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Abstract
We prove a Koebe distortion theorem for the average derivative of a quasiconformal mapping
betweendomains in the sub-RiemannianHeisenberg groupH

1. Several auxiliary properties of
quasiconformal mappings between subdomains of H

1 are proven, including BMO estimates
for the logarithmof the Jacobian. Applications of theKoebe theorem include diameter bounds
for images of curves, comparison of integrals of the average derivative and the operator norm
of the horizontal differential, as well as the study of quasiconformal densities and metrics
in domains in H

1. The theorems are discussed for the sub-Riemannian and the Korányi
distances. This extends results due to Astala–Gehring, Astala–Koskela, Koskela and Bonk–
Koskela–Rohde.

Keywords Quasiconformal mappings · Heisenberg group · Modulus of curves · Koebe
theorem · BMO

Mathematics Subject Classification Primary 30L10; Secondary 30C65 · 30F45

K.F. was supported by the Swiss National Science Foundation through the Grant 161299 ‘Intrinsic
rectifiability and mapping theory on the Heisenberg group’.

B Katrin Fässler
katrin.s.fassler@jyu.fi

Tomasz Adamowicz
tadamowi@impan.pl

Ben Warhurst
B.Warhurst@mimuw.edu.pl

1 The Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-656 Warsaw,
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1 Introduction

The Koebe distortion theorem is a classical result in complex analysis that provides control
over the absolute value of the derivative of a conformal function between domains in the
complex plane [35, Corollary 1.4], see also [1, Theorem1.6]. Astala andGehring [1, Theorem
1.8] extended this result to the class of quasiconformal maps in R

n , n ≥ 2.

Theorem 1.1 (Astala, Gehring) Let n ≥ 2. For every K ≥ 1, there exists a constant 1 ≤
cK < ∞ such that for every K -quasiconformal map f : � → �′ between domains in R

n

with � � R
n, it holds

1

cK

d( f (x), ∂�′)
d(x, ∂�)

≤ a f (x) ≤ cK
d( f (x), ∂�′)

d(x, ∂�)
for all x ∈ �. (1.1)

Here,

a f (x) := exp

(
1

n

1

Ln(B(x))

∫
B(x)

log J f dLn
)

, B(x) := B(x, d(x, ∂�)),

and Ln denotes Lebesgue measure on R
n.

Quasiconformal mappings are not necessarily differentiable everywhere, but they belong
to the Sobolev class W 1,n

loc . Consequently, Theorem 1.1 is formulated not for the pointwise
derivative, but for a f . This is a natural geometric quantity which, for n = 2 and f conformal,
agrees with | f ′(z)|. Both a f and Theorem 1.1 have found various applications, for instance
in connection with the global distortion properties of quasiconformal mappings [3], diameter
bounds for images of curves [29], in the studies of conformal metrics [9], and more recently
related to harmonic quasiconformal mappings [4]. We address counterparts of some of these
results as well as their generalizations.

More precisely, the goal of this paper is to prove a Koebe distortion theorem for quasi-
conformal mappings in the Heisenberg group and to study several applications thereof. The
Heisenberg group H

1 endowed with a left-invariant sub-Riemannian metric ds has played an
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important role as a testing ground and motivational example for the extension of the theory
of quasiconformal maps from Euclidean to more abstract metric spaces. This development
can be seen from a series of papers and notes [18,21,22,28,34]. Given the role of the sub-
Riemannian Heisenberg group in the development of the theory of quasiconformality, and
the wealth of quasiconformal mappings which can be constructed in this particular space by
methods described in [5–7,13,28], we consider H

1 a natural non-Euclidean setting where it
is worthwhile to study counterparts for a f and Koebe’s theorem.

Definition 1.2 For a quasiconformal map f : � → �′ between domains �,�′
� H

1, we
define

a f (x) := exp
(
1
4

(
log J f

)
B(x)

)
(1.2)

with B(x) := B(x, d(x, ∂�)) and u B := 1
m(B)

∫
B u dm.

Here and in the following, B = B(x, r) denotes an open ballwith center x and radius r > 0
with respect to a metric d which will depend on the context. Moreover, λB := B(x, λr).

The measure m is a bi-invariant Haar measure on H
1 as defined in Sect. 2.2. A domain is

an open connected set. The constant 4 which appears in (1.2) is unrelated to the factor 4 in
Koebe’s distortion theorem for conformal functions in the plane, but instead agrees with the
Hausdorff dimension of the sub-Riemannian Heisenberg group. The following is the main
theorem of this paper.

Theorem 1.3 For every K ≥ 1, there exists a constant 1 ≤ cK < ∞ such that for every
K -quasiconformal mapping f : � → �′ between domains in H

1 with � � H
1, it holds

1

cK

d( f (x), ∂�′)
d(x, ∂�)

≤ a f (x) ≤ cK
d( f (x), ∂�′)

d(x, ∂�)
for all x ∈ �. (1.3)

Theorem 1.3 is flexible with respect to the choice of the underlying distance in H
1. In

the Heisenberg group, one often considers two bi-Lipschitz equivalent distances: the sub-
Riemannian distance ds and the Korányi distance dH1 , see Sect. 2.2 for the definitions. Our
results apply both to d = ds and d = dH1 . Since the two distances are bi-Lipschitz equivalent,
a homeomorphism f : � → �′ is quasiconformal with respect to dH1 if and only if it is
quasiconformal with respect to ds . More is true: as explained in [28, §1.1], one obtains
the same class of K -quasiconformal mappings, K ≥ 1, with respect to either metric. The
definition of a f as given in Definition 1.2 depends on the metric d used to define the ball

B(x) = B(x, d(x, ∂�)); let us momentarily denote aH
1

f and as
f to indicate dependence on

dH1 or ds , respectively. Using Theorems 3.10, 1.4, and (3.3), we deduce by a similar argument
as in the proof of Lemma 4.2 that for every K ≥ 1, there exists a constant 0 < �K < ∞
such that

�−1
K aH

1

f (x) ≤ as
f (x) ≤ �K aH

1

f (x), for all x ∈ �.

It follows that once we have established Theorem 1.3 for either the Korányi or the sub-
Riemannian distance, then it also holds for the other one.

Proof and applications of the main result A crucial ingredient in the proof of Theorem
1.3 is the following result, which we establish both with respect to the Korányi distance dH1

and the sub-Riemannian distance ds . The necessary concepts, in particular BMO spaces and
BMO seminorms ‖ · ‖∗ on open sets � ⊂ H

1, are introduced in Sect. 3.

Theorem 1.4 Let f : � → �′ be a K -quasiconformal map between domains in H
1. Then

log J f belongs to BMO(�) with a bound for ‖ log J f ‖∗ in terms of K .
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As far as we know, a direct proof of this result in the case � is a domain, not the whole
space, does not appear explicitly in the literature, even in the Euclidean setting (cf. [36,
Remark 2]). One way to obtain the result is by first proving that log J f belongs to some
local BMO space BMOloc(�) and then using the identity BMO(�) = BMOloc(�). This
is the approach which we pursue here. In the case of the sub-Riemannian distance ds , the
equality of BMO and BMOloc goes back to work of S. Buckley and O. Maasalo [11,32].
We employ results by S. Staples [39] in order to deduce the corresponding identity for the
Korányi distance dH1 in place of ds . To be precise, Staples’ result is used to establish the
following.

Theorem 1.5 For every open set � ⊂ H
1,

BMOs(�) = BMOH
1
(�)

with

c1‖ · ‖H1

∗ ≤ ‖ · ‖s∗ ≤ c2‖ · ‖H1

∗
for constants 0 < c1 ≤ c2 < ∞ that do not depend on �.

The equivalence of various BMO spaces is used in the proof of Theorem 1.4 together with
distortion estimates that we deduce from the local quasisymmetry property of quasiconformal
mappings.

The proof of our main result, Theorem 1.3, utilizes the auxiliary results established in
Sect. 3, Theorem 1.4, quantitative control over the local quasisymmetry data of quasiconfor-
mal mappings, as well as other observations such as the distance estimate in Proposition 4.4.
The latter extends [2, Lemma 5.15] from planar disks to arbitrary domains in H

1.
We also discuss various applications of Theorem 1.3, both for the sub-Riemannian and

the Korányi distance:

• Coupled with ball estimates and covering arguments, the Koebe theorem yields qua-
siconformal versions of results established in [31] for quasisymmetries in an abstract
setting. In Proposition 5.1 we extend a diameter estimate for images of curves under
quasiconformal mappings by Koskela, [29, Lemma 2.6], to the setting of H

1 and we use
an H

1 version of the radial stretch mapping to show the sharpness of this result.
• Section 5.2 is devoted to proving the comparability relation between the L p-operator

norm of the horizontal differential of a quasiconformal mapping and the L p-integral of
a f , see Theorem 5.3. This extends a result by Astala and Koskela [3] to the Heisenberg
setting, and it shows how the global integrability properties of the horizontal derivative
of a quasiconformal map on a domain in H

1 depend on the distortion properties encoded
by a f . Among others, our proof requires a specific Whitney decomposition, Lemma 5.5,
which we believe to be of independent interest.

• Finally, in Sect. 5.3, we apply several of the mentioned results together with Theorem
1.3 to extend a result of Bonk–Koskela–Rohde [9] regarding conformal metrics and
quasiconformal mappings on the unit ball to general domains in the Heisenberg group,
equippedwith either dH1 or ds . Namely,we prove the following result (see Proposition 5.7
for the precise statement):

Theorem 1.6 If f : � → �′ is a K -quasiconformal map between domains �,�′
� H

1,
then a f satisfies

(1) a Harnack inequality,
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(2) a growth condition for volume:∫
Ba f (x,r)

a4
f dm � r4 for all x ∈ �, r > 0,

where Ba f (x, r) := {y ∈ � : inf
∫
γ

a f ds < r} with the infimum taken over all locally
rectifiable curves in � that connect x and y.

The implicit multiplicative constants in (1) and (2) depend only on K and the properties of
the metric space (H1, d), d ∈ {ds, dH1}.

For quasiconformal maps defined on the entire space H
1, the results mentioned above are

either meaningless or already known. We consider it one of the contributions of the present
paper to provide appropriate localizations and to handle the technical difficulties that arise
when dealing with maps defined on subdomains � � H

1. Our work is inspired by results for
quasiconformal maps on disks in the plane, and more generally on domains in R

n . Several
tools available in the Euclidean setting, such as the Teichmüller rings used in [36, Lemma
4], an extension results for quasiconformal mappings or the Mori distortion theorem used in
[2], are not available in the Heisenberg group. We show that the local η-quasisymmetry of
quasiconformal maps with a good control over η can be used as a substitute for these missing
tools.
Structure of the paper In Sect. 2 we introduce the most important notions used throughout
this paper. We recall some basic information about the Heisenberg group and discuss quasi-
conformal and quasisymmetric mappings inH

1. Section 3 is devoted to the proof of Theorem
1.4, along the way we also establish Theorem 1.5. In Sect. 4, we prove our main result, The-
orem 1.3. We conclude the paper with Sect. 5, in which we discuss various applications of
Theorem 1.3 that culminate in Theorem 1.6.

2 Definitions and preliminaries

The purpose of this section is to introduce concepts appearing in this paper: Loewner spaces,
the Heisenberg group, and quasiconformal mappings (in the Heisenberg group). The defini-
tions given here are standard, and a reader who is familiar with the subject may wish to go
directly to Sect. 3.

2.1 Curves and Loewner spaces

An important tool in the theory of quasiconformal mappings is the modulus of curve families,
discussed in detail for instance in [22] and in the monographs [33,42]. Crucial properties of
quasiconformal mappings that will be used in this paper, for instance Propositions 2.6 and
3.12, are ultimately based on modulus estimates.

By a curve in a metric space (X , d) we mean a continuous map γ : I → X of an interval
I ⊂ R. A Borel function ρ : X → [0,+∞] can be integrated with respect to arc length
along rectifiable curves. For a locally rectifiable curve γ : I → X , we set∫

γ

ρ ds := sup
γ ′

∫
γ ′

ρ ds,

where the supremum is taken over all rectifiable subcurves γ ′ of γ .
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152 T. Adamowicz et al.

Definition 2.1 Let (X , d) be ametric space and letμ be aBorelmeasure on X . The admissible
densities of a family 	 of curves in X are defined as

adm(	) :=
{
ρ : X → [0,+∞] Borel:

∫
γ

ρ ds ≥ 1 for all γ ∈ 	 locally rectifiable

}
.

The p-modulus of 	 for p ≥ 1, of 	 is given by

modp(	) := inf

{∫
X

ρ p dμ : ρ ∈ adm(	)

}
.

The family of all curves in X connecting two sets E and F is denoted by 	(E, F, X).

Definition 2.2 Let (X , d) be a rectifiably connected metric space of Hausdorff dimension
Q ≥ 1 and assume that X is endowed with a locally finite Borel regular measure μ with
dense support. Then X is said to be a (Q-)Loewner space if for all t ∈ (0,∞) one has

ψ(t) := inf

{
modQ	(E, F, X): �(E, F) := dist(E, F)

min{diamE, diamF} ≤ t

}
> 0, (2.1)

where the infimum is taken over disjoint nondegenerate continua (compact and connected
sets) E and F in X . We call the function ψ the Loewner function of (X , d, μ).

2.2 The Heisenberg group

The first Heisenberg group H
1 is a noncommutative nilpotent Lie group homeomorphic to

R
3. It can be endowed with a left-invariant distance d such that (H1, d) does not biLips-

chitzly embed into any Euclidean space, yet exhibits a rich and interesting geometry. For an
introduction to the subject, we refer the interested reader to the monograph [12].

