F ′ ⊂ G.
Given that P(E,�) = P(F ′,�) + P(E\F ′,�), we conclude that P(G,�) = P(F ′,�) +
P(G\F ′,�) again by Lemma 2.8. This shows that F ′ ∈ ��(G), which yields the sought
conclusion. 	

Lemma 4.4 Let (X, d,m) be an isotropic PI space. Let � ⊂ X be an open set. Let E ⊂ �

be a set of finite perimeter in X. Then for any finite partition {E1, . . . , En} ⊂ ��(E) of the
set E it holds that P(E,�) = P(E1,�) + · · · + P(En,�).

Proof Recall that P(E,�) = P(Ei ,�)+P(E\Ei ,�) for all i = 1, . . . , n, thus by repeatedly
applying Lemma 2.8 we obtain that

P(E,�) = P(E1,�) + P(E2 ∪ · · · ∪ En,�) = · · · = P(E1,�) + · · · + P(En,�).

Therefore, the statement is achieved. 	

Theorem 4.5 Let (X, d,m) be an isotropic PI space. Let � ⊂ X be an open set. Then the
measure space (E, ��(E),m�E ) is purely atomic for every bounded set E � � of finite
perimeter.

Proof We can assume without loss of generality that � = Br (x̄) for some x̄ ∈ X and r > 0.
For the sake of brevity, let us denote MF := (F, ��(F),m�F ) for every F ∈ ��(E). It
follows fromRemark 4.3 that��(E)�F = ��(F) and that the atomsofMF coincidewith the
atoms ofME that are contained in F . Accordingly, in order to prove thatME is purely atomic,
it suffices to show that MF is atomic for any set F ∈ ��(E) with m(F) > 0. We argue by
contradiction: supposeMF is non-atomic. Let us fix any ε > 0. CorollaryB.5 grants that there
exists a finite partition {F1, . . . , Fn} ⊂ ��(F) of F such thatm(Fi ) ≤ min

{

ε,m(F\Fi )
}

for

all i = 1, . . . , n. Let us apply Theorem 1.17: calling C the quantity CI
(

rs/m(Br (x̄))
)1/s−1,

one has that
(
m(Fi )

C

)s−1/s

≤ P
(

Fi , B2λr (x̄)
) = P(Fi ,�) for every i = 1, . . . , n.

Since
∑n

i=1 P(Fi ,�) = P(F,�) holds by Lemma 4.4, we deduce from the previous inequal-
ity that
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m(F)

Cs−1/s ε1/s
≤ 1

C

n
∑

i=1

m(Fi )

(
m(Fi )

C

)−1/s

=
n

∑

i=1

(
m(Fi )

C

)s−1/s

≤ P(F,�). (4.1)

By letting ε ↘ 0 in (4.1)we get thatP(F,�) = +∞, which yields a contradiction. Therefore,
we conclude that the measure space MF is non-atomic, as required. 	


Alternative proof of Theorem 2.14 for E bounded.Maximality and uniqueness can be proven
as in Proposition 2.13, thus we can just focus on the existence part of the statement. The
measure space (E, �X(E),m�E ) is purely atomic byTheorem4.5, thus there exists an atmost
countable family of pairwise disjoint atoms {Ei }i∈I ⊂ �X(E) such thatm

(

E\⋃

i∈i Ei
) = 0

by Remark B.2. Moreover, we deduce from Remark 4.3 that each set Ei is an atom of
(Ei , �X(Ei ),m�Ei ), which is clearly equivalent to saying that �X(Ei ) is trivial (in the
sense of Remark 4.1). Accordingly, the set Ei is indecomposable for every i ∈ I . Finally,
Lemma 4.4 grants that P(E) = ∑

i∈I P(Ei ). 	


Remark 4.6 Let us briefly outline how to prove the decomposition theorem via Theorem B.3
in the general case (i.e., when E is possibly unbounded). More specifically, we show that the
existence part of Proposition 2.13 (under the additional assumption that ∂Br (x̄) has finite
H-measure) can be deduced from Theorem B.3, whence Theorem 2.14 follows (thanks to
Remark 1.20).

