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Abstract
Most recommender systems suggest items that are popular among all users and similar
to items a user usually consumes. As a result, the user receives recommendations that
she/he is already familiar with or would find anyway, leading to low satisfaction. To
overcome this problem, a recommender system should suggest novel, relevant and
unexpected i.e., serendipitous items. In this paper, we propose a serendipity-oriented,
reranking algorithm called a serendipity-oriented greedy (SOG) algorithm, which
improves serendipity of recommendations through feature diversification and helps
overcome the overspecialization problem. To evaluate our algorithm, we employed
the only publicly available dataset containing user feedback regarding serendipity. We
compared our SOG algorithm with topic diversification, popularity baseline, singular
value decomposition, serendipitous personalized ranking andZheng’s algorithms rely-
ing on the above dataset. SOG outperforms other algorithms in terms of serendipity
and diversity. It also outperforms serendipity-oriented algorithms in terms of accuracy,
but underperforms accuracy-oriented algorithms in terms of accuracy. We found that
the increase of diversity can hurt accuracy and harm or improve serendipity depending
on the size of diversity increase.
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1 Introduction

Recommender systems are software tools that suggest items of use to users [17,27].
An item is “a piece of information that refers to a tangible or digital object, such as
a good, a service or a process that a recommender system suggests to the user in an
interaction through the Web, email or text message” [17]. For example, an item could
refer to a movie, a song or a new friend.

To increase the number of items that will receive high ratings most recommender
systems tend to suggest items that are (a) popular, as these items are consumed bymany
individuals and are often of highquality inmanydomains [5] and (b) similar to those the
user has assigned high ratings, as these items correspond to users’ preferences [17,19,
29]. As a result, users might become bored with the suggestions provided, as (1) users
are likely to be familiar with popular items, while the main reason these users would
use a recommender system is to find novel and relevant items [5] and (b) users often
lose interest in using the systemwhen they are offered only items similar to items from
their profiles (the so-called overspecialization problem) [17–19,29].Here the term user
profile refers to the unique ID and the set of items rated by the target user [17], though
it might include information, such as real name, user name and age in other papers.

To suggest novel and interesting items and overcome the overspecialization prob-
lem, recommender systems should suggest serendipitous items. Some researchers
consider novel and unexpected items serendipitous [32], while others suggest that
serendipitous items are relevant and unexpected [22]. Although there is no agreement
on the definition of serendipity [19], in this paper, the term serendipitous items refers
to items relevant, novel and unexpected to a user [17–19]:

– An item is relevant to a user if the user has expressed or will express preference
for the item. The user might express his/her preference by liking or consuming the
item depending on the application scenario of a particular recommender system
[17,19]. In different scenarios,ways to express preferencemight vary. For example,
we might regard a movie as relevant to a user if the user gave it more than 3 stars
out of 5 [21,33], whereas we might regard a song as relevant to a user if the user
listened to it more than twice. The system is aware that a particular item is relevant
to a user if the user rates the item, and unaware of its relevance otherwise.

– An item is novel to a user if the user had not heard of this item or had not thought
of this item prior to the recommendation of this item [16]. Items novel to a user are
usually unpopular, as users are often familiar with popular items, where popularity
can be measured by the number of ratings given to it in the system [5,17–19]. For
example, a user is more likely to be familiar with the popular movie “The Shaw-
shank Redemption” than with the unpopular movie “Coherence”. Novel items also
have to be relatively dissimilar to a user profile, as the user is likely to be familiar
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with items similar to the ones she/he has rated [17,19]. For example, a rock fan is
more likely to be familiar with rock songs rather than with pop songs.

– An item is unexpected to a user if the user does not anticipate this item to be
recommended to him/her or found by him/her or this item is just very dissimilar
to what this user usually consumes [16]. The user does not expect items that are
dissimilar to the ones usually recommended to him/her. Generally, recommender
systems suggest items similar to items rated by the user [17,19,29]. Consequently,
an item dissimilar to the rated ones is regarded as unexpected [17,19]. Themeasure
of dissimilarity could be based on user ratings or item attributes depending on
the application scenario of a recommender system [13]. For example, a comedy
fan would mostly rate comedies and receive recommendations of comedies in a
recommender system. A recommendation of documentary would be unexpected
to the user, as the user does not expect a recommendation of this genre from this
particular recommender system.

An item must be relevant, novel and unexpected at the same time to be consid-
ered serendipitous. For example, a recommender system suggests a very unpopular
documentary to a comedy fan. Let us assume that the user has never heard of this
movie (novel, as it is very unpopular) and does not expect this movie to be recom-
mended to them (unexpected, as it does not match their tastes indicated in the system).
Let us also assume that the user watches the movie and enjoys it (relevant). We will
regard this movie serendipitous, as it was novel and unexpected to the user prior to
the recommendation and it turned out to be relevant to her afterwards.