Our model for H
1 is the group (R3, ∗) where the group law is given by

(x, y, t) ∗ (x ′, y′, t ′) = (x + x ′, y + y′, t + t ′ − 2xy′ + 2x ′y).

Using this group law, one defines a frame of left-invariant vector fields which agree with the
standard basis at the origin:

X := ∂x + 2y∂t , Y := ∂y − 2x∂t , T := ∂t .

The vector fields X and Y , which are called horizontal, have a non-vanishing commutator
[X , Y ] = − 4T . This ensures that any two points p and q in H

1 can be connected by an
absolutely continuous curve γ : [0, 1] → H

1 with the property that

γ̇ (s) ∈ Hγ (s), a.e. s ∈ [0, 1], where Hp := span{X p, Yp}.
Such a γ is called a horizontal curve. The sub-Riemannian distance ds is defined by

ds(p, q) = inf
γ

∫ 1

0

√
γ̇1(s)2 + γ̇2(s)2 ds,

where the infimum is taken over all horizontal curves γ = (γ1, γ2, γ3): [0, 1] → H
1 that

connect p and q . It is well known that ds defines a left-invariant metric on H
1 which is

homogeneous under the Heisenberg dilations (δλ)λ>0, given by

δλ : H
1 → H

1, δλ(x, y, t) = (λx, λy, λ2t) for (x, y, z) ∈ H
1.
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Any two homogeneous left-invariant metrics on H
1 are bi-Lipschitz equivalent, and it is

often more convenient to work with a left-invariant metric which is given by an explicitly
computable formula, rather than to use ds . An example of such a metric is the Korányi
distance, defined by

dH1(p, q) := ‖q−1 p‖H1 , where ‖(x, y, t)‖H1 = 4
√

(x2 + y2)2 + t2.

For all p, q ∈ H
1 it holds that

1√
π

ds(p, q) ≤ dH1(p, q) ≤ ds(p, q), (2.2)

see [8], and the length distance associated to dH1 is exactly ds .
In addition to the metric structure, we endow the Heisenberg group with a bi-invariant

Haar measure m which is given by the Lebesgue measure on R
3. We recall that this measure

m is Ahlfors 4-regular. It agrees, up to a positive and finite multiplicative factor, with the
four-dimensional Hausdorff measure with respect to a left-invariant homogeneous distance
on H

1. Unless otherwise stated, “measurable” and “integrable” will in the following always
mean “m measurable” and “m integrable”. We denote m(A) =: |A| for A ⊆ H

1, and we
write

∫
f dm = ∫

f (x) dx . Equipped with m and any homogeneous left-invariant distance,
the Heisenberg group becomes a 4-Loewner space, see for instance [19, §9.25].

ConventionWhenever we discuss quantitative dependencies of parameters on certain
constants, we will omit information that such constants may also depend on the data
of the metric measure space (H1, dH1 , m) or (H1, ds, m). For instance, if we say that
“a constant C depends only on the distortion K of the mapping”, the constant C may
depend also on the Loewner function, the quasiconvexity and doubling constants, etc
associated to d ∈ {ds, dH1}.
As remarked in the introduction, Theorem 1.3 for dH1 is equivalent to the analogous
statement with respect to ds . The same holds true for the applications (Propositions
5.1, 5.7, Theorem 5.3). For auxiliary results needed in these proofs, we will always
specify whether they hold with respect to ds , dH1 , or both.

2.3 Quasiconformal and quasisymmetric mappings

In this section, we collect the relevant facts about quasiconformal mappings in the Heisen-
berg group. Quasiconformal maps can be defined primarily by three definitions, the metric,
analytic and geometric definition, all of which are mutually and quantitatively equivalent on
domains in H

1, even though the distortion factor need not be the same for each definition.
The equivalence of these definitions is a central part of the general theory of quasiconformal
maps, and we refer the reader to [18,22,23,41] for details at a general level and [28] for
the specific case of the Heisenberg group. An important feature to note is that the class of
metrically defined quasiconformal maps is the same for any pair of bi-Lipschitz equivalent
metrics with a quantitative control on the distortion. As remarked in the introduction, if the
two metrics are the sub-Riemannian distance ds and the Korányi metric dH1 , then one gets
even the same class of K -quasiconformal maps. Thus, in our context it often does not mat-
ter if we use the sub-Riemannian metric or the Korányi metric and so we leave the metric
unspecified in the respective statements.

In order to state the metric definition of quasiconformal mappings, we introduce the
following notation. Let � ⊆ H

1 be an open set and let further f : � → f (�) ⊆ H
1 be a
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homeomorphism. For all p ∈ � and all r > 0, we define

L f (p, r) := sup{d( f (p), f (q)): q ∈ �, d(p, q) ≤ r},
l f (p, r) := inf{d( f (p), f (q)): q ∈ �, d(p, q) ≥ r}, and

H f (p) := lim sup
r→0

L f (p, r)

l f (p, r)
.

Definition 2.3 (Metric definition) We say that a homeomorphism f : � → f (�) ⊆ H
1 of

an open set � ⊆ H
1 is quasiconformal, if H f is bounded on �.

While metric quasiconformality is an infinitesimal property, quasisymmetry is a global
and generally stronger condition.

Definition 2.4 (Quasisymmetric definition) If� is an open set inH
1 andη : [0,∞) → [0,∞)

is a homeomorphism, then we say that a homeomorphism f : � → f (�) ⊆ H
1 is η-

quasisymmetric if

d( f (p1), f (p2))

d( f (p1), f (p3))
≤ η(t) (2.3)

for all t > 0 and all triples of distinct points p1, p2, p3 ∈ � satisfying d(p1, p2) ≤
td(p1, p3). A map f is said to be quasisymmetric if it is η-quasisymmetric for some η.
We say that f is (weakly) H -quasisymmetric if there exists a constant H ≥ 1 such that

d( f (p1), f (p2))

d( f (p1), f (p3))
≤ H (2.4)

for all triples of distinct points p1, p2, p3 ∈ � satisfying d(p1, p2) ≤ d(p1, p3).

A quasiconformalmapdefined on all ofH1 isη-quasisymmetric for someη that depends on
the quasiconformal distortion [21].An analogous statement is not true in general formappings
defined on a subdomain of H

1, but the metric definition still implies a local quasisymmetry
condition in the sense of Theorem 2.5 and Proposition 2.6. This goes back to [28, Proposition
22]. Theorem 2.5 was proven (for Carnot groups of dimension at least 2) by Heinonen and
Koskela [21, Theorem 1.3] for globally defined maps, but Heinonen remarked in [18, p.25]
that the argument can be adapted to mappings between open subsets. The details for the proof
showing that η can be chosen independently of the domain � are given in [38]; see also the
comment below.

Theorem 2.5 (Heinonen, Koskela) For every K ≥ 1, there exists a homeomorphism η :
[0,∞) → [0,∞) such that the following holds. If f is a K -quasiconformal mapping of an
open set � ⊆ (H1, ds) according to Definition 2.3, then for all triples p, q1, q2 ∈ � with
q1, q2 ∈ B(p, 1

2ds(p, ∂�)), the mapping f satisfies:

ds( f (p), f (q1))

ds( f (p), f (q2))
≤ η

(
ds(p, q1)

ds(p, q2)

)
.

By the triangle inequality, the “p-centered” quasisymmetry property in Theorem 2.5
implies quasisymmetry of f on the sub-Riemannian ball B(p, 1

5ds(p, ∂�)). Following the
terminology in [19, p. 93], we call this fact an “egg yolk principle”. E. Soultanis and M.
Williams [38, Lemma 5.2] provided a proof for this principle in great generality, and with
a quantitative control both on the size of the “egg yolk” and the η-function in the definition
of local quasisymmetry. See Proposition 4.3 for a related corollary. Naturally, one can also
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establish the local quasisymmetry property for the metric dH1 instead of ds (with a possibly
different homeomorphism η). This is because the comparability of the metrics ds and dH1 as
stated in (2.2) implies that

BH1

(
p,

dH1(p, ∂�)

5
√

π

)
⊆ Bs

(
p,

ds(p, ∂�)

5

)
(2.5)

for all domains � � H
1 and all p ∈ �. We record these observations as a proposition, for

which we do not claim any novelty.

Proposition 2.6 Let K ≥ 1 and d ∈ {ds, dH1}. Then there exists a homeomorphism η :
[0,+∞) → [0,+∞) such that every K -quasiconformal map f : � → �′ between domains
in H

1 is locally η-quasisymmetric in the following sense. For every p ∈ �, the map f
restricted to the d-ball B(p, d(p, ∂�)/cd) is η-quasisymmetric, where cd = 5 for d = ds ,
and cd = 5

√
π for d = dH1 .

Quasiconformal maps also exhibit useful analytic properties. It was shown by G. Mostow
that a quasiconformal map on a domain inH

1 is absolutely continuous on lines (ACL), see the
discussion in [28]. This property is defined analogously as the ACL property for mappings
on open subsets of R

n , but in terms of the fibrations given by the left-invariant horizontal
vector fields X and Y instead of lines parallel to the coordinate axes. Pansu [34] showed that
local quasisymmetry for a map f on an open subset of H

1 implies further analytic features
similar to those of quasiconformal mappings on domains in R

n : for a quasiconformal map
f on � the horizontal derivatives X f (p) and Y f (p) exist for almost every p ∈ �, and f is
Pansu differentiable almost everywhere in �.

We define the Jacobian J f (p) of a quasiconformal map f at p ∈ � as the volume
derivative

J f (p) = lim sup
r→0

| f (B(p, r))|
|B(p, r)| for p ∈ �.

According to Lebesgue’s differentiation theorem, the lim sup can be replaced by lim in almost
every point p ∈ �. If a quasiconformal map f = ( f1, f2, f3) is P-differentiable at p, then
J f (p) = det DH f (p)2, where

DH f (p) =
(

X f1 Y f1
X f2 Y f2

)
.

The analytic definition of quasiconformal mappings can now be stated as follows.

Definition 2.7 (Analytic definition) If � is an open set in H
1, we say that a homeomorphism

f : � → f (�) ⊂ H
1 is K -quasiconformal if it is ACL, Pansu differentiable almost

everywhere, and satisfies the following distortion condition: there exists 1 ≤ K < ∞ such
that

‖DH f (p)‖4 ≤ K J f (p) for almost every p ∈ �, (2.6)

where

‖DH f (p)‖ = max{|DH f (p)ξ | : ξ ∈ Hp, |ξ | = 1}
and | · | is obtained from the inner product which makes {X , Y } orthonormal. A map f is
said to be quasiconformal if it is K -quasiconformal for some 1 ≤ K < ∞.
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Quasiconformal mappings are also absolutely continuous in measure (Proposition 3 in
[28]) with J f > 0 almost everywhere on �. This allows to show that the metric and analytic
definition for quasiconformal mappings between domains inH

1 are quantitatively equivalent
to a third condition, the geometric definition, based on the 4-modulus of curve families.
We have decided to define “K -quasiconformal” through the analytic distortion inequality
(2.6). This is a matter of taste, but is convenient due to the following implications for a
homeomorphism f on � ⊂ H

1:

K -quasiconformal ⇔ metrically quasiconformal with esssupp∈� H f (p) ≤ √
K .

(2.7)
Finally, we state a theorem due to Korányi and Reimann [28, Proposition 20].

Theorem 2.8 (Korányi, Reimann) The inverse of a K -quasiconformal mapping between
domains in H

1 is K -quasiconformal.

In [28], the metric definition was used to define “K -quasiconformal”, but it can be seen
from the proof, or by applying (2.7), that the statement holds equivalently if the distortion is
defined via the analytic definition as done in the present paper.

3 BMO spaces and Jacobians of quasiconformal mappings

It is well known that the Jacobian Jf of a quasiconformalmap f : R
n → R

n is an A∞-weight
and hence log Jf is of bounded mean oscillation (BMO). The situation is more subtle if one
considers quasiconformal maps on a subdomain � ⊂ R

n . As shown in [20], it is not true in
general that J f is an A∞-weight on �, but even so log J f lies in the (appropriately defined)
space BMO(�). The goal of this section is to extend the latter statement from R

n to H
1 by

proving Theorem 1.4. We start with the relevant definitions. For further reading, a classical
reference for BMO spaces on homogeneous groups is [16].

3.1 BMO spaces on domains inH
1

Definition 3.1 Let � be an open subset of H
1. We say that a function u ∈ L1

loc(�) belongs
to BMOs(�) if there is a constant C such that∫

B
|u − u B | dm ≤ C, for every ds-ball B ⊆ �.

The space BMOH
1
(�) is defined analogously with “ds” replaced by “dH1”.

Definition 3.2 For a domain� ⊆ H
1 and a function u ∈ BMOs(�), we define theBMOs(�)-

(semi)norm as

‖u‖s∗ := sup
B

∫
B

|u − u B | dm,

where the supremum is taken over all ds-balls B ⊂ �.
The seminorm ‖ · ‖H1

∗ is defined analogously with “ds” replaced by “dH1”.

If the choice ofmetric d ∈ {ds, dH1} is clear from the context (or irrelevant), we sometimes
omit the superscript simply write BMO(�) and ‖ · ‖∗.
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Wewill prove Theorem 1.4, which states that log J f ∈ BMO(�) for every quasiconformal
map f defined on a domain � ⊂ H

1, and moreover, ‖ log J f ‖∗ can be bounded in terms of
the distortion constant of f . The outline of the proof follows its Euclidean predecessors in
[36,37]. The main technical difficulty stems from the fact that we consider mappings which
might be defined only on a subdomain of H

1, and we work both with the sub-Riemannian
distance and theKorányimetric. Formappings of the entireHeisenberg group, it iswell known
that J f is aMuckenhoupt Ap-weight for some 1 ≤ p < ∞, and hence an A∞-weight. This is
a consequence of a ‘reverse Hölder inequality’ due to Korányi and Reimann (Theorem 3.11),
see for instance the overview in Section 3 of [5]. In Sect. 3.2, we discuss various local BMO
spaces in the setting of the Heisenberg group H

1, based on a characterization of BMO spaces
in doubling length metric spaces due to S. Buckley. Sections 3.3 and 3.4 contain properties
of the Jacobian J f of a quasiconformal mapping, which are used to deduce in Sect. 3.5 that
log J f belongs to a certain local BMO space. This in turn gives us the proof of Theorem 1.4.

