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Abstract
The conformal mapping f (z) = (z + 1)2 from D onto the standard cardioid has
a homeomorphic extension of finite distortion to entire R

2. We study the optimal
regularity of such extensions, in terms of the integrability degree of the distortion and
of the derivatives, and these for the inverse. We generalize all outcomes to the case of
conformal mappings from D onto cardioid-type domains.

Keywords Extensions · Homeomorphisms of finite distortion · Inner cusp

Mathematics Subject Classification 30C20

1 Introduction

The standard cardioid domain

� = {(x, y) ∈ R
2 : (x2 + y2)2 − 4x(x2 + y2) − 4y2 < 0} (1.0.1)

is the image of the unit diskD under the conformal mapping g(z) = (z+1)2. Since the
origin is an inner-cusp point of ∂�, the Ahlfors’ three-point property fails, and hence
∂� is not a quasicircle. Therefore the preceding conformal mapping does not possess
a quasiconformal extension to the entire plane. However, there is a homeomorphic
extension f : R2 → R

2 by the Schoenflies theorem, see [10, Theorem 10.4]. Recall
that homeomorphismsof finite distortion formamuch larger class of homeomorphisms
than quasiconformal mappings. A natural question arises: can we extend g as a
homeomorphism of finite distortion? If we can, how good an extension can we find?
Our first result gives a rather complete answer.

B Haiqing Xu
hqxu@mail.ustc.edu.cn

1 Department of Mathematics and Statistics, University of Jyväskylä, PO BOX 35, 40014 Jyväskylä,
Finland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12220-019-00340-x&domain=pdf
http://orcid.org/0000-0002-4480-5826


H. Xu

Theorem 1.1 Let F be the collection of homeomorphisms f : R
2 → R

2 of finite
distortion such that f (z) = (z + 1)2 for all z ∈ D. Then F �= ∅. Moreover

sup{p ∈ [1,+∞) : f ∈ F ∩ W 1,p
loc (R2,R2)} = +∞, (1.0.2)

sup{q ∈ (0,+∞) : f ∈ F , K f ∈ Lqloc(R
2)} = 2, (1.0.3)

sup{q ∈ (0,+∞) : f ∈ F ∩ W 1,p
loc (R2,R2) for a fixed p > 1 and K f ∈ Lqloc(R

2)}
= 1, (1.0.4)

sup{p ∈ [1,+∞) : f ∈ F , f −1 ∈ W 1,p
loc (R2,R2)} = 5

2
(1.0.5)

and

sup{q ∈ (0,+∞) : f ∈ F , K f −1 ∈ Lq
loc(R

2)} = 5. (1.0.6)

The cardioid curve ∂� contains an inner-cusp point of asymptotic polynomial
degree 3/2. Motivated by this, we introduce a family of cardioid-type domains �s

with degree s > 1, see (2.3.2). Our second result is an analog of Theorem 1.1.

Theorem 1.2 Let g be a conformal map fromD onto�s,where�s is defined in (2.3.2)
and s > 1. Suppose that Fs(g) is the collection of homeomorphisms f : R2 → R

2 of
finite distortion such that f |D = g. Then Fs(g) �= ∅. Moreover

sup{p ∈ [1,+∞) : f ∈ Fs(g) ∩ W 1,p
loc (R2,R2)} = +∞, (1.0.7)

sup{q ∈ (0,+∞) : f ∈ Fs(g), K f ∈ Lq
loc(R

2)} = max

{
1

s − 1
, 1

}
, (1.0.8)

sup{q ∈ (0,+∞) : f ∈ Fs(g) ∩ W 1,p
loc (R2,R2) for a fixed p > 1 and K f ∈ Lq

loc(R
2)}

= max

{
1

s − 1
,

3p

(2s − 1)p + 4 − 2s

}
, (1.0.9)

sup{p ∈ [1,+∞) : f ∈ Fs(g), f −1 ∈ W 1,p
loc (R2,R2)} = 2(s + 1)

2s − 1
(1.0.10)

and

sup{q ∈ (0,+∞) : f ∈ Fs(g), K f −1 ∈ Lq
loc(R

2)} = s + 1

s − 1
. (1.0.11)

Let us recall previous extension results. In [3,4], sufficient conditions on � are
introduced to guarantee that a conformal mapping g : D → � has a homeomorphic
extension of locally exponentially integrable distortion to the whole plane. Specially,
when � is a Jordan domain with an outer-cusp point on its boundary, the authors
from [8] established the optimal exponential regularity of distortion of homeomorphic
extensions.

In Sect. 2, we recall some basic definitions and facts. We also introduce auxiliary
mappings and domains. In Sect. 3, we give upper bounds for integrability degrees of
potential extensions. Section 4 is devoted to the proof of Theorem 1.2. In Sect. 5 we
prove Theorem 1.1.
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Optimal Extensions of Conformal Mappings from the Unit Disk

2 Preliminaries

2.1 Notation

By s � 1 and t 	 1 we mean that s is sufficiently large and t is sufficiently small,
respectively. By f � g we mean that there exists a constant M > 0 such that f (x) ≤
Mg(x) for every x .Wewrite f ≈ g if both f � g and g � f hold. ByL2 (respectively
L1) we mean the 2-dimensional (1-dimensional) Lebesgue measure. Furthermore we
refer to the disk with center P and radius r by B(P, r), and S(P, r) = ∂B(P, r). For
a set E ⊂ R

2 we denote by E the closure of E . If A ∈ R
2×2 is a matrix, ad j A is the

adjoint matrix of A.

2.2 Basic Definitions and Facts

Definition 2.1 Let� ⊂ R
2 and�′ ⊂ R

2 be domains.A homeomorphism f : � → �′
is called K -quasiconformal if f ∈ W 1,2

loc (�,�′) and if there is a constant K ≥ 1 such
that

|Df (z)|2 ≤ K J f (z)

holds for L2-a.e. z ∈ �.

Definition 2.2 Let � ⊂ R
2 be a domain. We say that a mapping f : � → R

2 has
finite distortion if f ∈ W 1,1

loc (�,R2), J f ∈ L1
loc(�) and

|Df (z)|2 ≤ K f (z)J f (z) L2-a.e. z ∈ �, (2.2.1)

where

K f (z) =
{ |Df (z)|2

J f (z)
for all z ∈ {J f > 0},

1 for all z ∈ {J f = 0}.

Note that a necessary condition inDefinition 2.2 is that J f (z) ≥ 0 forL2-a.e. z ∈ �.

When J f (z) ≤ 0 for L2-a.e. z ∈ �, we also define mappings of finite distortion.
Modification on (2.2.1) is that |Df (z)|2 ≤ −K f (z)J f (z) for L2-a.e. z ∈ � with

K f (z) =
{ |Df (z)|2

−J f (z)
for all z ∈ {J f < 0},

1 for all z ∈ {J f = 0}.

Analogous explanation is applied to Definition 2.1.

Definition 2.3 Given A ⊂ R
2, a map f : A → R

2 is called an (l, L)-bi-Lipschitz
mapping if 0 < l ≤ L < ∞ and

l|x − y| ≤ | f (x) − f (y)| ≤ L|x − y|
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for all x, y ∈ A.

If � ⊂ R
2 is a domain and f : � → R

2 is an orientation-preserving bi-Lipschitz
mapping, then f is quasiconformal.

Definition 2.4 Given a function ϕ defined on set A ⊂ R
2, its modulus of continuity

is defined as

ω(δ) ≡ ω(δ, ϕ, A) = sup{|ϕ(z1) − ϕ(z2)| : z1, z2 ∈ A, |z1 − z2| ≤ δ}

for δ ≥ 0. Then ϕ is called Dini-continuous if

∫ π

0

ω(t)

t
dt < ∞,

where the integration bound π can be replaced by any positive constant.
We say that a curveC isDini-smooth if it has a parametrization α(t) for t ∈ [0, 2π ]

so that α′(t) �= 0 for all t ∈ [0, 2π ] and α′ is Dini-continuous.

Definition 2.5 Let � ⊂ R
2 be open and f : � → R

2 be a mapping. We say that f
satisfies the Lusin (N ) condition if L2( f (E)) = 0 for any E ⊂ � with L2(E) = 0.
Similarly, f satisfies the Lusin (N−1) condition ifL2( f −1(E)) = 0 for any E ⊂ f (�)

with L2(E) = 0.

Lemma 2.1 ([6, TheoremA.35]) Let� ⊂ R
2 be open and f ∈ W 1,1

loc (�,R2). Suppose
that η is a nonnegative Borel measurable function on R2. Then

∫
�

η( f (x))|J f (x)| dx ≤
∫
f (�)

η(y)N ( f ,�, y) dy, (2.2.2)

where the multiplicity function N ( f ,�, y) of f is defined as the number of preimages
of y under f in �. Moreover (2.2.2) is an equality if we assume in addition that f
satisfies the Lusin (N) condition.

