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Tiivistelmä

Jani Nykänen,On the uniqueness of a solution and stability of McKean-

Vlasov stochastic di�erential equations, Jyväskylän yliopisto, Matema-

tiikan ja tilastotieteen laitos, matematiikan pro gradu -tutkielma, 75

s., tammikuu 2020.

Tässä tutkielmassa tutustutaan McKeanin-Vlasovin stokastisiin di�e-

rentiaaliyhtälöihin, jotka yleistävät tavalliset stokastiset di�erentiaa-

liyhtälöt lisäämällä kerroinfunktioihin riippuvuuden tuntemattoman

prosessin jakaumasta tietyllä ajanhetkellä. Pääasiallisena lähteenä seu-

rataan K. Bahlalin, M. Mezerdin ja B. Mezerdin artikkelia Stability of

Mckean-Vlasov stochastic di�erential equations and applications.

Tutkielmassa käydään läpi tarvittavia esitietoja todennäköisyys-

teoriasta ja tavallisista stokastisista di�erentiaaliyhtälöistä. Kerroin-

funktioiden jatkuvuuden ja mitallisuuden määrittämiseksi esitellään

Wassersteinin etäisyys, joka on metriikka äärellismomenttisten reaali-

avaruuden todennäköisyysmittojen avaruudessa. Metriikan avulla saa-

daan yleistettyä lause, joka takaa ratkaisun olemassaolon ja yksikä-

sitteisyyden, kun kerroinfunktiot ovat Lipschitz-jatkuvia ja toteutta-

vat lineaarisen kasvuehdon. Lisäksi osoitetaan, että yksikäsitteisyys on

voimassa eräällä Lipschitz-jatkuvuutta heikommalla ehdolla.

Numeerisessa ratkaisemisessa voidaan hyödyntää tulosta, jossa kon-

struoidaan iteroitu jono prosesseja, jotka suppenevat kohti yksikäsit-

teistä ratkaisua. Lopuksi tarkastellaan ratkaisuprosessien stabiiliutta

erikseen alkuarvon, kerroinfunktioiden ja integroivan prosessin suh-

teen.



Abstract

In this thesis we introduce McKean-Vlasov stochastic di�erential equa-

tions, which are a generalization of ordinary stochastic di�erential

equations, but now the coe�cients depend on the distribution of the

unknown process. In our main results we follow K. Bahlali, M. Mezerdi

and B. Mezerdi's article Stability of Mckean-Vlasov stochastic di�er-

ential equations and applications.

We start by giving preliminary theory required to understand our

main results. To de�ne continuity and measurability of the coe�cient

functions, we introduce the Wasserstein distance, which is a metric in

the space of probability measures on the real line with �nite moments.

With the metric we generalize a theorem that states that a unique

solution exists provided that the coe�cients are Lipschitz continuous

and satisfy the linear growth condition. In addition we show that in

a speci�c case the uniqueness holds even if the coe�cients satisfy a

condition weaker than Lipschitz continuity.

In numerics one can use a result that provides a way to approxi-

mate the solution with a sequence of iterated processes converging to

the unique solution. In the last part we consider stability of the solu-

tion with respect to the initial value, the coe�cients and the driving

process.
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1 Introduction

In this thesis we consider a class of stochastic di�erential equations, where the
coe�cient functions depend on the law of the solution process. This class is
called McKean-Vlasov stochastic di�erential equations (MVSDE). Compared
to classical stochastic di�erential equations, the distribution variable adds
another layer of complexity. For instance, many tools from classical stochastic
calculus cannot be directly applied to study properties of these equations or
computing solutions.

When modeling real-life phenomena with mathematical models, one no-
table problem with ordinary di�erential equations is the lack of randomness,
which sometimes leads to situations where the given data cannot be matched
with a function that is obtained as the unique solution to a di�erential equa-
tion. In equations that model particle systems this was a particular problem.
To overcome this issue probability and di�erential equations were joined to-
gether [Sob91, introduction].

In its modern form the theory of stochastic di�erential equations � and
stochastic calculus in general � was created by Kiyosi Itô. His �rst pa-
per in stochastic integration was published in 1944. Itô de�ned stochastic
integrals with respect to the Brownian motion, but his de�nition was gen-
eralized to semimartingales by J. L. Doob in 1953. In 1951 Itô published
an in�uential paper, where he stated and proved a formula, later known as
Itô's formula (see section 2.4.2), one of the most powerful tools in stochastic
calculus [Mey09], [JP04].

Like ordinary stochastic di�erential equations, the origins of McKean-
Vlasov stochastic di�erential equations are in physics. The equations were
studied to obtain a model for a large system of weakly interacting particles,
when the number of particles tends to in�nity. In a way, this gives the average
behaviour of one particle [BMM19].

The original Vlasov equation modeled the interactions of a system of
particles in plasma [PCMM15]. In 1956 M. Kac published a paper where
he studied a stochastic counterpart of Vlasov's equation in the context of
statistical physics [Kac56], [BMM19]. A probabilistic formulation for this
equation was given by H. P. McKean in 1966, when he considered the problem
from the perspective of Markov processes. He formulated the problem as a
stochastic di�erential equation, where the coe�cients depended upon the
expected value of the unknown process [McK66].

Recently MVSDEs have gained attention in the theory of mean-�eld
games, which is a branch of game theory. Mean-�eld games model strategic
decision games with a large population of players, usually called agents, who
try to choose an optimal strategy when they only have macroscopic infor-
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mation of the game, resulted by the other players. MVSDEs can be used
to model this situation as the number of players tends to in�nity. This the-
ory generalizes the applications of MVSDEs from physics to economics and
�nance, see for instance [LL07].

Our primary goal in this thesis is to generalize the theory, known for
ordinary stochastic di�erential equations, to the setting of McKean-Vlasov
SDEs by following [BMM19]. We formulate and prove most theorems of
the article, but in more detail and in some cases with di�erent assumptions.
In addition we contribute by demonstrating every result with at least one
example.

We start by recalling some preliminary theory to understand our main
results in Section 2. Then we introduce the Wasserstein distance, which is a
metric in the space of probability measures. It allows us to generalize exis-
tence and uniqueness theorems for MVSDEs. Then we focus on approxima-
tion and stability theorems. We prove an iterative method for approximating
and computing the unique solution of an MVSDE. We consider three di�er-
ent stability results. In the �rst case we show that a map between initial
values and their corresponding solutions is continuous. In the second sta-
bility result we approximate the solution by approximating the coe�cients.
The last stability theorem states that we can approximate the solution also
by approximating the driving process with continuous martingales.

2 Preliminaries

We start by introducing some de�nitions and theorems that are used within
this thesis. The reader is assumed to be familiar with common topological
concepts and measure theory, but not necessarily probability theory. We give
the background for ordinary stochastic di�erential equations, which serves as
a basis for our main results in this thesis.

Throughout this section, if we assume an index set I ⊂ R, we assume
that I = [0, T ] for some T > 0.

2.1 Notation and terminology

Here we list some essential terminology and notation used throughout this
thesis.

• A function f : R→ R is called increasing, if s < t implies f(s) ≤ f(t)
for all s, t ∈ R. If one has f(s) < f(t) for all s < t, then f is called
strictly increasing. Respectively, if f(s) ≥ f(t), then the function f is
called decreasing, and if f(s) > f(t), strictly decreasing.

2



• By natural numbers we mean N = {1, 2, 3, ...}. In particular, 0 /∈ N.

• If X and Y are topological spaces, we denote by C(X, Y ) the space of
continuous maps from X to Y .

• The indicator function over a set A is de�ned by

1A(x) :=

{
1, x ∈ A
0, x /∈ A.

• The power set of a non-empty set X is

2X := {B | B ⊆ X} .

In particular ∅, X ∈ 2X .

• We denote by b·c the �oor function, that is

bxc := max {z ∈ Z | x ≥ z}

for x ∈ R.

• By Rm×n we denote m × n-matrices of which components are real-
valued. For A = [ai,j] ∈ Rm×n we use the matrix norm

‖A‖ =

√√√√ ∑
i=1,...,m
j=1,...,n

|ai,j|2.

• In general, if not stated otherwise, we use ‖·‖ to denote the Euclidean
norm, that is,

‖x‖ = ‖(x1, ..., xd)‖ =

√√√√ d∑
k=1

|xk|2

for x = (x1, ..., xd) ∈ Rd.

• We denote by 〈· | ·〉 the inner product in Rd, that is,

〈x | y〉 =
d∑

k=1

xkyk

for x, y ∈ Rd.
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2.2 Probability theory

In this section we introduce the measure theoretical basis of modern proba-
bility theory.

2.2.1 Stochastic basis

We start by recalling de�nitions for measure spaces and stochastic bases.
(See, for example, [GG18, de�nitions 1.1.1 and 1.3.2])

Let Ω be a non-empty set and F ⊆ 2Ω. The set F is a σ-algebra, if it
satis�es the following conditions:

(1) ∅,Ω ∈ F

(2) If A ∈ F , then A{ = Ω \ A ∈ F .

(3) Let A1, A2, A3, ... ∈ F . Then
∞⋃
k=1

Ak ∈ F .

The pair (Ω,F) is called measurable space. If A ∈ F , the set A is called
measurable. A map µ : Ω→ R is a measure on (Ω,F), if the following holds:

(1) µ(∅) = 0.

(2) If A1, A2, ... ∈ F be pair-wise disjoint sets, that is, Ak ∩ Aj = ∅ for all
k 6= j, then

µ

(
∞⋃
k=1

Ak

)
=
∞∑
k=1

µ(Ak).

The triplet (Ω,F , µ) is called measure space. Moreover, if µ(Ω) = 1, the
measure µ is called probability measure, and the space (Ω,F , µ) probability
space.

De�nition 2.1 (Filtration, [Gei19, de�nition 2.1.8]). Assume a probability
space (Ω,F ,P). Let I ⊆ R be an index set and (Ft)t∈I a family of sub-σ-
algebras of F , that is, for all t ∈ I, Ft is a σ-algebra and Ft ⊆ F . The family
(Ft)t∈I is a �ltration, if it satis�es

Fs ⊆ Ft

for all s, t ∈ I with s ≤ t. The quadruple (Ω,F ,P, (Ft)t∈I) is called stochastic
basis.
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Remark 2.2. As mentioned earlier, we assume that the index set is the interval
[0, T ] for some T > 0, but in general it could be, for instance, N or a subset.

In applications, it is usually required that the stochastic basis satis�es
some speci�c properties known as the usual conditions. Before we can de�ne
these conditions, we must recall the de�nition of a complete measure space.

De�nition 2.3 ([GG18, de�nition 1.6.1]). A measure space (Ω,F , µ) is com-
plete, if every subset of every null set is measurable, that is, if N ∈ F and
µ(N) = 0, then for all S ⊆ N it holds that S ∈ F .

De�nition 2.4 (Usual conditions, [Gei19, de�nition 2.4.11]). The stochastic
basis (Ω,F ,P, (Ft)t∈I) satis�es the usual conditions, if the following holds:

(1) (Ω,F ,P) is a complete probability space.

(2) If A ∈ F and P(A) = 0, then A ∈ Ft for all t ∈ I.

(3) The �ltration is right-continuous, that is,

Ft =
⋂
ε>0
t+ε∈I

Ft+ε

for all t ∈ [0, T )

2.2.2 Borel σ-algebra and Lebesgue measure

Assume a topological space X. The Borel σ-algebra on E, denoted by B(X)
is the smallest σ-algebra containing all open sets on X. It follows by the
de�nition of σ-algebra that B(X) also contains every closed set of X. A
construction for the Borel σ-algebra can be found in [Rud70, chapter 1]. In
this thesis we consider only the case where X is a separable Banach space.

If µ is a measure on (X,B(X)), then it is called Borel measure. An
important example of a Borel measure on R is the Lebesgue measure λ. For
any half-open interval one has

λ((a, b]) = b− a,

if b > a. More generally, if λd is a d-dimensional Lebesgue measure, it gives
the geometric measure of any Borel set A ⊆ Rd. A construction for the
Lebesgue measure is given in [Rud70, chapter 2, theorem 2.20].
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2.2.3 Random variables

Assume two measurable spaces (Ω,F) and (Γ,G). The map f : Ω → Γ is
(F ,G)-measurable, if

f−1(B) ∈ F
for all B ∈ G. If X is a topological space and (Γ,G) = (X,B(X)), then
we call (F ,B(X))-measurable maps F -measurable or just measurable, if the
σ-algebra F is clear from the context.

If X and Y are topological spaces, then we call a map f : X → Y Borel
measurable, if it is (B(X),B(Y ))-measurable.

If (Ω,F ,P) is a probability space and E is a separable Banach space,
measurable maps g : Ω → E are called random variables. The law of a
random variable g is the measure Pg on (E,B(E)) de�ned by

Pg(A) := P(g ∈ A) = P({ω ∈ Ω | g(ω) ∈ A})

for all A ∈ B(E). We notice that Pg(E) = P(g ∈ E) = 1, thus Pg is a
probability measure.

2.2.4 Integration theorems

Here we introduce intergration theorems we need in our proofs.
Assume a probability space (Ω,F ,P). Let f : Ω → R be a random

variable. We denote the expected value of a random variable f by

Ef =

∫
Ω

f(ω) dP(ω),

where the right-hand side denotes the integral with respect to the measure P,
assuming that it is �nite. For more information and properties, see [GG18,
de�nition 5.1.3-5.1.4].

If it is clear from the context, we may use the shorter notation∫
Ω

f(ω) dP(ω) =

∫
Ω

f dP.

If Pf is the law of the random variable f , we have∫
Ω

f(ω) dP(ω) =

∫
R
x dPf (x).

For an Rd-valued random variable g : Ω→ Rd, g(ω) = (g1(ω), ..., gd(ω)) ∈ Rd,
we de�ne

Eg =

(∫
Ω

g1 dP, ...,
∫

Ω

gd dP
)
∈ Rd,
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assuming that the integrals exist.
For all p > 0 we say that f ∈ Lp(Ω,F ,P), if

E ‖f‖p <∞,

assuming that f : Ω→ Rd is a random variable.
If λ denotes the Lebesgue measure on (R,B(R)), then we use the notation∫

[a,b]

g(x) dλ(x) =

∫
Rd

1[a,b](x)g(x) dλ(x) =

∫ b

a

g(x) dx

for an integrable function g : [a, b] → R. This notation is usually reserved
for the Riemann integral. However, under certain conditions the Riemann
integral and the integral with respect to the Lebesgue measure coincides.

Proposition 2.5 ([GG18, Proposition 5.5.1]). Let g : [a, b]→ R be a bounded
and Borel measurable function. Assume that there exists a set N ∈ B(R) with
N ⊆ [a, b] and λ(N ) = 0 such that g is continuous in [a, b] \ N . Then g is
Riemann-integrable and∫ b

a

g(x) dx =

∫
[a,b]

g(x) dλ(x),

where the left-hand side denotes the Riemann integral.

This theorem justi�es the notation. In the cases where we use the Rie-
mann integral, we mention it separately.

We continue with Jensen's inequality.

Proposition 2.6 (Jensen's inequality, [GG18, Proposition 5.10.3]). Assume
a probability space (Ω,F ,P) and a random variable X : Ω→ R. Let ϕ : R→
R be a convex function, that is,

ϕ(tx+ (1− t)y) ≤ tϕ(x) + (1− t)ϕ(y)

for all x, y ∈ R and t ∈ [0, 1]. Then

(2.1) ϕ(EX) ≤ E [ϕ(X)] .

If ψ : R→ R is concave, that is, −ψ is convex, then

(2.2) ψ(EX) ≥ E [ψ(X)] .

Remark 2.7. The equation (2.2) follows from (2.1) by choosing ϕ = −ψ.
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Next we consider the following basic form of Fubini's theorem. For the
de�nition of the product of measure spaces, see [GG18, Section 4.3].

Proposition 2.8 ([GG18, Theorem 5.7.3]). Assume two measure spaces
(Ω1,F1, µ1) and (Ω2,F2, µ2). Consider the product space (Ω1 × Ω2,F1 ⊗
F2, µ1 ⊗ µ2). Let f : Ω1 × Ω2 → R be a measurable function. Assume that∫

Ω1×Ω2

|f(ω1, ω2)| d(µ1 ⊗ µ2)(ω1, ω2) <∞.

Then∫
Ω1×Ω2

f(ω1, ω2) d(µ1 ⊗ µ2)(ω1, ω2) =

∫
Ω1

[∫
Ω2

f(ω1, ω2) dµ2(ω2)

]
dµ1(ω1)

=

∫
Ω2

[∫
Ω1

f(ω1, ω2) dµ1(ω1)

]
dµ2(ω2).

Fubini's theorem has the following application, which we use throughout
this thesis. Let (Ω,F , µ) be a probability space and denote by λ the Lebesgue
measure as earlier. If we have a product space (Ω×R,F ⊗B(R),P⊗ λ) and
a measurable function f : Ω × [a, b] → R such that the map t 7→ f(ω, t) is
continuous for all ω ∈ Ω, then

E
∫ b

a

f(·, t) dt =

∫
Ω

∫
[a,b]

f(ω, t) dλ(t) dP(ω)

=

∫
[a,b]

∫
Ω

f(ω, t) dP(ω) dλ(t)

=

∫ b

a

E [f(·, t)] dt,

provided that E
∫ b
a
|f(·, t)| dt <∞.

In the next two theorems we assume a measure space (Ω,F , µ). The �rst
theorem is known as Hölder's inequality, and it is one of the most essential
inequalities in measure theory.

Proposition 2.9 (Hölder's inequality, [Rud70, Theorem 3.8]). Let
p, q ∈ (1,∞) with 1

p
+ 1

q
= 1. Assume real-valued measurable functions

f ∈ Lp(Ω,F , µ) and g ∈ Lq(Ω,F , µ). Then∫
Ω

|fg| dµ ≤
(∫

Ω

|f |p dµ

) 1
p
(∫

Ω

|g|q dµ

) 1
q

.
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Another fundamental inequality is Minkowski inequality, which implies
the triangle inequality in the Lp(Ω, E)-spaces, which we de�ne in Appendix
A.