3.2 Local BMO spaces on domains inH
1

The goal of this section is to study the local BMO spaces defined with respect to distance
functions dH1 and ds . Among the results we show that all the respective spaces agree.

Definition 3.3 Let � be an open subset of H
1. We say that u ∈ L1

loc(�) belongs to the local
n-BMO space BMOs

n,loc(�) for n ≥ 1 if there is a constant C such that∫
B

|u − u B | dm ≤ C, for every ds-ball B with nB ⊆ �. (3.1)

We say thatu ∈ L1
loc(�)belongs toBMOs

loc(�) if there isn > 1 such thatu ∈ BMOs
n,loc(�).1

The spaces BMOH
1

n,loc(�) and BMOH
1

loc(�) are defined analogously with “ds” replaced by
“dH1”.

As before, we may write BMOn,loc(�) and BMOloc without specifying the metric d ∈
{ds, dH1}.
Definition 3.4 For a domain � ⊆ H

1 and a function u ∈ BMOn,loc(�), we define the
BMOn,loc(�)-(semi)norm as

‖u‖BMOn,loc(�) := sup
B

∫
B

|u − u B | dm,

where the supremum is taken over all d-balls B which satisfy nB ⊂ �.

The following lemma addresses some of the claims made in the introduction.

Lemma 3.5 For all open sets � ⊆ H
1, for all n ≥ 1 and for all u ∈ L1

loc(�)

‖u‖BMOs√
πn,loc

(�) ≤ 2π2‖u‖
BMOH1

n,loc(�)
and ‖u‖

BMOH1√
πn,loc

(�)
≤ 2π2‖u‖BMOs

n,loc(�).

In particular, one has

BMOH
1

n,loc(�) ⊂ BMOs√
πn,loc(�) and BMOs

n′,loc(�) ⊂ BMOH
1√
πn′,loc(�), (3.2)

for all n, n′ ≥ 1.

1 In our application, the constant n will be determined by the proof. In the standard definition of BMOloc(�)

one would take n = 2, as for instance in [11].
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Proof We prove the first inclusion in (3.2) and the estimate for the corresponding seminorms.
The proof of the remaining claims follows the same lines. The argument uses the precise
relation between ds and dH1 stated in (2.2). Let us denote by B = Bs(x, r) ⊂ � a ball defined
with respect to the sub-Riemannian distance such that

√
πnB ⊂ �, for a given n ≥ 1. By the

above relation between distances, there exists a ball B ′ = BH1(x, r), defined with respect to
the Korányi distance, satisfying B ′ ⊂ � and such that B ⊂ B ′ and nB ′ ⊂ �. We verify by
direct computations that for any function u ∈ BMOH

1

n,loc(�) it holds that

|u B′ − u B | = 1

|B|
∣∣∣∣
∫

B
(u B′ − u) dm

∣∣∣∣ ≤ c

|B ′|
∫

B′
|u B′ − u| dm,

where c = π2. From this estimate, we infer the following inequality:

1

|B|
∫

B
|u − u B | dm ≤ 1

|B|
∫

B
|u − u B′ | + |u B − u B′ | dm

≤ c

|B ′|
∫

B′
|u − u B′ | dm + c

|B ′|
∫

B′
|u B′ − u| dm

≤ 2c

|B ′|
∫

B′
|u − u B′ | dm. (3.3)

Applying this reasoning to all sub-Riemannian balls with
√

πnB ⊆ �, it follows that u ∈
BMOs√

πn,loc
(�) provided that u ∈ BMOH

1

n,loc(�), with the desired bound for the BMO-norm.
The second inclusion in (3.2) with the corresponding estimate for the BMO norm follows

the same reasoning with B := BH1(x, r), B ′ := Bs(x,
√

πr) and n replaced by n′. ��
Remark 3.6 Lemma 3.5 is a special case of a more general result holding in doubling metric
measure spaces for two given bi-Lipschitz equivalent metrics, as can be seen from the proof.
Our focus here lies on the two metric ds and dH1 and the precise relations that can be derived
from (2.2). For more information about BMO spaces in doubling length metric spaces and
their applications, we refer the interested reader to [11] and the references therein.

We will later see that BMOs(�) = BMOs
n,loc(�) for all n > 1. Lemma 3.5 then implies

BMOH
1
(�) ⊆ BMOs(�), but the reverse inclusion does not follow directly from the lemma

since this would require to consider arbitrary balls contained in �. To discuss this, we follow
Staples [39, Definition 2.1], and introduce the following definition.

Definition 3.7 Consider the metric measure space (H1, ds, m). A domain D in this space is
said to be an L1-averaging domain if m(D) < ∞ and for some n > 1 we have

1

|D|
∫

D
|u(x) − u D| dm ≤ Cave

(
sup

nBs⊂D

1

|Bs |
∫

Bs

|u(x) − u Bs | dm

)

for a constant 0 < Cave < ∞ which does not depend on u. The supremum in this definition
is taken over all sub-Riemannian balls Bs for which the enlarged ball nBs is contained in D.

Staples defines more generally L p-averaging domains for p ≥ 1 in the setting of homo-
geneous spaces in the sense of Coifman and Weiss, see Section 2 in [39] for details.

We wish to show that all Korányi balls D in H
1 are L1-averaging domains with uniform

constants Cave and n. To this end we will show that the unit ball is an L1-averaging domain,
and then conclude by left-invariance and homogeneity. The L1-averaging property of D is a
consequence of the geometric condition we now discuss.
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FollowingDefinition 2.1 in [10] we say that a domain D in (H1, ds, m) satisfies theBoman
chain condition if there exist constants M > 0, λ > 1, C2 > C1 > 1, and, a family F of
ds-balls such that

(1) D = ⋃
B∈F C1B (the domain D is the union of enlarged balls in F).

(2)
∑

B∈F χC2B (x) ≤ MχD (x) for all x ∈ H
1 (a point in D is covered by at most M

enlarged balls in F).
(3) there exists a so-called “central ball” B∗ ∈ F such that for each ball B ∈ F there is a

positive integer k = k(B) and a chain of balls B0, . . . , Bk such that B0 = B, Bk = B∗
and the following properties hold:

(3.1) for every j = 0, . . . , k − 1 there exists a ball D j satisfying

D j ⊂ C1B j ∩ C1B j+1 and m(B j ) ≈ m(D j ) ≈ m(B j+1).

(3.2) B ⊂ λB j for all j = 0, . . . , k(B).

Theorem 3.1 in [10], stated for more general homogeneous metric spaces, in particular
shows that John domains in (H1, ds, m) satisfy the Boman chain condition.

Proposition 3.8 The Korányi unit ball D = BH1(0, 1) is an L1-averaging domain in
(H1, ds, m).

Proof First, D is a John domain in (H1, ds). To prove this, it suffices to show that there exists
a point p0 (the “John center”) and a constant C ≥ 1 such that every p ∈ D can be connected
to p0 by a rectifiable curve γ with the property that

ds(γ (t), ∂ D) ≥ C−1 min{ds(p0, γ (t)), ds(γ (t), p)}
for all γ (t). Clearly we can take p0 = 0. For p ∈ D, we let γ be a (sub-Riemannian) geodesic
with γ (0) = 0 and γ (1) = p. Then, it suffices to observe that for all q ∈ Bs(γ (t), 1 − t),
one has

dH1(q, 0) ≤ dH1(q, γ (t)) + dH1(γ (t), 0) ≤ ds(q, γ (t)) + ds(γ (t), 0) ≤ 1 − t + t = 1.

By the discussion preceding the statement of Proposition 3.8, the John domain D satisfies
the Boman chain condition. Theorem 4.2 in [39] implies that every domain which satisfies
the Boman chain condition is an Lr -averaging domain for every 1 ≤ r < ∞, and thus, in
particular for r = 1. Hence D is an L1-averaging domain as claimed. ��
Corollary 3.9 Every Korányi ball BH1(p, r) is an L1-averaging domain with the same con-
stants Cave and n.

Proof Denote D0 := BH1(0, 1). By Proposition 3.8, there exist 0 < C0 < ∞ and n0 > 1
such that

1

|D0|
∫

D0

|u(x) − u D0 | dm ≤ C0

(
sup

n0Bs⊂D0

1

|Bs |
∫

Bs

|u(x) − u Bs | dm

)
. (3.4)

Consider now an arbitrary Korányi ball D := BH1(p, r). Recall that left translations, denoted
τp , have Jacobian determinant equal to 1, and dilations by r , denoted δr , are diffeomorphisms
with Jacobian r4. This yields by the transformation formula that

u D := 1

|D|
∫

D
u dm = 1

r4
1

|D0|
∫

D0

(u ◦ τp ◦ δr )r
4 dm = (u ◦ τp ◦ δr )D0 .
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Hence, by (3.4),

1

|D|
∫

D
|u(y) − u D| dy = 1

|D0|
∫

D0

|v(x) − vD0 | dx

≤ C0

(
sup

n0Bs⊂D0

1

|Bs |
∫

Bs

|v(x) − vBs | dm

)

= C0

(
sup

n0Bs⊂D

1

|Bs |
∫

Bs

|u(x) − u Bs | dm

)

for v := u ◦ τp ◦ δr . ��
Theorem 3.10 The following statements hold true for every open set � in H

1 with constants
independent of �.

(1) BMOs(�) = BMOs
n,loc(�) for all n > 1 with

‖ · ‖BMOs
n,loc(�) ≤ ‖ · ‖s∗ ≤ cs

n‖ · ‖BMOs
n,loc(�), (3.5)

(2) BMOs(�) = BMOH
1
(�) with

c1‖ · ‖H1

∗ ≤ ‖ · ‖s∗ ≤ c2‖ · ‖H1

∗ (3.6)

(3) BMOH
1
(�) = BMOH

1

n,loc(�) for all n > 1 with

‖ · ‖
BMOH1

n,loc(�)
≤ ‖ · ‖H1

∗ ≤ cH
1

n ‖ · ‖
BMOH1

n,loc(�)
.

Proof First, the following holds trivially for any n > 1:

BMOH
1
(�) ⊆ BMOH

1

n,loc(�) and ‖ · ‖
BMOH1

n,loc(�)
≤ ‖ · ‖H1

∗

and the same is true for the BMO spaces considered with respect to the sub-Riemannian
distance. Next, as claimed in (1), we note that

BMOs(�) = BMOs
n,loc(�) for all n > 1, (3.7)

where only the inclusion “⊇” is nontrivial. In the setting of doubling metric measure spaces
with a length metric, the assertion is essentially proven by Buckley in Theorem 0.3 in [11].
However, Buckley’s proof specifically considers balls B such that 2B ⊂ � and requires
significant effort in its adaptation to the more general condition nB ⊂ � for some n > 2.
Instead we follow the shorter and more transparent proof of Theorem 2.2 in [32]. As H

1

equipped with the sub-Riemannian distance ds is a length space, Theorem 2.2 in [32] can
now be applied with λ = n, see the proof of [32, Theorem 2.2]. Since our reasoning is
verbatim the same as in [32] for n = 2, let us focus only on the modifications required for
general n.

Consider a ball B(x0, R) that is admissible for ‖ · ‖s∗ and a point x ∈ B(x0, R). The
key part of the proof is to construct a certain chain of balls Bi (xi , ri ) in � centered on a
geodesic and connecting small enough balls B(x0, r0) and B(x, rx ) in such a way that for
i = 1, . . . , N − 1 one has ri = R−ds (x0,xi )

2n+1 . Then one shows that ri = αN−i rN , with α :=
2n+1+1
2n+1−1

. As in [32, (2.11)], we then obtain the following estimate for the length of the chain:

N − 1 ≤ c logα

(
R

R−ds (x0,x)

)
. Thus, the counterpart of [32, (2.12)] reads: N − 1 ≤ c logα nk
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if x is at a certain distance of x0, as quantified by k. The rest of the proof follows exactly as
in [32]. This yields (3.7) with the quantitative control on the respective BMO-norms stated
in (3.5) (depending on n and the doubling constant of (H1, ds, m)).

We now proceed to part (2) of the theorem. It follows from Lemma 3.5 and (3.7) that

BMOH
1
(�) ⊆ BMOH

1

n,loc(�) ⊆ BMOs√
πn,loc(�) = BMOs(�)

for all n > 1, with ‖ · ‖s∗ bounded from above by a universal constant times ‖ · ‖H1

∗ . The goal
now is to show the reverse inclusion. To do so, we use the

fact that all Korányi balls are L1-averaging domains with uniform constants, cf. Corol-
lary 3.9. Let DH1 denote a Korányi ball contained in �. Then

‖u‖
BMOH1

(�)
= sup

D
H1⊆�

1

|DH1 |
∫

D
H1

|u − u D
H1 | dm

≤ sup
D
H1⊆�

Cave

(
sup

nBs⊂D
H1

1

|Bs |
∫

Bs

|u(x) − u Bs | dm

)

≤ Cave sup
Bs⊂�

1

|Bs |
∫

Bs

|u(x) − u Bs | dm

= Cave‖u‖BMOs (�).