State-of-the-art serendipity-oriented recommendation algorithms are barely com-
pared with one another and often employ different serendipity metrics and definitions
of the concept, as there is no agreement on the definition of serendipity in recommender
systems [19,21,32].

In this paper, we propose a serendipity-oriented recommendation algorithm based
on our definition above. We compare our algorithm with state-of-the-art serendipity-
oriented algorithms relying on the first and currently the only publicly available dataset
containing user feedback regarding serendipity.

Our serendipity-oriented algorithm reranks recommendations provided by an
accuracy-oriented algorithm and improves serendipity through feature diversifica-
tion. The proposed algorithm is based on the existing reranking algorithm, topic
diversification (TD) [34], and outperforms this algorithm and other algorithms in
terms of serendipity and diversity. Our algorithm also outperforms the state-of-the-art
serendipity-oriented algorithms in terms of accuracy.

Our algorithm has the following advantages:

– It considers each component of serendipity.
– It improves both serendipity and diversity.
– It can be applied to any accuracy-oriented algorithm.

The paper has the following contributions:

– We propose a serendipity-oriented recommendation algorithm.
– We evaluate existing serendipity-oriented recommendation algorithms.
– We investigate the effect of diversity on accuracy and serendipity.
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396 D. Kotkov et al.

The rest of the paper is organized as follows. Section 2 discusses earlier work
in the field. Section 3 describes the proposed algorithm. Section 4 is dedicated to
experimental setting, while Sect. 5 reports the results of the experiments. Finally,
Sect. 7 draws conclusions.

2 Related work

In this section, we will discuss definitions of serendipity and diversity, and overview
algorithms that improve these properties.

2.1 Definition of serendipity

The term serendipity was coined by Horace Walpole by referencing a Persian fairy-
tale, “The Three Princess of Serendip,” in 1758. In the fairytale, the three princes of
the country Serendip ventured out to explore the world and made many unexpected
discoveries on their way.1 In his letter, Horace Walpole mentioned that the princes
were “always making discoveries, by accidents & sagacity, of things which they were
not in quest of” [26].

The dictionary definition of serendipity is “the faculty of making fortunate discov-
eries by accident”.2 However, there is no consensus on the definition of serendipity
in recommender systems. Some researchers require items to be relevant and unex-
pected to be considered serendipitous [19,22], whereas other researchers suggest that
serendipitous items are novel and unexpected [19,32]. However, the most common
definition of serendipity includes all three components: relevance, novelty and unex-
pectedness [17,18].

Novelty and unexpectedness also have multiple definitions, which results in eight
variations of serendipity [16]. Novelty has two variations: strict novelty—the user
has never heard about an item; and motivational novelty—the user had not thought
of consuming an item, before this items was recommended to him/her. Unexpect-
edness has four variations: unexpectedness (relevant)—the user does not expect to
enjoy the item; unexpectedness (find)—the user does not expect to find the item on
his/her own; unexpectedness (implicit)—the item is very dissimilar to what the user
usually consumes; and unexpectedness (recommend)—the user does not expect the
item to be recommended to him/her. Relevance has one variation and indicates how
much the user enjoys consuming the item. Since serendipity consists of relevance,
novelty and unexpectedness, relevance has one variation, novelty has two varia-
tions and unexpectedness has four variations, there are eight variations of serendipity
(proposed in [16]): strict serendipity (relevant), strict serendipity (find), strict serendip-
ity (implicit), strict serendipity (recommend), motivational serendipity (relevant),
motivational serendipity (find), motivational serendipity (implicit) and motivational
serendipity (recommend). We employ these variations in this study.

1 “The Three Princes of Serendip” by Boyle Richard, 2000.
2 http://www.thefreedictionary.com/serendipity.
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2.2 Improving serendipity

There are three categories for serendipity-oriented algorithms [19]: (a) reranking algo-
rithms (these algorithms change the order of items in recommendation lists using
relevance scores provided by accuracy-oriented algorithms); (b) serendipity-oriented
modifications (these algorithms are based on particular accuracy-oriented algorithms);
and (c) novel algorithms (these algorithms are not based on any common accuracy-
oriented algorithms, but rather utilize different techniques to improve serendipity).

