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The case of equality in the dichotomy of

Mohammadi-Oh

Laurent Dufloux

April 15, 2018

Abstract

If n ≥ 3 and Γ is a convex-cocompact Zariski-dense discrete subgroup
of SOo(1, n+1) such that δΓ = n−m where m is an integer, 1 ≤ m ≤ n−1,
we show that for any m-dimensional subgroup U in the horospheric group
N , the Burger-Roblin measure associated to Γ on the quotient of the frame
bundle is U -recurrent.

1 Introduction

1.1 Notations

We fix once and for all an integer n ≥ 2. Let G = SO
o(1, n + 1), this is

the group of direct isometries of the real (n + 1)-dimensional hyperbolic
space H

n+1. Its acts conformally on the boundary ∂Hn+1.
Recall the Busemann function

bξ(x, y) = lim
t→∞

d(x, ξt)− d(y, ξt) ξ ∈ ∂Hn+1, x, y ∈ H
n+1

where t 7→ ξt is some geodesic with positive endpoint ξ.
Fix an Iwasawa decomposition G = KAN ; recall that the maximal

compact subgroup K is isomorphic to SO(n + 1), whereas the Cartan
subgroup A is isomorphic to R (since G has rank 1) and the maximal
unipotent subgroup N is isomorphic to R

n.
Denote by M the centralizer of A in K; M is isomorphic to SO(n).

Recall that M normalizes N and there are isomorphisms M ≃ SO(n),
N ≃ R

n such that the operation of M on N by conjugation identifies
with the natural operation of SO(n) on R

n.
We will always tacitly endow N with the corresponding Euclidean

metric.
Let Γ be a discrete non-elementary subgroup of G. Throughout this

paper we make the standing assumptions that

Γ is Zariski-dense and has finite Bowen-Margulis-Sullivan

measure.

In fact except in the last paragraph we will always assume that Γ is convex-
cocompact (this is stronger than finiteness of the Bowen-Margulis-Sullivan
measure).

As usual, we denote by δΓ the growth exponent (also called Poincaré
exponent) of Γ

δΓ = lim sup
R→∞

log Card{γ ∈ Γ ; d(x, γx) ≤ R}

R
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which does not depend on the fixed point x ∈ H
n+1. This is the Hausdorff

dimension (with respect to the spherical metric on the boundary) of the
limit set

ΛΓ = Γ · x ∩ ∂Hn+1

(which also does not depend on x). Bear in mind that 0 < δΓ ≤ n; in this
paper we will be interested in the case when δΓ is an integer strictly less
than n.

The boundary ∂Hn+1 is endowed with the Patterson-Sullivan density
(µx)x∈Hn+1 . This is the (essentially unique since Γ has finite Bowen-
Margulis-Sullivan measure) family of finite Borel measures on ∂Hn+1 sat-
isfying

1. Γ-equivariance : µγx is the push-forward of µx through the mapping
induced by γ on ∂Hn+1;

2. δΓ-conformality: for any x, y ∈ H
n+1, µx and µy are equivalent and

the Radon-Nikodym cocycle is given by

dµy

dµx
(ξ) = e−δΓbξ(y,x)

almost everywhere.

This is the Patterson-Sullivan density associated to Γ. If a base point
o ∈ H

n+1 is fixed, the boundary ∂Hn+1 may be identified canonically
with the n-sphere Sn and thus endowed with the usual spherical metric.
When Γ is convex-cocompact, µo is proportional to the δΓ-dimensional
Hausdorff measure on δΓ with respect to the spherical metric (see [16] or
[1]).

We now recall the definition of the Bowen-Margulis-Sullivan (BMS)
measure – first on the unit tangent bundle, then on the frame bundle. Let
T 1

H
n+1 be the unit tangent bundle over H

n+1. The Hopf isomorphism
is the bijective mapping from T 1

H
n+1 to ∂2

H
n+1×R that maps the unit

tangent vector u with base point x to the triple

(ξ, η, s) = (u−, u+, bu−(x, o))

where u−, u+ respectively are the negative and positive endpoints of the
geodesic whose derivative at t = 0 is u. The notation ∂2

H
n+1 stands for

the set of all (ξ, η) ∈ ∂Hn+1 × ∂Hn+1 such that ξ 6= η.
In these coordinates, the BMS measure on T 1

H
n+1 is given by

dm̃BMS(u) = eδΓ(bξ(x,u)+bη(x,u))dµx(ξ)dµx(η)ds

(it does not depend on the choice of x ∈ H
n+1).