This concludes the proof of (3.6). Combined with this and (3.7), part (3) of the theorem is
now a direct consequence of Lemma 3.5. ��

As mentioned in the introduction to Sect. 3, our goal is to show that log J f belongs to
BMO(�) (both with respect to dH1 and ds) for every quasiconformal map f on the domain
�. In order to complete this goal, we need to recall and show a number of auxiliary results.
This is done in Sects. 3.3 and 3.4.

3.3 Higher integrability and reverse Hölder inequality

Quasiconformal mappings between domains in H
n satisfy a higher integrability property

analogous to the one established byGehring inR
n , see [17]. Specialized to thefirstHeisenberg

group (endowed with the Korányi distance), Theorem G in [28] reads as follows.

Theorem 3.11 (Korányi, Reimann) For every K ≥ 1, there exist constants c > 1 and κ > 0
depending only on K such that the Jacobian of a K -quasiconformal mapping f : � → �′
between domains in (H1, dH1) satisfies the inequality

(∫
B(x,r)

J
p
4
f dm

) 4
p ≤

(
κ

4 + κ − p

) 1
p
∫

B(x,r)

J f dm, (3.8)

for all p ∈ [4, 4 + κ) and r ≤ d
H1 (x,∂�)

c .

In this theorem, balls are defined with respect to dH1 . The statement of Theorem G in [28]
contains no mean value integrals; however, the proofs of Propositions 19, 21 and 23 in [28]
reveal that assertion (3.8) holds as stated above. The proof is based on a Heisenberg version
of Gehring’s lemma and a reverse Hölder inequality for Jf .
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3.4 Ap-weights and distortion of balls

In this section, we apply Theorem 3.11 in order to show that the Jacobian of a quasiconformal
map satisfies an Ap-weight conditiononballswhich liewell inside the domainof themapping,
see Proposition 3.13 for the precise statement. This is one of the key ingredients in the proof
of the BMO property of the Jacobian (Theorem 1.4).

3.4.1 Distortion of balls

For the proof of Proposition 3.13, we use the following auxiliary observation, which can
be deduced from the local quasisymmetry property of quasiconformal mappings between
domains inH

1. In descriptive terms, it says that if a ball B lies well enough inside the domain
of a quasiconformal map f , then also its image lies well inside the image domain �′ and
moreover one can find an annulus around B whose image looks again like a spherical annulus,
where the statements can be quantified in terms of the quasiconformality constant of f and
the distance of f (B) from ∂�′.

Proposition 3.12 For every K ≥ 1, c > 1, and d ∈ {ds, dH1}, there exists a constant k > 1
such that the following holds. Whenever f : � → �′ is a K -quasiconformal map between
domains in H

1, and B = B(x, r) is a ball in (H1, d) such that B(x, 10kr) ⊂ �, then there
exists a ball B ′ = B( f (x), r ′) in (H1, d) such that

(1) f (B) ⊂ B ′ ⊂ f (k B),
(2) cB ′ ⊂ �′.

Moreover, every such ball B ′ satisfies

diam( f (B)) ≤ 2

c − 1
d( f (x), ∂�′) and d( f (x), ∂�′) ≤ c

c − 1
dist( f (B), ∂�′). (3.9)

Proof For k > 1 to be determined, let B = B(x, r) be as in the assumptions of the proposition
and set

r ′ := sup
{u: d(x,u)=r}

d( f (x), f (u)).

We will verify that B ′ := B( f (x), r ′) has properties (1) and (2) if k is chosen sufficiently
large (depending on K and c). The inclusion f (B) ⊆ B ′, and hence one half of the claim
(1), is immediate from the choice of r ′ and the path connectedness of H

1\B ′. Indeed, if there
was w ∈ B with f (w) ∈ H

1\B ′, then by connecting f (w) with a point in H
1\ f (k B) by

a curve in H
1\B ′, one could find u′ ∈ ∂ B with d( f (x), f (u′)) > r ′, which contradicts the

definition of r ′.
Next, since B(x, 10kr) ⊂ �, then by the discussion in Sect. 2.3 we know that f is η-

quasisymmetric on B(x, kr) for a homeomorphism η : [0,∞) → [0,∞) that depends only
on K . Let y ∈ ∂ B be such that

d( f (x), f (y)) = r ′

and z ∈ ∂ B(x, kr) be such that

d( f (x), f (z)) = inf{v: d(x,v)=kr} d( f (x), f (v)).
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Hence, by η-quasisymmetry,

d( f (x), f (y))

d( f (x), f (z))
≤ η

(
d(x, y)

d(x, z)

)
= η

(
1

k

)
. (3.10)

Since η is an (increasing) homeomorphism, we can choose k > 1 depending on K and
c such that η(1/k) ≤ 1/c. Moreover, as k B ⊂ �, we know by the choice of z that
B( f (x), d( f (x), f (z))) ⊂ �′ and hence by (3.10)

cr ′ = cd( f (x), f (y)) ≤ d( f (x), f (z)) ≤ d( f (x), ∂�′),

so we have established (2). Since the estimate (3.10) for our choice of k yields in particular
that

r ′ = d( f (x), f (y)) < d( f (x), f (z))

and since B( f (x), d( f (x), f (z))) ⊂ f (k B), as can be seen by the definition of z and the
path connectedness of B( f (x), d( f (x), f (z))), we have also proven the second part of (1),
namely that B ′ ⊆ f (k B). The proof of (1) and (2) is complete.

The estimates in (3.9) are a straightforward consequence of (1) and (2). Indeed, given
B ′ = B( f (x), r ′) as in the first part of the proposition, we find

cr ′ ≤ d( f (x), ∂�′) ≤ r ′ + dist(B ′, ∂�′).

Hence,

diam( f (B)) ≤ diamB ′ ≤ 2

c − 1
(c − 1)r ′ ≤ 2

c − 1
dist(B ′, ∂�′) ≤ 2

c − 1
d( f (x), ∂�′).

Moreover,

d( f (x), ∂�′) ≤ dist( f (B), ∂�′) + r ′ ≤ dist( f (B), ∂�′) + 1

c
d( f (x), ∂�′),

which implies

d( f (x), ∂�′) ≤ c

c − 1
dist( f (B), ∂�′).

��

3.4.2 Ap-weights

With the preliminary ball distortion estimates at hand, we now prove the reverse Hölder
property for the Jacobian of quasiconformal mappings on subdomains of the Heisenberg
group endowed with the Korányi distance.

Proposition 3.13 Let f : � → �′ be a K -quasiconformal map between domains in
(H1, dH1). Then there exist constants C > 0 and k > 1, depending on K only, such that the
weight condition ∫

B
J f dm ≤ C

(∫
B

J−(p−4)/4
f dm

)− 4
p−4

(3.11)

holds for all dH1 -balls B with 10k B ⊂ � and for all p ∈ [4, 4 + κ).

Here, k denotes the constant from Proposition 3.12 if c is as in Theorem 3.11 applied to
f −1. Moreover, κ is as in Theorem 3.11. In particular, the bound for p depends on K only.
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Proof If � = �′ = H
1, the claim follows from Theorem 3.11 by estimates which are

standard in the theory of Muckenhoupt weights, so we concentrate on the case where �

and �′ are strict subdomains in H
1. While the proof still follows largely the same steps of

reasoning as given in the proof of Lemma 5 in [36] for a quasiconformal map from R
n to

R
n , we need to employ Proposition 3.12 since our result is localized to sets � and �′.
Let c be the constant from Theorem 3.11 (applied to f −1) and B ′ ⊂ �′ be any ball such

that cB ′ ⊂ �′. Since J f −1(y) = J f ( f −1(y))−1 for almost every y ∈ �′, Theorem 3.11
applied to f −1 shows that

(∫
B′

J f ( f −1(y))−
p
4 dy

) 4
p ≤ C

∫
B′

J f ( f −1(y))−1 dy, (3.12)

for C = (κ/(4 + κ − p))1/p . We are now in a position to apply Proposition 3.12 to f with
constant c as defined in the beginning of the proof. Hence, we find a constant k such that
whenever the ball B ⊂ � is such that 10k B ⊂ �, then there exists a ball B ′ ⊂ �′ with the
following properties:

cB ′ ⊂ �′, B ⊂ f −1(B ′), f −1(B ′) ⊂ k B. (3.13)

In particular, (3.12) applies to such B ′. The inclusions (3.13) and the change of variable
formula, see for instance Theorem 5.4(a) in [15], result in the following estimate:

1

|B ′|
∫

B
J f (x)−

p
4 J f (x) dx ≤ 1

|B ′|
∫

f −1(B′)
J f (x)−

p
4 J f (x) dx =

∫
B′

J f ( f −1(y))−
p
4 dy.

This and (3.12) lead to the inequality

(
1

|B ′|
∫

B
J f (x)−

p
4 J f (x) dx

) 4
p ≤ C

∫
B′

J f ( f −1(y))−1 dy = C
| f −1(B ′)|

|B ′| . (3.14)

Since |B ′| = ∫
f −1(B′) J f (x) dx , we obtain from (3.14) that

(∫
B

J f (x)
4−p
4 dx

) 4
p ≤ C | f −1(B ′)|

(∫
f −1(B′)

J f (x) dx

) 4−p
p

.

By applying (3.13) we get that | f −1(B ′)| ≤ |k B| = k4|B|. Thus, we arrive at the following
inequality:

(∫
B

J f (x)
4−p
4 dx

) 4
p ≤ Ck4|B| 4p + p−4

p

(∫
B

J f (x) dx

) 4−p
p

.

The above estimate immediately implies

(∫
B

J f (x)
4−p
4 dx

) 4
p ≤ Ck4

(∫
B

J f (x) dx

) 4−p
p

and hence

∫
B

J f (x) dx ≤ (
Ck4

) p
p−4

(∫
B

J f (x)
4−p
4 dx

) 4
4−p

.

��
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Proposition 3.13 essentially says that w = J f is a Muckenhoupt Aq -weight in the sense
of [14,27] for q = 1 + 4/(p − 4). This is not quite true, because the Aq -weight condition
is verified only for those Korányi balls B which lie well inside the domain � in the sense
that 10k B ⊂ �. It is for this reason that one cannot conclude that J f is an A∞-weight if f
is defined on an arbitrarily given domain � in H

1. This also means that one cannot directly
conclude that log J f ∈ BMO(�), but as we will see in the next section, the latter statement
still holds true.

3.5 BMO(Ä) property of log Jf

Lemma 3 in [36] characterizes functions whose logarithm lies in BMO(Rn) via an integral
inequality. We generalize part of this result to functions defined on a domain � ⊂ H

1. Since
in our discussion we only need the implication in one direction, and only for functions which
arise as quasiconformal Jacobians, we state the following result.

Proposition 3.14 Let � be a domain in H
1 and f : � → f (�) ⊆ H

1 be a K -quasiconformal
mapping. Then log Jf ∈ BMOH

1

loc(�) with ‖ log Jf ‖BMOH1
10k,loc(�)

bounded by a constant that

depends only on K .

Proof The proof is similar to the one for Lemma 3 in [36] and, therefore, we omit the details.
We start from the inequality

∫
B

Jf dm ≤ C

(∫
B

J−(p−4)/4
f dm

)− 4
p−4

,

which, by Proposition 3.13, holds for all balls B in � such that 10k B ⊂ �, with C and the
bounds for p determined by Theorem 3.11. The crucial estimate, giving the BMOH

1

loc,10k(�)-
norm bound, cf. [36, (2.7)], reads∫

B

∣∣log Jf − (
log Jf

)
B

∣∣ dm ≤ 1

s
log(Cs + C−s)

for s = min{1, (p − 4)/4} and the constant C depending on K , see the discussion of the
constants in Theorem 3.11 and Proposition 3.13. ��

As a consequence of the above discussion, we deduce the main result of this section.

Proof of Theorem 1.4 By Proposition 3.14, we have that log J f ∈ BMOH
1

loc(�) with a quan-

titative upper bound for its BMOH
1

10k,loc(�)-norm that depends on K only. Theorem 3.10
allows us to conclude that log J f ∈ BMO(�) and to bound its BMO(�)-norm (both with
respect to the Korányi and the sub-Riemannian metric) from above in terms of K . ��

4 A Koebe theorem

The main purpose of this section is to prove the key result of this work: the Koebe theorem
for quasiconformal mappings between open sets in H

1, see Theorem 1.3. Before providing
the proof of this result, we need further auxiliary observations.

The following lemma is a counterpart of [2, Lemma 5.10]. For our purposes, it suffices
to consider balls centered at one point, but we consider arbitrary domains in H

1 instead of
disks in R

2. The proof goes the same way, and so we omit it.
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Lemma 4.1 The following statement holds both for the Korányi distance dH1 and the sub-
Riemannian distance ds: Let � be a domain in H

1 and let u ∈ BMO(�). Then for all balls
B2 ⊂ B1 ⊂ � centered at a point z ∈ �, one has

|u B1 − u B2 | ≤ e

2

(
log

|B1|
|B2| + 1

)
‖u‖∗. (4.1)

Here and in the following, the logarithm is taken with respect to the basis e.
In the literature, the definition of the quantity a f (x) for a K -quasiconformal map

f : � → �′ between domains �,�′
� R

n involves taking averages of log J f over
either B(x, d(x, ∂�)) or over B(x, d(x, ∂�)/2). It turns out that the resulting quantities
are comparable. In H

1, it is for technical reasons sometimes more convenient to work with
B(x, d(x, ∂�)/L) for a number 1 < L < ∞ which depends only on K (for instance in the
proof of Proposition 4.4). The following lemma shows that this is possible.

Lemma 4.2 Let d ∈ {ds, dH1} and K ≥ 1. Given 1 ≤ L < ∞, there exists a constant
1 ≤ CK ,L < ∞, such that for every K -quasiconformal mapping f : � → �′ between
domains �,�′

� (H1, d), one has

C−1
K ,L exp

(
1
4

(
log J f

)
B1

)
≤ exp

(
1
4

(
log J f

)
B2

)
≤ CK ,L exp

(
1
4

(
log J f

)
B1

)
,

where

B1 := B(x, d(x, ∂�)) and B2 := B(x, d(x, ∂�)/L).

