
Jenni Niku

JYU DISSERTATIONS 192

On modeling multivariate abundance 
data with generalized linear latent 
variable models



JYU DISSERTATIONS 192 

Jenni Niku

On modeling multivariate abundance 
data with generalized linear latent  

variable models

Esitetään Jyväskylän yliopiston matemaattis-luonnontieteellisen tiedekunnan suostumuksella 
julkisesti tarkastettavaksi yliopiston Agora-rakennuksen Gamma-salissa 

helmikuun 15. päivänä 2020 kello 12.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Mathematics and Science of the University of Jyväskylä,

in building Agora, hall Gamma, on February 15, 2019 at 12 o’clock noon.

JYVÄSKYLÄ 2020



Editors
Sara Taskinen
Department of Mathematics and Statistics, University of Jyväskylä
Timo Hautala
Open Science Centre, University of Jyväskylä

ISBN 978-951-39-8062-7 (PDF)
URN:ISBN:978-951-39-8062-7
ISSN 2489-9003

Copyright © 2019, by University of Jyväskylä

Permanent link to this publication: http://urn.fi/URN:ISBN:978-951-39-8062-7



ABSTRACT

Niku, Jenni
On modeling multivariate abundance data with generalized linear latent variable 
models
Jyväskylä: University of Jyväskylä, 2020, 54 p.(+included articles)
(JYU Dissertations
ISSN 2489-9003; 191)
ISBN 978-951-39-8062-7 (PDF)

The multivariate abundance data consist typically of multiple, correlated species 
encountered at a set of sites, together with records of additional covariates. When 
analysing such data, model-based approaches have been shown to outperform 
classical algorithmic-based dimension reduction methods. In this thesis we con-
sider generalized linear latent variable models, which offer a general framework 
for the analysis of multivariate abundance data. In order to make the models 
more attractive among practitioners, new computationally efficient algorithms 
for the parameter estimation are developed by applying closed form approxima-
tion methods, the variational approximation method and the Laplace approxima-
tion method, for the marginal likelihood and by utilizing automatic differentia-
tion tools when implementing the algorithms. The accuracy and computational 
efficiency of the methods are investigated and compared to existing methods 
through extensive simulation studies. The developed algorithms and additional 
tools implemented for model diagnosis, visualization and statistical inference are 
collected in R package gllvm. Several examples are provided to illustrate the use 
of the generalized linear latent variable models in ordination and when studying 
the between-species correlations and the effects of environmental variables, trait 
variables and their interactions on ecological communities.

Keywords: Community analysis, ecological data, fourth-corner models, gener-
alized linear models, joint modeling, Laplace approximation, latent
variables, multivariate analysis, ordination, species interactions, vari-
ational approximation
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TIIVISTELMÄ

Moniulotteinen runsausdata koostuu tyypillisesti useilta paikoilta tehdyistä eläin-
tai kasvilajien havainnoista. Tällaiset aineistot ovat yleisiä ekologiassa, kun tutk-
itaan eläin-, kasvi- tai eliöyhteisöjä, niiden vuorovaikutusta keskenään tai vuoro-
vaikutusta suhteessa ympäristöön. Perinteisesti moniulotteista runsausdataa ana-
lysoidaan käyttäen algoritmeihin perustuvia menetelmiä, kuten pääkoordinaat-
tianalyysia, korrespondenssianalyysia ja ei-metristä moniulotteista skaalausta.
Menetelmien tavoitteena on tiivistää aineiston pääpiirteet muutamaan muuttu-
jaan, jotka on helppo esittää visuaalisesti johtopäätösten tekemiseksi. Algorit-
misten menetelmien heikkoutena on se, että tulosten luotettavuutta on vaikea
arvioida.

Tilastollisten ja laskennallisesti tehokkaiden menetelmien kehityttyä, malli-
perusteiset menetelmät ovat kasvattaneet suosiotaan moniulotteisien runsausda-
tojen analysoinnissa. Malliperusteiset menetelmät mahdollistavat aineiston rak-
enteiden, kuten lajien välisten korrelaatioiden sekä ympäristömuuttujien ja la-
jipiirteiden vaikutusten, tarkan mallintamisen. Aineistolle tyypilliset ominaisu-
udet voidaan ottaa huomioon esimerkiksi tilastollisten jakaumien avulla. Lisäksi
mallipohjaiset menetelmät tarjoavat työkaluja tilastolliseen päättelyyn ja mallin-
valintaan. Näiden ominaisuuksien seurauksena malliperusteiset menetelmät an-
tavat luotettavampia tuloksia kuin algoritmeihin perustuvat menetelmät.

Tässä väitöskirjassa tutkitaan yleistettyjen lineaaristen latenttimuuttujamal-
lien käyttöä moniulotteisen runsausdatan analysoinnissa. Yleistettyjen lineaaris-
ten latenttimuuttujamallien sovittaminen on laskennallisesti erittäin raskasta, kun
runsausdatojen lajimäärät ovat kovin suuria. Siksi tässä työssä kehitetään lasken-
nallisesti tehokkaita algoritmeja mallin parametrien estimoimiseksi. Laskennalli-
nen tehokkuus saavutetaan hyödyntämällä suljetun muodon approksimaatioita
marginaaliselle uskottavuusfunktiolle sekä käyttämällä automaattisia differen-
tiointityökaluja algoritmien implementoinnissa. Laskennallista tehokkuutta ja
tarkkuutta tutkitaan simulointikokeiden avulla. Menetelmien soveltuvuutta or-
dinaatiomenetelmänä, lajien välisten korrelaatioiden mittaamisessa, ympäristö-
muuttujien, lajipiirteiden ja niiden välisten interaktioiden vaikutusten tutkimises-
sa ja testaamisessa havainnollistetaan useiden esimerkkien avulla. Mallin sovit-
tamiseen kehitetyt algoritmit sekä työkaluja mallien diagnostiikkaan, testaukseen
ja visualisointiin on koottu R pakettiin gllvm.
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1 INTRODUCTION

Multivariate abundance data are often analysed in ecological community studies.
Such data typically consist of records of a large number of interacting species at a
set of sites, accompanied with records of predictive covariates regarding the en-
vironmental variables or species related traits. Interest may often be in studying
if the species communities differ between sites, studying between species correla-
tions, hypothesis testing of environmental or trait effects, or making predictions
for abundances.

Traditionally multivariate abundance data have been studied using classi-
cal algorithm-based methods, which often focus on producing ordination of the
data, that is, visualizing multivariate abundance data in small dimensional form
in order to make interpretations on the data structures. Recent methodological
and technological developments, however, have allowed one to specify statisti-
cal models for the multivariate abundance data in order to capture the between
species correlations and to make proper inference on the effect of predictors on
communities, for instance. For model-based approaches to multivariate abun-
dance data see, for example, Ovaskainen et al. (2010); Walker and Jackson (2011);
Jamil et al. (2012); Vanhatalo et al. (2012); Brown et al. (2014); Hui et al. (2015);
Thorson et al. (2015); Clark et al. (2018). With the ability to properly take into ac-
count data properties, such as mean-variance relationship in responses and cor-
relation structures in the data, joint models have shown to outperform classical
algorithmic-based dimension reduction methods by producing more reliable re-
sults when applied, for example, in ordination (Hui et al., 2015).

In this thesis we consider the analysis of multivariate abundance data using
generalized linear latent variable models (GLLVMs Moustaki and Knott, 2000).
The GLLVMs are based on the multivariate generalized linear models, which
are extended by including latent variables to the model in order to take into
account correlation structures in data. If multivariate abundance data are very
high-dimensional, computational challenges are often encountered when fitting
GLLVMs. In order to overcome those challenges, we develop computationally
efficient estimation methods and algorithms for the model fitting by using two
closed form approximations for the marginal likelihood, the Laplace approxima-
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tion and the variational approximation, and making use of automatic differenta-
tion tools. The performance of the developed estimation methods and algorithms
are compared to each other and to existing model fitting methods for GLLVMs
using simulation studies. In addition to the computational developments, we
study and illustrate the use of GLLVMs in ordination, studying between species
correlations, and hypothesis testing of the environmental and trait interactions
by analysing several typical multivariate abundance datasets. We also develop
easy-to-use, freely available R package gllvm in order to offer computationally
efficient methods for fitting GLLVMs for multivariate abundance data. Tools for
inference, model checking and visualization are also provided in the R package.

The outline of this thesis is as follows. In Chapter 2 we describe multivari-
ate abundance data in ecology and provide an overview on the classical methods
for analysing them. In Chapter 3 we review the model-based approaches and
formulate joint models for multivariate data focusing on generalized linear la-
tent variable models. The maximum likelihood estimation and inference of the
latent variable models as well as algorithms and software for model fitting are
reviewed in Chapter 4. In Chapter 5 we compare the performance of the devel-
oped algorithms to several existing R packages for fitting GLLVMs, and show that
the developed methods are computational efficient and do not loose in accuracy
when compared to the most accurate competitors. In Chapter 6 we illustrate the
methods via case study.



2 MULTIVARIATE ABUNDANCE DATA

Multivariate abundance data are widely used in ecological community studies
and consist of records of multiple response variables measured at a set of observa-
tional units. The data are typically organized as a matrix, where rows correspond
to observational units, that is, different sites or sampling units, and columns cor-
respond to response variables such as records of interacting species. The records
of responses measuring the abundance can be, for example, counts of the ob-
served species, information about the presence of the species as a binary data or,
when object of interest is not individually countable, biomass of the organic mat-
ter. As an example, below we consider the subset of the testate amoebae dataset
of size 270 x 50 (Daza Secco et al., 2016), which consists of counts of m = 50 tes-
tate amoebae species recorded at 270 sampling sites at Finnish peatlands. This
dataset will be considered in the example abalysis in Chapter 6 and in the simu-
lation studies in article PII.

Cenacu Cencas Ceneco Cenpla Cycarc Triarc Trimin Arccat
0 31 0 0 6 26 19 3
0 63 0 0 0 10 0 13
6 4 16 0 5 29 14 54
0 18 0 0 0 17 11 14
8 0 0 0 0 2 0 129

Another examples of multivariate abundance data considered in this thesis in-
clude a microbial community data consisting of counts of 985 bacteria species
measured from 56 soil samples collected from high altitude soils in Europe (Nissi-
nen et al., 2012), which were analysed in article PI. An example of biomass data,
which was also considered in article PI, is the abundances of 18 coral reef species
at 19 sites in Indonesia (Warwick et al., 1990), measured as a length of a ten metre
transect which intersected with the species.

The testate amoebae data described above is low-dimensional having only
50 species measured at 270 sites. We thus have m < n. This is, however, of-
ten not the case as high-dimensionality is characteristic for multivariate abun-
dance data. The data may include measurements from hundreds or thousands
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of species and the number of species may exceed the number of sites. Such data
are often encountered, when modern tools, such as metabarcoding, are used for
species identification. The microbial community data in article PI serves as an
example. Other typical features for abundance data are a large number of zeros
and overdispersion as the species often tend to be found with large numbers or
not at all. When looking at testate amoebae data, species named Cenpla seems to
be pretty rare whereas Arccat is higly abundant. In addition, species are corre-
lated due the biotic interactions, phylogeny, behavioral and biological traits and
environmental conditions (Araújo and Luoto, 2007; Morales-Castilla et al., 2015).
These features, which need to be taken into account when analysing multivariate
abundance data, posses challenges for the analysis.

In ecological community studies one might, for example, want to study if
species compositions differ in a set of sites (Björk et al., 2018; Daza Secco et al.,
2018, article PI), or between species interactions (Royan et al., 2016; Inoue et al.,
2017). Interactions between species can often be explained bybiological and envi-
ronmental conditions. Such conditions can be defined by a large number of influ-
encing variables which are not necessarily observable. For example, some species
tend to occur at same sites as they prefer similar environmental conditions and
therefore those conditions can explain the similarities and differences in species
compositions at different sites. Moreover, behavioral or biological traits related
to species can also mediate the effect of the environmental conditions and partly
explain the observed species compositions. Such relationships in addition to the
relationships between species may often be the goal of the study, and therefore
data often include environmental covariates related to sites and trait covariates
related to species. As an example, the effect of natural environmental or exper-
imental conditions to the ecological communities were studied in Lammel et al.
(2018) and in Daza Secco et al. (2018). In article PI we studied if environmental
covariates pH value and available phosphorus affected the species compositions
of microbial communities in soils. In Ribera et al. (2001) it was studied whether
the species trait variables affect the species communities or if they interact with
the effect of the environmental variables. Predicting species abundances may also
be one of the main interests in community studies (Buisson et al., 2008).

2.1 Overview of classical methods

Classically multivariate abundance data have been analysed using algorithm-
based methods, which are often based on the analysis of the association matrices,
that is, matrices of pairwise distances or dissimilarity measures between sites or
between species. By the dissimilarity measure we mean a value of a function mea-
suring a dissimilarity level between two objects. Distance is a metric dissimilarity
measure. Such algorithm-based methods usually focus on producing an ordina-
tion of the data, a low dimensional expression of the data which can be used to
visualize the main patterns between sites in terms of their species composition.
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FIGURE 1 Ordination plots for the testate amoebaedata based on non-metric multidi-
mensional scaling (NMDS) with Bray-Curtis distance, principal coordinate
analysis (PCoA) and correspondence analysis (CA). The colors and symbols
represent three types of peatlands in terms of the land use: peatlands used
for forestry, natural peatlands and restored peatlands.

Among the most well-known ordination methods are non-metric multidimen-
sional scaling (nMDS, Kruskal, 1964a,b), principal coordinate analysis (PCoA,
Gower, 1966) and correspondence analysis (CA, Hill, 1974; Hill and Gauch Jr,
1980). For a review of classical methods for analysing multivariate abundance
data, see Legendre and Legendre (2012).

As classical ordination methods are based on the association matrix, the re-
sults of the ordination depend heavily on the choice of the dissimilarity measure.
In ecology, the choice of the dissimilarity measure is usually based on the previ-
ous studies (Faith et al., 1987) and therefore the reasoning of the choice relies on
past empirical performance rather than the data at hand. In Warton et al. (2012)
and in Warton and Hui (2017), it was shown that the performance of ordination
methods depends strongly on data properties, in particular, the mean-variance
relationship, and if such properties are not properly accounted for by the choice
of a dissimilarity measure, the results might potentially be misleading.

Consider as an example ordination plots for the testate amoebae dataset
(Daza Secco et al., 2016) based on nMDS, PCoA and CA in Figure 1. The first two
methods are based on the Bray-Curtis and euclidean distances, respectively, and
the third method applies a Chi-square transformation to the data matrix before
using singular value decomposition to produce an ordination. The obtained or-
dination results are very different. The testate amoebae species were measured at
three types of peatlands in terms of the land use: peatlands used for forestry, nat-
ural peatlands and restored peatlands. In the ordination plot based on the nMDS
method the points are clustered according to the land use very clearly, while in
the ordination plots based on PCoA and CA the samples from different types of
peatlands are more mixed. Unfortunately we have no tools to evaluate which of
the results describes the data best.

In order to explain ecological stuctures such as between species interac-
tions, an analysis of the effects of explanatory variables related to observational
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units or response variables is usually done using indirect or direct comparison
approaches. In indirect comparisons, the effects of environmental variables are
compared to the ordination axes of the abundance matrix instead of the actual re-
sponse variables using correlations or regression (Legendre and Legendre, 2012,
Chapter 10). Such analysis is also known as indirect gradient analysis (Jongman
et al., 1987). In direct comparisons, multiple data tables, which usually are a ma-
trix of abundances and a matrix of environmental covariates related to sites, are
simultaneously analysed in order to produce an ordination with the effects of ex-
planatory variables already taken into account. The direct comparison approach
is also known as canonical analysis or direct gradient analysis (Legendre and
Legendre, 2012, Chapter 11). The most well-known methods for such analyses
include redundancy analysis (RDA, Legendre and Anderson, 1999) and canoni-
cal correspondence analysis (CCA, ter Braak, 1986).

In addition to the direct and indirect gradient analysis, the interest may be in
understanding how behavioral and biological traits of species mediate the effect
of the environmental conditions on species, and further in testing whether those
associations are significant. In literature, this problem is known as the fourth-
corner problem (Legendre et al., 1997). The most well-known method for study-
ing such relationships between environmental and trait variables is ordination
based method RLQ proposed by Dolédec et al. (1996). In the RLQ method, ma-
trices of environmental covariates (R), species abundance data (L) and species
trait covariates (Q) are used to produce a matrix for describing associations be-
tween environmental and trait variables. After that the association matrix is used
to produce a pair of ordinations using a singular value decomposition in order
to make interpretations of the effects of the environmental and trait variables on
species. Another widely used approach has been hypothesis testing via permuta-
tion test, see Legendre et al. (1997), Dray and Legendre (2008) and ter Braak et al.
(2012). These methods evaluate a significance of associations between environ-
mental and trait covariates by permutation tests.



3 JOINT MODELS FOR MULTIVARIATE
ABUNDANCE DATA

Methodological and technological developments conducted over the past few
decades allow us to specify statistical models for high-dimensional data, jointly
across many responses. Joint models are extensions of generalized linear models
(GLM, McCullagh and Nelder, 1989) for multivariate data that account for the
correlation structure inherent in data simultaneously with the effect of predic-
tors on responses. The joint models have shown to be a powerful approach for
analysing multivariate abundance data as they can be used to answer a wide
variety of ecological questions, such as studying between species correlations
(Ovaskainen et al., 2010; Pollock et al., 2014), ordination (Walker and Jackson,
2011; Hui et al., 2015), making inferences about the effect of predictors based
on confidence intervals and hypothesis testing (Jamil et al., 2012; Lammel et al.,
2018), and making predictions for abundances (Ovaskainen et al., 2016c; Schliep
et al., 2018).

As a model-based approach, joint models provide tools for evaluating the
suitability of the model for the data at hand. In particular, residual analysis can
be used to check if the chosen model and distribution are able to capture the
mean-variance relationship of the data. Tools for statistical inference, prediction
and model selection, such as information criterias, are also readily available. On
the contrary, the classical algorithm-based approaches often lack such tools (see
for example Warton et al., 2012). The model-based approaches have shown to
outperform the classical algorithm-based methods in the analysis of community
data, for example in ordination (Hui et al., 2015; Hui, 2017) and clustering (Hui,
2017).

Consider next the abundanes (e.g. counts, presence-absences, biomass) of
m responses (species) recorded at n observational units (sites) which we denote
by yij, i = 1, . . . , n, j = 1, . . . , m. For each observational unit i, a vector of k en-
vironmental variables, xi = (xi1, . . . , xik)

′, may also be recorded. In multivariate
GLMs, the mean response, µij = E(yij), is regressed against a vector of covariates,
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that is,
g(µij) = β0j + x′iβj, (1)

where g(·) is a known link function, β0j are species-specific intercepts and βj =

(β j1, . . . , β jk)
′ are species-specific regression coefficients related to the covariates.

Independency of the observational units (sites) can often be assumed by
the design, but such independency of the species responses within a unit can-
not be assumed due the correlation between species caused by ecological reasons
as discussed in Chapter 2. Generalized linear models do not take into account
any correlation between response variables that is not explained by covariates,
and ignoring or misspecification of the correlation between species may result
in inflated Type I errors (ter Braak et al., 2017), biased estimates and too nar-
row confidence intervals (Warton et al., 2015, 2016). Moreover, this can lead to
false conclusions when assessing the significance of predictors in the model. Our
simulation studies in article PI showed that ignoring between species correlation
may cause biased estimates for the effect of the environmental variables. In ar-
ticle PIII we observed inflated Type I errors when the correlation structure was
misspecified. In the context of multivariate GLM, the between species correla-
tion has been earlier taken into account by using resampling techniques, such as
bootstrapping (Warton, 2011; Brown et al., 2014) or permutations (ter Braak et al.,
2017) in hypothesis testing. Notice however that the resampling techniques may
often be very time consuming and perform worse than proper joint modeling ap-
proaches as shown in our simulation studies in article PIII. In the next sections,
we consider different approaches for modeling the between species correlations
within the joint models.

3.1 Generalized linear mixed models

At first, we consider models that include environmental covariates only. In order
to capture the correlation structures in responses, inclusion of random effects in
the model is necessary (Bolker et al., 2009). Correlation in responses can be han-
dled in different ways, and one simple way is to include a common univariate
site-specific random effect in the model (Jamil et al., 2013) in order to incorpo-
rate correlation between species. Such generalized linear mixed model (GLMM,
Breslow and Clayton, 1993) for the mean response can be written as

g(µij) = β0j + x′iβj + ui, (2)

where the univariate random intercept ui is assumed to be normally distributed
with zero mean and variance σ2. Notice however, that inclusion of a common ran-
dom intercept for responses creates only a constant positive covariance between
species which is certainly not a valid assumption for ecological data.

A more complicated way to create correlation structure between species is
to do it straightforwardly by including site- and species-specific random effect,
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uij, in model (1). This approach has been quite popular in joint modeling and
has been considered in Ovaskainen et al. (2010); Clark et al. (2014) and Pollock
et al. (2014), for example, and reviewed by Warton et al. (2015). Multivariate
generalized linear mixed model for the mean response can be defined as,

g(µij) = αi + β0j + x′iβj + uij. (3)

Such random effects can be considered as multivariate random effects related
to sites, ui = (ui1, . . . , uim), which are assumed to be multivariate normal dis-
tributed with zero mean vector and unstructured covariance matrix Σ. If the
focus is on modeling relative abundance or compositional effects, the fixed site
effects αi can be included in the model for site total abundance standardization.
The correlation between responses is controlled with a unstructured covariance
matrix Σ. The model offers a flexible framework for accounting for any correla-
tion structure for small dimensional data, but it becomes computationally bur-
densome when the number of responses is large due to quadratically (with m)
increasing number of parameters, m(m + 1)/2, in the covariance matrix.

3.2 Generalized linear latent variable models

A more advanced approach to capture the correlation in responses is to include
one or several latent variables with corresponding factor loadings in the model.
This provides a flexible method for modeling any residual correlation between
species not accounted for by the covariates. In generalized linear latent variable
models (GLLVMs, Moustaki and Knott, 2000), the mean response µij is regressed
against a vector of d � m latent variables, ui = (ui1, . . . , uid), along with the
k-vector of covariates xi, if available. The model can thus be written as

g(µij) = αi + β0j + x′iβj + u′iγj, (4)

where β0j and βj are as in (1). The site effects αi can be treated as fixed, as in (3),
or random with a zero mean and a variance σ2. The latter is more advisable as
we noticed in article PI that the estimates of fixed site effects tend to be biased.
Parameters γj are species-specific loadings for the latent variables. The latent
variables are assumed to be independent across sites and standard normally dis-
tributed, ui ∼ Nd(0, Id), so that the zero mean and unit variance assumption fix
the locations and scales of the latent variables. In order to ensure that the model is
identifiable, for m > 1 the upper triangular of the loading matrix, Γ = [γ1 . . . γm]

′,
needs to be set to zero and the diagonal elements are set positive to avoid rota-
tional invariance (Huber et al., 2004).

In model (4) the latent variable term u′iγj captures any residual correlation
across species not accounted for by the observed covariates xi. Further, the resid-
ual covariance matrix storing information on species co-occurrence can be cal-
culated as Σ = ΓΓ′, being of rank d (Warton et al., 2015). However, it should
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be noted that this definition is on the scale of linear predictors, ηij = αi + β0j +
x′iβj + u′iγj, so it does not take into account the distribution-specific aspects such
as overdispersion in the negative binomial distribution. With some correction
terms such properties can be accounted for (article PIV and Ovaskainen et al.,
2016a). As compared to the multivariate GLMM as defined in (3), a key feature
of the GLLVM (4) is that the number of parameters, md− d(d− 1)/2, character-
izing the residual correlation, grows linearly along the number of responses m
imposing a factor analytic structure for the covariance matrix.

In articles PI, PII and PIV we focus on GLLVMs as defined in (4). Article PI
considers an analysis of overdispersed count and biomass data in ecology using
GLLVMs. Computational aspects were considered in PII and the software for fit-
ting the GLLVMs in PIV, respectively. In the literature, some form of the general-
ized linear latent variable models have been considered in several occasions. For
example, item response models (IRT, see eg. Bartholomew et al., 2011), which are
defined as GLLVMs for binomial and ordinal responses, were considered in Bock
and Aitkin (1981). The GLLVMs in the context of ecological studies, as defined in
(4), were considered by Skrondal and Rabe-Hesketh (2004); Warton et al. (2015)
and Ovaskainen et al. (2017), for instance. In addition, the GLLVMs have also
been extended to the case of more complex correlation structures such as tempo-
rally and/or spatially varying correlation structures for example in Thorson et al.
(2015); Ovaskainen et al. (2016a); Thorson et al. (2016, 2017) and Tikhonov et al.
(2019a).

3.3 Fourth-corner models

Let us next consider solutions to the fourth-corner problem using joint models.
Assume that q trait covariates, t j = (ti1, . . . , tiq)

′, in addition to the abundances
yij and environmental covariates xi are also recorded. The trait covariates can be
used to explain interspecific variation in the environmental response as follows.
A simple model-based approach to the fourth-corner problem was proposed by
Brown et al. (2014) based on the multivariate generalized linear model. In their
approach the associations between environmental and trait variables are studied
by regressing the mean response µij against the interaction between environmen-
tal and trait covariates, along with the intercept, environmental and trait vari-
ables. This, so called “fourth-corner model”, for the mean responses µij can be
written as

g(µij) = β0 + x′iβe + t′jβt + vec(Bte)
′(xi ⊗ t j), (5)

where β0 is a common intercept, βe and βt are vectors of the main effects for en-
vironmental covariates and trait covariates, respectively, and the k× q matrix Bte
consists of environmental-trait interaction terms, also known as the fourth-corner
coefficients. The fourth-corner coefficients explain how the species-specific func-
tional or biological traits mediate the effect of the environmental variables. If
the primary purpose is in the study of the mediating effect of the traits on the
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environmental covariates across species, the main effects of the traits βt can be
absorbed by the species-specific intercept terms β0j.

The model (5) does not take into account the between species correlations or
interspecific variation in responses with respect to environmental variables that
are not explained by observed trait variables. Ignoring or misspecifying the cor-
relation may yield to biased estimates and inflated Type I errors when testing
for the significance of the fourth-corner term (ter Braak, 2019; Miller et al., 2019).
As a solution to the problem of inflated Type I errors, resampling techniques are
proposed in several papers to complement the method when the significance of
the interaction term between environmental and trait variables has been tested.
For instance, Brown et al. (2014) proposed a method that bootstraps the residuals,
Shipley (2010) proposed permutations for species traits and ter Braak et al. (2017)
considered permutations for species and sites. ter Braak (2019) studied bootstrap
and permutation methods when applied to the fourth-corner model (5) accompa-
nied with species-specific random effects. However, as it was shown in ter Braak
et al. (2017) resampling based solutions do not guarantee valid Type I errors for
the bootstrapping method of Brown et al. (2014) and some permutation designs.
In addition, such methods are often very time consuming and do not fix the prob-
lem of biased estimates (ter Braak, 2019) caused by the misspecified correlation
in the model.

Similarly to the models that use only environmental variables as explana-
tors to the communities, correlation structures can be incorporated in the fourth-
corner models by including latent variables or random effects. Several different
forms of the fourth-corner models have been proposed in the literature. Pollock
et al. (2012) and Jamil and ter Braak (2013) included species-specific random in-
tercepts and species-specific random slopes for environmental variables. Later,
Warton et al. (2015) included latent variables to capture the correlation between
species that is not explained by the covariates.

In article PIII, we considered an extension of the model (5), which was al-
ready used by Warton et al. (2015) in their example. A general expression of the
fourth-corner latent variable model is given as

g(µij) = ri + β0j + x′iβj + u′iγj, where (ri, u′i)
′ ∼ Nd+1(0, Cσ)

βj = βe + Btet j + bj, where bj ∼ Nk(0, G).
(6)

Here the parameters β0j and ri are species-specific intercepts and site-specific ran-
dom intercepts, respectively. The main effects for environmental covariates, βe,
and the fourth-corner interactions, Bte, are as before. Similarly to the GLLVM
defined in (4), we include the latent variables to capture the residual correlation
between responses not accounted for by the observed covariates xi and trait vari-
ables t j. In addition, the k-vector bj = (bj1, . . . , bjk)

′ includes species-specific ran-
dom effects for the environmental variables, which are assumed to follow a mul-
tivariate normal distribution with a zero mean vector and an unstructured k× k
covariance matrix G. The effect of the predictors is then a combination of the
fixed effects βe common for all species, the interaction terms with species traits
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Bte to define how the traits mediate the effect of the environmental variables, and
the species-specific random effects bj to capture the interspecific variation that is
not explained by the trait covariates. We include the correlation term between
random site effects and latent variables, that is corr(ri, uil) = ρl, and we denote
Cov((ri, u′i)

′) = Cσ. If the main effect of the traits on responses is an object of
interest, species-specific random intercepts β0j can be replaced by β0 + t′jβt as in
the model (5).

The model (6) above is an unifying framework that encompasses all the
models of Brown et al. (2014); Pollock et al. (2012) and Jamil and ter Braak (2013).
The model (6) can be reduced to model (5) used in Brown et al. (2014) by setting
all variances for the random effects and latent variables to zero. The model of
Pollock et al. (2012) is obtained by setting all elements in Cσ to zero, with an
exception that in Pollock et al. (2012) intercepts β0j were treated as random. Jamil
and ter Braak (2013) used the same model with random site effects.