The BMS measure is a Radon measure that is invariant under the
geodesic flow as well as under the natural operation of Γ. The quotient of
this measure with respect to Γ is a Radon measure mBMS on Γ\T 1

H
n+1

that is still invariant with respect to the geodesic flow. This quotient
measure may be finite or infinite; we will always assume that is is finite
and in fact we will usually assume that it is compactly supported, which
is equivalent to Γ being convex-cocompact ([12], [16]).

The Burger-Roblin (BR) measure is defined in a similar fashion:

dm̃BR(u) = eδΓbξ(x,u)+nbη(x,u)dµx(ξ)dνx(η)ds

where νx is the unique Borel probability measure on ∂Hn+1 that is in-
variant under the stabilizer of x in G; if ∂Hn+1 is identified with Sn

accordingly, this is just the Lebesgue measure on Sn.
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Likewise, the Burger-Roblin measure is Γ-invariant and thus defines
a Radon measure on Γ\T 1

H
n+1. This Radon measure is always infinite,

unless Γ is a lattice.
Both these measures lift to the frame bundle over Γ\Hn+1 in the fol-

lowing way. The hyperbolic space H
n+1 identifies with the quotient space

G/M so that G identifies with the (n+ 1)-frame bundle over H
n+1. The

quotient space Γ\G accordingly identifies with the (n + 1)-frame bundle
over the orbifold Γ\Hn+1. There is a unique measure on Γ\G that is
(right) invariant with respect to M and projects onto the BMS measure
in Γ\G/M , we denote it by mBMS as well. Same thing for the BR measure.
The lift of the geodesic flow to Γ\G is called the frame flow.

The point in doing this is we can now let N act by translation (to
the right) on Γ\G. Let us agree that A = {at ; t ∈ R} where (at)t
parametrizes the frame flow over Hn+1, in such a way that N parametrizes
the unstable horospheres.

We then have, for every h ∈ N ,

a−that = St(h) (1)

where St is the homothety N → N with ratio et.
We summarize the important points in the following

Lemma 1. Assume that Γ has finite BMS measure and is Zariski-dense.

1. The BMS measure on Γ\G is mixing with respect to the ergodic flow.

2. The BR measure on Γ\G is invariant and ergodic with respect to N .

3. If Ω ⊂ Γ\G has full BMS measure, then ΩN has full BR measure.

Proof. For 1 and 2 see [17]. For 3 compare the definitions of BMS and BR
measure, taking into account the fact that N parametrizes the unstable
horospheres in the frame bundle.

1.2 Background

The basic motivation for this paper is the following

Theorem (Mohammadi-Oh, [11], Theorem 1.1). Assume that Γ is
convex-cocompact and Zariski-dense. Let m be an integer, 1 ≤ m ≤ n−1,
and U be an m-plane in N . If δΓ > n−m, then mBR is U-ergodic.

This result was also obtained by Maucourant and Schapira [9] under
the weaker hypothesis that Γ has finite BMS measure. The case when
δΓ < n−m has also been settled by these authors:

Theorem (Maucourant-Schapira, [9]). Assume that Γ is convex-
cocompact and Zariski-dense. Let m be an integr, 1 ≤ m ≤ n− 1, and U
be an m-plane in N . If δΓ < n−m, then mBR is totall U-dissipative. In
particular, it is not ergodic.

Mohammadi-Oh and Maucourant-Schapira use Marstrand’s projection
Theorem to look at the geometry of the BMS measure along U and N .
For more on this, see [4].

In this paper, we use Besicovitch-Federer’s projection theorem to study
the case δΓ = n−m. Our main result is the following

Theorem. Assume that Γ is convex-cocompact and Zariski-dense. Let m
be an integer, 1 ≤ m ≤ n − 1. If δΓ = n − m, then the Burger-Roblin
measure is recurrent with respect to any m-plane U in N .