Let � ⊂ R
2 be open. Via Lemma 2.1, we have that

if f is a W 1,1
loc (�,R2) homeomorphism, then J f ∈ L1

loc(�). (2.2.3)

Lemma 2.2 ( [6, Lemma A.28]) Suppose that f : R2 → R
2 is a homeomorphism

which belongs to W 1,1
loc (R2,R2). Then f is differentiable L2-a.e. on R

2.

Lemma 2.2 and a simple computation show that

max
θ∈[0,2π ] |∂θ f (z)| = K f (z) min

θ∈[0,2π ] |∂θ f (z)| L2-a.e. z ∈ R
2 (2.2.4)

when f : R
2 → R

2 is a homeomorphism of finite distortion. Here ∂θ f (z) =
cos(θ) fx (z) + sin(θ) fy(z) for θ ∈ [0, 2π ].

123



Optimal Extensions of Conformal Mappings from the Unit Disk

Lemma 2.3 ([5, Theorem 1.2], [6, Theorem 1.6]) Let � ⊂ R
2 be a domain and

f : � → R
2 be a homeomorphism of finite distortion. Then f −1 : f (�) → � is also

a homeomorphism of finite distortion. Moreover

|Df −1(y)|2 ≤ K f −1(y)J f −1(y) L2-a.e. y ∈ f (�). (2.2.5)

Lemma 2.4 ([14, Theorem 2.1.11]) Let all � ⊂ R
2, �1 ⊂ R

2 and �2 ⊂ R
2 be open,

and T ∈ Lip(�1,�2). Suppose that both f ∈ W 1,p
loc (�,�1) and T ◦ f ∈ L p

loc(�,�2)

hold for some p with 1 ≤ p ≤ ∞. Then T ◦ f ∈ W 1,p
loc (�,�2) and

D(T ◦ f )(z) = DT ( f (z))Df (z) L2-a.e. z ∈ �.

Definition 2.6 A rectifiable Jordan curve � in the plane is a chord-arc curve if there
is a constant C > 0 such that

�(z1, z2) ≤ C |z1 − z2|

for all z1, z2 ∈ �, where �(z1, z2) is the length of the shorter arc of � joining z1 and
z2.

It is a well-known fact that a chord-arc curve is the image of the unit circle under
a bi-Lipschitz mappings of the plane, see [7]. Thus chord-arc curves form a special
class of quasicircles. The connections between chord-arc curves and quasiconformal
theory can be found in [1,12].

2.3 Definition of Cardioid-Type Domains

Let s > 1.We introduce a class of cardioid-type domains�s whose boundaries contain
internal polynomial cusps of order s, see Fig. 1. For technical reasons we do this in
the following manner. Denote

1(s) = {(u, v) ∈ R
2 : u ∈ [−1, 0], v = (−u)s}

and

2(s) = {(u, v) ∈ R
2 : u ∈ [−1, 0], v = −(−u)s}.

Write 1(s) and 2(s) in the polar coordinate system as

1(s) = {Rei� : R = (−u)(1 + (−u)2(s−1))
1
2

and � = π − arctan((−u)s−1) for u ∈ [−1, 0]}

and

2(s) = {Rei� : R = (−u)(1 + (−u)2(s−1))
1
2

123



H. Xu

Fig. 1 Ms and �s

and � = −π + arctan((−u)s−1) for u ∈ [−1, 0]}.

Take the branch of complex-valued function z = w1/2 with 11/2 = 1.Denote by m1 (s)
and m2 (s) the images of 1(s) and 2(s) under the preceding z = w1/2, respectively.
Then we can write m1 (s) and m2 (s) in the polar coordinate system as

m1 (s) = {reiθ : r = √−u(1 + (−u)2(s−1))
1
4

and θ = π − arctan((−u)s−1)

2
for u ∈ [−1, 0]} (2.3.1)

and

m2 (s) = {reiθ : r = √−u(1 + (−u)2(s−1))
1
4

and θ = −π + arctan((−u)s−1)

2
for u ∈ [−1, 0]}.

Denote by z1 and z2 the end points of m1 (s) ∪ m2 (s). Notice that there is a unique
circle sharing both the tangent of m1 (s) at z1 and the one of m2 (s) at z2. This circle is
divided into two arcs by z1 and z2. Concatenating m1 (s) ∪ m2 (s) with the arc located
on the right-hand side of the line through z1 and z2, we then obtain a Jordan curve
m(s). Denote by (s) the image of m(s) under z2. Let

Ms and �s be the interior domains of m(s) and (s), respectively. (2.3.2)

Then�s is the desired cardioid-type domainwith degree s.Moreover m(s), (s), Ms

and �s are symmetric with respect to the real axis.
By the Riemann mapping theorem, there is a conformal mapping from D ∩ R

2+
onto Ms ∩ R

2+ such that D ∩ R is mapped onto Ms ∩ R. It follows from the Schwarz
reflection principle that there is a conformal mapping

gs : D → Ms . (2.3.3)

such that gs(z̄) = gs(z) for all z ∈ D.Moreover by theOsgood–Carathéodory theorem
gs has a homeomorphic extension from D onto Ms, still denoted gs .

123



Optimal Extensions of Conformal Mappings from the Unit Disk

Lemma 2.5 Let Ms and gs be as in (2.3.2) and (2.3.3) with s > 1. Then gs is a
bi-Lipschitz mapping on D.

Proof If ∂Ms were a Dini-smooth Jordan curve, from [11, Theorem 3.3.5] it would
follow that g′

s is continuous onD and g′
s(z) �= 0 for all z ∈ D. Since Ms is convex, the

mean value theorem would then yield that gs is a bi-Lipschitz map from D onto Ms .

In order to prove that ∂Ms is a Dini-smooth Jordan curve, we first analyze ∂Ms in
a neighborhood of the origin. For any point in m1 with Euclidean coordinate (x, y),
we have

x = r cos θ and y = r sin θ. (2.3.4)

where both r and θ share the expression in (2.3.1). We then obtain that

r ≈ √−u, θ ≈ π

2
,

∂r

∂u
≈ −1√−u

and
∂θ

∂u
≈ (−u)s−2 (2.3.5)

whenever |u| 	 1. Therefore from (2.3.4) and (2.3.5), it follows that

x ≈ (−u)s−
1
2 , y ≈ (−u)

1
2 ,

∂x

∂u
≈ −(−u)s−

3
2 and

∂ y

∂u
≈ −(−u)−

1
2 .

Together with symmetry of ∂Ms, we conclude that ∂x
∂ y ≈ |y|2(s−1) whenever |y| 	 1.

Next, notice that the part of ∂Ms away from the origin is piecewise smooth. By
parametrizing ∂Ms as α(y) = (x(y), y),we then obtain that themodulus of continuity
of α′ satisfies

ω(δ, α′, ∂Ms) ≤ max{δ2(s−1), δ} ∀δ 	 1.

Consequently α′ is Dini-continuous. Therefore ∂Ms is a Dini-smooth Jordan curve. ��
Remark 2.1 Since gs : S

1 → ∂Ms is a bi-Lipschitz map by Lemma 2.5, via [13,
Theorem A] there is a bi-Lipschitz mapping gcs : Dc → Mc

s such that g
c
s |S1 = gs . Let

Gs(z) =
{
gs(z) ∀z ∈ D,

gcs (z) ∀z ∈ D
c.

(2.3.6)

Then Gs is an orientation-preserving bi-Lipschitz mapping.

Lemma 2.6 Let h1 : R2 → R
2 be a homeomorphism of finite distortion, and h2 :

R
2 → R

2 be an (l, L)-bi-Lipschitz, orientation-preserving mapping. Then h1 ◦ h2 is
a homeomorphism of finite distortion.

Proof Since h2 is an orientation-preserving bi-Lipschitz mapping, we have that h2 is
quasiconformal. From [2, Corollary 3.7.6] it then follows that

123



H. Xu

h2 satisfies Lusin (N ) and (N−1) condition, (2.3.7)

Jh2 > 0 L2-a.e. on R
2. (2.3.8)

By Lemma 2.2 we have

both h1 and h2 are differentiable L2-a.e. on R
2. (2.3.9)

From (2.3.9) and (2.3.7) it therefore follows that h1 ◦ h2 is differentiable L2-a.e. on
R
2, and

D(h1 ◦ h2)(z) = Dh1(h2(z))Dh2(z) L2-a.e. z ∈ R
2. (2.3.10)

From (2.3.10) and the distortion inequalities for h1 and h2 it follows that

|D(h1 ◦ h2)(z)|2 ≤|Dh1(h2(z))|2|Dh2(z)|2 ≤ Kh1(h2(z))Kh2(z)Jh1(h2(z))Jh2(z)

=Kh1(h2(z))Kh2(z)Jh1◦h2(z) (2.3.11)

for L2-a.e. z ∈ R
2.

