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Abstract: Miniaturized hyperspectral imaging techniques have developed rapidly in recent years
and have become widely available for different applications. Combining calibrated hyperspectral
imagery with inverse physically based reflectance models is an interesting approach for estimating
chlorophyll concentrations that are good indicators of vegetation health. The objective of this study
was to develop a novel approach for retrieving chlorophyll a and b values from remotely sensed data
by inverting the stochastic model of leaf optical properties using a one-dimensional convolutional
neural network. The inversion results and retrieved values are validated in two ways: A classical
machine learning validation dataset and calculating chlorophyll maps from empirical remotely sensed
hyperspectral data and comparing them to TCARI

OSAVI , an index that has strong negative correlation with
chlorophyll concentration. With the validation dataset, coefficients of determination (R2) of 0.97 were
obtained for chlorophyll a and 0.95 for chlorophyll b. The chlorophyll maps correlate with the TCARI

OSAVI
map. The correlation coefficient (R) is −0.87 for chlorophyll a and -0.68 for chlorophyll b in selected
plots. These results indicate that the approach is highly promising approach for estimating vegetation
chlorophyll content.

Keywords: optical properties; convolutional neural network; deep learning; chlorophyll; stochastic
modeling; physical parameter retrieval; forestry

1. Introduction

Forests play an important role in the atmospheric carbon cycle. Growing forests serve as carbon
sinks as well as a providers of various ecosystem services [1]. The condition of forests, however,
is endangered by, among other factors, degradation by anthropogenic pressures on land use and forest
resources. In addition, biotic factors such as insect damage and fungal diseases, along with abiotic
risks due to climate factors (such as storm or drought), form a constant threat to the general health and
carbon sequestration capability of forests [2,3].

In monitoring the health of forests, a key factor is their photosynthetic capacity. There exists
several options for monitoring this capacity. One is to quantify the amount of chlorophyll a and
b, which have been shown to have strong correlation with tree health [2]. Hyperspectral imaging
technologies have developed greatly in recent years and are today available for practical use and are
highly interesting for forest health monitoring [4].

Physical parameter retrieval from hyperspectral images is a difficult task that concerns estimating
the values of different biophysical parameters from spectral data [5]. According to Verrelst et al.,
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the methods for biophysical parameter retrieval can be divided into four categories [6,7]: parametric
and non-parametric regression methods, physically based methods, and hybrid methods. Parametric
regression methods directly take the spectral data and make estimations based on them, such as
spectral indices. Non-parametric regression generally means using machine learning methods directly
on the measured data. Physically based methods are based on physical cause–effect relationships of
the interaction of light and matter. Hybrid methods are combinations of the previous three methods,
in which a machine learning algorithm and a physically based model are typically used. A physically
based model is inverted by teaching the machine learning algorithm using the outputs of the model as
inputs and the inputs of the model as outputs. Once it has been taught, the machine learning algorithm
can then receive inputs in the form of spectra and provide results in the form of a desired parameter
value. In this article we develop a methodology that belongs to the hybrid method category.

The hyperspectral datasets used in remote sensing applications can be based on imaging or
non-imaging spectrometers [4]. The convolutional neural networks (CNNs) have been shown to be
powerful in regression and classification tasks with both data types [8–12]. In such networks, the dense
layers that utilize matrix multiplications are replaced with convolutional layers [13].

Chlorophyll retrieval from hyperspectral images of a forest by model inversion has been studied
previously [14,15]. Croft et al., for example, found promising results for inverting a PROSPECT
models [16] using lookup tables [14]. However, this approach inverts the function only point-wise,
when it would be useful to have a more precise approximation of the true inverse function. In another
example, Atzberger et al. [15] used artificial neural networks to invert the PROSPECT+SAIL model [17].
However, neural network research has progressed significantly since these attempts, and particularly,
CNNs have become popular in recent years.

Machine learning and artificial neural networks have been previously used in different physical
parameter retrieval applications. For example, the density and depth of snow cover have been retrieved
utilizing microwave image satellite data and a model for brightness temperature, which was inverted
using an artificial neural network. The results were verified with on-site measurements with good
accuracy [18]. Notarnicola et al. compared two methods, neural network and Bayesian method,
for soil moisture retrieval. In their study, training data were simulated and validation data were on-site
measurements, and the neural network outperformed the Bayesian approach [19]. Trombetti et al. used
a radiative transfer model inverted by an artificial neural network in retrieving the water content of a
canopy. The results correlated well with the amount of rain in the research area [20]. In another study,
a generalized radial basis function neural network was used to retrieve optically active parameters of
seawater from hyperspectral images [21]. This study concluded that the neural network outperformed
other algorithms that are typically used in the field.

Although there is a significant amount of research on using neural networks in physical parameter
retrieval, there appears to be a lack of research on using CNNs in such retrieval. The objective of
this study is to develop a model for non-invasive prediction of chlorophyll values. This is achieved
by solving the inverse function of the stochastic model of leaf optical properties (SLOP) [22,23] with
respect to chlorophyll a and b values by utilizing a one-dimensional convolutional neural network
(1DCNN). Our proposed model utilizes the SLOP for CNN training, and then uses the trained network
to predict the chlorophyll values in the hyperspectral image of a forest. We selected SLOP for inversion
because it is mathematically appealing and it appears to have the potential to be more accurate when
compared to plate or Kubelka–Munk models [24] while the simulations are still fast enough.