In article PIII, we compared the performance of the model (6) and the model
of Jamil and ter Braak (2013) when testing significance of the fourth-corner terms
using the likelihood ratio test. We noticed that the model (6) gave better Type I
errors when species were correlated and an interspecific variation, not explained
by traits, was inherent in data. In addition, the likelihood ratio test for the model
(6) produced higher power for the test than permutation based method proposed
by ter Braak et al. (2017).



4 ESTIMATION AND INFERENCE

The multivariate abundance data in ecology are often high-dimensional and may
consist of abundances of hundreds or even thousands of species. This may cause
computational challenges in model fitting as the number of parameters in joint
models is large. As an example, in our case study in article PI which considered
microbial community data with m = 985 species and n = 56 sites along with three
environmental variables, the number of parameters in a generalized linear latent
variable model was 6951. The computational efficiency in parameter estimation
is thus an important requirement for fitting joint models for multivariate data.

In this thesis, one of the major goals was to develop computationally fast
algorithms for fitting GLLVMs. In the next sections we consider the maximum
likelihood estimation of the latent variable models, and provide an overview for
fast methods and algorithms for the estimation and inference.

4.1 Maximum likelihood estimation of latent variable models

Consider the model estimation via maximum likelihood estimation for the gen-
eralized linear latent variable model as defined in (4), and assume for simplic-
ity that the site effects are fixed. Write α = (α1, . . . , αn)′, β0 = (β01, . . . , β0m)

′,
β = (β′1 . . . β′m)

′, and let Φ include all nuisance parameters, e.g. dispersion pa-
rameters in negative binomial distribution. Let then Ψ = (α, β0, β, vec(Γ), Φ)
include all model parameters as a vector. We also collect all latent variables into a
vector u = (u′1, . . . , u′n)′. The observational units are assumed to be independent,
and the responses, yi1, . . . , yim, at site i are assumed to be independent condi-
tionally on latent variables, ui. By denoting the conditional probability density
function for the response with f (yij|ui, Ψ) and the distribution of the latent vari-
able vector with f (ui), that is, the density function of the multivariate normal
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distribution, the complete likelihood for the GLLVM can be written as

L(Ψ; u) =
n

∏
i=1

(
m

∏
j=1

f (yij|ui, Ψ)

)
f (ui) = f (y|u; Ψ) f (u), (7)

where f (y|u, Ψ) = ∏n
i=1 ∏m

j=1 f (yij|ui, Ψ) and f (u) = ∏n
i=1 f (ui) are the joint

distributions of the response variables and the latent variables, respectively. Esti-
mates for the model parameters Ψ can be obtained by maximizing the likelihood
(7). However, as the likelihood function depends on the distribution of the un-
known latent variables, the maximization cannot be done straightforwardly. In
general, this estimation problem has attracted much attention in the statistical lit-
erature, and below we provide an overview of methods often applied for fitting
GLLVMs.

One of the most well-known solutions for maximizing the complete like-
lihood function in incomplete data problems such as situations including un-
known latent or random variables or missing data is to apply the Expectation-
Maximization algorithm (EM algorithm, Dempster et al., 1977). The EM algo-
rithm or some variant of it was applied to latent variable models in Sammel et al.
(1997) and Hui et al. (2015), and earlier also in Bock and Aitkin (1981) for item
response models. Although the EM algorithm is easy to implement, a major
downside is the computational inefficiency as the algorithm usually converges
very slowly.

Another popular approach for estimating models with latent or random
variables is Bayesian Markov Chain Monte Carlo (MCMC, Metropolis et al., 1953;
Hastings, 1970) sampling based on the complete likelihood function. Bayesian
approach has been very popular in estimating hierarchical models in community
level modeling in ecology (see for example Cressie et al., 2009; Ovaskainen et al.,
2016b). In case of GLLVMs, Bayesian MCMC estimation is used in Ovaskainen
et al. (2016a) and Hui et al. (2017). The advantage of the approach is the ability
to apply it to very complex models, that is, in cases where many other methods
are unfeasible. Based on the simulated values any characteristics of the posterior
distribution can also be studied. Notice however that the method is computa-
tionally very intensive and the convergence might be hard to monitor (Gelman
and Rubin, 1996) especially when posterior distributions for a large number of
parameters need to be simultaneously estimated.

Computationally the most efficient methods for fitting models with latent
variables are those that approximate the marginal likelihood in a closed form.
Because the latent variables are treated like random variables, they can be in-
tegrated out of the likelihood and the inference can be based on the marginal
likelihood only. By integrating over the latent variables u in (7) we obtain the
marginal log-likelihood function for the GLLVM

log L(Ψ) = log
∫
Rd

f (y|u; Ψ) f (u)d(u). (8)
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In case of non-normal data the d-dimensional integration over latent variables
cannot be solved analytically, and the marginal log-likelihood does not have a
closed form solution. Several closed form approximation methods for such an
integral have therefore been proposed in the literature in the context of random
effect models. These include numerical integration using Gauss-Hermite quadra-
ture (Bock and Lieberman, 1970; Bock and Aitkin, 1981; Butler and Moffitt, 1982)
and adaptive Gauss-Hermite quadrature (Naylor and Smith, 1982; Liu and Pierce,
1994), Laplace approximation (Tierney and Kadane, 1986), and more recently,
variational approximation method (Ormerod and Wand, 2010, 2012). In the next
sections we review some closed form approximations used to fit GLLVMs in the
literature.

4.2 Gauss-Hermite quadrature

The Gauss-Hermite quadrature is a numerical integration method that approxi-
mates an integral of the form

∫
f (u) exp(−u2)du using a weighted sum of eval-

uations of the function f (·) at a set of locations ar, r = 1, . . . , R, for the variable
u. Since the function exp(−u2) is proportional to the normal density, the ap-
proach can be applied for approximating integrals of normally distributed latent
variables. Let us next consider the Gauss-Hermite quadrature for a simple gen-
eralized linear latent variable model, g(µij) = β0j + x′iβj + u′iγj. As the latent
variables are assumed to be uncorrelated and jointly normally distributed, the
marginal log-likelihood can be written as

l(Ψ) =
n

∑
i=1

log
∫ m

∏
j=1

f (yij|ui; Ψ) f (ui)dui

=
n

∑
i=1

log
∫
· · ·

∫ m

∏
j=1

f (yij|ui1, . . . , uid; Ψ) f (ui1) · · · f (uid)dui1 · · · duid,

where f (uil) is a density of the univariate standard normal distribution. Chang-
ing variables from uil to vil = uil/

√
2 and applying the quadrature rule, the

marginal likelihood obtains an approximation

l(Ψ) ≈
n

∑
i=1

log
R

∑
rd=1

prd · · ·
R

∑
r1=1

pr1

m

∏
j=1

f (yij|ar1 , . . . , ard ; Ψ),

where R is the number of quadrature points, weights pr are given by

pr =
2R−1R!

R2[HR−1(air)]2

and ar are the roots of the Hermite polynomial HR(v) = (−1)nev2 dR

dvR e−v2
. These

points construct a rectangular grid for the latent variables where the function is
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evaluated at. The original idea was proposed by Bock and Lieberman (1970) and
the method was used within an EM algorithm for approximating integrals based
on probit item response models in Bock and Aitkin (1981) and for regression mod-
els with a random intercept in Butler and Moffitt (1982). Later, in Moustaki (1996)
and Moustaki and Knott (2000), GLLVMs for mixtures of binary and normal re-
sponses were fitted using Gauss-Hermite quadrature.

The function to be integrated, the product ∏m
j=1 f (yij|ui; Ψ), has often a high

peak and the quadrature points assess poorly the integral (Lesaffre and Spiessens,
2001). In order to obtain a sufficiently accurate approximation to the marginal
log-likelihood, the Gauss-Hermite quadrature often needs a lot of quadrature
points and therefore the method becomes computationally burdensome. Better
performance can be provided using the extension of the Gaussian quadrature
method, called adaptive Gauss-Hermite quadrature, wich was first used in the
Bayesian inference by Naylor and Smith (1982). The adaptive quadrature method
applies the importance sampling technique for choosing the quadrature points
more carefully in order to cover better the high density area of the function to be
integrated (Pinheiro and Bates, 1995). Fewer quadrature points are thus needed.
A normal density ϕ(uil, νil, τ2

il) approximates the posterior density of uil and is
used as the importance sampling density. Here νil and τ2

il are the posterior mean
and the variance. The log-likelihood function l(Ψ) can then be written as

l(Ψ) =
n

∑
i=1

log
∫
· · ·

∫ {∏m
j=1 f (yij|ui1, . . . , uid; Ψ) f (ui1) · · · f (uid)

ϕ(ui1, νi1, τ2
i1) · · · ϕ(uid, νid, τ2

id)

}
×

ϕ(ui1, νi1, τ2
i1) · · · ϕ(uid, νid, τ2

id)dui1 · · · duid.

By changing variables from uil to vil = (uil− νil)/τil and applying the quadrature
rule, integral obtains an approximation

l(Ψ) ≈
n

∑
i=1

log
R

∑
rd=1

wird · · ·
R

∑
r1=1

wir1

m

∏
j=1

f (yij|air1 , . . . , aird ; Ψ) =: l̃(Ψ),

where airl = νil + τilar and weights wirl are given by

wirl =
√

2πτil exp(a2
r /2)ϕ(νil + τilar)pr.

For comparison of the Gauss-Hermite quadrature and adaptive quadrature meth-
ods, see Pinheiro and Bates (1995) and Rabe-Hesketh et al. (2005). Even if the
method does not require as many quadrature points as the Gauss-Hermite quadra-
ture, it still becomes computationally impractical when the number of latent vari-
ables d is moderate, even when d > 2. Rabe-Hesketh et al. (2002) applied the
adaptive quadrature for the GLLVMs with normal, binomial, gamma, and Pois-
son distributed responses. Notice that the method of Rabe-Hesketh et al. (2002)
for latent variable models is only available in the proprietary software STATA.

Asymptotic properties of the adaptive quadrature maximum likelihood es-
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timators for GLLVMs were studied in Bianconcini (2014). They showed that the
estimators are asymptotically consistent with rate Op(max(n−1/2, m−(R/3+1)))
and asymptotically normally distributed. The covariance matrix for the estimated
parameters can be approximated using an inverse of the observed information
matrix.

4.3 Laplace approximation

The Laplace approximation (Tierney and Kadane, 1986) is the most common and
well-known method that provides a closed form approximation for the marginal
likelihood. The problem of calulating the high-dimensional integral is trans-
formed to an optimization problem which is easier to solve. The Laplace ap-
proximation method is a special case of adaptive Gauss-Hermite quadrature with
only one quadrature point (Liu and Pierce, 1994), and the major advantage of
the Laplace approximation is that it provides, for any distribution, response type
and link function, a fully closed form approximation of the likelihood which can
be maximized efficiently even in case of very complex models applied to high-
dimensional data.

Consider next the Laplace approximation of the marginal log-likelihood
function (8). Assuming that the responses yij come from the exponential family of
distributions with mean µij = E(yij), the conditional probability distribution can
be written as f (yij|ui, Ψ) = exp

{
yijaj(µij)− bj(µij) + cj(yij)

}
, where aj(·), bj(·)

and cj(·) are known functions, (see for example Dobson, 2008, Chapter 3). The
marginal log-likelihood function (8) can then be written as

l(Ψ) =
n

∑
i=1

log
∫ [ m

∏
j=1

exp
{

yij aj(µij)− bj(µij) + cj(yij)
}]

(2π)−
d
2 exp

(
−

u′iui

2

)
dui.

By applying the Laplace approximation method to the integral above, the marginal
log-likelihood function obtains an approximation

l̃(Ψ, ûi) =
n

∑
i=1

(
− 1

2
log det {Γ(Ψ, ûi)}+

m

∑
j=1

{
yij aj(µij)− bj(µij) + cj(yij)

}
− û′iûi

2

)
,

where

Γ(Ψ, ûi) =
m

∑
j=1

∂2 {−yij aj(µij) + bj(µij)
}

∂u′i∂ui

∣∣∣∣∣
ui=ûi

+ Id,

and ûi maximizes a function

Q(Ψ, ui) =
m

∑
j=1

log f (yij|ui; Ψ)− u′iui/2
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with respect to ui (Huber et al., 2004).The Laplace approximated log-likelihood
function l̃(Ψ, ûi) is treated as a new objective function instead of the actual likeli-
hood, and estimated parameters Ψ̂ and predictions for the latent variables ûi are
obtained by maximizing alternately the likelihood l̃(Ψ, ûi) with respect to Ψ̂ and
Q(Ψ, ui) with respect to ui using a quasi-Newton method, for example.

The asymptotic error of the Laplace approximation is known to be of order
O(m−1), (Tierney and Kadane, 1986). Therefore for high-dimensional abundance
data the method provides a good approximation. In particular for GLLVMs, Hu-
ber et al. (2004) has shown that the estimates based on the Laplace approximated
log-likelihood are consistent with the rate O(m−1) and asymptotically normally
distributed. The asymptotic standard errors for Ψ̂ are obtained via the observed
information matrix,

Ĩ(Ψ̂) = −
{

∂2 l̃(Ψ, ûi)

∂(Ψ, ûi)∂(Ψ, ûi)′

} ∣∣∣∣∣
Ψ=Ψ̂

,

as the asymptotic covariance matrix can be approximated by an inverse of Ĩ(Ψ̂).
The asymptotic prediction errors for ûi are easily obtained in a similar fash-

ion as those for Ψ̂, as Ĉov(ûi − ui|yi) = Γ(Ψ̂, ûi)
−1. However, in order to take

into account the uncertainty in the parameter estimation, some adjustments for
the prediction errors are needed. In the literature, the parameter uncertainty is
accounted either by adjusting the prediction errors with correction terms, e.g. in
Kackar and Harville (1984) and Booth and Hobert (1998), or by bootstrapping, see
Flores-Agreda and Cantoni (2019). We apply the solution proposed by Booth and
Hobert (1998); an approximative conditional mean squared errors of predictions
(CMSEP). In case of the Laplace approximation method that is

CMSEP(ûi; Ψ, yi) = Γ(Ψ̂, ûi)
−1+(

∂2Q(Ψ, ξ)

∂u′i∂ui

)−1
∂2Q(Ψ, ui)

∂u′i∂Ψ
Ĩ(Ψ̂)−1 ∂2Q(Ψ, ui)

∂ui∂Ψ′

(
∂2Q(Ψ, ξ)

∂u′i∂ui

)−1
∣∣∣∣∣
ui=ûi,Ψ=Ψ̂

.
(9)

Such prediction errors can then be used for example in constructing prediction
regions around ordination points.

The Laplace approximation of the marginal likelihood function in the gen-
eral exponential family case for GLLVMs was first provided by Huber et al. (2004).
We applied the method for the overdispersed count and biomass data in article
PI assuming negative binomial, zero inflated Poisson or Tweedie distributed re-
sponses. The R implementations for these, as well as for gaussian and for binary
data, are given in package gllvm (article PIV). In order to improve the accuracy,
the Laplace method was extended in Bianconcini and Cagnone (2012), where a
fully exponential Laplace approximation method (Tierney et al., 1989) for fitting
GLLVMs was proposed in the context of general exponential family.

While being a fast method, Laplace approximation method loses in accu-
racy as compared to its competitors, at least in connection with discrete data and
small datasets. This was shown in Joe (2008), where they compared the accuracy
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of the Laplace approximation method to the adaptive Gauss-Hermite quadrature
method in cases of discrete response mixed models. In the article PII the Laplace
approximation method was compared to the variational approximation method
in case of GLLVMs for count and binary data, and it was noticed that the varia-
tional approximation method gives more accurate estimates.

4.4 Variational approximation

Another method to approximate the marginal likelihood is the variational ap-
proximation method. The main idea in the variational approximation method
is to find a closed form approximation to the integral by constructing a lower
bound which has a closed form expression. By maximizing the lower bound, the
distance between the approximation and the actual integral is then minimized.
Originally the method was developed in machine learning research to approxi-
mate probability densities (see for example Jordan et al., 1999; Wainwright and
Jordan, 2008), but it has also been used in Bayesian data analysis for approximat-
ing posterior densities (Teschendorff et al., 2005; Bishop et al., 2006; Blei et al.,
2017) in order to reduce the computation times in case of high-dimensional data.
In the recent years, the suitability of the variational approximation method in
approximating complex marginal likelihoods in maximum likelihood estimation
has also gained interest. The method has been applied in the estimation of mixed
models in Ormerod and Wand (2010, 2012); Jeon et al. (2017) and Hui et al. (2019).

In the context of the maximum likelihood estimation, the variational ap-
proximation method produces a strict lower bound to approximate the marginal
log-likelihood function. The estimation and inference is then based on that new
objective function. In order to produce a lower bound with a closed form ex-
pression, the posterior distribution of the latent variables, f (u|y, Ψ), is approxi-
mated by a simpler distribution, which is called a variational distribution with
a density q(u|ξ) and variational parameters ξ. Now, consider the marginal log-
likelihood function in (8). By using the Jensen’s inequality and the concavity
of the logarithm function, the variational approximation approach constructs a
lower bound,

log
∫

f (y|u, Ψ) f (u)du = log
∫ { f (y|u, Ψ) f (u)q(u|ξ)

q(u|ξ)

}
du

≥
∫

log
{

f (y|u, Ψ) f (u)
q(u|ξ)

}
q(u|ξ)du =: `(Ψ, ξ),

which is called a variational log-likelihood. We can see that maximizing the vari-
ational likelihood is equivalent to minimizing the Kullback-Leibler distance be-
tween the true posterior, f (u|y, Ψ), and the proposed variational density q(u|ξ).

The variational approximation method was first applied to GLLVMs by Hui
et al. (2017) in the case of binary, ordinal and overdispersed count data. Follow-
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ing Hui et al. (2017), we use the optimal choice for the variational densities of
the latent variables and choose independent normal distributions, that is, we de-
note q(ui|ξi) as a density of Nd(ai, Ai), where ξ = (a′i, vec(Ai))

′, ai are variational
mean vectors and Ai are unstructured covariance matrices. For the GLLVM as
defined in (4), the variational log-likelihood is then given by

`(Ψ, ξ) =
n

∑
i=1

m

∑
j=1

{
yijη̃ij − Eq(b(ηij))

φj
+ c(yij, φj)

}

+
1
2

n

∑
i=1

(
log det(Ai)− tr(Ai)− a′iC

−1
σ ai

)
,

(10)

where η̃ij = β0j + x′iβj + a′iγj. With Eq(·) we denote the expectation with respect
to q(u). All quantities which are constant with respect to the parameters have
been omitted. Depending on the expectation Eq(b(ηij)), we may obtain a closed
form approximation for the marginal log-likelihood (8).

The variational approximate maximum likelihood estimators, Ψ̂ and ξ̂, for
the model parameters and the variational parameters can be obtained by maxi-
mizing the variational log-likelihood `(Ψ, ξ) with respect to both the model pa-
rameters Ψ and variational parameters ξ. In addition, as the `(Ψ, ξ) is treated as
a log-likelihood we obtain the asymptotic covariance matrix for the parameters
based on the observed information matrix

I(Ψ̂, ξ̂) = −
{

∂2`(Ψ, ξ)

∂(Ψ, ξ)∂(Ψ, ξ)′

} ∣∣∣∣∣
ξ=ξ̂,Ψ=Ψ̂

. (11)

The corresponding block of the inverse of the information matrix provides ap-
proximate standard errors for the maximum likelihood estimates Ψ̂.

As noted in Ormerod and Wand (2012) and Hui et al. (2017), equivalency be-
tween maximizing the log-likelihood with respect to the variational parameters ξ

and minimizing the Kullback-Leibler distance between the posterior and the vari-
ational density combined with the normality assumption on q(ui|ξi), imply that
the estimated mean vectors âi provide predictions for the latent variables, as âi
is both the variational version of the empirical Bayes and maximum a-posteriori
predictor of the latent variable. In addition, a matrix Âi provides an estimate
of the posterior covariance matrix. The estimated covariance matrices can also
be used to obtain prediction errors for latent variables. However, it should be
noted that they do not take into account the uncertainty of the estimated param-
eters. Similarly to the prediction variances of the latent variables in the Laplace
approximation, we can use CMSEP to approximate the prediction covariance for
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the variational predictions âi as

CMSEP(âi; Ψ, yi) = (12)

Â−1
i +

(
∂2`(Ψ, ξ)

∂a′i∂ai

)−1
∂2`(Ψ, ξ)

∂a′i∂Ψ
I(Ψ̂)−1 ∂2`(Ψ, ξ)

∂ai∂Ψ′

(
∂2`(Ψ, ξ)

∂a′i∂ai

)−1
∣∣∣∣∣
ξ=ξ̂,Ψ=Ψ̂

.

The variational approximation method provides very fast estimation method
for GLLVMs, as described in article PII. The algorithm is implemented in the R
package gllvm (article PIV). One of the few drawbacks is that the method is
rather case-specific offering only a closed form approximation when specific com-
binations of response distributions and link functions are used. For example, in
the case of the exponential family of distributions in (10), the closed form expres-
sion is obtained only if the expectation term Eq(b(ηij)) can be solved analytically.

Theoretical properties of the variational approximation estimators have been
studied only in few specific cases. Hall et al. (2011a) studied the theoretical
properties in the case of the univariate random effect Poisson model and proved
that the variational approximation maximum likelihood estimators are asymp-
totically consistent with rate Op(n−1/2 + m−1). Hall et al. (2011b) continued the
research and proved the asymptotical normality of the estimators. Similarly, con-
sistency and asymptotic normality of the estimators were studied by Wang and
Titterington (2006) in case of Gaussian mixture models and in Bickel et al. (2013)
and Celisse et al. (2012) in the case of stochastic block models. Westling and
McCormick (2019) studied asymptotic properties of the variational maximum
likelihood estimators based on a broad class of models and derived the asymp-
totic covariance matrix of the gaussian variational approximation estimator. The
asymptotic properties of the variational approximation estimators have also been
studied in the context of the variational Bayes approach in Wang and Blei (2019).
Blei et al. (2017) give a review of the current state of the study on theoretical prop-
erties within the variational inference. For the GLLVMs, particularly, Hui et al.
(2017) provided a heuristic proof of the consistency of the variational maximum
likelihood estimators.

4.5 Implementation and maximization using automatic differenti-
ation

One of the main goals of this thesis was to improve the computational efficiency
when fitting generalized linear latent variable models. While the closed form ap-
proximation methods such as the Laplace approximation and the variational ap-
proximation provide efficient estimation methods, the computational efficiency
can still be improved with technically advanced algorithms. We developed model
fitting algorithms by utilizing automatic differentiation tools, implemented in the
R package TMB (Template Model Builder, Kristensen et al., 2016). The automatic
differentiation is a technology that automatically calculates the derivatives for the
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functions that are specified via a programming language. The derivative for any
differentiable function can be automatically calculated by applying the chain rule
repeatedly to the elementary operations as all mathematical functions are based
on a sequence of elementary arithmetic operations and functions. The TMB pack-
age offers a general framework for implementing complex random effect models
and is inspired by a C++ language extension AD Model Builder (Fournier et al.,
2011), which provide tools for automatic differentiation techniques in statistical
optimization. In particular, TMB package employs the C++ library CppAD to con-
struct gradient functions for the log-likelihood function for the model to be opti-
mized. These functions can then be called from R and can be straightforwardly
optimized using gradient based optimization methods.

In article PII we explain our algorithms in detail and conduct an extensive
simulation studies in order to compare the new algorithms based on the vari-
ational approximation method and the Laplace approximation method imple-
mented using TMB to the plain R implementations used in article PI and in Hui
et al. (2017). The results showed that especially for the variational approximation
method computation times improved significantly when TMB was used in opti-
mization. In addition, the variational approximation method also provided the
most accurate estimates for the parameters.

4.6 Software for fitting latent variable models

There exists a wide variety of software for fitting latent variable models using
different estimation methods. One of the earliest ones can be found in STATA
(Rabe-Hesketh et al., 2002; Skrondal and Rabe-Hesketh, 2004), where implemen-
tation is conducted using the adaptive Gauss-Hermite quadrature or the Laplace
approximation method. The software also provides a lot of additional function-
ality for inference and visualization. A drawback is that the software is not freely
available and therefore is not included in the comparisons presented in Chapter
5.

Some form of the EM algorithm is used in several softwares for fitting latent
variable models. Computationally relatively fast algorithm for fitting some sim-
ple latent variable models is included in the R package ltm (Rizopoulos, 2006)
which uses the hybrid EM algorithm implementation which utilizes adaptive
quadrature for approximating integrals. The method first uses a number of EM
iterations and switches then to quasi-Newton iterations. Unfortunately, ltm is
designed for item response theory, that is, the methods are implemented only for
binomial and ordinal responses. Another drawback is that only one or two la-
tent variables can be included in the models. The EM algorithm is also used in
the R package mirt (Chalmers, 2012) for item response models using the algo-
rithm of Bock and Aitkin (1981) where integrals are approximated using Gauss-
Hermite quadrature. In addition to the Gauss-Hermite quadrature EM algorithm,
models are implemented using a Metropolis-Hastings Robbins-Monro (Cai, 2010)
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algorithm. Drawback is that this package does not provide ready-to-use tools
for ordination or studying between species correlations, for instance. The latent
variable models can also be fitted using Monte Carlo EM algorithm with the R
package mistnet (Harris, 2015) for binomial, ordinal and count data. However,
additional tools for inference are missing.

The bayesian approach for fitting GLLVMs is available in R packages boral
(Hui, 2016, 2018) and Hmsc (Tikhonov et al., 2019b). The latter is also available in
MATLAB. Both of the packages provide framework for fitting latent variable mod-
els for the most common types of responses and additional tools for visualization
and inference. As boral and HMSC are based on the Bayesian MCMC, model
fitting is computationally burdensome.

One important contribution of this thesis is the developed R package gllvm
(Niku et al., 2017) which is reviewed in the article PIV. The gllvm package pro-
vides computationally efficient model fitting algorithms for GLLVMs which are
based on the variational and Laplace approximation methods. The methods are
implemented for the most common types of responses, including count, binary,
ordinal, biomass and continuous data, and for the models (4) and (6) as well as
those models that can be reduced from these two. In addition, a wide variety
of tools for inference, visualization and ordination are provided. Based on the
simulation studies presented in the next chapter, the package provides the fastest
algorithm for fitting GLLVMs as compared to the freely available competitors
and it is also among the most accurate ones. The functionality of the gllvm is
illustrated in Chapter 6.



5 COMPARISON OF ESTIMATION METHODS

In this thesis, we developed efficient estimation methods for the analysis of mul-
tivariate abundance data. In this chapter we perform a simulation study in order
to compare our algorithms in the R package gllvm with other available R algo-
rithms listed in Section 4.6.

We perform two simulation studies to compare accuracies and computation
times of the algorithms for fitting GLLVMs for binary and count data. Data are
generated using a simple mean model

g(µij) = β0j + u′iγj, (13)

where intercepts β0j are generated from the standard normal distribution and
loadings γj and latent variables ui are generated independently from the bivariate
normal distribution with zero mean vector and covariance matrix I2, that is, two
dimensional identity matrix.

In case of binary data simulation, we use a probit link and generate data
from the Bernoulli distribution. We compare eight freely available methods that
can be used to fit the model above, either with logit or probit link. Such methods
are the variational approximation method (using probit link) and the Laplace ap-
proximation method (logit and probit) in the gllvm package, Bayesian MCMC
methods in the packages boral and Hmsc (probit), a hybrid algorithm of EM al-
gorithm and adaptive quadrature in the R package ltm (logit) and the Gaussian
quadrature EM and Metropolis-Hastings Robbins-Monro (MHRM) algorithms in
the mirt package (logit). The packages’ default options for iterations were used
if the convergence was obtained. That was the case for gllvm and boral. The
Hmsc package did not have a default option for MCMC samples, so we used the
same number of samples as in boral, that is, a burn-in at 10 000, total number of
samples 40 000 and thinning at 30. The algorithms in the mirt and ltm packages
often did not converge under the default options, so we increased the maximum
number of EM iteration steps to 3000 and the maximum number of iterations for
the MHRM algorithm to 5000. In the ltm package we used 50 EM steps and a
maximum number of quasi-Newton iterations for the adaptive quadrature was
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set to 500. We recorded for each algorithm the median computation times over
1000 runs. It need to be noted that the computation times are not necessarily
comparable due to different convergence criteria. In the Bayesian the conver-
gence of MCMC chains is checked afterwards and the marginal likelihood based
approaches use relative convergence of a value of the likelihood.

The computation times for the binary data are presented in Table 1. We can
see that the variational approximation method is the fastest method for all data
sizes. The closest competitor when it comes to computational times is provided
by the ltm before the Laplace approximation method in gllvm package or the
MHRM algorithm in the mirt package. Computation times for the variational
approximation method are around 35 to 300 times shorter than for the EM al-
gorithm in the mirt package and 80 to 240 times shorter than for the Bayesian
MCMC algorithms in the boral package and in the Hmsc package. In simula-
tions with n = 40, the EM algorithm and the MHRM algorithm in mirt often had
convergence problems and reached the maximum number of iterations without
convergence.

