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As proof-of-principle of chemically selective, spatially resolved imaging of individual bonds, 

we carry out electron energy-loss spectroscopy (EELS) in a scanning transmission electron 

microscope (STEM) on atomically precise, thiolate-coated, gold nanoclusters linked with 

5,5′-bis(mercaptomethyl)-2,2′-bipyridine dithiol ligands. The images allow the identification 

of bridging disulfide bonds (R-S-S-R) between clusters and X-ray photoelectron spectra 

(XPS) support the finding. 

TOC GRAPHICS

KEYWORDS Gold nanoclusters, linking, Electron energy-loss spectroscopy, X-ray 

photoelectron spectroscopy. 

Rapid progress is being made toward chemically selective atomically resolved microscopy, what 

may be regarded as the chemists’ ideal structural tool. An example is the recent demonstration of 

imaging vibrational local modes inside a molecule through tip-enhanced Raman 

spectromicroscopy.1 This involves measurements in the atomistic near-field, suitable for planar 

molecules. In contrast, the combination of scanning transmission electron microscopy (STEM) 

and electron energy-loss (EELS) microscopy provides a far-field method for chemically selective 
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atom-resolved spectromicroscopy, which has been implemented primarily to image the chemical 

structure of hard materials.2-5 Its implementation in soft, organic materials has been limited due to 

the damage induced by the high energy electrons. With increasing detection sensitivity and energy 

resolution of electron analyzers, STEM-EELS can be expected to find wider use in direct chemical 

structure determination, where other methods may fail. We demonstrate this in the present, by 

imaging the disulfide-bridging bond between atomically precise, thiolate-coated gold 

nanoclusters, which was anticipated but could not be definitely established by standard 

spectroscopic means.

Monolayer protected gold nanoclusters have attracted attention due to their physicochemical 

properties and applications such as surface chemical modification.6-9 Of interest are gold 

nanoclusters with >200 gold atoms, which sustain localized surface plasmon resonances (LSPR) 

that can be tuned by modifying their immediate surroundings.10,11 Modification of the nanocluster 

surface is necessary for assembly and implementations in biology, medicine or electronics.6,7,12 

Ligand-exchange reactions are commonly used for this purpose, and bifunctional ligands are used 

to interconnect nanoclusters into superstructures with tunable optical and electronic 

properties.10,12-17 The precisely-defined structural units and their ease in self-assembly allow 

systematic studies of emergent LSPR properties in individual superstructures, with the recognition 

that the linkage plays an important role in defining all such properties.18 A predicate for such 

studies is the detailed knowledge of the chemical structure. 
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Figure 1. The suggested structure of two Au230 nanoclusters linked by 5,5′-bis(mercaptomethyl)-

2,2′-bipyridine (BMM-BPy) dithiols. Indicated are the lengths of the dithiol (1.2 nm), and the 

disulfide bond (0.2 nm).  

We recently presented a versatile approach to covalently link Au210-230(p-MBA)70-80 nanoclusters 

(Au230) into covalently linked dimers, trimers, and multimers.17 Based on the analysis of reaction 

yields and Monte Carlo kinetic models, we speculated on reaction routes involving different 

linkages:19 a single dithiol, or two to three dithiols fused by (-S-S-) disulfide bonds, as illustrated 

in Figure 1. This was indirectly supported by the observation of inter-cluster separations of 1 - 

2.85 times the length of a dithiol molecule.19 However, conclusive spectroscopic proof could not 

be obtained through methods such as single-particle Raman, because of the spectral congestion by 

the thiolate-stapled gold clusters. To characterize the individual structures, it is necessary to 

combine high-resolution microscopy and high-sensitivity spectroscopy.2,3,20 Electron microscopy 

has the capability to measure individual nanostructures.3,4,21,22 STEM has previously been used to 

characterize the organic/inorganic, thiolate-protected gold nanoclusters on the sub-nanometer 

scale.4,22,23 Here, to visualize the linkage, we employ EELS during STEM imaging, as previously 

implemented to study 2D materials and larger nanoparticles.3-5 In addition, we exploit X-ray 

photoelectron spectroscopy (XPS) to provide complementary support.20 The combination of these 

analytical tools allows the simultaneous structural and spectral analysis of individual 

nanostructures.
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Figure 2. XPS of sulfur (a) 2p and (b) 2s spectra on Au230 linked oligomers.  The 2p signal is fitted 

to two spin-orbit split doublets 2p1/2 and 2p3/2, and consistent with that, the 2s spectrum is fitted to 

two peaks of the same relative intensity. The red peaks are assigned to S-Au and the blue peaks 

are assigned to S-S bound sulfur, respectively. 

XPS allows elemental analysis of oligomers but lacks the sensitivity to pinpoint individual bonds 

(See SI experimental methods). The presence of gold, carbon, and a trace amount of oxygen is 

established through measurements of the core-level spectra of Au 4f, C 1s, and O 1s (Fig. S1). The 

XPS core-level band around 84 eV is similar to bulk gold, with a linewidth (see Table S1) 

consistent with nanoclusters of approximately 4 nm in diameter.20 In Fig. 2, we show the 

photoemission spectra of the S 2p and S 2s core-levels. The 2p transition consists of spin-orbit 

split doublets and the spectrum in Fig. 2(a) shows two doublets. The red doublet with the 2p3/2 

component at 162.45 eV is assigned to the sulfur atoms chemically-bonded to gold atoms (S-Au). 