Our aim is to show that
(

E ∩ �,��(E ∩ �),m�E∩�

)

is purely atomic, where we set
� := Br (x̄). We argue by contradiction: suppose (F, ��(F),m�F ) is non-atomic for some
F ∈ ��(E ∩ �). Then Corollary B.5, Theorems 1.17 and 1.23 ensure that for any ε > 0
there exist a finite partition {F1, . . . , Fnε } ⊂ ��(F) of F and a constant c > 0 such that
m(F1), . . . ,m(Fnε ) ≤ ε and

cm(Fi )
s−1/s ≤ P(Fi ,�) + CD H(

�τ (Fi ) ∩ ∂�
)

for every i = 1, . . . , nε, (4.2)

where the set�τ (Fi ) is defined as in (1.13). Given any � ∈ N such that � τ > 1, it is clear that
the set

⋂

i∈S �τ (Fi ) is empty whenever we choose S ⊂ {1, . . . , nε} of cardinality greater
than �. Therefore, we deduce from (4.2) and the identity

∑nε

i=1 P(Fi ,�) = P(F,�) that

c
m(F)

ε1/s
= c

nε∑

i=1

m(Fi )

ε1/s
≤ c

nε∑

i=1

m(Fi )
s−1/s ≤ P(F,�) + CD H(∂�) �.

Finally, by letting ε ↘ 0 we conclude that P(F,�) = +∞, which leads to a contradiction.
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Appendix A: Extreme points

Let V be a normed space. Let K �= ∅ be a convex, compact subset of V . Then we shall
denote by ext K the set of all extreme points of K , namely of those points x ∈ K that
cannot be written as x = t y + (1 − t)z for some t ∈ (0, 1) and some distinct y, z ∈ K . The
Krein–Milman theorem states that K coincides with the closed convex hull of ext K ; cf. [34].
Furthermore, it actually holds that ext K is the ‘smallest’ set having this property:

Theorem A.1 (Milman [37]) Let V be a normed space. Let ∅ �= K ⊂ V be convex and
compact. Suppose that the closed convex hull of a set S ⊂ K coincides with K . Then ext K
is contained in the closure of S.

Another fundamental result in functional analysis and convex analysis is the following cele-
brated strengthening of the Krein–Milman theorem:

Theorem A.2 (Choquet [39]) Let V be a normed space. Let ∅ �= K ⊂ V be convex and com-
pact. Then for any point x ∈ K there exists a Borel probability measure μ on V (depending
on x), which is concentrated on ext K and satisfies

L(x) =
∫

L(y) dμ(y) for every L : V → R linear and continuous.

Remark A.3 In the above result, the measure μ is concentrated on ext K . For completeness,
we briefly verify that ext K is a Borel subset of V : the set K\ext K can be written as

⋃

n Cn ,
where

Cn :=
{
y + z

2

∣
∣
∣
∣
y, z ∈ K , ‖y − z‖V ≥ 1/n

}

for every n ∈ N.

Given that each set Cn is a closed subset of V , we conclude that ext K is Borel. 	


Appendix B: Lyapunov vector-measure theorem

In the theory of vector measures, an important role is played by the following theorem
(due to Lyapunov): the range of a non-atomic vector measure is closed and convex; cf., for
instance, [20]. For our purposes, we need a simpler version of this theorem (just for scalar
measures). For the reader’s convenience, we report below (see Theorem B.3) an elementary
proof of this result.

Let us begin by recalling the definition of atom in a measure space (see also [12]):

Definition B.1 (Atom) Let (X,A, μ) be a measure space. Then a set A ∈ A with μ(A) > 0
is said to be an atom of μ provided for any set A′ ∈ A with A′ ⊂ A it holds that either
μ(A′) = 0 or μ(A\A′) = 0. The measure space (X,A, μ) is called non-atomic if there are
no atoms, atomic if there exists at least one atom, and purely atomic if every measurable set
of positive μ-measure contains an atom.

Remark B.2 Given a purely atomic measure space (X,A, μ) and a set E ∈ A such that
μ(E) > 0, there exists an at most countable family {Ai }i∈I ⊂ A of pairwise disjoint atoms
of μ, which are contained in E and satisfy μ

(

E\⋃

i∈I Ai
) = 0; cf. [32, Theorem 2.2]. 	


Recall that a measure space (X,A, μ) is semifinite provided for every set E ∈ A with
μ(E) > 0 there exists F ∈ A such that F ⊂ E and 0 < μ(F) < +∞.
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Theorem B.3 (Non-atomic measures have full range) Let (X,A, μ) be a semifinite, non-
atomic measure space. Then for every constant λ ∈ (

0, μ(X)
)

there exists A ∈ A such that
μ(A) = λ.