In addition to the computation times, we also compare accuracies of the pre-
dictors for the latent variables and the parameter estimates for the latent variable
loadings using scaled mean procrustes errors, similarly to the simulation setups
used in Hui et al. (2017) and in article PII. Biases of the estimated intercepts are
also calculated. Accuracies of the estimates given different algorithms are given
in Table 2. Differences between the scaled mean procrustes errors of the predicted
latent variables are very small, excluding the errors given by Bayesian approach
in Hmsc results for the n = m = 40 case. In all of the cases the variational ap-
proximation method in the gllvm and Bayesian approach in the boral package
provide more accurate estimates for the latent variable loadings than any other
algorithm. When n = 100 and m = 40, the loadings given by Hmsc are almost
equally accurate as compared to those given by gllvm and boral. The biases of
estimates β̂0j are small when the estimation is done using the variational approxi-
mation method in gllvm package or the Bayesian approaches in boral or Hmsc.
Biases for the intercepts of the logit models are exluded from the comparisons
because datasets were generated using the probit link function.

In the count data simulation, we use the same model as before with log-link
and generate data from the negative binomial distribution with variance function
V(µij) = µij + φjµ

2
ij, where φj = 1, j = 1, . . . , m. The R packages that can fit a neg-

ative binomial GLLVM for count data are gllvm, boral and Hmsc. Scaled mean
procrustes errors of the latent variables predictions and latent variable loadings
as well as biases of the estimated intercepts and dispersion parameters are also
calculated.

The median computation times are presented in Table 3 and mean pro-
crustes errors and biases are listed in Table 4. We can see that again the varia-
tional approximation method is the fastest method in all considered cases and
median computation times are around 100 times shorter than when using boral
and around 35 to 50 times shorter than when using Hmsc. The Bayesian MCMC
algorithm in the boral package is the most accurate method for small sample



34

TABLE 1 Median computation times (in seconds) when fitting GLLVM for binary data
using eight different algorithms.

n = 40, n = 100, n = 40,
algorithm m = 40 m = 40 m = 100
gllvm-VA 2.0 5.3 5.1
gllvm-LA (probit) 22.4 31.9 115.2
gllvm-LA (logit) 12.4 21.1 30.8
ltm 5.7 10.6 17.7
mirt-MHRM 42.5 43.5 101.3
mirt-EM 483.3 178.9 1523.8
boral 172.2 528.1 588.6
Hmsc 496.0 540.1 742.2

TABLE 2 Results for scaled mean Procrustes errors of predicted latent variables (scaled
with n and number of latent variables) and estimated latent variable loadings
(scaled with m and number of latent variables), and biases of species inter-
cept estimates based on eight estimation algorithms. The true model was a
Bernoulli GLLVM with probit link function.

algorithm LVs Loadings Bias
n = 40, m = 40 gllvm-VA 0.117 0.126 0.012

gllvm-LA (probit) 0.128 0.670 -0.382
boral 0.119 0.141 -0.001
Hmsc 0.422 0.499 0.021
gllvm-LA (logit) 0.131 0.659
ltm 0.140 0.681
mirt-MHRM 0.123 0.449
mirt-EM 0.121 0.525

n = 100, m = 40 gllvm-VA 0.112 0.083 0.003
gllvm-LA (probit) 0.116 0.284 0.061
boral 0.114 0.080 0.012
Hmsc 0.119 0.089 0.001
gllvm-LA (logit) 0.117 0.471
ltm 0.121 0.538
mirt-MHRM 0.121 0.182
mirt-EM 0.120 0.190

n = 40, m = 100 gllvm-VA 0.048 0.153 0.008
gllvm-LA (probit) 0.054 0.785 0.168
boral 0.054 0.137 0.007
Hmsc 0.071 0.222 0.018
gllvm-LA (logit) 0.057 0.754
ltm 0.073 0.804
mirt-MHRM 0.060 0.576
mirt-EM 0.059 0.679
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TABLE 3 Median computation times (in seconds) when fitting GLLVM for count data
using four different algorithms.

n = 40, n = 100, n = 40,
algorithm m = 40 m = 40 m = 100
gllvm-VA 4.3 16.1 14.4
gllvm-LA 28.9 70.5 126.6
boral 537.4 1964.2 1935.6
Hmsc 431.4 562.9 789.1

sizes n = 40, if we look at latent variables, their loading and species-specific in-
tercepts. The smallest biases of disperion parameters were obtained using the
variational approximation method in gllvm. In case of larger datasets, gllvm
and boral give almost equally accurate results. The Hmsc package provided the
poorest results in all considered cases. This is probably due the identifiability re-
striction for the upper triangular of the loading matrix that is made in the boral
and in the gllvm packages, but not in the Hmsc package.

In all simulations presented here, the variational approximation method
was faster than the other methods included in comparisons. In addition, the
method was equally or almost equally accurate when compared to the Bayesian
MCMC algorithm in the boral package. The Bayesian MCMC algorithm gives
highly accurate results but suffers from computational complexity which reflects
to computation times.
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TABLE 4 Results for scaled mean Procrustes errors of predicted latent variables (scaled
with n and number of latent variables) and estimated latent variable load-
ings (scaled with m and number of latent variables), and biases of species
intercept estimates and dispersion parameters based on four estimation algo-
rithms. The true model was a negative binomial GLLVM with log link func-
tion.

algorithm LVs Loadings Bias β̂0j Bias φ̂j
n = 40, m = 40 gllvm-VA 0.110 0.100 0.089 -0.043

gllvm-LA 0.118 0.137 0.173 0.228
boral 0.086 0.095 0.083 0.259
Hmsc 0.366 0.303 0.653 0.533

n = 100, m = 40 gllvm-VA 0.064 0.028 0.006 -0.054
gllvm-LA 0.066 0.030 0.057 0.082
boral 0.066 0.034 0.046 0.093
Hmsc 0.074 0.048 0.545 0.292

n = 40, m = 100 gllvm-VA 0.053 0.108 0.129 0.128
gllvm-LA 0.056 0.118 0.163 0.221
boral 0.032 0.093 0.021 0.248
Hmsc 0.311 0.462 0.671 0.541



6 APPLICATION

In this Chapter we present an illustrative example of the analysis of multivariate
abundance data using generalized linear latent variable models. The models are
fitted and the visualizations are executed using the agorithm based on variational
approximation method implemented in R package gllvm. Consider the testate
amoebae data (Daza Secco et al., 2016) that we shortly introduced in Chapter 2.
The data consist of counts of the 50 testate amoebae species measured at three
types of Finnish peatlands; two natural peatlands, two forested peatlands and
two restored peatlands. Several samples were collected at each peatlands so that
the data consist of a total of 270 sampling units. In addition, two environmental
covariates temperature and pH value were recorded from each sample.

The interest is now in studying the following research questions: firstly,
we study if amoebae species communities differ in terms of land use (natural,
forestry, restored) in order to find out if testate amoebae communities could give
valuable information about the ecological state of each peatland and, in partic-
ular, the success of restoration. Secondly, we try to find some indicator species
for different types of peatlands. Finally, we study if the environmental variables
(temperature and water pH) affect the species communities.

In order to produce an ordination plot which reveals if species communities
differ in different peatlands, we fitted a generalized linear latent variable model
with two latent variables and without covariates to the data. Akaike information
criterion was used to select the most suitable distribution for the responses. The
criterias for the fitted GLLVMs for Poisson distributed and negative binomial dis-
tributed responses were 66405 and 33244, respectively. Also the residual analysis
supported the choice of the negative binomial distributed responses over Poisson
distribution. See Figure 2 for the Dunn-Smyth residuals (Dunn and Smyth, 1996)
for the Poisson and the negative binomial GLLVM fit.

The main patterns in species communities can be seen in the ordination of
sample sites based on the negative binomial GLLVM in Figure 3(a), where the
two predicted latent variables are used as coordinates for the ordination points.
Different symbols and colors refer to different uses of land, and we can see that
the samples are clustered according to the land use. In addition to ordination
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FIGURE 2 Dunn-Smyth residual plots for the Poisson (top) and the negative binomial
GLLVM (bottom) fitted for the testate amoebae data. Residuals are plotted
against linear predictors (left) and the normal quantile-quantile plot is plot-
ted with simulated point-wise 95% confidence interval envelope (right).



39

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

(a)

Latent variable  1

La
te

nt
 v

ar
ia

bl
e 

 2

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●●●

●

●
●

●

●
● ●

● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

● ●

●
● ● ●●

●

●

●

●●

●

●

●

●

●

●

●

●
●● ●●

●

●●

●

●

● Forestry
Natural
Restored

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

(b)

Latent variable  1
La

te
nt

 v
ar

ia
bl

e 
 2

●

●

●

●

●
●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●●

●

●

●

●

●

●

● ●

● ●

●

●

●● ●

●

●

●
●

●
●

Arcgib

Traden

Ceneco

Difbac

Diflit

Difpri

NebcarHelpet

Lesspi

Bulind

Arcvul

Nebmar

Nebmil

HelsphDiflei

FIGURE 3 Ordination plot with 95% prediction regions (left) and biplot (right) based
on the negative binomial GLLVM fitted for the testate amoebae data. In bi-
plot 15 species with the largest facrtor loadings are printed on top of the
ordination.

points, 95% prediction regions computed using prediction errors in equation 12
are added in the figure.Even if some prediction regions partly overlap the ordi-
nation strongly indicates that the testate amoebae communities differ in terms of
the land use.

The biplot with 15 indicator species with the largest factor loadings is plot-
ted in Figure 3(b). In biplot species-specific factor loadings are plotted in the
same plot with the latent variables. The figure shows few typical species present
at each type of peatlands. For instance, a group of six species, located at the right,
are typical for restored peatlands. Having a closer look at the abundance data,
one of those six species (the species named Difbac) is observed in 84 of the 90
samples collected at restored peatlands while it was present only in 4 forest peat-
land samples and 14 natural peatland samples, for instance. Similar differences
in occurrences can also be found for the other five species in that group. The
residual correlations based on the latent factor loadings plotted in Figure 4 can be
used to find groups of positively or negatively correlated species.

In Figures 7(a) and 7(b) the ordination points are colored according to the
environmental variables pH value and temperature, respectively. In Figure 1(a)
we can see a light gradient in the pH values of sample sites. In Figure 1(b) the
effect of the temperature is not very clear even though a group of natural sites has
higher temperatures than the others. In order to formally study the effect of en-
vironmental covariates we add them to the negative binomial GLLVM. The point
estimates and the approximate 95% confidence intervals for the species-specific
covariate coefficients are plotted in Figure 6. The majority of the confidence inter-
vals of the coefficients of the pH value and about half of the confidence intervals
for the coefficients of the temperature do not contain the zero value indicating



40

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Nebpar

Cenpla

Cenacu

Eugrot

Eugtub

Arcc
at

Cryo
vi

Helro
s

Asu
mus

Cortr
i

Cenca
s

Helsy
l

Tri
min

Tri
arc

Nebmil

Nebtin

Bulin
d

Asu
se

m

Ceneco

Ampfla

Hya
ele

Hya
pap

Nebgri

Helpet

Helsp
h

Difle
i

Nebca
r

Plasp
i

Nebboh

Diflu
c

Nebtub

Nebv
it

Difp
ri

Nebmar

Arcg
ib

Difb
ac

Difo
bl

Difli
t

Arcd
is

Arcv
ul

Difru
b

Less
pi

Tri
lin

Tra
den

Difb
ac.1

Phracr

Difg
lo

Cyc
arc

Eugco
m

Cenpla
Cenacu
Eugrot
Eugtub
Arccat
Cryovi
Helros

Asumus
Cortri

Cencas
Helsyl
Trimin
Triarc

Nebmil
Nebtin
Bulind

Asusem
Ceneco
Ampfla
Hyaele

Hyapap
Nebgri
Helpet
Helsph

Diflei
Nebcar
Plaspi

Nebboh
Difluc

Nebtub
Nebvit
Difpri

Nebmar
Arcgib
Difbac
Difobl

Diflit
Arcdis
Arcvul
Difrub
Lesspi

Trilin
Traden

Difbac.1
Phracr
Difglo

Cycarc
Eugcom

Eugstr
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tive binomial GLLVM fitted to the testate amoebae data.
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FIGURE 5 Ordination plot based on the negative binomial GLLVM fitted to the testate
amoebae data. Here the points representing sample sites are colored accord-
ing to the covariate values of (a) pH and (b) temperature.

that covariates have substantial effect for the species compositions. We quanti-
fied the variance explained by the environmental covariates by comparing traces
of the residual covariance matrices of nested models, the model with environ-
mental covariates and the null model without covariates. This measure is a type
of pseudo-R2 considered, for example, in Nakagawa and Schielzeth (2013). In
our case, the pseudo-R2 value indicates that the environmental variables explain
16% of the total variation. The ordination plot based on the GLLVM with the en-
vironmental covariates in Figure 7 indicates that even after the effect of the pH
value and the temperature is accounted for, the effect of the land use is substantial
factor driving the testate amoebae species communities.
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their 95% confidence intervals (lines) for the negative binomial GLLVM fitted
to the testate amoebae data. Lines colored in black denote intervals which
do not contain zero.



43

−4 −2 0 2 4

−
4

−
2

0
2

4

Latent variable  1

La
te

nt
 v

ar
ia

bl
e 

 2 ●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●●
●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

● Forestry
Natural
Restored

FIGURE 7 Ordination plot with 95% prediction regions based on the negative binomial
GLLVM with environmental covariates.



7 SUMMARY OF ORIGINAL PUBLICATIONS

The aim of this thesis was to illustrate how multivariate abundance data can be
analysed using generalized linear models and to develop computationally effi-
cient estimation methods for fitting such models. The R package gllvm was
developed in order to offer the estimation algorithms as well as the additional
analysis and visualization tools for free use.

In article PI, the generalized linear latent variable models were applied to
overdispersed count data and non-negative continuous data. Models were fit-
ted by applying the Laplace approximation method for negative binomial, zero
inflated Poisson and Tweedie distributed responses. Simulation studies were
conducted using overdispersed counts and biomass data in order to investigate
the properties of the estimated parameters. For overdispersed counts, results
were shown to be similar to the estimates based on the variational approximation
method. In case of biomass data, the estimates were more biased if the between
species correlations were ignored. The developed methods were illustrated in or-
dination and in making inference on environmental variables in two case studies.

In article PII, we developed computationally efficient estimation algorithms
for fitting GLLVMs based on the variational approximation method and the Lapla-
ce approximation method. By utilizing automatic differentation techniques avail-
able in the R package TMB as well as the computational effort of the C++ lan-
guage, the computational speed of the algorithms were significantly improved
as compared to the plain R implementations. In addition, we developed a new
method for choosing starting values for the parameters and latent variables in
order to avoid a convergence to local maxima. Performances of new estimation
algorithms were evaluated using extensive simulation studies, which indicated
that the variational approximation method may potentially provide more accu-
rate estimates for the parameters than the Laplace approximation method. The
developed algorithm for the variational approximation method shortened com-
putation times significantly.

In article PIII, we studied the performance of the GLLVMs in testing sig-
nificance of the environmental-trait interactions. Results showed that the fourth-
corner latent variable models were able to take into account interspecific varia-
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tion in responses not explained by the observed covariates as well as between
species correlations by producing valid Type I errors when significances of the
fourth-corner interaction terms were tested using likelihood ratio test. In addi-
tion, powers of the likelihood ratio test used with GLLVMs were higher when
compared to some existing model-based approaches and permutation tests.

In article PIV we introduced the R package gllvm for the analysis of mul-
tivariate data using GLLVMs. The package gllvm provides fast functions for
fitting GLLVMs using ether the variational approximation method or the Laplace
approximation method for the common response types used in ecology, includ-
ing counts, binary, ordinal, non-negative continuous and normal distributed re-
sponses. In article PIV we illustrate the model fitting tools as well as tools for
model diagnostics, visualization and inference.
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In this paper we consider generalized linear latent variable models that can handle
overdispersed counts and continuous but non-negative data. Such data are common in
ecological studies when modelling multivariate abundances or biomass. By extending
the standard generalized linear modelling framework to include latent variables, we
can account for any covariation between species not accounted for by the predictors,
notably species interactions and correlations driven by missing covariates. We show how
estimation and inference for the considered models can be performed efficiently using the
Laplace approximation method and use simulations to study the finite-sample properties
of the resulting estimates. In the overdispersed count data case, the Laplace-approximated
estimates perform similarly to the estimates based on variational approximation method,
which is another method that provides a closed form approximation of the likelihood.
In the biomass data case, we show that ignoring the correlation between taxa affects
the regression estimates unfavourably. To illustrate how our methods can be used in
unconstrained ordination and in making inference on environmental variables, we apply
them to two ecological datasets: abundances of bacterial species in three arctic locations
in Europe and abundances of coral reef species in Indonesia.

Supplementary materials accompanying this paper appear on-line.
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1. INTRODUCTION

In many studies in community ecology, multivariate abundance data are often collected,
comprising the records of a large number of interacting species at a set of observational
units or sites. Such data are characterized by two main features. First, the data are high-
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dimensional in that the number of species, many of which may interact, is often close to
or exceeding the number of sites. Second the data almost always are not or cannot be suit-
ably transformed to be normally distributed. Instead, the most common types of responses
recorded include presence–absence records, overdispersed species counts, biomass (non-
negative, continuous data often with large number of zeros, representing the total mass of a
species found at a site) and heavily discretized percent cover data.

As a motivating example, we consider data on diversity of plant-associated bacte-
ria (Nissinen et al. 2012). The data consist of counts of 1276 interacting bacteria species
measured from different habitats (bulk soil) in 56 sites across three locations. The study
design is explained in Sect. 5.1 in detail. This example, which is by no means an extreme
case, exhibits both of the above characteristics, with the number of species approximately
23 times that of the number of sites, and the counts being highly overdispersed with nearly
half of the species present at ten or fewer sites.

Multivariate abundance data are often collected to answer a number of key questions
concerning the species community. In our motivating dataset for instance, Nissinen et al.
(2012) were interested in performing an ordination to visualize whether sites are similar
in terms of their species composition, which could be helpful in planning future sampling
designs as well as identifying the drivers of microbial community composition such as soil
physiochemical properties. They were also interested in conducting multivariate inference
on the associations between climate zone, environment and soil microflora on microbial
communities associated with plant or with particular plant species. Such analyses have
important implications to help in interpreting drivers of biological associations (bacteria-
plant) as well as abiotic factors (Männistö et al. 2007; Chu et al. 2010). A model-based
analysis of such data poses some major challenges not just due to the high-dimensionality
and non-normality of the data, as previously discussed, but also because of the (potentially)
complex between species interactions. Analogous to longitudinal data, while the observa-
tional units (sites) are often independent by design, we cannot assume that species within a
unit are independent: species responses are likely to be correlated due to a host of ecological
reasons, such as biotic interactions, phylogeny and missing covariates (Araújo and Luoto
2007; Morales-Castilla et al. 2015). Ignoring the correlation between species responses may
result in inflated Type I errors and too narrow confidence intervals when assessing the sig-
nificance of one or more predictors in the model, and too narrow prediction intervals when
extrapolating key community quantities such as species richness into new sites and/or under
various climate scenarios (Warton et al. 2015, 2016).

Over the past few years, the above challenges have spurred a variety of work into model-
based joint analysis of multivariate abundance data. One promising approach, as reviewed
by Warton et al. (2015), is generalized linear latent variable models (GLLVMs, Moustaki and
Knott 2000). This rich class of models extends the basic generalized linear model framework
by including one or more latent variables, with corresponding factor loadings, as a parsimo-
nious method of modelling any residual correlation between species not accounted by the
covariates. Warton et al. (2015) showed how GLLVMs overcome the challenges discussed
above to offer a viable approach for analysing multivariate abundance data. Specifically, by
using a factor analytic type approach based on rank reduction to model the high-dimensional
between species covariance matrix, GLLVMs offer a viable method of constructing model-
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based (residual) ordination and biplots, as well as conducting multivariate inference such as
hypothesis testing of environmental and/or treatment effects, environment-by-trait interac-
tions and how species interactions vary at different spatial and temporal scales; see Letten
et al. (2015) and Ovaskainen et al. (2016a) for recent applications of GLLVMs to multivariate
abundance data.

While a promising approach, one of the major and outstanding challenges with using
GLLVMs is computationally efficient estimation and inference. Since the responses are not
normally distributed, the marginal likelihood, which involves integrating out the unknown
latent variables, does not possess a closed form. This problem in general has attracted
much attention in the statistical literature, and below we review several of the well-known
methods proposed to overcome this issue. In Moustaki (1996) and Moustaki and Knott
(2000), GLLVMs for mixtures of binary and normal responses were fitted using Gauss–
Hermite quadrature. This was expanded upon by Rabe-Hesketh et al. (2002), who proposed
adaptive Gauss–Hermite quadrature to fit GLLVMs, allowing for normal, binomial, gamma
and Poisson distributed responses. While quadrature in general works well for simple latent
variable models, the method scales poorly with the number of latent variables and becomes
computationally impractical if the number of latent variables is moderate, e.g. exceeds two.
Another drawback is that the method of Rabe-Hesketh et al. (2002) is only available in the
proprietary software STATA. More recently, Hui et al. (2016) proposed a fast variational
approximation method to approximate the likelihood in the case of binary, ordinal and
overdispersed count data. While quick, the method is rather case specific, offering only a
closed approximation for specific combinations of response distributions and link functions.
Furthermore, little is known about the theoretical properties of variational approximations
as a framework, e.g. the convergence rate and asymptotic normality of Gaussian variational
approximation estimates has been derived in only specific cases such as Poisson mixed
models with a random intercept (Hall et al. 2011a,b).

The most well-known approach for estimating GLLVMs is to apply an expectation
maximization (EM) algorithm or some variant of it, as in Sammel et al. (1997) and Hui
et al. (2015). In the ecology literature, however, with the growing popularity in hierar-
chical approaches to community level modelling (Cressie et al. 2009; Ovaskainen et al.
2016b), most of the applications of GLLVMs have instead employed Bayesian Markov
Chain Monte Carlo estimation based on the complete likelihood function (Blanchet 2014;
Ovaskainen et al. 2016a; Hui 2016). A major downside of both Markov Chain Monte Carlo
and the EM algorithm estimation though is that they are computationally very intensive:
the E-step in the EM algorithm (still) does not possess a closed form, and so some form of
Monte Carlo integration is still necessary.

Computational efficiency is a key requirement of methods of parameter estimation, given
the sizes of datasets now encountered in practice in ecology. While historically most multi-
variate abundance datasets had a few hundred variables, modern laboratory-based sampling
and classification techniques such as metabarcoding in Yu et al. (2012) commonly result in
datasets exceeding a thousand response variables, as in our microbial application. As such,
the most feasible maximum likelihood approaches for fitting GLLVMs in the foreseeable
future are those that approximate the marginal likelihood as a closed form, in particular, a
variational approximation (where applicable), or as in this paper, a Laplace approximation.
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In this paper, we propose estimating and performing inference with GLLVMs using the
Laplace approximation for overdispersed count and biomass data, motivated by multivariate
abundance data in ecology. Although the Laplace method is a special case of adaptive
Gauss–Hermite quadrature with only one quadrature point, one of the major advantages of
the Laplace approximation is that it provides a general but fully closed form approximation
of the likelihood, which can be maximized efficiently even for very complex models applied
to high-dimensional data such as overdispersed species counts in our motivating example.
This article is not the first to propose the Laplace approximation for GLLVMs, but the key
innovation is our extension particularly to handle overdispersed counts and biomass data in
ecology. Huber et al. (2004) previously provided a Laplace approximation of the likelihood
function in the general exponential family case, with mixtures of binomial and normal
responses serving as examples. This was extended by Bianconcini and Cagnone (2012), who
proposed a fully exponential Laplace approximation method for fitting GLLVMs. They also
treated the general exponential family case, but focused on ordinal data in simulation studies.
This article differs from these previous works though in that we are motivated specifically
by multivariate abundance data in ecology, and provides the first Laplace-approximated
likelihood forms for response distributions appropriate for overdispersed count and biomass
data. More precisely, we derive forms in the case of negative binomial or zero-inflated
Poisson distributions for overdispersed counts and the Tweedie distribution for biomass
data. To our knowledge, the Laplace approximation method has not been formally considered
for any of these distributions so far. Notice that the two other important response types in
ecology, that is, presence–absence records and heavily discretized percent cover data, can be
handled with the tools provided by Huber et al. (2004) for binary responses and Bianconcini
and Cagnone (2012) for ordinal responses, respectively.

The paper is organized as follows. In Sect. 2, we formulate the generalized linear latent
variable model framework and response distributions of interest for multivariate abundance
data. In Sect. 3, Laplace approximations of the likelihood functions are derived, and esti-
mation and inference based on these are discussed. Section 4 provides a simulation study to
compare the performance of Laplace approximation estimates to variational approximation
estimates in the case of overdispersed count data. In the case of biomass data, we empiri-
cally illustrate the detrimental effect of ignoring the correlation inherent in the responses on
parameter estimates. Finally, Sect. 5 applies the proposed Laplace-approximated GLLVMs
to the microbial community data (Nissinen et al. 2012) and coral community data (Warwick
et al. 1990), in both cases demonstrating how common aspects of inference such as ordina-
tion can be performed within a model-based framework via the Laplace approximation.

2. GLLVMS FOR MULTIVARIATE ABUNDANCE DATA

Let Y denote a n × m response matrix, where rows i = 1, . . . , n are observational units
(sites) and columns j = 1, . . . , m consist of m-variate correlated responses (species). For
each site yi = (yi1, . . . , yim)′, a k-vector of environmental covariates, denoted here as xi ,
may also be recorded.
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In GLLVMs, the mean response μi j = E(yi j ) is regressed against a vector of d � m
latent variables, denoted as ui , along with the vector of k covariates if available. That is,

g(μi j ) = ηi j = αi + β0 j + x′
iβ j + u′

iγ j , (1)

where g(·) is a known link function, and αi are β0 j denote row effects and species-specific
intercepts respectively. While optional, row and column effects may be included to account
for differences in site and species total abundance. For example, a row effect is included to
ensure that the latent variables quantify differences in species composition only, as opposed
to species abundance (a combination of composition and site total abundance; see Hui
et al. 2015, for more details). The vectors β j and γ j denote species-specific regression
coefficients and loadings, that is, coefficients related to the covariates and latent variables,
respectively.

In model (1), the term u′
iγ j captures any residual correlation across species not accounted

for by the observed covariates xi . We assume that the latent variables are drawn from
independent, standard normal distributions, ui ∼ Nd(0, Id), where Id denotes a d × d
identity matrix. The purpose of the zero mean and unit variance assumption is to fix the
locations and scales of the latent variables (see Chapter 5, Skrondal and Rabe-Hesketh
2004). Also, to avoid rotation invariance and ensure parameter identifiability, we set all
the upper triangular elements of m × d matrix � = (γ 1 · · · γ m)′ to zero, and constrain its
diagonal elements to be positive (Huber et al. 2004). It is important to emphasize that these
constraints do not limit the flexibility of the GLLVM to model between species correlation:
there are no restrictions on the form of the residual covariance matrix induced by (1), namely
�res = ��′, aside from it being of reduced rank d.

We now study specific cases of GLLVMs of key relevance to multivariate abundance data
in ecology, namely overdispersed species counts and biomass (a continuous, non-negative
value typically obtained as total mass of a species at a site).

2.1. SPECIES COUNTS

Species counts are often overdispersed due to their clustered nature, i.e. species tend
to be found in large numbers or not at all. A standard approach is to assume a negative
binomial distribution for the response, yi j ∼ NegBin(μi j , φ j ), where φ j is a species-
specific dispersion parameter, and choose g(·) to be the log link function. The probability
density function is given by

f (yi j |ui ,�) = �(yi j + 1/φ j )

yi j !�(1/φ j )

(
μi j

1/φ j + μi j

)yi j
(

1

1 + μi jφ j

)1/φ j

, (2)

such that E(yi j ) = μi j and the quadratic mean–variance relationship V (μi j ) = μi j +μ2
i jφ j .

When φ j → 0, the response variable approaches the Poisson distribution.
The negative binomial distribution is often appropriate when the zeros (species absences)

in the data can be explained via the same environmental filtering mechanism as the nonzero
counts (Warton 2005). But if the ecological process governing most species absences is
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believed to be independent of the mechanism driving the nonzero counts, then a more
appropriate and common choice is a zero-inflated Poisson (ZIP) model (Welsh et al. 1996;
Martin et al. 2005). A ZIP model assumes that responses are either structural zeros obtained
with probability p or Poisson distributed count values obtained with probability 1 − p. If
yi j ∼ Z I P(p j , μi j ), the probability distribution function is

f (yi j |ui ,�) =
{

p j + (1 − p j ) exp(−μi j ), if yi j = 0,

(1 − p j ) exp(−μi j )μ
yi j
i j /yi j !, if yi j > 0.

, (3)

where μi j is modelled as in (1) with log link function. Here we assume the probability of
extra zeros is modelled for each species separately and without reference to the covariates.
Under the ZIP model, E(yi j ) = μi j (1 − p j ) and Var(yi j ) = E(yi j )(1 + p jμi j ). When
p j = 0, the ZIP model reduces to the Poisson model. Finally, notice the negative binomial
distribution could also be extended to account for extra zeros (e.g. Welsh et al. 1996). Zero-
inflated negative binomial models, however, can often fit poorly to overdispersed count data
and can suffer from convergence problems (Warton 2005; Rodrigues-Motta et al. 2013),
and so we do not pursue such a model in this article.

2.2. BIOMASS DATA

For biomass data, which take continuous but non-negative values, an often appropriate
assumption is the Tweedie distribution (Jorgensen 1997). For a comprehensive discussion
on Tweedie models and their suitability for biomass data, see Foster and Bravington (2013).
If yi j follows a Tweedie distribution, then E(yi j ) = μi j and Var(yi j ) = φ jμ

ν
i j , where φ j is

a species-specific dispersion parameter and ν is a power parameter controlling the shape of
the distribution. The mean-variance relationship is thus explicitly defined by Taylor’s power
law (Taylor 1961), which empirically arises under a range of ecological processes (Kendal
2004).