3



Whether the BR measure is ergodic with respect to U under these
hypotheses remains an open question. We will see that the return rate of
U -orbits is quite low (i.e. subexponential) but this does not contradict
ergodicity since BR is not finite.

Let us mention that the Theorem is not empty; indeed it is possible to
construct some Zariski-dense convex-cocompact group Γ ⊂ SO

o(1, 3) with
δΓ = 1. Start with the Apollonian gasket associated to 4 mutually tangent
circles on the boundary of H3; the limit set has dimension δΓ > 1. Now
shrink continuously the radii of the circles, thus lowering continuously δΓ.
The deformed group will remain Zariski-dense because the centers of the
circles are not aligned. For details see [10].

With this result for δΓ = n − m, the situation is summarized in the
following table. We assume that Γ is Zariski-dense, has finite BMS mea-
sure, and we fix some m-plane U in N with 1 ≤ m ≤ n− 1. With respect
to U , the BMS and BR measures are:

δΓ < n − m δΓ = n − m δΓ > n − m

BMS dissipative [4] dissipative [4]
recurrent and

ergodic [9]

BR
totally dissipative

if Γ convex-
cocompact [9]

recurrent if Γ
convex-cocompact

recurrent and
ergodic [9]

Note that it follows immediately from the definitions that if the BMS
measure is recurrent, so is the BR measure. The other implications are
not so obvious.

We now sketch briefly our argument. In order to prove that the BR
measure is U -recurrent (where U is some m-plane), we need to show that
the U -orbit of mBR-almost every x ∈ Γ\G will pass through some compact
set K infinitely often. If is enough to construct some sequence hk in N that
goes to infinity while staying uniformly close from U , such that xhk ∈ K;
indeed, if uk is the orthogonal projection of hk onto U , the sequence uk

still goes to infinity and xuk will belong to some compact K′ that is just
slightly bigger than K.

To show that such a sequence (hk)k exists, our strategy is to prove
that any ρ-neighbourhood of U in N has infinite measure with respect to
the conditional measure of mBMS along N ; we then use the fact that the
support of mBMS is a compact set. This is the main reason why we need
Γ to be convex-cocompact.

In order to prove that any “strip” along U has infinite measure, we
argue by contradiction: if some ρ-neighbourhood has finite measure with
respect to the conditional measure of mBMS along N , then this must hold
almost surely for any neighbourhood as large as we like (because of the
self-similarity of the conditional measures). In particular we can project
these conditional measures onto N/U and end up with a family of Radon
measures. These “transversal” Radon measures must still have dimension
δΓ = n−m (this was shown in [4]), and this implies in turn that they must
be the Lebesgue measure of N/U . On the other hand, the Besicovitch-
Federer projection Theorem implies that the projection of the conditional
measures onto N/U must be singular with respect to the Lebesgue mea-
sure, because the conditional measure are purely unrectifiable. Hence our
Theorem is proved.

The push-forward of the Borel measure µ through the Borel function
f is denoted by fµ; thus fµ(A) = µ(f−1(A)) for any Borel set A.
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For any set E, we denote by 1E the characteristic function:

1E(x) =

{

1 if x ∈ E
0 if x /∈ E

2 Proof of the main theorem

2.1 Preliminary setup

In order to study the BR measure with respect to some m-plane U in N ,
it is useful to look at the geometry of the BMS measure with respect to
the foliation induced by U in the N-orbits (more precisely, with respect
to the projection along this foliation).

The technical tool that allows this is disintegration of measures.
Since we are going to apply tools from classical geometric measure

theory, we want to work with measures living on N (recall that N identifies
with the Euclidean space R

n). To mBMS-almost every x ∈ Γ\G we are
going to associate a measure (more precisely, a projective measure, i.e. a
measure modulo a positive scalar) σ(x) on N that reflects the geometry
of mBMS along the unstable horosphere passing through x.