Reranking algorithms improve serendipity by changing the order of the output of
accuracy-oriented algorithms [19]. These algorithms often use relevance scores to
filter out potentially irrelevant items first and then use other techniques to promote
potentially serendipitous ones. For example, the algorithm proposed by Adamopoulos
and Tuzhilin first filters out items likely to be irrelevant and obvious to a user and
then orders items based on their overall utility for the user. The latter is based on how
different an item is to users’ expectations and on relevance scores for this itemprovided
by an accuracy-oriented algorithm [1]. Another example is the algorithm proposed
by Zhang et al. Auralist [32]. The algorithm consists of the three other algorithms:
Basic Auralist, which is responsible for relevance scores, Listener Diversity, which is
responsible for diversity, and Declustering, which is responsible for unexpectedness.
The algorithm orders items in the recommendation list according to the final score,
which is represented by a linear combination of the scores provided by the three
algorithms.

Serendipity-oriented modifications refer to common accuracy-oriented algorithms
modified with a purpose of increasing serendipity [19]. The main difference between
reranking algorithms and modifications is that modifications are always based on
particular accuracy-oriented algorithms, whereas a particular reranking process can
be applied to any accuracy-oriented algorithm, which provides relevance scores. For
example, Nakatsuji et al. modified a common user-based collaborative filtering algo-
rithm (k-nearest neighbor algorithm) [10] by replacing the user similarity measure
with relatedness. It is calculated using random walks with restarts on a user similarity
graph [23]. The graph consists of nodes corresponding to users and edges correspond-
ing to similarities based on an item taxonomy. By utilizing the relatedness, for a target
user, the algorithm picks a neighborhood of users who are not necessarily similar, but
who are in some way related to the target user [23]. Another example of modifica-
tions is the algorithm proposed by Zheng et al. The algorithm is based on PureSVD
(a variation of the singular value decomposition algorithm) [7]. The main difference
between PureSVD and its modification is that the objective function of the modifi-
cation includes components responsible for unexpectedness, whereas the objective
function of PureSVD lacks these components [33].

Novel serendipity-oriented algorithms neither fall into reranking nor into modifica-
tions categories, as they are not based on any common accuracy-oriented algorithms
and do not use relevance scores provided by any accuracy-oriented algorithms [19]. For
example, TANGENT recommends items using relevance scores and bridging scores,
where both kinds of scores are inferred using a bipartite graph [24]. The graph contains
nodes that represent users and items, and edges that represent ratings. The algorithm
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calculates relevance scores using randomwalkswith restarts and bridging scores based
on the calculated relevance scores [24]. Another example of an algorithm that belongs
to the category of novel algorithms is randomwalk with restarts enhanced with knowl-
edge infusion [8]. The algorithm orders items in recommendation lists according their
relatedness to a user profile. The relatedness is calculated using random walks with
restarts on an item similarity graph, where nodes correspond to items, and edges cor-
respond to similarities between these items. To calculate the similarities, the authors
used the spreading activation network based on Wikipedia and WordNet [8].

Most existing algorithms have been designed to achieve serendipity measured by
artificial evaluation metrics due to the lack of publicly available datasets containing
user feedback regarding serendipity. The results of artificial evaluation metrics might
bemisleading, as the assumptions that thesemetrics are based onmight not correspond
to the reality due to the lack of ground truth [15]. Furthermore, performance of most
existing algorithms is not compared with that of others [18]. In this article, we propose
a reranking algorithm and compare it with state-of-the-art algorithms in evaluation
conducted on the first publicly available dataset containing serendipity ground truth.

2.3 Definition of diversity

Diversity is a property of a recommendation list or a set of them composed by one or
several recommender systems. It reflects how dissimilar items are to each other in the
list [4,14]. To measure diversity inside a list, researchers often calculate an average
pairwise dissimilarity of items in a recommendation list [4,14], where dissimilarity can
be represented by any metric, which reflects how dissimilar items are to one another.
A dissimilarity metric is often based on attributes of items. The higher the average
pairwise dissimilarity, the higher the diversity of the list.

Diversity is considered as a desirable property of a recommender system, as it
was proven to improve user satisfaction [34], and by diversifying the recommendation
results, we are likely to suggest an item satisfying a current need of a target user [14]. A
fan of the movie TheMatrix is likely to prefer a recommendation list of movies similar
to The Matrix, including this movie, rather than a recommendation list consisting of
The Matrix sequels only.

Diversity is not always related to dissimilarity of items in a particular recommenda-
tion list. The term can also refer to diversity of recommendations provided by different
recommender systems [3], diversity across recommendation lists suggested to all the
users of a particular system [2], or diversity of recommendations to the same user in a
particular system over time [20]. In these cases one needs amore complicated diversity
measure than the pairwise average diversity of items inside one recommendation list.