The Tweedie distribution does not possess an explicit analytic form, but the density
function can be evaluated numerically. For a typical power parameter value, 1 < ν < 2,
a Tweedie random variable follows a compound Poisson distribution, and the probability
distribution function can be written as

f (yi j ; ui ,�) =

⎧⎪⎪⎨
⎪⎪⎩

exp

(
− μ2−ν

i j
φ j (2−ν)

)
, y = 0

W (yi j , φ j , ν) exp

{(
yi j μ

1−ν
i j

1−ν
− μ2−ν

i j
2−ν

)
/φ j

}
/yi j , y > 0

, (4)

where W (yi j , φ j , ν) = ∑∞
k=1 Wk , and

Wk = y−kα
i j (ν − 1)αk

φ
k(1−α)
j (2 − ν)kk!�(−kα)
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with α = (2 − ν)/(1 − ν). The function W (yi j , φ j , ν) can be evaluated numerically using
the method described in Dunn and Smyth (2005). Foster and Bravington (2013) and Dunstan
et al. (2013) noted that a Tweedie distribution is equivalent to the distribution obtained by
summing a Poisson number of gamma random variables. Such a parametrization makes it
particularly suitable for example in analysing marine data, e.g. the total weight of a fish
species at a site can be considered as the sum of the individual fish weights, where the
number of fish caught is given by a Poisson random variable and the weight of each fish
follows a gamma distribution.

3. THE LAPLACE APPROXIMATION FOR GLLVMS

Consider again a n × m matrix, Y , of observed responses and GLLVMs as defined
in Eq. (1). Write α = (α1, . . . , αn)′, β0 = (β01, . . . , β0m)′, B = (β1 . . . βm)′
and � = (γ 1 . . . γ m)′, and collect all the model parameters as a vector � =
(α,β0, vec(B), vec(�),�), where without loss of generality � is used to denote any nui-
sance parameters depending on the assumed distribution, i.e. φ1, . . . , φm for the negative
binomial and Tweedie distributions and p1, . . . , pm for the ZIP distribution. Here vec(·) is
the vectorizing operator, which stacks the columns of a matrix in a column vector. Condi-
tionally on latent variables ui , the responses yi1, . . . , yim at site i are assumed to be inde-
pendent, such that f ( yi , ui ,�) = ∏m

j=1 f (yi j |ui ,�)h(ui ), where h(ui ) = Nd(0, Id).
The marginal distribution of yi is obtained by integrating over the distribution of ui , leading
to the log-likelihood function

l(�) =
n∑

i=1

log{ f ( yi ,�)} =
n∑

i=1

log

⎛
⎝∫ m∏

j=1

f (yi j |ui ,�)h(ui ) dui

⎞
⎠ . (5)

For the distributions discussed in Sect. 2, as well as for non-normally distributed responses
in general, the marginal likelihood in (5) involves a d-dimensional integral, which cannot be
solved analytically. We propose to overcome this by applying a Laplace approximation to
l(�). The Laplace approximation for the log-likelihood in the case of the general exponential
family is given in Huber et al. (2004) and is reviewed in “Appendix A.” Here we focus on
response types and distributions discussed in Sect. 2, which are frequently collected in
ecology.

Consider first the negative binomial distribution which, for fixed dispersion parameters
φ j , is a member of the exponential family. Thus, a Laplace approximation for the log-
likelihood function can be derived directly from the general result of Huber et al. (2004).

Theorem 1 The Laplace approximation l̃ of the log-likelihood function in negative bino-
mial GLLVM in (2) is given by

l̃(�, ûi ) =
n∑

i=1

(
− 1

2
log det

{
�(�, ûi )

}+
m∑

j=1

{
yi j η̂i j −

(
yi j + 1

φ j

)
log

{
1 + φ j exp(η̂i j )

}

+ yi j log(φ j ) + log �

(
yi j + 1

φ j

)
− log(yi j !) − log �

(
1

φ j

)}
− û′

i ûi

2

)
,
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where

�(�, ûi ) =
m∑

j=1

(
φ j yi j + 1

)
exp(η̂i j )

{1 + φ j exp(η̂i j )}2 γ jγ
′
j + Id ,

with η̂i j = αi + β0 j + x′
iβ j + ûi

′
γ j , and ûi is the maximum of

Q(�, ui ) =
m∑

j=1

{
yi j ηi j + yi j log(φ j ) −

(
yi j + 1

φ j

)
log

{
1 + φ j exp(ηi j )

}+ log �

(
yi j + 1

φ j

)

− log(yi j !) − log �

(
1

φ j

)}
− u′

i ui

2
.

If the dispersion parameters φ j are unknown as is usually the case, they can be estimated
jointly with the other model parameters by maximizing l̃(�, ûi ).

Next, for a ZIP model, the Laplace approximation of the log-likelihood function is given
as follows. Note that this is not part of the exponential family and so we cannot directly use
results from Huber et al. (2004).

Theorem 2 The Laplace approximation l̃ of the log-likelihood function for the zero-inflated
Poisson GLLVM in (3) is given by

l̃(�, ûi ) =
n∑

i=1

(
− 1

2
log det

{
�(�, ûi )

}+
m∑

j=1

(
log(p j + (1 − p j ) Âi j )I(yi j =0)

+ {log(1 − p j ) − exp(η̂i j ) + yi j η̂i j − log(yi j !)}I(yi j >0)

)− û′
i ûi

2

)
,

where Ai j = exp{− exp(ηi j )},

�(�, ûi ) =
m∑

j=1

(
exp(η̂i j )I(yi j >0) −

(
(1 − p j ) Âi j exp(η̂i j )(exp(η̂i j ) − 1)

p j + (1 − p j ) Âi j

− (1 − p j )
2 Â2

i j exp(2η̂i j )

(p j + (1 − p j ) Âi j )2

)
I(yi j =0)

)
γ jγ

′
j + Id ,

with η̂i j = αi + β0 j + x′
iβ j + ûi

′
γ j and Âi j = exp{− exp(η̂i j )}, and ûi is the maximum

of

Q(�, ui ) =
m∑

j=1

(
log(p j + (1 − p j )Ai j )I(yi j =0)

+{log(1 − p j ) − exp(ηi j ) + yi jηi j − log(yi j !)}I(yi j >0)

)
− u′

i ui

2
.

Finally for the Tweedie distribution, we have the following result.

Theorem 3 A Laplace approximation l̃ of the log-likelihood function in Tweedie GLLVM
in (4) is given by
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2
.

Note a common power parameter ν is used for all species. This is done mainly for reasons
of stability, as there is typically very little information within each species to estimate the
power parameter, and previous studies have shown that most species tend to have very
similar values of ν (Dunstan et al. 2013).

3.1. ESTIMATION AND INFERENCE

In all of the cases above, the Laplace-approximated likelihood has a fully closed form, and
therefore parameter estimates, �̂, and predictions of the latent variables ûi for the GLLVM
are easily obtained by using standard quasi-Newton optimization routines available in R

and alternately maximizing l̃(�, ûi ) and Q(�, ui ) until convergence. For this, we have
developed an R package gllvm, which is now available on GitHub and implements the
framework proposed in this paper among other functionalities.

For Laplace’s method, the asymptotic error is of order O(m−1), where m is the number
of species. The method is therefore well suited and provides a good approximation for
high-dimensional abundance data where m/n is often close to or exceeds one. As discussed
in Huber et al. (2004) the Laplace-approximated estimates solve the M-estimation equations,
thus their consistency and asymptotic normality follow under general assumptions (Chapters
6.2–6.3, Huber and Ronchetti 2009). Furthermore, the asymptotic standard errors for �̂ are
easy to compute as the observed information matrix (negative Hessian) is obtained as part
of the estimation process. This allows us to construct confidence intervals as well as conduct
Wald tests for the model parameters. Likelihood ratio tests are also readily available, although
with the small sample sizes as well as the fact that removing a covariate from the model
actually removes m coefficients, their use requires careful consideration. In our examples,
we use instead the corrected Akaike information criterion for variable selection, although
this is by no means the only information criterion one could employ.
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Regarding ordination, similar to Hui et al. (2015) we can construct an ordination plot
using predicted latent variables from the fitted GLLVM. The asymptotic standard errors for
ûi are easily obtained in a similar fashion as those for �̂ and can be used for example in
constructing prediction regions around ordination points. In particular if d = 2, then ûi

is a pair of coordinates representing the position of the site i in a latent two-dimensional
indirect gradient space. Furthermore, the coefficients γ j quantify how each species response
relates to the latent variables. Therefore, we can construct a model-based biplot, where the
site ordinations give an indication of how species composition differs across sites, while
plotting the species loadings identify the indicator species characterizing the sites.

In Sect. 5, we illustrate how the model-based inference discussed above using GLLVMs
can be applied, using two ecological datasets.

4. SIMULATION STUDIES

To evaluate the finite-sample properties of estimates obtained using the Laplace approx-
imation method, we performed two simulation studies on overdispersed count and biomass
data. Details on the simulation setups as well as example R code are given in “Appendix
(Supplementary Material)”.

4.1. OVERDISPERSED COUNTS

In the overdispersed count data case, we compared the Laplace approximation estimates
to those given by variational approximation method (Hui et al. 2016). To our knowledge,
this is the only other maximum likelihood-based method currently available which can
handle negative binomial GLLVMs in a computationally feasible manner. In Hui et al.
(2015, 2016), MCMC-based methods and the EM algorithm were used in estimation and
inference, respectively, but we found these methods to be computationally so intensive
that they could not be included for comparison. For instance, in our initial testing with
the simulation setup (d) below, MCMC-based method took approximately 12 h to fit the
negative binomial GLLVM.

The simulation setup was as follows. We simulated K = 1500 datasets according to the
negative binomial model using four different sample sizes and dimensions: (a) n = 100 and
m = 50, (b) n = 50 and m = 100, (c) n = 50 and m = 500 and (d) n = 50 and m =
1000. Note that especially response matrices with m � n typically arise with multivariate
abundance data in ecology. As a mean model, we used log(μi j ) = αi +β0 j +u′

iγ j , meaning
no covariates were included in the model. The true latent variables, ui , were generated from
the mixture of bivariate normal distributions all having covariance matrices 0.5I2, means
(−1, 1), (2, 1.5) and (0.5,−1.5), and proportions 0.4, 0.3 and 0.3, respectively. The sites
thus exhibit a clustering on a latent variable space. The population parameters γ j were
generated so that all the elements in both columns were generated independently from
a uniform distribution U (−2, 2). The population row parameters αi and species-specific
parameters β0 j were generated from a uniform distribution U (−1, 1), and the dispersion
parameters were set to φ j = 1 for all species j .
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Table 1. Average biases, root mean squared errors (RMSEs), coverage probabilities of 95% confidence intervals
and mean CI widths for GLLVM estimates based on Laplace approximation and variational approxima-
tion methods.

Laplace Variational

Bias RMSE Coverage CI width Bias RMSE Coverage CI width

(a)
β0 0.07 0.23 0.86 0.68 0.07 0.20 0.96 0.92
α −0.11 0.51 0.72 1.14 −0.11 0.39 0.85 1.14
φ −0.08 0.32 0.96 1.26 −0.03 0.30 0.96 1.16

(b)
β0 0.10 0.30 0.88 0.97 0.10 0.30 0.95 1.27
α −0.19 0.30 0.95 1.21 −0.19 0.29 0.95 1.08
φ −0.12 0.42 0.97 2.30 −0.09 0.40 0.99 2.33

(c)
β0 0.13 0.32 0.87 1.02 0.13 0.32 0.93 1.29
α −0.22 0.28 0.95 1.12 −0.22 0.27 0.96 1.12
φ −0.10 0.41 0.98 2.30 −0.10 0.40 0.98 2.31

(d)
β0 0.15 0.32 0.84 0.99 0.15 0.33 0.86 1.15
α −0.24 0.45 0.74 1.11 −0.25 0.41 0.60 1.11
φ −0.10 0.41 0.98 2.30 −0.10 0.40 0.98 2.31

The true models were negative binomial GLLVMs with (a) n = 100 and m = 50, (b) n = 50 and m = 100, (c)
n = 50 and m = 500 and (d) n = 50 and m = 1000.

Table 1 lists the average biases, root mean squared errors, coverage probabilities of
95% confidence intervals and mean confidence interval widths for estimates of αi , β0 j

and φ j , when the Laplace and variational approximation methods were used to fit the
models assuming negative binomial distributed responses. Results indicate that both methods
performed similarly, with slight but noticeable biases especially for the row parameter
αi when n � m. In some cases the coverage probabilities were a lot smaller or higher
than the designated level 0.95. Notice that instead of using here large-sample theory, more
accurate intervals could have be obtained using, for instance, resampling based methods.
This approach was however not considered due to large computational burden, and we
reserve this for avenue for future empirical research.

To evaluate the performance of estimated γ j and predicted latent variables, ui , the
mean Procrustes errors between the estimated and true parameter values were com-
puted (Bartholomew et al. 2011, Chapter 8.4). The Procrustes error can be thought of as the
mean squared error of two matrices after accounting for differences in rotation and scale.
The boxplots of Procrustes errors based on Laplace approximation method and variational
approximation method are given in Fig. 1. To compare the performances of model-based
ordination methods to a classical algorithmic-based ordination method, non-metric multi-
dimensional scaling (nMDS), the mean Procrustes errors between the true latent variables
and nMDS ordination points were also computed. As seen in Fig. 1, both model-based ordi-
nation methods strongly outperform nMDS. The results based on Laplace approximation
method and variational approximation method are almost equally good.

Finally, regarding computation time, the proposed Laplace approximation method aver-
aged 13.2, 12.1, 159.4 and 609.3 s, respectively, to estimate the parameters and their standard
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Figure 1. Comparative boxplots of Procrustes errors between true and estimated ordination points (first row)
and true and estimated parameters γ̂ j (second row). Ordination points (and parameters γ̂ j when applicable) are
obtained from non-metric multidimensional scaling (nMDS) and negative binomial GLLVM fitted using Laplace
approximation method (LA) and variational approximation method (VA). The true model in each plot was negative
binomial GLLVM with a n = 100 and m = 50, b n = 50 and m = 100, c n = 50 and m = 500 and d n = 50 and
m = 1000.

errors using models in simulation settings (a) to (d) above. This was a substantial gain on
the corresponding mean computation times for variational approximation method, which
averaged 56.4, 54.9, 233.4 and 650.9 s, respectively. The main reason for differences in
computation times is that for these setups, the variational approximation needs to estimate
5n variational parameters (corresponding to the mean and covariance parameters in the
variational distribution) on top of the model parameters.

4.2. BIOMASS DATA

In the case of biomass data, we used simulations to study the effect of ignoring the
correlation between taxa on regression estimates. We used only Laplace approximation
method to fit the models, as there are currently no alternative maximum likelihood-based
methods available for fitting GLLVMs to biomass data.

The simulation setup differed slightly from the one used previously for overdispersed
counts. Specifically, we simulated K = 1500 datasets according to the Tweedie model
with fixed power parameter ν = 1.6 using three different sample sizes with dimensions:
(a) n = 100 and m = 50, (b) n = 50 and m = 100 and (c) n = 50 and m = 200.
As a mean model, we used log(μi j ) = β0 j + x′

iβ j + u′
iγ j , with two covariates included

in the model. The true latent variables for the GLLVM, ui , were generated from a three
component mixture of bivariate normal distributions all having covariance matrices 0.5I2,
with differing means (−1, 1), (1.5, 1.5) and (0.5,−1.5), and proportions 0.4, 0.3 and 0.3,
respectively. The first covariate xi1 was generated from the standard normal distribution and
the second covariate xi2 from the exponential distribution with rate λ = 1. Finally, as per the
overdispersed count simulation, we constructed γ j such that all elements in both columns
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Table 2. Average biases and root mean squared errors (MSEs) of Tweedie GLLVM and Tweedie GLM estimates
based on Laplace approximation method.

GLLVM GLM

Bias RMSE Bias RMSE

(a)
β0 0.06 0.31 1.15 1.37
β1 0.03 0.16 −0.09 0.18
β2 −0.08 0.32 0.02 0.21
φ −0.03 0.12 2.06 2.71

(b)
β0 −0.02 0.25 0.97 1.17
β1 0.00 0.17 −0.20 0.32
β2 −0.03 0.23 0.06 0.34
φ −0.07 0.18 1.79 2.44

(c)
β0 −0.02 0.27 0.94 1.12
β1 −0.00 0.17 −0.18 0.32
β2 −0.03 0.25 0.06 0.34
φ −0.07 0.18 1.63 2.10

The true models were Tweedie GLLVMs with (a) n = 100 and m = 50, (b) n = 50 and m = 100 and (c) n = 50
and m = 200.

were obtained from the uniform distribution U (−2, 2), while the species-specific covariate
coefficients β j and intercept parameters β0 j were chosen from the uniform distribution
U (−1, 1). The dispersion parameters were set to φ j = 1 for all species j .

Table 2 lists the average biases and mean squared errors for regression estimates based
on a Tweedie GLLVM compared to a Tweedie generalized linear model (GLM). The latter
does not include any latent variables to account for residual correlation between species,
i.e. it assumes the species are independent after accounting for correlations due to the
observed predictors xi . In all of the considered setups ignoring the correlation yields biased
estimates with high variability, particularly for the species-specific intercepts and overdis-
persion parameters. Additionally, Fig. 2 displays the boxplots of Procrustes errors between
true and predicted latent variables, as well as those between the true latent variables and
ordination points given by nMDS. Again, the model-based approach of GLLVM yields
substantially better ordination results.

5. EXAMPLES

5.1. MICROBIAL COMMUNITY DATA

We applied Laplace-approximated GLLVMs on the bacterial species data discussed
in Nissinen et al. (2012). Altogether eight different sampling sites were selected from three
locations. Three of the sites were in Kilpisjärvi, Finland, three in Ny-Ålesund, Svalbard,
Norway, and two in Mayrhofen, Austria. From each sampling site, several soil samples
were taken and their bacterial species were recorded. The data consist of m = 1276 bacte-
rial species counts measured from n = 56 sites. The sites can be considered as independent
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Figure 2. Comparative boxplots of Procrustes errors between true and estimated ordination points. Ordination
points are obtained from non-metric multidimensional scaling (nMDS) and Tweedie GLLVM fitted using Laplace
approximation method (LA). The true model in each plot was Tweedie GLLVM with a n = 100 and m = 50, b
n = 50 and m = 100 and c n = 50 and m = 200.

Table 3. Values of AICc (scaled by n and subtracted by 1942) for Poisson, negative binomial (NB) and ZIP
GLLVMs (1) without covariate, (2) with pH as a covariate, (3) with pH, soil organic matter and phos-
phorous as covariates, (4) with pH included along with a site effect and (5) with all three soil covariates
included along with a site effect.

(1) (2) (3) (4) (5)

Poisson 771 674 463 395 244
NB 178 150 86 59 0
ZIP 630 547 377 311 189

from each other since bacterial communities are known to be very location specific. As many
of the species were observed only in few sites, we decided to exclude such rare species and
considered only species present at five of more sites. This reduced the number of species
to m = 985. In addition to bacteria counts, three continuous environmental variables (pH,
available phosphorous and soil organic matter) were measured from each soil sample.

In order to study whether the effect of environmental variables is seen in an unconstrained
ordination plot, we first considered a generalized linear latent variable model with two latent
variables and no predictors, and constructed an ordination plot based on the predicted latent
variables. Due to small sample size, the corrected Akaike information criterion, AICc, was
used for selecting which count distribution was most appropriate for the data (Burnham
and Anderson 2002). The values for AICc (scaled by n and subtracted by 1942) based on
the Poisson, negative binomial and ZIP models are given in the first column of Table 3,
with results indicating that the negative binomial model fitted the data best. The ZIP model
outperformed the model assuming Poisson counts.

The ordination of sites based on negative binomial GLLVM is plotted in Fig. 3a. The sites
are coloured according to their pH values. A very clear gradient in the pH values of sites is
observed, while there was less evidence of such a pattern with the two other soil variables
(see Fig. 5 in “Appendix B”). In addition, the ordination points are (also) labelled according
to the sampling location (Kilpisjärvi, Ny-Ålesund and Innsbruck), and it is clear that the
sites differed in terms of species composition. In Fig. 3b, a biplot based on generalized linear
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Figure 3. a The ordination plot of n = 56 sites based on generalized linear latent variable model without any
covariates assuming negative binomial distributed responses. b The biplot, where 15 species with the largest factor
loadings (in terms of distance from the origin) are printed on top of the (rotated) site ordination to illustrate indicator
species for sites with low and high pH values. c The ordination plot based on generalized linear latent variable
model with environmental variables and sampling location as covariates. The plot (c) uses the same scale as (a) to
emphasize the reduction in variation. The sites in ordination plots are coloured according to their pH values and
labelled according to the sampling site.

latent variable model is given. Here indices of the 15 species with largest factor loadings are
added in the (rotated) ordination plot in Fig. 3a. The biplot suggests a small set of indicator
species which prefer sites with low pH values and a larger set of indicator species for high
pH sites.

In order to study whether the environmental variables alone are capable of explaining
the variation in species composition across sites, we included them as explanatory variables
in the GLLVM. Points estimates with 95% confidence intervals are plotted in Fig. 6 in
“Appendix B,” and indicate that pH value was the main covariate affecting the species
composition. The corresponding ordination plots are given in Fig. 7 in “Appendix B,” and
they indicate that even though the effect of environmental variables on ordination vanishes,
the ordination still exhibits a sampling location effect. Several Kilpisjärvi sites in particular
seem to be different from the others. To account for this, we further added the sampling
location as a categorical covariate into the model. The resulting ordination plot in Fig. 3c
shows that there is no visible pattern in sampling location anymore. As the figure uses the
same scale as plots in Fig. 3a, it is clear that a lot of covariation in ordination is explained
by the covariates included in the model. When comparing nested models, in particular, the
model with environmental covariates to the null model, and the model with all covariates to
the model with environmental covariates, the deviances are 5144.6 and 4830.1, respectively,
suggesting that about 6% of the total covariation is due to environmental covariates based
on the marginal log-likelihood. Notice that changes in log-likelihood are not the only
approach to quantifying variance explained, and other methods like extensions of pseudo
R2 are possible (see for instance recent work by Nakagawa and Schielzeth, 2013, for the
case of generalized linear mixed models). Notice also that the corrected AICc picks the
model with these covariates, i.e. the negative binomial GLLVM with all three covariates
and sampling location, as the best model (Table 3).

Finally, as a diagnostic tool, we plotted Dunn–Smyth residuals (Dunn and Smyth 1996)
against linear predictors for Poisson, zero-inflated Poisson and negative binomial GLLVM
models with pH, soil organic matter, phosphorous and site as covariates. The plots in Fig. 8
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in “Appendix B” show residuals for 100 randomly selected species to make any patterns in
the plots more apparent. Specifically, the plot for the Poisson model displays a fan-shaped
pattern, which means that the model is not capable of capturing the overdispersion in the data,
while the plot for the ZIP model displays skew with a lowess curve showing a positive trend
in residuals. By contrast, the Dunn–Smyth residuals given by negative binomial GLLVMs
are uniformly distributed around zero indicating an appropriate fit to the data.

5.2. CORAL DATA

As the second example, we consider abundances of coral reef species collected in Tikus
island, Indonesia (Warwick et al. 1990). The abundance of each reef species was measured
as the length (in centimetres) of a ten metre transect which intersected with the species. The
data were collected during 1981–1988, but in this example we only consider measurements
taken in 1981 and in 1983. The reason for this is that there was an El Niño event in 1982–
1983 causing a tenfold decrease in site total abundance between the two sampling times.
The aim is to study whether this event had any effect on the community structure, beyond
the effect on total abundance. We consider species with more than four presences over the
two years. Also one record for a site in 1983 that contained no presences was removed. The
final data set thus contains n = 19 sites and m = 18 species.

Warwick et al. (1990) applied non-metric multidimensional scaling on this data and con-
cluded that stress due to El Niño event increases variability in coral communities; see also
Fig. 4a. Later Hui et al. (2015) applied GLLVM-based ordination methods to the corre-
sponding, converted presence–absence data and showed that there was in fact no evidence
of a difference in dispersion across the two sampling times. We now repeat their analyses
using a GLLVM assuming Tweedie distributed responses. The power parameter ν was esti-
mated using a profile likelihood approach, testing several different parameter values and
selecting the one (ν = 1.1) which maximized the profile likelihood. At first, the generalized
linear latent variable model without site effects was fitted to produce an ordination of species
abundance, i.e. including effects on total abundance as well as on relative abundance. The
ordination plot in Fig. 4b exhibits a clear location difference between coral compositions
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Figure 4. The ordination plots of n = 19 sites based on a non-metric multidimensional scaling, b Tweedie
GLLVM without site effect and c Tweedie GLLVM with site effects. The sites in ordination plots are labelled
according to the year the data was collected.
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in 1981 and 1983, reflecting the El Niño event. Secondly, a GLLVM with site effects was
fitted in order to study ordinations of species composition. The results in Fig. 4c indicate
that the species compositions did not change between the two sampling times. In Fig. 9 in
“Appendix B” the residual plots are given for the GLLVM models (b) and (c).

6. DISCUSSION

In this paper we illustrated how generalized linear latent variable models can be used to
model multivariate abundance data and biomass data, that is, data common in ecological
studies. When modelling multivariate abundance data (overdispersed counts), we assumed
negative binomial or zero-inflated Poisson models for responses. For biomass data (con-
tinuous but non-negative data) the Tweedie distributed responses were assumed. Notice,
however, that these distributions just serve as examples and the method can be tailored to
handle any response distribution.

Although the generalized linear latent variable models are straightforward to derive, the
major challenge is the lack of computationally efficient estimation tools. In this paper, we
used the Laplace approximation method for the estimation and inference. The general form
for the Laplace approximation in case of exponential family is given in Huber et al. (2004),
and we have extended this to the zero-inflated Poisson, negative binomial and Tweedie distri-
butions cases, which involve additional nuisance parameters. Other case-by-case extensions
may sometimes be required, e.g. to handle ordinal data, and one could argue that a disadvan-
tage of the Laplace method is the need for case-by-case derivation of estimation algorithms.
In such case, automated differentiation offers a way forward in this regard, e.g. the Template
Model Builder software (Kristensen et al. 2016) can potentially simplify estimation proce-
dures, as it requires specification of the complete likelihood only, and implementation is
based on C++ code. More importantly however, such general software nevertheless employs
the same Laplace approximation considered in this article as the basis for estimation and
inference in GLLVMs.

Simulation studies indicated that such estimation method performs well when modelling
overdispersed counts and continuous, non-negative data. However, as shown in Joe (2008)
the Laplace approximation can become less adequate when the conditional distributions of
the responses are highly discrete. In such settings, such as for binary and ordinal responses,
we may consider other approximations method, e.g. the variational approximation approach
as in Hui et al. (2016). All these choices are available in R package gllvm, which is
associated with this article. In our two examples we illustrated how generalized linear latent
variable models can be applied to produce ordination plots as well as to make inferences on
environmental covariates on species communities.

The generalized latent variable model considered in this paper can be generalized in sev-
eral ways. If q trait covariates t j are also recorded and one wishes to study the environmental-
trait interaction, a simple way to do it is via model g(μi j ) = αi +β0 j +x′

iβe+vec′(B′
I )(t j ⊗

xi )+u′
iγ j . Here βe is now a main effect for the environment, common for all species, and B′

I
is an interaction matrix, which tells us how well traits explain variation in the environmental
response. Notice that, as compared to (1), the above model includes far less parameters
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to be estimated and tested. In ecology, the model (without latent variables) is known as a
fourth corner model (Brown et al. 2014). Another way to reduce the number of parameters
is to introduce random effects into the model. For instance, using a random rather than fixed
site effect might be beneficial as, based on our simulation studies, the fixed site estimates
seem to be slightly biased in the case of the latter. We will consider the fourth corner latent
variable model and random effect models in our future studies.
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A PROOFS

A.1 LAPLACE APPROXIMATIONS FOR THE GENERAL EXPONENTIAL
FAMILY

Assume that the responses yi j come from the exponential family of distributions with
mean μi j = E(yi j ), and write f (yi j |ui ,�) = exp

{
yi j a j (μi j ) − b j (μi j ) + c j (yi j )

}
,

where a j (·), b j (·) and c j (·) are known functions, and � includes all model parameters.
The log-likelihood function (5) for parameter vector � now equals

l(�) =
n∑

i=1
log

∫ ⎡
⎣ m∏

j=1

exp
{

yi j a j (μi j ) − b j (μi j ) + c j (yi j )
}⎤⎦× (2π)− d

2 exp

(
−1

2
u′

i ui

)
dui ,

and the Laplace approximation of the log-likelihood function is

l̃(�, ûi ) =
n∑

i=1

(
− 1

2 log det
{
�(�, ûi )

}+
m∑

j=1

{
yi j a j (μi j ) − b j (μi j ) + c j (yi j )

}− û′
i ûi
2

)
,

where

�(�, ûi ) =
m∑

j=1

∂2
{−yi j a j (μi j ) + b j (μi j )

}
∂u′

i∂ui

∣∣∣∣
ui =ûi

+ Id ,

and ûi is the maximum of Q(�, ui ) = (1/m)

(
m∑

j=1
log f (yi j |ui ;�) − u′

i ui/2

)
with

respect to ui . The result has been proven in Huber et al. (2004).
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A.2 POISSON RESPONSES

Species counts can be modelled as Poisson distributed responses, yi j ∼ Poisson(μi j ),
and log link function. Then a j (μi j ) = log(μi j ), b j (μi j ) = μi j , and c j (yi j ) = − log(yi j !).
Then the following Laplace approximation l̃ for the log-likelihood function is obtained

l̃(�, ûi ) =
n∑

i=1

(
− 1

2 log det
(
�(�, ûi )

)+
m∑

j=1

[
yi j η̂i j − exp(η̂i j ) − log(yi j !)

