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Abstract

A spatial Markov-chain model is formulated for the progression of skin cancer. The
model is based on the division of the computational domain into nodal points, that can
be in a binary state: either in ‘cancer state’ or in ‘non-cancer state’. The model assigns
probabilities for the non-reversible transition from ‘non-cancer’ state to the ‘cancer
state’ that depend on the states of the neighbouring nodes. The likelihood of transition
further depends on the life burden intensity of the UV-rays that the skin is exposed to.
The probabilistic nature of the process and the uncertainty in the input data is assessed
by the use of Monte Carlo simulations. A good fit between experiments on mice and
our model has been obtained.

Mathematics Subject Classification 60J20 - 65C05 - 65C40

1 Introduction

Ageing of populations in industrialised society puts a huge burden on health care. In
particular, next to cardio-vascular diseases, cancer is one of the most lethal diseases
developing in these societies. Reasons are a sedentary lifestyle, diets that contain large
amounts of sugar, as well as bad habits such as smoking.

An underestimated class of cancers concerns skin cancer. According to the WHO
(2017), one in every three cancers diagnosed is classified as a skin cancer. There are
three major types of skin cancers including basal-cell carcinomas (BCC), squamous-
cell carcinomas (SCC) and different types of melanoma. Each of these cancers develop
indifferent cells: BCC develops in basal cells which are squamous cells located close to

B Fred Vermolen
FE.J.Vermolen @tudelft.nl

Ilkka P6l6nen
ilkka.polonen@jyu.fi

Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands
Faculty of Information Technology, University of Jyviskuld, 40014 Jyvaskyla, Finland

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00285-019-01367-y&domain=pdf
http://orcid.org/0000-0003-2212-1711

546 F.Vermolen, |. P6l6nen

the basement membrane, and metastasises rarely. SCC develops from squamous cells,
and metastasises more often. Finally, melanomas, which develop from melanocytes,
form the most dangerous class of skin cancers. Melanomas metastasise if they grow
deeper and penetrate through the basal membrane. All these cancers are able to metas-
tasise to other parts of the body.

Skin cancer is often caused by a long-term exposure of skin to UV-radiation, since
UV-radiation increases the risk of skin cancer. People with lighter skin and who travel
to the mountains, such as during skiing when the UV radiation is large at high altitudes,
and further amplified by the reflection of snow, are subject to dangerous portions of
radiation. It should also be noted that people, who expose their skins over a long
period of time to strong doses of sunlight on the beach or in water, have a high risk
of developing burns and skin cancer. According to Eriksson and Tinghog (2015), the
total societal cost of skin cancer in Sweden over the year 2011 were estimated at 178
million Euros, with an increase of 27% with respect to 2005.

The current paper deals with a three dimensional spatial Markov chain model for
the simulation of skin cancer in general. Mathematical modelling studies that engage
themselves with skin cancer in particular are very scarce, and therefore we list some
relevant mathematical studies of general solid tumors, although we admit that the list
is not complete. Significant contributions to the simulation of metastasis of general
cancer using Markov chain modelling and Monte Carlo simulations were realised by
Newton et al. (2012, 2013, 2015). Elements from game theory were used in the form
of the Prisoner’s Dilemma in West et al. (2016).

Next to these probabilistic approaches, several studies on cellular automata models
applied to cancer have been performed. In this context, we mention a few important
studies. Poleszczuk and Enderling (2013) considered a cellular automata model with
probabilities of cell division and cell migration. They consider a two-dimensional
lattice with points that are either occupied by a cancer cell or not. If the cancer cell
proliferates, then it does not migrate in their model. They use constant values for the
likelihoods for migration and proliferation. As far as we know, in the literature, the
study by Poleszczuk and Enderling (2013) is closest to the current study. Poleszczuk
and Enderling (2013) give a clear description of how their method works. Further,
Butler et al. (2014) formulated a cellular-automaton model for general cancer growth
in two dimensions, where processes like cell death (apoptosis) of cancer cells, immu-
nity death and angiogenesis are incorporated. Their approach for cancer cell migration
is similar to the study by Poleszczuk and Enderling (2013). Monteagudo and Santos
(2012) present a cellular automaton model that was used by Butler et al. (2014). The
latter group applied the model to predict the impact of drugs on cancer growth. Jiao
and Torquato (2011) described a cellular automaton model for emergent behaviours
regarding invasive tumor growth in heterogeneous tissues. Their model is more compli-
cated and contains interactions between several cell types, cell division, degradation of
extracellular matrix (ECM), mutation rates and cell mobilities. Alarcon et al. (2003)
also consider tumor growth in inhomogeneous environments, in which the oxygen
concentration is computed, and where blood vessels are assumed to be immobile.
Though the model is based on cellular automata principles, the nature of their model
is entirely deterministic. Kansal et al. (2000) propose a cellular automata model for the
simulation of brain tumors, where their domain is represented by Voronoi cells. Each
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Voronoi cell represents a biological cell that grows, divides or dies. By far one of the
earliest cellular automaton models for cancer was developed by Qi et al. (1993), who
consider cell migration, cytotoxic behaviour of the immune system and mechanical
pressure of the tumor.