We now set up the needed formalism. The operation of N on G (on
the right) is smooth (i.e. the quotient Borel space G/N is a standard
Borel space). Lift mBMS (which lives on Γ\G) to G; the measure we get
is a Γ-invariant Radon measure m̃BMS. Disintegrate this measure along
N ; for almost every g ∈ G we thus get a measure mgN supported on gN
(see [12] section 3.9 for a description of this measure).

In general when disintegrating an infinite measure, the conditional
measures are canonically defined only up to a (non-zero) scalar; in fact
here there is a way to normalize them in a canonical way (by introducing
an appropriate measure on the space of horospheres, more precisely this
space lifted by M) but this would not be useful for our purpose. See e.g.
[13].

We now want to look at measures on N instead of measures on G.
For any g ∈ G, there is a mapping φg : N → G which parametrizes the
“unstable horosphere” H+(g) = gN in the usual way: φg(h) = gh for any
h ∈ N .

Since m̃BMS is Γ-invariant, the pull-back measures

(φg)
−1(mgN), (φγg)

−1(mγgN )

(which live on N) are equal up to a scalar multiple, for m̃BMS-almost every
g ∈ G and every γ ∈ Γ.

Let Mrad(N) be the space of positive Radon measures on N and
M1

rad(N) be the space of projective classes of Radon measures on N ,
that is, the quotient of Mrad(N) by the equivalence relation

µ ∼ ν ⇔ ν = tµ, t > 0.

We define a mapping σ : Γ\G → M1
rad(N) by letting σ(x) be the

projective class of
(φg)

−1(mgN)

if x = Γg. This is well-defined mBMS-almost everywhere.
We say that σ is obtained by disintegrating mBMS along N .
This is a particular instance of the general theory of conditional mea-

sures along a group operation, see [3] or [2] (Chapter 2).
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We record the following facts which we will use freely throughout this
paper:

Lemma 2. 1. If some Borel subset Ω ⊂ Γ\G has full mBMS-measure,
then for mBMS-almost every x, the set

{h ∈ N ; xh ∈ Ω}

has full σ(x)-measure.

2. There is a Borel subset X ⊂ Γ\G of full mBMS-measure such that
if x ∈ X and h0 ∈ H are such that xh0 ∈ X, then σ(xh0) is the
push-forward of σ(x) through left translation by h0 in N ,

h 7→ h0h.

3. For mBMS-almost every x ∈ Γ\G, the origin of N belongs to the
support of σ(x).

4. For any t ∈ R and mBMS-almost every x ∈ Γ\G,

σ(xat) = Stσ(x)

i.e. σ(xat) is the push-forward of σ(x) through the ghomothety St :
N → N .

5. For any m ∈ M , and mBMS-almost every x ∈ Γ\G, σ(xm) is the
push-forward of σ(x) through the mapping h 7→ mhm−1. (Recall that
the operation of M by conjugation on N identifies with the canonical
operation of SO(n) on R

n.)

6. For mBMS-almost every x ∈ Γ\G and σ(x)-almost every h ∈ N ,

0 < lim inf
ρ→0

σ(x)(B(h, ρ))

ρδΓ
≤ lim sup

ρ→0

σ(x)(B(h, ρ))

ρδΓ
< ∞.

Proof. Statements 1, 2 and 3 are clear. Statement 4 holds because of
invariance of mBMS with respect to the geodesic flow and formula (1).
Statement 5 holds because mBMS is M -invariant by definition. State-
ment 6 holds because Γ is convex-cocompact and σ(x) is equivalent to the
Patterson-Sullivan measure; see [1], Proposition 7.4 and [12], section 3.9

Notation. If µ is a Borel measure or projective measure on N , the sup-
port of which contains the origin on N , we let

µ∗ =
µ

µ(B1)

i.e. µ∗ is the measure colinear to µ that gives measure 1 to the unit ball
B1.

We also denote by S∗
t µ the measure (Stµ)

∗.

In particular, since for mBMS-almost every x ∈ Γ\G, the origin of N
belongs to the support of σ(x), we denote by σ∗(x) the Radon measure
on N that belongs to the projective class σ(x) and such that the unit ball
B1 ⊂ N has measure 1:

σ∗(x)(B1) = 1.