]− û′
i ûi
2

)
,

where �(�, ûi ) = ∑m
j=1 exp(η̂i j )γ jγ

′
j + Id , with η̂i j = αi + β0 j + x′

iβ j + ûi
′
γ j , and

ûi is the maximum of

Q(�, ui ) = 1
m

[
m∑

j=1

[
yi jηi j − exp(ηi j ) − log(yi j !)

]− u′
i ui
2 − d

2 log(2π)

]
.

A.3 PROOF OF THEOREM 2

Assume that the responses yi j come from the zero-inflated Poisson distribution with
mean E(yi j ) = (1 − p j )μi j and density of the form (3). The log-likelihood function (5)
then equals

l(�) =
n∑

i=1

log

(∫ m∏
j=1

exp
(
log

[
p j + (1 − p j ) exp{− exp(ηi j )}

]
I(yi j =0)

+ {
log(1 − p j ) − exp(ηi j ) + yi jηi j − log(yi j !)

}
I(yi j >0)

) )

×(2π)−
d
2 exp

(
−1

2
u′

i ui

)
dui .

Hence, the Laplace approximation of the log-likelihood function is

l̃(�, ûi ) =
n∑

i=1

(
− 1

2
log det

{
�(�, ûi )

}+
m∑

j=1

log f (yi j |ûi ;�) − û′
i ûi

2

)

=
n∑

i=1

(
− 1

2
log det

{
�(�, ûi )

}+
m∑

j=1

(
log

(
p j + (1 − p j ) Âi j

)
I(yi j =0)

+ {
log(1 − p j ) − exp(η̂i j ) + yi j η̂i j − log(yi j !)

}
I(yi j >0)

)
− û′

i ûi

2

)
,

where

�(�, ûi ) = ∂2

∂u′
i∂ui

[
−

m∑
j=1

log f (yi j |ui ;�) + u′
i ui

2

]∣∣∣∣
ui =ûi

=
m∑

j=1

∂2
{
exp(ηi j )I(yi j >0) − log(p j + (1 − p j )Ai j )I(yi j =0)

}
∂u′

i∂ui

∣∣∣∣
ui =ûi

+ Id
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=
m∑

j=1

[
exp(η̂i j )I(yi j >0) −

(
(1 − p j ) Âi j exp(η̂i j )(exp(η̂i j ) − 1)

p j + (1 − p j ) Âi j

− (1 − p j )
2 Â2

i j exp(2η̂i j )

(p j + (1 − p j ) Âi j )2

)
I(yi j =0)

]
γ jγ

′
j + Id ,

with η̂i j = αi + β0 j + x′
iβ j + ûi

′
γ j and Âi j = exp{− exp(η̂i j )}, and ûi is the maximum

of Q(�, ui ) = (1/m)
(∑m

j=1 log f (yi j |ui ;�) − u′
i ui/2

)
.

A.4 PROOF OF THEOREM 3

Assume that the responses yi j come from the Tweedie distribution with mean E(yi j ) =
μi j and density of the form (4). The log-likelihood function (5) then equals

l(�) =
n∑

i=1

log

(∫ m∏
j=1

exp

⎛
⎝−

μ2−ν
i j

φ j (2 − ν)

⎞
⎠ I(yi j =0)

+ 1

yi j
W̃ (yi j , φ j , ν) exp

⎧⎨
⎩ 1

φ j

⎛
⎝ yi j μ

1−ν
i j

1 − ν
−

μ2−ν
i j

2 − ν

⎞
⎠
⎫⎬
⎭ I(yi j >0)

)

×(2π)− d
2 exp

(
−1

2
u′

i ui

)
dui .

Hence, the Laplace approximation of the log-likelihood function is

l̃(�, ûi ) =
n∑

i=1

(
− 1

2
log det

{
�(�, ûi )

}+
m∑

j=1

log f (yi j |ûi ;�) − û′
i ûi

2

)

=
n∑

i=1

(
− 1

2
log det

{
�(�, ûi )

}+
m∑

j=1

[ {
log W̃ (yi j , φ j , ν) − log(yi j )

}
I(yi j >0)

+ 1

φ j

(
yi j exp{(1 − ν)η̂i j }

1 − ν
− exp{(2 − ν)η̂i j }

2 − ν

)]
− û′

i ûi

2

)
,

where

�(�, ûi ) = ∂2

∂u′
i∂ui

[
−

m∑
j=1

log f (yi j |ui ;�) + u′
i ui

2

]∣∣∣∣
ui =ûi

=
m∑

j=1

∂2

∂u′
i∂ui

1

φ j

(
− yi j exp{(1 − ν)ηi j }

1 − ν
+ exp{(2 − ν)ηi j }

2 − ν

) ∣∣∣∣
ui =ûi

+ Id

=
m∑

j=1

1

φ j

[
(2 − ν) exp{(2 − ν)η̂i j } − yi j (1 − ν) exp{(1 − ν)η̂i j }

]
γ jγ

′
j + Id ,

with η̂i j = αi + β0 j + x′
iβ j + ûi

′
γ j and Âi j = exp{− exp(η̂i j )}, and ûi is the maximum

of Q(�, ui ) = (1/m)
(∑m

j=1 log f (yi j |ui ;�) − u′
i ui/2

)
.
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B ADDITIONAL APPLICATION RESULTS

See Figs. 5, 6, 7, 8 and 9.
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Figure 5. The ordination of n = 56 sites based on generalized linear latent variable model without any covariates
assuming negative binomial distributed responses. The sites in ordination are coloured according to their a soil
organic matter (SOM) values and b phosphorous (P) values, and labelled according to the sampling site.
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Figure 6. Ranked point estimates with 95% confidence intervals for the three environmental variables based on
negative binomial GLLVM. Grey confidence intervals include the zero value.
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Figure 7. The ordination of n = 56 sites based on generalized linear latent variable model with pH, soil organic
matter and phosphorous as covariates, and assuming negative binomial distributed responses. The sites in ordination
are coloured according to their a pH values, b soil organic matter (SOM) values and c phosphorous (P) values,
and labelled according to the sampling site. The effect of environmental variables vanishes, but the ordination
is affected by the sampling location few Kilpisjärvi sites being different from the others what comes to species
composition.
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Figure 8. Dunn–Smyth residuals against linear predictors for the a Poisson, b zero-inflated Poisson and c negative
binomial GLLVM models with pH, soil organic matter, phosphorous and categorical site as covariates. Lowess
curves are included in the plots.
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Figure 9. Dunn–Smyth residuals against linear predictors for the Tweedie models a without site effect and b with
site effect.
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Abstract

Generalized linear latent variable models (GLLVM) are popular tools for modeling multivari-

ate, correlated responses. Such data are often encountered, for instance, in ecological stud-

ies, where presence-absences, counts, or biomass of interacting species are collected from

a set of sites. Until very recently, the main challenge in fitting GLLVMs has been the lack of

computationally efficient estimation methods. For likelihood based estimation, several

closed form approximations for the marginal likelihood of GLLVMs have been proposed, but

their efficient implementations have been lacking in the literature. To fill this gap, we show in

this paper how to obtain computationally convenient estimation algorithms based on a com-

bination of either the Laplace approximation method or variational approximation method,

and automatic optimization techniques implemented in software. An extensive set of simu-

lation studies is used to assess the performances of different methods, from which it is

shown that the variational approximation method used in conjunction with automatic optimi-

zation offers a powerful tool for estimation.

1 Introduction
High-dimensional multivariate abundance data, which consist of records (e.g. species counts,

presence-absence records, and biomass) of a large number of interacting species at a set of

units or sites, are routinely collected in ecological studies. When analyzing multivariate abun-

dance data, the interest is often in visualization of correlation patterns across species, hypothe-

sis testing of environmental effects, and making predictions for abundances. Classical methods

for analysing such data, including algorithmic-based approaches such as non-metric multidi-

mensional scaling (nMDS) and correspondence analysis (CA), are based on distance matrices

computed on some pre-specified dissimilarity measure [1]. As such, they often make wrong

assumptions for key properties of the data at hand (e.g. mean-variance relationship), which

can potentially lead to misleading inferential results [2, 3].
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An alternative approach that has gained considerable attention over the past several years is

generalized linear latent variable models (GLLVMs, [4]). GLLVMs start with the basic general-

ized linear model (GLM, [5]), classically used to model the impact of environmental covariates

on abundance of one species, and extend it by incorporating latent variables to model between

response correlation in a parsimonious manner. As the model makes explicit assumptions

concerning the response distribution, the mean-variance relationship can be correctly mod-

eled and verified using (for instance) residual analysis and model selection approaches. In the

context of multivariate abundance data, GLLVMs were first proposed by [6] for presence-

absence data, and [7] in a more general framework for model-based unconstrained ordination.

By adding covariates to the model, it can be used as a model-based approach to correspon-

dence analysis [8]. More recently, there has been an explosion in research on various exten-

sions of GLLVMs for joint analyses of multivariate abundance data, see [9–12] among many

others.

One of the main and long standing challenges with using GLLVMs is the lack of computa-

tionally efficient estimation methods. The need for fast and efficient estimation methods

evolves from the fact that modern data collection tools such as metabarcoding often result in

very large and high-dimensional datasets (for a recent review, see [13]), and current methods

are unable to fit GLLVMs for such data in reasonable amount of time. Specifically, many of the

standard methods proposed in the literature for fitting GLLVMs have a major drawback as

being either computationally very intensive with high-dimensional data e.g. the Expectation

Maximization algorithm [7, 14] and Bayesian Markov Chain Monte Carlo estimation [11, 15],

or are computationally impractical with a larger number of latent variables, such as Gauss-

Hermite quadrature [16–18]. In recent years, a number of approaches have been proposed in

the literature to overcome such issues, with two of the more prominent ones being the varia-

tional approximation method to approximate the likelihood in the case of binary, ordinal and

overdispersed count data [19], and the Laplace approximation method for responses from the

exponential family of distributions [20], which has recently been adapted specifically for over-

dispersed count and biomass data in ecology [21]; Note that the Laplace approximation can be

considered as a special case of adaptive quadrature with only one quadrature point. Both esti-

mation methods provide a closed form approximation to the marginal log-likelihood that can

then be maximized efficiently.

In this paper, we propose a framework for faster fitting of GLLVMs using either Laplace

approximation method or the variational approximation method. Our method utilizes the

package (Template Model Builder, [22]), which offers a general tool for implementing

complex random effect models through simple templates. is inspired by ADModel

Builder [23], which is a language extension for solving optimization problems using auto-

matic differentiation [24]. With growing popularity, has been used to estimate complex

non-linear models, e.g. for fitting mixed-effect models [25] and non-Gaussian state space

models [26]. The algorithms we propose in this article for efficient estimation of GLLVMs

have been recently implemented in the package [27].

Another major contribution we make is to provide a new method for obtaining starting val-

ues for parameter estimation of GLLVMs. This is especially important for GLLVMs given

their complex mean and latent variable structures may cause the observed likelihood to be

multimodal (as discussed in [28]), and good starting values are therefore critical in order to

guarantee fast convergence and to avoid local maxima. Our proposed method is based around

fitting univariate GLMs to each species in order to obtain starting values for fixed parameters,

and then applying a factor analysis to the Dunn-Smyth residuals [29] from the fitted GLMs as

the basis for constructing starting values for the loadings and latent variables. We performed

Efficient estimation of GLLVMs
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an extensive series of simulation studies to compare the performances of estimation algorithms

with and without , and to compare various methods for constructing starting values. The

simulation studies showed that in most cases, the variational approximation method utilizing

outperformed the other estimation algorithms: computation times were clearly faster

than those of the other methods, the empirical mean biases and mean squared errors of the

parameter estimates were smaller, and coverage probabilities of Wald-type confidence inter-

vals were closer to their nominal level. Our simulations also show that the proposed approach

for choosing starting values outperformed more standard methods such as random starting

values in terms of consistency of reaching the global maximum of the likelihood, regardless of

the data at hand.

The paper is organized as follows. In Section 2, we formulate a generalized linear latent vari-

able model suitable for joint modeling of abundance data, and review the most recently pro-

posed approximation methods. In Section 3, we explain how the estimation can be performed

using and introduce different methods for obtaining starting values for estimation. In sec-

tion 4, we study the performances of our methods using several simulation studies. Section 5

concludes the paper.

2 Generalized linear latent variable models
Consider a sample of observations consisting of responses form species collected at n sites,
such that yij denotes the response for species j = 1, . . .,m at site i = 1, . . ., n. A generalized lin-

ear latent variable model (GLLVM) regresses the mean response, denoted here as μij, against
a vector of d�m latent variables, ui = (ui1, . . ., uid)0, along with the vector of covariates
xi = (xi1, . . ., xik)0. That is,

gðmijÞ ¼ Zij ¼ ai þ b0j þ x0i j þ u0
i j; ð1Þ

where j and j are vectors of species specific coefficients related to the covariates and latent

variables, respectively. It is the term u0
i j which captures the residual correlation across species

not accounted for by the observed covariates xi. Moreover, a key advantage of this type of

model is that it is capable of flexibly handling correlation across response variables in a parsi-

monious manner, with the number of parameters characterizing the correlation structure

growing linearly in the number of responsesm. This allows GLLVMs to be feasibly fitted to

datasets with relatively largem, as often arises in practice [8].

We assume that the latent variables follow a multivariate standard normal distribution,

ui� Nd(0, Id), where Id denotes a d × d identity matrix. The assumption of zero mean and unit

variance is made in order to fix the locations and scales of latent variables. We also set all the

upper triangular elements ofm × dmatrix = ( 1� � � m)
0 to be zero, that is, ij = 0 for j> i,

and constrain its diagonal elements, ii, to be positive in order to avoid rotation invariance and

to ensure parameter identifiability.

For the GLLVM defined in Eq (1), where the i’s are assumed to be random row effects

(reflecting a nested sampling design, say), denote u�
i ¼ ðai; u0

iÞ0 and �
j ¼ ð1; 0

jÞ0 and write the
model as gðmijÞ ¼ Zij ¼ b0j þ x0i j þ u�

i 0 �
j . Since the latent variables and random intercepts are

assumed to be independent, then u�
i follows a multivariate normal distribution with mean zero

and block diagonal covariance matrix, Cσ2 = bdiag(σ2, Id), where bdiag(�) is the block diagonal
operator. Write the probability density function of N(0, Cσ2) as f ðu�

i ; s
2Þ. To complete the for-

mulation, we assume that conditional on the latent variables u�
i and parameter vectorC, the

responses are independent observations from the exponential family of distributions with

Efficient estimation of GLLVMs
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probability density function,

f ðyijjui; Þ ¼ exp
yijaðZijÞ � bðZijÞ

�j
þ cðyij;�jÞ

( )
; ð2Þ

where a(�), b(�) and c(�) are known functions and ϕj is a species specific dispersion parameter.

Let ¼ ð 0
0; vecðBÞ0; vecð Þ0;F0; s2Þ denote the full vector of parameters in the GLLVM,

where 0 = ( 01, . . ., 0m)
0, B = ( 1. . . m)

0, = ( 1. . . m)
0, and F includes all other nuisance

parameters e.g. F = (ϕ1, . . ., ϕm)0. With the conditional independence of the responses given

the latent variables, we then obtain f ðyi; u�
i ; Þ ¼Qm

j¼1 f ðyijju�
i ; Þf ðu�

i ; s
2Þ as the joint distri-

bution. By integrating over latent variables u�
i then, we obtain the following marginal log-likeli-

hood function for a GLLVM,

lð Þ ¼
Xn
i¼1

log ðf ðyij; ÞÞ ¼
Xn
i¼1

log
Z

dþ1

Ym
j¼1

f ðyijju�
i ; Þf ðu�

i ; s
2Þdu�

i

 !
: ð3Þ

For non-normal responses the above log-likelihood cannot be solved analytically. To over-

come the integral in Eq (3), we consider in the following section closed-form approximations

for the likelihood.

2.1 Approximations to the marginal likelihood of GLLVMs

Computationally, the most efficient likelihood based approaches for estimating GLLVMs

are methods which approximate the marginal likelihood in a closed form. Of these, the

most common and well known is the Laplace approximation method, which has been

used extensively in the statistical literature to approximate marginal likelihood functions

that cannot be resolved analytically [30]. The Laplace approximation can be easily

applied to a marginal likelihood lðCÞ ¼Pn
i¼1 log

R
f ðyiju�

i ;CÞf ðu�
i Þ du�

i with latent

variables u�
i . By denoting Qðyi; u�

i ;CÞ ¼ logff ðyiju�
i ;CÞf ðu�

i Þg=m, the likelihood can be

written as lðCÞ ¼Pn
i¼1 log

R
expðmQðyi; u�

i ;CÞÞ du�
i . Assuming further that û�

i maximizes

Qðyi; u�
i ;CÞ, the Laplace approximation method applies a second order Taylor expansion

for Qðyi; u�
i ;CÞ around the maximum û�

i , and thus allows the integral to be performed in a

tractable manner (it resembles the normalization constant for a multivariate normal distri-

bution). For GLLVMs, the Laplace approximation was first proposed in [20], and extended

by [21] to handle important distributions arising in ecology such as the negative binomial,

Poisson, zero inflated Poisson and Tweedie distributed responses. For a model as defined in

Eq (1) with random row effects and responses yij coming from the exponential family of dis-

tributions with mean μij as defined in (2), the Laplace approximation of the marginal log-

likelihood function can be written as follows:

~lð Þ ¼
Xn
i¼1

 
� 1

2
log det fG ; û�

i

� �g þXm
j¼1

(
yij aðẐ ijÞ � bðẐ ijÞ

�j
þ cðyij;�jÞ

)

� 1

2
û�
i
0C�1

s2 û
�
i �

1

2
log det ðCs2Þ

!
;

where

Gð ; û�
i Þ ¼

Xm
j¼1

@2f�yij aðZijÞ þ bðZijÞg
@u�

i
0@u�

i

�����
u�i ¼û�i

þ Cs2 ;
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Ẑ ij ¼ b0j þ x0i j þ û�
i
0 �

j , Cσ2 = bdiag(σ2, Id), û�
i ¼ ðai; u0

iÞ0 and û�
i maximizes

Qðyi; u�
i ; Þ ¼ 1

m

 Xm
j¼1

(
yijaðZijÞ � bðZijÞ

�j
þ cðyij;�jÞ

)
� 1

2
u�
i
0C�1

s2 u
�
i

� 1

2
log det ðCs2Þ

!

with respect to u�
i . All quantities that are constant with respect to the parameters have been

omitted. Some further simplification of this expression is possible when the model is defined

using a canonical link function [21].

When using Laplace approximations, the estimation is performed by maximizing~lð Þ with
respect toC, and Qðyi; u�

i ;CÞ with respect to u�
i . The estimates û�

i are then used as predictions

of the latent variables. Furthermore, asymptotic standard errors for Ĉ and û�
i are computed as

the negative Hessian matrix obtained as part of the estimation process. These may form the

basis for performing statistical inference for the model parameters and evaluate prediction

errors for the latent variables, both of which will be examined empirically in the simulation

studies in Section 4.

Another method which allows us to derive a closed form approximation for the marginal

likelihood is the variational approximation method. The idea of variational approximations

originates from machine learning research, where it is often used to approximate probability

densities [31]. More recently, the method has gained considerable traction in Bayesian data

analysis for efficiently approximating posterior densities [32, 33]. The variational approxima-

tion method is also applicable in likelihood based contexts for approximating an intractable

marginal likelihood [34], although it is less frequently used in this context. Furthermore, the

large sample properties of estimates and inference obtained using the variational approxima-

tion method are not thoroughly studied and remain a topic of future research [33].

The main idea behind likelihood based variational approximations is to approximate the

posterior distribution of the random effects i.e., f ðu�
i jyi; Þ by a simpler distribution in order

to get a closed form (or almost closed-form) expression for the marginal log-likelihood. This

so called variational likelihood is a strict lower bound to the marginal log-likelihood, and is

then treated as the new objective function on which to base estimation and inference. In prac-

tice, for a marginal log-likelihood function lðCÞ ¼Pn
i¼1 log

R
f ðyiju�

i ;CÞf ðu�
i Þ du�

i , the varia-

tional approximation approach make use of Jensen’s inequality to construct this lower bound,

Xn
i¼1

log
Z

f ðyiju�
i ; Þf ðu�

i Þdu�
i ¼

Xn
i¼1

log
Z �

f ðyiju�
i ; Þf ðu�

i Þqðu�
i j Þ

qðu�
i j Þ

�
du�

i

�
Xn
i¼1

Z
log
�
f ðyiju�

i ; Þf ðu�
i Þ

qðu�
i j Þ

�
qðu�

i j Þdu�
i ;

for some variational density qðu�
i jxÞ with variational parameters ξ. Critically, the logarithm

can be brought inside the integral, thereby making integration easier for the exponential family

of distributions. By maximizing the variational log-likelihood with respect to both the model

parametersC and variational parameters ξ, we see that maximizing the variational likelihood

is equivalent to minimizing the Kullback-Leibler divergence between the true posterior,

f ðu�
i jyi;CÞ, and the proposed variational density qðu�

i jxÞ.
The variational approximation method was applied to the estimation of GLLVMs by [19]

and it was shown that it is optimal in some sense to choose, as variational densities q(�), inde-
pendent normal distributions for the latent variables for each observational unit. Following on

Efficient estimation of GLLVMs
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from this, for our GLLVMmodel in Eq (1) with random row effects we choose qðu�
i jxu�i

Þ ¼
Ndþ1ðai;AiÞ for i = 1, . . ., n, where xu�i ¼ ðai; vecðAiÞ0Þ0, Ai ¼ bdiagðAai

;Aui
Þ and Aui

is an

unstructured d × d covariance matrix. For responses coming from the exponential family of

distributions with the canonical link function, this leads to the variational approximation of

the GLLVM log-likelihood as follows:

‘ð ; Þ ¼
Xn
i¼1

Xm
j¼1

� yij~Z ij � Eq�fbðZijÞg
�j

þ cðyij; �jÞ
�

þ 1

2

Xn
i¼1

log det ðAiÞ � trðC�1
s2 AiÞ � a0

iC
�1
s2 ai � log det ðCs2Þ

� �
;

where ~Z ij ¼ b0j þ x0i j þ a0
i

�
j , Cσ2 = bdiag(σ2, Id) and ai and Ai are the mean and the covariance

matrix of a variational density, respectively. All quantities constant with respect to the parame-

ters have been omitted. Notice the lower bound includes the expectation term Eq�{b( ij)},

which is not guaranteed to have a closed form for any distribution form the exponential family.

Through reparameterization of the GLLVM, fully explicit forms for ‘ð ; xÞ can be derived for

some common occurring responses in multivariate abundance data, such as binary, ordinal

and overdispersed count responses [19].

One attractive feature of likelihood based variational approximations is that the estimated

means of the variational distributions, â i, i = 1, . . ., n, provide a natural predictor for the latent
variables u�

i , while the estimated covariance matrices Âi along with the assumed variational

density qðu�
i jxÞ can be used as the basis for constructing prediction intervals [34]. Both quanti-

ties are obtained directly from the maximization procedure. Furthermore, asymptotic standard

errors for the model parameters can be obtained by using the block inverse matrix of the nega-

tive Hessian of ‘ð ; xÞ, (see also [35]).

3 Implementation
Two advances are made in this paper, which enable faster, more reliable fitting of GLLVMs

than previous implementations of Laplace or variational approximations. First, we write soft-

ware to make use of automatic differentiation software in the package [22]. Secondly, we

make strategic choices for the starting values of the parameters in the GLLVM, in order to

improve speed and stability of the estimation algorithms. Our simulations presented later

demonstrate that these changes improve speed by an order of magnitude, as well as improving

reliability by increasing the accuracy of the estimates.

3.1 Implementation with

The closed form approximate marginal log-likelihoods proposed in the previous section are

often maximized using some gradient-based optimization algorithms. This presents a computa-

tional challenge as it means that the gradient functions need to be calculated for each response

distribution and specific model separately. To overcome this, we use Template Model Builder

( ) for fitting GLLVMs. is a general package for fitting non-linear mixed effects and

latent variable models based on ADModel Builder, which is a language extension for solv-

ing statistical optimization problems using automatic differentiation techniques [23]. To per-

form optimization using in general, the complete log-likelihood for the model of interest is

written in , from which employs the library ‘CppAD’ to efficiently construct

functions for calculating the associate gradient and Hessian. These functions written can then

be called from , and can be straightforwardly passed into gradient based optimization methods

Efficient estimation of GLLVMs
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such as or . After optimization, the Hessian matrix is obtained as a side

product and can be used to calculate standard errors for parameters. Note however initializa-

tion of the model and the choice of starting values must be done in .

For models involving random effects, uses the Laplace approximation method. As a

result, we can straightforwardly adapt it for maximizing the Laplace approximation of the

GLLVM log-likelihood in Section 2.1 based on the following steps:

1. Write the complete log-likelihood for the responses and latent variables in using the

model template and compile it.

2. Set initial values for the model parameters and the latent variables in ; see Section 3.2.

3. Create the object using with data, initial values and the objec-

tive function as input, specifying the names of the parameters to be integrated out of the

likelihood using argument in . The Laplace approxima-

tion method will then be automatically applied to the complete likelihood, and gradient and

Hessian functions for the marginal log-likelihood will be constructed.

4. Optimize the objective function using or in .

5. Calculate the Hessian matrix in using , from which the standard errors

for the model parameters as well as prediction errors for the latent variables can be

obtained.

Notice that the initialization in Step 2 is crucial for the model fitting as poor initial values

may yield to convergence problems. We return to the selection of starting values in Section

3.2.

Since allows maximization of any likelihood function, it can also be used to optimize

the variational approximation to the marginal log-likelihood for GLLVMs. In this case, we can

treat the variational parameters ξ as additional model parameters and maximize the variational

approximation to the log-likelihood based on the following steps:

1. Write the variational approximation lower bound for the log-likelihood in using

model template and compile it.

2. Set initial values for the model parameters and the variational parameters in ; see Section

3.2.

3. Create the object using with data, initial values and the objec-

tive function as input. The gradient and Hessian for the variational approximated log-likeli-

hood will then be automatically calculated using .

4. Optimize the objective function using or in .

5. Calculate the Hessian matrix in using , from which standard errors for

the model parameters as well as prediction errors for the latent variables may be obtained

by applying block inversion for the negative Hessian matrix.

Finally, for all the implementations we considered, we parameterized any dispersion

parameters and variance components in terms of their log transformed values in to avoid

boundary issues in estimation and inference i.e. log(σ), log(ϕ), and so on.

3.2 Starting values

With GLLVMs and models involving a large number of latent random effects, the impor-

tance of selecting the initial values of model parameters is particularly important. When the

Efficient estimation of GLLVMs
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observed likelihood function is multimodal, maximization algorithms can often end up in

local maxima if the initial values for parameters are not sufficiently close enough to the global

maximum. A widely used strategy to work around this issue is to use several random starting

values and to pick up the solution with highest log-likelihood value. In case of complex mod-

els and large datasets however, the use of several random starting values may however be too

time consuming.

We propose a new data driven method for constructing initial values for parameters in a

GLLVM. In this approach, we first fit a GLM, gðEðyijÞÞ ¼ b0j þ x0i j, to each response variable

(species), from which the obtained estimates of 0j and j are used as starting values for the

fixed parameters in the GLLVM. Starting values for latent variables ui and their loadings j are

then constructed by applying factor analysis to the Dunn-Smyth residuals [29] from the fitted

GLMs. Furthermore, the matrices of starting values for the latent variables and the loadings

obtained via factor analysis are rotated so that the upper triangle of the loading matrix is zero,

so as to adhere to the parameter identifiability constructed below Eq (1). As starting values for

the random row effects, we use a vector of zeros. The key idea underlying this approach to con-

structing starting values lies in the Dunn-Smyth residuals, which are defined for the observa-

tion yij as

rij ¼ F�1ðzijFijðyijÞ þ ð1� zijÞF�
ij ðyijÞÞ; ð6Þ

where F and Fij are the cumulative distribution functions of the standard normal distibution

and the response variable, respectively, F�
ij is the limit as Fij is approached from the negative

side, and zij is a random variable generated from the standard uniform distribution. Dunn-

Smyth residuals have the attractive property that if model assumptions are correct, then the

residuals are exactly normally distributed. The normality of the residuals motivates us to use

the classical factor analysis on the residuals from the fitted GLMs, in particular, because they

contain information regarding the residual correlation across species not accounted for by

the observed covariates. For the remainder of this article, we will refer to this method for con-

structing starting values as .

An extension to the above method is , where the starting values are obtained in a sim-

ilar fashion as in , with the crucial difference being that uses X sets of starting values

for the latent variables. These are obtained by “jittering” starting values by adding random var-

iation from a normal distribution to the latent variables obtained using . In our simulation

studies we use a jitter variance of 0.22 and X = 3 sets of starting values (we will thus refer to this

approach as in Section 4). With X sets of starting values, which only differ in the latent

variables (the starting values for the B, , and remain the same), the estimation procedure

then proceeds as we would with random starting values. That is, a GLLVM is fitted using those

X different sets of starting values, and the fit with the highest log-likelihood value is then con-

sidered the best fitting GLLVM for that dataset.