A different class of computational models is formed by the agent-based models.
In these models, the time history of each cell is taken into account, and the position
of the cells is, unlike in cellular automata models, continuous over time and only
becomes discrete after application of a numerical method for the time-integration.
Processes like cell migration, differentiation, proliferation and mutation of each cell
are simulated using this class of models. Numerous examples from the literature exist
for the development and application of agent-based models. Although the list is far
from complete, we mention several studies in agent-based models that were applied
to diseases in the (epi)dermis. Li et al. (2013) simulate epithelial renewal in skin over
a three years period. Grabe and Neuber (2007) simulate the dynamics of psoriasis
as a disease in the epidermis. Sun et al. (2009), Adra et al. (2010) develop a three-
dimensional model for epidermal wound healing and structuring with the interplay of
the TGF-beta growth factor. Thingnes et al. (2012) simulate the temporal evolution of
the melanocyte distribution on the basis of (negative) chemotaxis due to a substance
that is secreted by the keratinocytes. We also note our own work on agent-based models
with, among others, an application to wound contraction as a result of serious burn
trauma, see Boon et al. (2016).

We list three mathematical studies devoted to melanoma. The first study is due to
Gallinaro et al. (2013) and treats a model for melanoma cell migration with an elastic
continuum. The second study by Morais et al. (2017) treats a 2D probabilistic Widom-
Rowlinson model that shares some features with the current model and with the model
by Poleszczuk and Enderling (2013). The third study by Ciarletta et al. (2001) entails
a partial differential equations (PDE) based approach for the radial progression of
melanoma. We will elaborate more on these models in Sect. 5.

The current paper proposes a spatial Markov chain model that is entirely stochastic.
The model divides the domain of computation into nodal points that have two possible
states: either ‘cancer state’ or ‘not in cancer state’. The transition probability depends
on the status of the neighbours in terms of distance and number of neighbours that are
in ‘cancer state’. Next to this intrinsic likelihood, we propose an update of the transition
probability as a function of the intensity of UV-radiation as well as the transmission of
UV into the skin. As an innovation compared to the previously formulated cellular and
Markov chain models for cancer development, the current model is simple in the sense
that it consists of three input parameters only, and that the transmission probability of
anodal point depends on the number of neighbours that are in ‘cancer state’ and on the
distance between the nodal point in consideration and neighbours. The relation is also
motivated mathematically. Furthermore, next to predicting the rate at which cancer pro-
gresses, the calculations suffer from uncertainty from multiple sources. The first source
of uncertainty is the probabilistic nature of the model itself, and the second source of
uncertainty comes from poor knowledge regarding the values of the input parameters.
These uncertainties make that each simulation only represents one of the very many
possible scenarios. Since any of these possible scenarios could describe the progres-
sion of skin cancer in a patient, we are less interested in predicting the rate at which
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cancer grows than in predicting the likelihood that cancer reaches a certain size within
a predefined timeframe. Note that the development of cancer is not the same as the
initiation of cancer. The current modelling framework is used to simulate the progres-
sion of cancer that already initiated earlier. Hence when we speak of the development
of cancer, we mean the growth of earlier initiated cancer. The issue of uncertainty
regarding the growth of cancer is dealt with in the current paper using Monte Carlo
simulations. This probabilistic approach is innovative in this class of modelling.
Summarised, this paper contains the following key innovations:

— development of the lattice-based Markov chain model, with a mathematically
sound justification of the inter-nodal transition probability based on the states of
immediate neighbours;

— phenomenological incorporation of the effects of long term exposure to UV-
radiation;

— evaluation of the likelihood that the cancer develops to a predefined state within a
certain time-interval.

The paper is organised as follows: in Sect. 2, we formulate the physical and biolog-
ical hypotheses of the model. Furthermore, some mathematical justification is given
regarding the assumptions. Section 3 deals with the numerical approach of the Markov
chain process and the uncertainty quantification on the basis of Monte Carlo simu-
lations. Subsequently, we present the results in Sect. 4. Sections 5 and 6 end with a
discussion and conclusions regarding the modelling framework and results.

2 The mathematical model

First we describe the model and motivate the choices that we make mathematically. We
consider adomain D C R3 thatis divided into a set of N nodal points A" = {1, ..., n},
in which each node i has position x; = (x;, y;, z;). All positions are fixed in time ¢.
From a biological perspective, these nodes may correspond to single cells, or to a
cluster of cells, or even a spatial part of the body. For each of these nodes, we consider
its set of neighbours, indicated by A;, which is mathematically defined by

N; = {j € N'| j is a nearest neighbour node of node i}.

Only nearest neighbours are incorporated to prevent huge computational burdens.
Each node can be in two states: either in ‘cancer state’ or in ‘non-cancer state’. This
is indicated by the binary switch parameter S;:

S 0, node i is in ‘non-cancer state’; )
i = C
1, node i isin ‘cancer-state’.

This implies that if S; = 0 for all i € A then the tissue is absolutely free of cancer,
whereas if §; = 1 for all i € A then the tissue is completely cancerous. All other
situations are intermediate states. Next, we assume that each node, say node i, that is
in ‘non-cancer state’ has a likelihood to change state to ‘cancer state’. This likelihood
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satisfies an (memory-less) exponential probability distribution with probability rate
Ai, that is, we have the following probability distribution

f (s, Ai) = Aiexp(—Ai(s)(s — 1)), fors > 1. @)
Hence over a time interval of length 7, we have the following likelihood for transition
from state {S; = 0} to state {S; = 1}:
t+t
PESIG+ D) = 1150 =0) = [ 4i(5)exp(-,(5)6s — 1)ds
t
~ 1 —exp(—Ai()T) = it + O(hi1)>. (3)

Irreversibility of the transition implies P(S;(t + t) = 0|S;(t) = 1)) = 0. The total
likelihoods are given by