Toprove that h1◦h2 is a homeomorphismof finite distortion, via (2.2.3) and (2.3.11)
it is sufficient to prove that h1 ◦ h2 ∈ W 1,1

loc (R2,R2). Since h2 is an (l, L)-bi-Lipschitz
orientation-preserving mapping, by (2.3.9) and (2.2.4) we then have that

l ≤ |Dh2(z)| ≤ L and 1 ≤ Kh2(z) ≤ L

l
L2-a.e. z ∈ R

2. (2.3.12)

From(2.3.8), (2.3.12), and (2.2.1) it then follows that

l3

L
≤ Jh2(z) ≤ L2 L2-a.e. z ∈ R

2. (2.3.13)

By (2.3.10), (2.3.12), (2.3.13), and Lemma 2.1, we therefore have

∫
M

|D(h1 ◦ h2)(z)| dz ≤
∫
M

|Dh1(h2(z))| |Dh2(z)|
Jh2(z)

Jh2(z) dz

≈
∫
M

|Dh1(h2(z))|Jh2(z) dz

=
∫
h2(M)

|Dh1(w)| dw < ∞

for any compact set M ⊂ R
2, where the last inequality is from h1 ∈ W 1,1

loc (R2,R2). ��

3 Bounds for Integrability Degrees

For a given s > 1, let Ms as in (2.3.2). Define
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Es = { f : f : R2 → R
2 is a homeomorphism of finite distortion

and f (z) = z2 for all z ∈ Ms}. (3.0.1)

Lemma 3.1 Let Es be as in (3.0.1) with s > 1, and f ∈ Es . Suppose that f −1 ∈
W 1,p

loc (R2,R2) for some p ≥ 1. Then necessarily p < 2(s + 1)/(2s − 1).

Proof Given x ∈ (−1, 0), denote by Ix the line segment connecting the points (x, |x |s)
and (x,−|x |s). Since f −1 ∈ W 1,p

loc for some p ≥ 1, by the ACL-property of Sobolev
functions it follows that

oscIx f
−1 ≤

∫
Ix

∣∣Df −1(x, y)
∣∣ dy (3.0.2)

holds for L1-a.e. x ∈ (−1, 0). Applying Jensen’s inequality to (3.0.2), we have

(oscIx f
−1)p

(−x)s(p−1)
≤

∫
Ix

∣∣Df −1(x, y)
∣∣p dy. (3.0.3)

Since f (z) = z2 for all z ∈ ∂Ms, we have

(−x)1/2 � oscIx f
−1 ∀x ∈ (−1, 0). (3.0.4)

Combining (3.0.3) with (3.0.4), we hence obtain

(−x)
p
2 −s(p−1) �

∫
Ix

∣∣Df −1(x, y)
∣∣p dy L1-a.e. x ∈ (−1, 0). (3.0.5)

Integrating (3.0.5) with respect to x ∈ (−1, 0) therefore implies

∫ 0

−1
(−x)

p
2 −s(p−1) dx �

∫
B(0,

√
2)

∣∣Df −1(x, y)
∣∣p dx dy. (3.0.6)

Since f −1 ∈ W 1,p
loc , from (3.0.6) we necessarily obtain p

2 − s(p − 1) > −1, which is
equivalent to p < 2(s + 1)/(2s − 1). ��

Our next proof borrows some ideas from [9, Theorem 1].

Lemma 3.2 Let Es be as in (3.0.1) with s > 1. Let f ∈ Es and suppose that K f −1 ∈
Lq
loc(R

2) for a given q ≥ 1. Then q < (s + 1)/(s − 1).

Proof For a given t 	 1, we denote

Et = {(x, y) ∈ R
2 : x ∈ (−t2,−(

t

2
)2) and y = −|x |s}
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and

Ft = {(x, y) ∈ R
2 : x ∈ (−t2,−(

t

2
)2) and y = |x |s}.

Let Ẽt = f −1(Et ) and F̃t = f −1(Ft ). Set

L1
t = min{|z| : z ∈ F̃t }, L2

t = max{|z| : z ∈ F̃t },
Lt = dist(Ẽt , F̃t ), L0 = max{| f −1(z)| : Rez = −1, Imz ∈ [−1, 1]}.

Since f (z) = z2 for all z ∈ ∂Ms, we have L1
t ≈ t/2, L2

t ≈ t and Lt ≈ t whenever
t 	 1. Given w ∈ At := {w ∈ R

2 : L1
t ≤ |w| ≤ L2

t }, set ρ(w) = L2
t /(Lt |w|).

Define

v(z) =
{
1 for all z ∈ B(0, L0) \ At ,

infγz
∫
γz

ρ ds for all z ∈ At ,
(3.0.7)

where the infimum is taken over all curves γz ⊂ At joining z and Ẽt . From (3.0.7) it
follows that for any z1, z2 ∈ At and any curve γz1z2 ⊂ At connecting z1 and z2 we
have

|v(z1) − v(z2)| ≤
∫

γz1z2

ρ ds. (3.0.8)

Therefore v is a Lipschitz function on At .ByRademacher’s theorem, v is differentiable
L2-a.e. on At . Hence (3.0.8) together with the continuity of ρ gives

|Dv(z)| ≤ ρ(z) L2-a.e. z ∈ At . (3.0.9)

Integrating (3.0.9) over Q̃t = At \ Ms then yields

∫
Q̃t

|Dv|2 ≤
∫
Q̃t

ρ2 ≈
∫ L2

t

L1
t

1

r
dr ≈ log 2. (3.0.10)

By Lemma 2.3 we have f −1 ∈ W 1,1
loc . Let u = v ◦ f −1. From Lemma 2.4 we then

have u ∈ W 1,1
loc ( f (B(0, L0))) and

|Du(z)| ≤ |Dv( f −1(z))||Df −1(z)| L2-a.e. in f (At ). (3.0.11)

By (3.0.7), v(z) = 0 for all z ∈ Ẽt . Hence u(z) = 0 for all z ∈ Et . Whenever z ∈ F̃t ,
we have L1(γz) ≥ Lt for any curve γz ⊂ At joining z and Ẽt . Therefore v(z) ≥ 1 for
all z ∈ F̃t . Hence u(z) ≥ 1 for all z ∈ Ft . By the ACL-property of Sobolev functions
and Hölder’s inequality, we therefore have that

123



Optimal Extensions of Conformal Mappings from the Unit Disk

1 ≤
∫ xs

−xs
|Du(x, y)| dy ≤

(∫ xs

−xs
|Du(x, y)|p dy

) 1
p

(2xs)
p−1
p (3.0.12)

for any p > 1 and L1-a.e. x ∈ [−t2,−(t/2)2]. Define

Rt = {(x, y) ∈ R
2 : x ∈ (−t2,−(t/2)2), y ∈ (−|x |s, |x |s)}.

Fubini’s theorem and (3.0.12) then give

∫
Rt

|Du(x, y)|p dx dy =
∫ −(t/2)2

−t2

∫ xs

−xs
|Du(x, y)|p dy dx

�
∫ −(t/2)2

−t2
xs(1−p) dx ≈ t2(1+s(1−p)). (3.0.13)

Set Qt = f (Q̃t ). Then for any z ∈ Rt \ Qt there is an open disk Bz ⊂ Rt \ Qt such
that z ∈ Bz and u|Bz ≡ 1. Therefore

∫
Qt

|Du|p ≥
∫
Qt∩Rt

|Du|p =
∫
Rt

|Du|p. (3.0.14)

Combining (3.0.13) with (3.0.14) gives that

t2(1+s(1−p)) �
∫
Qt

|Du|p (3.0.15)

for all p ≥ 1.
For any p ∈ (0, 2), by (3.0.11), (2.2.5), and Hölder’s inequality, we have

∫
Qt

|Du|p ≤
∫
Qt

∣∣∣Dv ◦ f −1
∣∣∣p∣∣∣Df −1

∣∣∣p

≤
∫
Qt

∣∣∣Dv ◦ f −1
∣∣∣p J p

2
f −1K

p
2
f −1

≤
(∫

Qt

∣∣∣Dv ◦ f −1
∣∣∣2 J f −1

) p
2

(∫
Qt

K
p

2−p

f −1

) 2−p
2

≤
(∫

Q̃t

∣∣∣Dv

∣∣∣2
) p

2
(∫

Qt

K
p

2−p

f −1

) 2−p
2

(3.0.16)

where the last inequality comes from Lemma 2.1. Let q = p/(2 − p). Via (3.0.10)
and (3.0.15), we conclude from (3.0.16) that

t2(1+q+s(1−q)) �
∫
Qt

Kq
f −1 (3.0.17)
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for all q ≥ 1. We now consider the set Qt for t = 2− j with j ≥ j0 for a fixed large
j0. Since

∞∑
j= j0

χQ2− j (x) ≤ 2χD(x) ∀x ∈ R
2,

by (3.0.17) we have that

+∞∑
j= j0

2 j2(s(q−1)−q−1) �
+∞∑
j= j0

∫
Q2− j

K q
f −1 ≤ 2

∫
D

Kq
f −1 . (3.0.18)

The series in (3.0.18) diverges when q ≥ s+1
s−1 and hence K f −1 ∈ Lq

loc(R
2) can only

hold when q < (s + 1)/(s − 1). ��
We continue with properties of our homeomorphism f . The following lemma is a

version of [4, Theorem 4.4].