Proposition 2.10 (Minkowski's inequality, cf. [Rud70, Theorem 3.9]). Let
(E, ‖·‖) be a separable Banach space. Assume p ∈ [1,∞) and measurable
maps f, g ∈ Lp(Ω, E). Then∫

R
‖f + g‖pE dµ ≤

(∫
R
‖f‖pE dµ)

) 1
p

+

(∫
R
‖g‖pE dµ

) 1
p

.

Remark 2.11. In [Rud70, Theorem 3.9] Minkowski inequality is proven for
real-valued measurable functions. However, it follows in our case by using
triangle inequality and noticing∫

Ω

‖f + g‖pE dµ ≤
∫

Ω

|‖f‖E + ‖g‖E|
p dµ.

2.2.5 Convergence of random variables

There exists several types of convergence of random variables with certain
connections. We introduce here those, which we need in this thesis. We
follow [GG18, chapter 6].

Let (E, ‖·‖E) be a separable Banach space. We assume a sequence of
random variables (fn)∞n=1, fn : Ω→ E and a measurable map f : Ω→ E.

De�nition 2.12 (cf. [GG18, de�nition 6.1.1]). The sequence (fn)∞n=1 con-
verges almost surely to the limit f , if

P({ω ∈ Ω | ‖fn − f‖E → 0 as n→∞}) = 1.

We denote this convergence by fn −→
a.s.

f .

De�nition 2.13 (cf. [GG18, de�nition 6.2.2]). The sequence (fn)∞n=1 con-
verges to the limit f in probability, if for all ε > 0 one has

lim
n→∞

P({ω ∈ Ω | ‖fn(ω)− f(ω)‖E > ε}) = 0.

We denote this convergence by fn −→
P

f .

Almost sure convergence implies convergence in probability.

Proposition 2.14 (cf. [GG18, Proposition 6.2.4 (1)]). Assume that (fn)∞n=1

converges to f almost surely. Then fn converges to f in probability.
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De�nition 2.15 (cf. [GG18, de�nition 6.3.1]). Let p ∈ (0,∞). Assume that
fn ∈ Lp(Ω, E) for all n ∈ N. The sequence (fn)∞n=1 converges to the limit
f ∈ Lp(Ω, E) with respect to the p-th mean, if

E ‖fn − f‖pE → 0

as n tends to ∞. We denote this convergence by fn −→
Lp

f .

Under certain conditions the converge in probability implies converge with
respect to the p-th mean.

Proposition 2.16 (cf. [GG18, Proposition 6.3.2 (4)]). Let p ∈ (0,∞). As-
sume that (fn)∞n=1 converges to f in probability. If

E sup
n∈N
‖fn‖pE <∞,

then f ∈ Lp(Ω, E) and fn −→
Lp

f .

2.3 Stochastic processes

In this section we focus on stochastic processes, which is a necessary com-
ponent in the theory of stochastic di�erential equations. We give the basic
de�nitions and the most essential results we need later on in this thesis. In
this section we follow [Gei19, chapter 2] and [Mao07, Section 1.3]

Assume a stochastic basis (Ω,F ,P, (Ft)t∈I). A family of (F ,B(Rd))-
measurable random variables (Xt)t∈I is called a (stochastic) process, if
Xt : Ω→ Rd is a random variable for all t ∈ I.

The measurability of stochastic processes can be classi�ed in the following
way, according to [Mao07, p. 10] and [Gei19, de�nition 2.1.9]:

(1) The process X is adapted, if the random variable Xt is Ft-measurable
for all t ∈ I.

(2) The process X is measurable, if the map ϕ : Ω× I → Rd,
ϕ(ω, t) := Xt(ω), is (Fs ⊗ B(I),B(Rd)-measurable.

(3) The process X is progressively measurable with respect to the �ltration
(Ft)t∈I , if for all S ∈ I the map ϕ : Ω× [0, S]→ Rd, ϕ(ω, s) := Xs(ω)
is (FS ⊗ B([0, S],B(Rd)-measurable.

Moreover, we say that the process X is (path-wise) continuous, if for all
ω ∈ Ω the trajectory t 7→ Xt(ω) is continuous.
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The following de�nitions are mentioned in [Mao07, p. 10-11]. If we
have two processes X = (Xt)t∈I and Y = (Yt)t∈I with respect to the same
stochastic basis, then we say that X and Y are indistinguishable provided
that the set

{Xt = Yt, t ∈ I} = {ω ∈ Ω | Xt(ω) = Yt(ω), t ∈ I}

is measurable and
P(Xt = Yt, t ∈ I) = 1.

If we have
P(Xt = Yt) = 1,

for all t ∈ I, then X and Y are called modi�cations of each other. It is
clear that if two processes are indistinguishable, they are also modi�cations
of each other. The converse implication does not hold in general. However,
we have the following proposition.

Proposition 2.17 ([Gei19, Proposition 2.1.7]). Assume two processes X =
(Xt)t∈I and Y = (Yt)t∈I that are modi�cations of each other. If all the
trajectories of X and Y are continuous, then the processes X and Y are
indistinguishable.

2.3.1 Martingales

A special subset of stochastic processes are martingales. Assume a proba-
bility space (Ω,F ,P). Let G ⊆ F be a sub-σ-algebra of F , that is, G is a
σ-algebra such that it is also a subset of F . Assume a G-measurable random
variable f : Ω→ Rd with E ‖f‖ <∞. The conditional expectation of f given
G is a G-measurable random variable g : Ω→ Rd satisfying E ‖g‖ <∞ and∫

B

f dP =

∫
B

g dP

for all B ∈ G. We denote
E [f | G] := g.

The conditional expectation is almost surely unique, meaning that if there
exists another g′ having the same properties as g, then we have that
P(g = g′) = 1.

Next assume a stochastic process X = (Xt)t∈I . The process X is a
martingale, provided that the following two conditions are satis�ed.

(1) For all t ∈ I it holds that Xt is Ft-measurable and E ‖Xt‖ <∞.
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(2) For all s, t ∈ I with s < t it holds that

E [Xt | Fs] = Xs

almost surely, that is,

P ({ω ∈ Ω | E [Xt | Fs] (ω) = Xs(ω)}) = 1.

We use the following notation for the set of martingales:

(1) M: the set of martingales.

(2) Mc: martingales with continuous trajectories, that is, t 7→ Xt(ω) is
continuous for all ω ∈ Ω.

(3) Mc,0: continuous martingales with M0 ≡ 0.

(4) Mc,0
2 : the set of square integrable martingales, that is, if M ∈ Mc,0

and E ‖Mt‖2 <∞ for all t ∈ I, then M ∈Mc,0
2 .

If it is not clear from the context, we may write M(Rd) to emphasize the
dimension.

A martingale X = (Xt)t∈I ∈ M has the property EXt = EX0 for all
t ∈ I. In particular, if X ∈Mc,0, then EXt = 0 for all t ∈ I.

2.3.2 Brownian motion

Here we follow [Gei19, de�nition 2.4.5]. Assume a stochastic basis
(Ω,F ,P, (Ft)t∈I) that satis�es the usual conditions. Let B = (Bt)t∈I be an
adapted process, that is, Bt is Ft-measurable for all t ∈ I. The process B is
called (standard) Brownian motion with respect to (Fi)i∈I provided that the
following condition are satis�ed.

(1) B0 ≡ 0.

(2) Bt −Bs is independent from Fs for all s, t ∈ I, s < t, meaning that

P(C ∩ {Bt −Bs ∈ A}) = P(C)P(Bt −Bs ∈ A)

for all C ∈ Fs and A ∈ B(R).

(3) Bt −Bs ∼ N (0, t− s) for all s, t ∈ I, s < t.

(4) The trajectories t 7→ Bt(ω) are continuous for all ω ∈ Ω.

If Bi = (Bt
i)t∈I is a Brownian motion for all i = 1, ..., d and the Brownian

motions B1
t , ..., B

d
t are independent from each other, B = (B1, B2, ..., Bd) is

called d-dimensional Brownian motion.
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2.4 Stochastic calculus

Stochastic calculus includes, amongst other parts, the theory of stochastic
integration and stochastic di�erential equations. In this section we have
two objectives. The �rst one is to give a proper de�nition for a stochastic
integral with respect to the Brownian motion. The second objective is to
de�ne ordinary stochastic di�erential equations and give known existence
and uniqueness results for them, so we can later generalize these results to a
wider class of stochastic di�erential equations.

2.4.1 Stochastic integration

In this section we introduce stochastic integration with respect to a Brown-
ian motion. We start in the one-dimensional case, and then generalize the
de�nition to multiple dimensions. We follow [Gei19, chapter 3] and [Mao07,
Section 1.5].

We start by de�ning the stochastic integral for simple processes. The
de�nition of a simple process is given in [Gei19, de�nition 3.1.1]. Assume
a stochastic basis (Ω,F ,P, (Ft)t∈I) that satis�es the usual conditions. Let
B = (Bt)t∈I be a one dimensional (Ft)t∈I Brownian motion.

A real-valued stochastic process L = (Lt)t∈I is called simple, if there
exists a �nite sequence (tk)

n
k=1 of real numbers satisfying

0 = t0 < t1 < t2 < ... < tn = T

and (Fti ,B(R))-measurable random variables vi : Ω→ R, i ∈ N, with

sup
(i,ω)∈N×Ω

|vi(ω)| <∞,

such that

Lt(ω) =
∞∑
i=1

1(ti−1,ti](t)vi−1(ω).

We denote by L0(R) the space of simple processes.
Next we de�ne the stochastic integral for simple processes.

De�nition 2.18 ([Gei19, de�nition 3.1.2]). Let L ∈ L0(R). The stochastic
integral for L0(R) integrand L with respect to the Brownian motion B is
de�ned by

It(L)(ω) :=
∞∑
k=1

vk−1(ω)(Btk∧t(ω)−Btk−1∧t(ω)).

By [Gei19, proposition 3.1.6], it holds that It(L) ∈Mc,0
2 .
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Stochastic integral can be expanded to a much larger space. We denote
by L2(R) all the processes L = (Lt)∈I that are progressively measurable and
satisfy the property

E
∫ t

0

|Lu|2 du <∞

for all t ∈ I. We see that L0(R) ⊂ L2(R).
The next theorem provides a way to generalize the stochastic integral to

the set L2(R).

Theorem 2.19 ([Gei19, Proposition 3.1.12]). The map I : L0(R) → Mc,0
2

can be generalized to a map J : L2(R)→Mc,0
2 such that the following prop-

erties are satis�ed:

(1) For α, β ∈ R and K,L ∈ L2(R) one has that

Jt(αK + βL) = αJt(K) + βJt(L)

for t ∈ I almost surely.

(2) If L ∈ L0(R), then It(L) = Jt(L) for t ∈ I almost surely.

(3) If L ∈ L2(R), then

(
E |Jt(L)|2

) 1
2 =

(
E
∫ t

0

L2
u du

) 1
2

for t ∈ I.

(4) If L ∈ L2(R) and (An)∞n=1 is a sequence of processes in L2(R) such that
d(An, L)→ 0 as n→∞, then

E sup
t∈I
|Jt(L)− Jt(An)|2 → 0

as n→∞.

(5) If J ′ is another map satisfying the properties above, then

P(Jt(L) = J ′t(L) for all t ∈ I) = 1

for all L ∈ L2(R).

De�nition 2.20. The process Xt := Jt(L), L ∈ L2(R), obtained in 2.19
is called the stochastic integral of L with respect to B until time t, and we
denote

Xt =

∫ t

0

Ls dBs.
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Since
∫ t

0
Ls dBs ∈Mc,0

2 , one has that

E
∫ t

0

Ls dBs = 0.

To compute the second moment, one can use a theorem known as Itô's isom-
etry.

Proposition 2.21 (Itô's isometry, [Gei19, 3.1.25 (iii)]). Let L ∈ L2(R).
Then

E

[(∫ t

0

Ls dBs

)2
]

= E
[∫ t

0

L2
s ds

]
.

The stochastic integral can be generalized to multiple dimensions in a
simple way. If X = (Xt)t∈I =

([
X ij
t

])
t∈I is an Rd×m-valued process such

that X ij = (X ij
t )t∈I ∈ L2(R) for all i = 1, ..., d,j = 1, ...,m, then we write

that X ∈ L2(Rd×m).

De�nition 2.22 ([Mao07, Section 1.5, De�nition 5.20]). Let d,m ∈ N and
let B = (B1, ...Bm) be an m-dimensional Brownian motion. Assume an
Rd×m-valued process X ∈ L2(Rd×m). We de�ne

(2.3)

∫ t

0

Xs dBs =

∫ t

0

X
11
s . . . X1d

s
...

. . .
...

Xm1
s . . . Xmd

s


dB1

s
...

dBm
s

 =:

A1
...
Ad

 ,
where

Ai =
m∑
j=1

∫ t

0

X ij
s dBj

s

for all i = 1, ..., d.

It should be noted that the extension to multiple dimensions preserves
the martingale property, that is,∫ t

0

Xs dBs ∈Mc,0
2 (Rd)

for all X ∈ L2(Rd), which follows from that each component of (2.3) is a
�nite sum of one-dimensional stochastic integrals, which are in Mc,0

2 (R) as
we have stated earlier.

The following theorem is known as the Burkholder-Davis-Gundy inequal-
ity, which can be used to estimate the norms of stochastic integrals.
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Proposition 2.23 (Burkholder-Davis-Gundy, [Mao07, Section 1.7, theorem
7.3]). Let L ∈ L2(Rd×m and p ∈ (0,∞). Then there exist constants cp, Cp > 0
depending only on p such that

cpE

√∫ T

0

‖Ls‖2 ds

p ≤ E

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0

Ls dBs

∥∥∥∥p
)
≤ CpE

√∫ T

0

‖Ls‖2 ds

p .
2.4.2 Itô's formula

A powerful tool in classical stochastic calculus is Itô's formula. It can be
used, for example, to �nd explicit formulas for stochastic integrals and to
solve ordinary stochastic di�erential equations. We follow [Gei19, chapter 3-
4]. We only consider the one-dimensional case. A multidimensional version
can be found in [Mao07, Section 1.3, theorem 3.4]. The following de�nition
of Itô process is given in [Gei19, de�nition 3.2.6].

We recall that a continuous and adapted process X = (Xt)t∈I , Xt : Ω→
R, is called Itô process, provided that there exists x0 ∈ R, a process L =
(Lt)t∈I ∈ L2 and a progressively measurable process a = (ai)i∈I with∫ t

0

|au(ω)| du <∞

for all (t, ω) ∈ I × Ω, such that

Xt(ω) = x0 +

(∫ t

0

Lu dBu

)
(ω) +

∫ t

0

au(ω) du

for t ∈ I almost surely.
We say that X is an Itô process with representation (x0, L, a).

Theorem 2.24 (Itô's formula, [Gei19, Proposition 3.2.9]). Let X = (Xt)t∈I
be an Itô process with representation (x0, L, a) and let f ∈ C1,2(I×R). Then

f(t,Xt) = f(0, X0) +

∫ t

0

∂f

∂u
(u,Xu) du+

∫ t

0

∂f

∂x
(u,Xu) dXu

+
1

2

∫ t

0

∂2f

∂x2
(u,Xu)L

2
u du,

where∫ t

0

∂f

∂x
(u,Xu) dXu =

∫ t

0

∂f

∂x
(u,Xu)Lu dBu +

∫ t

0

∂f

∂x
(u,Xu)au du,

for t ∈ I almost surely.
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2.4.3 Stochastic di�erential equations

Next we introduce ordinary stochastic di�erential equations (SDE), where
the coe�cient functions depend only on the time variable and the unknown
process on a certain time. Despite the name, stochastic di�erential equations
are more related to integral equations than classical di�erential equations.
We follow [Gei19, chapter 4] and [Mao07, chapter 2].

Assume a stochastic basis (Ω,F ,P, (Ft)t∈I) that satis�es the usual condi-
tions. We denote by B = (Bt)t∈I a d-dimensional (Ft)t∈I Brownian motion.

De�nition 2.25 ([Gei19, de�nition 4.1.1], [Mao07, sector 2.2, de�nition
2.1]). Assume that the coe�cients

b : I × Rd → Rd

and
σ : I × Rd → Rd×d,

are Borel measurable. Let x0 ∈ Rd and assume an open set D ⊆ Rd. An
adapted and path-wise continuous process X = (Xt)t∈I solves the stochastic
di�erential equation

(2.4)

{
dXt = σ(t,Xt) dBt + b(t,Xt) dt

X0 = x

if the following conditions are satis�ed:

(1) Xt(ω) ∈ D for all t ∈ I and ω ∈ Ω.

(2) X0 ≡ x0.

(3)

Xt = x0 +

∫ t

0

σ(s,Xs) dBs +

(∫ t

0

b(s,Xs)1 ds, ...,

∫ t

0

b(s,Xs)d ds

)
,

where Xs = (X1
s , ..., X

d
s ), for all t ∈ I almost surely.

We call the term σ(t,Xt) dBt the di�usion term and the term b(t,Xt) dt
the drift term. Respectively, σ and b are called di�usion and drift coe�cients.

Remark 2.26. In De�nition 2.25 Borel-measurability means that σ is
(B(I)⊗B(Rd),B(Rd×d))-measurable and b is (B(I)⊗B(Rd),B(Rd))-measurable.
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2.4.4 Existence and uniqueness of a solution

Next we formulate two theorems about the existence and uniqueness of a
solution. However, �rst we need to de�ne what we mean by uniqueness.