PSit+1)=0=PSit+71)=0|S(t) =0)P(S;(t) =0)
+P(Si(t + 1) =0[S5i() = DP(Si(1) = 1),
PSit+1)=1) =Pt + 1) =1185@1) =0)P(Si(1) =0)
+P(Sit+ 1) =1[S5i@) = DP(Si(1) = 1), “)

and hence we have the following probability matrix over time-interval t:

P(Sit+1) =0[Si(1) =0) P(Si(t+17)=0[Si() =1)

P, =
P(Sit+1) =1185i(1) =0) P(Sit+1)=1[Si() =1
1— 17 %i(s) exp(=2i (s)(s — 1))ds 0 1—A)T 0
= ~ .6
LI hi(s) exp(=2i (s)(s —)ds 1 AT 1
This matrix can be used to simulate the dynamics of the fraction of cancerous regions
over time, by recurrently computing over time points t, ..., kT
Y+ = Pryir, (6)

where the first and second component of y, represents the average fraction of nodes
that are in ‘non cancer state’ and ‘cancer state’ respectively.

Solving the average fraction in ‘cancer state’, that is the second component of yj,
which we call p(kt), from Eq. (6), gives

k kt
pkr)=1- 1_[ (1 —/ exp(—A(s)(s — (k — l)t)ds> ~ 1
(

=1 k—1)t

k
~[Ta-xG =D, )

J=1
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The fraction p(kt) can also be interpreted as the likelihood that a node is in ‘cancer
state’. From** Eq. (7), we get

k k—1
pkt) = p(k— D) =1-[] (1 =AM — DD)7) — {1 ~JTa -0 - 1)r>r>}

j=1 j=1

k—1 k
=[]a -2 -DoD -] =1 - Do)
Jj=1 j=1
k-1
= 1_[ A=2(G-Don)d -0 =1k = D1)7))
j=1
=1 = p(tk = DrHA((k — D)7
(®)
Dividing the above equation by t, gives
kt) — p((k — 1
PEDZPHEZDD — (1 p(k = enacck — o). ©)
Taking the limit t — 0 (and sending k — ©0), upon (k — 1)t = ¢, we get
p'®) = (1= p)nr). (10)

With p(0) = 0, this gives

t
p)=1—exp <—/ A(s)ds). (11
0

1— [T A(s) exp(—A(s) (s — 1)ds O
TTTA(s) exp(—A(s)(s — ))ds 1

r)\ _ (—r(@) 0\ (r()
(p’(t)) = ( (1) 0) (p(r))’ (12)

t
r(t) = exp(—/ A(s)ds),
0

Proposition 2.1 Let P, = < ) ,and let r(t) =

1 — p(t), then

implying

t
pit)y=1- exp(—/ A(s)ds). (13)
0
Proof From the hypothesis, it follows that
rt+7)=~10- t’“ A(s) exp(—A(s)(s — 1))ds)r(t),
(14)
plt+1) = [T M) exp(=A(s)(s — £))dsr (1) + p(t).
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The above equations can be rewritten as

4+t

rit+1t)—rr)=—r@) / A(s) exp(—A(s)(s —1))ds,

t

t+1
Pt +7) — plt) = r(1) / A(s) exp(=A(s)(s — 1))ds

t
4+t
— (1 p(t) / AS) exp(=A(s)(s — )ds.  (15)
t

From this, we get, from division by 7, taking the limit r — 0, and using de ”’Hospital’s
Rule

ST A(s) exp(—A(s)(s — 1))ds

rit+t)—r()

r'(t) = lim — lim r(¢)
7—0 T 7—0 T
= —r (A1),
47 _ _
S = lim pit+7)—p@) _ tim (1 — p(t))f, L(s) exp(—A(s)(s —1))ds

T T

LI 0 (s) exp(—A(s) (s — 1))ds

=1 -p@) lim =1 = p@)Ar@).

! (16)
From this, we get
r'(t) = =x@)r @),
(17)
p'@) =101 = p@) = AMo)r(@).
From this, we get
t
r(t) = exp(—/ A(s)ds),
0
t
pt)y=1-— exp(—/ A(s)ds).
0
This proves the assertion. O

Since the expected number of nodes in cancer satisfies a Markov chain process,
see Eq. (6) and the above relation, the convergence to the steady-state of full cancer
takes place asymptotically as t — oo (for A > 0). In other words if p(7) denotes the
probability that a node is in ‘cancer state’ at time ¢, then lim;_, o p(#) = 1, whereas
0 < p(¢) < 1 fort > 0. The time to reach the state where all the nodes are in ‘cancer
state’ increases with the number of nodes due to the asymptotic convergence. For this
reason, we only monitor the minimal time at which half of the nodes are in cancer
state, that is f = 1/2, in the Monte Carlo simulations to avoid unnecessarily large
computing times. It is easy to see that the dynamic system will converge to the state
S; =1foralli e Nast — oo (k — o0)if ;(t) > Ofort > Qforalli e N.
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It is well known that cancer progresses by mutation of healthy cells, proliferation
of cancer cells and by migration of cancer cells. Cell migration proceeds by several
mechanisms, such as taxis processes (migration towards stiffer tissue regions (duro-
taxis), chemotaxis (migration towards higher concentration of oxygen or nutrients))
or as a result of random walk, see for instance Lo et al. (2000). This is the reason
why regions that are affected by cancer, that is, they are in ‘cancer state’, contaminate
healthy regions. For simplicity, we consider two nodes on the x-axis, with coordinates
xy = 0and xg = 1. Let x; be in ‘cancer state’ while xg is not in ‘cancer state’.
Let A be the probability rate, from the exponential distribution, for xg to change to
the ‘cancer state’ due to xz being in ‘cancer state’. Then the expected length of the
time-interval to change to the ‘cancer state’ for node xy is given by

~ 1
E@®) =t=—.
() .