2.4 Improving diversity

Greedy reranking algorithms are very common in improving diversity of recommen-
dation lists. They create two lists of items (a candidate list and a recommendation list),
and iteratively move items from the candidate list to the recommendation list [4,14]. In
each iteration, these algorithms calculate different scores, which depend on the algo-
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rithm. Based on these scores, the algorithms pick an item from the candidate list to be
moved to the recommendation list [4,14]. For example, the TD algorithm, which our
algorithm is based on, calculates in each iteration average similarities between each
item in the candidate list and items in the recommendation list and uses the obtained
scores to pick an item that is the most relevant but at the same time the most dissimilar
to the items already added to the recommendation list [34].

Another group of the algorithms optimized for diversity take diversity into account
in the process of generating recommendations. For example, Su et al. proposed an
algorithm that integrates diversification in a traditionalmatrix factorizationmodel [28].
Another example of an algorithm falling into this category is diversified collaborative
filtering algorithm (DCF) that employs a combination of support vector machine and
parametrizedmatrix factorization to generate accurate anddiversified recommendation
lists [6].

To the best of our knowledge, studies that focus on both serendipity and diversity
are very limited. In this article, we propose an algorithm that improves both serendipity
and diversity.

3 A serendipity-oriented greedy algorithm

To describe the proposed algorithm, we present the notation in Table 1. Let I be a fixed
set of available items and U be a fixed set of users of a particular recommendation
system at a particular point in time T . User u has rated or interacted with items
Iu, Iu ⊆ I . The recommender system suggests RSu(n) items to user u (at time T ).
The unique rating user u has given to item i before T is represented by rui , whereas
the predicted rating generated by an algorithm is represented by r̂ui .

3.1 Description

We propose a SOG algorithm [18] that is based on a TD algorithm [34]. The objective
of TD is to increase the diversity of a recommendation list. Both SOG and TD belong
to the group of greedy reranking algorithms, meaning that these algorithms change
the order of items provided by another algorithm [4]. According to the classification

Table 1 Notations

Symbol Description

I = {i1, i2, . . . , i||I ||} The set of items

Iu , Iu ⊆ I The set of items rated by user u (user profile)

U = {u1, u2, . . . , u||U ||} The set of users

Ui ,Ui ⊆ U The set of users who rated item i

RSu(n), RSu(n) ⊆ I The set of top–n recommendations provided by an algorithm to user u

rui The rating given by user u to item i

r̂ui The prediction of the rating given by user u to item i
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provided in [19], we propose a hybrid reranking algorithm following the post-filtering
paradigm and considering unpopularity and dissimilarity.

Input : RSu(n): top–n recommendation set
Output: Res: picked item list
B: candidate set,
r̂ui : predicted rating of an item,
Res[0] ← i with max r̂ui ;
for z ← 1 to n do

B ← set(Res);// set converts a list to a set
B′ ← RSu(n)\B;
forall the i ∈ B′ do

calculate scoreui B
end
Res[z] ← i with max scoreui ;

end
Algorithm 1: Description of SOG

Algorithm 1 describes the proposed approach. An accuracy-oriented algorithm
predicts item ratings r̂u,i and generates top–n suggestions RSu(n) for user u. SOG
iteratively picks items from the set corresponding to RSu(n) to fill diversified list
Res. In each iteration the algorithm generates a candidate set B ′ that contains top–n
recommendations RSu(n) except items already picked to the list Res (converted to
the set B). A candidate item with the highest score is added to the diversified list Res.
The result Res contains the same items as RSu(n), but in a (possibly) different order.

The score is a linear combination of parameters important for serendipity:

scoreui B =
h∑

j=1

α j · pui B j . (1)

where α j is the weight of parameter pui B j , while h is the number of parameters. In our
algorithm, we took into account four parameters: relevance, diversity, dissimilarity of
an item to the user profile and unpopularity, which resulted in the following equation:

scoreui B = αrel · r̂ui + αdiv · divi B + αprof · profui + αunpop · unpopi . (2)

where divi B indicates the average dissimilarity of item i and the candidate set B,
profui represents the average dissimilarity of item i to items consumed by user u in
the past (Iu) and unpopi indicates unpopularity of item i . The diversity parameter is
calculated as follows [33]:

divi B = 1

||B||
∑

j∈B
1 − simi, j , (3)

where similarity simi, j can be any kind of similarity measure varying in the range
[0, 1]. The dissimilarity to the user profile is calculated as follows:
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profui = 1

||Iu ||
∑

j∈Iu
1 − simi, j . (4)

In case the user has not rated any items yet (the cold start problem [11]), profui can
be set to any constant (in our experiments we picked 0), as the contribution of this
part of equation 2 will be the same for each candidate item. It is possible to calculate
the dissimilarity of an item to a user profile based on information about user, such as
location, age or gender, but this information is often unavailable and this extension is
beyond the scope of this article. The unpopularity parameter is based on the number
of ratings, assigned to a particular item:

unpopi = ||Ui ||
||U || . (5)

Each of the four parameters is normalized to the range [0, 1]. The three parameters
r̂ui , profui and unpopi can be calculated prior to the first iteration of the algorithm,
while divBi can only be calculated on each iteration of the algorithm, as it depends
on the candidate set B.
Although SOG is based on TD [34], our algorithm has two key differences with respect
to TD:

– SOG considers item scores instead of positions of items in lists, which leads to
more accurate scores (scoreui ).