Assume any two processes X = (Xt)t∈I and Y = (Yt)t∈I that solve the
SDE (2.4). If X and Y are indistinguishable, that is,

P(Xt = Yt, t ∈ I) = 1,

then it is said that the SDE (2.4) has a unique strong solution.
Our �rst existence and uniqueness theorem is usually referred as existence

under Lipschitz condition, although alongside global Lipschitz condition we
also assume that the coe�cient functions satisfy linear growth condition,
which is necessary to make sure the coe�cients do not grow too fast.

Theorem 2.27 ([Mao07, Section 2.3, theorem 3.1, lemma 3.2]). Suppose that
the coe�cient functions σ and b are continuous and there exists a constant
C > 0 such that

(C1)
‖b(t, x)‖+ ‖σ(t, x)‖ ≤ C (1 + ‖x‖)

for all t ∈ I and x ∈ Rd, and

(C2)
‖b(t, x)− b(t, y)‖+ ‖σ(t, x)− σ(t, y)‖ ≤ C ‖x− y‖

for all t ∈ I and x, y ∈ Rd.

Under these conditions the SDE (2.4) admits a unique strong solution.

Our second theorem gives the uniqueness of a solution under weaker con-
ditions than our previous theorem. However, it should be noted that this
theorem does not imply the existence of a solution, just the uniqueness, and
the theorem is given in the one-dimensional case.

Theorem 2.28 (Yamada-Tanaka, [Gei19, Proposition 4.2.3]). Let
h : [0,∞)→ [0,∞) and K : [0,∞)→ R be strictly increasing functions such
that K(0) = h(0) = 0, K is concave, and for all ε > 0 it holds that∫ ε

0

1

K(u)
du =

∫ ε

0

1

h(u)2
du =∞.

If the coe�cient functions σ and b are continuous and

|σ(t, x)− σ(t, y)| ≤ h(|x− y|),
|b(t, x)− b(t, y)| ≤ K(|x− y|)

for all x, y ∈ R, then any two solutions to the SDE (2.4) are indistinguishable.
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3 Wasserstein space

In this thesis our primary objective is to generalize the theory of ordinary
stochastic di�erential equations to a wider class of equations, where the co-
e�cients may depend upon the law of the unknown process. However, we
need to address the following problems:

(1) The coe�cients functions σ and b are required to be Borel measurable.
If X : Ω → Rd is a random variable, then its law PX is a probability
measure on (Rd,B(Rd)). It follows that we need to de�ne a Borel σ-
algebra on the space of probability measures on (Rd,B(Rd)).

(2) If we want to formulate the existence and uniqueness Theorem 2.27
for this wider class of stochastic di�erential equations, we may need
to de�ne Lipschitz-continuity with respect to the distribution variable,
that is, for all probability measures µ, ν on (Rd,B(Rd)) one has

‖b(t, x, µ)− b(t, x, ν)‖ ≤ d(µ, ν),

where d is a distance between two probability measures.

For this purpose we introduce the Wasserstein distance, which is a metric for
the space of probability measures with �nite p-th moments. In this section
we de�ne the Wasserstein space and prove some important properties.

The de�nition of marginal distributions follow [Vil06, chapter 1]. The
space Pp(Rd) and the Wasserstein distanceWp are de�ned in [Vil06, de�nition
6.1 and 6.4].

Let X be a non-empty set. A map d : X × X → [0,∞) is a metric or
distance if for all x, y, z ∈ X one has

(M1) d(x, y) = 0 if and only if x = y.

(M2) d(x, y) = d(y, x).

(M3) d(x, y) ≤ d(x, z) + d(z, y).

The pair (X, d) forms a metric space. One important example of a metric
space is Rd with Euclidean metric dE(x, y) := ‖x− y‖, where ‖·‖ is the
ordinary Euclidean norm. In particular this space is complete and separable.

Let P(Rd) be the space of all the probability measures on (Rd,B(Rd)).
For p ≥ 1, let Pp(Rd) be a subspace of P(Rd) such that

Pp(Rd) :=

{
P ∈ P(Rd) |

∫
R
‖x− x0‖p dP <∞

}
,
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where x0 ∈ Rd is �xed.
Denote by Π(µ, ν) the set of probability measures on (Rd×Rd,B(Rd×Rd))

where the �rst and second marginals are µ and ν respectively. This means
ξ ∈ Π(µ, ν), if

(1) ξ is a measure on (Rd × Rd,B(Rd × Rd)),

(2) ξ(Rd × Rd) = 1,

(3) for all A ∈ B(Rd) one has

µ(A) =

∫
Rd×Rd

1A(x) dξ(x, y) = ξ(A× Rd)

and

ν(A) =

∫
Rd×Rd

1A(y) dξ(x, y) = ξ(Rd × A).

Example 3.1. Let X, Y : Ω → Rd be random variables. The law of the
random vector (X, Y ) is de�ned by

P(X,Y )(B) := P((X, Y ) ∈ B)

for all B ∈ B(Rd × Rd). For A ∈ B(Rd) we have

P(X,Y )(A× Rd) = P((X, Y ) ∈ A× Rd) = P(X ∈ A) = PX(A)

and in a similar way P(X,Y )(Rd × A) = PY (A). It follows that

P(X,Y ) ∈ Π(PX ,PY ).

De�nition 3.2 ([Vil06, de�nition 6.1 and 6.4]). For all p ≥ 1, de�ne
Wp : Pp(Rd)× Pp(Rd)→ [0,∞),

Wp(µ, ν) := inf
π∈Π(µ,ν)

(∫
Rd×Rd

‖x− y‖p dπ(x, y)

) 1
p

.

The map Wp is called the p-Wasserstein distance. The space (Pp(Rd),Wp) is
called the Wasserstein space.

Theorem 3.3. Let p ≥ 1. Then the Wasserstein space
(
Pp(Rd),Wp

)
is a

complete and separable metric space.
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Proof. First we need to show that Wp satis�es properties (M1), (M2) and
(M3). The triangle inequality property (M3) is proven in [Vil06, chapter 6,
p. 77]. The remaining parts we prove here.

To prove the symmetry property (M2) we let µ, ν ∈ P(Rd). For all
A ∈ B(Rd), π ∈ Π(µ, ν) and ξ ∈ Π(ν, µ) one has

π(A× Rd) = µ(A) = ξ(Rd × A) and π(Rd × A) = ν(A) = ξ(A× Rd).

Now we may de�ne a map ρ : Pp(Rd × Rd)→ Pp(Rd × Rd) such that for all
π ∈ Pp(Rd × Rd) and all B ∈ B(Rd × Rd) one has

(ρ(π))(B) = π(
{

(x, y) ∈ Rd × Rd | (y, x) ∈ A
}

) = ξ(B).

In particular ρ(Π(µ, ν)) = Π(ν, µ). We see that ρ−1 = ρ because ρ(ρ(π)) = π
for all π ∈ Pp(Rd × Rd). Hence ρ−1(Π(ν, µ)) = ρ(Π(ν, µ)) = Π(µ, ν). Now

Wp(µ, ν)p = inf
π∈Π(µ,ν)

∫
Rd×Rd

‖x− y‖p dπ(x, y)

= inf
π∈ρ(Π(ν,µ))

∫
Rd×Rd

‖x− y‖p dπ(x, y)

= inf
ρ−1(π)∈Π(ν,µ)

∫
Rd×Rd

‖x− y‖p dπ(x, y)

= inf
ξ∈Π(ν,µ)

∫
Rd×Rd

‖x− y‖p dρ(ξ)(x, y)

= inf
ξ∈Π(ν,µ)

∫
Rd×Rd

‖y − x‖p dξ(y, x)

= Wp(ν, µ)p.

We prove the �nal property (M1) in two steps. First we prove that µ = ν
implies that Wp(µ, ν) = 0. We de�ne a measure

π0(B) :=

∫
Rd

1{x∈Rd|(x,x)∈B}(y) dµ(y)

for B ∈ B(Rd × Rd). Clearly,

π0(A× Rd) =

∫
Rd

1{x∈Rd|(x,x)∈A×Rd}(y) dµ(y)

=

∫
Rd

1A(y) dµ(y) = µ(A).

The same arguments can be used to show that π0(Rd × A) = µ(A). Hence
π0 ∈ Π(µ, µ).
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We see that for all sets B ∈ B(Rd × Rd) with B ∩
{

(x, x) | x ∈ Rd
}

= ∅
one has π0(B) = 0. Therefore

Wp(µ, µ)p ≤
∫
Rd×Rd

‖x− y‖p dπ0(x, y)

=

∫
{(x,x)|x∈Rd}

‖x− y‖p dπ0(x, y)

=

∫
{(x,x)|x∈Rd}

‖x− x‖p dπ0(x, x) = 0.

To prove the converse implication, we let µ, ν ∈ P(Rd) and assume that
Wp(µ, ν) = 0. By [Vil06, Theorem 4.1] this implies that there exists π0 ∈
Π(µ, ν) such that ∫

Rd×Rd

‖x− y‖p dπ0(x, y) = 0.

Since π0 is a probability measure, it follows that

π0(
{

(x, y) ∈ Rd × Rd | x = y
}

) = 1.

In particular
π0(
{

(x, y) ∈ Rd × Rd | x 6= y
}

) = 0.

Then for all A ∈ B(Rd) it holds that

µ(A) = π0(A× Rd)

= π0(
{

(x, y) ∈ A× Rd | x = y
}
∪
{

(x, y) ∈ A× Rd | x 6= y
}

)

= π0(
{

(x, y) ∈ A× Rd | x = y
}

)

= π0(A× A).

With similar arguments we obtain

ν(A) = π0(A× A).

Hence µ = ν.
In [Vil06, Theorem 6.16] it is proven that if X is a complete separable

metric space, then the space (Pp(X),Wp) is also a complete separable met-
ric space. We use the fact that Rd with Euclidean metric is complete and
separable.

We recall some more results concerning the Wasserstein distance. The
following lemma and its proof follow [BMM19, Section 2.2].
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Lemma 3.4. Let X, Y : Ω→ Rd be random variables. Then

Wp(PX ,PY )p ≤ E [‖X − Y ‖p] .

Proof. We have shown in example 3.1 that P(X,Y ) ∈ Π(PX ,PY ). Then

Wp(PX ,PY )p =

(
inf

π∈Π(PX ,PY )

[∫
Rd×Rd

‖x− y‖p dπ(x, y)

] 1
p

)p

= inf
π∈Π(PX ,PY )

[∫
Rd×Rd

‖x− y‖p dπ(x, y)

]
≤
∫
Rd×Rd

‖x− y‖p dP(X,Y )(x, y).

By letting ϕ(u, v) := ‖u− v‖p we may use change of variable formula [GG18,
Proposition 5.6.1] to conclude that

E ‖X − Y ‖p = Eϕ(X, Y ) =

∫
Ω

ϕ(X(ω), Y (ω)) dP(ω)

=

∫
Rd×Rd

ϕ(x, y) dP(X,Y )(x, y)

=

∫
Rd×Rd

‖x− y‖p dP(X,Y )(x, y).

Hence
Wp(PX ,PY )p ≤ E ‖X − Y ‖p .

Due to its complex nature, computing an explicit value for theWasserstein
distance might not be possible. However, in the case p = 1, we may apply a
theorem known as Kantovich-Rubinstein duality.

Proposition 3.5 (Kantovich-Rubinstein, [CD18a, corollary 5.4]). For µ, ν ∈
P1(Rd) one has

W1(µ, ν) = sup

{∣∣∣∣∫
Rd

h d(µ− ν)

∣∣∣∣ ∣∣ h ∈ Lips1(Rd)

}
,

where Lips1(Rd) consists of all the functions h : Rd → R satisfying

|h(x)− h(y)| ≤ ‖x− y‖

for all x, y ∈ Rd.
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The following example demonstrates how the Wasserstein distance can
be computed in a simple case using Theorem 3.5.

Example 3.6. We de�ne the Dirac measure on (Rd,B(Rd)) by

δc(A) =

{
1, c ∈ A
0, c /∈ A

for some �xed constant c ∈ R. It is clearly a probability measure. In partic-
ular, if we integrate an integrable function f with respect to δc, we obtain∫

Rd

f dδc = f(c).

This implies, for any p ≥ 1,∫
R
‖u‖p dδc(u) = |c|p <∞.

Hence δc ∈ Pp(R) for all p ≥ 1.
We let a, b ∈ Rd. Let f : R → R be a 1-Lipschitz function. Then∣∣∣∣∫

R
f d(δa − δb)

∣∣∣∣ =

∣∣∣∣∫
R
f dδa −

∫
R
f dδb

∣∣∣∣
= |f(a)− f(b)| ≤ ‖a− b‖ .

Next we de�ne an orthogonal projection

P : Rd → 〈b− a〉 =
{
x ∈ Rd | x = λ(b− a) for some λ ∈ R

}
.

It holds that ‖P (x)‖ ≤ ‖x‖. Now we may let f(x) = ‖P (x− a)‖ since

|f(a)− f(b)| = |‖P (a− a)‖ − ‖P (b− a)‖|
= |‖P (0)‖ − ‖P (b− a)‖|
= ‖b− a‖ .

Furthermore, for all x, y ∈ Rd it holds that

|f(x)− f(y)| = |‖P (x− a)‖ − ‖P (y − a)‖|
= |‖P (x− a)− P (y − a)‖|
= ‖P (x− y)‖
≤ ‖x− y‖ ,

implying that f ∈ Lips1Rd.
Now we may apply Theorem 3.5 to conclude that

W1(δa, δb) = sup
f∈Lips1(R)

∫
R
f d(δa − δb) = ‖a− b‖ .
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The Wasserstein distances with di�erent p have the following relation.
This property is mentioned in [CD18a, p. 353], but it is not proven there.

Lemma 3.7. Let µ, ν ∈ Pq(Rd). Then

Wp(µ, ν) ≤ Wq(µ, ν)

for all 1 ≤ p < q <∞.

Proof. Fix µ, ν ∈ Pq(Rd) and choose any π ∈ Π(µ, ν). Let r = q
p
and s = q

q−p .

Now 1
r

+ 1
s

= 1, so we may apply Hölder inequality 2.9 to obtain∫
Rd

‖x− y‖p dπ(x, y) ≤
∫
Rd

|‖x− y‖p · 1| dπ(x, y)

≤
(∫

Rd

1s dπ(x, y)

) 1
s
(∫

Rd

‖x− y‖p
q
p dπ(x, y)

) 1
r

=

(∫
Rd

‖x− y‖q dπ(x, y)

) p
q

.

Hence (∫
Rd

‖x− y‖p dπ(x, y)

) 1
p

≤
(∫

Rd

‖x− y‖q dπ(x, y)

) 1
q

.

Now we have that

inf
π̃∈Π(µ,ν)

(∫
Rd

‖x− y‖p dπ̃(x, y)

) 1
p

≤
(∫

Rd

‖x− y‖q dπ(x, y)

) 1
q

.

This inequality holds for arbitrary π ∈ Π(µ, ν), therefore

inf
π̃∈Π(µ,ν)

(∫
Rd

‖x− y‖p dπ̃(x, y)

) 1
p

≤ inf
π′∈Π(µ,ν)

(∫
Rd

‖x− y‖q dπ′(x, y)

) 1
q

.

4 McKean-Vlasov stochastic di�erential equa-

tions

In this thesis we consider a broader class of stochastic di�erential equations
than what we have mentioned in Section 2.4.3. We add a third parameter
to the coe�cients, a so called distribution parameter, which allows us to
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make the coe�cients depend on the law of the random process, and therefore
the expected value. This class of stochastic di�erential equations is called
McKean-Vlasov stochastic di�erential equations. We use the abbreviation
MVSDE. It should be noted that the ordinary SDEs are a special subset of
MVSDEs.

Our goal is to generalize some known results of ordinary SDEs to the con-
text of MVSDEs. First we consider theorems for the existence and unique-
ness of a solution, generalizing the results we introduced in Section 2.4.4.
We present some elementary examples to demonstrate how to apply these
results.

Throughout this and the following sections, we assume a �nite time hori-
zon T > 0 and a stochastic basis

(
Ω,F ,P, (Ft)t∈[0,T ]

)
that satis�es the usual

conditions. Let B = (B)t∈[0,T ] be a d-dimensional (Ft)t∈[0,T ] Brownian mo-
tion, where d ≥ 1.

4.1 Motivation

To give a motivation for McKean-Vlasov stochastic di�erential equations,
we consider an example related to physics. This is a natural choice for a
motivation since, as mentioned in the introduction, the theory of MVSDEs
was initiated by physics. This example is inspired by [CD18b, 2.1.2].

We want to model a system of N weakly interacting particles on some
time interval [0, T ], where T > 0. For every i = 1, 2, ..., N we model the
position of a particle by a stochastic process X i = (X i

t)t∈[0,T ]. We denote
by an (B1, B2, ..., BN) N -dimensional Brownian motion. In our model we
assume that each particle solves the following stochastic di�erent equation{

dX i
t = σ(t,X i

t , µN) dBi
t + b(t,X i

t , µN) dt

X i
0 = xi0,

where xi0 is the initial position and

µN :=
1

N

N∑
i=1

Xi.

The term µN gives the dependence on the positions of the other particles.
To model the weak interaction, we assume that, when N is large enough,

for all t ∈ [0, T ] the particles (X i
t)
N
i=1 are behaving approximately like inde-

pendent particles with identical distributions. This lets us use the strong law
of large numbers [GG18, Proposition 8.2.6] to obtain

µN −→
a.s.

EX1
t .
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as N tends to in�nity. Since we assume that the particles have identical
distribution, we have that EX i

t = EX1
t for all i = 1, 2, .... This means

that, if N is large enough, we may approximate individual particles with the
following stochastic di�erential equation:

(4.1)

{
dX i

t = σ(t,X i
t ,EX i

t) dBi
t + b(t,X i

t ,EX i
t) dt

X i
0 = xi0.