Proof If u ∈ BMO(�), then for a given 1 < L < ∞, Ahlfors regularity of the measure m
and (4.1) show that

|u B1 − u B2 | ≤ c1(L)‖u‖∗, where c(L) = e

2
(4 log(L) + 1). (4.2)

By Theorem 1.4, if f is K -quasiconformal, then log J f ∈ BMO(�) and ‖ log J f ‖∗ is
bounded by a constant c2(K ) depending on K only. Hence, for u = log J f , (4.2) gives

exp
(
1
4

(
log J f

)
B2

)
≤ exp

(
1
4

(
log J f

)
B1

+ cK ,L

)
= CK ,L exp

(
1
4

(
log J f

)
B1

)

and

exp
(
1
4

(
log J f

)
B1

)
≤ exp

(
1
4

(
log J f

)
B2

+ cK ,L

)
= CK ,L exp

(
1
4

(
log J f

)
B2

)

where cK ,L = 1
4c1(L)c2(K ) and CK ,L := exp(cK ,L). The statement of the lemma follows.

��

The following proposition is due to Soultanis and Williams [38, Corollary 5.3], for
domains with two-point boundary condition in geodesic metric measure spaces of globally
Q-bounded geometry (Q > 1). (See also [38, p. 627] for a remark on these assumptions.)
Since (H1, ds, m) is unbounded, of globally 4-bounded geometry and geodesic, their result
applies in our setting. The corresponding result for the metric dH1 instead of ds then fol-
lows immediately from the comparability of the metrics, more precisely from (2.5). The
constant “10” in the statement of the proposition is not optimal, but convenient since it works
simultaneously for ds and dH1 .
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Proposition 4.3 Let d ∈ {ds, dH1} and K ≥ 1. Then there exists a homeomorphism η :
[0,+∞) → [0,+∞) such that the following holds for all K -quasiconformal maps f : � →
�′ between domains in H

1 and for all x ∈ �. If y ∈ � satisfies d(y, x) ≤ d(x, ∂�)/10,
then

d( f (x), f (y))

d( f (x), ∂�′)
≤ η

(
d(x, y)

d(x, ∂�)

)
.

The proposition exploits the connectedness and doubling property of balls in (H1, d) and
is a stronger statement than what one can derive merely based on local η-quasisymmetry in
arbitrary metric spaces. The local quasisymmetry of quasiconformal maps coupled with the
reverse Hölder property for their Jacobians also yields the following distance estimate.

Proposition 4.4 For every 1 ≤ K < ∞, there exists a constant λ ≥ 1 such that the following
holds. If 0 < a < b and f : � → �′ is a K -quasiconformal mapping between domains
�,�′

� H
1, and ‖ log J f ‖∗ ≤ (2/e)a, then for all z1, z2 ∈ � such that

dH1(z1, z2) ≤ 1
2λ dH1(z1, ∂�),

one has
dH1( f (z1), f (z2)) ≤ ca f (z1)dH1(z1, ∂�)adH1(z1, z2)

1−a, (4.3)

where the constant c depends only on K and the bound b for a.

The proof of Proposition 4.4 will show that c in the statement can be obtained as a
monotone increasing function of b. Also, for large values of a, the conclusion in (4.3) is not
very informative: assume for illustrative purposes that dH1(z1, z2) = 1

2λ dH1(z1, ∂�). Then
the right-hand side of (4.3) is comparable to λa−1dH1(z1, ∂�). If a becomes large, then also
the multiplicative constant in this upper bound tends to infinity. For these reasons, in our
application we will be interested in having a small upper bound b for a.

Proposition 4.4 is a counterpart for Lemma 5.15 in [2], for arbitrary subdomains of H
1

instead of disks in R
2. A significant difference in the proof arises from the fact that (i) we

do not know whether the map f extends to a K1(K )-quasiconformal map on the one point
compactification of H

1, and (ii) we do not have a Mori distortion theorem at our disposal.
We compensate for this by resorting to the local quasisymmetry property of f . This, and
the ball admissibility condition for (3.11), accounts for the presence of the constant λ in the
statement of Proposition 4.4. Lemma 5.15 in [2] contains an analogous statement in R

2 with
λ = 1. The weaker formulation of Proposition 4.4 influences the proof of Koebe’s theorem,
where now r2 ≤ r1/(2λ) has to be used instead of r2 = r1/2. In light of Lemma 4.2, this
change is immaterial. Moreover, working with arbitrary subdomains, rather than just disks
or balls, has the advantage that we only have to define a f and ‖ · ‖∗ for one domain, namely
�. Also note that if z ∈ B ⊂ �, then d(z, ∂ B) ≤ d(z, ∂�), and for our purpose an estimate
in terms of d(z, ∂�) is sufficient.

Proof of Proposition 4.4 Throughout the proof we will work with the Korányi distance d =
dH1 . The idea is to choose λ large enough so that for z1 and z2 as in the assumptions, we
have that:

(1) f is quasisymmetric on B(z1, d(z1, z2)),
(2) B(z1, 2d(z1, z2)) is admissible for the reverse Hölder inequality for J f (3.11).

The requirements are satisfied under the following assumptions:
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(1) λ ≥ 5 (egg yolk principle for dH1 ),
(2) λ ≥ 10k, where k is as in the admissibility condition for (3.11).

Let us choose λ ≥ 1 as the smallest constant for which (1) and (2) hold. Such a λ is finite
and depends only on K . We set

r1 := d(z1, ∂�)/λ and r2 := d(z1, z2)

and denote Bi := B(z1, ri ) for i ∈ {1, 2}. Moreover, we write

s2 := min
d(z,z1)=r2

d( f (z), f (z1)).

Since f |B(z1,d(z1,z2))
is H -quasisymmetric for a constant H which depends only on K , we

find

d( f (z1), f (z2)) ≤ Hs2.

This implies (
d( f (z1), f (z2))

d(z1, z2)

)4

≤
(

Hs2
r2

)4

≤ H4 | f (B2)|
|B2| . (4.4)

In order to further estimate this from above, an analog of Lemma 5.14 in [2] would be useful.
We concentrate on amanageable special case, which is sufficient for our application. Namely,
using the same notation as above, we will prove that

| f (B2)|
|B2| ≤ C ′ exp

(
1

|B2|
∫

B2

log J f dm

)
, (4.5)

where C ′ is a constant depending only on K . To show this, we consider the enlarged ball

Q := 2B2 := B(z1, 2d(z1, z2)).

By our choice of λ, the ball Q is admissible for (3.11), and we deduce for a suitable constant
c1 > 0 (depending on K ), that

| f (Q)|
|Q| ≤ c1

(
1

|Q|
∫

Q
J−(p−4)/4

f dm

)−4/(p−4)

≤ c1 exp

(
1

|Q|
∫

Q
log J f dm

)
, (4.6)

where we have applied Jensen’s inequality to the convex function ϕ(x) = e−bx for b =
(p − 4)/4 in the last step. The remaining steps to deduce (4.5) consist of a computations
analogous to the proof of [2, Lemma 5.14]. First, we observe that∫

Q
log J f dm = 1

24

∫
B2

log J f dm +
(
1 − 1

24

)∫
Q\B2

log J f dm

and ∫
Q\B2

log J f dm ≤ log

(∫
Q\B2

J f dm

)
= log

(
24

24 − 1

∫
Q

J f dm

)

≤ log

(
24

24 − 1

| f (Q)|
|Q|

)
.

Inserting these estimates in (4.6), we find that

1

24
log

| f (Q)|
|Q| ≤ log c1 + 1

24

∫
B2

log J f dm + 24 − 1

24
log

24

24 − 1
,
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which yields (4.5) since | f (B2)| ≤ | f (Q)| and |Q| = 24|B2|.
Combining (4.4) with (4.5), we deduce that

(
d( f (z1), f (z2))

d(z1, z2)

)4

≤ c2 exp
(
(log J f )B2

)
(4.7)

for a constant c2 depending only on K . The rest of the argument is similar to the proof of [2,
Lemma 5.15], with the factor 1/2 replaced by 1/4. By Lemma 4.1 applied to u = log J f ,
we have

∣∣(log J f )B1 − (log J f )B2

∣∣ ≤
(
log

|B1|
|B2| + 1

)
a = 4a log

r1
r2

+ a.

Hence

1

4
(log J f )B2 ≤ 1

4
(log J f )B1 + a log

r1
r2

+ b

4
.

Combined with (4.7), this shows that

d( f (z1), f (z2)) ≤ c1/42 exp

(
1

4
(log J f )B2

)
d(z1, z2)

≤ c1/42 exp(b/4) exp

(
1

4
(log J f )B1

)
d(z1, ∂�)ad(z1, z2)

1−a,

which concludes the proof of the proposition. ��
Finally we are in a position to prove the Koebe type theorem.

Proof of Theorem 1.3 As remarked in the introduction, it suffices to prove the theorem for the
Korányi distance d = dH1 , as then the corresponding statement for ds follows.

Let us first observe that the assumption � � H
1 implies that �′ = f (�) � H

1. Indeed,
this is a consequence of the fact that H

1 is not quasiconformally equivalent to any proper
subdomain of H

1 by Theorem 13.1 in [41]. The result in [41] is formulated for Q-Loewner
spaces and locally quasisymmetric embeddings, hence it applies in particular in our setting.

We fix an arbitrary point x1 ∈ � and prove estimate (1.3) for x = x1. To this end, we
define

r1 := d(x1, ∂�) and d1 := d( f (x1), ∂�′).

Note that both r1, d1 �= ∞, as �,�′
� H

1.
Set further

r2 := r1/m and d2 := max
d(x1,x)=r2

d( f (x1), f (x)),

where m = max{2λ, 10k} with k as in Proposition 3.12 applied with c = 10, and λ as in
Proposition 4.4. Let further x2 ∈ � be a point which realizes the maximum in d2, that is
d(x1, x2) = r2 and d( f (x1), f (x2)) = d2.

We denote

B1 := B(x1, r1) and B2 := B(x1, r2).

We will show that there exists a positive and finite constant c1 = c1(K ) such that

1

c1
≤ d1

d2
≤ c1. (4.8)
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The first inequality will be obtained by applying Proposition 4.3 to f and for this application
it would suffice to know that m ≥ 10. However, to derive the upper bound in (4.8), we will
have to apply Proposition 4.3 to the inverse map f −1, and for this we need to know that the
image of B2 is still contained in a ball that is admissible for Proposition 4.3. This is why we
require that m ≥ 10k. The assumption m ≥ 2λ is used only in the second part of the theorem.

Proposition 4.3 applied to f , x = x1 and y = x2 yields

d( f (x1), f (x2))

d( f (x1), ∂�′)
≤ η

(
d(x1, x2)

d(x1, ∂�)

)

and hence, by the choice of x2,

d2
d1

≤ η

(
r2
r1

)
= η

(
1

m

)
.

To obtain the second bound in (4.8), we apply Proposition 4.3 to the (K -quasiconformal)
map f −1, x = f (x1) and y = f (x2). Here we note that m ≥ 10k and k has been chosen
such that

f (x2) ∈ f (B2) ⊂ B ′

for some ball B ′ centered at f (x1) with the property that 10B ′ ⊂ �′. Hence Proposition 4.3
is indeed applicable for the points f (x1) and f (x2) and we find

d(x1, x2)

d(x1, ∂�)
≤ η

(
d( f (x1), f (x2))

d( f (x1), ∂�′)

)
.

This yields the following bound:

η−1
(
1

m

)
= η−1

(
r2
r1

)
≤ d2

d1
.

We are now able to deduce an upper bound for a f (x1), analogously to [1, (2.7)]. Indeed,
since f (B2) ⊂ B( f (x1), d2), we find by Jensen’s inequality and (4.8) that

(log J f )B2 ≤ log

( | f (B2)|
|B2|

)
≤ 4 log

d2
r2

≤ 4

(
log

mc1d1
r1

)
.

Combining this with Theorem 1.4 and Lemma 4.1 (applied to u = J f ), we find

(log J f )B1 ≤ 4

(
log

(
mc1d1

r1

)
+ c2

)
,

for a constant c2 which depends on K only. Thus,

a f (x1) ≤ mc1d1
r1

exp(c2). (4.9)

The next step is to apply Proposition 4.4 for z1 = x1 and z2 = x2 in order to find a lower
bound for a f (x1). In this way we obtain, for constants a and c bounded in terms of K , that

d2 = d( f (x1), f (x2)) ≤ ca f (x1)d(x1, ∂�)ad(x1, x2)
1−a ≤

(
1

m

)1−a

ca f (x1)r1.

By (4.8) we can bound d2 from below by d1/c1, which yields the desired lower bound for
a f (x1) and thus, together with the upper bound in (4.9), concludes the proof. ��
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5 Applications

In this section, we discuss applications of Theorem 1.3. Section 5.2 contains analytic results
regarding the horizontal derivative of a quasiconformal mapping. Results in the spirit of the
ones in Sects. 5.1 and 5.3 have been obtained by H. Len Ruth Jr. in his PhD thesis, [31,
Section 3.7], for quasisymmetric mappings in a more abstract setting and for the quantity
d( f (·), ∂�′)/d(·, ∂�). By our version of the Koebe theorem, d( f (·), ∂�′)/d(·, ∂�) is com-
parable to a f for quasiconformal mappings between domains in H

1. In this sense, Lemma
3.7.4 and Proposition 3.7.5 in [31] are quasisymmetric counterparts of our Propositions 5.1
and 5.7, respectively. Since a quasiconformal map f on a subdomain � ⊂ H

1 is in general
only locally quasisymmetric, our results do not follow directly from the ones in [31]. We give
direct proofs in the quasiconformal category, which do not rely on the results in [31], but
on similar proof arguments. The specific setting of the sub-Riemannian Heisenberg group
allows us to illustrate the sharpness of Proposition 5.1 with an example and to formulate
our results with less additional assumptions than in [31, Section 3.7]. In particular, Propo-
sition 5.7 holds for arbitrary, not necessarily Ahlfors regular, domains. It shows that a f is a
conformal density on �, which is useful information, for instance in light of the results in
[25].