2. Materials and Methods

2.1. Stochastic Model of Leaf Optical Properties

SLOP is a stochastic model of leaf optical properties based on Markov chains. It was first
introduced by Tucker and Garratt in 1977 [23] and improved by Maier et al. in 1999 [22]. It takes leaf
properties (see Table 1) and wavelength as an input and calculates leaf reflectance, transmittance, and
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absorbance. The basic idea of the stochastic modeling approach is that the leaf is modeled as a network
of different states and their connections. For each connection, there is a corresponding probability
for transition between states. The possible transitions in a leaf are described in Figure 1. The black
boxes are end states where the only possible transition is to itself. In each layer of the leaf (see Figure 1)
the photon goes to the next layer (or out), goes to the previous layer (or out) due to scattering, or it is
absorbed into the layer. Each of these can also happen after scattering and therefore each layer contains
four basic states: down, up, absorbed, and scattered. In addition, there are two white illumination
states—for input—and four end states on the outside of the leaf. For each of these events probabilities
are calculated based on the layer structure and pigment concentrations with the help of Beer’s law.
For each transition, the probability is calculated as follows:

1. For each up (similarly down) state, the up (down), scattering and absorption probabilities are

Pabsorption(λ) =
a(λ)

a(λ) + s
· (1 − e−(a(λ)+s)·L), (1)

Pscattering(λ) =
s

a(λ) + s
· (1 − e−(a(λ)+s)·L), (2)

Pup (down)(λ) = 1 − Pabsorption − Pscattering. (3)

2. For each scattered state the scattering and absorption probabilities are same as for the up and
down states on the same layer. The up and down probabilities are

Pdown(λ) = Pup(λ) =
1 − Pabsorption − Pscattering

2
. (4)

3. The probability of direct reflection is given as a parameter and the probability of entering the first
layer is 1 − Pdirect reflection.

4. The probability of going from absorbed state, reflected state, or emitted state to itself is 1.
5. All other transition probabilities are 0.

In the previous equations,

• a(λ) is the absorption coefficient,

a(λ) =
π

4
· (1 + 2e−ρ(λ)

ρ(λ)
+

2(e−ρ(λ) − 1)
ρ(λ)2 ) · d2

chloroplast · cchloroplast + aH2O(λ) · wH2O, (5)

where
ρ(λ) =

6
π

· 1
d2

chloroplast · cchloroplast
∑

pigments
ai · ci, (6)

• s is the scattering coefficient,
• L is the length of the light path, which is assumed to be the same as the thickness of the layer,
• ai are the absorption coefficients of the pigments (chlorophyll a, chlorophyll b, beta-carotene,

lutein, violaxanthin, neoxanthin) [22,25–29] and
• ci are their concentrations,
• aH2O and wH2O are the absorption coefficient [30–32] and volume concentration (cm3/cm3) of

liquid water, and
• dchloroplast is the diameter of chloroplast (cm) and cchloroplast is its concentration (1/cm3).
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Figure 1. Diagram representation of stochastic model of leaf optical properties (SLOP). A tree leaf is
assumed to have two major layers: a palisade layer and a spongy layer. In both layers, a photon can go
straight through, be absorbed or scatter until it is absorbed or it moves to the previous or next layer.
Adapted from [22].

Table 1 shows the inputs and constants SLOP uses to calculate the previously introduced probabilities.

Table 1. Constants and variables used in making training, testing, and validation data with SLOP.
The training, testing, and validation data consist of 500,000 spectra made with SLOP. Each spectrum
is produced by taking a random value from each interval in the table and calculating SLOP for each
specified wavelength. The spectra are divided into training, testing, and validation data randomly,
with constant sizes.

Leaf Layer
Palisade Spongy

Variables

Chlorophyll a concentration (mg/cm3) [1, 10] [0, 4]
Chlorophyll b concentration (mg/cm3) [0.5, 5.5] [0, 3]
β-carotene concentration (mg/cm3) [0, 1] [0, 0.5]
Lutein concentration (mg/cm3) [0, 1] [0, 0.5]
Violaxanthin concentration (mg/cm3) [0, 0.5] [0, 0.25]
Neoxanthin concentration (mg/cm3) [0, 0.5] [0, 0.25]
Water content (cm3/cm3) [0.8, 1] [0.1, 0.5]
scattering coefficient (1/cm) [3.5, 5.5] [1000, 1100]
Probability of direct reflection [0.4, 0.06]

Constants
Chloroplast diameter (cm) 0.0005
Chloroplast concentration (1/cm3) 5 × 10−9 6.7 × 10−8

Thickness (cm) 0.0069 0.0069

Mathematically, the Markov chain is handled as a matrix multiplication routine. The algorithm is
the following:

1. Initialize the state vector: The initial state of the network of states, for example “all photons
coming from above, none inside” corresponds to the following state vector:
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x0

x1

x2
...

xk


0

=


1
0
0
...
0


2. Matrix multiplication: The new state vector is the transition probability matrix multiplied with

the old state vector:


x0

x1

x2
...

xk


n+1

=

P0,0 P0,1 . . . P0,k
...

... . . .
...

Pk,0 Pk,1 . . . Pk,k




x0

x1

x2
...

xk


n

3. Check the end condition: If the new and old state vectors are close enough to each other, end;
otherwise, repeat from step 2. If

∣∣∣∣∣∣∣∣∣∣∣∣


x0

x1

x2
...

xk


n+1

−


x0

x1

x2
...

xk


n

∣∣∣∣∣∣∣∣∣∣∣∣
< ε,

then each xi in the final state vector corresponds to the probability that the photon will end up in
that state.

In this research, SLOP was used in making training, testing, and validation datasets for 1DCNN
training. The input wavelengths depended on the validation scheme. With simulated validation data
wavelengths from 400 nm to 2500 nm with 10 nm spacing were used and with empirical validation data
the first 19 wavelengths from Table 2 were used. The other inputs for SLOP are described in Table 1.
Example spectra produced with SLOP can be seen in Figure 2.

Figure 2. Two spectra produced with SLOP. The graph on the left is produced with minimum values
from Table 1 while the graph on the right is produced with maximum values.

2.2. Convolutional Neural Network

Convolutional neural networks (CNN) were first introduced by LeCun and Bengio in 1995 [13].
Traditional dense neural networks with hidden layers are based on matrix multiplication [33], where
a convolutional layer replaces multiplication with convolution. CNNs are considered especially
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powerful for image-related tasks, such as image classification [8,9], or regression problems concerning
images, such as object detection [10]. Altogether, CNN has been found to work well with signals [11,12].