This equation is a special case of McKean-Vlasov stochastic di�erent equa-
tions, as we will see in the next section.

4.2 Formulation

We start by giving a formal de�nition for McKean-Vlasov stochastic di�er-
ential equations. The de�nition of MVSDE is given in [BMM19, Section 2.1]
and is similar to De�nition 2.25.

Assume an initial value x0 ∈ Rd and an open set D ⊆ Rd. Assume that
the coe�cients

b : [0, T ]×D × P2(Rd)→ Rd

and
σ : [0, T ]×D × P2(Rd)→ Rd×d

are Borel measurable. We consider the following type of stochastic di�erential
equations,

(4.2)

{
dXt = σ(t,Xt,PXt) dBt + b(t,Xt,PXt) dt

X0 = x0

which are called McKean-Vlasov stochastic di�erential equations or some-
times mean-�eld SDEs. An adapted and path-wise continuous process X =
(Xt)t∈I is called a solution to (4.2) provided that

(Sol1) Xt(ω) ∈ D for all t ∈ [0, T ] and ω ∈ Ω,

(Sol2) X0 ≡ x0, and

(Sol3) we have that

Xt = x0 +

∫ t

0

σ(s,Xs,PXs) dBs +

∫ t

0

b(s,Xs,PXs) ds,

where∫ t

0

b(s,Xs,PXs) ds =

(∫ t

0

b(s,Xs,PXs)1 ds, ...,

∫ t

0

b(s,Xs,PXs)d ds

)
,

for all t ∈ [0, T ] almost surely.

27



If not mentioned otherwise, then we assume that D = Rd.

Remark 4.1. Since we have de�ned the metric W2 in the space P2(Rd),
the Borel σ-algebra B(P2(Rd)) = B((P2(Rd),W2)) is well-de�ned, hence the
Borel-measurability of the coe�cients σ and b is also well-de�ned: σ is Borel-
measurable, if it is (B([0, T ]) ⊗ B(Rd) ⊗ B(P2(Rd)),B(Rd×d))-measurable,
and b is Borel-measurable, if it is (B([0, T ]) ⊗ B(Rd) ⊗ B(P2(Rd)),B(Rd))-
measurable.

4.3 Examples

Next we consider simple examples of McKean-Vlasov stochastic di�erential
equations. We will discuss the uniqueness of solutions in later sections. Since
the presence of distribution variables makes the equations signi�cantly more
complicated and prohibits using the classical Itô's formula, we consider only
the cases where the solution can be found by guessing. We also introduce
two common types of how the distribution variable is used in the equations.
De�nitions of di�erent interactions are mentioned in [Car16, Section 1.3.2].

Our �rst goal is to see an example of the interaction through marginal
distributions. Let ϕ : Rd → R be a function. In many applications, there
exists a function b̃ : [0, T ]× Rd × R→ Rd such that

b(t, x, µ) = b̃(t, x, 〈ϕ, µ〉),

where the angular bracket operator is de�ned by

〈ϕ, µ〉 :=

∫
Rd

ϕ(u) dµ(u).

This is called mean-�eld interaction of scalar type, and it is the simplest case
of interaction. If X : Ω → Rd is a random variable, then by the change of
variable formula

〈ϕ,PX〉 =

∫
Rd

ϕ(u) dPX(u) =

∫
Ω

ϕ(X(ω)) dP(ω) = Eϕ(X).

If ϕ(x) = xn for some n = 1, 2, ..., then 〈ϕ,PX〉 = E |X|n, that is, the n-th
moment of the random variable X. Next we consider two examples of scalar
type interaction.

Example 4.2. Assume that X̃ = (X̃t)t∈[0,T ] solves the SDE{
dXt = σ(t,Xt) dBt

X0 = 0.
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Then X̃t =
∫ t

0
σ(s, X̃s) dBs. By the martingale property of stochastic integral

one has

E
∫ t

0

σ(s, X̃s) dBs = 0,

hence X̃ is also a solution to the MVSDE{
dXt = σ(t,Xt) dBt + EXt dt

X0 = 0.

For example, if σ ≡ 1, then the solution is X̃t =
∫ t

0
1 dBs = Bt.

If σ also has dependence on the distribution, then we can construct the
MVSDE (4.1) we considered in Section 4.1.

Example 4.3. Assume Borel-measurable maps

σ̃ : [0, T ]× Rd × R→ Rd×d

and
b̃ : [0, T ]× Rd × R→ Rd.

De�ne the coe�cients by

σ(t, x, µ) := σ̃

(
t, x,

∫
Rd

u dµ(u)

)
and

b(t, x, µ) := b̃

(
t, x,

∫
Rd

u dµ(u)

)
.

Now the corresponding MVSDE is{
dXt = σ̃(t,Xt,EXt) dBt + b̃(t,Xt,EXt) dt

X0 = x0,

which is what we have in Section 4.1.

We may also have more complicated types of interaction. Assume that
there exists a function b̃ : [0, T ]× Rd × Rd → Rd such that

b(t, x, µ) =

∫
Rd

b̃(t, x, u) dµ(u).

This is called interaction of order 1. It can be expanded to the higher orders
by

b(t, x, µ) =

∫
Rd

· · ·
∫
Rd

b̃(t, x, u1, ..., un) dµ(u1) · · · dµ(un).
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In this case we have interaction of order n. We omit this kind of interaction
in our examples.

As we will see in the following example, the solution is not always unique.
Sometimes there might exists uncountably many solutions.

Example 4.4. Consider the following MVSDE

(4.3)

dXt = 1(0,∞)(t)

√
EX2

t

t
dBt

X0 = 0.

Here

σ(t, x, µ) = 1(0,∞)(t)

√
1

t

∫
R
u2 dµ(u) =


0, t = 0√

1

t

∫
R
u2 dµ(u) t > 0.

We recall that EB2
t = t for all t ∈ [0, T ], which lets us guess that the

solution is Xt = λBt for some constant λ > 0. Indeed now we have

∫ t

0

1(0,∞)(s)

√
E (λBs)

2

s
dBs =

∫ t

0

1(0,∞)(s)

√
λ2s

s
dBs

=

∫ t

0

1(0,∞)(s)λ dBs = λBt.

Since this holds for all λ > 0, the MVSDE (4.3) has uncountably many
solutions.

In some cases there exists no solution, which we show in the next example.

Example 4.5. Let ϕ : R→ R be a bounded Borel measurable function. Let
x0 ∈ R. Consider the MVSDE{

dXt = ϕ(EX2
t ) dBt

X0 = x0.

We want to �nd a process X = (Xt)t∈[0,T ] satisfying

Xt = x0 +

∫ t

0

ϕ(EX2
s ) dBs
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for t ∈ [0, T ] almost surely. First we note that

EX2
t = E

(
x0 +

∫ t

0

ϕ(EX2
s ) dBs

)2

= x2
0 + 2x0E

∫ t

0

ϕ(EX2
s ) dBs + E

[∫ t

0

ϕ(EX2
s ) dBs

]2

= x2
0 + E

[∫ t

0

ϕ(EX2
s ) dBs

]2

.

Itô's isometry 2.21 yields

E
[∫ t

0

ϕ(EX2
s ) dBs

]2

= E
∫ t

0

ϕ(EX2
s )2 ds

=

∫ t

0

ϕ(EX2
s )2 ds.

The term ϕ(EX2
s )2 does not depend on ω ∈ Ω, which implies the last equality.

We let ψ(x) := ϕ(x)2 and f(t) := EX2
t . We can write the previous

equation as an integral equation

f(t) = EX2
t = x2

0 +

∫ t

0

ϕ(EX2
s )2 ds

= x2
0 +

∫ t

0

ψ(f(s)) ds.

To show that (4.5) has no solution, it is su�cient to show that this integral
equation has no solution.

For example, let x0 = 0 and ψ(x) := 1Q(x). Now the integral equation
looks like

f(t) =

∫ t

0

1Q(f(s)) ds, t ∈ [0, T ].

We show that this equation does not have a solution. We consider three
di�erent cases.

(1) If f ≡ c for some constant c ∈ R, then it has to be c = 0, because
f(0) = 0. However, now we have∫ t

0

1Q(0) ds = t,

which is a contradiction.
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(2) If f is strictly increasing, then it has to hold that

λ({t ∈ [0, T ] | f(t) ∈ Q}) = 0,

which implies 1Q(f) = 0 almost everywhere. It follows from the fact
that f−1(Q) is at most countable in this case. This implies that∫ t

0

1Q(f(s)) ds = 0,

which is a contradiction.

(3) Assume that there exists an interval [a, b] ⊂ (0, T ], b > a, such that
f(t) = q > 0 for all t ∈ [a, b]. If q /∈ Q, then

f(t) =

∫ min{b,t}

a

1Q(f(s)) ds =

∫ min{b,t}

a

1Q(q) ds = 0,

thus it has to hold that q ∈ Q. However, now

f(t) =

∫ min{b,t}

a

1Q(f(s)) ds =

∫ min{b,t}

a

1Q(q) ds = min {b, t} − a,

which is not a constant.

This implies that the MVSDE{
dXt =

√
1Q(EX2

t ) dBt = 1Q(EX2
t ) dBt

X0 = 0

has no solution.

4.4 Existence and uniqueness of a solution

In this section our goal is to formulate similar existence and uniqueness results
as we did for ordinary SDEs in Section 2.4.4. The �rst result generalizes the
theorem that states the existence and uniqueness of a solution under the Lip-
schitz continuity and linear growth condition to MVSDEs. We formulate this
theorem and consider a simple example, but we do not prove this theorem.
Our second theorem is a generalization of the theorem of Yamada-Tanaka,
mentioned in Theorem 2.28, but we generalize the setting to a speci�c mul-
tidimensional case.
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4.4.1 Existence and uniqueness under Lipschitz condition

In Theorem 2.27 we saw that if the coe�cient functions are globally Lipschitz
continuous and satisfy the linear growth condition, then there exists a unique
solution. As P2(Rd) equipped with the Wasserstein distance W2 is a metric
space, we may formulate a similar theorem for MVSDEs. We give the same
formulation as in [BMM19, Section 3.1].

We assume that the coe�cients of the MVSDE (4.2) satisfy the following
properties:

(L1) There exists a constant K > 0 such that

‖b(t, x, µ)‖ ≤ K (1 + ‖x‖)

and
‖σ(t, x, µ)‖ ≤ K (1 + ‖x‖)

for all (t, x, µ) ∈ [0, T ]× Rd × P2(Rd).

(L2) There exists a constant L > 0 such that

‖b(t, x, µ)− b(t, y, ν)‖ ≤ L [‖x− y‖+W2(µ, ν)]

and
‖σ(t, x, µ)− σ(t, y, ν)‖ ≤ L [‖x− y‖+W2(µ, ν)]

for all t ∈ [0, T ], x, y ∈ Rd and µ, ν ∈ P2(Rd).

Theorem 4.6. Under assumptions (L1) and (L2), the MVSDE (4.2) has a
unique solution. Moreover, if X = (Xt)t∈[0,T ] is the solution, it holds that

E

[
sup
t∈[0,T ]

‖Xt‖2

]
<∞.

A complete proof can be found in [CD18a, Theorem 4.21]. The proof
is given for a slightly di�erent setting, where the linear growth condition
(L1) is replaced with another condition. However, the proof in our setting
is identical, since the corresponding condition in [CD18a] is only required to
conclude that a unique solution exists for an ordinary SDE.

We demonstrate this theorem in the following example.

Example 4.7. We want to show that there exists a unique solution to the
following MVSDE {

dXt = cos(Xt) dBt + E sin(Xt) dt,

X0 = x0.
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We recall that sine and cosine functions are bounded 1-Lipschitz functions.
Hence the coe�cient σ clearly satis�es (L1) and (L2), so we only need to
check that the coe�cient b is Lipschitz continuous.

We have that

b(t, x, µ) =

∫
R

sin(u) dµ(u).

Now, using Kantovich-Rubinstein duality 3.5 we obtain

|b(t, x, µ)− b(t, y, ν)| =
∣∣∣∣∫

R
sin(u) dµ(u)−

∫
R

sin(t) dν(t)

∣∣∣∣
=

∣∣∣∣∫
R

sin(u) d(µ− ν)(u)

∣∣∣∣
≤ sup

{∣∣∣∣∫
Rd

h(u) d(µ− ν)(u)

∣∣∣∣ ∣∣ h ∈ Lips1(R)

}
= W1(µ, ν)

≤ |x− y|+W1(µ, ν)

≤ |x− y|+W2(µ, ν),

where we use Lemma 3.7 to get the �nal inequality. This implies that there
exists a unique solution to (4.7).

4.4.2 Generalization of Yamada-Tanaka theorem

Next we want to generalize the uniqueness theorem of Yamada and Tanaka,
introduced in Theorem 2.28. We consider the case where only the coe�cient b
depends on the distribution variable. In the one dimensional case, this result
is proven in [BMM19, Section 3.2]. However, by adapting this proof, we may
generalize the theorem even further and consider a speci�c multidimensional
case.

σi : [0, T ]× R→ R

and
bi : [0, T ]× R× P2(Rd)→ R

be bounded Borel measurable functions. We de�ne the coe�cients σ : [0, T ]×
Rd → Rd and b : [0, T ]× Rd × P2(Rd)→ Rd such that

b(t, (x1, ..., xd), µ) := (b1(t, x1, µ), ..., bd(t, xd, µ))

and
σ(t, (x1, ..., xd)) := Diag(σ1(t, x1), ..., σd(t, xd)),
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where Diag denotes a d× d diagonal matrix, that is

Diag(σ1(t, x1), ..., σd(t, xd)) =

σ1(t, x1) . . . 0
...

. . .
...

0 . . . σd(t, xd)

 .
Assume that X = (X1, ..., Xd) solves{

dXt = σ(t,Xt) dBt + b(t,Xt,PXt) dt

X0 = x0 = (x1
0, ..., x

d
0).

By de�nition this is equivalent to the system of one-dimensional MVSDEs
where for each i = 1, ..., d, X i is a solution to

(4.4)

{
dX i

t = σi(t,X
i
t) dBi

t + bi(t,X
i
t ,PXt) dt

X i
0 = xi0.

It should be noted that here the coe�cient for the drift term depends on the
law of the whole d-dimensional process, not just its ith component.

In this setting, we may give su�cient conditions for the uniqueness of
a solution. We assume that for all i = 1, ..., d the following conditions are
satis�ed:

(A1) The function bi is Lipschitz-continuous with respect to the distribution
variable, that is, there exists a constant C > 0 such that

|bi(t, x, µ)− bi(t, x, ν)| ≤ CW1(µ, ν)

for all x ∈ R, t ∈ [0, T ] and (µ, ν) ∈ P1(Rd)⊗ P1(Rd)

(A2) There exists a strictly increasing function ρ : [0,∞)→ [0,∞) satisfying
ρ(0) = 0 and ∫ ε

0

1

ρ2(u)
du =∞

for every ε > 0, and |σi(t, x)− σi(t, y)| ≤ ρ(|x− y|) for all t ∈ [0, T ]
and x, y ∈ R.

(A3) There exists a strictly increasing concave function κ : [0,∞) → [0,∞)
satisfying κ(0) = 0 and ∫ ε

0

1

κ(u)
du =∞

for every ε > 0, and |bi(t, x, µ)− bi(t, y, µ)| ≤ κ(|x− y|) for all t ∈
[0, T ], x, y ∈ R and µ ∈ P2(Rd).
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With these conditions we can formulate the following theorem that gives
us the uniqueness of a solution.

Theorem 4.8. Under conditions (A1), (A2) and (A3), a solution to (4.4.2)
is unique.

Before we can prove this theorem, we need two lemmas. The �rst lemma
is known as Bihari-LaSalle inequality, which is a non-linear generalization of
Gronwall's inequality.

Lemma 4.9 (Bihari�LaSalle, [Mao07, Section 1.8, theorem 8.2]). Assume
constants T > 0 and c > 0. Let f, u : [0, T ]→ [0,∞) be continuous functions.
Let κ : [0,∞) → [0,∞) be a continuous and increasing function such that
κ(x) > 0 for all x > 0. If the function u is bounded and satis�es the following
inequality

u(t) ≤ c+

∫ t

0

f(s)κ(u(s)) ds

for all t ∈ [0, T ], then

u(t) ≤ G−1

(
G(c) +

∫ t

0

f(s) ds

)
for all t ∈ [0, T ] with

(4.5) G(c) +

∫ t

0

f(s) ds ∈ Dom(G−1),

where

G(x) :=

∫ x

1

1

κ(u)
du,

for x > 0.

Proof. Let v(t) := c+
∫ t

0
f(s)κ(u(s)) ds. We di�erentiate v to get

v′(t) = f(t)κ(u(t)).

By the chain rule we obtain

d

dt
G(v(t)) = v′(t)G′(v(t)) =

v′(t)

κ(v(t))
=
f(t)κ(u(t))

κ(v(t))
.

Integrating from 0 to t yields∫ t

0

[
d

ds
G(v(s))

]
ds = G(v(t))−G(v(0))

= G(v(t))−G(c) =

∫ t

0

f(s)κ(u(s))

κ(v(s))
ds.
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Since κ is a strictly increasing function we may apply the estimate
κ(u(s)) ≤ κ(v(s)) to see that

G(v(t))−G(c) =

∫ t

0

f(s)κ(u(s))

κ(v(s))
ds ≤

∫ t

0

f(s)κ(v(s))

κ(v(s))
ds =

∫ t

0

f(s) ds.

Therefore,

G−1(G(v(t))) = v(t) ≤ G−1

(
G(c) +

∫ t

0

f(s) ds

)
.

for t ∈ [0, T ] where T > 0 is chosen so that it satis�es the property (4.5).
This completes the proof since u(t) ≤ v(t) for all t ≥ 0,

With Bihari�LaSalle inequality we can easily prove Gronwall's inequality.