We denote by Dirac(x) the Dirac mass at x, i.e. the probability mea-
sure giving measure 1 to {x}. Associated to mBMS is the following prob-
ability measure on the space of Radon measures on N :

P =

∫

Γ\G

dmBMS(x) Dirac(σ∗(x)). (2)
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Recall that we assume that Γ is Zariski-dense and has finite BMS mea-
sure, so that P is an Ergodic Fractal Distribution (EFD) in the sense of
Hochman (see [5], Definition 1.2, and [4], Lemma 5.3 for a proof that P is
indeed an EFD).

2.2 Unrectifiability of the limit set

Recall that a Radon measure µ on the Euclidean space R
n is said to be

purely m-unrectifiable if for any Lipschitz mapping f : Rm → R
n, the

range f(Rm) has measure zero with respect to µ.
Assume that the growth exponent δΓ is an integer < n. The fact that

the limit set of Γ is purely δΓ-unrectifiable when Γ is convex-cocompact
and Zariski-dense (the latter hypothesis is obviously necessary) is probably
well-known, and certainly very intuitive. We give a full proof of this fact
as it is pivotal in our argument.

Proposition 3. Assume that Γ is convex-cocompact and Zariski-dense.
If δΓ is an integer strictly smaller than n, the conditional measure σ(x) is
almost surely purely δΓ-unrectifiable.

Proof. Let Ω be the set of all x ∈ Γ\G such that

1

T

∫ T

0

Dirac(S∗
t σ(x))dt

converges weakly to P (recall equation (2)) as T → +∞. This set has
full BMS measure ([4], Lemma 5.4). Now fix some x0 ∈ Ω such that for
σ(x0)-almost every h ∈ N , x0h ∈ Ω (see Lemma 2).

We argue by contradiction. Assume that some subset L ∈ N is the
image of a Lipschitz mapping R

δΓ → N and satisfies

σ(x0)(L) > 0.

Note that the restriction σ(x0)|L, which we denote by σL(x0), is δΓ-
rectifiable, and satisfies

0 < lim inf
ρ→0

σL(x0)(B(h, ρ))

ρδΓ
≤ lim sup

ρ→0

σL(x0)(B(h, ρ))

ρδΓ
< ∞

for σL(x0)-almost every h (Lemma 2). By virtue of [8], Theorem 16.7 and
Lemma 14.5, for σL(x0)-almost every h, there is a δΓ-plane V (h) such
that

S∗
t σ(x0h)

converges weakly to the Haar measure on V (h) as t → ∞
Recall that for σ(x0)-almost every h,

1

T

∫ T

0

Dirac(S∗
t σ(x0h)) dt

also converges weakly to P as T goes to infinity.
We thus see that P -almost every µ is the Haar measure on some δΓ-

plane. In other words, for mBMS-almost every x the conditional measure
at x, σ(x), is concentrated on some δΓ-plane of N ; this contradicts the fact
that the support of σ(x) must be Zariski-dense, since Γ is Zariski-dense.
Hence the proposition.

Corollary 4. Under the same hypotheses, the limit set ΛΓ is purely δΓ-
unrectifiable.
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Recall that the limit set ΛΓ is the set of accumulation points of Γ in
H

n+1 ∪ ∂Hn+1. It is locally bilipschitz equivalent to the support of σ(x)
for mBMS-almost every x, so that the corollary follows readily from the
proposition.

2.3 The conditional measures are transversally

singular

Proposition 5. Assume that Γ is Zariski-dense and convex-cocompact
and that δΓ = n − m where m is an integer, 1 ≤ m ≤ n − 1. Fix some
m-plane U in N .

For mBMS-almost every x ∈ Γ\G, the push-forward of the conditional
measure σ(x) through the canonical projection N → N/U is singular with
respect to the Lebesgue measure on N/U .

Recall that a measure µ is singular with respect to a measure ν if it
gives full measure to a ν-negligible set.

Proof. For any m-plane V , denote by πV the canonical projection N →
N/V .

We will show that there exists an m-plane U0 such that for almost
every x, the push-forward of σ(x) through N → N/U0 is singular with
respect to the Lebesgue measure on N/U . Since the BMS measure is
M -invariant, this implies that the same statement holds for any other
m-plane U .