5.1 Diameter bounds for image curves

Aquasiconformal map canwildly distort the length of an individual curve. However, Koskela
has shown in [29, Lemma 2.6] for quasiconformal mappings defined on a domain � in R

n ,
that it is possible to control the diameter of f ◦ γ in terms of

∫
γ

a f ds for all curves γ which
are long enough in terms of their distance to the boundary of �. The goal of this section
is to study similar estimates in the Heisenberg group. Koskela’s proof makes use of the
Besicovitch covering theorem, which does not hold for the Korányi or the sub-Riemannian
distance on H

1. A possible approach would be to use one of the comparable distances with
the Besicovitch covering property that were constructed in [30]. Instead, we will give below
a direct proof using the basic 3r -covering theorem, which can be found for instance in [40,
Theorem 2.1]. Our statement is slightly more flexible than the original version since we allow
for a quantitative control of the lengths of curves in terms of a parameter α; this will prove
useful later in applications.

Proposition 5.1 Let d denote either the Korányi or sub-Riemannian distance on H
1. Let

f : � → �′ be a K -quasiconformal mapping between domains in H
1 with � �= H

1. Then,
for every α ∈ (0, 1] and for every rectifiable curve γ contained in � with

length(γ ) ≥ αd(γ, ∂�), (5.1)

one has

diam( f ◦ γ ) ≤ C
∫

γ

a f ds

for a constant C which depends only on α, d and K . Here
∫
ds denotes integration with

respect to the d-length.

Recall that curves have the same lengthwith respect tods anddH1 . Since 1√
π

ds ≤ dH1 ≤ ds

and as
f � aH

1

f , it suffices therefore to prove Proposition 5.1 for, say, d = dH1 .
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Proof Let d = dH1 . The following abbreviating notation will be used in this proof. For
0 < χ < 1, we denote

Bχ (x) = B(x, χd(x, ∂�))

for x ∈ �.
Let k = k(2, K ) be the constant given by Proposition 3.12 applied to c = 2. Then we fix

λ ∈ (0, 1) to be the largest number satisfying

λ ≤ 3α

1 + α
and 10kλ ≤ 1

2
. (5.2)

By the second condition, we have that 10k Bλ(x) ⊂ � for all x ∈ �, which will be used to
apply Proposition 3.12. Furthermore, since k > 1, we have λ ≤ 1

20k ≤ 1
20 . The use of the

first condition in (5.2) will become clear later.
Consider now an arbitrary curve γ satisfying the assumptions of the proposition. For

simplicity, we continue to denote the trace of γ by the symbol γ . Let Bλ be the cover of γ

given by all balls of the form Bλ/3(p) where p ∈ γ . By compactness of γ , we may without
loss of generality assume that the family Bλ contains only finitely many balls.

This allows us to apply the 3r -covering lemma and select a (finite) disjointed subfamily
Fλ ⊂ Bλ so that the 3-times enlarged balls in Fλ cover γ . More precisely, if we denote by
I the set of centers of the balls in Fλ, then we have

Bλ/3(p) ∩ Bλ/3(q) = ∅ for p, q ∈ I , p �= q and γ ⊂
⋃
p∈I

Bλ(p).

Since 10k Bλ(p) ⊂ � for all p ∈ I , we can apply Proposition 3.12 (with c = 2), and we
have that

diam( f ◦ γ ) ≤
∑
p∈I

diam( f (Bλ(p))) ≤ 2
∑
p∈I

d( f (p), ∂�′). (5.3)

Nextwe establish an estimate of
∫
γ

a f ds frombelowby amultiple of
∑

p∈I d( f (p), ∂�′).
In what follows we employ the family of balls

{Bλ/3(p) : p ∈ I }. (5.4)

Note that the family (5.4) does not necessarily cover γ ; however, since we are looking
for a lower estimate of

∫
γ

a f ds, and a f ≥ 0, this will not be a problem. Let l(p) =
length(γ ∩ Bλ/3(p)), then we claim that

l(p) ≥ λ

3
d(p, ∂�). (5.5)

The bound (5.5) is obvious if γ exits B λ
3
(p); however, the assumption (5.1) implies that

(5.5) is valid even if the entire curve is contained in B λ
3
(p). Indeed, if γ ⊂ B λ

3
(p), then

αd(γ, ∂�) ≥ α

(
d(p, ∂�) − λ

3
d(p, ∂�)

)
≥ λ

3
d(p, ∂�) (5.6)

where the second inequality is a consequence of the choice of λ as in (5.2). The fact that
l(p) = length(γ ) ≥ αd(γ, ∂�), together with (5.6) proves (5.5) in this case.

Our desired estimate will result by approximating∫
γ∩Bλ/3(p)

a f ds
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by a f (p)l(p), thus we require a constant τ , depending on K and the chosen metric only,
such that a f (x) ≥ τd( f (p), ∂�′)/d(p, ∂�) for all x ∈ Bλ/3(p). To this end we observe
that Proposition 3.12, applied to B := Bλ/3(p) and c = 2, implies

d( f (x), ∂�′) ≥ d( f (Bλ/3(p)), ∂�′) ≥ 1

2
d( f (p), ∂�′)

for all x ∈ Bλ/3(p). Moreover,

d(x, ∂�) ≤ d(x, p) + d(p, ∂�) ≤
(

λ

3
+ 1

)
d(p, ∂�) ≤ 2d(p, ∂�)

for all x ∈ Bλ/3(p). Using the two inequalities above, together with Theorem 1.3, we have

a f (x) ≥ 1

cK

d( f (x), ∂�′)
d(x, ∂�)

≥ 1

4cK

d( f (p), ∂�′)
d(p, ∂�)

(5.7)

for all x ∈ Bλ/3(p). Thus τ = 1
4cK

is sufficient for our needs.
To finish the proof we observe that∫
γ

a f ds ≥
∑
p∈I

∫
γ∩Bλ/3(p)

a f ds ≥ τ
∑
p∈I

d( f (p), ∂�′)
d(p, ∂�)

l(p)
(5.5)≥ τ

λ

3

∑
p∈I

d( f (p), ∂�′).

This estimate combined with (5.3) proves the claim with C = 6/λτ = 24cK /λ. ��
Remark 5.2 Analogously as in Euclidean spaces, Proposition 5.1 does not hold without the
assumption (5.1) on the length of γ . To see this, we consider theHeisenberg radial stretchmap
f = fk : H

1 → H
1, 0 < k < 1, discussed in [7]. This is a quasiconformalmappingwhich on

the (x, y)-plane agrees with the usual planar radial stretchmap, that is f (z, 0) = (z|z|k−1, 0),
and which sends points with Korányi norm equal to r ≥ 0 onto points of Korányi norm rk . In
light of Proposition 5.1, let us now consider the map f for k = 1/2, restricted to the Korányi
unit ball, � = B(0, 1) and let γ be a line segment with length(γ ) = r ∈ (0, 1) on the x-axis
emanating from 0 (note that restricted to the x-axis, the Korányi distance agrees with the
Euclidean distance). Then f (γ ) is again a line segment on the x-axis starting from 0, but
with diam( f ◦ γ ) = √

r . For a fixed α, we can choose r > 0 small enough so that γ violates
the assumption (5.1), and by letting r tend to 0, we will see that indeed the conclusion of
Proposition 5.1 does not hold in this case since

√
r � r for small r , yet

∫
γ

a f ds ≤ cr for
a positive and finite constant c which does not depend on r . To establish the last claim, it
suffices to observe that a f (0) < ∞ and that there exists r0 > 0 such that a f (x) ≤ c′a f (0) for
all x ∈ B(0, r0) for a constant c′ depending on K , and in particular on cK from Theorem 1.3.
This can be seen by an argument as in (5.7). Therefore,∫

γ

a f ds ≤ c′a f (0)r � √
r = diam( f ◦ γ ),

for r < r0 small enough, which is impossible.

5.2 Comparison of the average derivative and the operator norm

As an application of the Koebe theorem for quasiconformal mappings in R
n , Astala and

Koskela have shown that for a K -quasiconformal map f : � → �′, for �,�′ ⊆ R
n , the

integrals ∫
�

‖D f (x)‖p dLn(x) and
∫

�

a f (x)p dLn(x).
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are quantitatively comparable for p in an appropriate parameter range, see Theorem 3.4 in
[3]. The main goal of this section is to prove a counterpart of the aforementioned theorem,
which is valid for both d = ds and d = dH1 .

Theorem 5.3 Let f : � → �′ be a K -quasiconformal mapping between domains in (H1, d)

for some K ≥ 1. Moreover, denote by p = p(K ) > 4 a higher integrability exponent of the
Jacobian of f as in Theorem 3.11. Then

1

c

∫
�

a f (x)q dm ≤
∫

�

‖DH f (x)‖q dm ≤ c
∫

�

a f (x)q dm

for all 4 − p < q < p, where c depends on K and q.

Theorem5.3 provides explicit bounds for the admissible exponentsq byusing the exponent
p from Theorem 3.11 and Proposition 3.13. The R

n-counterpart of this statement is [3,
Theorem 3.4], which gives the bounds

−min{p0 − n, 1/(p1 − 1)} ≤ q ≤ n + min{p0 − n, 1/(p1 − 1)}.
In this formula, p0 denotes the exponent in Gehring’s reverse Hölder’s inequality for ‖D f ‖,
which corresponds to our parameter p, and the parameter p1 is obtained from an estimate
which is quantitatively equivalent to the Muckenhoupt weight condition for ‖D f ‖n on a
cube. Instead of an estimate in the spirit of this latter result, we apply Proposition 3.13,
which provides us with the bounds in terms of p.

Theorem 5.3 is a consequence of our Koebe theorem (Theorem 1.3), auxiliary results
from Sect. 3 as well as the following observation, which is of independent interest. Namely,
it shows that a f as function of a point in the domain, satisfies a Harnack-type inequality. A
similar estimate has already appeared in the proof of Proposition 5.1, but in the following we
need a more general statement which we formulate as follows. Let us also remark that this
result can be deduced from our Koebe theorem, Proposition 3.7.3 in [31] and an appropriate
localization argument. Instead, we give a short direct proof using just the Koebe theorem and
Proposition 3.12.

Lemma 5.4 The following holds with respect to d ∈ {ds, dH1}. Let f : � → �′ be a K -
quasiconformal map between domains �,�′

� (H1, d). Suppose a ball B ⊂ � satisfies the
condition

diam B ≤ λ dist(B, ∂�), (5.8)

where 0 < λ ≤ 2/(10k) for the constant k from Proposition 3.12 applied to c > 1 and the
metric d. Then it holds

a f (x) ≤ Ca f (y)

for all x, y ∈ B and a constant C > 1 which depends only c and K .

Proof Let B ⊂ � be as above and let us fix x, y ∈ B. Then, the Koebe theorem, see
Theorem 1.3, implies

a f (x) ≤ cK
d( f (x), ∂�′)

d(x, ∂�)
= cK

d( f (y), ∂�′)
d(y, ∂�)

d( f (x), ∂�′)
d( f (y), ∂�′)

d(y, ∂�)

d(x, ∂�)
(5.9)

≤ c2K a f (y)
d( f (x), ∂�′)
d( f (y), ∂�′)

d(y, ∂�)

d(x, ∂�)
,

so the task is reduced to bounding the quotient in the last expression.
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Letting z be the center of the ball B, we have that

d( f (x), ∂�′) ≤ d( f (x), f (z)) + d( f (z), ∂�′)
≤ diam f (B) + d( f (z), ∂�′)

≤
(

2
c−1 + 1

)
d( f (z), ∂�′) ≤ C ′ dist( f (B), ∂�′)

with C ′ =
(

2
c−1 + 1

)
c

c−1 . This follows from the last assertion of Proposition 3.12 applied

with c. To justify the application of this proposition, we have to verify that 10k B ⊂ � for
the constant k associated to c. This is indeed the case since the choice of λ ensures that

10krad(B) = (10k)
diamB

2
≤ dist(B, ∂�) ≤ d(z, ∂�).

Therefore, the relevant term in (5.9) can be bounded as follows:

d( f (x), ∂�′)
d( f (y), ∂�′)

d(y, ∂�)

d(x, ∂�)
≤ 2C ′ dist( f (B), ∂�′)

d( f (y), ∂�′)
d(y, ∂�)

d(x, ∂�)

≤ 2C ′ d(y, ∂�)

d(x, ∂�)
.

To continue, we observe that (5.8) yields

d(y, ∂�)

d(x, ∂�)
≤ diamB + dist(B, ∂�)

dist(B, ∂�)
≤ λ + 1,

where the upper bound depends on c and K via the choice of λ. Thus we can find a constant
1 < C < ∞ such that (5.9) reduces to a f (x) ≤ Ca f (y), as desired. ��

Toward the proof of Theorem5.3, we have to carefully choose aWhitney decomposition of
our domain in order to ensure that the relevant balls are small enough so that all the necessary
auxiliary results from Sect. 3 and Lemma 5.4 are applicable. The results existing in the
literature, cf. Proposition 4.1.15 in [24], are not quite sufficient for our purpose since they
state the existence of Whitney balls with a certain specific ratio between radii and distance
to the complement of the domain. Adapting the proof in [24], we show the following result
(both for the sub-Riemannian and the Korányi distance) which leaves the flexibility to choose
the parameter λ.