Lemma 4.10 (Gronwall's inequality, [Mao07, Section 1.8, theorem 8.1]). Let
A,B, T ≥ 0 and let u : [0, T ]→ [0,∞) be a continuous function satisfying

u(t) ≤ A+B

∫ t

0

u(s) ds

for all u ∈ [0, T ]. Then u(t) ≤ AeBt for all t ∈ [0, T ].

Proof. By choosing κ(x) := x and f := B one has

G(x) =

∫ x

1

1

u
du = log(x)− log(1) = log(x)

and G−1(x) = ex. Then, by Lemma 4.9 we have

u(t) ≤ exp(log(A) +

∫ t

0

B ds) = AeBt

for t ∈ [0, T ], in the case A > 0. If A = 0, then we use the estimate

u(t) ≤ B

∫ t

0

u(s) ds < ε+B

∫ t

0

u(s) ds

for every ε > 0. Now

u(t) ≤ exp

(
log(ε) +

∫ t

0

B ds

)
→ 0

as ε tends to 0.
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Now we can prove Theorem 4.8.

Proof of Theorem 4.8. We de�ne the norm

‖x‖1,d :=
d∑
i=1

|xi|

in Rd. We see that

‖x‖2,d := ‖x‖ =

√√√√ d∑
k=1

|xk|2 ≤
d∑

k=1

√
|xk|

2
=

d∑
k=1

|xk| = ‖x‖1,d

and by the Cauchy-Schwartz inequality we have that

‖x‖2
1,d =

(
d∑

k=1

|xk|

)2

≤ d
d∑

k=1

|xk|2 = ‖x‖2
2,d .

Hence
‖x‖2,d ≤ ‖x‖1,d ≤

√
d ‖x‖1,d .

This implies that the norms ‖·‖1,d and ‖·‖2,d are equivalent.

We assume two processes X = (X1, ..., Xd) and Y = (Y 1, ..., Y d) that
solve (4.4.2). Our goal is to show that

E ‖Xt − Yt‖1,d = 0

for all t ∈ [0, T ], which implies that X and Y are indistinguishable.
By assumption (A2) we have that∫ ε

0

1

ρ(u)2
du =∞,

for all ε > 0. It follows that for every ξ > 0 there exists a ∈ (0, 1) such that∫ 1

a

1

ρ(u)2
du = ξ.

This lets us construct a sequence (an)∞n=1 of real numbers such that

1 > a1 > a2 > ... > an > an−1 > ... > 0

and ∫ 1

a1

1

ρ(u)2
du = 1 and

∫ an−1

an

1

ρ(u)2
du = n

for all n ≥ 2. Moreover, we see that an → 0 as n→∞.
Next we construct a sequence of functions (ψn)∞n=1, ψn : R → R, such

that for every n ∈ N we have that:
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(1) ψn is continuous,

(2) we have
{x ∈ R | ψn(x) 6= 0} ⊆ (an, an−1),

(3) and for all x ∈ R one has

0 ≤ ψn(x) ≤ 2

nρ(x)2

and ∫ an−1

an

ψn(u) du = 1.

The idea in this construction is that for all n ∈ N we approximate the function

x 7→ 1(an,an−1)(x)
1

nρ(x)2

with a continuous function such that the integral over R is the same. We do
not go in details why a function like this exists for every n ∈ N.

For n ∈ N we let

ϕn(x) :=

∫ |x|
0

∫ y

0

ψn(u) du dy.

It should be noted that now we think the integral as a Riemann integral to
get the required properties. Clearly ϕn ∈ C2(R). We see that

ϕ′n(x) =

∫ x

0

ψn(u) du

for x ≥ 0, and ϕ′n(x) = −ϕ′n(−x) for x < 0. Therefore

|ϕ′n(x)| =
∫ |x|

0

ψn(u) du ≤
∫ an−1

an

ψn(u) du = 1

for all n ≥ 1. Since an converges to 0 as n→∞, it follows that∫ y

0

ψn(u) du→ 1

as n tends to ∞ for all y > 0. Therefore the sequence (ϕn)∞n=1 converges to
the function ϕ(x) := |x|.

39



Next we �x i = 1, ..., d and consider processesX i and Y i that are solutions
to (4.4). Let Z = X i−Y i. We see that Z is an Itô process with representation

Zt = X i
t − Y i

t = 0 +

∫ t

0

(
σi(s,X

i
s)− σi(s, Y i

s )
)

dBi
s

+

∫ t

0

(
bi(s,X

i
s,PXs)− bi(s, Y i

s ,PYs)
)

ds.

We apply Theorem 2.24 to the process Z and function ϕn to get that

ϕn(Zt) = 0 +

∫ t

0

ϕ′n(Zs)
(
σi(s,X

i
s)− σi(s, Y i

s )
)

dBi
s

+

∫ t

0

ϕ′n(Zs)
(
bi(s,X

i
s,PXs)− bi(s, Y i

s ,PYs)
)

ds

+
1

2

∫ t

0

ϕ′′n(Zs)
(
σi(s,X

i
s)− σi(s, Y i

s )
)2

ds.

It should be noted that since ϕ′n and σi are bounded and measurable, the
stochastic integral exists and

E
∫ t

0

ϕ′n(Zs)
(
σi(s,X

i
s)− σi(s, Y i

s )
)

dBi
s = 0.

Therefore

E [ϕn(Zt)] = E
[∫ t

0

ϕ′n(Zs)
(
bi(s,X

i
s,PXs)− bi(s, Y i

s ,PYs)
)

ds

]
+

1

2
E
[∫ t

0

ϕ′′n(Zs)
(
σi(s,X

i
s)− σi(s, Y i

s )
)2

ds

]
= I1 + I2,

where I1 is the �rst term on the right-hand side and I2 the second term.
First, we estimate I2 by

|I2| =
1

2

∣∣∣∣E [∫ t

0

ϕ′′n(X i
s − Y i

s )
(
σi(s,X

i
s)− σi(s, Y i

s )
)2

ds

]∣∣∣∣
≤ 1

2

∣∣∣∣E [∫ t

0

ψn(X i
s − Y i

s )ρ
(
X i
s − Y i

s

)2
ds

]∣∣∣∣
≤ 1

2

∣∣∣∣E [∫ t

0

2

nρ(X i
s − Y i

s )2
ρ
(
X i
s − Y i

s

)2
ds

]∣∣∣∣
=
t

n
.

40



Clearly t
n
→ 0 as n→∞.

We continue by estimating the term I1. We have shown that ϕ′ is bounded
by 1. Hence ∣∣ϕ′n(X i

t − Y i
t )
(
bi(t,X

i
t ,PXt)− bi(t, Y i

t ,PYt)
)∣∣

≤
∣∣(bi(t,X i

t ,PXt)− bi(t, Y i
t ,PYt)

)∣∣ .
We apply triangle inequality to obtain∣∣(bi(t,X i

t ,PXt)− bi(t, Y i
t ,PYt)

)∣∣ =
∣∣[(bi(t,X i

t ,PYt)− bi(t, Y i
t ,PYt)

]
−
[
bi(t,X

i
t ,PYt)− bi(t,X i

t ,PXt)
] ∣∣

≤
∣∣bi(t,X i

t ,PYt)− bi(t, Y i
t ,PYt)

∣∣
+
∣∣bi(t,X i

t ,PYt)− bi(t,X i
t ,PXt)

∣∣ .
The Lipschitz property (A1) implies∣∣bi(t,X i

t ,PYt)− bi(t,X i
t ,PXt)

∣∣ ≤ CW1(PYt ,PXt)

≤ CE ‖Xt − Yt‖ ,

where Lemma 3.4 implies the latter inequality. Then

CE ‖Xt − Yt‖ ≤ CE ‖Xt − Yt‖1,d .

Finally, assumption (A3) gives us∣∣bi(t,X i
t ,PYt)− bi(t, Y i

t ,PYt)
∣∣ ≤ κ

(∣∣X i
t − Y i

t

∣∣) .
Now we have that

|I1| ≤ E
[∫ t

0

∣∣ϕ′n(Z)
(
bi(s,X

i
s,PXs)− bi(s, Y i

s ,PYs)
)∣∣ ds]

≤ E
[∫ t

0

(
κ
(∣∣X i

s − Y i
s

∣∣)+ CE ‖Xs − Ys‖1,d

)
ds

]
= E

∫ t

0

κ
(∣∣X i

s − Y i
s

∣∣) ds+ C

∫ t

0

E ‖Xs − Ys‖1,d ds.

We recall that |I2| converges to 0 and the function ϕn converges to the
function ϕ(x) = |x| as n→∞, so letting n tend to ∞ we get the inequality

E
∣∣X i

t − Y i
t

∣∣ ≤ E
∫ t

0

κ
(∣∣X i

s − Y i
s

∣∣) ds+ C

∫ t

0

E ‖Xs − Ys‖1,d ds
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for all i = 1, ..., d. Then

d∑
i=1

E
∣∣X i

t − Y i
t

∣∣ = E ‖Xt − Yt‖1,d

≤
d∑
i=1

E
∫ t

0

κ
(∣∣X i

s − Y i
s

∣∣) ds+ C
d∑
i=1

∫ t

0

E ‖Xs − Ys‖1,d ds

=
d∑
i=1

E
∫ t

0

κ
(∣∣X i

s − Y i
s

∣∣) ds+ Cd

∫ t

0

E ‖Xs − Ys‖1,d ds.

Next we �x r ∈ (0, T ]. Let B := Cd and let

A(t) :=
d∑
i=1

E
∫ t

0

κ(
∣∣X i

s − Y i
s

∣∣) ds

for t ∈ [0, r]. De�ne a function

f(t) := E ‖Xt − Yt‖1,d

for t ∈ [0, t]. Now we may write

f(t) ≤ A(t) +B

∫ t

0

f(s) ds ≤ A(r) +B

∫ t

0

f(s) ds

for all t ∈ [0, r]. Since r is �xed, we can consider A(r) a constant, so we may
apply Lemma 4.10 to obtain

f(t) ≤ A(r) exp(Bt) ≤ A(r) exp(BT )

= M
d∑
i=1

E
∫ r

0

κ(
∣∣X i

s − Y i
s

∣∣) ds,

for all t ∈ [0, T ], where M := exp(BT ). Since this holds for all r ∈ (0, T ], we
have that

f(t) = E ‖Xt − Yt‖1,d ≤M
d∑
i=1

E
∫ t

0

κ(
∣∣X i

s − Y i
s

∣∣) ds

for all t ∈ [0, T ].
By Theorem 2.8 we can take the expectation inside the integral, that is

M
d∑
i=1

E
∫ t

0

κ(
∣∣X i

s − Y i
s

∣∣) ds = M
d∑
i=1

∫ t

0

Eκ(
∣∣X i

s − Y i
s

∣∣) ds.
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We apply Proposition 2.6 to obtain

Eκ(
∣∣X i

t − Y i
t

∣∣) ≤ κ(E
∣∣X i

t − Y i
t

∣∣),
and therefore

M

d∑
i=1

∫ t

0

Eκ(
∣∣X i

s − Y i
s

∣∣) ds ≤M

d∑
i=1

∫ t

0

κ(E
∣∣X i

s − Y i
s

∣∣) ds

= M

∫ t

0

d∑
i=1

κ(E
∣∣X i

s − Y i
s

∣∣) ds.

Since κ is an increasing function, we can continue our estimate

E ‖Xt − Yt‖1,d ≤M

∫ t

0

d∑
i=1

κ
(
E
∣∣X i

s − Y i
s

∣∣) ds

≤M

∫ t

0

d∑
j=1

κ

(
d∑
i=1

E
∣∣X i

s − Y i
s

∣∣) ds

= Md

∫ t

0

κ(E ‖Xs − Ys‖1,d) ds.

Next we use Lemma 4.9. For all ε ∈ (0, 1) we have

E ‖Xt − Yt‖1,d ≤Md

∫ t

0

κ(E ‖Xs − Ys‖1,d) ds+ ε,

so by Lemma 4.9 we obtain

E ‖Xt − Yt‖1,d ≤ G−1

(∫ ε

1

1

κ(u)
du+ (Md)t

)
= G−1

(
−
∫ 1

ε

1

κ(u)
du+ (Md)t

)
,

where G : (0, 1)→ (−∞, 0],

G(x) :=

∫ x

1

1

κ(u)
du,

is a bijection. Here we assume that ε is small enough so that∫ 1

ε

1

κ(u)
du > (Md)t.
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Since G is a strictly increasing function such that G(x) → −∞ as x
tends to 0 from the right-hand side, the inverse function G−1 is also strictly
increasing with G−1(x)→ 0 as x→ −∞. It follows that

G−1

(
−
∫ 1

ε

1

κ(u)
du+ (Md)t

)
→ 0

as ε→ 0. Hence E ‖Xt − Yt‖1,d = 0 for all t ∈ [0, T ].
This property implies that ‖Xt(ω)− Yt(ω)‖1,d = 0 almost everywhere.

By the properties of a norm we have that Xt(ω) = Yt(ω) almost everywhere,
that is,

P (Xt = Yt) = 1

for all t ∈ [0, T ]. By de�nitionX and Y are modi�cations of each other. Since
all the trajectories of processes X and Y are continuous, using Proposition
2.17 we conclude that X and Y are indistinguishable, which completes our
proof.

Remark 4.11. It should be noted that Theorem 4.8 only implies uniqueness
of the solution, but does not imply the existence. In the case we already
know some solution for an MVSDE, we may apply the theorem to con�rm
that the solution is indeed unique.

Next we give a simple example how one can use Theorem 4.8 to prove the
uniqueness of a solution. Since the theorem does not imply the existence, we
have to �nd some solution �rst.

Example 4.12. We consider the following MVSDE:dXt = min
{√
|Xt|, 1

}
dBt +

EXt

1 + (EXt)2
dt

X0 = 0.

We see that the process X ≡ 0 solves the equation. We apply Theorem
4.8 to prove that this solution is actually the only one. In this example the
coe�cients are the following:

σ(t, x) = min
{√
|x|, 1

}
and

b(t, x, µ) = ϕ

(∫
R
u dµ(u)

)
,

where
ϕ(x) :=

x

1 + x2
.
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We check the conditions (A1), (A2) and (A3) separately, starting from the
�rst one.

We see that
d

dx
ϕ(x) =

1− x2

(x2 + 1)2

is bounded, which implies that ϕ is a Lipschitz-continuous function with
some constant L > 0. For for all µ, ν ∈ P1(R) we have that

|b(t, x, µ)− b(t, x, ν)| =
∣∣∣∣ϕ(∫

R
u dµ(u)

)
− ϕ

(∫
R
u dν(u)

)∣∣∣∣
≤ L

∣∣∣∣∫
R
u d(µ− ν)(u)

∣∣∣∣
≤ L sup

{∫
R
h(u) d(µ− ν)(u) | h ∈ Lips1(R)

}
= LW1(µ, ν),

where the �nal equality follows from Theorem 3.5.
Next we verify the condition (A2). We may choose ρ(x) :=

√
x. It is

de�ned on [0,∞), increasing and has ρ(0) = 0. Furthermore,∫ ε

0

1

ρ(u)
du =∞

for all ε > 0. Using the properties of square root we obtain

|σ(t, x)− σ(t, y)| =
∣∣∣min

{√
|x|, 1

}
−min

{√
|y|, 1

}∣∣∣
≤
∣∣∣√|x| −√|y|∣∣∣

≤
√
|x− y| = ρ(|x− y|)

for all x, y ∈ R.

The coe�cient b depends only on the distribution variable, hence we do
not need to check the third condition (A3). Since all the conditions are
satis�ed, the uniqueness of the solution follows from Theorem 4.8.

5 Stability and approximation of MVSDEs

In this section we consider various stability and approximation results. In
our �rst result we introduce an iterative method for the approximation of a
solution, and we prove that under certain conditions a sequence of iterated
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processes converges to the unique solution of (4.2). In the next three results
we consider the stability of the solution. We consider stability from the
following points of views:

1. Stability with respect to the initial condition. We prove that if we de�ne
a map that maps the initial value to the solution of (4.2), under certain
conditions this map is continuous.

2. Stability with respect to the coe�cients. One way to approximate the
solution is to de�ne sequences of functions that converge to the coef-
�cients. We prove that under certain assumptions solutions obtained
this way eventually converge to the unique solution of (4.2).

3. Stability with respect to the driving process. So far we have considered
MVSDEs with respect to the Brownian motion. In our �nal stability
result we change this settting. Under su�cient conditions we may
approximate the driving process with possibly simpler processes, and
the solutions obtained in this way converge to the unique solution of
(4.2).

5.1 Picard approximation

We start with the Picard approximation, which gives us a method to construct
a sequence of processes that eventually converges to the unique solution of
an MVSDE. This is a useful method in numeric computations.

Assume a sequence of processes ((Xn
t )t∈[0,T ])

∞
n=0 such that X0 ≡ x0. For

n ≥ 0 de�ne a process Xn+1 by

(5.1)

{
dXn+1

t = σ(t,Xn
t ,PXn

t
) dBt + b(t,Xn

t ,PXn
t
) dt

Xn+1
0 = x0.

With certain conditions, we can prove that this sequence converges in
L2(Ω, C([0, T ],Rd)) to the unique solution of (4.2). It is shown in A.5 that
the space L2(Ω, C([0, T ],Rd)) is a Banach space.

Theorem 5.1 ([BMM19, Theorem 4.1]). Assume that the coe�cients b and
σ satisfy conditions (L1) and (L2). Then the sequence ((Xn

t )t∈[0,T ])
∞
n=0 con-

verges in L2(Ω, C([0, T ],Rd)) to a process X = (Xt)t∈[0,T ], which is the unique
solution to the MVSDE (4.2).