In the simulation studies in the following section, we will compare and to two

alternative and common methods for constructing starting values: 1) a method referred to as

, where we use zero initial values for all parameters; 2) a method referred to as ,

where we simulate initial values for latent variables from a multivariate standard normal distri-

bution, while (as previously) a GLM is fitted to each response variable against environmental

variables and latent variables to get starting values for fixed parameters and loadings. Note that

the difference between and / is that the latter makes use of the residual

information from the multivariate GLM to directly construct the starting values for the latent

variables and loadings, while the former simulates these randomly.

Efficient estimation of GLLVMs
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4 Simulation studies
We performed a series of simulation studies to compare the performance of different model

fitting algorithms with and without automatic differentiation using , using either the

Laplace approximation or variational approximation, and with different starting value strate-

gies ( , , , ). For fitting algorithms without automatic differentiation,

we implemented both the Laplace and variational approximations in plain code by manually

defining their respective approximate likelihoods and their gradient functions. Details of the

simulation design are given below.

4.1 Simulation designs

We considered GLLVMs with multivariate count and binary data, and based our simulation

studies on two real datasets: the first dataset consists of abundances of testate amoebae in Finn-

ish peatlands [36], and the second dataset consists of abundances of bird species in Indonesia

[37].

The first simulation setup was based on the testate amoebae data [36], which consist of

counts ofm = 48 testate amoebae species measured from n = 263 sampling sites across six

peatlands in southern and central Finland. Two environmental variables, water pH and water

temperature, were also recorded at each sampling site. We conducted simulation studies based

on the original count data as well as based on binary data obtained by converting counts to

presence-absences. As mean models, we used log ðmijÞ ¼ b0j þ x0i j þ u0
i j for counts and

F�1ðmijÞ ¼ b0j þ x0i j þ u0
i j for presence-absences, where xi includes the values for the two

covariates recorded at site i, and ui includes two latent variables. Notice that with two-dimen-

sional latent variables, GLLVMs can be used as a model-based ordination method as described

in [7]. The parameters for the true model used to simulate multivariate abundance data were

obtained by fitting a negative binomial (Bernoulli) GLLVM to the real data, consisting of

counts (presence-absences) of observed amoebae species. To study the effect of sample size on

performance, we constructed nested subsets of size n = 50, 120, 190 and 260 randomly sam-

pling from the sites and used parameters of the fitted model, which corresponded the sites in

subsets, to generate datasets of the desired sizes. We generated K = 500 datasets for each value

of n, and for each dataset we fitted GLLVMs using the four starting value strategies and both

approximation methods with and without automatic differentiation.

The second simulation setup was based on Indonesian bird data [37], which consists of

counts ofm = 177 bird species measured from n = 37 sites in Central Kalimantan, Indonesia.

We conducted a simulation study for the original count data as well as for the binary data

obtained by converting counts to presence-absences. We used log ðmijÞ ¼ b0j þ u0
i j for counts

and F�1ðmijÞ ¼ b0j þ u0
i j for presence-absence data, with parameters for the true model based

on a negative binomial GLLVM fitted to the count data and a Bernoulli GLLVM fitted to the

binary data. In this simulation study, we varied the number of species, that is, we used four

different numbers of randomly selected species,m = 30, 60, 100 and 140. As in the previous

setup, the parameters for the true model were obtained by fitting a negative binomial (Ber-

noulli) GLLVM to the data in the case of counts (presence-absences), and the parameters that

corresponded the species in each subset were used obtain a dataset of the desired size. For each

value ofm, we generated K = 500 datasets, and for each dataset we fitted GLLVMs using four

different starting value strategies and both approximation methods with and without auto-

matic differentiation.

In addition to the above two simulation setups, we included another design based on

the Indonesian birds data, where we added a random row effect to the simulation model.

Efficient estimation of GLLVMs
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Specifically, the true mean models were given by log ðmijÞ ¼ ai þ b0j þ u0
i j for counts and

F�1ðmijÞ ¼ ai þ b0j þ u0
i j for presence-absence data, where i is a random effects assumed to

follow a normal distribution with zero mean and variance 0.25. We fitted these models with

random row effects using only. The reason for this is that the plain implementations of

[21] do not cater for random row effects, and other simulations had already demonstrated that

the implementation is more computationally efficient.

Note that the first simulation setup, based on a dataset with a large sample size, varied n,
while the second simulation setup, based on a dataset with a species rich community (largem),

variedm. Hence we looked at the effects of varying each of sample size and of number of

responses, but do so one simulation at a time. These simulations were computationally inten-

sive, with a total running time across all simulations of 5 weeks on a Intel Xeon E7-8837

(2.67GHz) processor with 25 CPUs.

4.2 Overdispersed counts

We being by presenting the results from negative binomial GLLVM under the first simulation

design, and compared variational approximation and Laplace approximation methods imple-

mented with and without , using the starting value method ; see Section 4.4 for the

reason behind this choice of starting value approach. Fig 1 plots the median computation

times, and demonstrates that the variational approximation method implemented using

was substantially faster than the other estimation methods. The implementation of the

Laplace approximation method was also faster than the plain implementation for the small-

est sample size.

The results in Table 1 suggest that the advantages in computation time did not come at the

cost of estimation and inferential accuracy. In fact, the average biases across all species and

root mean squared errors tended to be smaller for the variational approximation method com-

pared to the Laplace approximation method. With very small n, the differences between the

two approximation methods were particularly noticeable. For both methods, the estimates

for log-dispersion parameters were comparably biased when the sample size was very small.

When the sample size increased, the variational approximation method in particular per-

formed better, with differences between the two variational approximation implementations

becoming very small. For the Laplace approximation method, although the differences in aver-

age biases were small, the differences in coverage probabilities and mean confidence interval

widths were comparably larger than its variational counterpart. Furthermore, the implementa-

tion which did not use tended to provide overly narrow confidence intervals for almost

all parameters.

In order to evaluate the performance of the estimated latent variable loadings, ĝ j, and pre-

dicted latent variables, û i, we list in Table 2 the mean Procrustes errors between the estimated

and the true values ([28], Chapter 8.4). These are scaled according to the sample size and num-

ber of species to make comparisons easier. Results indicated that for small n, compared to the

Laplace approximation method, the variational approximation method produced smaller Pro-

crustes errors for both latent variables and loadings. As expected, the difference between Pro-

crustes errors based on different methods decreased when n increased.
In addition to the results presented in Tables 1 and 2, we also evaluated the acurracy of

competing models by adapting the variation explained based on cross-validation (denoted

here as VE), as proposed in [38, 39], for our text with simulated binary and count data. Specifi-

cally, for each simulation setup we compared the predictive performance of the correponding

GLLVM to the null model i.e, a model including only an species-specific intercept only, using
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the formula

VEk ¼ 1�

Xn
i¼1

Xm
j¼1

jm̂ðkÞ
ij � mijj

Xn
i¼1

Xm
j¼1

jm̂ðkÞ
ij;null � mijj

;

where for the kth simulated dataset with k = 1, . . ., 500, the quantities m̂ðkÞ
ij and m̂ðkÞ

ij;null ¼ g�1ðb̂0jÞ
denote the predicted means from the fitted GLLVM and from a null model, respectively. The

true means, which were used to generate the training datasets, are denoted by μij. Because we
are using simulated data and therefore can generate multiple training datasets, as opposed to a

real application where we only have the one realized dataset, then there is less motivation to

use cross-validation when calculating VE i.e, the natural variation across folds can be well

Fig 1. Median computation times for negative binomial GLLVMs. Times for the plain (gray) and the
implementations (black) for the variational approximation (VA, solid line) method and the Laplace approximation (LA,
dashed line) method for a negative binomial GLLVMwith two covariates and two latent variables. The simulation setup was
based on testate amoebae data.

https://doi.org/10.1371/journal.pone.0216129.g001
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accounted by the natural variation across simulated datasets. Also, note because we are work-

ing with discrete data, then we choose to calculate VE based on the predicted mean scale μij
rather than on the response scale. The median VE values for negative binomial GLLVMs fitted

to counts simulated based on amoebae dataset are listed in Table 3. The results indicate that

the predictive accuracy improves as the number of sites increases. The accuracy is slightly

higher when the variational approximation method is used. Further, when n> 50, the Laplace

approximation method using the implementation gives clearly lower VE values than the

method using the implementation.

Table 1. Average biases, root mean squared errors (RMSE), coverage probabilities of 95% confidence intervals and mean confidence interval widths (CI) for negative
binomial GLLVM estimates based on the plain and the implementations for the variational approximation and the Laplace approximation methods. The
true model parameters were obtained by fitting a negative binomial GLLVMwith two environmental covariates for the testate amoebae data with counts ofm = 48 species
recorded at n = 50, 120, 190 and 260 sites. Parameter 0 refers to the species specific intercepts, pH and temp to the coefficients of water pH and water temperature and log
ϕ to the log transformed dispersion parameters.

n VA- LA-

Bias RMSE Cover CI Bias RMSE Cover CI

50 0 -0.32 0.85 0.94 3.09 -0.92 2.24 0.93 5.14

pH -0.03 0.63 0.95 2.44 0.01 0.90 0.95 2.94

temp 0.02 0.73 0.93 2.76 -0.05 0.97 0.93 3.31

log ϕ -0.38 0.67 0.92 2.35 -2.80 5.12 0.95 76.72

120 0 -0.05 0.49 0.94 1.78 -0.33 0.99 0.95 2.53

pH -0.04 0.40 0.95 1.55 -0.01 0.46 0.95 1.67

temp 0.02 0.37 0.96 1.48 0.00 0.46 0.96 1.65

log ϕ -0.06 0.36 0.94 1.48 -0.59 1.57 0.95 5.13

190 0 0.03 0.40 0.92 1.36 -0.19 0.62 0.96 1.80

pH -0.04 0.32 0.95 1.20 -0.01 0.34 0.95 1.27

temp 0.01 0.30 0.97 1.24 0.00 0.36 0.96 1.34

log ϕ 0.02 0.30 0.93 1.16 -0.24 0.62 0.95 1.81

260 0 0.07 0.36 0.91 1.15 -0.13 0.46 0.96 1.46

pH -0.04 0.27 0.96 1.05 -0.02 0.29 0.96 1.10

temp 0.01 0.25 0.97 1.05 0.01 0.29 0.97 1.11

log ϕ 0.06 0.28 0.91 0.99 -0.15 0.36 0.95 1.24

VA-R LA-R

50 0 -0.31 0.85 0.95 3.15 -0.94 2.34 0.84 4.60

pH -0.03 0.63 0.95 2.48 -0.00 0.86 0.72 2.18

temp 0.02 0.73 0.94 2.80 -0.05 0.98 0.67 2.19

log ϕ -0.38 0.67 0.93 2.42 -1.44 2.39 0.51 3.27

120 0 -0.05 0.49 0.95 1.79 -0.31 0.97 0.89 2.17

pH -0.04 0.40 0.95 1.56 -0.02 0.48 0.79 1.54

temp 0.02 0.37 0.96 1.49 0.00 0.46 0.81 1.61

log ϕ -0.06 0.36 0.95 1.49 -0.40 0.86 0.56 0.85

190 0 0.03 0.40 0.92 1.37 -0.18 0.60 0.91 1.55

pH -0.04 0.32 0.95 1.20 -0.02 0.39 0.77 1.22

temp 0.01 0.30 0.97 1.24 -0.00 0.39 0.79 1.30

log ϕ 0.02 0.30 0.93 1.17 -0.21 0.48 0.58 0.63

260 0 0.07 0.36 0.91 1.15 -0.12 0.45 0.89 1.26

pH -0.04 0.27 0.96 1.05 -0.03 0.39 0.71 1.04

temp 0.01 0.25 0.97 1.05 0.01 0.34 0.77 1.11

log ϕ 0.06 0.28 0.91 0.99 -0.13 0.35 0.59 0.53

https://doi.org/10.1371/journal.pone.0216129.t001
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The simulation results based on the negative binomial GLLVMs fitted for Indonesian bird

data, with and without random row effect are given in S2 Appendix. Broadly speaking, they

returned similar conclusions to those reported above. However, for both methods the log stan-

dard deviations of the random row effects were highly biased when the number of species was

m = 30 but accuracy improved substantially with largerm. In addition, the predictive accuracy

improves when the number of species increases.

4.3 Binary responses

Below we use the second simulation design to compare the performance of both approxima-

tion methods implemented with and without for GLLVMs with binary responses. As pre-

viously, starting values obtained via the method.

Fig 2 presents the computation times of various methods used to fit GLLVMs to binary

responses. Similar to the simulation involving overdispersed counts, the variational approxi-

mation method implemented using was substantially faster than all the other methods for

all considered cases. It was also interesting to note that the median computation times for the

Laplace approximation method implemented using scaled very poorly with increasing n.
Table 4 lists the average biases, root mean squared errors, 95% coverage probabilities and

mean confidence interval widths for estimates of the GLLVM without random row effects

from different estimation methods. As in the case of overdispersed counts, the number of spe-

cies did not have much effect on the estimates of species specific intercepts, 0. The variational

approximation method performed better overall in each of the considered cases, producing

less biased estimates, smaller root mean squared errors and coverage probabilities closer to

the nominal coverage level of 95%. By contrast, the estimates based on the Laplace approxima-

tion were severely biased, especially when the sample size was small. Whenm increased, the

biases became smaller for both methods and the coverage probabilities approached to the

nominal 95% level when the Laplace approximation were used. Results for the scaled mean

Procrustes errors in Table 5 showed that errors were tended to be smaller when the variational

Table 2. Scaled mean Procrustes errors of predicted latent variables and estimated latent variable loadings for negative binomial GLLVM estimates based on the
plain and the implementations for the variational approximation and the Laplace approximation methods. The true model parameters were obtained by fitting
a negative binomial GLLVM for the testate amoebae data with counts ofm = 48 species recorded at n = 50, 120, 190 and 260 sites.

n VA- LA- VA-R LA-R

LVs Loadings LVs Loadings LVs Loadings LVs Loadings

50 0.256 0.346 0.296 0.497 0.256 0.347 0.328 0.489

120 0.198 0.198 0.208 0.296 0.198 0.198 0.219 0.276

190 0.185 0.147 0.189 0.213 0.185 0.148 0.213 0.195

260 0.177 0.118 0.179 0.150 0.177 0.119 0.216 0.135

https://doi.org/10.1371/journal.pone.0216129.t002

Table 3. Median VE values of negative binomial GLLVMs for 500 simulated datasets using the plain and the
implementations for the variational approximation and the Laplace approximation methods. The datasets

were based on a negative binomial GLLVM fitted for the testate amoebae data with counts ofm = 48 species recorded
at n = 50, 120, 190 and 260 sites.

n VA- LA- VA-R LA-R

50 0.27 0.19 0.27 0.21

120 0.48 0.43 0.42 0.29

190 0.53 0.50 0.53 0.35

260 0.56 0.54 0.56 0.39

https://doi.org/10.1371/journal.pone.0216129.t003
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approximation method was used in estimation compared to the Laplace approximation

method. As in the simulation settings with overdispersed counts, the mean Procrustes errors

for latent variables predictions decreased with an increasing number of speciesm.

Variation explained was computed for Bernoulli GLLVMs as in Section 4.2, and the

median VE values are listed in Table 6. Based on the results, differences in predictive accura-

cies improve with increasingm. The variance explained is substantially lower for the Laplace

approximation method compared to the variational approximation method when number of

species is small, but equally good for largem.

Supporting information S2 Appendix reports results for simulations based on the Indone-

sian bird dataset with a random row effect, and for simulations based on the testate amoebae

Fig 2. Median computation times for Bernoulli GLLVMs. Times for the plain (gray) and the implementations (black) for the variational
approximation (VA, solid line) method and the Laplace approximation (LA, dashed line) method for a Bernoulli GLLVMwith two latent variables. The
left plot is for the model without row effects and right one with random row effects. The simulation setup was based on the Indonesian birds data.

https://doi.org/10.1371/journal.pone.0216129.g002

Table 4. Average biases, root mean squared errors (RMSEs), coverage probabilities of 95% confidence intervals and mean confidence intervals widths (CI) for
GLLVM estimates based on the plain and the implementations for the variational approximation and the Laplace approximation methods. The true model
parameters were obtained by fitting a Bernoulli GLLVMwith probit link function for the Indonesian birds data with presence-absences ofm = 30, 60, 100 and 140 species
recorded at n = 37 sites.

m VA- LA-

Bias RMSE Cover CI Bias RMSE Cover CI

30 0 0.05 0.29 0.93 1.27 -4.43 18.24 0.73 5.22

60 0 -0.03 0.30 0.98 1.55 -0.22 7.77 0.89 5.23

100 0 -0.03 0.35 0.96 1.55 -0.05 5.37 0.92 3.19

140 0 -0.03 0.39 0.96 1.57 -0.04 1.04 0.92 2.07

VA-R LA-R

30 0 0.05 0.29 0.93 1.27 -0.01 0.46 0.81 1.31

60 0 -0.03 0.30 0.98 1.54 -0.14 0.67 0.83 1.57

100 0 -0.03 0.35 0.96 1.55 -0.12 0.95 0.84 1.69

140 0 -0.03 0.39 0.96 1.56 -0.10 0.94 0.83 1.49

https://doi.org/10.1371/journal.pone.0216129.t004
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data when converted to presence-absence data. Results were broadly similar to those reported

for 0 in Table 4, with the variational approximation leading to more accurate and precise esti-

mates, while the Laplace approximation method tended to produce severely biased estimates

particularly at small sample sizes. For both approximation methods, the log standard devia-

tions of the random row effects were biased when the number of speciesm was small.

4.4 Starting value comparisons

To study the sensitivity of model fitting results to starting values, we compared the perfor-

mances of four starting value selection strategies explained in section 3.2. As a global perfor-

mance measure, we used the log-likelihood values obtained from as a reference level,

and compared differences between this and the three other methods ( , , ).

Boxplots of the differences in log-likelihood values are given in Fig 3 for negative binomial

GLLVMs fitted for the Testate amoebae data with n = 260 sites andm = 48 species, and for

Bernoulli GLLVMs fitted for the Indonesian bird data with n = 37 sites andm = 140 species.

When the TMB implementation of the variational approximation method was used the differ-

ences between the log-likelihood values based on and the other three methods were rela-

tively small. The biggest differences were seen when the Laplace approximation method and

the variational approximation method were implemented without and applied to binary

data. The full results with simulated datasets of different sizes may be found in S3 Appendix.

In all of the considered cases, and were consistently among the best starting

values strategies giving the highest log-likelihood values, while the performances of and

depended strongly on the simulation setup.

In addition to the differences in log-likelihood values illustrated in Fig 3 for Bernoulli

GLLVMs and in S3 Appendix for negative binomial GLLVMs, we also list for binary responses

of the Indonesian bird data the average biases, root mean squared errors, 95% coverage proba-

bilities and mean confidence interval widths for species specific intercept estimates as well as

Table 5. Scaled mean Procrustes errors of predicted latent variables and estimated latent variable loadings for GLLVM estimates based on the plain and the
implementations for the variational approximation and the Laplace approximation methods.Values are scaled with the number of sites and number of species for
comparisons. The true model parameters were obtained by fitting a Bernoulli GLLVMwith probit link function for the Indonesian birds data with presence-absences of
m = 30, 60, 100 and 140 species recorded at n = 37 sites.

m VA- LA- VA-R LA-R

LVs Loadings LVs Loadings LVs Loadings LVs Loadings

30 0.556 0.122 0.615 0.140 0.556 0.122 0.615 0.173

60 0.185 0.098 0.204 0.160 0.185 0.098 0.204 0.141

100 0.129 0.095 0.144 0.130 0.129 0.095 0.144 0.139

140 0.098 0.091 0.109 0.121 0.098 0.091 0.109 0.126

https://doi.org/10.1371/journal.pone.0216129.t005

Table 6. Median VE values of Bernoulli GLLVMs for 500 simulated datasets using the plain and the imple-
mentations for the variational approximation and the Laplace approximation methods. The datasets were based on
a Bernoulli GLLVMwith probit link function fitted for the Indonesian birds data with presence-absences ofm = 30,
60, 100 and 140 species recorded at n = 37 sites.

m VA- LA- VA-R LA-R

30 0.23 0.08 0.24 0.08

60 0.30 0.28 0.30 0.26

100 0.34 0.30 0.31 0.31

140 0.36 0.35 0.36 0.36

https://doi.org/10.1371/journal.pone.0216129.t006
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scaled mean Procrustes errors of predicted latent variables and estimated latent variable load-

ings for all methods included in comparisons in S3 Appendix.

Overall, these findings suggest that and were the best strategies for choosing

starting values. All methods , and have been implemented as different

options (with the same names) in the package with as the default.

5 Discussion
In this article, we studied two closed form approximations (the Laplace approximation and

variational approximation) for the marginal log-likelihood of a generalized linear latent vari-

able model. We showed how the closed form approximations can be implemented efficiently

using automatic optimization techniques implemented in with the help of the package .

In addition, a new method for choosing the starting values for our estimation algorithms was

proposed. The performances of the two approximation methods and different starting values

strategies were compared using several simulation studies for overdispersed count and binary

data, which are often encountered in biological and ecological studies. Results indicated that

for both response types the variational approximation implementations tended to outperform

the Laplace approximation implementations, both in terms of computation speed and estima-

tion and inferential accuracy. These findings are congruent with the results of Hui et al. [7],
where the performance of the variational approximation method was compared to the Laplace

approximation method and the MCEM algorithm for count and binary data, and also to

Gauss-Hermite Quadrature in the case of binary data. However, more comprehensive compar-

isons between the variational approximation method and other estimation methods, eg. the

Gauss-Hermite Quadrature, would be useful and interesting in the future.

Fig 3. Differences in log-likelihood value when strategies , and are compared to . The true models were based on negative
binomial GLLVM fitted for the Testate amoebae data with n = 260 sites and Bernoulli GLLVM fitted for the Indonesian bird data withm = 140 species.
A negative value means that performance of the corresponding starting value strategy is worse than that of . Notice that columns have different
scales.

https://doi.org/10.1371/journal.pone.0216129.g003
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The Laplace approximation method implemented without automatic optimization showed

the poorest performance in all of the considered cases. The differences between the and

implementations, especially with the Laplace approximation, are most likely due to the differ-

ences in the optimization algorithms. In the implementation we used a block-coordinate

optimization in which we cycled between iterative updates of one of regression coefficients,

latent variables and nuisance parameters, until convergence. We postulate that this led to a less

targeted exploration of the parameter space with an increased chance of getting trapped in a

local maximum. In the case of binary data, the variational approximation implementations

performed substantially better than their Laplace approximation counterparts. This supports

earlier findings that the Laplace approximation method often performs poorly with highly dis-

crete responses [40].

All simulation studies further showed that we can obtain more accurate predictions of

the latent variables by increasing the number of species,m. For the Laplace method this is

explained by the asymptotic error, which is known to be of order O(m−1) [41]. Although not

proven here, we conjecture that for the variational approximation method, the asymptotic

error is O(m−1); see also the heuristic proof of consistency in [19]. However, more accurate

estimates for model parameters can be obtained only by increasing the sample size, n.
Another way to of obtaining more accurate estimates and inferential for the parameters in a

GLLVM is by introducing structure that allows us to borrow strength across species (response)

in order to estimate regression and/or loading parameters. Not only does this decrease the

number of parameters in the model, it also means that these new parameters are a function of

n andm, and thus accuracy of their estimation and inference should improve when either the

number of sites and/or species increases. An examples is using functional traits in order to

mediate the species environment relationships (sometimes called a “fourth corner model”,

[42]): the resulting fourth corner coefficients parameters are then common to all species and

estimation should improve as both a function of n andm both. Fourth corner models with

latent variables can also be fitted using the package , which implements both the

Laplace and variational approximation methods.

Comparison of computation times clearly indicate that the implementation of the vari-

ational approximation method is much faster than that both implementations of the Laplace

approximation, with the difference becoming greater when the data are higher-dimensional.

There are a number of reasons for this: first, we specified the variational approximation of the

likelihood directly in , while for a Laplace approximation we only specified the integrand,

and asked the package to use automatic differentiation to calculate a Laplace approxima-

tion. This automation of the Laplace approximation offers considerable flexibility, and makes

it relatively easy to fit some quite complex models, because the joint likelihood in the integrand

is usually relatively easy to derive. However, it seems that not specifying a fully closed form

(approximated) marginal log-likelihood comes at a computational cost. Another reason for

a difference in computational time is that all variational parameters are handled like fixed

parameters, which makes estimation faster than dealing with random effects. The other possi-

ble reason for more rapid growth in computation time for the Laplace approximation method,

whenm increases, comes from the complexity of the approximation itself, where there is a

term log detfGð ; û�
i Þg, where Gð ; û�

i Þ has dimensionm, and so computing its determinant

has a complexity that grows at a rate O(m3).

Overall, our findings suggest present a strong case for the use of the variational approxima-

tion method as a primary method for performing likelihood based estimation and inference in

GLLVMs. Because it is relatively accurate and very quick, variational approximation on

provides a platform for upscaling analyses to large datasets. To date we have used the software

to fit a dataset of size 174 × 985 in 61 minutes. In future work, we plan to generalize GLLVMs,

Efficient estimation of GLLVMs
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as well as the package, so that it can handle spatial and or temporal correlation inher-

ent in the data, as well as offer some data-driven forms of order and variable selection (see for

example [43]).
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In ecological community studies it is often of interest to study the effect of species related10

trait variables on abundances or presence-absences. Specifically, the interest may lay in the11

interactions between environmental and trait variables. An increasingly popular approach12

for studying such interactions is the so-called fourth-corner model, which explicitly posits13

a regression model where the mean response of each species is a function of interactions14

between covariate and trait predictors (among other terms). On the other hand, the array15

of fourth-corner models currently applied in the literature do not necessarily account for in-16

terspecific variation in the environmental response, nor for any residual covariation between17

species. To overcome this problem, in this article we propose a fourth-corner latent variable18

model which combines the following three features: latent variables to capture the correla-19

tion between species, fourth-corner terms to account for environment-trait interactions, and20

species-specific random slopes for modelling excess heterogeneity between species in their21

environmental response. Simulation studies demonstrate that the proposed method outper-22

formed competitors when testing for the fourth-corner (interaction) coefficients, across Type23

I error and power simulations. The method is illustrated by an example on ground beetle24

data.25

Keywords: Community analysis, fourth-corner problem, generalized linear mixed model,26

joint species distribution model, multivariate abundance data, variational approximation.27

∗Corresponding author: Jenni Niku, email: jenni.m.e.niku@jyu.fi

1



1 Introduction28

One of the main aims of statistical analyses in community ecology is to understand how species29

differ in their responses to the environment, and why. Specifically, if trait information on each30

species is measured, it is possible to study how these traits mediate the effect of environmental31

conditions on species responses. In ecology, this problem of studying associations between envi-32

ronmental and trait variables using species abundance data is often known as the fourth-corner33

problem (Legendre et al., 1997). Specifically, given three matrices defining the environmental34

data (R), species abundances (L), and species traits (Q), we can use these to infer how the en-35

vironmental variables and species traits are jointly related to species abundance. Most classical36

approaches to solving the fourth-corner problem use a generalized singular value decomposition37

applied to a environment-trait association matrix constructed using R, L and Q, thus leading38

to a pair of ordinations for making interpretations of the associations (Dolédec et al., 1996).39

Legendre et al. (1997) further introduced a hypothesis testing approach based on permutation40

testing to assess which associations between environmental and trait variables are significant.41

Classical methods were further developed in Dray and Legendre (2008), ter Braak et al. (2012)42

and Dray et al. (2014). The Permutation tests are often used to make conclusions on which43

environmental and trait variables are associated with each other. However, no information on44

the strength of the interactions is obtained.45

In the past decade, several model-based approaches have arisen in the literature for solving the46

fourth-corner problem, with a notable advantage being that they also give a concrete measure47

the effect size through the interpretation of relevant coefficients in the mean model. We now48

give an overview of these. Denote the abundances (counts, presence-absences, biomass) of m49

responses (species) recorded at n samples (sites) by yij , i = 1, . . . , n, j = 1, . . . ,m. For each site50

i, a vector of k environmental variables, ei = (ei1, . . . , eik)
�, and for each species j, a vector of q51

trait variables tj = (tj1, . . . , tjq)
� are also measured. The more general form of the fourth-corner52

model for the mean responses, μij , can then be formulated as53

g(μij) = ri + β0j + e′i(βe + bj) + vec(Bet)
′(tj ⊗ ei), (1)

where g(·) is a known link function, β0j are species-specific intercepts, the k-vector βe includes54

main effects for environmental covariates, and the k × q matrix Bet consists of environmental-55

trait interaction terms (also known as the fourth-corner coefficients). Also, ri denotes random56

site effects which we include as means of row standardisation, while the k-vector bj denotes57

species-specific random effects for environmental variables. The precise models considered so far58

in the literature differ in the way the random effects are included in model (1). For instance,59

in the generalized linear model (GLM) approach by Brown et al. (2014), random site effects60
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ri and random slopes bj were ignored, and Warton et al. (2015b) proposed inference on Bet61

based on bootstrapping the set of n vector residuals across the sites. Warton et al. (2015b)62

also showed that the method proposed in Brown et al. (2014) is a generalisation of a maxi-63

mum entropy approach (community assembly via trait selection, CATS) proposed by Shipley64

et al. (2006). Easier interpretation, model selection and inference methods for CATS-regression65

are thus readily available. Pollock et al. (2012) proposed a generalized linear mixed modeling66