Suppose now that between node x;, and xg, we have the following rearrangement of
nodal points: x; = x; + jh, x, = xg and nh = 1, where all these nodes, except
xo = xz are not in the ‘cancer state’. Let A" be the probability rate parameter to
change node x; to the ‘cancer state’, given that one of its neighbours at a distance &
was in ‘cancer state’, then the expected length of the time interval to change to the
‘cancer state’ is given by

A 1
1 = W,
in node j. Note that this considers the expected length of time interval to transform a
node at a distance / from a node that was in ‘cancer state’. The total expected value
for the length of the time interval to change all nodes into ‘cancer state’ should be
equal to the expected time to change node x to the ‘cancer state’ and hence we have

n
2. L —f = l 18
Zt/_)t(h)_t_)»’ (18)
j=1
Herewith, we get
W _ oy

which gives the probability rate between two nodes of complementary states separated
by a distance h. From the above relation, it can be observed that if 4 — 0, then 2.
tends to infinity, which implies that the expected time for the transition is given by

lim E(t) = lim 7; = 0,
A0 @ P

which means that the transition occurs immediately almost surely as &7 — 0. We
summarise the overall conclusion in Proposition 2.2.
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Proposition 2.2 Consider xX; and xg and let ||X;, — Xgl|| = 1. Suppose that at time
t one of the two points is in ‘cancer state’, whereas the other point is not in ‘cancer
state’. Let ) be the probability rate from the exponential distribution to transfer the
nodal point that is not in ‘cancer state’ to the ‘cancer state’, then for two points X
and xp, separated by distance ||X4 — Xg|| = h, where exactly one of the two points is
in ‘cancer state’, the probability rate to transfer the other point to the ‘cancer state’
is given by

ROy
h

This probability rate is consistent in expected value of the length of the transformation
time interval. In a more-dimensional setting, a node that is not in ‘cancer state’ could
have multiple neighbours that are in ‘cancer state’. Consider node j that is not in
‘cancer state’. Suppose that k of its nearest neighbours are in ‘cancer state’. For each
node in ‘cancer state’, its neighbour that is not in ‘cancer state’, say node j, has a
likelihood of

t+7 )
p= f AW exp(=2M (s —1)ds =1 -7, (20
t

to change to the ‘cancer state’ during time interval 7. Hence the likelihood that this
neighbour will not change its state is equal to P(S;(t +7) =0[S;(t) =0) =1 — p.
Consider node j having k neighbours that are in ‘cancer state’ at time ¢, then
P(S;(t+1) =0[S;(t) = 0) = (1 — p)*.
This implies that
PSjt+1)=1]S;(1)=0)=1—(1—p).
Aslong as p < 1, we have

P(S;(t 4+ 1) = 1]S;(t) = 0) ~ kp.

Using the exponential distribution, see Eq. 20, we arrive at
k —kA M k
P+ =11§;0)=0=1-(0-p)=1-e¢ =1—exp —Z)n: .

Therefore, next to the distance of the node to the neighbours that are in ‘cancer state’,
the probability rate 1; = ]E()‘ depends on the number of neighbouring nodes that are
in ‘cancer state’. In order to be able to deal with various spatial rearrangements and
grids, we generalise the formalism to having neighbouring nodes that have different
separations in Proposition 2.3:
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Proposition 2.3 Consider nodal point X, which is not in ‘cancer state’ at time t,
with nearest neighbouring nodal points Ny, that are, respectively, separated from X;,
by distances d(xi, X;) = ||xx — Xjl||, j € Ni. Let X be the probability rate in the
exponential distribution to change a nodal point to the ‘cancer state’ due to a nearest
neighbour at unit distance. Then

S0
A = A Z 1)
jEN d(Xk1 /)

where Ly represents the probability rate in the exponential distribution for the transi-
tion of nodal point Xi.

Proof Consider nodal point x;, which is not in ‘cancer state’, and only consider its
neighbours {x;,} that are in ‘cancer state’, hence g € /\/'kc‘”’ ={q € Ny : S4(t) = 1}.
Let py« be the probability that nodal point ¢ contaminates nodal point & to the ‘cancer
state’ during time interval t. Then from Proposition 2.2, we have

AT
Pgk = 1 —exp (——) . (22)

d(Xk, Xl])

The probability that nodal point x; remains in ‘non cancer state’ is given by

P(Sk(r + 1) =0185(1) =0) = 1_[ (I = pgi), (23)
qe./\/'kcan

where we account for the fact that each neighbour x;,, ¢ € N may send x; to the
‘cancer state’. Using the above equation, Proposition 2.2, and Eq. (20), we get

P(Sk(t + 1) =1|8k(1) =0) =1 = P(Sk(t 4+ 1) = 0[S (r) = 0)

(24)
=1- l_[ exp( d(xk,xq)> l—exp| —At Z (k,Xq) .

qe_/\/;::an qe/\/'can

The definition of A//*" and S, (1), then gives

P(Sk(t+1)=1|S(1) =0) =1 —exp | —At Z S0 (25)

d(x. x;) |
Hence
S;(t
i Y S0
jGN (Xka Xj)

This proves the assertion. O
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The above result in Proposition 2.3 does not yet take into account any UV radiation.
To model the effect from exposure to UV radiation, we extend the above equation with
aterm

S.
A'Z)\E - R;, 26
' : d(Xi,Xj)+a [ (20)
eN;

where R; denotes the life time burden UV intensity that is experienced by node i, and
the a—parameter accounts for the sensitivity of cell i with respect to UV-radiation.
Hence summarised, the model is based on the hypothesis that cancer progresses to
node i, as a result of the following three factors:

1. the number of nearest neighbours of node i in the ‘cancer state’;
2. the distance between node i and nearest neighbours that are in the ‘cancer state’;
3. the life burden intensity of UV light that is experienced by node i.