The used 1DCNN architecture is described in Table 3. It consisted of 1D convolution with 64
filters and a kernel size of 3, 1D pooling with a kernel size of 3, another 1D convolution with a kernel
size of 3 and 128 filters, 15% dropout, a 100-filter dense layer and a dense output layer, and batch
normalization [34] at the beginning and after each convolution layer. Input shape, and therefore the
shape of each layer, depended on the shape of the training data. In this study, two different input data
shapes were used. For the simulated validation data, the input data had a length of 210 and in the case
of remotely sensed validation data it had a length of 19. Each layer that had an activation function
used rectified linear unit activation [35]. The Adam optimizer was used [36], with a learning rate of
0.001, β1 = 0.9, β2 = 0.999, and ε = 10−7. The loss score was mean square error (MSE) [37], and the
accuracy score was the coefficient of determination or, as it is also called, the r2-score [38]. The dropout
layers and batch normalization were added to reduce overfitting and also to help transition from the
simulated data to the noisy empirical data.

All neural network implementation was performed with a Keras [39] package using the
TensorFlow [40] backend. The computer used in neural network training had an Nvidia GT1080
16 Gb GPU.

Training data for the 1DCNN was split from the dataset produced by SLOP. For simulated data
validation these data were used as they were, and for the case with remotely sensed data some
Gaussian noise (M = 0, SD = 0.025) was added to the data. In both cases chlorophyll a and b estimators
were trained separately.

2.3. Empirical Dataset

The empirical test site was located in the Vesijako experimental forest area in the municipality of
Padasjoki in southern Finland. The test site was covered by young to middle-aged forest dominated
by birch (Betula pendula), with spruce (Picea abies) as a secondary tree species. The flight campaign
was carried out on 26 June 2014 from 12:09 to 12:22 using a hexacopter UAV. The weather conditions
were cloudy. The hyperspectral images were captured using a 2D frame format hyperspectral camera
based on a tunable Fabry–Pérot interferometer (FPI). The flying height was 88 m from the ground level,
providing an average ground sampling distance (GSD) of 8.8 cm for the FPI images at ground level;
the flight height was 67 m from the tree treetops, giving a GSD of 6.7 cm at the treetops. Hyperspectral
orthophoto mosaics were calculated with a 10 cm GSD and calibrated to reflectance units using
the Finnish Geospatial Research Institute’s (FGI) in-house mosaicking software. The wavelengths
measured were from 507.6 nm to 885.6 nm, of which only 19 wavelength bands up to 671 nm were
used for neural network training and validation. All wavelengths were available for index calculations.
Table 2 presents wavelength and full width of the half maximum (FWHM) values in detail. Example
spectra can be seen in Figure 3. For details of the datasets and post-processing, see Nevalainen et al. [41]

Table 2. Wavelength and full width of the half maximum (FWHM) values of the measured
hyperspectral data [41].

Wavelength (nm): 507.60, 509.50, 514.50, 520.80, 529.00, 537.40, 545.80, 554.40, 562.70, 574.20, 583.60, 590.40,
598.80, 605.70, 617.50, 630.70, 644.20, 657.20, 670.10, 677.80, 691.10, 698.40, 705.30, 711.10,
717.90, 731.30, 738.50, 751.50, 763.70, 778.50, 794.00, 806.30, 819.70

FWHM (nm): 11.2, 13.6, 19.4, 21.8, 22.6, 20.7, 22.0, 22.2, 22.1, 21.6, 18.0, 19.8, 22.7, 27.8, 29.3, 29.9, 26.9,
30.3, 28.5, 27.8, 30.7, 28.3, 25.4, 26.6, 27.5, 28.2, 27.4, 27.5, 30.5, 29.5, 25.9, 27.3, 29.9
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Table 3. The architecture of the used one-dimensional convolutional neural network (1DCNN).

Layer Kernel/Pool Size Filters/
and Activation Units

Batch Normalization
Conv1D 3 ReLU 64
Batch Normalization
MaxPooling1D 3
Conv1D 3 ReLU 128
Batch Normalization
Dropout (0.15)
Flatten
Dense ReLU 100
Dense ReLU 1

Optimiser: Adam
Loss: Mean square error
Accuracy: r2-score

2.4. Validation

The results of the neural network training were validated in two different ways. The first
corresponds to an ideal scenario: The validation data are produced by SLOP and the assessment
represents a case in which the measurements are noiseless and perfectly calibrated. In the second
scenario, the inversion model was validated with empirical hyperspectral UAV data from a boreal
forest. The second scenario can be further divided into three subscenarios:

1. Calculation of chlorophyll a and b maps and comparison with the TCARI
OSAVI index (TCARI =

transformed chlorophyll absorption reflectance index, OSAVI = optimized soil adjusted vegetation
index), a spectral index that is known for having a strong negative correlation with chlorophyll
concentration [42],

2. Comparison of simulated and measured TCARI
OSAVI indices,

3. Chlorophyll a/b ratio comparison to literature.

Figure 4 summarizes the proposed workflow and used methods.

Figure 3. Median spectrum from each plot 1–7 described in Figure 5.
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SLOP parameters SLOP Reflectance spectra

train/test/
validation

split

Testing dataTraining data Simulated validation data

1DCNN
training

chl. a and b
estimators

pred. chl. a and b values

Validation
with

simulated
data

Hyperspectral datacube

TCARI/
OSAVI

chl. a and b maps

TCARI/ OSAVI map sim. chl. a and b values
SLOP

Chlorophyll
a/b ratio

TCARI/
OSAVI

Sim. & real
TCARI/
OSAVI

correlation

Pred. chl.
a & b

correlation
with TCARI/

OSAVI

Figure 4. Flow chart of the research methodology. Ovals represent data and boxes represent methods.

2.4.1. Simulated Validation Dataset

In order to validate the method, the simulated data was divided into the training (45%), testing
(22%), and validation (33%) datasets. The estimator was trained with the training and testing data and
validated with the independent validation dataset. The predicted concentrations were provided by
the estimator and compared to the validation data. Then the following metrics for the original and
predicted concentrations were calculated:

• r2 score between predicted and original values,
• Correlation coefficient between original and predicted values,
• MSE of their difference,
• Average difference,
• Standard deviation for the difference, and
• 95% confidence interval for the difference.