Lemma 3.3 Let Es be as in (3.0.1) with s > 1. If f ∈ Es and K f ∈ Lq
loc(R

2) for some
q ≥ 1, then q < max{1, 1/(s − 1)}.
Proof Denote

� = {(x1, x2) ∈ R
2 : x1 ∈ (−1, 0), x2 ∈ (−|x1|s, |x1|s)}.

For a given t 	 1, set

�1
t = {(x1, x2) ∈ � : x1 ∈ (−1,−t2)},

Q̃t = {(x1, x2) ∈ � : x1 ∈ [−t2,−(
t

2
)2]} and �2

t = � \ (�1
t ∪ Q̃t ).

Define

v(x1, x2) =

⎧⎪⎪⎨
⎪⎪⎩
1 ∀(x1, x2) ∈ �1

t ,

1 −
(∫ −(t/2)2

−t2
dx

(−x)s

)−1 ∫ x1
−t2

dx
(−x)s ∀(x1, x2) ∈ Q̃t ,

0 ∀(x1, x2) ∈ �2
t .

(3.0.19)

Then v is a Lipschitz function on �. Let u = v ◦ f . By Lemma 2.4, we have u ∈
W 1,1

loc ( f −1(�)) and

Du(z) = Dv( f (z))Df (z) L2-a.e. z ∈ f −1(�). (3.0.20)

Let P1 = f −1((−t2, t2s)), P2 = f −1((−(t/2)2, (t/2)2s)), and O be the origin.
Denote by L1

t and L2
t the length of line segment P1P2 and of P1O, respectively. Then

L1
t < L2

t . Since f (z) = z2 for all z ∈ ∂Ms, we have
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L1
t ≈ t

2
and L2

t ≈ t whenever t 	 1. (3.0.21)

Let Ŝ(P1, r) = S(P1, r)∩ f −1(�). From the ACL-property of Sobolev functions and
Hölder’s inequality, we have that

oscŜ(P1,r)
u ≤

∫
Ŝ(P1,r)

|Du| ds ≤ (2πr)
p−1
p

(∫
Ŝ(P1,r)

|Du|p ds
) 1

p

(3.0.22)

for any p > 1 and L1-a.e. r ∈ (L1
t , L

2
t ). Since oscŜ(P1,r)

u = 1 for all r ∈ (L1
t , L

2
t ),

we conclude from (3.0.22) that

∫
Ŝ(P1,r)

|Du|p ds � r1−p L1-a.e. r ∈ (L1
t , L

2
t ). (3.0.23)

Let At = f −1(�) ∩ B(P1, L2
t ) \ B(P1, L1

t ). By Fubini’s theorem and (3.0.21), we
deduce from (3.0.23) that

∫
At

|Du|p =
∫ L2

t

L1
t

∫
Ŝ(P1,r)

|Du|p ds dr �
∫ L2

t

L1
t

r1−p dr ≈ t2−p. (3.0.24)

Let Qt = f −1(Q̃t ). From (3.0.19), we have |Du(z)| = 0 for all z ∈ At \ Qt . We
hence conclude from (3.0.24) that

∫
Qt

|Du|p ≥
∫
Qt∩At

|Du|p =
∫
At

|Du|p � t2−p (3.0.25)

for any p ≥ 1.
From (3.0.20), (2.2.1), and Hölder’s inequality, it follows that for any p ∈ (0, 2)

∫
Qt

|Du|p ≤
∫
Qt

∣∣Dv ◦ f
∣∣p∣∣Df

∣∣p ≤
∫
Qt

∣∣Dv ◦ f
∣∣p J p

2
f K

p
2
f

≤
(∫

Qt

∣∣Dv ◦ f
∣∣2 J f

) p
2

(∫
Qt

K
p

2−p
f

) 2−p
2

≤
(∫

Q̃t

∣∣Dv
∣∣2)

p
2

(∫
Qt

K
p

2−p
f

) 2−p
2

, (3.0.26)

where the last inequality is from Lemma 2.1. From (3.0.19), we have that

∫
Q̃t

∣∣Dv(x1, x2)
∣∣2 dx1 dx2 =

(∫ −(t/2)2

−t2

dx

(−x)s

)−2 ∫ −(t/2)2

−t2

∫ |x1|s

−|x1|s
1

(−x1)2s
dx2 dx1

≈
(∫ −(t/2)2

−t2

dx

(−x)s

)−1

≈ t2(s−1). (3.0.27)
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Let q = p/(2 − p). Then q ∈ [1,+∞) whenever p ∈ [1, 2). Combining (3.0.27),
(3.0.25) with (3.0.26) yields

t2+2(1−s)q �
∫
Qt

Kq
f (3.0.28)

for all q ≥ 1. We now consider the set Qt for t = 2− j with j ≥ j0 for a fixed large
j0. Analogously to (3.0.18), it follows from (3.0.28) that

+∞∑
j= j0

22 j((s−1)q−1) �
+∞∑
j= j0

∫
Q2− j

K q
f ≤ 2

∫
B(0,1)

Kq
f . (3.0.29)

Whenever s ≥ 2, the sum in (3.0.29) diverges if q ≥ 1. Whenever s ∈ (1, 2), the
sum in (3.0.29) also diverges if q ≥ 1/(s−1). Hence K f ∈ Lq

loc(R
2) is possible only

when q < max{1, 1/(s − 1)}. ��
In Lemma 3.3, we obtained an estimate for those q for which K f ∈ Lq

loc. We

continue with the additional assumption that f ∈ W 1,p
loc for some p > 1.

Lemma 3.4 Let Es be as in (3.0.1) with s > 2. If f ∈ Es , f ∈ W 1,p
loc (R2,R2) for some

p > 1 and K f ∈ Lq
loc(R

2) for some q ∈ (0, 1), then q < 3p/((2s − 1)p + 4 − 2s).

Proof Let f be a homeomorphism with the above properties. By [5, Theorem 4.1] we
have f −1 ∈ W 1,r

loc (R2) where

r = (q + 1)p − 2q

p − q
.

Moreover

r <
2(s + 1)

2s − 1
⇔ q <

3p

(2s − 1)p + 4 − 2s
.

Hence the claim follows from Lemma 3.1. ��
Remark 3.1 Notice that in the proof of Lemma 3.3 we only care about the property of
f in a small neighborhood of the origin. Let t 	 1. By modifying ∂Ms ∩ B(0, t),
we may generalize Lemma 3.3. For example, we modify ∂M3/2 ∩ B(0, t) such that
its image under f (z) = z2 is

{(x, y) ∈ R
2 : x ∈ [−2− j0 , 0], y2 = c|x |3}

where c is a positive constant. If K f ∈ Lq
loc(R

2) for some q ≥ 1, by the analogous
arguments as for Lemma 3.3 we have q < 2. Similarly, one may extend Lemmas 3.1,
3.2 and 3.4 to the above setting.
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Lemma 3.5 Let �s be as in (2.3.2) with s > 1. Suppose that f : R
2 → R

2 is a
homeomorphism of finite distortion such that f maps D conformally onto �s . We
have that

(1) if f −1 ∈ W 1,p
loc (R2,R2) for some p ≥ 1 then p < 2(s + 1)/(2s − 1),

(2) if K f −1 ∈ Lq
loc(R

2) for some q ≥ 1 then q < (s + 1)/(s − 1),
(3) if K f ∈ Lq

loc(R
2) for some q ≥ 1 then q < max{1, 1/(s − 1)},

(4) if s > 2, f ∈ W 1,p
loc (R2,R2) for some p > 1 and K f ∈ Lq

loc for some q ∈ (0, 1),
then q < 3p/((2s − 1)p + 4 − 2s).

Proof Let gs be as in (2.3.3), and hs = z2 ◦ gs . Since hs : D → �s is conformal,
there is a Möbius transformation

ms(z) = eiθ
z − a

1 − āz
where θ ∈ [0, 2π ] and |a| < 1

such that f (z) = hs ◦ ms(z) for all z ∈ D. Since ms : S1 → S
1 is a bi-Lipschitz

mapping, by [13, Theorem A] there is a bi-Lipschitz mapping mc
s : Dc → �c

s such
that mc

s |S1 = ms . Define

Ms(z) =
{
ms(z) z ∈ D,

mc
s(z) z ∈ D

c.
(3.0.30)

ThenMs : R2 → R
2 is a bi-Lipschitz, orientation-preserving mapping. Let Gs be as

in (2.3.6). Define

E = f ◦ M−1
s ◦ G−1

s : R2 → R
2.