Before we can prove the theorem above, we prove the following lemma,
which is an application of Hölder's inequality 2.9.
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Lemma 5.2. Assume an integrable and measurable function f : [0, T ]→ Rd,
f = (f1, ..., fd). Then ∥∥∥∥∫ t

0

f(s) ds

∥∥∥∥2

≤ t

∫ t

0

‖f(s)‖2 ds.

Proof. By de�nition we have that∥∥∥∥∫ t

0

f(s) ds

∥∥∥∥2

=
d∑
i=1

∣∣∣∣∫ t

0

fi(s) ds

∣∣∣∣2 ≤ d∑
i=1

∣∣∣∣∫ t

0

|fi(s) · 1| ds
∣∣∣∣2 .

Proposition 2.9 with exponents p = q = 2 implies∣∣∣∣∫ t

0

|fi(s) · 1| ds
∣∣∣∣2 ≤

[(∫ t

0

|fi(s)|2 ds

) 1
2
(∫ t

0

|1|2 ds

) 1
2

]2

= t

∫ t

0

|fi(s)|2 ds

for all i = 1, ..., d. Hence∥∥∥∥∫ t

0

f(s) ds

∥∥∥∥2

≤
d∑
i=1

t

∫ t

0

|fi(s)|2 ds = t

∫ t

0

(
d∑
i=1

|fi(s)|2
)

ds

= t

∫ t

0

‖f(s)‖2 ds.

Now we may give a proof for Theorem 5.1.

Proof of Theorem 5.1. Fix n ≥ 1. We use the triangle inequality to obtain

∥∥Xn+1
t −Xn

t

∥∥ =
∥∥ ∫ t

0

[
σ(s,Xn

s ,PXn
s
)− σ(s,Xn−1

s ,PXn−1
s

)
]

dBs

+

∫ t

0

[
b(s,Xn

s ,PXn
s
)− b(s,Xn−1

s ,PXn−1
s

)
]

ds
∥∥

≤
∥∥∥∥∫ t

0

[
σ(s,Xn

s ,PXn
s
)− σ(s,Xn−1

s ,PXn−1
s

)
]

dBs

∥∥∥∥
+

∥∥∥∥∫ t

0

[
b(s,Xn

s ,PXn
s
)− b(s,Xn−1

s ,PXn−1
s

)
]

ds

∥∥∥∥ .
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Then by the Cauchy-Schwarz inequality we have that

∥∥Xn+1
t −Xn

t

∥∥2 ≤2

∥∥∥∥∫ t

0

[
σ(s,Xn

s ,PXn
s
)− σ(s,Xn−1

s ,PXn−1
s

)
]

dBs

∥∥∥∥2

+ 2

∥∥∥∥∫ t

0

[
b(s,Xn

s ,PXn
s
)− b(s,Xn−1

s ,PXn−1
s

)
]

ds

∥∥∥∥2

.

By Lemma 5.2 we have that∥∥∥∥∫ t

0

[
b(s,Xn

s ,PXn
s
)− b(s,Xn−1

s ,PXn−1
s

)
]

ds

∥∥∥∥2

≤ t

∫ t

0

∥∥b(s,Xn
s ,PXn

s
)− b(s,Xn−1

s ,PXn−1
s

)
∥∥2

ds.

Proposition 2.23 gives us the following estimate for the stochastic integral
part

E

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0

[
σ(s,Xn

s ,PXn
s
)− σ(s,Xn−1

s ,PXn−1
s

)
]

dBs

∥∥∥∥2
)

≤ CE

√∫ T

0

∥∥σ(s,Xn
s ,PXn

s
)− σ(s,Xn−1

s ,PXn−1
s

)
∥∥2

ds

2

= CE
∫ T

0

∥∥σ(s,Xn
s ,PXn

s
)− σ(s,Xn−1

s ,PXn−1
s

)
∥∥2

ds

for some absolute constant C > 0.
Now we have the following inequality

E

[
sup
t∈[0,T ]

∥∥Xn+1
t −Xn

t

∥∥2

]

≤ 2TE
∫ T

0

∥∥b(s,Xn
s ,PXn

s
)− b(s,Xn−1

s ,PXn
s
)
∥∥2

ds

+ 2CE
∫ T

0

∥∥σ(s,Xn
s ,PXn

s
)− σ(s,Xn−1

s ,PXn−1
s

)
∥∥2

ds.

Using the Lipschitz property of the coe�cients b and σ and Lemma 3.4 we

48



continue to

E

[
sup
t∈[0,T ]

∥∥Xn+1
t −Xn

t

∥∥2

]

≤ 2(T + C)L2E
∫ T

0

(∥∥Xn
s −Xn−1

s

∥∥2
+W2(PXn

s
,PXn−1

s
)2
)

ds

≤ 4L2(T + C)

∫ T

0

E
∥∥Xn

s −Xn−1
s

∥∥2
ds

≤ 4L2(T + C)

∫ T

0

E sup
r∈[0,s]

∥∥Xn
r −Xn−1

r

∥∥2
ds

≤M1

∫ T

0

E sup
r∈[0,s]

∥∥Xn
r −Xn−1

r

∥∥2
ds,

where M1 > 0 is a constant depending only on the values of C, T and L.
Using similar arguments as earlier and the linear growth condition (L1),

we get that

E

[
sup
t∈[0,T ]

∥∥X1
t −X0

t

∥∥2

]
= E

[
sup
t∈[0,T ]

∥∥X1
t − x0

∥∥2

]

≤ 2T

∫ T

0

∥∥b(s, x0,PX0
s
)
∥∥2

ds+ 2C

∫ T

0

∥∥σ(s, x0,PX0
s
)
∥∥2

ds

≤ 2(T + C)

∫ T

0

K (1 + ‖x0‖)2 ds

= 2(T + C)K
(
(1 + ‖x0‖)2)T

≤M2T,

where M2 > 0 is chosen so that the inequality above holds. The choice of
M2 depends on K,C, x and T .

Next we let fn(s) := E
[
supr∈[0,s] ‖Xn+1

r −Xn
r ‖

2
]
for n ≥ 1. Now

fn(T ) ≤M1

∫ T

0

fn−1(sn−1) dsn−1 ≤M2
1

∫ T

0

∫ sn−1

0

fn−2(sn−2) dsn−2 dsn−1

≤ ...

≤Mn
1

∫ T

0

∫ sn−1

0

· · ·
∫ s1

0

f0(s0) ds0 · · · dsn−2 dsn−1

≤Mn
1

∫ T

0

∫ sn−1

0

· · ·
∫ s1

0

M2T ds0 · · · dsn−2 dsn−1

=
Mn

1 M2T
n+1

n!
≤ Cn+1

n!
,
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where C := max {M1,M2}T .
Let m > n and k = m−n. By triangle inequality we obtain the following

estimate

‖Xm −Xn‖L2(Ω,C([0,T ],Rd)) =
∥∥Xn+k −Xn

∥∥
L2(Ω,C([0,T ],Rd))

=
∥∥Xn+k −Xn+k−1 − (Xn −Xn+k−1)

∥∥
L2(Ω,C([0,T ],Rd))

≤
∥∥Xn+k −Xn+k−1

∥∥
L2(Ω,C([0,T ],Rd))

+
∥∥Xn+k−1 −Xn

∥∥
L2(Ω,C([0,T ],Rd))

≤ Cn+k

(n+ k − 1)!
+
∥∥Xn+k−1 −Xn

∥∥
L2(Ω,C([0,T ],Rd))

.

By induction on n we obtain

‖Xm −Xn‖L2(Ω,C([0,T ],Rd)) ≤
m−n∑
i=1

Cn+i

(n+ i− 1)!
.

Letting n and m tend to ∞, we conclude that

‖Xm −Xn‖L2(Ω,C([0,T ],Rd)) → 0,

that is, for any ε > 0 we can �nd N ∈ N such that

‖Xm −Xn‖L2(Ω,C([0,T ],Rd)) < ε

for allm,n ≥ N . Therefore (Xn)∞n=1 is a Cauchy sequence in L2(Ω, C([0, T ],Rd)),
which is a complete normed space by corollary A.5. It follows that there ex-
ists a unique limit X ∈ L2(Ω, C([0, T ],Rd)) such that

‖Xn −X‖L2(Ω,C([0,T ],Rd)) → 0

as n→∞.
Next we need to show that X is a solution to the MVSDE (4.2). We use
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the same estimates as earlier in this proof to see that

E sup
t∈[0,T ]

∥∥∥∥∫ t

0

(
b(s,Xn

s ,PXn
s
)− b(s,Xs,PXs)

)
ds

∥∥∥∥2

≤ E sup
t∈[0,T ]

(
t

∫ t

0

∥∥(b(s,Xn
s ,PXn

s
)− b(s,Xs,PXs)

)∥∥2
ds

)
≤ E

[
T

∫ T

0

∥∥(b(s,Xn
s ,PXn

s
)− b(s,Xs,PXs)

)∥∥2
ds

]
≤ E

[
2TL2

∫ T

0

(
‖Xn

s −Xs‖2 +W2(PXn
s
,PXs)

)2
ds

]
≤ 4TL2

∫ T

0

E ‖Xn
s −Xs‖2 ds

≤ 4TL2

∫ T

0

E

[
sup
r∈[0,T ]

‖Xn
r −Xr‖2

]
ds

= 4T 2L2 ‖Xn −X‖2
L2(Ω,C([0,T ],Rd)) → 0

as n tends to ∞. In a similar way we obtain

E sup
t∈[0,T ]

∥∥∥∥∫ t

0

(
σ(s,Xn

s ,PXn
s
)− σ(s,Xs,PXs)

)
dBs

∥∥∥∥2

≤ CE
[∫ T

0

∥∥σ(s,Xn
s ,PXn

s
)− σ(s,Xs,PXs)

∥∥2
ds

]
≤ 4CL2

∫ T

0

E ‖Xn
s −Xs‖2 ds

≤ 4CL2

∫ T

0

E sup
r∈[0,T ]

‖Xn
r −Xr‖2 ds

≤ 4CL2T ‖Xn −X‖2
L2(Ω,C([0,T ],Rd)) → 0

as n tends to ∞. Combining these two estimates gives us that for t ∈ [0, T ]
one has, by de�nition of Xn+1,(

E
∥∥∥∥Xn+1

t − x0 −
∫ t

0

b(s,Xs,PXs) ds−
∫ t

0

σ(s,Xs,PXs) dBs

∥∥∥∥2
) 1

2

≤
∥∥∥∥∫ ·

0

(
b(s,Xn

s ,PXn
s
)− b(s,Xs,PXs)

)
ds

∥∥∥∥
L2(Ω,C([0,T ],Rd))

+

∥∥∥∥∫ ·
0

(
σ(s,Xn

s ,PXn
s
)− σ(s,Xs,PXs)

)
dBs

∥∥∥∥
L2(Ω,C([0,T ],Rd))

→ 0,
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as n tends to ∞. It implies that

(5.2) Xt = x0 +

∫ t

0

b(s,Xs,PXs) ds+

∫ t

0

σ(s,Xs,PXs) dBs

almost surely for any t ∈ [0, T ], and then one gets (5.2) for t ∈ [0, T ] almost
surely. Therefore the limit processX is a solution to (4.2). Since assumptions
(L1) and (L2) hold for the coe�cients σ and b, uniqueness follows from
Theorem 4.6.

Next we consider a straightforward example of how one can use Picard
successive approximation to �nd a solution to the given MVSDE.

Example 5.3. Consider the following MVSDE

(5.3)

{
dXt = λ dBt + min

{
eT , |EXt + 1|

}
dt

X0 = 0,

where λ ∈ R is a given constant. The coe�cient functions clearly satisfy
conditions (L1) and (L2). We use Theorem 5.1 to construct a sequence of
processes that converges to a unique solution of (5.3).

Our �rst iteration is

X1
t = 0 +

∫ t

0

λ dBs +

∫ t

0

min
{
eT , |E(0) + 1|

}
ds = λBt + t.

We continue by computing the next two iterations,

X2
t = λBt +

1

2
t2 + t

and

X3
t = λBt +

1

6
t3 +

1

2
t2 + t.

By induction we notice that for arbitrary n ∈ N one has

Xn
t = λBt +

n∑
k=1

tk

k!
.

Letting n tend to ∞ we see that

Xn
t → λBt +

∞∑
k=1

tk

k!
= λBt + et − 1 := Xt,

which clearly solves (5.3).
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This method cannot always be used to approximate a solution for an
MVSDE. We return to example 4.4. We recall that it has no solution, so the
iterative method for �nding a solution should fail.

Example 5.4. We have the following MVSDE{
dXt = 1Q(EX2

t ) dBt

X0 = 0.

We try to apply Theorem 5.1 to construct a solution.
The �rst iteration is

X1
t =

∫ t

0

1Q(E02) dBs = Bt.

Therefore the second one is

X2
t =

∫ t

0

1Q(EB2
s ) dBs =

∫ t

0

1Q(s) dBs = 0.

Next we notice that the third iteration is the same as the �rst one, so we
have that

Xn
t =

{
Bt, if n is odd

0, if n is even

for n ∈ N. This sequence does not converge in L2(Ω, C([0, T ],R)).

5.2 Stability with respect to the initial condition

In our �rst stability result we consider solutions of (4.2) for di�erent initial
values. If we de�ne a map that maps each initial value to a solution, this
map is continuous, assuming that the linear growth and Lipschitz continuity
conditions (L1) and (L2) are satis�ed.

We denote by Xx = (Xx
t )t∈[0,T ] the unique solution to the MVSDE{

dXt = σ(t,Xt,PXt) dBt + b(t,Xt,PXt) dt

X0 = x

for the initial value x ∈ Rd, provided that such a solution exists. We de�ne
a map ϕ : Rd → L2(Ω, C([0, T ],Rd),

ϕ(x) := (Xx
t )t∈[0,T ] .

The next theorem states that, under certain conditions, ϕ is a continuous
map.
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Theorem 5.5 ([BMM19, Theorem 5.1]). Assume that the coe�cient func-
tions b and σ satisfy (L1) and (L2). Then the map ϕ is continuous.

Proof. First we notice that since the assumptions (L1) and (L2) hold, for all
x ∈ Rd the unique solution Xx exists.

It is su�cient to show that for any sequence (xn)∞n=1 in Rd that con-
verges to the limit x ∈ Rd the sequence (ϕ(xn))∞n=1 converges to ϕ(x) in
L2(Ω, C([0, T ],Rd), that is,

‖ϕ(xn)− ϕ(x)‖L2(Ω,C([0,T ],Rd)) = ‖Xxn −Xx‖L2(Ω,C([0,T ],Rd)) → 0

as n tends to ∞.
Let (xn)∞n=1 be a sequence converging to x ∈ Rd. For a shorter notation,

we let Xn = Xxn = ϕ(xn) and X = Xx = ϕ(x). First we estimate

‖Xn
t −Xt‖2 =

∥∥∥∥xn − x+

∫ t

0

(
σ(s,Xn

s ,PXn
s
)− σ(s,Xs,PXs)

)
dBs

+

∫ t

0

(
b(s,Xn

s ,PXn
s
)− b(s,Xs,PXs)

)
ds

∥∥∥∥2

≤ 3 ‖xn − x‖2 + 3

∥∥∥∥∫ t

0

(
σ(s,Xn

s ,PXn
s
)− σ(s,Xs,PXs)

)
dBs

∥∥∥∥2

+ 3

∥∥∥∥∫ t

0

(
b(s,Xn

s ,PXn
s
)− b(s,Xs,PXs)

)
ds

∥∥∥∥2

,

where the inequality follows from the Cauchy-Schwarz inequality.
As we did in the proof of Theorem 5.1, we use Lemma 5.2, the Lipschitz

condition (L2) and Lemma 3.4 to get∥∥∥∥∫ t

0

(
b(s,Xn

s ,PXn
s
)− b(s,Xs,PXs)

)
ds

∥∥∥∥2

≤ t

∫ t

0

∥∥b(s,Xn
s ,PXn

s
)− b(s,Xs,PXs)

∥∥2
ds

≤ t

∫ t

0

L2
(
‖Xn

s −Xs‖+W2(PXn
s
,PXs)

)2
ds

≤ 2L2t

∫ t

0

(
‖Xn

s −Xs‖2 +W2(PXn
s
,PXs)

2
)

ds

≤ 2L2t

∫ t

0

(
‖Xn

s −Xs‖2 + E ‖Xn
s −Xs‖2) ds.
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With Proposition 2.23 we obtain

E

[
sup
t∈[0,T ]

∥∥∥∥∫ t

0

(
σ(s,Xn

s ,PXn
s
)− σ(s,Xs,PXs)

)
dBs

∥∥∥∥2
]

≤ CE
∫ T

0

∥∥σ(s,Xn
s ,PXn

s
)− σ(s,Xs,PXs)

∥∥2
ds

for some absolute constant C > 0. Using the same estimates we used for the
coe�cient b gives us

CE
∫ T

0

∥∥σ(s,Xn
s ,PXn

s
)− σ(s,Xs,PXs)

∥∥2
dBs

≤ 2L2CE
∫ T

0

(
‖Xn

s −Xs‖2 + E ‖Xn
s −Xs‖2) ds

= 4L2C

∫ T

0

E ‖Xn
s −Xs‖2 ds.

Combining these two estimates yields

E

[
sup
t∈[0,T ]

‖Xn
t −Xt‖2

]

≤ 3 ‖xn − x‖2 + 3T

∫ T

0

∥∥b(s,Xn
s ,PXn

s
)− b(s,Xs,PXs)

∥∥2
ds

+ 3CE
∫ T

0

∥∥σ(s,Xn
s ,PXn

s
)− σ(s,Xs,PXs)

∥∥2
dBs

≤ 3 ‖xn − x‖2 + 12(T + C)L2

∫ T

0

E ‖Xn
s −Xs‖2 ds

= 3 ‖xn − x‖2 + 12(T + C)L2

∫ T

0

E

[
sup
r∈[0,s]

‖Xn
r −Xr‖2

]
ds.