2.4.2. Empirical Validation Dataset

With the remotely sensed validation data, chlorophyll a and b maps were calculated by using the
empirical data as input into the trained estimators. First, however, the data was shifted with a linear
shift of 0.02 in order to get it to the same level as the training data and to eliminate negative values,
that remained in the data after calibration. Since chlorophyll measurements for the data were not
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available, one had to acquire the concentrations using an alternative approach. Therefore, chlorophyll
a and b predictions were compared to the TCARI

OSAVI index. TCARI and OSAVI are calculated as follows:

TCARI = 3 · (sel(700 nm)− sel(670 nm))− 0.2 · (sel(700 nm)− sel(500 nm)) · sel(700 nm)

sel(670 nm)
(7)

and

OSAVI = (1 + 0.16) · sel(800 nm)− sel(670 nm)

sel(800 nm) + sel(670 nm) + 0.16
(8)

where the function sel chooses the wavelength band nearest to the desired band from the dataset.
In this case, these were

sel(700 nm) = 698.40 nm,

sel(670 nm) = 670.10 nm,

sel(500 nm) = 507.60 nm,

sel(800 nm) = 794.00 nm.

After calculating the different maps, each map was smoothed with a sliding 8 × 8 pixel averaging
window to account for camera noise. The maps were compared with each other on a large scale and in
more detail using the plots described in Figure 5. The plots were selected so that they represent the
forest area well. In the middle of it, there is an area that is mainly birch forest, and the border areas are
spruce dominated. There is also a forest road. Three plots were chosen from the spruce-dominated
area (plots 1, 6, and 7), two in the birch-dominated area (plots 2, 3, and 5), and one from the forest
road (plot 4). Plot 8 is a larger plot combining large areas of both spruce- and birch-dominated parts of
the forest.

Figure 5. Plots selected for in-depth analysis plotted over a false color image of the research forest.
The wavelength bands used in making the figure are approximately 800 nm, 700 nm, and 500 nm.
The edges show a rainbow artefact produced by some of the bands being empty in the plot. Plots 1,
5, and 6 are in a spruce-dominated plot, plots 2, 3, and 5 are in a birch-dominated plot and plot 4 is
on a forest road. Plot 8 is a larger plot that consists mainly of birch forest, while having a significant
amount of spruce on the border plots.
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2.4.3. Comparison of Simulated and Measured TCARI
OSAVI Indices

TCARI
OSAVI index was calculated with simulated data in order to compare it to the measured TCARI

OSAVI
index calculated in the previous chapter. The estimated chlorophyll a and b values for plots 1–7 were
used as inputs for SLOP, while other inputs were averages of the intervals in Table 1. With SLOP,
the reflectances on wavelengths 500 nm, 670 nm, 700 nm, and 800 nm were simulated and used to
calculate the simulated TCARI

OSAVI for plots 1–7. Then they were compared visually and the correlations
between them and the empirical TCARI

OSAVI were calculated. The simulated map was limited to between 2
and 98 percentiles in order to remove the outliers in the simulated data.

2.4.4. Chlorophyll a/b

The chlorophyll a/b ratio map was also compared to common values for birch and spruce
chlorophyll ratio. The birch chlorophyll ratios during early summer found in the literature were
between 2.3 [43] and 3.78 [44]. For spruce, the corresponding interval was from 1.47 [45] to 3.75 [46].

3. Results and Discussion

3.1. Simulated Validation Dataset

The MSE and r2 scores converged during the training of the 1DCNN to 0 and 1 respectively and
neither graph showed signs of over- or under-fitting (Figure 6), which holds for both the chlorophyll a
and b training.

(a) (b)

(c) (d)
Figure 6. Cont.
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(e) (f)

(g) (h)
Figure 6. Convolutional neural network (CNN) training and testing results for chlorophyll a (a–d) and
b (e–h). Figures (a,e) contain training and testing r2 scores and figures (b,f) contain training and testing
mean square error (MSE) scores. In figures (c,g) the estimated values are compared to the values in the
validation dataset and in figures (d,h) their difference is computed and the matching normal distribution
is calculated. Red and green lines represent the 95% confidence interval.

For the simulated validation dataset, the r2 score between the original and predicted values
was 0.97 for chlorophyll a and 0.95 for chlorophyll b. The correlation coefficient was 0.98 between
the predicted and original chlorophyll a concentrations and 0.98 between the predicted and original
chlorophyll b concentrations. The MSE was 0.07 between the original and predicted chlorophyll a
values and 0.03 for the original and predicted chlorophyll b concentrations. The average difference in
chlorophyll a predictions compared to original values was 0.05, with a standard deviation of 0.26. Thus,
the difference between predicted and original values was between −0.46 and 0.56 with 95% probability.
For chlorophyll b the corresponding values were the following: mean 0.02, standard deviation 0.18,
95% confidence interval [−0.34, 0.37] (Figures 6c,d,g,h and Table 4).

Table 4. Results of training and validating the CNN estimators for chlorophyll a and b.

Chlorophyll a Chlorophyll b

r2 score between original and
predicted values

0.97 0.95

Correlation coefficient between
original and predicted values

0.98 0.98

MSE 0.07 0.03
Average difference 0.05 0.02
Standard deviation 0.26 0.18
95% Confidence interval of the
difference between predicted and
original values

[−0.46, 0.56] [−0.34, 0.37]
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The results indicate that the estimators predict simulated chlorophyll a and b values accurately.
This means that if the SLOP model is assumed to be perfect, the used hyperspectral camera is optimal
with a spectral range of 400 nm to 2600 nm and illumination conditions are perfect, the chlorophyll a
and b estimators give reasonably accurate results. Compared to previous research, the used network
matched the results received in the past. Croft et al. simulated spectral data from multiple sensors and
obtained r2 scores of 0.96–0.99 when they compared their results to chlorophyll concentrations [14].

3.2. Empirical Validation Dataset

The results involving measured hyperspectral validation data can be seen in Figures 7–11 and
Tables 5 and 6. The chlorophyll a and b and TCARI

OSAVI maps clearly resembled each other, with the birch
and spruce areas distinguishable along with the forest road (Figure 7).