(GLMM) approach for solving the fourth-corner problem by including random site effects ri and67

random slopes for environmental variables ei in the model. The model was later extended by68

Jamil and ter Braak (2013) by treating the species-specific intercepts, β0j , also as random. Most69

recently, ter Braak (2019) proposed to further include a random slope for trait variables tj .70

A major drawback with all of the above model-based approaches listed above is that they do71

not model residual correlation between responses arising from direct biotic interactions between72

species, missing predictors, among a host of possible reasons. As mentioned above, Warton et al.73

(2015b) attempted to circumvent this issue by resampling sites. Pollock et al. (2012) and Jamil74

and ter Braak (2013) took into account the randomness at the individual species level, but did75

not account for residual correlation across species. In the context of testing environmental-trait76

interactions, the problem of ignoring residual interspecific variation to the environment (not77

explained by traits) was studied by ter Braak et al. (2017) in detail. Specificially, ter Braak78

et al. (2017) compared four different resampling strategies in the GLM framework and noted79

that resampling (bootstrapping or permuting) either sites or species tended to yield Type I error80

rates there were too small and an associated loss in power when testing for the fourth-corner81

coefficients. The pmax permutation test (ter Braak et al., 2012), where two separate resampling82

tests (site-level and species-level) are performed and the significance is assessed by the largest of83

the two p-values, was shown to perform best when the data were generated according to a simple84

GLMM model. However, the pmax test also produced inflated Type I errors when simulating85

from models where observed trait and environmental variables interact with latent trait and86

environmental variables. More recently, ter Braak (2019) compared different model-based testing87

approaches (likelihood-ratio test, parametric bootstrap test and permutation-based pmax test)88

for testing fourth-corner interaction terms, with tests based on a GLMM, where random slopes89

for trait variables tj were also included, were shown to outperform other GLM and GLMM90

based tests for interaction.91

An alternative approach to resampling-based procedures for testing the environmental-trait in-92

teractions is to use a generalised linear latent variable model (GLLVM) to explicitly model the93

between species correlation using a factor analytical approach, and then employ (say) standard94

asymptotic likelihood ratio tests. The past five years has seen an explosion in the use of la-95

tent variable models for community level modeling; see Warton et al. (2015a), Warton et al.96

(2016), Ovaskainen et al. (2017), Bjork et al. (2018) Niku et al. (2017b), among many others.97
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The fourth-corner latent variable model which we consider in this article, and which was first98

considered by Warton et al. (2015a), is based on extending the fourth-corner GLM of Brown99

et al. (2014) by including site-specific random row intercepts to account for the variation be-100

tween sites, and species-specific random slopes for environmental variables for capturing the101

interspecific variation in responses not explained by the traits. In addition, latent variables with102

corresponding loadings are included to capture any residual correlation between species which103

is not explained by observed environmental and trait variables. While similar models have also104

been developed in the Bayesian context by Hui (2016) and Tikhonov et al. (2019), the perfor-105

mances of such models for assessing environment-trait interactions (in terms of producing valid106

inference) have not been studied before, let alone compared to existing procedures (including107

those reviewed above) in the literature.108

In this paper, we propose a fast and efficient maximum likelihood based estimation algorithm109

for the fourth-corner latent variable model, and apply it to the environment-trait interaction110

testing problem. Specifically, when testing the fourth-corner coefficients, we employ a simple111

likelihood ratio testing approach. Importantly, this is made possible by including the necessary112

terms in the mean structure to ensure that all relevant sources of heterogeneity and residual113

correlation are accounted, thereby leading to valid statistical inference. The performance of the114

proposed interaction test is compared with tests based on GLMMs (Pollock et al., 2012; Jamil115

and ter Braak, 2013; ter Braak et al., 2017) through simulation, as we investigate Type I error116

rates under the null hypothesis and power under varying alternative hypotheses.117

The paper is organized as follows, in Section 2 we define our fourth-corner latent variable model118

and discuss the associated estimation and inferential procedures based on fast variational ap-119

proximations (Hui et al., 2017; Niku et al., 2019a). In Section 3, we perform simulation studies120

for comparing Type I errors and powers of different tests for the interaction term. Finally, in121

Section 4 we illustrate our method by applying it to ground beetle data (Ribera et al., 2001).122

2 Model definition and estimation123

Using the notation previously introduced, the124

fourth-corner latent variable model with random site effects (intercepts) and random slopes is125

defined by the following mean regression model,126

g(μij) = ηij = ri + β0j + e′i(βe + bj) + vec(Bte)
′(tj ⊗ ei) + u′

iγj , (2)
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or equivalently formulated in a hierarchical fashion,

g(μij) = ηij = ri + β0j + e′iβj + u′
iγj , where (ri,u

′
i)
′ ∼ Nd+1(0,Cσ) (3)

βj = βe +Btetj + bj , where bj ∼ Nk(0,G).

As in model (1), we let β0j denote the species-specific intercepts, k-vector βe denote the main127

effects for the environmental covariates, and k × q matrix Bte denote the environmental-trait128

interaction matrix on which testing will be performed. The random site intercepts, ri, are129

assumed to follow a normal distribution with zero mean and variance σ2, ri ∼ N(0, σ2). Notice130

that if the site effects are treated as fixed, then the main effects for environmental covariates,131

βe, can be omitted. The vector bj includes k species-specific random effects for environmental132

variables, which are assumed to follow a multivariate normal distribution with zero mean vector133

and unstructured k × k covariance matrix G, bj ∼ Nk(0,G). If random slope parameters are134

included in the model, then the effect of predictors is a combination of the fixed effects, βe,135

which are common to all species, the interaction terms with species traits, Bte, which define136

how traits mediate the effect of environmental variables, and the random effects for species, bj ,137

which capture the interspecific variation not explained by traits. Finally, the d-vector γj includes138

species-specific factor loadings for d-variate (d � m) latent variables, ui, which are assumed to139

follow a multivariate standard normal distribution, ui ∼ Nd(0, Id), where Id denotes a d × d140

identity matrix. The zero mean and unit variance fix the locations and scales of latent variables141

and ensure parameter identifiability (Huber et al., 2004). In turn, the term u′
iγj captures the142

residual correlation between species not accounted for by the observed covariates ei and trait143

variables tj . Covariance matrix Cov((ri,u
′
i)
′) = Cσ is formed so that we include the correlation144

term between site effects and latent variables, corr(ri, uil) = ρl. We denote the matrix of145

loadings Γ = (γ1 · · ·γm)′, and set all the upper triangular elements of m × d matrix Γ to be146

zero and constrain its diagonal elements to be positive in order to avoid rotation invariance and147

(again) ensure parameter identifiability (Huber et al., 2004). Note that this constraint on the148

loading matrix does not reduce the flexibility of the model; indeed, the residual between species149

covariance matrix (given the environmental and trait predictors) is straightforwardly seen to150

be Σ = ΓΓ′, from which we see that the residual covariance is modelled parsimoniously via151

rank-reduction.152

Model (3) serves as a unifying framework that encompasses models proposed previously in Pol-153

lock et al. (2012), Jamil and ter Braak (2013) and Brown et al. (2014). If we set all variances154

of random effects, ri and bj , and latent variables ui in model (3) to zero, the model reduces to155

the fourth-corner GLM of Brown et al. (2014). If we set the covariance matrix of random row156

effects and latent variables, Cσ, to zero, we get a similar model as in Pollock et al. (2012), with157

an exception that Pollock et al. (2012) treated species-specific intercepts, β0j , as random. Jamil158
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and ter Braak (2013) extended the model proposed in Pollock et al. (2012) by adding random159

site effects, ri, in the model.160

Let Ψ = {β′
0,β

′
e, vec(Bte)

′, vec(Γ)′,Φ′, vec(Cσ), vec(G)} denote the full vector of parameters in161

the fourth-corner latent variable model, where β0 = {β01, . . . , β0m}′ is the vector of all species-162

specific intercepts, Φ = (φ1, . . . , φm)′ includes all other nuisance parameters, e.g., dispersion163

parameters of the negative binomial or the Tweedie distribution as in Niku et al. (2017b). Fur-164

thermore, we denote r = (r1, . . . , rn)
′, b = (b′1, . . . , b

′
m)′ and u = (u′

1, . . . ,u
′
n)

′ as the full vector165

of site intercepts, species-specific random effects, and latent variables, respectively. Conditional166

on the latent variables and parameter vector Ψ, the responses are assumed to be independently167

distributed and we obtain the joint distribution f(y|r, b,u;Ψ) =
∏n

i=1

∏m
j=1 f(yij |ri, bj ,ui;Ψ).168

By integrating over random effects r and b and latent variables u then, we obtain the following169

marginal log-likelihood function for the fourth-corner latent variable model,170

l(Ψ) = log

{∫
f(y|r, b,u;Ψ)f(r,u;Cσ)f(b;G)d(r, b,u)

}
. (4)

For multivariate abundance data, the response distribution f(y|r, b,u;Ψ) is not assumed to171

be a multivariate normal distribution (since the responses are usually discrete with a strong172

non-constant mean-variance relationship). Consequently, the integration over latent variables173

and random effects does not have a closed form. To overcome this issue then, a common and174

computationally efficient approach is to approximate the integral using approaches such as the175

Laplace (Niku et al., 2017b) or variational (Hui et al., 2017) approximation, which subsequently176

provide either a closed or nearly closed form approximation to the marginal log-likelihood (4).177

In Niku et al. (2019a) it was shown that computationally convenient estimation algorithms178

for GLLVMs can be obtained by combining the Laplace or variational approximation methods179

with automatic optimization techniques implemented in R software, for computationally efficient180

estimation.181

In this paper, we adopt the variational approximation approach for approximating the marginal182

log-likelihood in (4). As part of using the variational approximation method, we need to define183

so-called variational distributions for the random effects a and b, and the latent variables u,184

which effectively act as the approximate posterior distributions for these latent quantities. For185

ease of computation, while also being a sensible choice in an asymptotic sense (Hui et al.,186

2017; Blei et al., 2017), we propose to use independent normal distributions. Specifically, for i =187

1, . . . , n, we set the variational density of the random effects q(ri,ui) as independent multivariate188

normal distributions Nd+1(ai,Ai), while for response j = 1, . . . ,m we set the variational density189

of the random effects q(bj) as independent multivariate normal distributions Nk(abj ,Abj). Here,190

ai and anj denote mean vectors of length (d+1) and k respectively, whileAbj andAi are assumed191

to be positive definite and unstructured covariance matrices of dimension (d + 1) × (d + 1)192
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and k × k, respectively. Following these assumptions, and assuming that yij comes from the193

exponential family of distributions with mean μij = E(yij), such that f(yij |ri, bj ,ui;Ψ) =194

exp{(yijηij + b(ηij))/φj + c(yij , φj)}, where b(·) and c(·) are known functions, then the resulting195

variational log-likelihood function is given by196

�(Ψ, ξ) =

n∑
i=1

m∑
j=1

{
yij η̃ij − Eq{b(ηij)}

φj
+ c(yij , φj)

}

+
1

2

n∑
i=1

{
log det(Ai)− tr(C−1

σ Ai)− a′
iC

−1
σ ai − log det(Cσ)

}

+
1

2

m∑
j=1

{
log det(Abj)− tr(G−1Abj)− a′

bjG
−1abj − log det(G)

}
,

where η̃ij = β0j + e′i(βe + abj) + vec(Bte)
′(tj ⊗ ei) + a′

i(1,γ
′
j)

′, and all quantities constant with197

respect to the parameters have been omitted. Notice that above Eq(·) denotes the expectation198

with respect to q(b)q(r,u), which does not necessarily have a closed form. In Hui et al. (2017)199

it was shown that by reparametrizing GLLVMs, fully closed form variational log-likelihoods can200

be obtained in case of binary, ordinal and count data. A proof for the above formula is provided201

in Appendix B.202

By treating the variational log-likelihood function as a new objective function, we can then fit203

and perform inference on the fourth-corner latent variable model. For instance, maximization204

of �(Ψ, ξ) with respective to both model Ψ and variational ξ parameters produces relevant es-205

timates, with the latter acting also as predictions for the latent variables and random effects.206

Specifically, the variational distributions q(ri,ui) and q(bj) serve as approximate posterior dis-207

tributions for all latent quantities, which can be used for ordination. The asymptotic standard208

errors for model parameters can be computed using the the observed information matrix (nega-209

tive Hessian) as described in Hui et al. (2017). This allows us to construct confidence intervals210

as well as to conduct Wald tests for the model parameters. Likelihood ratio tests are also readily211

available and will be applied in the next section for testing the fourth-corner interaction terms.212

All the inferential methods listed above are implemented in the R package gllvm (Niku et al.,213

2017a). The package uses Template Model Builder (TMB, Kristensen et al., 2016) for automatic214

differentation of the log-likelihood function to enable efficient parameter estimation. For further215

details of the implementation, we refer to Niku et al. (2019b).216
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3 Simulation studies217

Three simulation studies were conducted to evaluate the ability of the proposed fourth-corner

latent variable model to account for unobserved random variation in multivariate count data

and to compare the method to the pmax test of ter Braak et al. (2017). In the first simulation

setup, we study the Type I errors of the likelihood ratio test for testing the null hypothesis H0 :

Bte = 0 based on the fourth-corner latent variable model in (3), for a situation where interspecific

variation and correlation between species is inherent in data. In the second setting, we examined

the power of the proposed test, that is, the empirical probability of finding the significant

interaction between environmental and trait variables, under varying alternative hypotheses.

For comparison, we consider four variants of model (3), consisting of two GLMM type models

and two GLLVM models with d = 1 and d = 2 latent variables. These are denoted as follows

g(μij) = ri + β0j + e′iβe + vec(Bte)
′(tj ⊗ ei), glmm(r)

g(μij) = ri + β0j + e′i(βe + bj) + vec(Bte)
′(tj ⊗ ei), glmm(r + e)

g(μij) = ri + β0j + e′iβe + vec(Bte)
′(tj ⊗ ei) + u′

iγj , gllvm(d lv + r)

g(μij) = ri + β0j + e′i(βe + bj) + vec(Bte)
′(tj ⊗ ei) + u′

iγj , gllvm(d lv + r + e)

Here we assume that d is known, but in practice, model selection tools, such as AIC and BIC, can218

be used to guide the selection. Data will be simulated under d = 2, so results for d = 1 give some219

insight into the performance of GLLVM when the covariance structure has been misspecified.220

As mentioned above, the likelihood ratio tests based on above models were also compared to221

the pmax test (ter Braak et al., 2017). This approach was applied to log-likelihood ratio tests222

from model glmm(r) fitted under a Poisson GLM (the Poisson being used for computational223

efficiency ter Braak et al., 2017), and involves taking the largest of the two P -values formed224

by permuting either rows or columns of predictors. Additionally, we include in some of our225

comparisons a variant of the pmax permutation test considered in ter Braak (2019), where it is226

applied to generalized linear mixed models with random site effects and random slopes.227

In the first simulation setup, we compared the Type I errors based on the likelihood ratio tests228

to those of the pmax test. We generated datasets according to the negative binomial distribution229

using two sample sizes and dimensions: (a) m = 40 and n = 70, and (b) m = 70 and n = 40. As230

a mean model we used model (3) with one trait and one environmental variable but with species231

intercepts written as β0j + tjβt, with β0j generated independently from the uniform distribution232

U(−1, 1), and βt = 0.3. The value for the variance of the random row effects was σ2 = 0.3 and233

also βe = 0.3. The fourth-corner coefficient Bte was set to zero in order to assess Type I error.234

The species-specific dispersion parameters were all set to φj = 0.5.235

In order to create unobserved correlation structure between species, we generated two-dimensional236
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latent variables, ui = (ui1, ui2)
′, from the bivariate standard normal distribution, and simulated237

the values of the associated loadings γj independently from the standard normal distribution.238

Finally, we generated the random slopes bj from a normal distribution with mean zero and239

variance from the range σ2
b ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. That is, variances of random slopes bj that240

causes interspecific variation not explained by the covariates, were increased from 0 to 1. To241

recap, the latent variables can also be interpreted to include latent environmental covariates242

and their loadings as effects of latent traits on latent environmental variables, while the random243

slopes generate unexplained random variation on species that is not explained by the observed244

traits, and can therefore be interpreted as latent traits. The latent variables and their loadings,245

random effects and covariates were re-generated for each simulated datasets.246

Given the above set up, we simulated 1000 datasets from the negative binomial distribution. For247

each dataset, we then calculated p-values based on likelihood ratio tests from the four models248

listed above, as well as the pmax test applied to both GLMs and GLMMs, for assessing the null249

hypothesis H0 : Bte = 0. The resulting Type I errors are presented in Figure 1. Results indicate250

that the fourth-corner latent variable models, gllvm(d lv+ r+ e) with d = 1 and d = 2, provided251

empirical Type I errors that were reasonably close to the nominal significance level of 5% for252

all values of σ2
b . In contrast, the pmax test applied to GLMs tended to be too conservative and253

produced Type I errors below the nominal level especially for small values of σ2
b . In fact, the254

pmax test applied to GLMMs produced Type I errors of exactly zero for all values of σ2
b tests255

and was therefore excluded from Figure 1. The Type I errors for likelihood ratio tests based256

on models that do not include species-specific random slopes were severely inflated especially257

for large values of σ2
b , while the likelihood ratio test based on the mixed model with random258

intercept and slope, gllmm(r + e), performed similarly to the tests based on latent variable259

models.260

In the second simulation setup, we introduced correlation between the residual correlation term261

and the observed trait by setting corr(γj2, tj) = 0.5, where γj2 are the latent variable loadings262

for the latent variables ui2. In practice, loadings γj2 and traits tj were generated from a bivariate263

normal distribution with unit variances and 0.5 correlation. This can be interpreted as a situation264

in which the effect of the observed trait differs between sites and is not fully explained by the265

observed environmental variables. The methods that provided inflated Type I errors in the266

previous setting, namely GLLVM and GLMM with random intercepts, were excluded from the267

comparison. Type I errors presented in Figure 2 show that the fourth-corner latent variable268

model with d = 2 typically maintains close to nominal Type I error, although rising to almost269

0.1 in one case. The pmax test applied to GLMs provided Type I errors close to the nominal level270

as well, while it was overly conservative in the first setting. The pmax test applied to GLMMs271

performed similarly to the first simulation, with zero Type I error in most cases. The likelihood272

ratio test based on the fourth-corner latent variable model with d = 1 and the mixed model273
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with random intercept and slope both produced inflated type I errors for small values of σ2
b .274

These results suggest that the inclusion of latent variables is necessary in order to capture the275

additional source of residual between species correlation. In Appendix A.1 and A.2 we present276

some additional simulation studies which show that the model-based test based on the GLMM277

with random site effects and slopes performed worse than the test based on fourth-corner latent278

variable model. Overall, these simulation results demonstrate the robust performance of the279

fourth-corner latent variable model due to its capability to capture all the relevant sources of280

covariation.281

In the third simulation setup, we compared the power of the various testing procedures. The282

methods that provided inflated Type I errors in the first simulation study were excluded from the283

comparison, meaning only four methods were included for comparison. We again generated 1000284

datasets using the similar setup as in the first simulation study with n = 70 and m = 40, but285

varied the interaction term Bte such that Bte ∈ {0, 0.1, 0.2, 0.3, 0.4}. As variances for random286

slope effects, we considered σ2
b ∈ {0, 0.4, 0.8}. The power simulation for the setup with n = 40287

and m = 70 was excluded as results were similar compared to the previous one. The resulting288

empirical powers of the pmax test and three different likelihood ratio tests are plotted in Figure 3.289

In all cases, the likelihood ratio tests based on the fourth-corner latent variable models provide290

higher probabilities for detecting the significant interaction between environmental and trait291

variables as compared to the pmax test. This was not surprising given the pmax test is, by292

construction, conservative since it involves performing two permutation tests and then choosing293

the less conservative of the two. Indeed, this conservatism is reflected in the Type I error results294

seen in Figure 1. The likelihood ratio test applied to gllmm(r+e) performed well but was slightly295

less powerful than the tests based on fourth-corner latent variable models when the value for σ2
b296

was small.297

4 Case study298

We applied the proposed fourth-corner latent variable model to a dataset consisting of counts299

of m = 68 ground beetle species recorded at n = 87 sites across Scotland (Ribera et al.,300

2001). The original data also included 17 environmental variables recorded at each site and 20301

trait variables for each species. Ribera et al. (2001) studied whether the morphology and life302

traits of ground beetle species can be related to the environmental variability of the habitats.303

For illustration purposes, we consider using a subset of k = 4 environmental variables: land304

use management intensity score (Management), percentage moisture content (Moist), elevation,305

and soil pH value, along with four species trait covariates: total length (LTL) and pronotum306

height (LPH), overwintering (OVE, with two levels: 1 = only adults; 2 = adults and larvae307

or only larvae), and breeding season (BRE, with three levels: 1 = spring; 2 =, summer; 3 =,308
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Figure 1: Type I error rates for likelihood ratio tests based on GLMM with random intercepts
(glmm(r)), GLMM with random intercepts and slopes (glmm(r + e)), GLLVM with random
intercepts (gllvm(2lv + r)), GLLVM with random intercepts and slopes and d latent variables
(gllvm(d lv + r + e))), and the pmax test applied to GLMs. The pmax test applied to GLMMs
produced Type I errors of exactly zero for all values of σ2

b and was therefore excluded from the
plot. On the left, data size is (a) n = 70 sites and m = 40 species, on the right (b) n = 40 sites
and m = 70 species. The variance of the random slope effects, σ2

b is plotted on x-axis. Dashed
line is the nominal level 0.05 and dotted lines around nominal level correspond values for sample
proportions which are not significantly different from 0.05.

autumn or winter). This set of environmental and trait variables were among the most important309

covariates affecting the ground beetle communities based on the analysis of Ribera et al. (2001).310

All quantitative covariates were centered and scaled to have variance one before the analysis,311

while dummy variables were set up for OVE and BRE, meaning there were a total of q = 5312

predictors in the vector of traits tj .313

We first tested if the interactions between environmental and trait covariates were significant314

using likelihood ratio tests based on the fourth-corner latent variable model with one and two315

latent variables, GLMMs with random row and slope parameters included, and the pmax test.316

Table 1 lists the AIC values for different models as well as p-values given by three likelihood317

ratio tests. The GLLVM with random row effects and random slopes and two latent variables318

had the lowest value of AIC, suggesting that both latent variables and species-specific random319

effects were needed to model additional sources of (co)variation, while the p-values for all three320

tests were less than 0.001 providing clear evidence of an interactions between the considered321

environmental and trait variables. By contrast, the pmax test with 999 permutations gives a p-322

value of 0.143 when testing for the fourth-corner interaction term. The result is thus consistent323

with the simulation study results showing the conservativeness of the pmax test.324

The estimated coefficients for the environmental covariates and interaction terms based on the325
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Figure 2: Type I error rates for likelihood ratio tests based on GLMMwith random intercepts and
slopes (glmm(r+e)), GLLVM with random intercepts, slopes and d latent variables (gllvm(d lv+
r+ e))), and the pmax test applied to GLMs. The pmax test applied to GLMMs produced Type
I errors of exactly zero for almost all values of σ2

b , except σ2
b = 0, and was therefore excluded

from the plot. On the left, data size is (a) n = 70 sites and m = 40 species, on the right (b)
n = 40 sites and m = 70 species. The variance of the random slope effects, σ2

b , is plotted on the
x-axis. Dashed line is the nominal level 0.05 and dotted lines around nominal level correspond
to values for sample proportions which are not significantly different from 0.05.

Table 1: The values of AIC for the two fourth-corner latent variable models, and the GLMM
model fitted to the ground beetle dataset. Also shown are the p-values for the corresponding
likelihood ratio test of the fourth-corner interaction terms.

glmm(r+e) gllvm(1lv+r+e) gllvm(2lv+r+e)

AIC 18706 18496 18424
p value <0.001 <0.001 <0.001

GLLVM with two latent variables are plotted in Figure 4. The strongest negative interactions326

were between management intensity and breeding season, as well as between management in-327

tensity and pronetum height. In other words, high management intensity was found to have a328

large negative effect on species that breed during the summer and have larger body size. The329

strongest positive effects occurred in interactions between elevation and breeding season and330

between management intensity and total length. That is,, species having breeding season in331

summer succeeded better in high altitude environments as compared to species which breed332

during other seasons. Finally, predictions for species-specific random slopes for the environmen-333

tal covariates and their associated 95% uncertainty intervals are plotted in Figure 5; recall from334

Section 2 these were generated based on the normal variational distributions and the estimated335

values of abj and Abj . From this, we can see that the interspecific variation in responses, which336

is not explained by the traits, is highest for the effect of the moisture content and management337
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Figure 3: Power as a function of the effect size Bte for the likelihood ratio tests based on GLMM
with random intercepts and slopes (glmm(r + e)), GLLVM with random intercepts, slopes and
d latent variables (gllvm(d lv + r + e))), and the pmax test applied to GLMs and GLMMs.

intensity and lowest for the effect of the elevation.338

5 Discussion339

In this article, we have proposed a fourth-corner latent variable model that accounts for two340

key sources of error in current implementations of fourth-corner model, namely the failure of341

traits to capture all interspecific variation (species-specific error), and the failure to account for342

the residual correlation between species (site-specific error) not explained by the environmental343

and trait variables. With a model-based approach, we are able to account for both sources344

of additional variation through the inclusion of additional species-specific random slopes, and345

site-specific latent variables. The approach is shown to be an extension of the recently intro-346

duced model-based approaches in Pollock et al. (2012), Jamil and ter Braak (2013) and Brown347

et al. (2014). We adopted an efficient estimation and inference approach base on variational ap-348

proximations, and compared its finite sample performance to classical competitors for assessing349

the importance of fourth-corner interaction terms. Results showed that the proposed approach350

maintains close to nominal Type I error levels when testing for the fourth-corner coefficients,351

while power can be substantially better than other resampling-based procedures. Moreover, not352

accounting for the additional species-specific variation not explained by traits led to inflated353

Type I errors. We also found that even when the correlation model was not correct, that is, a354

fourth-corner GLLVM with one latent variable was used when two were needed, the approach355

continued to perform reasonably well, and tended to do better than alternatives. In Appendix356

A.1, we present one setting where the fourth-corner latent variable model (along with all the357

other approaches) can fail: namely when there are missing predictors which are correlated with358

the observed ones. Such methods can fail here because it leads to confounding, thus biased esti-359
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Figure 4: Point estimates and associated 95% confidence intervals for coefficients (left), along
with a level plot (right) for fourth-corner interaction terms from a fourth-corner latent variable
model with two latent variables fitted to the ground beetle data. The confidence intervals that
do not contain zero are in black while those that do contain zero are in grey and faded.

mation and uncertainty quantification for the associated regression coefficients (see for instance360

Paciorek, 2010, on the related issue of confounding).361

Model (1) included a random effect to capture species-specific variation in environmental re-362

sponse, not captured by traits. Because species tend to respond to the environment in complex363

and sophisticated ways, and because our data collection process rarely captures all these rea-364

sons, it seems a sensible working assumption to always expect such species-specific variation.365

Simulations in ter Braak et al. (2017), and those in this paper, emphasise the importance of366

including such a term. This paper additionally shows that it is important to capture residual367

correlation in abundance across species, which can be achieved using latent variables. In future368

research, we will examine other data-driven approaches to selecting the number of latent vari-369

ables (Hui et al., 2018), as well as extensions to other incorporate other sources of variation such370

as spatio-temporal correlations (e.g., adapting the work of Thorson et al., 2016), and imperfect371

detection (Warton et al., 2016; Tobler et al., 2019).372

References373

Bjork, J. R., Hui, F. K., O’Hara, R. B., and Montoya, J. M. (2018). Uncovering the drivers374

of host-associated microbiota with joint species distribution modelling. Molecular ecology,375

14



27:2714–2724.376

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational inference: A review for377

statisticians. Journal of the American statistical Association, 112:859–877.378

Brown, A. M., Warton, D. I., Andrew, N. R., Binns, M., Cassis, G., and Gibb, H. (2014). The379

fourth-corner solution - using predictive models to understand how species traits interact with380

the environment. Methods in Ecology and Evolution, 5:344–352.381
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A Additional simulations449

A.1 Additional simulations with random parameters450

We compared the methods used in Section 3 by mimicking the simulation setup of ter Braak451

et al. (2017), and the methods used in Section 3 were included in the comparisons. We generated452

1000 datasets with 40 species and 40 sites from the negative binomial distribution with mean453

model454

g(μij) = μ0 +Ri + Cj + btetjei + bzezjei + btxtjxi + b∗zxz
∗
jx

∗
i + εij , (5)

and variance V (μij) = μij+μ2
ij . Here intercept equals μ0 = log(30).Row effects were generated as455

Ri = a0ei+a1e
2
i +εri, with εri ∼ N(0, 0.01), and column effects similarly by Cj = c0tj+c1t

2
j+εtj ,456

with εtj ∼ N(0, 0.01). Observed environmental variable ei and trait tj were generated from457

standard normal distribution N(0, 1). Independent latent environmental variables xi and x∗i458

and traits zj and z∗j were also generated from N(0, 1). Parameters bte, bze, btx and b∗zx are effects459

for associations. Term b∗zxz∗jx
∗
i represents here the correlation structure among species and sites460

and can be interpreted similarly to the latent variable term u′
iγj in fourth corner latent variable461

model, with is only one latent variable. Error terms εij were generated from normal distribution,462