3 Numerical implementation

First we explain how we apply the model in the final calculations where we simulate
with the full model. For all nodes i € A/, we initially impose S; = 0. Then at each
time-step, the light intensity R; is computed on all the nodes. Subsequently, a sample
from the exponential distribution with probability rate A; for each node is drawn over
time-interval t. Based on the resulting samples, the state of each node is changed to
the ‘cancer state’ or not. Subsequently the time is incremented by the time step 7. This
procedure is repeated with the exception that at the next time steps, we also check
the state of the nearest neighbours. This whole procedure is repeated until half of the
nodes are in ‘cancer state’. The fraction of nodes in ‘cancer state’, for a total of n
nodes, is computed via

£ = pulkr) = - YOSk, 27)
" ieN
at time k7. The time Ty, denoting the minimal time at which a certain predefined
fraction of the nodes is in ‘cancer state’, f, is stored.

In order to test the algorithm, the transition probability for each node was taken equal
to A, regardless the state of the neighbours. Then the solution should approximate the
expression from Eq. (7), that is p,(kt) — p(kt) for k € N as n — oco. We calculate
the root mean square error (RMS,,) with Eq. (7), given by

> (k) = pkr))?
RMS, = | == , (28)

ny

where n, is the time index at which all the nodes have transformed to the ‘cancer
state’, that is Sj(n,7) = 1 forall j € N For parametric choices A = 0.01, and a
cubic domain of 1 x 1 x 1, and n = 8 x 8 x 8 nodes, we show the results in Fig. 1.
From this figure, the exponential growth character is obvious and further p, (kt) and
p(kt) only differ by a root mean square error of 0.01209. Note that Fig. 1 has only

@ Springer



556 F.Vermolen, |. P6l6nen
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Fig. 1 The fraction of nodes in ‘cancer state’ as a function of time. The green curve represents the deter-
ministic result from Eq. (7), whereas the blue curve represents one sample from the stochastic model result
using 8 x 8 x 8 nodes with A = 0.01 (color figure online)

Table 1 Root mean squared

errors for one sample of various Number of nodes Root mean squared error
numbers of nodes 8 x8x8 0.1209 x 10-!

16 x 16 x 16 0.5086 x 102

32 x 32 x 32 0.1774 x 1072

64 x 64 x 64 0.1007 x 1072

been added to illustrate graphically that the macro-Markov chain model and the lattice
model are consistent.

We listed the results for the root mean squared error for one sample on various
numbers of nodes in Table 1.

From these results, it is concluded that if n = 32 x 32 x 32 the sampling error is
sufficiently small.

In the final computations, the Monte Carlo method is carried out by repeating the
simulations 1000 times (N = 1000). The average minimal time at which a fraction f
of the nodes are in ‘cancer state’ is computed by the arithmetic mean of all the sample
T(i), hence by

N
N 1 ;
N _ ()
7 _Nz_lrf, (29)
J=

where T](/ ) denotes the Jjth Monte Carlo trial of the minimal time at which a fraction of
f of the nodes is in ‘cancer state’. These simulations are done for the full model. The
above sample mean is an unbiased estimator for the expected value of the minimal
time, that is E(f‘jf-v ) = uy. Here uy = E(Ty) denotes the expected value of the
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minimal time at which a fraction f of the nodes is in ‘cancer state’. The Monte Carlo
Error (MCE) based on N trials (samples) is defined by

MCEy = ,/Var[f}v 1, (30

where [TV] consists of m batches of N samples. The above equation requires the
use of multiple batches containing a lot of simulations or the division of a Monte
Carlo sequence into multiple batches. In the remainder of this section, we derive a
statistically sound and practical representation of the Monte Carlo Error that can be
determined using one batch of simulations only. The derivation tightly follows the
footprints outlined by Koehler et al. (2009). From the Strong Law of Numbers, we
have

fﬂ—)uf, as N — oo.

The Central Limit Theorem implies that the above sample mean converges in distri-
bution to a normal distribution via

VNI = py) —>a N(0.07). as N — oo, (31)

where a% =E((Tr—n f)z) represents the standard deviation of T's. The above relation
implies
VarlV'N (T} — juf)] = of. as N — oo. (32)

Since Var(ur) = 0, the above equation implies
Var[«/ﬁf‘}v] = NVar[YA"}V] — a%, as N — oo.