– SOG takes into account parameters important for serendipity.

Our algorithm has four main advantages:

– The algorithm considers each component of serendipity.
– As our algorithm is based on the diversification algorithm, SOG improves both
serendipity and diversity.

– As SOG is a reranking algorithm, it can be applied to any accuracy-oriented algo-
rithm, which might be useful for a live recommender system (reranking could also
be conducted on the client’s side in a client-server application scenario).

– Our algorithm employs four weights that allow to control serendipity. The weights
could be different for each user and be adjusted as the user becomes familiar with
the system.

3.2 Computational complexity

The algorithm contains three loops (Algorithm 1): the loop from 1 to n, the loop from
1 to ||B ′||, and the loop from 1 to ||B|| to calculate divBi (Eq. 3). The overall number
of actions can be calculated as follows:

(n − 1) · 1 + (n − 2) · 2 + (n − 3) · 3 + · · · + (n − n) · n
= n · (1 + 2 + 3 + · · · + n) − (12 + 22 + 32 + · · · + n2)

= n · n · 1 + n

2
− n(n + 1)(2n + 1)

6
= n3 − 2n2 + n

6
; (6)
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O
(
n3 − 2n2 + n

6

)
= O(n3). (7)

The computational complexity of the algorithm isO(n3) (excludingpre-calculation),
where n is the number of items in the input set RSu(n). The complexity of our algo-
rithm is relatively high.However,we expect n to be relatively small (in our experiments
n = 10), as by increasing n, one increases the chance of suggesting irrelevant (and
therefore non-serendipitous) items to the user.

In cases when n is required to be very high, which makes the computational time
unacceptable, one might want to ignore divi,B in Eq. 2, which will decrease the
computational complexity to O(n2). This will also decrease the diversification effect
of the algorithm, but keep the improvement of serendipity.

4 Experiments

In this section, we present the dataset we used in our experiments, baseline algorithms
and evaluation metrics.

4.1 Dataset

To compare performance of our algorithm with the baselines, we evaluated these
algorithms on the Serendipity-2018 dataset, as to the best of our knowledge, this is the
only publicly available dataset, which contains user feedback regarding serendipity
[16]. As the amount of this feedback is limited, we generated additional user feedback
based on this dataset. We then split this dataset into three different datasets to evaluate
our baselines. In this section, we first describe the dataset and then provide details on
its preprocessing.

4.1.1 Description

Serendipity-2018 contains ratings given by users tomovies on themovie recommender
system MovieLens,3 where users rate movies they watched in the past on the scale
from 0.5 to 5 stars and receive recommendations of movies to watch based on their
ratings. The authors of the dataset conducted a survey inMovieLens, where they asked
users how serendipitous these users find particular movies. In the survey, the authors
selected movies that were assigned low number of ratings in the system (unpopular
movies) and given high ratings by the users (relevant movies), as these movies were
likely to be serendipitous to the users.

The authors proposed eight variations of serendipity and asked users to indicate
how serendipitous each movie was to them according to each of the eight variations
(see Sect. 2.1). The dataset thus contains eight binary variables indicating whether a
movie is serendipitous or not according to a particular variation.

3 https://movielens.org.
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The dataset contains two types of user feedback: relevance ratings and serendipity
ratings. Relevance ratings are 5-star ratings that indicate how much users enjoyed
watching the movies. Serendipity ratings are binary ratings that indicate whether users
consideredmovies as serendipitous or as non-serendipitous. Serendipity-2018 contains
10 million relevance ratings given by 104,661 users to 49,151 different movies and
2150 serendipity ratings given by 481 users (up to five serendipity ratings per user) to
1678 different movies.

4.1.2 Preprocessing

In this experiment, we targeted the union of six variations of serendipity, as the two
remaining variations are likely to reduce user satisfaction [16].Amoviewas considered
as serendipitous to a user, if this movie was serendipitous to the user according to at
least one of the six remaining serendipity variations: strict serendipity (find), strict
serendipity (implicit), strict serendipity (recommend), motivational serendipity (find),
motivational serendipity (implicit) and motivational serendipity (recommend). For
detailed discussion the reader is urged to consult [16] and Sect. 2.1.