Similar binding energies at 162.6 eV,24 162.8 eV,25 and 162.9 eV26 have been observed before in 
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the thiolate-protected gold nanoclusters. The blue doublet, with 2p3/2 component at 164.6 eV, is 

admittedly weak. Confidence in this spectral decomposition is established by its consistency with 

the S 2s spectral profile shown in Fig. 2(b), which is best fitted to two peaks at 226.7 eV and 228.5 

eV, with similar relative peak intensities as in the S 2p doublet pair. The measured energy of the 

blue doublet is in excellent agreement with the earlier work of Siegbahn and Verbist, where the 

same signal at 164.6 eV was assigned to the disulfide group (R-S-S-R) that bridges dithiol 

molecules.27 As such, we assign the components at 162.5 eV and 164.6 eV in the S 2p band, and 

226.7 eV and 228.5 eV in the S 2s band to S-Au and S-S bonded sulfur atoms, respectively. The 

assignment establishes the presence of disulfide bonds but lacks the sensitivity to observe them in 

individual covalently-linked clusters.

Aberration-corrected STEM images of a monomer, dimer, and trimer of Au230 clusters mounted 

on a graphene-coated grid are shown in Fig. 3(a). The images are obtained at 80 kV, with current 

and exposure time reduced to minimize e-beam damage, while retaining sufficient imaging 

contrast. Close-ups of individual Au230 clusters are provided in Fig S2, where lattice fringes of
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Figure 3. Atomic-level EELS mapping of covalently-linked gold oligomers: (a) STEM image, (b) 

EELS spectrum showing the opening of scattering channels at S L-edge and C K-edge, (c) 

Logarithmic intensity plot of the sulfur elemental map.

the face-centered-cubic arrangement can be seen, and the cluster diameter can be established as 

~1.8 nm, in agreement with our prior estimate of 1.7±0.1 nm.28 The sample was prepared by 

dispersing a trimer solution purified by polyacrylamide gel electrophoresis (PAGE), however an 

overview of the dry-mounted clusters shows a wide distribution of superstructures (see Fig. S3).  

As earlier described,19 dithiol-linked gold structures are dynamic in nature: they undergo 

continuous breaking and forming of superstructures. The EELS spectrum recorded under the same 

STEM imaging conditions is shown in Figure 3(b). In the core loss region >100 eV, the spectrum 

shows the characteristic edges of sulfur (165 eV), carbon (284 eV) dominated by the graphene 
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grid, and trace amounts of nitrogen (401 eV) and oxygen (532 eV). The complete EELS spectrum 

is provided in Figure S4. The integrated S loss channel (highlighted in green in Fig. 3b) is mapped 

in Fig. 3(c) and Figure S5. The maps image the 70-80 sulfur atoms distributed on each Au210-230(p-

MBA)70-80 cluster (close-ups provided in Fig. S6).   

   Line profiles of the elemental sulfur images in Figure 4 explore the inter-cluster bridges. The 

four images contain the variations seen (for close-ups, see Figs. S6 and S7). In Figs. 4(a) and (b), 

we see a clear intensity peak between the linked dimers, suggestive of a disulfide bond. Note, the 

pixel resolution is 0.16 nm, as such the two S atoms of the 0.2 nm-long S–S bond cannot be 

expected to be resolved. The intensity profile along the orange line in Fig. 4(c) is informative. It 

shows a peak between the first two clusters, similar to those in 4(a), (b). No such peak is found 

between the subsequent pairs. Indeed, the inter-cluster separation between clusters 2-3 and 3-4 of 

~ 1 nm could only accommodate a single dithiol linker, and therefore a disulfide bond is not 

expected. The image of an isolated dimer bound by a single 1.2 nm dithiol, absent bridging sulfur, 

is provided in Fig. S8. In Fig. 4(d), we show the sulfur intensity profiles along with two-line cuts 

of a trimer. The orange line cuts across two nanoclusters, while the vertical cyan line passes 

through all three. The profile along the orange line is similar to those in Fig. 4(a) and (b), consistent 

with a disulfide linkage. The profile along the cyan line shows additional weak peaks ~0.5 nm 

apart between nanoclusters separated by ~1.5 nm, consistent with two disulfide bridges, therefore 

three dithiol molecules linking the two nanoclusters. In all cases, the intercluster separations are 

consistent with the expected number of dithiol linkers, and the visualized disulfide bonds, in full 

agreement with our prior hypothesis and finding on distances between nanoclusters (1- 2.85 times 

the length of BMM-BPy. 
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Figure 4. (a)—(d) The cross-section profiles of sulfur intensities taken along the lines indicated in 

the inset images. The inset images 4(a)—(d) are the same as the enlarged yellow-coded images 

shown in S5(a)—(d), respectively. 

We have demonstrated that the combination of STEM and EELS already allows the visualization 

of chemical bonds and structure in real space. In the present implementation, we determined the 

disulfide linkages between dithiol-bound Au230 clusters, which to date was the subject of 

speculation. The nature and composition of the molecular bridges were also confirmed through 

XPS measurements. The combination of the three techniques provides comprehensive chemical 

analysis, which can be expected to have broader use as the resolution and sensitivity electron 

microscopies advance. The particular finding here, namely the bonding motif between 
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nanoclusters is important to advance our understanding of the optical and electronic response of 

superstructures with emergent plasmonic response.

ASSOCIATED CONTENT

Supporting Information. The Supporting Information is available free of charge on the ACS 

Publications website at DOI: 

Description of the experimental methods and measurements; Au 4f, C 1s, and O 1s 

photoemission spectra along with the FWHM values; STEM micrographs of gold nanoclusters; 

EELS spectrum of covalently-linked nanoclusters; intensity plot of sulfur elemental map derived 

from EELS spectrum; cross-section profiles of sulfur intensities.
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