Hence we have

2 2
Var[T] — %T - M’T‘m), (33)

as N — oo. The sample variance is given by
1 N
2 _ - (J) _ pN\2
sN_N_IZ(Tf ).
Jj=1
Since the sample variance is an unbiased estimator for 0'72~ (that is E(s,z\,) = 01%,), we

take o ~ slzv, then the right-hand side of Eq. (33) is estimated by

2
A s
Var[TJf-V] ~ WN’ 34
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Hence the MCE is estimated by

sy YL — 1Ny
MCEy = — = . 35)
VN N(N —1)

The above equation is used for the estimation of the Monte Carlo Error. Note that the
sample variance is an unbiased estimator for the variance o% (of T), then as a result
of Jensen’s Inequality, the sample standard deviation, sy, is a biased, but consistent
estimator of o7 (that is limy_, o Sy = o7). Hence the above estimator for the MCE
is biased, though consistent. Hence for large N, the above equation gives a good
approximation for the MCE. Therefore, we use the above equation for the estimation
of the MCE.

4 Computer simulations

All simulations were done in an implementation in Python 2.7.5 on a MacBook Air
with a 1.4 GHz Intel Core i5 processor and 8§ GB 1600 MHz DDR3 memory. The
spatial domain represents a generic area of skin. The top of the domain represents
the surface of the epidermis and in which the bottom represents the basement mem-
brane, which is a physical barrier that inhibits further progression of cancer. Further
progression of cancer over the basement membrane proceeds by different biological
mechanisms, such as the slower process of epithelial-mesenchymal transformation,
than the ones that are considered in the current manuscript. First, we present various
results of one simulation of how cancer progresses through the domain in the course
of time. Subsequently, we show results from Monte Carlo simulations in two spatial
dimensions, where we are interested in the length of the time interval that is needed
to have 50% of the domain occupied by cancer. We will show the correlations of this
length of time interval with the three input parameters.

4.1 Time-evolution of cancer in 3D

First we show model predictions of skin cancer progression over time. In the plots that
we show, we only display the nodes that are in ‘cancer state’. These nodes are indicated
by red dots. The other nodes, which are not in ‘cancer state’, are not displayed for
the sake of visibility in the three dimensional configuration. In the coming results, we
present three different cases in three spatial dimensions in the coming subsections. We
use 32 x 32 x 32 nodes in the closed cubic domain (x, y, z) € [0, 113 and & = 0.01.
Further, we kept o; = 0 for all i € N, which implies that cancer only progresses
through nearest—neighbour interaction.
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4.1.1 Progression of melanomas

Melanomas generally progress from mutated melanocytes, which are located on or near
the basal membrane separating the epidermis from the dermis. Although these cancers
are often enhanced by excessive exposure of the skin to UV-radiation (generally type
B, which progresses deeper into the dermis), melanomas often develop as a result of
genetics, or from moles. Therefore, we consider the case that one cell in the center
of the domain ((x, y, z) = (0.5, 0.5, 0.5)), away from the skin surface, is in ‘cancer
state’, which could represent a melanoma that spreads towards the top and the bottom
of the skin surface. Several snapshots have been shown in Fig. 2, at the early and later
stages. From the figures, it is observed how the cancer develops from the centre and
spreads into locations further away. In Fig. 2, it is seen that at the later stages the
boundary of the computational domain starts to influence the results. It can be seen
how the model gives a possible representation of the geometrical development of the
early stage cancer except at the final stages, where boundary effects start to dominate,
see Fig. 2i.

In Fig. 3, we show the fraction of nodes that has transformed into the cancer state
as a function of time for five different samples using identical input parameters and
initially the central node at (0.5, 0.5,0.5) was assumed to be in cancer state. The

(a) (b)

(@)

s o 04 04
X Lape, 08 X Labey 08 oo X Labg) 08

10 00

Fig. 2 Snapshots of early stage progression of cancer from the middle of the domain of computation.
Snapshots were taken at 1, 50, 100, 200, 400, 1000, 5000, 15,000 and 30,000 nodes in ‘cancer state’;
Corresponding times are 0, 2.35, 3.1, 4.15, 5.3, 7.1, 11.3, 15.85, 22.3 dimensionless time units
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Fig.3 Left: five sample runs of the fraction of the nodal points that transformed into the cancer state versus
time using 32 x 32 x 32 = 32768 nodes; Right: a fitted result to the experiments done in Demidem et al.
(2001). The thick solid blue curve right has been obtained by the use of the current spatial Markov chain
model; the error bars denote the measured results by Demidem et al. (2001). The black curves are fitted
results to the Gompertz model (color figure online)

curves, which do not coincide entirely as a result of the stochastic nature of the model,
all exhibit the so—called S-shape in accordance with the classical Gompertz model.

Although the experimental outcomes by Demidem et al. (2001) were obtained for
mice, we managed to fit our model to their results. Their experiments measured the
mass of the tumor. Assuming a mass density of water, which is given by p = 1000
kg/m?3, to represent the density of the tumor, implies that 5.3 gram of tumor, which
is their final tumor mass, corresponds to a tumor volume of 5.3 x 10~% m3. This
implies that we bound the tumor in a cubic box with edge length of 5.3'/3 x 1072
m. Using a bisection procedure to fit our modelling results to the Gompertz curve
in Demidem et al. (2001) indicated that A &~ 1.5 x 10~* m~! day~'. The result is
shown in Fig. 3, where the fraction that we computed can be converted to actual mass
by setting mr = p - f - Vg, where f, mr and Vg, respectively, denote the volume
fraction of the tumor, tumor mass and total end volume. Comparison with Fig. 1 in
Demidem et al. (2001) shows a good agreement between their results and our results.
Note that we fitted our model to the data with the highest values of the tumor weight
in the study by Demidem et al. (2001). This sequence of data corresponds to non-drug
treated melanoma. The thick solid blue curve in Fig. 3b has been obtained by the use of
our spatial Markov chain model. The error bars represent the experimental results by
Demidem et al. (2001), and the thin solid black curves represent the fits by Demidem
et al. (2001) using the Gompertz model. This agreement demonstrates the predictive
value of our model.