We generated a number of serendipity ratings due to the lack of these ratings in the
dataset. For each of these users, we randomly selected five movies rated by the user
with a relevance rating and labeled these movies non-serendipitous for this user. We
regarded these movies non-serendipitous, as they were unlikely to be serendipitous to
the users. According to the dataset, the chance of amovie to be serendipitous to the user
is up to 13%,4 provided that the authors of the dataset selected movies that were likely
to be serendipitous in their survey. These movies were relevant to the users, as users
gave them high relevance ratings and likely to be novel, as these movies had relatively
low number of ratings in MovieLens. To randomly select relevance ratings and label
them non-serendipitous, we did not control for popularity or relevance. The chance of
making a mistake labeling a movie non-serendipitous to the user is thus much lower
than 13%. The final dataset contained 4555 serendipity ratings (2405 were generated)
given by 481 users to 1931 different movies and 10 million relevance ratings given by
104,661 users (including the 481 users) given to 49,151 different movies.

To tune and evaluate the baselines, we split the final dataset into three datasets: the
training dataset, the tuning dataset and the test dataset. The training dataset contains
almost 10 million relevance ratings, while the tuning dataset contains 3043 relevance
and serendipity ratings (67% of serendipity ratings) of the same user-movie pairs.
The test dataset contains 1512 relevance and serendipity (33% of serendipity ratings)
ratings of the same user-movie pairs. To tune the parameters of the baselines, we
trained them on the relevance ratings of the training dataset and tuned the parameters
based on the performance of these baselines on the serendipity ratings of the tuning
dataset.We then trained the baselines with the inferred parameters on relevance ratings
of the training and tuning datasets combined and evaluated them on the relevance (to
measure relevance) and serendipity (to measure serendipity) ratings of the test dataset.

4 277 out of 2150 user-movie pairs are serendipitous.
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4.1.3 Similarity measure

To calculate how similar movies are to each other, the algorithms evaluated in this
research require a similarity measure. We picked tag based similarity measure, since
this is an important factor for detecting serendipitousmovies in Serendipity-2018 [16].
Tagbased similaritymeasure is basedon taggenomedata [31],which in turn is basedon
tags that users assign to movies in MovieLens. The tags are the keywords that indicate
different features of movies. For example, the movie “The Shawshank Redemption”
is attached tags “narrated”, “prison” and “escape”. Tag genome contains most popular
tags and scores indicating how much each of these tags applies to a particular movie.
These scores vary in the range [0, 1] and are calculated based on the number of users
who assigned these tags, user ratings and other user-contributed data. To calculate
similarity between movies, we employed weighted cosine similarity [31]:

sim(i, j) =
∑m

k=1 ik · jk · wk√∑m
k=1 i

2
k · wk

√∑m
k=1 j2k · wk

, (8)

wherem is the number of tags, ik indicates the score of tag k applied to movie i , while
wk indicates the weight of tag k. The weight is calculated as follows:

wk = log(||Utk ||)
log ||Itk ||

, (9)

where Utk corresponds to the set of users, who assigned tag tk , while Itk corresponds
to the set of movies, for which the tag score is greater than 0.5 (ik > 0.5).

4.2 Baselines

We implemented the following baseline algorithms:

– POP ranks items according to the number of ratings each item received in descend-
ing order.

– SVD is a singular value decomposition algorithm that ranks items according to
generated scores [33]. The objective function of the algorithm is the following:

min
∑

u∈U

∑

i∈Iu
(rui − pu · qTi )2 + β(||pu ||2 + ||qi ||2), (10)

where pu and qi are user-factor vector and item-factor vector, respectively, while
β(||pu ||2+||q j ||2) represents the regularization term. Based on tuning, we picked
the following parameters: feature number = 200, learning rate = 10−5 and
regularization term = 0.1.

– SPR (serendipitous personalized ranking) is an algorithm based on SVD that
maximizes the serendipitous area under theROC (receiver operating characteristic)
curve [21]:
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max
∑

u∈U
f (u), (11)

f (u) =
∑

i∈I+
u

∑

j∈Iu\I+
u

·zu · σ(0, r̂ui − r̂u j )(||Uj ||)α, (12)

where I+
u is a set of items a user likes. We considered that a user likes items that

she/he rates higher than threshold θ (in our experiments θ = 3). Normalization
term zu is calculated as follows: zu = 1

||I+
u ||||Iu\I+

u || . Based on tuning, we picked

the following parameters: Bayesian loss function, α = 0.4, feature number= 200,
learning rate = 10−5 and regularization term = 0.1.