By letting fn(t) := E
[
sups∈[0,t] ‖Xn

s −Xs‖2] for t ∈ [0, T ], we may use

Gronwall's inequality with constants A := 3 ‖xn − x‖2 an B := 12(T +C)L2,
to obtain

fn(T ) = E

[
sup
s∈[0,t]

‖Xn
s −Xs‖2

]
= ‖Xn −X‖2

L2(Ω,C([0,T ],Rd))

≤ A exp(BT ) = 3 ‖xn − x‖2 exp(12(T + C)L2T )

→ 0

as n tends to ∞, which completes our proof.
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The preceding theorem has the following application.

Example 5.6. Assume that the Borel-measurable function ϕ : [0, T ]×R→ R
is bounded and Lipschitz continuous with respect to the second variable. We
want to show that the map

x 7→
(
x+

∫ ·
0

ϕ(s, x) dBs

)
t∈[0,T ]

is continuous.
We let

σ(t, x, µ) := ϕ(s,

∫ t

0

u dµ(u))

and b ≡ 0. The assumptions (L1) and (L2) are clearly satis�ed. Now we
consider the corresponding MVSDE

(5.4)

{
dXx

t = ϕ(t,EXt) dBt

Xx
0 = x.

By Theorem 5.5 the map x 7→ (Xx
t )t∈[0,T ] is continuous. We recall that the

expectation of stochastic integral is 0, therefore

EXt = Ex+ E
∫ t

0

ϕ(s,EXs) dBs = x,

so the solution to 5.4 is

Xx
t = x+

∫ t

0

ϕ(s, x) dBs.

It follows that the map

x 7→ Xx =

(
x+

∫ ·
0

ϕ(s, x) dBs

)
t∈[0,T ]

is continuous.

5.3 Stability with respect to the coe�cients

In some occasions the coe�cient functions can be too complicated to e�-
ciently compute or numerically simulate a solution. If we assume that we
can �nd sequences of functions that converge to the coe�cients, we could
try to approximate the solution by solving the MVSDE with respect to these
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functions. We want to understand if under some speci�c assumptions the
sequence of these approximated solutions converges to the unique solution of
(4.2).

For all n ∈ N assume Borel measurable functions

bn : [0, T ]× Rd × P2(Rd)→ Rd

and
σn : [0, T ]× Rd × P2(Rd)→ Rd×d.

Consider the following MVSDE

(5.5)

{
dXn

t = σn(t,Xn
t ,PXn

t
) dBt + bn(t,Xn

t ,PXn
t
) dt

Xn
0 = x0.

We want to know whether under certain conditions a solution to (5.5) con-
verges to the unique solution to (4.2) as n tends to ∞. We assume that

(5.6)

∫ T

0

 sup
(x,µ)∈

Rd×P2(Rd)

(
‖(bn − b)(s, x, µ)‖2 + ‖(σn − σ)(s, x, µ)‖2) ds→ 0

as n tends to ∞.
Now we may formulate our next stability result. The idea of the proof

follows [BMM19, Theorem 6.1], but we have di�erent assumptions.

Theorem 5.7. Assume that the coe�cient functions bn, b, σn and σ satisfy
the conditions (L1) and (L2) with uniform constants K,L > 0. If (5.6)
holds, then the sequence (Xn)∞n=1, where X

n is the unique solution to (5.5),
converges to the unique solution of (4.2) in L2(Ω, C([0, T ],Rd)).

Proof. First we notice that the assumptions (L1) and (L2) imply that there
exists a unique solution to (5.5) and (4.2), which we denote by Xn and X
respectively. By the de�nition of a solution we have

‖Xn
t −Xt‖2 =

∥∥∥∥∫ t

0

[
bn(s,Xn

s ,PXn
s
)− b(s,Xs,PXs)

]
ds

+

∫ t

0

[
σn(s,Xn

s ,PXn
s
)− σ(s,Xs,PXs)

]
dBs

∥∥∥∥2

≤ 2

∥∥∥∥∫ t

0

[
bn(s,Xn

s ,PXn
s
)− b(s,Xs,PXs)

]
ds

∥∥∥∥2

+ 2

∥∥∥∥∫ t

0

[
σn(s,Xn

s ,PXn
s
)− σ(s,Xs,PXs)

]
dBs

∥∥∥∥2

.
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We apply Lemma 5.2 and Proposition 2.23 to obtain

E

[
sup
t∈[0,T ]

‖Xn
t −Xt‖2

]
≤2TE

∫ T

0

∥∥bn(s,Xn
s ,PXn

s
)− b(s,Xs,PXs)

∥∥2
ds

+ 2CE
∫ T

0

∥∥σn(s,Xn
s ,PXn

s
)− σ(s,Xs,PXs)

∥∥2
ds,

where C > 0 is an absolute constant. The triangle inequality yields∥∥bn(s,Xn
s ,PXn

s
)− b(s,Xs,PXs)

∥∥2

≤
∥∥[bn(s,Xn

s ,PXn
s
)− bn(s,Xs,PXs)

]
− [b(s,Xs,PXs)− bn(s,Xs,PXs)]

∥∥2

≤ 2
(∥∥bn(s,Xn

s ,PXn
s
)− bn(s,Xs,PXs)

∥∥2
+ ‖bn(s,Xs,PXs)− b(s,Xs,PXs)‖

2
)
.

The same estimate also holds for the functions σn and σ. Now

E

[
sup
t∈[0,T ]

‖Xn
t −Xt‖2

]
≤ 4TE

∫ T

0

∥∥bn(s,Xn
s ,PXn

s
)− bn(s,Xs,PXs)

∥∥2
ds

+ 4CE
∫ T

0

∥∥σn(s,Xn
s ,PXn

s
)− σn(s,Xs,PXs)

∥∥2
ds

+Rn(T ),

where

Rn(t) := 4(t+C)E
[∫ t

0

(
‖(bn − b)(s,Xs,PXs)‖

2 + ‖(σn − σ)(s,Xs,PXs)‖
2) ds

]
for all n ∈ N and t ∈ [0, T ]. Since t 7→ Rn(t) is increasing for all n ∈ N, we
can use assumption (5.6) to conclude that

Rn(t) ≤ 4(T + C)E
[ ∫ T

0

sup
(x,µ)∈Rd×P2(Rd)

(
‖(bn − b)(s, x, µ)‖2

+ ‖(σn − σ)(s, x, µ)‖2

)
ds

]
→ 0

as n tends to ∞.
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The Lipschitz property (L2) and Lemma 3.4 imply that

E

[
sup
t∈[0,T ]

‖Xn
t −Xt‖2

]

≤ 4(T + C)E
∫ T

0

[
L(‖Xn

s −Xs‖+W2(PXn
s
,PXs))

]2
ds+Rn(T )

≤ 8(T + C)L2

∫ T

0

(
E ‖Xn

s −Xs‖2 +W2(PXn
s
,PXs)

2
)

ds+Rn(T )

≤ 16(T + C)L2

∫ T

0

E ‖Xn
s −Xs‖2 ds+Rn(T )

≤ 16(T + C)L2

∫ T

0

E sup
r∈[0,s]

‖Xn
r −Xr‖2 ds+Rn(T ).

We apply Lemma 4.10 to the function

t 7→ E

[
sup
s∈[0,t]

‖Xn
s −Xs‖2

]
,

where t ∈ [0, T ]. By choosing constants A := Rn(T ) and B := 16(T + C)L2

we obtain

‖Xn −X‖2
L2(Ω,C([0,T ],Rd)) ≤ Rn(T ) exp(16(T + C)L2T )→ 0

as n tends to ∞. This completes the proof.

In the next example we demonstrate how the preceding theorem can be
used to approximate the solutions of an MVSDE.

Example 5.8. Assume bounded and Lipschitz continuous maps

σ : Rd → Rd×d

and
b : Rd × P2(Rd)→ Rd,

where b is Lipschitz continuous with respect to both variables. Assume that
‖σ(x)‖ → 0 as ‖x‖ → ∞ and ‖b(x, µ)‖ → 0 as ‖x‖ → ∞ for all µ ∈ P2(R).

We use notation

B(0, r) :=
{
x ∈ Rd | ‖x‖ < r

}
and

S(0, r) :=
{
x ∈ Rd | ‖x‖ = r

}
.
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We de�ne a map πr : Rd \ {0} → S(0, r) by

πr(x) :=
rx

‖x‖
,

where r > 0. Now for all n ∈ N we de�ne

σn(x) := 1B(0,n)(x)σ(x) + 1Rd\B(0,n)σ(πn(x))

and
bn(x, µ) := 1B(0,n)(x)b(x, µ) + 1Rd\B(0,n)b(πn(x), µ).

Since σ and b are bounded, σn and bn are bounded, too, for all n ∈ N. To
check the Lipschitz continuity, let x ∈ Rd \ B(0, n) and y ∈ B(0, n). Other
cases are trivial. Let µ, ν ∈ P2(Rd). We denote by L > 0 the Lipschitz
constant of b. Then

‖bn(x, µ)− bn(y, ν)‖ = ‖b(πn(x), µ)− b(y, ν)‖ =

∥∥∥∥b( nx

‖x‖
, µ

)
− b(y, ν)

∥∥∥∥
≤ L

[∥∥∥∥ nx‖x‖ − y
∥∥∥∥+W2(µ, ν)

]
≤ L [‖x− y‖+W2(µ, ν)] .

With the same arguments we can prove the Lipschitz continuity of σn.
We denote by Xn the unique solution to{

dXn
t = σn(Xn

t ) dBt + bn(Xn
t ,PXn

t
) dt

Xn
0 = x.

Next we want to show that (5.6) holds. We see that

sup
x∈Rd

‖σn(x)− σ(x)‖2 = sup
x∈Rd

[
1Rd\B(0,n)(x) ‖σ(x)− σ(πn(x))‖2]→ 0

as n tends to ∞. In a similar way

sup
(x,µ)∈Rd×P2(Rd)

‖bn(x, µ)− b(x, µ)‖2 → 0

as n tends to ∞. Hence

E

∫ T

0

sup
(x,µ)∈

Rd×P2(Rd)

(
‖(bn − b)(x, µ)‖2 + ‖(σn − σ)(x)‖2) ds


= TE sup

(x,µ)∈
Rd×P2(Rd)

[
‖(bn − b)(x, µ)‖2 + ‖(σn − σ)(x)‖2]→ 0
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as n → ∞. Theorem 5.7 implies that (Xn)∞n=1 converges to the unique
solution of {

dXt = σ(Xt) dBt + b(Xt,PXt) dt

X0 = x.

5.4 Stability with respect to the driving process

This far we have considered MVSDEs driven by a Brownian motion. How-
ever, when modeling certain phenomena, Brownian motion may not always
give the desired behaviour. In this section we consider MVSDEs driven by a
continuous martingale M = (Mt)t∈[0,T ] ∈Mc,0(Rd), that is{

Xt = σ(t,Xt,PXt) dMt + b(t,Xt,PXt) dt
X0 = x0.

(5.7)

An adapted and continuous process X = (Xt)t∈[0,T ] is a solution to (5.7)
if it satis�es (Sol1) and (Sol2), and if

Xt = x0 +

∫ t

0

σ(s,Xs,PXs) dMs +

∫ t

0

b(s,Xs,PXs) ds

for t ∈ [0, T ] almost surely, assuming that the integrals exist, see De�nition
5.14. Here ∫ t

0

σ(s,Xs,PXs) dMs

denotes stochastic integral with respect to the continuous martingale M . In
one dimension the de�nition is given in [Mé82, Theorem 18.2]. To multiple
dimensions the integral is generalized as in De�nition 2.22.

First we notice that we can generalize Theorem 4.6 for this class of MVS-
DEs.

Theorem 5.9. Under assumptions (L1) and (L2), the MVSDE (5.7) driven
by M has a unique solution. Moreover, if X = (Xt)t∈[0,T ] is the solution, it
holds that

E

[
sup
t∈[0,T ]

‖Xt‖2

]
<∞.

Idea of the proof. We �x µ = (µt)t∈[0,t] and consider the ordinary SDE{
dXt = σ(t,Xt, µt) dMt + b(t,Xt, µt) dt

X0 = x0.
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The existence and uniqueness of a solution for this SDE is proven in [GK80,
chapter 1]. It should be noted that the conditions given for the coe�cients are
weaker than what we have, but it can be seen that (L1) and (L2) imply these
weaker conditions. Now we may adapt the proof of [CD18a, Theorem 4.2.1]
by replacing dBt with dMt and using corresponding theorems for estimates.

Before we may introduce our �nal stability result, we need a version of
Proposition 2.23 for stochastic integrals with respect to a continuous martin-
gale. For this purpose we need to de�ne the quadratic variation process of a
martingale.

Proposition 5.10 ([Gei19, Proposition 4.4.1]). Assume a continuous mar-
tingale M = (Mt)t∈[0,T ] ∈ Mc,0(R). Then there exists a continuous and
adapted process 〈M〉 = (〈M〉t)t∈[0,T ] such that

(1) 〈M〉 is an increasing process starting from 0, that is

0 = 〈M〉0 ≤ 〈M〉s ≤ 〈M〉t

for all s ≤ t.

(2) For every t ∈ [0, T ] and for every partition 0 ≤ tn0 ≤ tn1 ≤ ... ≤ tnn = t
one has that the sequence(

n∑
k=1

(
Mtkn
−Mtk−1

n

)2

)∞
n=1

converges to 〈M〉t in probability as n tends to ∞.

The process is unique up to indistinguishability.

De�nition 5.11 ([Gei19, Proposition 4.4.2]). The process 〈M〉 in Proposi-
tion 5.10 is called quadratic variation of the martingale M ∈Mc,0(R).

The quadratic variation has the following property.

Proposition 5.12 ([Mao07, p. 12]). Let M ∈Mc,0(R). Then

M2 − 〈M〉 ∈ Mc,0(R).

In particular E 〈M〉t = EM2
t for all t ∈ [0, T ].

For multidimensional martingales we de�ne the quadratic variation in the
following way.
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De�nition 5.13. Let M = (M1, ...,Md) ∈Mc,0(Rd). We de�ne

〈M〉 :=
d∑
i=1

〈
M i
〉
.

Next we de�ne the class of L2-processes given a continuous martingale
M ∈Mc,0.

De�nition 5.14. Assume M ∈Mc,0. We denote by L2(M,R) the R-valued
processes X = (Xt)t∈[0,T ] satisfying

(5.8) E
∫ t

0

|Xs|2 d 〈M〉s <∞.

for all t ∈ [0, T ]. If X is a matrix valued process, then we say that X ∈
L2(M,Rd×m) if [X ij] ∈ L2(M,R) for all i = 1, ..., d, j = 1, ...,m.

Remark 5.15. If B = (Bt)t∈[0,T ] is one-dimensional Brownian motion, then
〈B〉t = t for t ∈ [0, T ] almost surely, see [Gei19, Example 4.4.4]. This
coincides with the de�nition of L2(R), so

L2(Rd×m) = L2(B̃,Rd×m),

where B̃ is an m-dimensional Brownian motion.

The integral
∫ t

0
X2
s d 〈M〉s is called Lebesgue-Stieltjes integral [GG18, Sec-

tion 5.5.3] with respect to the trajectory t 7→ 〈M〉t (ω) for �xed ω ∈ Ω, which
is continuous and increasing by Proposition 5.10. There exists a unique mea-
sure µ in (R,B(R)) such that

µ((a, b]) := (〈M〉b − 〈M〉a)(ω)

for a < b. Let f : [a, b]→ R be an integrable function. We write∫ b

a

f(s) d 〈M〉s :=

∫
R
1(a,b]f(s) dµ(s).

Since 〈M〉 is a random process, the measure µ might be di�erent for every
ω ∈ Ω.
L2(M,R)-processes have the following property.

Proposition 5.16 ([Mé82, Proposition 18.13]). Let M ∈ Mc,0(R) and L ∈
L2(M,R). Then 〈∫ ·

0

Ls dMs

〉
t

=

∫ t

0

L2
s d 〈M〉s .
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Now we may formulate a more general version of Burkholder-Davis-Gundy
inequality.

Theorem 5.17 (Burkholder-Davis-Gundy, [RY99, Chapter IV, Theorem
4.1]). Let M ∈Mc,0(R). Then there exists constants cp and Cp such that for
all t ∈ [0, T ] one has

cpE
[
〈M〉

p
2
t

]
≤ E

[
sup
s∈[0,t]

|Ms|p
]
≤ CpE

[
〈M〉

p
2
t

]
.

As a consequence we get the following estimate for integrals with respect
to a continuous martingale.

Corollary 5.18. Let X = [X ij]i,j=1,...,d ∈ L2(M,Rd×d) and M ∈ Mc,0(Rd).
Then there exists a constant C > 0 such that

E

[
sup
t∈[0,T ]

∥∥∥∥∫ t

0

Xr dMr

∥∥∥∥2
]
≤ CE

[∫ T

0

‖Xs‖2 d〈M〉s
]
.

Proof. If d = 1, we use Proposition 5.16 and Proposition 5.17 with p = 2 to
see that

(5.9) E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

Xs dMs

∣∣∣∣2
]
≤ C2E

[∫ T

0

X2
s d 〈M〉s

]
.

For d > 1 we recall that, by de�nition,∥∥∥∥∫ t

0

Xs dMs

∥∥∥∥2

=
d∑

k=1

∣∣∣∣∣
d∑
j=1

∫ t

0

Xkj
s dMs

∣∣∣∣∣
2

.