Lemma 5.5 (Whitney decomposition). Let � � H
1 be an open subset. For any λ ∈ (0, 1/2),

there exists a countable collection C = {B(xi , ri )} of balls in � such that

(1) � =
⋃

i

B(xi , ri )

(2)
∑

i

χB(xi ,2ri ) ≤ C,

where the constant C depends only on the choice of the metric d ∈ {ds, dH1}; and such that
it holds

(3)
λ

4
dist(B, ∂�) ≤ diam B ≤ λ dist(B, ∂�),

for any ball B = B(xi , ri ) in C.
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Proof We fix a metric d ∈ {ds, dH1}. Our goal is to find a collection of balls satisfying (1),
(2), and

(3′) c1(λ)d(xi , ∂�) ≤ ri ≤ c2(λ)d(xi , ∂�).

for c1(λ) := λ
8 and c2(λ) := λ

λ+2 . These constants have been chosen so that (3’) implies (3).
Indeed, assuming (3’), we find

λ

4
dist(B, ∂�) ≤ λ

4
d(xi , ∂�) ≤ 2ri = diamB

and

diamB = 2ri ≤ 2λ

λ + 2
d(xi , ∂�) ≤ 2λ

λ + 2
(dist(B, ∂�) + ri )

= 2λ

λ + 2

(
dist(B, ∂�) + 1

2diamB
)
,

which implies the right-hand side of (3). Thus it suffices to verify (1), (2) and (3’). We adapt
the proof of Proposition 4.1.15 in [24] and for any k ∈ Z define

Fk :=
{

B

(
x,

1

5

c1(λ) + c2(λ)

2
d(x, ∂�)

)
: x ∈ � and 2k−1 ≤ d(x, ∂�) ≤ 2k

}
.

We apply the 5r -covering lemma to find a countable pairwise disjoint family of balls Gk ⊂ Fk

so that a family of balls

C :=
⋃
k∈Z

{5B : B ∈ Gk}

satisfies assertion (1) of the lemma. By the definition of the radii ri as the arithmetic averages
of c1(λ)d(xi , ∂�) and c2(λ)d(xi , ∂�), we get assertion (3’). In order to show (2) we proceed
as in [24], exploiting the doubling property of the metric d . Suppose that there is x ∈ �

belonging to M balls of the form 2B, for B ∈ C. We relabel the centers of these balls as
x1, . . . , xM in such a way that d(xi , ∂�) ≤ d(x1, ∂�) for i = 1, . . . , M . The radii of the
balls 2Bi are given by

a(λ)d(xi , ∂�) := (c1(λ) + c2(λ))d(xi , ∂�).

Note that the function a(·) is increasing on [0, 1/2]. As x lies in the intersection of the balls
2Bi centered at xi , we find for all i = 1, . . . , M that

d(x1, xi ) ≤ a(λ)(d(x1, ∂�) + d(xi , ∂�))

and hence

d(xi , ∂�) ≥ d(x1, ∂�) − d(x1, xi ) ≥ (1 − a(λ))d(x1, ∂�) − a(λ)d(xi , ∂�).

This implies

d(xi , ∂�) ≥ 1 − a(λ)

1 + a(λ)
d(x1, ∂�).

Moreover, for all i we have 2Bi ⊂ B(x1, 3R1), with 3R1 = 3a(λ)d(x1, ∂�). If xi and x j

are distinct centers of balls in the same family Gk we have, by disjointedness of the balls in
Gk , that

d(xi , x j ) ≥ 1

5

a(λ)

2
min{d(xi , ∂�), d(x j , ∂�)} ≥ 1

5

a(λ)

2

1 − a(λ)

1 + a(λ)
d(x1, ∂�).
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That is, such points form a δ(λ)-separated set for

δ(λ) := 1

5

a(λ)

2

1 − a(λ)

1 + a(λ)
d(x1, ∂�)

and they are all included in a ball of radius R(λ) := 3a(λ)d(x1, ∂�). It is important for us
to observe that δ(λ)/R(λ) can be bounded from below by a strictly positive number which
does not depend on λ. This is the case since

1 − a(λ)

1 + a(λ)
≥ 1 − a(1/2)

1 + a(1/2)
> 0

for all λ ∈ (0, 1/2). The doubling property (see Lemma 4.1.12 in [24]) gives us that at most
N ′ of the balls 2Bi can have their centers in Fk for a fixed k, where N ′ is a constant which
depends only on the doubling constant associated to the metric d and the universal lower
bound for δ(λ)/R(λ). Next we show that the centers of the balls in our family 2B1, . . . , 2BM

can lie in at most two different ‘layers’ Fk , which will provide the desired universal upper
bound for M . Indeed, assume that x1 ∈ Fk1 . Then, for every i ∈ {1, . . . , M}, we find

d(x1, ∂�) ≥ d(xi , ∂�) ≥ 1 − a(λ)

1 + a(λ)
d(x1, ∂�) ≥ 1 − a(1/2)

1 + a(1/2)
d(x1, ∂�) >

1

2
d(x1, ∂�).

The last estimate finally explains our choice of the bound λ < 1/2. This estimate shows that
all centers are contained in Fk1−1 ∪ Fk1 for some k1 ∈ Z. ��
Proof of Theorem 5.3 Throughout the proof we work with the metric d = dH1 ; the corre-
sponding result for ds can be deduced from the final statement for dH1 . Let λ ∈ (0, 1

2 ) be the
largest number for which the following conditions are satisfied:

(1) λ ≤ 2/(10k) where k is2 as in Proposition 3.12 applied to f and c = 2,
(2) λ ≤ 2/c, where c is as in Theorem 3.11 applied to f ,
(3) λ ≤ 2/(10k), where k is as in Proposition 3.13 applied to f .

These conditions are such that λ is a positive constant depending on K , and every ball
B := B(x0, r) ⊂ � with diamB ≤ λdist(B, ∂�) satisfies the assumptions of the following
results (applied to the map f ):

(1) Proposition 3.12 (ball distortion) and Lemma 5.4 (Harnack-type inequality for a f ) for
c = 2,

(2) Theorem 3.11 (higher integrability),
(3) Proposition 3.13 (weight property of the Jacobian).

We will prove a statement for such balls which in addition satisfy a lower bound on the
diameter:

λ

4
dist(B, ∂�) ≤ diam B ≤ λ dist(B, ∂�). (5.10)

Following the approach in the proof of [3, Theorem 3.4], our first step is to obtain a double
inequality comparing a f (x0) to a mean value of the appropriate power of ‖DH f ‖ over the
ball B.

By quasiconformality of f , condition (5.10), Proposition 3.12 applied to B, f and c = 2,
and Theorem 1.3, we obtain that

2 The exact value of c is not essential, any constant larger than 1 which depends at most on K would work.
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∫
B

‖DH f ‖4 dm ≤ K
| f (B)|

|B| = K
diam( f (B))4

diam(B)4
≤ K

(2d( f (x0), ∂�′))4(
λ
4 dist(B, ∂�)

)4
≤ K

(2d( f (x0), ∂�′))4(
λ

2(λ+2) d(x0, ∂�)
)4

≤ K44(λ + 2)4c4K
λ4

a4
f (x0).

Thus, denoting C ′(K ) := K 1/44(λ+2)cK
λ

, we find that

∫
B

‖DH f ‖4 dm ≤ C ′(K )4a4
f (x0). (5.11)

We emphasize that C ′(K ) depends on K only (as λ was chosen depending only on K , see
the discussion in the beginning of the proof).

In order to obtain a similar estimate for a f (x0) from above, we appeal to a reasoning
similar to the proof of Lemma 4.2. Namely, let B1 := B(x0, d(x0, ∂�)). Recall that by the
discussion in Sect. 3 we have that log J f ∈ BMO(�) and ‖ log J f ‖∗ can be bounded in terms
of K . Consequently

|(log J f )B1 − (log J f )B | ≤ C‖ log J f ‖∗, (5.12)

for a constant C depending on K via the ratio

|B1|
|B| = d(x0, ∂�)4

r4
≤ (r + dist(B, ∂�))4

r4
≤

(
1 + 8

λ

)4

,

see (5.10). Therefore, since ‖ log J f ‖∗ can be bounded by a constant in terms of K , we have

a f (x0)
4 = exp

((
log J f

)
B1

)
≤ exp

((
log J f

)
B + C‖ log J f ‖∗

)

≤ C(K )

∫
B

J f dm ≤ C(K )

∫
B

‖DH f ‖4 dm (5.13)

for a constant C(K ) which depends only on K . Here, we have used the Jensen inequality for
the convex function et and the Hadamard inequality in order to estimate J f = (det DH f )2

in terms of ‖DH f ‖4.
So far we have shown that a f (x0) is comparable to the average of ‖DH f ‖4 over B =

B(x0, r). The next goal is to replace “4” by a different power. Starting from (5.13), we apply
the Hölder inequality, the Gehring-type estimate in Theorem 3.11 (with exponent p > 4)
together with Proposition 3.13 to arrive at the following estimates:

a f (x0) ≤ C(K )

(∫
B

‖DH f ‖4 dm

) 1
4 ≤ C(K )

(∫
B

‖DH f ‖p dm

) 1
p

≤ C(K )K 1/4
(∫

B
J

p
4
f dm

) 1
p ≤ c(K )

(∫
B

J f dm

) 1
4

≤ c(K )

(∫
B

J
1− p

4
f dm

) 1
4−p ≤ c(K )

(∫
B

‖DH f ‖4−p dm

) 1
4−p

. (5.14)
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As in the proof of [3, Theorem 3.4] we recall the following inequality for g ∈ L1(B) and
ε > 0, whose proof is a direct consequence of the Hölder and the Jensen inequalities:

(∫
B

1

|g|ε dm

)− 1
ε ≤

∫
B

|g| dm. (5.15)

This estimate applied for g := ‖DH f ‖ and ε := p − 4, together with the Hölder inequality,
gives the following:

(∫
B

‖DH f ‖4−p dm

) 1
4−p ≤

∫
B

‖DH f ‖ dm ≤
(∫

B
‖DH f ‖4 dm

) 1
4

. (5.16)

This combined with (5.11) results in a lower integral estimate for a f (x0) in terms of
‖DH f ‖4−p: (∫

B
‖DH f ‖4−p dm

) 1
4−p ≤ C ′(K ) a f (x0). (5.17)

At this stage we apply Lemma 5.4 (a Harnack-type inequality) together with estimate (5.14)
(for 0 < q < p) or estimate (5.17) (for 4 − p < q < 0) and obtain that

∫
B

aq
f dm ≤ Cq

∫
B

a f (x0)
q dm = Cqa f (x0)

q ≤ C(K )

(∫
B

‖DH f ‖4−p dm

) q
4−p

,

where the constant C(K ) arises as a product of q-th powers of the constants C in Lemma 5.4
(for c = 2) and c(K ) in (5.14) (or C ′(K ) (5.17), depending on the sign of q). We wish to
estimate the above integral further from above.

We consider three cases: (1) 4 − p < q < 0, (2) 0 < q < 1, (3) 1 ≤ q < p. In the first
case, the Hölder inequality gives us that

(∫
B

dm

‖DH f ‖−q

)− 1
q ≤

(∫
B

dm

‖DH f ‖(−q)
p−4
−q

) 1
p−4

.

In the second case a direct application of (5.15) for g := ‖DH f ‖q and ε := (p − 4)/q
results in the following estimate:

(∫
B

‖DH f ‖4−pdm

) q
4−p ≤

∫
B

‖DH f ‖qdm. (5.18)

Finally, in the third case we apply (5.15) and the Hölder inequality to obtain the esti-
mate (5.18). Therefore, as a consequence of the above case analysis, we get∫

B
aq

f dm ≤ c(K )

∫
B

‖DH f ‖q dm.

By the analogous estimates we obtain the lower bound for the mean value of aq
f over B.

Thus, it holds that

1

c(K )

∫
B

aq
f dm ≤

∫
B

‖DH f ‖q dm ≤ c(K )

∫
B

aq
f dm.

In the last step we apply the Whitney decomposition argument and show that � can be
expressed as a union of balls with controlled overlap satisfying (5.10). That this is indeed the
case, follows from Lemma 5.5. ��
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As in the Euclidean case we have the following consequence of Theorem 5.3, cf. Corollary
3.5 in [3].

Corollary 5.6 Let f : � → �′ be a K -quasiconformal mapping between domains in H
1 for

some K ≥ 1. Then for all 4 − p < q < p with p = p(K ) > 4 and c depending on K and
q, it holds that

1

c

∫
�′

a f −1(x)4−q dμ ≤
∫

�

a f (x)q dμ ≤ c
∫

�′
a f −1(x)4−q dμ.

Proof The proof follows the same lines as the proof of the corresponding result, Corollary
3.5 in [3], and is based on the change of variable formula, see, e.g., Theorem 5.4(a) in [15]
and the proof of Proposition 3.13. ��

5.3 Quasiconformal metrics on domains inH
1

In [9], the authors study quasiconformal metrics (more precisely, densities) defined on the
unit ball in R

n .
The terminology is motivated by the fact that a conformal map from the planar unit disk

intoC is, up to post-compositions with isometries, uniquely determined by the absolute value
of its derivative, and hence the latter can be thought of as a ‘density’ on the unit disk.

Let B = B(0, 1) ⊂ R
n be the unit ball in the Euclidean space R

n . Let further � : B →
(0,∞) be a strictly positive continuous function (called a density), satisfying the following
conditions, cf. Section 1 in [9]:

(1) (Harnack-type inequality.) There exist constants λ ∈ (0, 1) and c ≥ 1 such that

1

c
≤ �(x)

�(y)
≤ c, for all x, y ∈ B(z, λd(z, ∂B)) for z ∈ B.