Figure 7. Cont.
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Figure 7. The chlorophyll a (top), b (middle), and TCARI
OSAVI index (bottom) maps. The chlorophyll maps

are calculated by feeding the hyperspectral data to the inverse SLOP model.

The predicted chlorophyll a and b correlated with the empirical TCARI
OSAVI in the plots 1–7 described in

Figure 5. In the spruce-dominant plots, the correlation coefficient was, on average, −0.9 for chlorophyll
a and −0.7 for chlorophyll b. In the birch-dominated plots, the corresponding average correlation
coefficients were −0.89 and −0.77 while in all of the plots 1–7 they were −0.87 and −0.68. The results
for the plot 8 were −0.82 for chlorophyll a and −0.76 for chlorophyll b (Figures 8 and 9 and Table 5).

(a) (b)

(c) (d)

(e) (f)

Figure 8. Cont.



Remote Sens. 2020, 12, 283 14 of 22

(g) (h)

(i) (j)

(k) (l)

(m) (n)

Figure 8. Chlorophyll a, b and TCARI
OSAVI maps (left column) and correlation between the chlorophylls and

the TCARI
OSAVI index (right column) in plots 1–7. Figures (a,b) are related to plot 1, (c,d) to plot 2, (e,f) to

plot 3, (g,h) to plot 4, (i,j) to plot 5, (k,l) to plot 6 and (m,n) to plot 7.

Table 5. Correlation coefficients between predicted chlorophyll values and the TCARI
OSAVI index in the eight

researched plots.

Correlation Coefficient for
Chlorophyll a and Index

Correlation Coefficient for
Chlorophyll b and Index

Plot Description

Plot 1 −0.91 −0.81 Spruce
Plot 2 −0.90 −0.83 Birch
Plot 3 −0.84 −0.61 Birch
Plot 4 −0.81 −0.61 Forest road
Plot 5 −0.93 −0.88 Birch
Plot 6 −0.91 −0.74 Spruce
Plot 7 −0.88 −0.55 Spruce
Plots 1, 6 and 7 −0.90 −0.70 Spruce
Plots 2, 3 and 5 −0.89 −0.77 Birch
Plots 1–7 −0.87 −0.68 Spruce and Birch
Plot 8 −0.82 −0.76 Larger plot.

Mainly birch,
spruce on the
border areas
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Figure 9. Correlation between chlorophyll and the TCARI
OSAVI index in larger plot 8.

We did not have reference data to assess the absolute accuracies, but results in Figures 7, 8, and 11
proposed that the results were at least proportionally correct. The estimated chlorophyll values of
different land cover classes were consistent with the expectations (Figure 7). For example, the birch
dominated area in the center of the forest was clearly separable from the spruce dominated area at the
area perimeters, and the forest road obtained low chlorophyll values. As expected, the chlorophyll
values were high for the low TCARI

OSAVI values. Also, the analysis of the finer details indicated that these
observations were correct (Figure 8). Comparisons of the values of predicted chlorophyll concentrations
(Figure 7) to simulated values (Table 1) indicated that the values were of the same order of magnitude,
which confirms that our approach could produce correct results if the training data has good quality.

While for chlorophyll a the relation with TCARI
OSAVI was relatively linear, the corresponding connection

for chlorophyll b had an approximately constant part when chlorophyll b was about 2.7 mg cm−3 and
TCARI
OSAVI increased from approximately 0.1 to 0.2 (Figures 8 and 9). One possible reason is that the
TCARI
OSAVI correlation is with (combined) chlorophyll content, and its correlation with chlorophyll a and b
separately has not been accounted for. In addition, chlorophyll a content is usually higher in plants,
so it follows that chlorophyll b has a smaller net contribution in the correlation. To find the cause of
the constant part, there is a need for further research and comparison of the inverse SLOP results to
measured chlorophyll concentrations. If the constant part persists in such study, our postulation of the
cause is false. At the moment we lack a proper dataset to conduct such research.

Our results are in line with previous research. Croft et al. found an r2 score of 0.78 between
modeled and measured chlorophyll concentrations, which assuming linearity would mean correlation
similar to our results [14]. Results from [15] show an r2 score of 0.87 between modeled and measured
canopy chlorophyll content, which is slightly higher than what we obtained. The results are not directly
comparable due to our lack of field chlorophyll measurements, and for a fair comparison of the results
of this study, the method should be tested in further studies using in-situ chlorophyll measurements.

3.3. Comparison of Simulated and Measured TCARI
OSAVI Indices

The simulated and empirical TCARI
OSAVI indexes correlated strongly (see Figure 10 and Table 6).

The correlation values ranged between 0.69 and 0.89, and the patterns were similar to each other and
compared to Figure 8. This validates the SLOP model’s ability to produce data similar to empirical data
and reinforces our conclusion that the 1DCNN estimators are truly emulating the true inverse function
of SLOP in regards of chlorophyll a and b. If either of these conclusions were false, the data produced
by SLOP would be significantly different from empirical data, and the error would propagate to the
TCARI
OSAVI calculation.

The reasoning of this assessment is the following. The TCARI
OSAVI was calculated from the empirical

validation data in two ways: by calculating directly from the empirical data and by using two different
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functions before calculating the TCARI
OSAVI . If the two approaches produced mutually correlating data,

the two functions would act as approximate inverse function of each other. In addition, if the empirical
validation data were vastly different from the data produced by SLOP, the trained inverse function
would not have capability to explain the input and the output would be irrational.

Table 6. Correlation coefficients between simulated and empirical TCARI
OSAVI indexes in the seven

investigated plots.

Correlation Coefficient
between Simulated and
Empirical TCARI

OSAVI Indexes

Plot
Description

Plot 1 0.89 Spruce
Plot 2 0.83 Birch
Plot 3 0.75 Birch
Plot 4 0.68 Forest road
Plot 5 0.88 Birch
Plot 6 0.85 Spruce
Plot 7 0.81 Spruce

(a) (b)

(c) (d)

(e) (f)

Figure 10. Cont.
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(g)
Figure 10. Comparison between simulated and empirical TCARI

OSAVI indexes. The simulated index is
calculated from data simulated using SLOP. (a) corresponds to the research plot 1, (b) to plot 2, (c) to 3,
(d) to 4, (e) to 5, (f) to 6 and (g) to 7.