We �x k = 1, ..., d and see that∣∣∣∣∣
d∑
j=1

∫ t

0

Xkj
s dMs

∣∣∣∣∣
2

≤ d

d∑
j=1

∣∣∣∣∫ t

0

Xkj
s dMs

∣∣∣∣2 .
Then ∥∥∥∥∫ t

0

Xs dMs

∥∥∥∥2

≤ d
d∑

k=1

d∑
j=1

∣∣∣∣∫ t

0

Xkj
s dMs

∣∣∣∣2 .
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Next we apply (5.9) to each term of the sum to get that

E

[
sup
t∈[0,T ]

∥∥∥∥∫ t

0

Xs dMs

∥∥∥∥2
]
≤ d

d∑
k=1

d∑
j=1

E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

Xkj
s dM j

s

∣∣∣∣2
]

≤ dC2

d∑
k=1

d∑
j=1

E
[∫ T

0

∣∣Xkj
s

∣∣2 d
〈
M j
〉
s

]

≤ dC2

d∑
j=1

E

[∫ T

0

(
d∑

k=1

∣∣Xkj
s

∣∣2) d
〈
M j
〉
s

]

≤ dC2E

[∫ T

0

(
d∑

j,k=1

∣∣Xkj
s

∣∣2) d

(
d∑
j=1

〈
M j
〉
s

)]

≤ dC2E
[∫ T

0

‖Xs‖2 d 〈M〉s
]
.

Another lemma wee need is the stochastic Gronwall inequality.

Lemma 5.19 (Stochastic Gronwall inequality, [Mé82, Lemma 29.1]). As-
sume a continuous martingale M = (Mt)t∈[0,T ] ∈Mc,0(Rd) satisfying

〈M〉T = sup
t∈[0,T ]

〈M〉t ≤ C

for some constant C > 0 almost surely. Let ϕ = (ϕt)t∈[0,T ] be a real-valued,
adapted and increasing process. Assume that there exists positive constants
K and ρ such that for all t ∈ [0, T ] one has

Eϕt ≤ K + ρE
∫ t

0

ϕs d 〈M〉s .

Then
EϕT ≤ KD,

where

D := 2

b2ρCc∑
k=1

(2ρC)k ∈ (0,∞).

Now we may formulate our next stability result. Let M ∈ Mc,0(Rd).
Denote by X = (Xt)t∈[0,T ] the unique solution to the MVSDE driven by M .
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Assume a sequence of continuous martingales (Mn)∞n=1 with Mn
0 ≡ 0 for all

n ∈ N. We consider the following MVSDE{
Xn
t = σ(t,Xn

t ,PXn
t
) dMn

t + b(t,Xn
t ,PXn

t
) dt

Xn
0 = x0,

(5.10)

We assume that the following assumptions are satis�ed:

(D1) There exists a constant λ > 0 such that

〈Mn〉T + 〈M〉T ≤ λ

almost surely for all n ∈ N.

(D2) It holds that
E 〈Mn −M〉T → 0

as n tends to ∞.

Under these assumptions, we have the following result. The theorem and its
proof are inspired by [BMM19, Theorem 7.1], but we have di�erent assump-
tions.

Theorem 5.20. Assume that the coe�cient functions b and σ are bounded
and satisfy (L1) and (L2). If the assumptions (D1) and (D2) are satis�ed,
then (Xn)∞n=1, where X

n is the unique solution to (5.10), converges to the
unique solution of (5.7) in L2(Ω, C([0, T ],Rd)).

Proof. We denote by X the unique solution of (5.7). Since b and σ satisfy
(L1) and (L2), the uniqueness and existence of Xn and X holds. We notice
that since the coe�cients are bounded, the integrals exist and thus we may
proceed with our proof.

By the de�nition of a solution we have

‖Xn
t −Xt‖2 =

∥∥∥∥∫ t

0

σ(s,Xn
s ,PXn

s
) dMn

s −
∫ t

0

σ(s,Xs,PXs) dMs

+

∫ t

0

[
b(s,Xn

s ,PXn
s
)− b(s,Xs,PXs)

]
ds

∥∥∥∥2

≤ 2

∥∥∥∥∫ t

0

σ(s,Xn
s ,PXn

s
) dMn

s −
∫ t

0

σ(s,Xs,PXs) dMs

∥∥∥∥2

+ 2

∥∥∥∥∫ t

0

[
b(s,Xn

s ,PXn
s
)− b(s,Xs,PXs)

]
ds

∥∥∥∥2

.
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By Lemma 5.2 and the Lipschitz property (L2) we obtain∥∥∥∥∫ t

0

[
b(s,Xn

s ,PXn
s
)− b(s,Xs,PXs)

]
ds

∥∥∥∥2

≤ t

∫ t

0

∥∥b(s,Xn
s ,PXn

s
)− b(s,Xs,PXs)

∥∥2
ds

≤ 2tL2

∫ t

0

(
‖Xn

s −Xs‖2 +W2(PXn
s
,PXs)

2
)

ds.

Then by Lemma 3.4 we have that

E

[
sup
t∈[0,T ]

∥∥∥∥∫ t

0

[
b(s,Xn

s ,PXn
s
)− b(s,Xs,PXs)

]
ds

∥∥∥∥2
]

≤ 4TL2

∫ T

0

E sup
r∈[0,s]

‖Xn
r −Xr‖2 dr.

For a shorter notation we let ϕn(t) := σ(t,Xn
t ,PXn

t
) for all n ∈ N and

ϕ(t) := σ(t,Xt,PXt). We estimate∥∥∥∥∫ t

0

ϕn(s) dMn
s −

∫ t

0

ϕ(s) dMs

∥∥∥∥2

=

∥∥∥∥∫ t

0

(ϕn(s)− ϕ(s)) dMn
s +

∫ t

0

ϕ(s) d(Mn
s −Ms)

∥∥∥∥2

≤ 2

(∥∥∥∥∫ t

0

(ϕn(s)− ϕ(s)) dMn
s

∥∥∥∥2

+

∥∥∥∥∫ t

0

ϕ(s) d(Mn
s −Ms)

∥∥∥∥2
)
.

We �x u ∈ [0, T ] and apply Corollary 5.18 on both terms to obtain

2E

[
sup
t∈[0,u]

(∥∥∥∥∫ t

0

(ϕn(s)− ϕ(s)) dMn
s

∥∥∥∥2

+

∥∥∥∥∫ t

0

ϕ(s) d(Mn
s −Ms)

∥∥∥∥2
)]

≤ 2CE
[∫ u

0

‖ϕn(s)− ϕ(s)‖2 d 〈Mn〉s +

∫ u

0

‖ϕ(s)‖2 d 〈Mn −M〉s
]

for some constant C > 0.
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Next we apply Lipschitz property (L2) and Lemma 3.4 to get

E
∫ u

0

‖ϕn(s)− ϕ(s)‖2 d 〈Mn〉s

= E
∫ u

0

∥∥σ(s,Xn
s ,PXn

s
)− σ(s,Xs,PXs)

∥∥2
d 〈Mn〉s

≤ 2L2

∫ u

0

E
(
‖Xn

s −Xs‖2 +W2(PXn
s
,PXs)

2
)

d 〈Mn〉s

≤ 4L2

∫ u

0

E ‖Xn
s −Xs‖2 d 〈Mn〉s

≤ 4L2

∫ u

0

E

[
sup
r∈[0,s]

‖Xn
r −Xr‖2

]
d 〈Mn〉s .

By assumptions σ is bounded, hence there exists a constant B > 0 such that

E
∫ u

0

‖ϕ(s)‖2 d 〈Mn −M〉s = E
∫ u

0

‖σ(s,Xs,PXs)‖
2 d 〈Mn −M〉s

≤ E
∫ u

0

B2 d 〈Mn −M〉s

= EB2 (〈Mn −M〉u − 〈M
n −M〉0)

= B2E 〈Mn −M〉u
≤ B2E 〈Mn −M〉T .

We combine our estimates to see that for all u ∈ [0, T ] it holds that

E

[
sup
t∈[0,u]

‖Xn
t −Xt‖2

]
≤ 8CL2E

[∫ u

0

sup
r∈[0,s]

‖Xn
r −Xr‖2 d 〈Mn〉s

]
+ 2CB2E 〈Mn −M〉T

+ 8TL2

∫ T

0

E sup
r∈[0,s]

‖Xn
r −Xr‖2 ds.

We apply Lemma 5.19 to the process
(
sups∈[0,t] ‖Xn

s −Xs‖2)
t∈[0,T ]

, which

implies that

E

[
sup
t∈[0,T ]

‖Xn
t −Xt‖2

]
≤ DE 〈Mn −M〉T +D

∫ T

0

E sup
r∈[0,s]

‖Xn
r −Xr‖2 ds

where D > 0 is a constant.
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To complete the proof we apply Lemma 4.10 and assumption (D2) to see
that

E

[
sup
t∈[0,T ]

‖Xn
t −Xt‖2

]
≤ DE 〈Mn −M〉T e

DT → 0

as n tends to ∞.

We demonstrate Theorem 5.20 in the context of ordinary stochastic dif-
ferential equations.

Example 5.21. Assume a sequence of uniformly bounded L2(R)-processes
(Ln)∞n=1 and a process L ∈ L2(R). Assume that

|Lnt − Lt| →
a.s.

0

for all t ∈ [0, T ]. De�ne Mn
t :=

∫ t
0
Lns dBs and Mt :=

∫ t
0
Ls dBs. We have

that

〈M〉T =

∫ T

0

|Ls|2 ds ≤ TB2 and 〈Mn〉T =

∫ T

0

|Lns |
2 ds ≤ TB2

for all n ∈ N, where B > 0 is a constant.
Using our assumptions we see that

〈Mn −M〉T =

∫ T

0

|Lns − Ls|
2 ds→ 0

almost surely as n tends to ∞. It follows that

E 〈Mn −M〉T → 0

as n tends to ∞.
Now we may use Theorem 5.20 to deduce that the sequence of unique

solutions to the following ordinary stochastic di�erential equations{
Xn
t = Xn

t dMn
t

Xn
0 = 1

converges in L2(Ω, C([0, T ],R) to the unique solution to{
Xt = Xt dMt

X0 = 1.

69



We recall that we may write∫ t

0

Xn
s dMn

s =

∫ t

0

Xn
s L

n
s dBs.

We apply Thoerem 2.24 with the function f(t, x) := log(x) to the process
Xn
t to obtain that

log(Xn
t ) = log(1) +

∫ t

0

Lns dBs −
1

2

∫ t

0

L2
s ds

= Mn
t −

1

2
〈M〉nt .

Hence

Xn
t = exp

(
Mn

t −
1

2
〈M〉nt

)
.

By Theorem 5.20 this implies that

E
[

sup
t∈[0,T ]

∣∣∣∣ exp

(∫ t

0

Lns dBs −
1

2

∫ t

0

(Lns )2 ds

)
− exp

(∫ t

0

Ls dBs −
1

2

∫ t

0

(Ls)
2 ds

) ∣∣∣∣2]→ 0

as n tends to ∞.
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Appendix A Lp(Ω, E) spaces

Assume a real vector space V and a map ‖·‖ : V → [0,∞). The map ‖·‖ is
a norm, if the following properties are satis�ed:

(1) ‖v‖ = 0 if and only if v = 0.

(2) ‖·‖ satis�es the triangle inequality, that is, for all u, v ∈ V one has that

‖u+ v‖ ≤ ‖u‖+ ‖v‖ .

(3) ‖·‖ is positive homogeneous, that is, for all λ ∈ R and v ∈ V one has

‖λv‖ = |λ| ‖v‖ .

The pair (V, ‖·‖) is called normed space. If the normed space is complete,
that is, every Cauchy sequence converges to a limit in V , then it is called
Banach space. The space (V, ‖·‖) is separable, if there exists a countable
dense subset B ⊆ V .

De�nition A.1 ([Egg84, page 3]). Let p ∈ [1,∞). Assume a measure space
(Ω,F , µ) and a normed space (E, ‖·‖E). Denote by Lp(Ω, E) the set of all
(F ,B(E))-measurable maps ϕ : Ω→ E satisfying

(1) ‖ϕ(ω)‖E <∞ for all ω ∈ Ω,

(2) ‖ϕ‖Lp(Ω,E) :=
(∫

Ω
‖ϕ(ω)‖pE dµ

) 1
p <∞.

It should be noted that ‖·‖Lp(Ω,E) is only a semi-norm in Lp(Ω, E) since

for any map ϕ : Ω → E with P(ϕ = 0) = 1, that is, ϕ(ω) = 0 almost
everywhere, we have ‖ϕ‖Lp(Ω,E) = 0, but not necessarily ϕ ≡ 0. However, by
using certain equivalence classes we may construct a normed space.

De�nition A.2. De�ne an equivalence relation ∼ in Lp(Ω, E) by letting
ϕ ∼ ψ if and only if P(ϕ = ψ) = 1. Let

Lp(Ω, E) := {[ϕ] | ϕ ∈ Lp(Ω, E)} ,

where [ϕ] denotes the equivalence class consisting of all the maps
ψ ∈ Lp(Ω, E) with ϕ ∼ ψ.

In this section our goal is to show that if (Ω,F , µ) is a probability space,
then the space Lp(Ω, E) with the norm ‖·‖Lp(Ω,E) is a Banach space for all

p ∈ [1,∞). First we de�ne what we mean by convergence with respect to
the norm ‖·‖Lp(Ω,E).
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De�nition A.3. Assume a sequence of (E,B(E))-measurable maps (fn)∞n=1,
fn : Ω→ E with fn ∈ Lp(Ω, E). We say that the sequence (fn)∞n=1 converges
in Lp(Ω, E) to the limit f ∈ Lp(Ω, E) if

‖fn − f‖Lp(Ω,E) → 0

as n tends to ∞.

The following theorem is mentioned in [Egg84, Theorem I.1.2.3] without
proof. A proof for a special case, where E = R is given in [GG18, Proposition
6.3.4]. The proof we give here adapts that proof.

Theorem A.4. Let p ∈ [1,∞). Let (E, ‖·‖E) be a separable Banach space.
Then the space (Lp(Ω, E), ‖·‖Lp(Ω,E)) is a Banach space.

Proof. We prove the theorem in two steps. First we prove that
(Lp(Ω, E), ‖·‖Lp(Ω,E)) is a normed space. In the second part we prove the
completeness, meaning that any Cauchy sequence converges to a limit in
(Lp(Ω, E), ‖·‖Lp(Ω,E)).

Part 1: Norm properties

We show that the norm ‖·‖Lp(Ω,E) has the following three properties:

(1) Assume that ‖ϕ‖ = 0. Then ‖ϕ(ω)‖E = 0 almost everywhere. Since
‖·‖E is a norm, we get that ϕ(ω) = 0 almost everywhere, that is,
ϕ ∈ [0], which is the zero vector in Lp(Ω, E).

Next assume that ϕ = 0. In this context it means that ϕ(ω) = 0 almost
everywhere, and therefore ‖ϕ‖Lp(Ω,E) = 0.

(2) Triangle inequality. Let ϕ, ψ ∈ Lp(Ω, E). Then

‖ϕ+ ψ‖Lp(Ω,E) = (E ‖ϕ+ ψ‖pE)
1
p

≤ (E [‖ϕ‖E + ‖ψ‖E]p)
1
p

≤ (E ‖ϕ‖pE)
1
p + (E ‖ψ‖pE)

1
p

= ‖ϕ‖Lp(Ω,E) + ‖ψ‖Lp(Ω,E) ,

where the second inequality follows from Proposition 2.10.

(3) Positive homogeneous. Let λ ∈ R and ϕ ∈ Lp(Ω, E). Then

‖λϕ‖Lp(Ω,E) = (E ‖λϕ‖pE)
1
p =

(
E
[
|λ|2 ‖ϕ‖pE

]) 1
p

= |λ| (E ‖ϕ‖pE)
1
p = |λ| ‖ϕ‖Lp(Ω,E) .
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Part 2: Completeness

Let (ϕn)∞n=1 be a Cauchy sequence in Lp(Ω, E). Fix ε > 0. Then there exists
Nε ∈ N depending on the choice of ε such that

(A.1) ‖ϕm − ϕn‖pLp(Ω,E) = E ‖ϕm − ϕn‖pE ≤ ε

for all m,n ≥ Nε. Note that we take the norm to the p-th power, which does
not a�ect the convergence. We use Chebyshev's inequality [GG18, Proposi-
tion 5.10.1] to see that for any λ > 0 we have

P
({
ω ∈ Ω

∣∣ ‖ϕm(ω)− ϕn(ω)‖E > λ
})
≤ 1

λp
E ‖ϕm − ϕn‖pE ≤ ε.

Hence (ϕn)∞n=1 is a Cauchy sequence in probability, and this implies in par-
ticular that there exists a limit ϕ : Ω → E such that (ϕn)∞n=1 converges to
ϕ in probability. This lets us choose a subsequence (ϕnk

)∞k=1 such that the
subsequence converges almost surely to the limit ϕ with respect to the norm
‖·‖E, that is

P
({
ω ∈ Ω | ‖ϕnk

(ω)− ϕ(ω)‖E 6→ 0 as k →∞
})

= 0.

We apply Fatou's lemma [GG18, Proposition 5.4.4] to obtain

E ‖ϕ− ϕn‖pE = E
[
lim inf
k→∞

‖ϕnk
− ϕn‖pE

]
≤ lim inf

k→∞
E ‖ϕnk

− ϕn‖pE ≤ ε

for n ≥ Nε. Hence (ϕn)∞n=1 converges to a limit in Lp(Ω, E).

We recall that the space of continuous functions, C([0, T ],Rd) with the
norm ‖·‖∞ de�ned by

‖f‖∞ := sup
t∈[0,T ]

‖f(t)‖

is a separable Banach space. Now we obtain the following result.

Corollary A.5. For all T > 0 the space Lp(Ω, C([0, T ],Rd)) with the norm

‖X‖Lp(Ω,C([0,T ],Rd)) := (E ‖X‖p∞)
1
p =

(
E sup
t∈[0,T ]

‖X(t, ·)‖p
) 1

p

for X : [0, T ]× Ω→ Rd, is a Banach space.

Proof. Follows directly from Theorem A.4 when E = C([0, T ],Rd).
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