Lemma 2.6 implies that E ∈ Es, where Es is from (3.0.1). From Lemmas 2.2 and
2.3, it follows that

both f −1 and E−1 are differentiable L2-a.e. on R
2. (3.0.31)

Since
∣∣∣ f −1(z1) − f −1(z2)

∣∣∣∣∣∣z1 − z2
∣∣∣ =

∣∣∣E−1(z1) − E−1(z2)
∣∣∣∣∣∣z1 − z2

∣∣∣

∣∣∣(G−1
s (E−1(z1)) − (G−1

s (E−1(z2))
∣∣∣∣∣∣E−1(z1) − E−1(z2)

∣∣∣ ×

×
∣∣∣M−1

s (G−1
s ◦ E−1(z1)) − M−1

s (G−1
s ◦ E−1(z2))

∣∣∣∣∣∣G−1
s ◦ E−1(z1) − G−1

s ◦ E−1(z2)
∣∣∣

for all z1, z2 ∈ R
2 with z1 �= z2, by (3.0.31) and the bi-Lipschitz properties of G−1

s
and M−1

s we have that

∣∣∣Df −1(z)
∣∣∣ ≈

∣∣∣DE−1(z)
∣∣∣, (3.0.32)
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max
θ∈[0,2π ]

∣∣∣∂θ f
−1(z)

∣∣∣ ≈ max
θ∈[0,2π ]

∣∣∣∂θ E
−1(z)

∣∣∣,
min

θ∈[0,2π ]

∣∣∣∂θ f
−1(z)

∣∣∣ ≈ min
θ∈[0,2π ]

∣∣∣∂θ E
−1(z)

∣∣∣ (3.0.33)

forL2-a.e. z ∈ R
2. If f −1 ∈ W 1,p

loc for some p ≥ 1, Lemma 3.2 together with (3.0.34)
gives p < 2(s + 1)/(2s − 1). By (3.0.33) and (2.2.4) we have that

K f −1(z) ≈ KE−1(z) L2-a.e. z ∈ R
2. (3.0.34)

If K f −1 ∈ Lq
loc(R

2) for some q ≥ 1, combining (3.0.32) and Lemma 3.1 then yields
q < (s + 1)/(s − 1).

By Lemma 2.2 and 2.6, we have that

both f and E are differentiable L2-a.e. on R2. (3.0.35)

From [2, Corollary 3.7.6], Gs ◦ Ms satisfies Lusin (N ) and (N−1) conditions. Since

∣∣∣ f (z1) − f (z2)
∣∣∣∣∣∣z1 − z2

∣∣∣ =
∣∣∣E(Gs ◦ Ms(z1)) − E(Gs ◦ Ms(z2))

∣∣∣∣∣∣Gs ◦ Ms(z1) − Gs ◦ Ms(z2)
∣∣∣

|Gs(Ms(z1)) − Gs(Ms(z2))
∣∣∣∣∣∣Ms(z1) − Ms(z2)

∣∣∣ ×

×
∣∣∣Ms(z1) − Ms(z2)

∣∣∣∣∣∣z1 − z2
∣∣∣

for all z1, z2 ∈ R
2 with z1 �= z2, from (3.0.35) and the bi-Lipschitz properties of Gs

and Ms we have that

|Df (z)| ≈ |DE(Gs ◦ Ms(z))|, (3.0.36)

max
θ∈[0,2π ] |∂θ f (z)| ≈ max

θ∈[0,2π ] |∂θ E(Gs ◦ Ms(z))|, (3.0.37)

min
θ∈[0,2π ] |∂θ f (z)| ≈ min

θ∈[0,2π ] |∂θ E(Gs ◦ Ms(z))| (3.0.38)

for L2-a.e. z ∈ R
2. By (2.2.4), (3.0.37), and (3.0.38), we have that

K f (z) ≈ KE (Gs ◦ Ms(z)) L2-a.e. z ∈ R
2. (3.0.39)

Via the same reasons as for (2.3.13), we have that

JGs◦Ms (z) ≈ 1 L2-a.e. z ∈ R
2. (3.0.40)

By (3.0.40) and Lemma 2.1, we derive from (3.0.39) that
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∫
A
Kq

f (z) dz =
∫
A
Kq

E (Gs ◦ Ms(z))
JGs◦Ms (z)

JGs◦Ms (z)
dz

≈
∫
A
Kq

E (Gs ◦ Ms(z))JGs◦Ms (z) dz =
∫
Gs◦Ms (A)

Kq
E (w) dw

(3.0.41)

for any q ≥ 0 and any compact set A ⊂ R
2. By (3.0.36) and Lemma 2.1, we obtain

that

∫
A

|Df (z)|p =
∫
A

|DE(Gs ◦ Ms(z))|p JGs◦Ms (z)

JGs◦Ms (z)
dz

≈
∫
A

|DE(Gs ◦ Ms(z))|p JGs◦Ms (z) dz =
∫
Gs◦Ms (A)

|DE |p(w) dw

(3.0.42)

for any p ≥ 0. If K f ∈ Lq
loc(R

2) for some q ≥ 1, Lemma 3.3 together with (3.0.41)

gives that q < max{1, 1/(s − 1)}. If f ∈ W 1,p
loc and K f ∈ Lq

loc for some p > 1 and
some q ∈ (0, 1), combining Lemma 3.4 with (3.0.42) then implies q < 3p/((2s −
1)p + 4 − 2s). ��

Under amore general assumption that f in Lemma 3.5 is K -quasiconformal fromD

onto �s, authors from [4, Theorem 4.4] showed a result analogous to Lemma 3.5 (3).

4 Proof of Theorem 1.2

4.1 Prove that the ClassFs(g) fromTheorem 1.2 is Nonempty

Proof Let g be as in Theorem 1.2. The beginning of proof for Lemma 3.4 shows that

g = z2 ◦ gs ◦ ms,

where ms : D → D is a Möbius transformation and gs : D → Ms from (2.3.3) is a
conformalmapping. Recall thatms (or gs) has a bi-Lipschitz extensionMs : R2 → R

2

(or Gs : R2 → R
2) as in (3.0.30) (or (2.3.6)). Via Lemma 2.6, it suffices to prove

that z2 : Ms → �s has a homeomorphic extension E : R2 → R
2 of finite distortion.

Then

f := E ◦ Gs ◦ Ms ∈ Fs(g). (4.1.1)

We divide the construction of E into two steps.

Step 1:we construct E1 in a neighborhood of the cusp point, see Fig. 2. To be precise,
we define f1, ..., f4 and let E1 be the sum of compositions of f1, ... f4.
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Fig. 2 The construction f −1
3 ◦ f −1

4 ◦ f2 ◦ f −1
1 : Qt → Q̃t

Aim 1: to define f1 and f2. Fix s > 1, and define

η(x) = √
x(1 + x2(s−1))

1
4 for all x > 0. (4.1.2)

Then

η′(x) = (1 + x2(s−1))
1
4

2
√
x

(
1 + (s − 1)x2s−2

1 + x2(s−1)

)
. (4.1.3)

For a given t 	 1, let

L1
t = η((t/2)2), L2

t = η(t2), and σt = L2
t − L1

t . (4.1.4)

Then L1
t ≈ t/2, L2

t ≈ t and σt ≈ t/2 whenever t 	 1. Set

Qt = B(0, L2
t ) \ (B(0, L1

t ) ∪ Ms), and f1(x, y) = xeiy ∀x ≥ 0 and y ∈ [0, 2π ].
(4.1.5)

Let (r) be the length of f −1
1 (Qt ) ∩ {(x, y) ∈ R

2 : x = r}. Define
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f2(r , θ) =
(
r ,

σt

(r)
(π − θ)

)
∀(r , θ) ∈ f −1

1 (Qt ). (4.1.6)

Since ∂Ms is mapped onto ∂�s by z2, we have that

(r) = π + arctan τ 2(s−1) and r = η(τ 2) (4.1.7)

for all τ ∈ (t/2, t). Then (r) ≈ π and r ≈ τ whenever τ 	 1. From (4.1.3), it
follows that ∂r

∂τ
≈ 1. Together with ∂

∂τ
≈ τ 2s−3, we have that

∂(r)

∂r
≈ r2s−3 for all r 	 1. (4.1.8)

Denote Rt = f2 ◦ f −1
1 (Qt ). Then Rt = [L1

t , L
2
t ] × [−σt/2, σt/2]. Combining

(4.1.5) with (4.1.6) implies

f1 ◦ f −1
2 (x, y) =

(
−x cos

(x)y

σt
, x sin

(x)y

σt

)
∀(x, y) ∈ Rt .