4.1.2 Progression from the surface: squamous basal-cell carcinomas

In the modelling, we approximate the development from the upper layers by the pro-
gression from the top. Squamous basal-cell carcinomas develop from the top, but not
from the very top (since the squamous cells are dead at the very top and the surface
is covered by keratin) of the skin surface (the top of the epidermis), and these cancers
are known to develop as a result of a life time excessive exposure to UV-radiation.
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In this section, we take the enhancement of the transition from ‘non cancer state’ to
‘cancer state’ as a result of UV-radiation into account in a phenomenological way. The
likelihood of transition is given by

S.
MY ——ta u=1,
by’ d(x;,X;)
Ai = (36)

Sj
A S — F< 1.
Z/\:/ d(xi, %)) v
JENI

Here o takes into account the life time burden of exposure to UV-radiation, which only
acts on the nodal points that are located on the top surface of the skin. In this section,
we took A = 0.01 and @ = 0.1. A small « value represents a relatively small life time
burden of exposure to UV-radiation, whereas large values represent large portions of
life time exposure to UV radiation. The life time burden of radiation is determined by
the fraction of time the skin of a patient is exposed to sunlight and by the intensity of
the UV radiation exposed to. Hence it makes a difference whether the skin is exposed
to one hour of evening sun (low intensity) or one hour to the sun at the mid of the day
(that is at noon, high intensity). Initially, all nodes are in the ‘non cancer’ state. The
transition to the ‘cancer state’ is caused by the exposure to UV-radiation and in the
current simulations, we assume that only the top cells are exposed to UV. Penetration
of UV-radiation into deeper layers is neglected in the current run. The results are shown
in Fig. 4, where it can be seen that cancer progresses from the top layer towards the
bottom. At the initial stage, only nodes on the top can change state to ‘cancer state’. As
time proceeds, the nearest neighbour interaction makes the cancer move towards the
bottom. In practice, the use of sun cream could result into a lower value of «, which
would give a lower initiation rate (a larger incubation time) of cancer.

4.1.3 Progression and gradually decreasing initiation with the depth of the domain

Basal-cell carcinomas (BCC) generally develop from basal cells, which are predomi-
nantly located in the basal membrane. Melanomas develop from melanocytes, which
are also predominantly located in the basal membrane. In order to model generic forms
of skin cancer, where we incorporate the attenuation and gradual decay of the life long
burden of UV-radiation into the skin, we use the following phenomenological law for
UV transmission R

R(z) = e P, (37)

where the top layer of skin is at the coordinate Z = 0, hence we have z = 1 — z related
to the physical coordinate z. This gives the following relationship for the A-parameter

S; .
A=A Z — 4 ae P, (38)
i~ d(X;,X;)
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Fig. 4 Snapshots of progression of cancer from the upper layer of the domain of computation. Snapshots
were taken at 1, 100, 1000, 5000, 15,000 and 30,000 nodes in ‘cancer state’; Corresponding times are in 0,
0.8,2.7, 6.6, 15.7 and 28.4 dimensionless time units

Higher values of g imply that the solar irradiation is absorbed faster as the UV radiation
penetrates the skin. Lower values of « represent the case that the skin is less sensitive to
the UV radiation and that cancer initiation at the top of the skin is inhibited. Application
of sun cream could be modelled by larger values of § and/or lower values of «. Using
a = 0.1and 8 = 1, we get the results from Fig. 5. Large values of § correspond to low
transmissibility of UV-radiation into the skin. Well functioning sunscreen (sun cream)
will increase the f—value and hence radiation decays very fast in the top layers of skin.
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Fig. 5 Snapshots of progression of cancer from the upper layer of the domain of computation. Snapshots
were taken at 1, 100, 1000, 5000, 15,000 and 30,000 nodes in ‘cancer state’; Corresponding times are in 0,
0.3, 1.3, 2.85, 6.0 and 15.7 dimensionless time units

Thereby the probability of cancer initiation, as well as progression can be reduced.
Once again, the o-value represents the exposure of the skin surface to sunlight. Sun
cream can also decrease this value due to its performance to shield the skin from UV-
radiation. It can be seen that cancer develops a bit more homogeneously than in Fig. 4
in the early stages, because the probability rate A is distributed more homogeneously
and hence more nodes that do not yet have a neighbour node that is already in ‘cancer
state’ are allowed to transform into ‘cancer state’ in Fig. 5. However, at the latest
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stages the development of cancer becomes similar to the behaviour in Fig. 4 as a result
of nearest neighbour interaction.

4.2 Monte Carlo simulations in two dimensions

The stochastic nature of the model requires a statistical assessment of the model results.
First, we assess the scalability of the model with respect to consistency of the results
in terms of convergence of the results as the grid size tends to zero. Secondly, we deal
with the consequences from uncertainties in the model parameters.

4.2.1 Scalability of the model

The probabilistic nature of the model requires the assessment of its scalability. From
adjusting the probability rates according to the number of immediate neighbours in
‘cancer state’ and the inter-nodal distance, it is to be expected that the expected time
to reach the state in which half of the nodes are in ‘cancer state’, that is, 7A"0,5 does
not depend on the spatial resolution 4. Therefore, we carried out multiple simulations
with various values of spatial resolution in a one-and two dimensional setting using
N = 1000 samples of Monte Carlo simulations. The results have been listed in Table 2.
It can be seen that for the larger stepsizes & (the smaller resolutions), there is still a
dependence, but that as i becomes smaller, then the results become less dependent on
h.