– Zheng’s is an algorithm based on SVD that considers observed and unobserved
ratings and weights the error with unexpectedness [33]:

min
∑

u∈U

∑

i∈Iu
(rui − pu · qTi )2 · wui

+β(||pu ||2 + ||qi ||2), (13)

wui =
(
1 − ||Ui ||

max j∈I (||Uj ||)
)

+
∑

j∈Iu ·di f f (i, j)
||Iu || , (14)

where max j∈I (||Uj ||) is the maximum number of ratings given to an item. A
collaborative dissimilarity between items i and j is represented by di f f (i, j).
The dissimilarity is calculated as di f f (i, j) = 1 − ρi, j , where similarity ρi, j
corresponds to the Pearson correlation coefficient:

ρi, j =
∑

u∈Si, j (ru,i − ru)(ru, j − ru)
√∑

u∈Si, j (ru,i − ru)2
√∑

u∈Si, j (ru j − ru)2
, (15)

where Si, j is the set of users rated both items i and j , while ru corresponds to an
average rating for user u. In our implementation, we excluded unobserved ratings
due to the size of our dataset. Based on tuning, we picked the parameters: feature
number = 200, learning rate = 10−5 and regularization term = 0.1.

– TD is a topic diversification algorithm, where similarity corresponds to Eq. (8)
and the ratings are predicted by SVD [34]. Based on tuning, we set ΘF = 0.9.

– SOG is the proposed serendipity-oriented greedy algorithm, where the ratings are
predicted by SVD. Based on tuning, we set αrel = 0.9, αdiv = 0.1, αprof = 0.7
and αunpop = 0.7.

4.3 Evaluationmetrics

The main objective of our algorithm is to improve serendipity of a recommender sys-
tem. A change of serendipity might affect other properties of a recommender system.
To demonstrate the dependence of different properties and features of the baselines,
we employed evaluationmetrics to measure three properties of recommender systems:
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accuracy, as it is a common property [19]; serendipity, as SPR, Zheng’s and SOG are
designed to improve this property [21,33]; and diversity, as this is one of the objectives
of TD [34]:

– Tomeasure a ranking ability of an algorithm, we use normalized discounted cumu-
lative gain (NDCG), which, in turn, is based on discounted cumulative gain (DCG)
[12]:

DCGu@n = relu(1) +
n∑

i=2

relu(i)

log2(pos(i))
, (16)

where relu(i) indicates relevance of item i with rank pos(i) for user u, while
n indicates the number of top recommendations selected. pos(i) is the distance
of the item from the beginning of the list (1, 2, 3, …, n). The NDCG metric is
calculated as follows:

NDCGu@n = DCGu@n

I DCGu@n
, (17)

where I DCGu@n is DCGu@n value calculated for a recommendation list with
an ideal order according to relevance.

– To measure serendipity, we adopted the accuracy metric precision, since user
feedback regarding serendipity is the binary variable:

Serendipi tyu@n = seru@n

n
, (18)

where seru@n corresponds to the number of serendipitous items in the first n
results. To tune our algorithms, we used Serendipity@3.

– To measure diversity, we employed an intra-list dissimilarity metric [33]:

Divu@n = 1

n · (n − 1)

∑

i∈RSu(n)

∑

j �=i∈RSu(n)

1 − simi, j , (19)

where similarity simi, j corresponds to tag based similarity measure (Eq. 8).

The experiments were conducted using the Lenskit framework5 [9].

5 Results

Tables 2, 3 and 4 demonstrate performance of baselines in terms of accuracy, serendip-
ity and diversity. The following observations can be noticed (we provide them along
with explanations):

1. Serendipity (Table 2)

1.1 SOG outperforms other algorithms at top-3 results
1.2 SOG underperforms SPR at top-1, as our algorithm always keeps the most

relevant item as the first one in the list

5 https://lenskit.org/.
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Table 2 Serendipity

Algorithm Serendipity@1 Serendipity@3 Serendipity@5

POP 0.021 0.021 0.051

Random 0.170 0.149 0.140

TD 0.277 0.227 0.226

SVD 0.277 0.241 0.213

Zheng’s 0.319 0.248 0.204

SPR 0.319 0.291 0.268

SOG 0.277 0.305 0.230

Values highlighted in bold are the highest

Table 3 Accuracy Algorithm NDCG@1 NDCG@3 NDCG@5

POP 0.832 0.842 0.864

Random 0.823 0.850 0.878

Zheng’s 0.855 0.884 0.902

SPR 0.850 0.886 0.905

SOG 0.881 0.887 0.899

TD 0.881 0.898 0.920

SVD 0.881 0.903 0.921

Values highlighted in bold are the highest

Table 4 Diversity Algorithm Div@5

SVD 0.347

Zheng’s 0.347

POP 0.353

SPR 0.356

TD 0.359

Random 0.367

SOG 0.371

Value highlighted in bold is the highest

1.3 SOG underperforms SPR at top-5, as our algorithm was tuned for top-3 results
1.4 POP demonstrates the lowest performance among the presented baselines, as

the most popular items are the most well-known and the least surprising to the
users [18,19,32,33]