Therefore

Df1 ◦ f −1
2 (x, y) =

[
− cos (x)y

σt
+ xy′(x)

σt
sin (x)y

σt

x(x)
σt

sin (x)y
σt

sin (x)y
σt

+ xy′(x)
σt

cos (x)y
σt

x(x)
σt

cos (x)y
σt

]
. (4.1.9)

By (4.1.4), (4.1.7), and (4.1.8), we deduce from (4.1.9) that

|Df1 ◦ f −1
2 (x, y)| � 1 and J f1◦ f −1

2
(x, y) = − x(x)

σ
≈ −1 (4.1.10)

for all t 	 1 and each (x, y) ∈ Rt . Since K f1◦ f −1
2

≥ 1, from (4.1.10) we have

K f1◦ f −1
2

≈ 1. (4.1.11)

By (4.1.10) again we have that

|Df2 ◦ f −1
1 | = |ad j D f1 ◦ f −1

2 |
|J f1◦ f −1

2
| ≈ |Df1 ◦ f −1

2 | � 1 and J f2◦ f −1
1

= 1

J f1◦ f −1
2

≈ −1.

(4.1.12)

Analogously to (4.1.11), we have that

K f2◦ f −1
1

(x, y) ≈ 1 ∀t 	 1 and ∀(x, y) ∈ Qt . (4.1.13)

Aim 2: to define f3 : Q̃t → R̃t . Let

Q̃t = {(x, y) ∈ R
2 : x ∈ [−t2,−(t/2)2], |y| ≤ |x |s}.
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Define

f3(u, v) =
(

−u,
t2s

(−u)s
v

)
∀(u, v) ∈ Q̃t .

Then f3 is diffeomorphic and

Df3(u, v) =
[ −1 0

st2s

(−u)s+1 v
t2s

(−u)s

]
. (4.1.14)

From (4.1.14) we have that

|Df3| � 1 and J f3 ≈ −1 ∀(u, v) ∈ Q̃t . (4.1.15)

Analogously to (4.1.11), we have that

K f3(u, v) ≈ 1 ∀t 	 1 and ∀(u, v) ∈ Q̃t . (4.1.16)

Let R̃t = f3(Q̃t ). Then R̃t = [(t/2)2, t2] × [−t2s, t2s]. The same reasons as for
(4.1.12) and (4.1.13) imply that

|Df −1
3 (x, y)| � 1, J f −1

3
(x, y) ≈ −1 and K f −1

3
(x, y) ≈ 1 (4.1.17)

for all t 	 1 and (x, y) ∈ R̃t .

Aim 3: to define f4 : R̃t → Rt . Denote by P1, P2, P3, P4 and P̃1, P̃2, P̃3, P̃4 the
four vertices of R̃t and Rt , respectively. Then

P1 =
(
L1
t ,

σt

2

)
, P2 =

(
L2
t ,

σt

2

)
, P3 =

(
L2
t ,−

σt

2

)
, P4 =

(
L1
t ,−

σt

2

)

and

P̃1 =
(
(t/2)2, t2s

)
, P̃2 = (t2, t2s), P̃3 = (t2,−t2s), P̃4 = ((t/2)2,−t2s).

Since ∂Ms is mapped onto ∂�s by z2, the line segment P̃1 P̃2 is mapped onto P1P2
by

(u, t2s) �→
(
η(u),

σt

2

)
∀u ∈ [(t/2)2, t2],

and the line segment P̃4 P̃3 is mapped onto P4P3 by

(u,−t2s) �→
(
η(u),−σt

2

)
∀u ∈ [(t/2)2, t2].
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Define

f4(u, v) =
(
η(u),

σt

2t2s
v
)

∀(u, v) ∈ R̃t . (4.1.18)

Then f4 is a diffeomorphism from R̃t onto Rt and

Df4(u, v) =
[
η′(u) 0
0 σt

2t2s

]
. (4.1.19)

By (4.1.3) and (4.1.4) we have that η′(u) ≈ t−1 and σt
2t2s

≈ t1−2s whenever t 	 1

and (u, v) ∈ R̃t . It follows from (4.1.19) that

|Df4(u, v)| ≈ t1−2s and J f4(u, v) ≈ t−2s (4.1.20)

for all t 	 1 and all (u, v) ∈ R̃t . Then

K f4(u, v) = |Df4(u, v)|2
J f4(u, v)

≈ t2−2s ∀t 	 1 and (u, v) ∈ R̃t . (4.1.21)

The same reasons as for (4.1.12) and (4.1.13) imply that

∣∣Df −1
4 (x, y)

∣∣ ≈ t, J f −1
4

(x, y) ≈ t2s and K f −1
4

(x, y) ≈ t2−2s (4.1.22)

for all t 	 1 and all (x, y) ∈ Rt .

Aim 4: to define E1. Set

Ft = f −1
3 ◦ f −1

4 ◦ f2 ◦ f −1
1 .

Then Ft is a diffeomorphism from Qt onto Q̃t . Therefore

DFt (z) = Df −1
3 ( f −1

4 ◦ f2 ◦ f −1
1 (z))Df −1

4 ( f2 ◦ f −1
1 (z))D( f2 ◦ f −1

1 )(z)

for all z ∈ Qt . From (4.1.17), (4.1.22), and (4.1.12) it then follows that

∫
Qt

|DFt |p dz ≤
∫
Qt

∣∣∣Df −1
3 ( f −1

4 ◦ f2 ◦ f −1
1 )

∣∣∣p
∣∣∣Df −1

4 ( f2 ◦ f −1
1 )

∣∣∣p
∣∣∣Df2 ◦ f −1

1

∣∣∣p dz
�t pL2(Qt ) ≈ t2+p (4.1.23)

for all p ≥ 0. For a fixed large j0, we now consider the set Qt with t = 2− j for all
j ≥ j0. Define

E1 =
+∞∑
j= j0

F2− j χQ2− j . (4.1.24)
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Denote �1 = ∪+∞
j= j0

Q2− j and �̃1 = ∪+∞
j= j0

Q̃2− j . Then E1 is a homeomorphism from

�1 onto �̃1, and satisfies (2.2.1) for E1 on L2-a.e. �1. In order to prove that E1 has
finite distortion on �1, via (2.2.3) it thus suffices to prove that E1 ∈ W 1,1

loc (�1, �̃1).

Actually, from (4.1.23) we have that

∫
�1

|DE1|p =
+∞∑
j= j0

∫
Q2− j

|DF2− j (z)|p dz �
+∞∑
j= j0

2− j(2+p) < ∞ (4.1.25)

for all p ≥ 1.

Step 2: we construct E2 on the domain away from the cusp point. Denote

�2 = Mc
s \ �1 and �̃2 = �c

s \ �̃1.

Notice that both ∂�2 and ∂�̃2 are piecewise smooth Jordan curveswith nonzero angles
at the two corners. Therefore both ∂�2 and ∂�̃2 are chord-arc curves. By [7] there
are bi-Lipschitz mappings

H1 : R2 → R
2 and H2 : R2 → R

2 (4.1.26)

such that H1(S
1) = ∂�2 and H2(S

1) = ∂�̃2. Define

h(z) =
{
E1(z) ∀z ∈ ∂�2 ∩ ∂�1,

z2 ∀z ∈ ∂�2 ∩ ∂Ms .

Thenh is a bi-Lipschitzmapping in termsof the arc lengths.By the chord-arc properties
of both ∂�2 and ∂�̃2, we have that h is also a bi-Lipschitz mapping with respect to
the Euclidean distances. Taking (4.1.26) into account, we conclude that H−1

2 ◦h ◦H1 :
S
1 → S

1 is a bi-Lipschitz mapping. By [13, Theorem A] there is then a bi-Lipschitz
mapping

H : R2 → R
2 (4.1.27)

such that H |S1 = H−1
2 ◦ h ◦ H1. Define

E2 = H2 ◦ H ◦ H−1
1 . (4.1.28)

By (4.1.26) and (4.1.27), we have that E2 is a bi-Lipschitz extension of h. Furthermore
since degMs

(h, w) = 1, we obtain that E2 is orientation-preserving. Hence E2 is a
quasiconformal mapping. The same reasons as for (2.3.12) and (2.3.13) imply

|DE2(z)|, KE2(z), and JE2(z) are bounded from both above and below

(4.1.29)
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for L2-a.e. z ∈ R
2, and

∣∣∣DE−1
2 (w)

∣∣∣, K−1
E2

(w) and J−1
E2

(w) are bounded from both above and below

(4.1.30)

for L2-a.e. w ∈ R
2.

Via (4.1.24) and (4.1.28), we set

E(x, y) =

⎧⎪⎨
⎪⎩
E1(x, y) for all (x, y) ∈ �1,

E2(x, y) for all (x, y) ∈ �2,

(x2 − y2, 2xy) for all (x, y) ∈ Ms .