According to Lemma 6 and the previous Propostion, for mBMS-almost
every x there is a sequence of Borel sets (Ak)k such that

• ∪kAk has full σ(x)-measure,

• each Ak has finite (n−m)-dimensional Hausdorff measure,

• and each Ak is purely (n−m)-unrectifiable.

By virtue of the Besicovitch-Federer projection theorem ([8], Theorem
18.1 (2)), the image of ∪kAk in N/V is Lebesgue-negligible for almost
every m-plane V (with respect to the Haar measure on the Grassmannian
of m-planes in N). This shows that for almost every m-plane V , the
push-forward of σ(x) through πV is singular with respect to the Lebesgue
measure.

This holds for almost every x. A standard application of Fubini’s
theorem now yields that there exists an m-plane U0 such that for almost
every x, the push-forward of σ(x) through πU0

is singular with respect to
the Lebesgue measure. The proposition is thus proved.

Lemma 6. Assume that Γ is convex-cocompact. For mBMS-almost every
x ∈ Γ\G, σ(x) is supported by a countable union of δΓ-sets.

Recall that E is a δ-set if its δ-dimensional Hausdorff measure is finite
and non-zero.

Proof. It is well-known (see [15], Theorem 7) that the limit set ΛΓ is a δΓ-
set. Since it is (almost surely) locally bilipschitz-equivalent to the support
of σ(x), the lemma follows.
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2.4 Conditional measure of strips

If U is any m-plane in N (1 ≤ m ≤ n − 1), we denote by BT
ρ (U) the

ρ-neighbourhood of U in N , that is the set of all h ∈ N such that

d(h,U) < ρ.

When it is clear from the context which m-plane we are talking about, we
dispense ourselves with the letter U in the notation.

Proposition 7. Assume that Γ is convex-cocompact and Zariski-dense
and that δΓ = n − m where m is an integer, 1 ≤ m ≤ n − 1. Fix some
m-plane U in N . For mBMS-almost every x ∈ Γ\G and any ρ > 0,

σ(x)(BT
ρ ) = ∞.

Proof. It is enough to show that for any ρ > 0, and almost every x ∈ Γ\G,
σ(x)(BT

ρ ) = ∞ (see lemma 2). We argue by contradiction and assume that
the set of those x such that

σ(x)(BT
ρ ) < ∞

has positive BMS measure; it must then have full measure since mBMS is
mixing and because of Lemma 2.4.

It is easy to see then that for mBMS-almost every x ∈ Γ\G,

σ(x)(BT
ρ ) < ∞

for any ρ > 0.
This implies that the push-forward of σ(x) through the projection

πU : N → N/U is a projective Radon measure.
Now consider the distribution

P T =

∫

dm(x) Dirac((πUσ(x))
∗)

on the space of Radon measures on N/U . It is straight-forward to check
that P T is an Ergodic Fractal Distribution (see [4], Lemma 5.3). Since
P T has dimension n−m (see [4], Theorem 4.1) this is possible only if

P T = Dirac(HaarN/U )

i.e. P T is the Dirac mass at the Haar measure of N/U .
We are using the fact that a Fractal Distribution of dimension d on

some Euclidean space R
d has to be the only one we can think of, i.e.

Dirac(Haar
Rd). In essence, this fact goes back to Ledrappier-Young ([6],

Corollary G). In the setting of Fractal Distributions it was proved by
Hochman in [5], Proposition 6.4 (see also [7]).

Now we end up with the conclusion that for mBMS-almost every x ∈
Γ\G, the push-forward of σ(x) through πU is the Haar measure on N/U ;
this contradicts Proposition 5. Hence the proposition is proved.

Remark. Propositions 3, 5 and 7 admit obvious counter-examples when
Γ is not Zariski-dense: take some lattice Γ ⊂ SO

o(1, m + 1) and look at
the image of Γ through the embedding

SO
o(1, m+ 1) → SO

o(1, n+ 1).
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2.5 Recurrence of the Burger-Roblin measure

We are now ready to prove our main theorem. We use the following
consequence of proposition 7.