1.5 The serendipity-oriented algorithmsZhengs andSPRoutperform the accuracy-
oriented algorithm SVD, as the serendipity-oriented algorithms were designed
to achieve high serendipity

1.6 Personalized algorithms (Zheng’s, SPR, TD, SVD and SOG) outperform non-
personalized ones (POP and Random)

2. Accuracy (Table 3)
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2.1 SOG underperforms the accuracy-oriented algorithms SVD and TD, and out-
performs the serendipity-oriented algorithms SPR and Zheng’s due to the
objective of our algorithm

2.2 Personalized algorithms (Zheng’s, SPR, TD, SVD and SOG) outperform non-
personalized ones (POP and Random)

2.3 The accuracy-oriented algorithm SVD outperforms serendipity-oriented ones
(SOG, SPR and Zheng’s), as SVD was optimized for serendipity, while the
other algorithms were optimized for serendipity

3. Diversity (Table 4)

3.1 SOG outperforms other algorithms in terms of diversity

Observations 1.1, 2.1 and 3.1 suggest that our algorithm has the highest serendipity
and diversity among the presented algorithms, the highest accuracy among serendipity-
oriented algorithms. As expected, the popularity baseline has the lowest serendipity
(observation 1.4), personalized algorithms have higher performance in terms of
accuracy and serendipity than non-personalized ones (observations 1.6 and 2.2), algo-
rithms optimized for serendipity outperform those optimized for accuracy in terms of
serendipity (observation 1.5) and algorithms optimized for accuracy outperform those
optimized for serendipity in terms of accuracy (observation 2.3).

According to observations 1.1 and 3.1, serendipity and diversity are properties that
can be increased simultaneously. Meanwhile observations 1.1 and 2.1 indicate that the
increase of serendipity can cause the decrease of accuracy.

5.1 Investigating the effect of diversity

To investigate the effect of diversity on serendipity and accuracy, we run TD multiple
times varying the damping factor from 0 till 0.95. We picked TD for the sake of
simplicity.

Figure 1 demonstrates the performance of TD in terms of diversity, accuracy
and serendipity. The figure suggests that with the increase of damping factor, diver-
sity increases, accuracy decreases, serendipity increases, achieves its peak and then
decreases. These observations indicate that serendipity can be increased along with
diversity for the relatively low price of accuracy. For example, by increasing the damp-
ing factor from 0 to 0.35, one can achieve the increase of diversity from 0.346 to 0.366
(5.4%), the increase of serendipity from 0.212 to 0.217 (1.9%) and the decrease of
accuracy from 0.921 to 0.918 (0.3%).

6 Discussion

In our experiments, we only considered the movie domain, as the only publicly avail-
able serendipity dataset contains information onmovies. In other domains, the findings
might be different. In fact, in some domains and situation, serendipity either might not
be suitable or might need to be redefined. For example, generating a play list based on
the number of songs or keywords might not require any serendipity [30]. The inves-
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Fig. 1 Performance of TD with ΘF (damping factor) varying from 0 to 0.95

tigation of the effect serendipity in other domains required user studies and datasets
from these domains.

In our experiments, we assumed that the number of candidate items n is relatively
small (around 20), as with the increase of n, our algorithm is likely to pick items irrele-
vant to the user, which is likely to repulse him/her. This assumption is reasonable when
serendipitous recommendations are mixed with non-serendipitous ones. However, in
the situation, when a recommender system needs to suggest serendipitous items to the
user regardless of the number of irrelevant ones (“surprise me” option), n might need
to be high, which would significantly increase the time to generate recommendations.
A solution in this situation might be to choose another baseline algorithm, such as
SPR.

7 Conclusion and future work

We proposed serendipity-oriented greedy (SOG) algorithm, provided evaluation
results of our algorithm and state-of-the-art algorithms on the only publicly avail-
able dataset that contains user feedback regarding serendipity. We also investigated
the effect of diversity on accuracy and serendipity.

According to our results, our algorithm outperforms other algorithms in terms of
serendipity and diversity, serendipity-oriented algorithms in terms of accuracy, but
underperforms accuracy-oriented algorithms in terms of accuracy.
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We found that accuracy, serendipity and diversity are not independent properties of
recommender systems. The increase of diversity can hurt accuracy and hurt or improve
serendipity depending on size of the increase.

In our future work, we are planning to further investigate serendipity by designing
serendipity-oriented algorithms and evaluating them with real users. Having a bigger
dataset on serendipitymight provide insights on serendipity. Deep learning seems to be
a promising direction for designing serendipity-oriented algorithms [25]. User studies
might help to further investigate the effect of serendipity on users and the performance
of algorithms in terms of user satisfaction.
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