(4.1.31)

By the properties of E1 and E2, we conclude that E ∈ Es . ��

4.2 Proof of (1.0.7), (1.0.10), and (1.0.11) in Theorem 1.2

Proof of (1.0.7) Let g be as in Theorem 1.2. It suffices to check that there is f ∈ Fs(g)
satisfying that f ∈ W 1,p

loc (R2,R2) for all p ≥ 1. Let f be as in (4.1.1) and E be as in
(4.1.31). By (4.1.25), (4.1.29), and the fact that E(z) = z2 for all z ∈ Ms, we obtain
that E ∈ W 1,p

loc (R2,R2) for all p ≥ 1. By (3.0.42) f ∈ W 1,p
loc (R2,R2) for all p ≥ 1. ��

Proof of (1.0.10) Let g be as in Theorem 1.2. By Lemma 3.5 (1) it suffices to construct
a f ∈ Fs(g) satisfying that f −1 ∈ W 1,p

loc (R2,R2) for all p < 2(s + 1)/(2s − 1).
Let f be as in (4.1.1) and E be as in (4.1.31). Via (3.0.32) it suffices to check that
E−1 ∈ W 1,p

loc (R2,R2) for all p < 2(s + 1)/(2s − 1).
By (4.1.15), (4.1.20), and (4.1.10), we have that

∣∣∣DF−1
2− j (w)

∣∣∣ ≤
∣∣∣Df1 ◦ f −1

2 ( f4 ◦ f3(w))

∣∣∣∣∣∣Df4( f3(w))

∣∣∣∣∣∣Df3(w)

∣∣∣ � 2 j(2s−1)

for all j ≥ j0 andL2-a.e. w ∈ Q̃2− j . Together withL2(Q̃2− j ) ≈ 2−2 j(s+1),we hence
obtain that

∫
�̃1

∣∣∣DE−1
1

∣∣∣p =
+∞∑
j= j0

∫
Q̃2− j

∣∣∣DF−1
2− j

∣∣∣p �
+∞∑
j= j0

2− j(2(s+1)+p(1−2s)) < ∞ (4.2.1)

for all p < 2(s + 1)/(2s − 1). Since

∣∣∣DE−1(u, v)

∣∣∣ � (u2 + v2)−1/4 ∀(u, v) ∈ �s, (4.2.2)

by a change of variables we have that

∫
�s

∣∣∣DE−1(w)

∣∣∣p dw �
∫ 2π

0

∫ 1

0
r1−

p
2 dr dθ ≈

∫ 1

0
r1−

p
2 dr < ∞ (4.2.3)
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for all p < 2(s + 1)/(2s − 1). By (4.1.30), (4.2.1), and (4.2.3), we conclude that
E−1 ∈ W 1,p

loc (R2,R2) for all p < 2(s + 1)/(2s − 1). ��
Proof of (1.0.11) Let E be as in (4.1.31). Analogously to the proof of (1.0.10), it
suffices to check that KE−1 ∈ Lq

loc(R
2) for all q < (s + 1)/(s − 1). Note that

Lemma 3.5 (2) and (3.0.34) play game now. From (4.1.11), (4.1.21), and (4.1.16), we
have that

KF−1
2− j

(w) = K f1◦ f −1
2

( f4 ◦ f3(w))K f4( f3(w))K f3(w) ≈ 2 j(2s−2)

for all j ≥ j0 and L2-a.e. w ∈ Q̃2− j . Together with L2(Q̃2− j ) ≈ 2− j2(s+1), we then
obtain that

∫
�̃1

Kq
E−1 =

+∞∑
j= j0

∫
Q̃2− j

K q

F−1
2− j

�
+∞∑
j= j0

22 j[(s−1)q−(s+1)] < ∞ (4.2.4)

for all q < (s + 1)/(s − 1). By (4.1.30), (4.2.4), and the fact that E is conformal on
Ms, we conclude that KE−1 ∈ Lq

loc(R
2) for all q < (s + 1)/(s − 1). ��

4.3 Proof of (1.0.8) in Theorem 1.2

Proof Analogously to the proof of (1.0.10) in Sect. 4.2, via Lemma 3.5 (3) and (3.0.41)
it suffices to construct a E ∈ Es satisfying that KE ∈ Lq

loc for allq < max{1, 1/(s−1)}.
The construction is divided into two cases.
Case 1: s ∈ (1, 2). Let E be as in (4.1.31). From (4.1.17), (4.1.22), and (4.1.13), it
follows that

KF2− j (z) = K f −1
3

( f −1
4 ◦ f2 ◦ f −1

1 (z))K f −1
4

( f2 ◦ f −1
1 (z))K f2◦ f −1

1
(z) ≈ 22 j(s−1)

for all j ≥ j0 and L2-a.e. z ∈ Q2− j . Together with L2(Q2− j ) ≈ 2−2 j we then have
that

∫
�1

Kq
E =

+∞∑
j= j0

∫
Q2− j

K q
F2− j

≈
+∞∑
j= j0

22 j(q(s−1)−1) < ∞ (4.3.1)

for all q < 1/(s − 1). By (4.3.1), (4.1.29), and the fact that E is conformal on Ms,

we conclude that KE ∈ Lq
loc(R

2) for all q < 1/(s − 1). Therefore we have proved
(1.0.8) whenever s ∈ .(1, 2).
Case 2: s ∈ [2,∞). Except for redefining f −1

4 : Rt → R̃t as in (4.1.18), we follow
all processes in Sect. 4.1 to define a new E, see Fig. 3. To redefine f −1

4 , we should
define mappings A, B, C .

We begin with notation. Let αt and βt be the length of sides of R̃t , and γt be the
length of a side of Rt . Whenever t 	 1, we have that

αt = t2 − (t/2)2 ≈ t2, βt = 2t2s and γt = η(t2) − η((t/2)2) ≈ t . (4.3.2)
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T̃2

Rt

R̃t

f−1
4

T1

T2

T3

T4

T̃1

T̃3

T̃4T0 T̃0

Fig. 3 The redefined f −1
4 : Rt → R̃t

Let T̃0 = Q̃1 Q̃2 Q̃3 Q̃4 be the concentric square of R̃t with side length βt/2. Set

δt = exp(−t−1) for t > 0 (4.3.3)

and let T0 = Q1Q2Q3Q4 be the concentric square of Rt with side length γt (1− 2δt ).
We divide Rt \ T0 into four isosceles trapezoids T1, T2, T3, and T4. Similarly, we
obtain isosceles trapezoids T̃1, T̃2, T̃3, T̃4 from R̃t \ T̃0, see Fig. 3.

Aim 1: define A : T1 → T̃1. Set

A2(x, y) = βt

4δtγt

(
y − γt

(1
2

− δt
)) + βt

4
∀(x, y) ∈ T1. (4.3.4)

For a given (x, y) ∈ T1, let (xp, y) = P1Q1 ∩ {(X ,Y ) ∈ R
2 : Y = y}, (x̃ p, A2) =

P̃1 Q̃1 ∩ {(X ,Y ) ∈ R
2 : Y = A2(x, y)}, (y) be the length of T1 ∩ {(X ,Y ) : Y = y},

and ̃(y) be the length of T̃1∩{(X ,Y ) : Y = A2}.Denote (P1)1 by the first coordinate
of P1. Then

xp = −y + γt

2
+ (P1)1 and x̃ p = 2αt − βt

βt

(
βt

2
− A2

)
+ (P̃1)1, (4.3.5)

(y) = 2y ≈ γt and ̃(y) = 4αt − 2βt

βt
A2(x, y) + βt − αt ≥ βt

2
. (4.3.6)

Let u = γt
(y) (x − xp) + (P1)1 for (x, y) ∈ T1, and η be as in (4.1.2). Define

A1(x, y) = ̃(y)

αt

(
η−1(u) − (P̃1)1

)
+ x̃ p ∀(x, y) ∈ T1. (4.3.7)

By (4.3.7) and (4.3.4), we have that

A = (A1, A2) (4.3.8)
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is a diffeomorphism from T1 onto T̃1. We next give some estimates for A. By (4.3.2)
we have that

∂A2(x, y)

∂ y
= βt

4δtγt
≈ t2s−1

δt
∀(x, y) ∈ T1. (4.3.9)

From (4.1.3), (4.3.6), and (4.3.2) it follows that

∂A1(x, y)

∂x
= ̃(y)

αt
(η−1)′(u)

∂u

∂x
≈ ̃(y)

t
∀(x, y) ∈ T1. (4.3.10)

Moreover, by (4.3.5) and (4.3.6) we have that

∂xp
∂ y

= −1,
∂ x̃ p
∂ y

= βt − 2αt

βt

∂A2

∂ y
,

∂(y)

∂ y
= 2 and

∂̃(y)

∂ y
= 4αt − 2βt

βt

∂A2

∂ y
.