Lemma 8. Assume that Γ is Zariski-dense and convex-cocompact and
thatand δΓ = n −m. Fix an m-plane U in N . Let ΩΓ be the support of
the Bowen-Margulis-Sullivan measure in Γ\G. For almost every x ∈ Γ\G,
and any ρ > 0, the set of all h ∈ BT

ρ (U) such that xh ∈ ΩΓ is unbounded.

Proof. By construction of the disintegration mapping σ, the support of
σ(x), supp(σ(x)), is almost surely the set of all h ∈ N such that xh
belongs to ΩΓ. Since the Radon measure σ(x) gives infinite measure to
BT

ρ (U), the intersection BT
ρ ∩ supp(σ(x)) must be unbounded; hence the

lemma.

Proposition 9. Assume that Γ is Zariski-dense and convex-cocompact
and that δΓ = n−m. Fix some m-plane U in N . For BMS-almost every
x, there is a compact K ⊂ Γ\G such that

∫

U

1K(xu)du = ∞.

Furthermore, if W is any neighbourhood of ΩΓ, K may be chosen inside
W .

Of course U is endowed with the Haar measur in this formula.

Proof. First of all, recall that ΩΓ is a compact subset of Γ\G since Γ is
convex-cocompact.

For any ρ > 0, let Kρ be the set of all xh where x ∈ ΩΓ and h belongs
to the closed ρ-ball centered at the origin in N . This is again a compact
set. If ρ is small enough, Kρ is a subset of W . Fix such a ρ.

By lemma 8, we may find a sequence (hk)k of elements of BT
ρ (U) that

goes to infinity and such that xhk ∈ ΩΓ for any k; if we let hk = ukvk
where uk ∈ U and vk is orthogonal to U , we have

xuk ∈ Kρ

for any k, and the sequence (uk)k goes to infinity.
According to lemma 11, we may thicken Kρ to get a compact set

K ⊂ W , such that the conclusion of the proposition holds.

Remark. It is necessary to consider a compact set K that is slightly
bigger than ΩΓ in this lemma, since by virtue of Proposition 3, one has

∫

U

1ΩΓ
(xu)du = 0

for BMS-almost every x.

Corollary 10. Under the same hypothesis, for BR-almost every x there
is a compact K such that

∫

U

1K(xu)du = ∞.

In particular, the BR measure is recurrent with respect to U .

Proof. The set of all x ∈ Γ\G that satisfy the conclusion is obviously
N-invariant; since it has full BMS measure, it must have full BR measure
as well.
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The following lemma is well-known but I have not been able to pinpoint
a proof in the literature. We need it only when G is some R

m but there
is no reason not to prove it in full generality.

Lemma 11. Let X be some second countable locally compact space where
a second countable locally compact topological group G acts continuously.
Assume that we are given some fixed x0 ∈ X and a sequence (gn)n in
G that goes to infinity, such that gnx0 belongs to a fixed compact subset
K for every n. Then for any neighbourhood W of K, there is a compact
subset L of W such that

∫

1K(gx0) dg = ∞.

Here G is endowed with some right-invariant Haar measure.

Proof. Endow X with some compatible metric; endow G with some com-
patible metric that is also right invariant and proper (which means that
closed balls are compact), see [14].

Fix some δ > 0 small enough that the set

L = {x ∈ X ; d(x,K) ≤ δ}

is compact and contained in W .
For any n ≥ 1, let εn be the lower bound of the set of all ε > 0 for

which the closed ball B(gn, ε) contains some h such that d(gnx0, hx0) = δ.
If there is no such ε, then the whole orbit Gx0 is contained in L and the
proof is over. We may thus assume that εn < ∞ for every n. It is clear
also that εn > 0.

We now prove that infn εn > 0. The mapping from B1 × K to R

(where B1 is the closed unit ball in G)

(g, y) 7→ d(y, gy)

is uniformly continuous because it is continuous and B1 ×K is compact.
In particular there is some η ∈]0, 1[ such that the relation d(g, e) < η
(where e is the unit of G) implies

d(gy, y) < δ

for any y ∈ K.
We are going to show that εn ≥ η for any n. Let h be any element of

G such that d(gn, h) < η; then d(hg−1
n , e) < η (because the distance on G

is right-invariant) which implies

d(hx0, gnx0) = d(hg−1
n gnx0, gnx0) < δ.