3.4. Chlorophyll a/b

Chlorophyll a/b values ranged from 1.5 to 2.5 (see Figure 11) which was in line with spruce and
birch intervals: from 1.47 to 3.75 for spruce [45,46] and from 2.3 to 3.78 for birch [43,44]. For spruce
(Figure 11c) the values ranged from 1.8 to 2.2 and in the middle of the figure where the spruce stood
the values were around 2.1 to 2.2, which were in the correct range. For the birch (Figure 11b) the values
ranged from 1.85 to 2.35. In the middle the values were in between 2.1 and 2.35, which means that the
values were at the lower end of the correct range.

(a)

(b) (c)
Figure 11. Chlorophyll a values divided by chlorophyll b values for the whole forest (a), for a birch
(b) and for a spruce (c).



Remote Sens. 2020, 12, 283 18 of 22

3.5. Other Observations

The TCARI
OSAVI index can also be used to estimate chlorophyll concentrations [42]. This estimation

would be useful to correlate with our estimators, yet then the leaf area index (LAI) should be calculated.
Unfortunately, it was not possible to estimate the LAI from the used empirical dataset.

In vegetation parameter retrieval studies, the leaf-level model is often paired to a canopy radiative
transfer model (RTM) [14,15,17]. This procedure would have been advantageous in our study as well,
and the fact that we used the leaf-level simulated spectral data instead of canopy-level features will
cause some uncertainties in the analysis. However, we expect that these differences are smaller than
in studies with conventional manned aircrafts or satellites. Firstly, our dataset had ultra-high spatial
resolution with a ground sampling distance of 8 cm, thus spectral values of individual pixels had
less mixing with background than the typical aircraft or satellite images with GSDs of e.g., 50 cm to
10 m. Secondly, the measurements took place in cloudy weather with diffuse illumination, thus the
disturbing bidirectional reflectance (BRDF) effects were minimal in the data [41]. Thirdly, we added
some Gaussian noise to the leaf-level training data, which could also account for some of the uncertainty
that is introduced in transition from leaf-level to canopy-level. Even though we did not account for
the canopy RTM, the results were consistent with the leaf level simulations. In future studies we
will also implement the canopy RTM in our modeling. If the 1DCNN model is integrated with a
radiative transfer simulator such as Librat [47], training data for various sensors and conditions could
be generated.

Based on our literature review, the combination of using a simulation model for hyperspectral data
and CNN for parameter retrieval is new in the field of hyperspectral data analysis. As discussed earlier,
CNN is a powerful tool for signal regression and classification problems. It has been shown to perform
better than traditional dense deep neural networks in image recognition and other signal-related
tasks, thus it should perform better in regression problems concerning hyperspectral images. The
use of simulated data in training is justified by the fact that obtaining a comprehensive dataset
in field measurements requires a huge effort, whereas mathematical models can be developed
with significantly less labor. Our approach of using simulated data for CNN training has the
potential for a more universal and accurate regression and classification models in the context of
hyperspectral imaging.

One of the difficult parts of using simulated data in parameter retrieval is accounting for
error sources in hyperspectral images. The simulated data are smooth and noiseless, whereas the
empirical data are vulnerable to multiple error sources. Two approaches to tackle this challenge are the
development of rigorous data calibration approaches [4] and the implementation of different error
sources to the canopy radiative transfer modeling [47]. In this study we attempted to take noise into
account in the design of the CNN by adding batch Normalization layers to the bare-bones CNN
template, by adding Gaussian noise to the training data and by averaging the resulting chlorophyll a
and b and TCARI

OSAVI maps over an 8 × 8 pixel sliding window. There is still a need for development in this
area to identify the best ways to control noise in hyperspectral images.

While it appears that our approach works relatively well with SLOP, it would be interesting
to study different other models as well, such as ray tracing models [48,49], models specialized in
coniferous trees [50], or models that take the entire forest stand into account [51–54]. They could
improve the results, because SLOP is tied to the composition of the basic leaf. The ray tracing would
be more accurate, but it would also require more computing time. In some cases, the use of a simpler
or less accurate model could be justified if computation time is the limiting factor. It is also possible
to obtain more specialized training data by narrowing the range of SLOP parameters around known
values of some certain tree species. This would probably make results more accurate for that species
while degrading the results for other tree species.

The 1DCNN model may not be the best possible network for the task. However, it has already
shown promising results as the basis for the further developments. There is much work to do
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on developing CNN networks for different tasks, including regression and classification tasks in
hyperspectral data analysis.

4. Conclusions

Our study has presented a novel method for chlorophyll a and b estimation from hyperspectral
image data using the stochastic model of leaf optical (SLOP) properties and a convolutional neural
network. We found that when the conditions and imaging system are consistent with the SLOP
model, the convolutional neural network estimators for chlorophyll a and b produce feasible results.
Our results showed that even with less-than-ideal remote sensing data, the results were in the right
range and correlated well with an index known to correlate strongly with chlorophyll concentration.
This indicates that our method shows promising results in measuring chlorophyll, although further
verification of the results is needed to ensure their correctness.

We utilized a conventional one-dimensional convolutional neural network (CNN) structure,
which showed promising performance. By optimizing the CNN model, the results are expected
to improve, and the prediction errors are expected to decrease. The aim of further research could
be developing a model based on CNN and hyperspectral data for reliable estimation of tree health
through measurements of chlorophyll a and b.
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7. Verrelst, J.; Malenovskỳ, Z.; Van der Tol, C.; Camps-Valls, G.; Gastellu-Etchegorry, J.P.; Lewis, P.; North, P.;
Moreno, J. Quantifying vegetation biophysical variables from imaging spectroscopy data: A review on
retrieval methods. Surv. Geophys. 2018, 40, 589–629. [CrossRef]

8. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural
networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA,
3–8 December 2012; pp. 1097–1105.

9. Karpathy, A.; Toderici, G.; Shetty, S.; Leung, T.; Sukthankar, R.; Fei-Fei, L. Large-scale video classification
with convolutional neural networks. In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1725–1732.