εij ∼ N(0, 0.2). We test the null hypothesis H0 : bte = 0 and calculate Type I error rates for463

random trait case, where bte = 0, bze ∈ {0, 0.2, 0.4, 0.6, 0.8}, btx = 0, and random trait and464

random environmental variable case, where bte = 0, bze = btx ∈ {0, 0.2, 0.4, 0.6, 0.8}. We set465

a0 = 0.05, a1 = −0.1, c0 = 0.05, c1 = −0.1 and b∗zx = 0.2.466

Based on the results in Figure 6(a) and 6(b), the likelihood ratio test based on the GLLVMs467

with one and two latent variables, random slopes and random row effects provided Type I errors468
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close the nominal level 0.05 in all considered cases excluding the case bze = btx = 0.2 where the469

Type I errors exceeded significantly the nominal level 0.05. Such peak is seen in all conducted470

simulation setups with a small sample size. The likelihood ratio test based on the GLMM with471

random slopes and random row effects produced close to valid Type I errors for the random472

trait case (Figure 6(a)) but inflated Type I errors for the random trait and random env case473

(Figure 6(b)). The pmax test applied for GLM worked quite well for the random trait case, but474

produced slightly inflated Type I errors for the random trait and random environmental variable475

case when effect sizes for bze and btx were larger than 0.4. The likelihood ratio tests based on476

GLLVM and GLMM which did not include random slopes producedtoo large Type I errors.477

In Figure 7 the Type I errors were calculated using the same mean model as above, except478

observed environmental variables ei and latent environmental variables xi as well as observed479

traits tj and latent traits zj were generated so that they were correlated, that is, corr(ei, xi) = 0.3480

and corr(tj , zj) = 0.3. Such correlations lead to a confounding effect and the results show that481

if this is the case all methods produced too inflated Type I errors.482

A.2 Simulations for the ground beetle data483

Simulations based on subsets of the ground beetle data considered in Section 4 were conducted484

by using the mean model485

log(μij) = ri + β0j + tjβt + ei(βe + bj) +Btetjei + u′
iγj , (6)

and variance V (μij) = μij + φjμ
2
ij . As the observed environmental variable ei we used covariate486

moisture content and for the observed trait tj we used LTL from the data. Values for the487

parameters β0j , βt, βe and γj were based on negative binomial GLLVM with two latent variables488

fitted for the ground beetle data. Values for latent variables ui were based on predicted latent489

variables and values for site effects ri were based on predicted random site effects. Type I errors490

for the hypothesis H0 : Bte = 0 were calculated based on 800 generated datasets when a variance491

of the random slopes bj was varied with a range, σ2
b ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}.492

Results are provided in Figure 8 and are quite similar to the results showed in Section 3 for the493

GLLVMs and the pmax test. Type I errors for the GLMM with random site effects and random494

slopes are notably inflated.495
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B Proof for the variational approximation of the likelihood of496

the497

Assume that the responses come from the exponential family of distributions with density498

f(yij |ri,ui, bj ;Ψ) = exp {(yijηij − b(ηij))/φj + c(yij , φj)}. The variational approximation for499

the marginal log-likelihood can then be obtained as follows500

�(Ψ, ξ) =

∫
log

{
f(y|r,u, b;Ψ)f(r,u;Cσ)f(b;G)

q(r,u)q(b)

}
q(r,u)q(b)d(r,u, b),

=

∫
(log f(y|r,u, b;Ψ) + log f(r,u;Cσ) + log f(b;G)− log q(r,u)− log q(b))

× q(r,u)q(b)d(r,u, b),

=
n∑

i=1

m∑
j=1

Eq{log f(yij |(ri,ui, bj),Ψ)}+
n∑

i=1

Eq{log f((ri,ui;Cσ))}

+

m∑
j=1

Eq{log f(bj ;G)}+
n∑

i=1

Eq{− log q(ri,ui|ξ)}+
m∑
j=1

Eq{− log q(bj |ξ)},

where Eq is expectation with respect to variational density q(r,u, b) = q(r,u)q(b). Expectation501

Eq{− log q(ri,ui)} is the definition to the entropy of q(ri,ui) which equals to log det(2πeAi)/2502

and similarly Eq{− log q(bj)} = log det(2πeAbj)/2. When we omit all quantities constant with503

respect to the parameters, the above equals to504
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�(Ψ, ξ) =
n∑

i=1

m∑
j=1

{
yij η̃ij − Eq∗{b(ηij)}

φj
+ c(yij , φj)

}

+
1

2

n∑
i=1

{
log detAi − Eq

{
(ri,u

′
i)C

−1
σ (ri,u

′
i)
′ + log det(Cσ)

}}

+
1

2

m∑
j=1

{
log detAbj − Eq

{
bj

′G−1bj + log det(G)
}}

=

n∑
i=1

m∑
j=1

{
yij η̃ij − Eq{b(ηij)}

φj
+ c(yij , φj)

}

+
1

2

n∑
i=1

(
log det(Ai)− tr(C

− 1
2

σ2 AiC
− 1

2

σ2 )− a′
iC

−1
σ2 ai − log det(Cσ2)

)

+
1

2

m∑
j=1

(
log det(Abj)− tr(G− 1

2AbjG
− 1

2 )− a′
bjG

−1abj − log det(G)
)

=

n∑
i=1

m∑
j=1

{
yij η̃ij − Eq{b(ηij)}

φj
+ c(yij , φj)

}

+
1

2

n∑
i=1

(
log det(Ai)− tr(C−1

σ2 Ai)− a′
iC

−1
σ2 ai − log det(Cσ2)

)

+
1

2

m∑
j=1

(
log det(Abj)− tr(G−1Abj)− a′

bjG
−1abj − log det(G)

)
,

where η̃ij = β0j+e′i(βe+abj)+vec(Bte)
′(tj⊗ei)+a′

i(1,γ
′
j)

′. The matrixC
−1/2
σ is the square root505

of C−1
σ which means that C

− 1
2

σ C
− 1

2
σ =C−1

σ . This operation is possible for positive semidefinite506

matrices Cσ and G. The same result holds for matrix G.507
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Figure 5: Point predictions for species-specific random slopes and associated 95% uncertainty
intervals from a fourth-corner latent variable model with two latent variables fitted to the ground
beetle data.
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Figure 6: Type I error rates obtained using simulation setup described in Appendix A.1 for
likelihood ratio tests based on GLMM with random intercepts (glmm(r)), GLMM with random
intercepts and slopes (glmm(r + e)), GLLVM with random intercepts (gllvm(2lv + r)), and
GLLVM with random intercepts, slopes, and d = 1, 2 latent variables (gllvm(d lv + r)), and
the pmax test. Generated datasets consisted of n = 40 sites and m = 40 species. Dashed line
is the nominal level 0.05 and dotted lines around nominal level correspond values for sample
proportions which are not significantly different from 0.05.
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Figure 7: Type I error rates obtained using simulation setup described in Appendix A.1 for
likelihood ratio tests based on GLMM with random intercepts (glmm(r)), GLMM with random
intercepts and slopes (glmm(r + e)), GLLVM with random intercepts (gllvm(2lv + r)), and
GLLVM with random intercepts, slopes, and d = 1, 2 latent variables (gllvm(d lv + r)), and the
pmax test. Generated datasets consisted of n = 40 sites and m = 40 species. In the mean model,
we used latent environmental variables xi and latent trait variables zj which were correlated
with the observed environmental ei and observed trait variables tj with correlation of 0.3.
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Figure 8: Type I error rates for likelihood ratio tests based on GLMM with random intercepts
and slopes (glmm(r + e)), GLLVM with random intercepts (gllvm(2lv + r)), and GLLVM with
random intercepts, slopes, and d = 1, 2 latent variables (gllvm(d lv+r)), and the pmax test. The
simulation setup is based on the subsets of the beetle data with (a) n = 80 and m = 40 and (b)
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Multivariate abundance data, consisting of observations of multiple 
interacting species (or other taxonomic group) from a set of samples, 
are often collected in ecological studies to characterize a community 
or assemblage of organisms. The term ‘abundance’ is taken here to 
mean counts, presence–absence records, biomass data or any other 
measure of the extent to which a species may be present at a site. 
Common ecological questions that such data are used to answer in-
clude whether a set of sites is similar in terms of their species com-
position (Bjork, Hui, O'Hara, & Montoya, 2018), finding between 
species interactions and visualization of correlation patterns across 
species (Royan et al., 2016), hypothesis testing of environmental 

effects (Lammel et al., 2018) and making predictions for abundances 
(Buisson, Thuiller, Lek, Lim, & Grenouillet, 2008).

In recent years, there has been a growing movement towards the 
specification of statistical models for multivariate analysis in ecol-
ogy (Ovaskainen, Hottola, & Siitonen, 2010; Ovaskainen et al., 2017; 
Warton et al., 2015). Of particular interest are methods that use ran-
dom effects to incorporate between species correlation in models 
predicting species abundance as a function of environmental vari-
ables, often termed joint species distribution models (Pollock et al., 
2014). One exciting possibility offered by these methods is the poten-
tial to tease apart some of the causes of species co-occurrence – joint 
response to known environmental gradients versus other sources, for 
example, biotic interaction.
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Abstract
1. There has been rapid development in tools for multivariate analysis based on fully 

specified statistical models or ‘joint models’. One approach attracting a lot of at-
tention is generalized linear latent variable models (GLLVMs). However, software 
for fitting these models is typically slow and not practical for large datasets.

2. The R package gllvm offers relatively fast methods to fit GLLVMs via maximum 
likelihood, along with tools for model checking, visualization and inference.

3. The main advantage of the package over other implementations is speed, for ex-
ample, being two orders of magnitude faster, and capable of handling thousands 
of response variables. These advances come from using variational approxima-
tions to simplify the likelihood expression to be maximized, automatic differentia-
tion software for model-fitting (via the TMB package) and careful choice of initial 
values for parameters.

4. Examples are used to illustrate the main features and functionality of the pack-
age, such as constrained or unconstrained ordination, including functional traits 
in ‘fourth corner’ models, and (if the number of environmental coefficients is not 
large) make inferences about environmental associations.

abundance data, generalized linear latent variable models, high-dimensional data, joint 
modelling, maximum likelihood, multivariate analysis, ordination, species interactions
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-
dance data is the generalized linear latent variable model (GLLVM, 

-
eralized linear model to multivariate data using a factor analytic 
approach, that is, incorporating a small number of latent variables 
for each site accompanied by species specific factor loadings to 
model correlations between responses. These latent variables have 
a natural interpretation as ordination axes, but with additional ca-
pacity, for example, predicting new values, controlling for known 
environmental variables, using standard model selection tools to 
choose number of ordination axes (Hui, Taskinen, Pledger, Foster, 
& Warton, 2015). One of the main advantages of GLLVMs is that 
they can handle situations where there are many species, because 
the number of parameters in the covariance model scales linearly 
with the number of responses (Warton et al., 2015). This is a key 
technical challenge – often there are more species being sampled 
than sites, for example, microbial data often have thousands of taxa 

Software for fitting GLLVMs in ecology is currently quite slow 
computationally and not practical for large datasets. In partic-
ular, packages in the freely available software R have been devel-
oped, for example, the boral (Hui et al., 2016 and HMSC packages 

using Bayesian MCMC for estimation, which is relatively slow and 
not practical for large microbial datasets. More technical advances 
provide the opportunity to reduce computation times on some prob-
lems from hours to minutes or minutes to seconds, using variational 
(Hui, Warton, Ormerod, Haapaniemi, & Taskinen, 2017) or Laplace 

-
tomated differentiation software such as Template Model Builder 

This paper presents the R package gllvm
which has been developed for rapid fitting of GLLVMs to multivariate 
abundance data. The package offers a framework for model-based 
ordination, as well as allowing us to study the effect of environmental 
covariates or environment–trait interactions on responses simulta-
neously with the analysis of correlation patterns across species. The 
package also contains tools for statistical inference, model selection 
and visualization. While other R packages have similar functionality 
(Hui, 2016; Tikhonov et al., 2019), the key point of distinction is that 
gllvm fits models much faster than its immediate competitors (e.g. 
see Table 3) and is capable of modelling larger datasets. Version 1.1.7 
of the gllvm package is currently available on the Comprehensive R 

|

abundances, with n rows (usually sites) and m columns of responses 
(usually species). Denote the abundance of the jth species at the 
ith site as yij k environmental variables, or experimental 

treatments, may also be recorded at each site and stored in the vec-
tor xi= (xi1, … , xik)⊤ 𝜇ij 
against environmental variables and a vector of d≪m latent vari-
ables, ui= (ui1, … , uid)⊤:

where 𝜷 j and 𝜸 j are vectors of species specific coefficients related 
to the covariates and latent variables, respectively. The latent vari-
ables ui can be thought of as unmeasured environmental variables, 
or as ordination scores, capturing the main axes of covariation of 
abundance (after controlling for observed predictors xi). We as-
sume that these latent variables are independent across sites and 
standard normally distributed. The parameters 𝛽0j are species-spe-
cific intercepts, while 𝛼i are optional site effects which can be cho-
sen as either fixed or random effects (𝛼i∼N(0, 𝜎2)). The row effects 
𝛼i can be included for site total abundance standardization, that is, 
all other terms in the model can then be subsequently interpreted 
as modelling relative abundance or compositional effects (Hui et 
al., 2015). To ensure that the above model is identifiable, for m>1
, the upper triangular of the loading matrix 𝚪= [𝛾1 … 𝛾m]′ needs to 
be set to zero and the diagonal elements to be set positive to avoid 

further information.
The residual covariance matrix, storing information on species 

co-occurrence that is not explained by environmental variables, 
can be calculated as 𝚺=𝚪𝚪

⊤. This is the correct form of correlation 
when the responses are Poisson distributed. In the case of negative 
binomial distribution with dispersion parameters 𝚽= (𝜙1, … ,𝜙m)⊤

, we adjust the diagonal elements by adding the term log (𝜙j+1), 

𝚺=𝚪𝚪
⊤
+ Im

If q trait covariates tj= (ti1, … , tiq)⊤ are also recorded, we can use 
them to help explain interspecific variation in environmental re-
sponse. This leads to an extension of the so-called ‘fourth corner 
model’ (Brown et al., 2014; Jamil & ter Braak, 2013) where multivar-
iate abundance is regressed against a function of traits and environ-
ment, and the environment–trait interactions represents the fourth 
corner association between traits and environment. The associated 
fourth corner GLLVM then has mean model:

where 𝜷e is a vector of main effects for environmental covariates, 
and 𝜷 I

not included, because main effects on abundance across species are 
absorbed by the intercept term 𝛽0j. This model assumes that all inter-
specific variation in response to covariates is mediated by species, 
which reduces the number of parameters related to covariates from 
mk in Equation 1 to k(q+1) in Equation 2.

In both GLLVM formulations mentioned above, a key feature is 
that the number of parameters characterizing the residual correlation 
𝚪𝚪

⊤ grows linearly with the number of responses m. This contrasts 

(1)g(𝜇ij)=𝜂ij=𝛼i+𝛽0j+x
⊤
i
𝜷 j+u

⊤
i
𝜸 j,

(2)g(𝜇ij)=𝜂ij=𝛼i+𝛽0j+x
⊤
i
𝜷e+ (tj⊗xi)⊤𝜷 I+u

⊤
i
𝜸 j,
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with the quadratic rate of growth when an unstructured residual co-
variance matrix was assumed across responses (Pollock et al., 2014). 
Thus the term u⊤

i
𝜸 j is able to model residual correlation across re-

sponse variables even when the number of species is relatively large.

|

ui's are unobserved and we 
must integrate over their possible values. Specifically, the log-likeli-
hood function we wish to maximize has the form

where 𝝍 includes all model parameters. In this expression, we have 
assumed that abundances are independent across sites and any 
correlation across responses are captured by the latent variables 
ui. Thus conditional on ui, the yij are independent of each other 
within sites.

In the literature, several solutions have been proposed to the 
problem of integration (3), most notably adaptive quadrature (Rabe-
Hesketh, Skrondal, & Pickles, 2002), the Monte Carlo applications 
of the expectation maximization (EM) algorithm (Hui et al., 2015) 
and Bayesian MCMC (Hui, 2016; Tikhonov et al., 2019). For large 
datasets and multiple latent variables, these methods are, however, 
time-consuming.

The gllvm package overcomes these computational problems 
using three key innovations:

• Maximizing the log-likelihood using (almost completely) closed 
form approximation. We provide two ways to do this – using 

overdispersed counts, binary and ordinal responses, or using 
-

nential family distributions when a fully closed form variational 

approximation cannot be obtained, for example, biomass data can 
be modelled by the Tweedie distribution.

• Parameter estimation makes use of automatic differentiation 
software in C++ to accelerate computation times, via the interface 
provided by the R package TMB (Kristensen et al., 2016).

• Careful choice of starting values. In particular, we use a factor 

starting values close to the anticipated solution, optionally, with 
jittering to check the sensitivity of the approach.

The end result is a package that provides more stable solutions, and is 
orders of magnitude faster than current competitors.

| R GLLVM
The R package gllvm provides a flexible implementation for fitting 
GLLVMs to multivariate data. The main function of the gllvm pack-
age is gllvm(), which can be used to fit GLLVMs for multivariate 
data with the most important arguments listed in the following:

Data input can be specified using the ‘wide format’ matrices via 
y, X and TR arguments, or using the long format via data argument, 
and formula is used for model specification (which defaults to in-
cluding linear terms for all variables from X and TR, and all inter-
actions between variables in X and variables in TR). The number of 
latent variables can be defined using the argument num.lv, with zero 
latent variables corresponding to a simple multi-response GLM that 

Wright, & Warton, 2012). The response distribution can be chosen 
using the argument family, and models can be fitted using either 

method = "VA" method = "LA") 
method. The currently available distributions, link functions and 
methods for different response types are listed in Table 1.

(3)

l(𝚿)=
n∑
i=1

log (f(yij,𝚿))

=

n∑
i=1

log

(
∫
ℝd

m∏
j=1

f(yij|ui;𝚿)f(ui)dui

)
,

Counts Poisson Log E(yij)=𝜇ij, V(𝜇ij)=𝜇ij

Log E(yij)=𝜇ij, V(𝜇ij)=𝜇ij+𝜙j𝜇
2
ij
, where 𝜙j>0 is 

a dispersion parameter

ZIP log E(yij)= (1−pj)𝜇ij, P(yij=0)=pj, 
V(𝜇ij)=𝜇ij(1−pj)(1+𝜇ijpj)

Binary Bernoulli probit E(yij)=𝜇ij, V(𝜇ij)=𝜇ij(1−𝜇ij)

 logit

Biomass Tweedie log E(yij)=𝜇ij, V(𝜇ij)=𝜙j𝜇
𝜈
ij
, where 1<𝜈 <2 is a 

power parameter and 𝜙j>0 is a disper-
sion parameter

Ordinal Multinomial probit Cumulative probit model

Gaussian identity E(yij)=𝜇ij, V(yij)=𝜙2
j

Overview of available 
distributions with the mean, E(yij)
, and mean–variance, V(𝜇ij), functions, 
estimation methods and link functions for 
various response types in gllvm
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Other important arguments in the gllvm call are row.eff for 
defining the type of row effects (none, fixed or random), offset for 
potential inclusion of offsets, Power for defining the power parameter 

starting.val for 

2019b). For an overview of the available functions in gllvm, see Table 2.
Below, we demonstrate the main features of the gllvm package 

by example. In the examples, we consider the antTraits data, 
which are available in the R package mvabund (Wang et al., 2012) 
and consist of counts of 41 ant species measured at 30 sites across 

-
ables and five trait variables for each species. The package and the 
data can be loaded as follows:

|

GLLVMs can be used as a model-based approach to unconstrained 
ordination by including (e.g.) two latent variables in the model but 

no predictors (Hui et al., 2015; Walker & Jackson, 2011). The cor-
responding ordination plot then provides a graphical representa-
tion of which sites are similar in terms of their species composition. 
Such a model can be fitted to the antTraits data using the func-
tion gllvm() as given below. We will consider two count distribu-

The default printout includes information criteria, which all sug-
-

tribution for modelling the response. Residual plots for diagnosing 
model fit in Figure 1 can be obtained using the plot() function. Two 
plots for both models are of Dunn-Smyth residuals, which are ran-
domized quantile-based residuals designed for discrete data (Dunn & 
Smyth, 1996), plotted against linear predictors, and a normal quan-
tile–quantile plot with a simulated point-wise 95% confidence inter-
val envelope. The residual diagnostics for the Poisson model show 
some overdispersion in residuals, in particular, a telltale fan shape 
in the plot of residuals against fitted values. These issues are largely 

Overview of functions available in gllvm

Function

gllvm() Fits a generalized linear latent vari-
able model

anova.gllvm() gllvm’ 
objects

coefplot.gllvm() Plots covariate coefficients and 
confidence intervals

logLik.gllvm() Log-likelihood of an object of class 
‘gllvm’

residuals.gllvm() Dunn-Smyth residuals for ‘gllvm’ 
model

summary.gllvm() Summarizing ‘gllvm’ model fits

ordiplot.gllvm() Plots latent variables from a ‘gllvm’ 
model

plot.gllvm() diagnostics for a ‘gllvm’ object

confint.gllvm() Confidence intervals for ‘gllvm’ 
model parameters

predict.gllvm() Obtains predictions from a ‘gllvm’ 
model

getResidualCov.gllvm() Calculates residual covariance ma-
trix for a ‘gllvm’ fit

getResidualCor.gllvm() Calculates residual correlations for a 
‘gllvm’ fit

getPredictErr.gllvm() Prediction errors for predicted 
latent variables

simulate.gllvm() Generate new data based on a 
‘gllvm’ fit

Computation times in seconds (on an Intel Core 
i7-3770 (3.4 GHz)) to fit the example GLLVM objects of this paper 
using gllvm and boral (with default settings) using. The gllvm 
reduces computation times from minutes to seconds for each 
example

 fit _ ord fit _ env fit _ 4th
Gllvm 4.0 10.0 10.3

boral 595.4 1,483.6 1,529.9
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provide some capacity to account for overdispersion, so overdis-
persed counts do not always require us to move beyond the Poisson 
distribution, although there is clear evidence of such a need in this 
example.

Once an appropriate model has been established for the data, we 
can construct an ordination as a scatter plot of the predicted latent 
variables via the ordiplot() function. The species with the largest 

factor loadings (largest norms, ||𝜸 j||), and hence most strongly associ-
ated with ordination scores, can be added using the logical argument 
biplot, leading to a biplot for finding indicator species corresponding 
to specific sites. The ind.spp argument defines the number of species 
to be plotted.

Dunn-Smyth residuals are plotted against linear predictors (left), while simulated point-wise 95% confidence interval envelope is added 
in the normal quantile–quantile plot (right). The fan shape and unusually large residuals for the Poisson GLLVM suggest data are slightly 

to the data
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The above command creates the biplot as shown in Figure 2 
based on the GLLVM fitted to the antTraits data. We can see one 
large cluster of sites on the top with many indicator species, and few 
smaller clusters with only few indicator species, for example, sites 

-
tion methods to the ant data and compare the results. While the re-
sults between GLLVMs and the algorithm-based methods are quite 

similar, GLLVMs offer the advantage of standard tools for diagnosing 
model fit and performing model selection.

|

Environmental variables can be included in the model, whether to 
study their effects on assemblages or to study patterns of species 
co-occurrence after controlling for environmental variables.

offered the most suitable mean–variance relationship for the 
responses.

The estimated coefficients for predictors and their confidence 
intervals can be plotted using the coefplot() function, in order to 
study the nature of effects of environmental variables on species.

GLLVM fitted to the ant data. The numbers correspond to the site 
indices
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a unit change covariate l equates to a multiplicative change of exp (𝛽jl) 
in the predicted mean 𝜇̂ij for species j. Most of the 95% confidence 
intervals include zero, indicating that the majority of the species does 
not exhibit evidence of a strong association between environment and 
species abundance. This may be due to a lack of information in the 
data, as much as being due to a lack of environmental association after 
accounting for potential residual species covariation.

|

Latent variables induce correlation across response variables, and so 
provide a means of estimating correlation patterns across species, 
and the extent to which they can be explained by environmental 

stored in the factor loadings, and the getResidualCor() function 
can be used to estimate the correlation matrix of the linear predictor 
across species. This can be visualized using the corrplot package:

Regions coloured in dark blue on Figure 4 indicate clusters of 
species that are positively correlated with each other, after con-
trolling for covariation in species explained by the environmental 

terms in fit _ env. There are also two regions coloured in red, in-
dicating negative correlation between pairs of species. The effect 
of the environmental variables on the between species correla-
tions can be seen by comparing the correlation matrix in Figure 4 
to the correlation matrix given by the model without environmen-

patterns are considerably different from one another. Correlations 

of residual covariances obtained via the getResidualCov() 
function can be used to quantify the amount of variation in the 
data explained by environmental variables (Warton et al., 2015), 

|

In the previous section, environmental associations were studied 
by fitting separate terms for each species, without attempting to 
explain why different species respond differently to the environ-

explain why species differ in environmental response. The fourth 
corner model in Equation 2 can be fitted by using the argument TR 
to include traits, and the argument formula is used to specify the 
model.

Residual correlation matrix 
based on latent factor loadings for the 
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co-

efplot(). The environment–trait interaction terms, also known as 
the fourth corner terms, can also be visualized using the function 
levelplot() from the package lattice
example code. The resulting plots in Figure 5 indicate that interac-
tions of the trait variable Polymorphism with Bare.ground and 
Webers.length with Volume.lying.CWD have the strongest ef-

Pilosity and Polymorphism 
are factors and gllvm() recognizes this.

By using a maximum likelihood framework, gllvm offers likeli-
-

ample is likelihood ratio testing via the anova() function when 
comparing nested models. In Figure 5, for example, all the trait–envi-
ronment interactions appear to be relatively small and most of the 
confidence intervals of the coefficients include zero values. But to 
formally test whether these traits vary environment, in the below 
code, we fitted a second model without traits and performed a like-

from the one which has species specific coefficients for environ-
mental variables, we include TR matrix to the function call.

Based on the output from applying the anova() function, the p-
value suggests that the simpler model where traits were not included 
is more appropriate, that is, there is no strong evidence of traits medi-
ating the environmental response of species.

The validity of any model-based inference procedure relies on 

is based on fit _ 4th, a model that made the strong assumption 
that all interspecific variation in environmental response is captured 
by the trait in the model. Tests based on such models can have in-
flated false-positive rates when this assumption is violated, as can 
be shown using simulations with missing trait predictors (ter Braak, 
2019). We are working on an extension of our model, using a random 
slope across species, to capture variation in environmental response 
not captured by the trait model. Tests based on such a model can be 

expected to have much-improved robustness to missing predictors 
in the trait model.

|

In this paper, we introduced the R package gllvm for the analy-
sis of multivariate abundance data using GLLVMs. The package 
caters for the types of response variables most commonly seen 
in ecology, including presence–absence data, overdispersed 
counts, biomass and ordinal data. The main point of difference 
between gllvm and other packages for fitting GLLVMs (Hui, 
2016; Tikhonov et al., 2019) is that our algorithm is much faster 
for model-fitting, and thus capable of handling much larger data-
sets. Computational efficiency was achieved by avoiding MC 
approaches to estimation, and instead making use of recent in-
novations for maximum likelihood estimation as discussed in 
Estimation. Table 3 illustrates this by comparing the computation 
time of gllvm to boral with default settings (40,000 total itera-
tions, warm-up at 10,000, thinning at 30), for the three example 
models of this paper. Computation times were over 140 times 
shorter when using gllvm, analysing the data in seconds rather 

and differences in computation time become practically meaning-
ful for larger datasets. For example, for the metagenomic dataset 

a two latent variable model without predictors in 15 min, while 
boral (under default settings) took 10 hr, without achieving con-
vergence. Even larger datasets again can be handled by gllvm, 
for which analysis is otherwise infeasible with currently available 
packages.

gllvm and competing 
packages is that it uses a maximum likelihood framework, and thus 
can employ likelihood-based tools for inference. Familiar generic 
R functions like AIC, BIC and anova can be applied to gllvm ob-
jects, although as previously we emphasize that anova results will 
only be reliable when testing hypotheses concerning a relatively 
small number of parameters. To compare, packages that fit GLLVMs 
under a Bayesian framework would return full posterior distribu-
tions for both parameters and latent variables (Hui, 2016; Tikhonov 
et al., 2019), while our likelihood-based framework returns approx-
imate confidence intervals for parameters, assuming estimators are 
normally distributed. On the other hand, performing Bayesian hy-
pothesis testing presents a bigger challenge compared to using like-
lihood-based hypothesis testing as the gllvm package implements.

The GLLVM framework is distinct from methods historically used 
for ordination in ecology, such as non-metric multi-dimensional scal-
ing (nMDS, as in vegan, Oksanen et al., 2018) and duality diagrams 
(as in ade4
a GLLVM specifies a statistical model for the data intended to cap-
ture key data properties. In particular, multivariate abundance data 
typically have a strong mean–variance relationship, which if not ac-
counted for, often introduces artefacts into analyses (Warton & Hui, 
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2017; Warton, Wright, & Wang, 2012). Specifying a statistical model 
that aims to capture this mean–variance relationship, and using di-
agnostic tools to check its adequacy (Figure 1), can avoid this issue.

In the future, we plan to broaden the scope of the gllvm pack-
age to handle spatial and temporal correlations that often charac-
terize observational multivariate abundance data, by allowing the 
latent variables to be structured rather than assuming independence 
across observational units. We will also extend the fourth corner 
models by including species-specific random slopes for the predic-
tors, to account for interspecific variation in environmental response 
that is not explained by traits. The code repository for the package 
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