By definition of εn, this is means that εn ≥ η. Hence infn εn > 0.
Now pick some positive ε smaller than infn εn. If h ∈ G is such that

d(h, gn) ≤
ε
2
, then d(hx0, gx0) < δ, so that hx0 ∈ L.

This shows that the orbital mapping ρx0
: g 7→ gx0 maps each

B(gn, ε/2) inside L. As g goes to infinity in G, we may, passing to a sub-
sequence, assume that these balls are pair-wise disjoint. Their union has
infinite Haar measure because the metric on G is right-invariant. Whence
the lemma.
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2.6 Return rate

In the following proposition we let BR be the R-ball centered at the origin
in N and as previously BT

ρ is the ρ-neighbourhood of the m-plane U in
N .

We do not assume that Γ is convex-cocompact nor that δΓ is an integer.

Proposition 12. Assume that Γ has finite BMS measure and is Zariski-
dense. Let m be some integer, 1 ≤ m ≤ n − 1. Fix an m-plane U in N .
For all ρ > 0 and almost every x ∈ Γ\G,

lim inf
R→∞

log σ(x)(BT
ρ ∩ BR)

logR
≤ sup{0, δΓ − (n−m)}.

Remark. It is not clear whether one should expect the lower limit in this
proposition to be a genuine limit.

Proof. Recall the following:

• for almost every x and every fixed R > 0,

lim
ρ→0

log σ(x)(BT
ρ ∩BR)

log ρ
= inf{n−m, δΓ}

• for almost every x,

lim
R→+∞

log σ(x)(BR)

logR
= δΓ.

The first limit comes from the fact that the projection of σ(x)|BR onto
N/U has exact dimension inf{n−m,δΓ} (see [4], Theorem 4.1). The sec-
ond limit holds because mBMS is ergodic with respect to the automorphism
at for t > 0 as well as for t < 0; thus,

lim
R→∞

log σ(x)(BR)

logR
= lim

r→0

log σ(x)(Br)

log r
= δΓ

see [2], Lemme 2.2.1.
Let us denote by θ the number inf{n−m, δΓ}. Fix some ε > 0.
For mBMS-almost every x, there is some ρ0(x) > 0 such that the

relation ρ ≤ ρ0(x) implies that

σ∗(x)(BT
ρ ∩B1) ≤ ρθ−ε.

Choose ρ0 > 0 small enough that the set Eρ0 of all x such that ρ0(x) > ρ0
has positive BMS measure. Let a = at for some t > 0.

For mBMS-almost every x, one can find arbitrarily big integers k such
that akx ∈ Eρ0 (because mBMS is a-ergodic). If k is such an integer, we
have

σ∗(x)(BT
ekρ ∩Bek )

σ∗(x)(Bek)
≤ ρθ−ε

for any ρ ≤ ρ0 (Lemma 2.4).
Assume, furthermore, that k is so large that σ∗(x)(Bek) ≤ ek(δΓ+ε),

and that e−k < ρ0. Letting ρ = e−k, we get

σ∗(x)(BT
1 ∩Bek ) ≤ e−k(θ−ε)ek(δΓ+ε) = ek(δΓ−θ+2ε).

Since k can be as large as we like, this shows that

lim inf
k→∞

log σ(x)(BT
1 ∩ Bek)

k
≤ sup{0, δΓ − (n−m)}+ 2ε

for any ε > 0. The lemma follows.
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Corollary 13. Assume that Γ is convex-cocompact and Zariski-dense.
Let m be an integer, 1 ≤ m ≤ n− 1. For any m-plane U in N , and any
compact K in Γ\G,

lim inf
R→∞

log (HaarU ({u ∈ BR ; xu ∈ K}))

logR
≤ sup{0, δΓ − (n−m)}

for mBMS-almost every x and also for mBR-almost every x.

We skip the straight-forward proof.
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