10. Szegedy, C.; Toshev, A.; Erhan, D. Deep neural networks for object detection. In Proceedings of the Advances
in Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–10 December 2013; pp. 2553–2561.

11. Cecotti, H.; Graeser, A. Convolutional neural network with embedded Fourier transform for EEG
classification. In Proceedings of the 2008 19th International Conference on Pattern Recognition, Tampa, FL,
USA, 8–11 December 2008; pp. 1–4.

12. Salamon, J.; Bello, J.P. Deep convolutional neural networks and data augmentation for environmental sound
classification. IEEE Signal Process. Lett. 2017, 24, 279–283. [CrossRef]

13. LeCun, Y.; Bengio, Y. Convolutional networks for images, speech, and time-series. In The Handbook of Brain
Theory and Neural Networks; MIT Press: Cambridge, MA, USA, 1995.

14. Croft, H.; Chen, J.; Zhang, Y.; Simic, A.; Noland, T.; Nesbitt, N.; Arabian, J. Evaluating leaf chlorophyll
content prediction from multispectral remote sensing data within a physically-based modeling framework.
ISPRS J. Photogramm. Remote Sens. 2015, 102, 85–95. [CrossRef]

15. Atzberger, C.; Jarmer, T.; Schlerf, M.; Kötz, B.; Werner, W. Retrieval of wheat bio-physical attributes from
hyperspectral data and SAILH+ PROSPECT radiative transfer model. In Proceedings of the 3rd EARSeL
Workshop on Imaging Spectroscopy, Herrsching, Germany, 13–16 May 2003; pp. 473–482.

16. Jacquemoud, S.; Baret, F. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 1990,
34, 75–91. [CrossRef]

17. Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L.
PROSPECT+ SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009,
113, S56–S66. [CrossRef]

18. Tedesco, M.; Pulliainen, J.; Takala, M.; Hallikainen, M.; Pampaloni, P. Artificial neural network-based
techniques for the retrieval of SWE and snow depth from SSM/I data. Remote Sens. Environ. 2004, 90, 76–85.
[CrossRef]

19. Notarnicola, C.; Angiulli, M.; Posa, F. Soil moisture retrieval from remotely sensed data: Neural network
approach versus Bayesian method. IEEE Trans. Geosci. Remote Sens. 2008, 46, 547–557. [CrossRef]

20. Trombetti, M.; Riaño, D.; Rubio, M.; Cheng, Y.; Ustin, S. Multi-temporal vegetation canopy water content
retrieval and interpretation using artificial neural networks for the continental USA. Remote Sens. Environ.
2008, 112, 203–215. [CrossRef]

21. Cipollini, P.; Corsini, G.; Diani, M.; Grasso, R. Retrieval of sea water optically active parameters from
hyperspectral data by means of generalized radial basis function neural networks. IEEE Trans. Geosci. Remote
Sens. 2001, 39, 1508–1524. [CrossRef]

22. Maier, S.; Lüdeker, W.; Günther, K. SLOP: A Revised Version of the Stochastic Model for Leaf Optical
Properties. Remote Sens. Environ. 1999, 68, 273–280. [CrossRef]

http://dx.doi.org/10.1093/treephys/26.11.1487
http://www.ncbi.nlm.nih.gov/pubmed/16877333
http://dx.doi.org/10.3390/rs10071091
http://dx.doi.org/10.1109/MGRS.2013.2244672
http://dx.doi.org/10.1016/j.isprsjprs.2015.05.005
http://dx.doi.org/10.1007/s10712-018-9478-y
http://dx.doi.org/10.1109/LSP.2017.2657381
http://dx.doi.org/10.1016/j.isprsjprs.2015.01.008
http://dx.doi.org/10.1016/0034-4257(90)90100-Z
http://dx.doi.org/10.1016/j.rse.2008.01.026
http://dx.doi.org/10.1016/j.rse.2003.12.002
http://dx.doi.org/10.1109/TGRS.2007.909951
http://dx.doi.org/10.1016/j.rse.2007.04.013
http://dx.doi.org/10.1109/36.934081
http://dx.doi.org/10.1016/S0034-4257(98)00118-7


Remote Sens. 2020, 12, 283 21 of 22

23. Tucker, C.; Garratt, M. Leaf optical system modeled as a stochastic process. Appl. Opt. 1977, 16, 635–642.
[CrossRef]

24. Jacquemoud, S.; Ustin, L. Modeling leaf optical properties. Photobiol. Sci. Online 2008. Available online
http://photobiology.info/Jacq_Ustin.html (accessed on 10 January 2020).

25. Buschmann, C.; Nagel, E. Reflection Spectra Of Terrestrial Vegetation As Influenced By Pigment-protein
Complexes And The Internal Optics Of The Leaf Tissue. In Proceedings of the Remote Sensing: Global
Monitoring for Earth Management (IGARSS’91), Espoo, Finland, 3–6 June 1991; Volume 4, pp. 1909–1912.
[CrossRef]

26. Lichtenthaler, H.K. [34] Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In Plant
Cell Membranes; Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1987; Volume 148,
pp. 350–382. [CrossRef]

27. Richter, T.; Fukshansky, L. Authentic in vivo absorption spectra for chlorophyll in leaves as derived from
in situ and in vitro measurements. Photochem. Photobiol. 1994, 59, 237–247. [CrossRef]

28. Lichtenthaler, H.; Burkard, G.; Kuhn, G.; Prenzel, U. Light-Induced Accumulation and Stability of
Chlorophylls and Chlorophyll-Proteins during Chloroplast Development in Radish Seedlings. Z.
Naturforschung C 1981, 36, 421–430. [CrossRef]

29. Evans, J. A quantitative analysis of light distribution between the two photosystems, considering variation in
both the relative amounts of the chlorophyll-protein complexes and the spectral quality of light. Photobiochem.
Photobiophys. 1986, 10, 135–147.