Proof First of all, let us prove the following claim:

Given any set A ∈ A with μ(A) > 0 and any ε > 0,

there exists B ∈ A such that B ⊂ A and 0 < μ(B) < ε.
(B.1)

In order to prove it, fix a subset A′ ∈ A of A with 0 < μ(A′) < +∞ (whose existence
follows from the semifiniteness assumption) and any k ∈ N such that k > μ(A′)/ε. Since
μ admits no atoms, we can find a partition B1, . . . , Bk ∈ A of A′ such that μ(Bi ) > 0 for
every i = 1, . . . , k. Hence, there must exist i = 1, . . . , k such that μ(Bi ) < ε, otherwise we
would have that

μ(A′) = μ(B1) + · · · + μ(Bk) ≥ k ε > μ(A′).

Therefore, the set B := Bi satisfies B ⊂ A′ ⊂ A and 0 < μ(B) < ε. This proves the claim
(B.1).

We recursively build a sequence (An)n ⊂ A. The set A1 is any element of A with 0 <

μ(A1) < λ, which can be found thanks to (B.1). Now let us suppose to have already defined
A1, . . . , An−1 for some natural number n ≥ 2with the following properties: A1, . . . , An−1 ∈
A are pairwise disjoint sets that satisfy μ(A1), . . . , μ(An−1) > 0 and

∑n−1
i=1 μ(Ai ) < λ. We

set

Fn :=
{

B ∈ A
∣
∣
∣ B ⊂ X\

n−1
⋃

i=1

Ai , 0 < μ(B) < λ −
n−1
∑

i=1

μ(Ai )
}

.

Property (B.1) grants thatFn is non-empty, thus in particular sn := sup
{

μ(B)
∣
∣ B ∈ Fn

}

> 0.
Let An be any element of Fn such that μ(An) ≥ sn/2. Notice that A1, . . . , An ∈ A are
pairwise disjoint sets of positive μ-measure for which μ(A1) + · · · + μ(An) < λ.

Now let us call A := ⋃∞
n=1 An ∈ A. We argue by contradiction: suppose that μ(A) �= λ.

Given that μ(A) = limn
∑n

i=1 μ(Ai ) ≤ λ, this means that μ(A) < λ. We know from
(B.1) that there exists a set B ∈ A with B ⊂ X\A and 0 < μ(B) < λ − μ(A). Since
∑∞

n=1 μ(An) < λ < +∞, we can pick some n ≥ 1 forwhichμ(An) < μ(B)/2.On the other
hand, one has that B ⊂ X\A ⊂ X\ ⋃n−1

i=1 Ai and 0 < μ(B) < λ−μ(A) ≤ λ−∑n−1
i=1 μ(Ai ),

whence accordingly B ∈ Fn . Consequently, it must hold that μ(An) ≥ sn/2 ≥ μ(B)/2,
which leads to a contradiction.Weconclude thatμ(A) = λ,whichfinally yields the statement.

	

Remark B.4 Given a semifinite, non-atomic measure space (X,A, μ) and a set E ∈ A,
it holds that (E,A�E , μ�E ) is semifinite and non-atomic as well, where the restricted σ -
algebra A�E is defined as A�E := {

A ∩ E : A ∈ A}

. In particular, one can readily deduce
from Theorem B.3 that for any λ ∈ (

0, μ(E)
)

there exists A ∈ A�E such that μ(A) = λ.
	


Corollary B.5 Let (X,A, μ) be a finite, non-atomic measure space. Then for every ε > 0
there exists a partition {A1, . . . , An} ⊂ A of X such that μ(Ai ) ≤ min

{

ε, μ(Ac
i )

}

for all
i = 1, . . . , n.

Proof Fix any ε′ > 0 such that ε′ < ε and ε′ < μ(X)/2. We proceed in a recursive
way: first of all, choose a set A1 ∈ A with μ(A1) = ε′, whose existence is granted by
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Theorem B.3. Now we can pick a set A2 ∈ A�Ac
1
such that μ(A2) = ε′ (recall Remark B.4).

After finitely many steps, we end up with pairwise disjoint measurable sets A1, . . . , An−1

such that μ
(

X\(A1 ∪ · · · ∪ An−1)
)

< ε′. Let us define An := X\(A1 ∪ . . . ∪ An−1) ∈ A.
Therefore, the sets A1, . . . , An do the job. 	
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