Note that these simulations contain an error as a result of the spatial resolution, and
as a result of the number of Monte Carlo samples.

4.2.2 Implications from uncertainties in the data

The simulations so far are realisations of stochastic processes like in the case of
the transition probability. Next to the uncertainty in transition, the actual values of
input data such as the transition likelihood, as well as the sensitivity with respect to
UV-radiation and the amount of UV radiation suffer from uncertainty. Therefore, we
vary all these parameters using normal distributions and we carry out Monte Carlo
simulations using the sampling values. From the simulations, we compute the expected
value of the time that the cancer has grown to a predefined volume fraction in the
tissue, as well as the probability distribution of the time that the cancer has grown to
a predefined volume fraction. This allows the estimation of the likelihood that cancer

Ir?tglrizdzg Z?::;iigc}f on the Number of nodes per dimension ZA"O,S in R foj in R2
25 0.4495 0.2955
50 0.4155 0.2525
100 0.4076 0.2328
200 0.4075 0.2190
400 0.4058 0.2111
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Table 3 Values of the input

parameters Quantity Mean Variance
0.005 0.001
« 0.1 0.02
3 0.6

develops to a predefined volume fraction within a certain amount of time. To this
extent, we use the following sampling for the input parameters A, o and 8:

h~ N, 07), @ ~ N(pa, 0g), B~ N (g, 0p) (39)

The values of the above statistical distributions have been listed in Table 3, which
still only contain hypothetical values. The results of the Monte Carlo simulations for
100 x 100 nodes are displayed in Fig. 6. It can be seen that N = 1000 simulations
gave good convergence of 77/, with respect to the Monte Carlo simulations. This is
confirmed by the Monte Carlo Error (MCE), which can be estimated consistently using
the estimator in Eq. (35) MCEy ~ 0.0505. Further, the scatter plots between 77/, and
A, o and B have been shown as well, from which it can be been seen that 77/, tends to
decrease with increasing A and « (to a smaller extent). An increase is observed with S.
Note that 8 represents the amount of decay of UV-radiation through the skin. Using
the Pearson correlation test, the correlations with their respective p-values have been
listed in Table 4. These numbers confirm the slight negative correlation between 71,2
and o and a stronger negative correlation between 77,2 and A. A somewhat stronger
positive correlation is observed between 77, and 8. Hence cancer is more likely to
progress for larger values of A and larger values of «, which, respectively, represent
the proliferation rate (including cancer cell division and cancer cell migration), and
the intensity (or exposure) of UV-radiation. Cancer indeed progresses less quickly for
larger UV-absorption (decay) by the skin. These predictions are in line with intuition
and common observations and hence in this sense the model provides a reasonable
description of the phenomenon. Next to the scatter plots, we present the histogram
representing the frequency of occurrence of 71 ;. It can be seen that 77 /7 is not normally
distributed with some kurtosis with a tail for large values of T7/,. Using the data, we
compute the cumulative likelihood that T7/; is at most equal to a certain value. That
is, we compute

N
1 )
Pr(Typ, =T)=Fy(T) = N E 1H[O,T](T1/2)~ (40)
J=

where Tl(/jz) denotes the jth sample, and Ijp, 7 (x) denotes the indicator function, which
is characterised by

1, ifx e[0,T],
0, else.

Lo,r(x) = {
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Fig. 6 a Convergence of the Monte Carlo simulations; b scatter plot between A and 71 /2; ¢ scatter plot

between o and 77 /2; d scatter plot between 8 and 77 /7; e histogram of outcomes of 77 /2; f cumulative
probability that 77 < T

The results have been plotted in Fig. 6. The cumulative probability should be inter-
preted as the likelihood that the tissue is seriously infected by cancer within a specific
time interval. We finally remark that the uncertainty analysis could also be applied to
Eq. (26), to get a statistical distribution of the A—parameter such that one could sample
from this obtained distribution. This has been omitted in the present study.
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Table 4 Correlation coefficients

with T Quantity Correlation p value
1/2
—0.5502 < 0.0001
o —0.2827 < 0.0001
0.7389 < 0.0001

5 Discussion

We propose a phenomenological model for the development of skin cancer. The model
is very generic and could be applied to different types of cancers as well. The formal-
ism is a two-state (binary) model and it is based on transition probabilities, which
reflects the likelihood that a certain portion of the domain changes state. Hence the
occurrence of the transition from the ‘non cancer state’ to the ‘cancer state’ depends
on the states of the points surrounding the point of consideration. It is assumed that
the change of state is irreversible. A strong point of the current model is that it is
very generic, simple to understand, and that it contains only few steering parameters.
Further, the model is easy to implement in more-dimensional settings. This facilitates
a straightforward parameter sensitivity analysis. The current implementation further
allows a three-dimensional evaluation of the geometry of the tumor. Demidem et al.
(2001) experimentally investigate tumor growth in mice under the influence of drug
treatments. Their measured tumor (melanoma) mass as a function of time is fitted
to the classical Gompertz model, which displays an S-shape (see Figures 1, 3 and 4
in Demidem et al. 2001). This S-shape is also reproduced by our model, see Fig. 3.
Furthermore, our mo