30. Hale, G.M.; Querry, M.R. Optical Constants of Water in the 200-nm to 200-µm Wavelength Region. Appl. Opt.
1973, 12, 555–563. [CrossRef]

31. Tam, A.C.; Patel, C.K.N. Optical absorptions of light and heavy water by laser optoacoustic spectroscopy.
Appl. Opt. 1979, 18, 3348–3358. [CrossRef]

32. Palmer, K.F.; Williams, D. Optical properties of water in the near infrared. J. Opt. Soc. Am. 1974, 64, 1107–1110.
[CrossRef]

33. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
34. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate

shift. arXiv 2015, arXiv:1502.03167.
35. Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the

27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 807–814.
36. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
37. Casella, G.; Lehmann, E.L. Theory of Point Estimation; Springer: New York, NY, USA, 1998.
38. Wright, S. Correlation and causation. J. Agric. Res. 1921, 20, 557–585.
39. Keras. 2015. Available online: keras.io (accessed on 9 January 2020).
40. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.;

Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available
online: tensorflow.org (accessed on 9 January 2020).

41. Nevalainen, O.; Honkavaara, E.; Tuominen, S.; Viljanen, N.; Hakala, T.; Yu, X.; Hyyppä, J.; Saari, H.;
Pölönen, I.; Imai, N.N.; et al. Individual Tree Detection and Classification with UAV-Based Photogrammetric
Point Clouds and Hyperspectral Imaging. Remote Sens. 2017, 9, 185. [CrossRef]

42. Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation
indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens.
Environ. 2002, 81, 416–426. [CrossRef]

43. Kauppi, A. Seasonal fluctuations in chlorophyll content in birch stems with special reference to bark thickness
and light transmission, a comparison between sprouts and seedlings. Flora 1991, 185, 107–125. [CrossRef]

44. Possen, B.J.; Anttonen, M.J.; Oksanen, E.; Rousi, M.; Heinonen, J.; Kostiainen, K.; Kontunen-Soppela, S.;
Heiskanen, J.; Vapaavuori, E.M. Variation in 13 leaf morphological and physiological traits within a silver
birch (Betula pendula) stand and their relation to growth. Can. J. For. Res. 2014, 44, 657–665. [CrossRef]

45. Barnes, J.; Balaguer, L.; Manrique, E.; Elvira, S.; Davison, A. A reappraisal of the use of DMSO for the
extraction and determination of chlorophylls a and b in lichens and higher plants. Environ. Exp. Bot. 1992,
32, 85–100. [CrossRef]

46. Robinson, D.C.; Wellburn, A.R. Seasonal changes in the pigments of Norway spruce, Picea abies (L.) Karst,
and the influence of summer ozone exposures. New Phytol. 1991, 119, 251–259. [CrossRef]

http://dx.doi.org/10.1364/AO.16.000635
http://photobiology.info/Jacq_Ustin.html
http://dx.doi.org/10.1109/IGARSS.1991.575406
http://dx.doi.org/10.1016/0076-6879(87)48036-1
http://dx.doi.org/10.1111/j.1751-1097.1994.tb05028.x
http://dx.doi.org/10.1515/znc-1981-5-614
http://dx.doi.org/10.1364/AO.12.000555
http://dx.doi.org/10.1364/AO.18.003348
http://dx.doi.org/10.1364/JOSA.64.001107
http://dx.doi.org/10.1038/nature14539
keras.io
tensorflow.org
http://dx.doi.org/10.3390/rs9030185
http://dx.doi.org/10.1016/S0034-4257(02)00018-4
http://dx.doi.org/10.1016/S0367-2530(17)30456-5
http://dx.doi.org/10.1139/cjfr-2013-0493
http://dx.doi.org/10.1016/0098-8472(92)90034-Y
http://dx.doi.org/10.1111/j.1469-8137.1991.tb01028.x


Remote Sens. 2020, 12, 283 22 of 22

47. Disney, M.; Lewis, P.; North, P. Monte Carlo ray tracing in optical canopy reflectance modeling. Remote Sens.
Rev. 2000, 18, 163–196. [CrossRef]

48. Govaerts, Y.M.; Jacquemoud, S.; Verstraete, M.M.; Ustin, S.L. Three-dimensional radiation transfer modeling
in a dicotyledon leaf. Appl. Opt. 1996, 35, 6585–6598. [CrossRef]

49. Govaerts, Y.M.; Verstraete, M.M. Raytran: A Monte Carlo ray-tracing model to compute light scattering in
three-dimensional heterogeneous media. IEEE Trans. Geosci. Remote Sens. 1998, 36, 493–505. [CrossRef]

50. Dawson, T.P.; Curran, P.J.; Plummer, S.E. LIBERTY—Modeling the effects of leaf biochemical concentration
on reflectance spectra. Remote Sens. Environ. 1998, 65, 50–60. [CrossRef]

51. Verhoef, W. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model.
Remote Sens. Environ. 1984, 16, 125–141. [CrossRef]

52. Kuusk, A. A two-layer canopy reflectance model. J. Quant. Spectrosc. Radiat. Transf. 2001, 71, 1–9. [CrossRef]
53. Goel, N.S. Models of vegetation canopy reflectance and their use in estimation of biophysical parameters

from reflectance data. Remote Sens. Rev. 1988, 4, 1–212. [CrossRef]
54. Kuusk, A. A multispectral canopy reflectance model. Remote Sens. Environ. 1994, 50, 75–82. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/02757250009532389
http://dx.doi.org/10.1364/AO.35.006585
http://dx.doi.org/10.1109/36.662732
http://dx.doi.org/10.1016/S0034-4257(98)00007-8
http://dx.doi.org/10.1016/0034-4257(84)90057-9
http://dx.doi.org/10.1016/S0022-4073(01)00007-3
http://dx.doi.org/10.1080/02757258809532105
http://dx.doi.org/10.1016/0034-4257(94)90035-3
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Stochastic Model of Leaf Optical Properties
	Convolutional Neural Network
	Empirical Dataset
	Validation
	Simulated Validation Dataset
	Empirical Validation Dataset
	Comparison of Simulated and Measured TCARIOSAVI Indices
	Chlorophyll a/b


	Results and Discussion
	Simulated Validation Dataset
	Empirical Validation Dataset
	Comparison of Simulated and Measured TCARIOSAVI Indices
	Chlorophyll a/b
	Other Observations

	Conclusions
	References