(2) (Upper Ahlfors regularity with respect to d�.) There exists a constant A > 0 such that

μ�(B�(x, r)) :=
∫

B�(x,r)

�n(y) dLn(y) ≤ Arn, for all x ∈ B, r > 0. (5.19)

Here B�(x, r) stands for an open ball with respect to the length metric d�(a, b) :=
infγ⊂B l�(γ ) with weighted length l�(γ ) = ∫

γ
� ds and locally rectifiable curves γ

joining a, b ∈ B.

It turns out, see [9], that these simple conditions imposed on a density function are enough
to infer several interesting geometric properties of distances defined via such densities.
Among the examples of such densities studied in [9, Section 2.4], is

� :=
(∫

B(x,dist(x,∂B))

J f dLn
) 1

n

,

where f : B
n → � is a K -quasiconformal mapping from the unit ball in R

n into a domain
� ⊂ R

n . The purpose of this section is to show a counterpart of this observation for qua-
siconformal mappings between domains in H

1. The results of this paper allow us to move
beyond the setting of mappings from a unit ball and study more general domains in H

1. The
following holds both for d = ds and d = dH1 , and the length element ds in the definition of
l� taken with respect to the distance d:
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Proposition 5.7 Let f : � → �′ be a K -quasiconformal map between domains �,�′
� H

1.
Then the function a f possesses the following properties:

(1) There exists a constant λ ∈ (0, 1) such that for all balls B ⊂ � satisfying diamB ≤
λdist(B, ∂�), it holds

1

M
a f (x) ≤ a f (y) ≤ Ma f (x) for all x, y ∈ B,

with the equivalence constant M depending on K and the choice of d ∈ {ds, dH1}.
(2) The upper Ahlfors regularity holds for the measure μ� as in (5.19) with � = a f , n = 4

and constants depending on K and the choice of d ∈ {ds, dH1}.
Proof Assertion (1) follows from Lemma 5.4 applied to a fixed universal constant c.

In order to prove the second assertion for d = ds (and a posteriori for d = dH1 ) we follow
the steps of the proof of the corresponding property for quasiconformal mappings from a
unit ball in R

n into R
n , see [9, Section 2.4]. Let x ∈ � and r > 0. We consider two cases.

Case 1: Suppose that r ≤ c(K )a f (x)ds(x, ∂�) for a constant 0 < c(K ) < 1 depending
only on K and to be determined later. Let λ := 2/(10k) > 0 be the constant from Lemma
5.4 associated to, say, c = 2. We have the following inclusion of sub-Riemannian balls

Bs

(
x,

λr

(λ + 2)c(K )a f (x)

)
⊆ Bs

(
x,

λ

λ + 2
ds(x, ∂�)

)
.

Here the radius of the smaller ball has been chosen so that it is included in a ball which
satisfies the assumption of Lemma 5.4, so that a Harnack-type inequality for a f is valid on
that ball. (Note that the constants given by Lemma 5.4 depend on the choice of the metric
d = ds).

Consider now z ∈ B�(x, r). By definition,

d�(x, z) = inf
γxz

∫
γxz

a f ds = a f (x) inf
γxz

∫
γxz

a f

a f (x)
ds < r

where γxz is a an arbitrary (locally rectifiable) curve joining x and z within �. The plan
is to apply Lemma 5.4 in order to bound this quantity from below by 1

C a f (x)ds(x, z) for
a positive and finite constant C > 1, which depends only on K . To justify the application
of Lemma 5.4, it suffices to ensure that we can consider curves γxz which stay inside the
sub-Riemannian ball Bs(x, λr

(λ+2)c(K )a f (x)
). Let us explain why this is the case. First, since

z ∈ B�(x, r), there exists a rectifiable curve γxz which connects x to z and satisfies∫
γxz

a f ds < r . (5.20)

In the definition of d�(x, z) we can restrict the infimum to curves satisfying (5.20). Assume
that such a curve γxz exits Bs(x, λr

(λ+2)c(K )a f (x)
). Then, by connectedness, there must exist a

(first) point w on the trace of γxz with

w ∈ ∂ Bs

(
x,

λr

(λ + 2)c(K )a f (x)

)
.

We denote by γxw the subcurve of γxz which connects x and w inside Bs(x, λr
(λ+2)c(K )a f (x)

).
Since a f is a positive function, we find∫

γxz

a f ds ≥
∫

γxw

a f ds ≥ 1

C
a f (x)

∫
γxw

ds ≥ 1

C
a f (x)ds(x, w) = λr

(λ + 2) · C · c(K )
.
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We may choose 0 < c(K ) < 1 such that

c(K ) <
λ

(λ + 2)C
, (5.21)

which leads to a contradiction to the assumption
∫
γxz

a f ds < r . With this choice of c(K ),
we may restrict the curves in the definition of d�(x, z) to those curves γxz along which the
Harnack inequality for a f is valid, and we find

1

C
a f (x)ds(x, z) ≤ d�(x, z) < r .

In particular we have for our choice of c(K ) that

B�(x, r) ⊆ Bs

(
x, C

r

a f (x)

)
⊆ Bs

(
x,

λ

λ + 2
ds(x, ∂�)

)
,

for 0 < r ≤ cK a f (x)ds(x, ∂�). Since the Harnack inequality from Lemma 5.4 is valid on
B�(x, r), we find

μ�(B�(x, r)) =
∫

B�(x,r)

a f (y)4 dy ≤ C4a f (x)4m
(
B�(x, r)

)
.

Thus, we obtain:

μ�(B�(x, r)) ≤ C4a f (x)4m

(
Bs

(
x, C

r

a f (x)

))
≤ C8r4

and the proposition is proven in this case.
Case 2: Let us now consider the case r ≥ c(K )a f (x)ds(x, ∂�). Then, by Theorem 1.3

we have r ≥ (c(K )/cK )ds( f (x), ∂�′). We will use this estimate below.
Step 1: the Whitney- type decomposition of �. By Lemma 5.5 let us decompose

� as a union of balls satisfying the Whitney condition (5.10) for ds and λ > 0 the largest
number, possibly different from the first part of the proof, for which the following conditions
are satisfied

λ <
λ

1 − λ
≤ 1

5
(5.22)

and

λ ≤ 2

10k
. (5.23)

The first condition is related to Proposition 2.6 (egg yolk principle for ds) and k is as in
Proposition 3.12 applied to f , c = 2, and d = ds . The value of λ thus depends only on
K (and the metric ds). The first condition, (5.22), is to ensure quasisymmetry of f on all
the relevant balls which will appear later in the proof. The second condition, (5.23), is to
guarantee that every ball in the constructedWhitney decomposition satisfies the assumptions
of Lemma 5.4 applied to the map f .

Step 2. Let Cx be the collection of those sub-Riemannian balls B in the chosen Whitney
decomposition for which B ∩ B�(x, r) �= ∅. Then, we claim that

f

⎛
⎝ ⋃

B∈Cx

B

⎞
⎠ ⊆ Bs( f (x), cr), (5.24)

for some constant c > 0, which can be bounded from above in terms of K .
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In order to show (5.24), let us consider y ∈ B for B ∈ Cx and discuss separately the
two cases: (i) y ∈ B�(x, r) and (ii) y ∈ B\B�(x, r). In the first case, by the definition
of d� there exists a rectifiable curve γ joining x and y with l�(γ ) = ∫

γ
a f (s)ds < r .

Motivated by the egg yolk principle, Proposition 2.6, let α := 1
5 . If d(x, y) ≥ αd(x, ∂�),

then length(γ ) ≥ αd(γ, ∂�) and so Proposition 5.1 allows us to conclude the following
estimate:

d( f (x), f (y)) ≤ diam f (γ ) ≤ C
∫

γ

a f (s)ds < Cr .

From this

f

(
B ∩ B�(x, r) ∩ {y : d(x, y) ≥ αd(x, ∂�)}

)
⊆ Bs( f (x), cr)

with c ≥ C follows, which is a first step toward the proof of (5.24).
If d(x, y) < αd(x, ∂�), we will invoke Proposition 2.6, which we may by our choice of

α. Applied to f and �, this shows that there is a constant H , depending only on K , such that
f is H -quasisymmetric when restricted to B(x, αd(x, ∂�)) = B(x,

d(x,∂�)
5 ).

For t > 0 and x0 ∈ B(x,
d(x,∂�)

5 ), set3

L f (x0, t) := sup
{z∈B(x,

d(x,∂�)
5 ): d(x0,z)≤t}

d( f (x0), f (z)),

l f (x0, t) := inf
{z∈B(x,

d(x,∂�)
5 ): d(x0,z)≥t}

d( f (x0), f (z)).

With this notation, it holds that

d( f (x), f (y)) ≤ L f (x, αd(x, ∂�)) ≤ Hl f (x, αd(x, ∂�)) ≤ Hd( f (x), ∂�′) ≤ H
cK

c(K )
r .

In the last step we use the assumption that r ≥ c(K )/cK d( f (x), ∂�′). Altogether we have
shown that

f (B ∩ B�(x, r)) ⊆ Bs( f (x), cr)

holds with c ≥ max{C, HcK /c(K )}. This concludes the discussion of (5.24) for case (i).
For (ii), suppose that y ∈ B\B�(x, r) for some ball B ∈ Cx . Then, by the definition of

Cx , there is z ∈ B ∩ B�(x, r) and it holds that

d( f (x), f (y)) ≤ d( f (x), f (z)) + d( f (z), f (y)).

The first term on the right-hand side above can be estimated by the reasoning of the previous
case, since in particular z ∈ B�(x, r). In order to estimate the second term, we proceed as
follows. Let xB be the center of B. Then, by Whitney condition (5.10) for λ we observe that

d(xB , z) ≤ diam B ≤ λ dist(B, ∂�) ≤ λd(z, ∂�).

Thus, xB ∈ B(z, λd(z, ∂�)). Using this observation together with the definition ofWhitney-
type decomposition (5.10) with balls satisfying condition (5.22), we see that the conclusion
of the egg yolk principle holds on

B(xB , λd(xB , ∂�)) ⊇ B(xB , diamB) ⊇ B

3 In the notation from the beginning of Sect. 2.3, the above expressions correspond to Lg(x0, t) and lg(x0, t)
for g = f |B(x,d(x,∂�)/5).

123



184 T. Adamowicz et al.

and on

B(xB , d(xB , ∂�)/5)) ⊇ B(z, λd(z, ∂�)).

Thus, exploiting the quasisymmetry property of f on the respective balls, we get by similar
estimates as in the proof of [31, Proposition 3.7.5] that

d( f (z), f (y)) ≤ 2H(H + 1)
(
d( f (z), f (x)) + d( f (x), ∂�′)

)
≤ 2H(H + 1)

(
max{C, H cK

c(K )
} + c(K )/cK

)
r .

In the last step we appeal to the previously discussed case (as z ∈ B�(x, r)) and use the
assumption that r ≥ c(K )/cK d( f (x), ∂�′). This completes the proof of this case and the
whole claim (5.24), as well.

Step 3: the upper Ahlfors regularity. In order complete the proof of the propo-
sition we observe that Lemma 5.4 together with the Jensen inequality for the exponential
function and Lemma 4.2, applied to a suitable L depending on λ, allow us to infer that for
B ∈ Cx it holds that ∫

B
a f (y)4 dm(y) ≤ C ′

∫
B

J f (y) dm(y) (5.25)

for a suitable constant C ′ ≥ 1 which depends only on K , analogously as in the proof of
Theorem 5.3. Therefore,

μ�(B�(x, r)) ≤ C ′ ∑
B∈Cx

∫
B

J f (y) dm(y) ≤ Cm (Bs( f (x), cr)) ≤ C ′′r4,

by (5.24) and the controlled overlap in theWhitney decomposition. Here the constants C and
C ′′ depend only on K . This completes the proof of the second assertion. ��

Proposition 5.7 shows the upper Ahlfors regularity of μ�. More can be said if � ⊂ H
1

equipped with the sub-Riemannian distance ds is L-quasiconvex, that is,
if any two points x, y ∈ � can be joined by a curve γ such that its trace |γ | is in � and

length(γ ) ≤ Lds(x, y).
For examples of quasiconvex domains in H

1, see [26] and references therein.

Proposition 5.8 Let f : � → �′ be a K -quasiconformal map from a quasiconvex domain
� �= H

1 onto a domain �′ �= H
1. Then, there exist constants 0 < c1 < c2 < ∞ and

0 < c(K ) < 1 such that for all x ∈ � and all 0 < r < c(K )a f (x)ds(x, ∂�) one has

c1r4 ≤ μ�(B(x, r)) ≤ c2r4.

Proof Let us assume that � is L-quasiconvex for some constant L ≥ 1. By Proposition 5.7,
it suffices to prove the lower bound for μ�(B(x, r)). If c(K ) is chosen as in the proof of
Proposition 5.7, that is, as in (5.21), then we know already that the Harnack inequality for
a f holds on Bs(x, r/(Ca f (x)L)). Thus, for all points z in this ball, we find

d�(x, z) = inf
γxz⊂�

∫
γxz

a f ds ≤ Ca f (x) inf
γxz⊂�

∫
γxz

ds ≤ Ca f (x)Lds(x, z),

where we have used in the last step the assumption that � is L-quasiconvex. The above
estimate shows that

Bs

(
x,

r

Ca f (x)L

)
⊆ B�(x, r)
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and hence

m(B(0, 1))r4

C8L4 = a f (x)4

C4 m

(
Bs

(
x,

r

Ca f (x)L

))

≤
∫

Bs (x,r/(Ca f (x)L))

a4
f dm ≤ μ�(B�(x, r)),

which concludes the proof. ��
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