(4.3.11)

It follows from (4.3.11) that

∂A1

∂ y
=∂ x̃ p

∂ y
+ ∂̃(y)

αt∂ y

(
η−1(u) − (P̃1)1

)
+ ̃(y)

αt
(η−1)′(u)

∂u

∂ y

=2αt − βt

βt

∂A2

∂ y

[
−1 + 2

αt
(η−1(u) − (P̃1)1)

]

+ γt ̃(y)

αt(y)
(η−1)′(u)

[
1 − 2

(y)
(x − xp)

]
. (4.3.12)

Notice that 0 ≤ η−1(u) − (P̃1)1 ≤ αt and 0 ≤ x − xp ≤ (y) for all (x, y) ∈ T1.
Therefore (4.3.12) together with (4.3.2) and (4.3.9) implies

∣∣∣∣∂A1(x, y)

∂ y

∣∣∣∣ � 2αt − βt

βt

∂A2(x, y)

∂ y
≈ t

δt
∀(x, y) ∈ T1. (4.3.13)

We conclude from (4.3.9), (4.3.10), and (4.3.13) that

|DA(x, y)| � max

{∣∣∣∣∂A1

∂x

∣∣∣∣ ,
∣∣∣∣∂A1

∂ y

∣∣∣∣ ,
∣∣∣∣∂A2

∂x

∣∣∣∣ ,
∣∣∣∣∂A2

∂ y

∣∣∣∣
}

� t

δt
(4.3.14)

and

JA(x, y) = ∂A1

∂x

∂A2

∂ y
≈ t2s−2̃(y)

δt
(4.3.15)
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for all t 	 1 and all (x, y) ∈ T1. Moreover by (4.3.14), (4.3.15), and (4.3.6) we have
that

KA(x, y) = |DA(x, y)|2
JA(x, y)

� t4−2s

δt ̃(y)
� t4(1−s)

δt
(4.3.16)

holds for all t 	 1 and all (x, y) ∈ T1.

Aim 2: define B : T2 → T̃2. Denote by Pc and P̃c be the center of Rt and R̃t ,

respectively. Given (x, y) ∈ T2, we define

B1(x, y) = 2αt − βt

4δtγt

(
x − (Pc)1 − γt

2

)
+ (P̃c)1 + αt

2
, B2(x, y)

= y
a(x − (Pc)1) + b

c(x − (Pc)1) + d
,

where a, b, c, d satisfy

aγt

(
1

2
− δt

)
+ b = βt

4
, a

γt

2
+ b = βt

2
, cγt

(
1

2
− δt

)
+ d

= γt

(
1

2
− δt

)
, c

γt

2
+ d = γt

2
. (4.3.17)

Then

B = (B1, B2) (4.3.18)

is a diffeomorphism from T2 onto T̃2. By (4.3.2) we have that

∂B1(x, y)

∂x
= 2αt − βt

4δtγt
≈ t

δt
∀(x, y) ∈ T2. (4.3.19)

Moreover, from (4.3.17) and (4.3.2) we have that

∂B2(x, y)

∂ y
= a(x − (Pc)1) + b

c(x − (Pc)1) + d
≈ βt

γt
≈ t2s−1 (4.3.20)

and
∣∣∣∣∂B2(x, y)

∂x

∣∣∣∣ = |y(ad − bc)|
[c(x − (Pc)1) + d]2 � γt b

γ 2
t

≈ t2s−1 (4.3.21)

for all (x, y) ∈ T2. We then conclude from (4.3.19), (4.3.20) and (4.3.21) that

|DB(x, y)| � max

{∣∣∣∣∂B1

∂x

∣∣∣∣ ,
∣∣∣∣∂B1

∂ y

∣∣∣∣ ,
∣∣∣∣∂B2

∂x

∣∣∣∣ ,
∣∣∣∣∂B2

∂ y

∣∣∣∣
}

� t

δt
(4.3.22)
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and

JB(x, y) = ∂B1

∂x

∂B2

∂ y
≈ t2s

δt
. (4.3.23)

for all t 	 1 and all (x, y) ∈ T2. Moreover by (4.3.22) and (4.3.23) we have that

KB(x, y) = |DB(x, y)|2
JB(x, y)

� t2(1−s)

δt
(4.3.24)

for all t 	 1 and all (x, y) ∈ T2.

Aim 3: define C : T0 → T̃0. By (4.3.8) and (4.3.18) we have that Q1Q2 is
mapped onto Q̃1 Q̃2 by A1(·, γt (1/2 − δt ), and Q2Q3 is mapped onto Q̃2 Q̃3 by
B2((Pc)1 + γt (1/2 − δt ), ·). For a given (x, y) ∈ T0, define

C(x, y) =
(
A1

(
x, γt (

1

2
− δt )

)
, B2

(
(Pc)1 + γt (

1

2
− δt ), y

))
. (4.3.25)

Then C : T0 → T̃0 is diffeomorphic. By (4.3.10) and (4.3.20), we have that

∂

∂x
A1

(
x, γt (1/2 − δt ) ≈ t2s−1,

∂

y
B2((Pc)1 + γt (1/2 − δt ), y

)
≈ t2s−1

for all (x, y) ∈ T0. Therefore

|DC(x, y)| � t2s−1 and KC (x, y) ≈ 1 (4.3.26)

for all t 	 1 and all (x, y) ∈ T0.

Aim 4: redefine f −1
4 and E . Via (4.3.8), (4.3.18), and (4.3.25), we set f −1

4 : Rt →
R̃t in (4.1.18) as

f −1
4 (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A(x, y) ∀(x, y) ∈ T1,

B(x, y) ∀(x, y) ∈ T2,

(A1(x,−y),−A2(x,−y)) , ∀(x, y) ∈ T3,

(2(P̃c)1 − B1(2(Pc)1 − x, y), B2(2(Pc)1 − x, y)) ∀(x, y) ∈ T4,

C(x, y) ∀(x, y) ∈ T0.

(4.3.27)

Like in Sect. 4.1, by taking a fixed j0 � 1 we then define F2− j : Q2− j → Q̃2− j for
all j ≥ j0, E1 : �1 → �̃1, E2 : �2 → �̃2, and E : R2 → R

2. It is not difficult to
see that the new-defined E is a homeomorphism such that E(z) = z2 for all z ∈ Ms

and satisfies (2.2.1) for E on L2-a.e. R2. To show that E ∈ Es, via (2.2.3) it is then
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enough to prove that E ∈ W 1,1
loc (R2,R2). By (4.1.12), (4.1.17), (4.3.14), (4.3.22), and

(4.3.26), we have that

DF2− j (z) =Df −1
3 ( f −1

4 ◦ f2 ◦ f −1
1 (z))Df −1

4 ( f2 ◦ f −1
1 (z))D( f2 ◦ f −1

1 )(z)

�
{

2− j

δ2− j
L2-a.e. z ∈ f1 ◦ f −1

2 (∪4
k=1Tk),

2 j(1−2s) L2-a.e. z ∈ f1 ◦ f −1
2 (T0),

(4.3.28)

for all j ≥ j0. Notice that

L2(T0) = (γ2− j (1 − 2δ2− j ))
2 ≈ 2−2 j , L2(Tk) = δ2− j γ

2
2− j (1 − δ2− j ) ≈ δ2− j 2−2 j

for all k = 1, 2, 3, 4 and all j ≥ j0. It hence follows from (4.1.10) that

L2( f1 ◦ f −1
2 (T0)) ≈ 2−2 j , L2( f1 ◦ f −1

2 (Tk)) ≈ δ2− j 2−2 j for all k = 1, 2, 3, 4.

(4.3.29)

By (4.3.28) and (4.3.29) we then have that

∫
Q2− j

∣∣DF2− j

∣∣ =
4∑

k=0

∫
f1◦ f −1

2 (Tk )

∣∣DF2− j

∣∣ � 2−3 j + 2− j(2s+1) � 2−3 j ∀ j ≥ j0.

Therefore

∫
�1

|DE1| =
∞∑
j= j0

∫
Q2− j

∣∣DF2− j

∣∣ �
∞∑
j= j0

2−3 j < ∞. (4.3.30)

By (4.1.29), (4.3.30), and the fact that E(z) = z2 for all z ∈ Ms, we have that
E ∈ W 1,1

loc (R2,R2).

Wenext show KE ∈ Lq
loc(R

2) for all q < 1.By (4.1.13), (4.1.17), (4.3.16), (4.3.24),
and (4.3.26), we have that

KF2− j (z) �

⎧⎪⎪⎨
⎪⎪⎩

24 j(s−1)

δ2− j
∀ z ∈ f1 ◦ f −1

2 (T1 ∪ T3),
22 j(s−1)

δ2− j
∀ z ∈ f1 ◦ f −1

2 (T2 ∪ T4),

1 ∀ z ∈ f1 ◦ f −1
2 (T0).

(4.3.31)

for all j ≥ j0. For any q ≥ 0, via (4.3.29) and (4.3.31) we obtain that

∫
Q2− j

K q
F2− j

=
4∑

k=0

∫
f1◦ f −1

2 (Tk )
Kq

F2− j
� δ

1−q
2− j 2

j(4q(s−1)−2)(1 + 22q j(1−s)) + 2−2 j
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for all j ≥ j0. Therefore

∫
�1

Kq
E =

+∞∑
j= j0

∫
Q2− j

K q
F2− j

�
+∞∑
j= j0

exp
(
(q − 1)2 j )2 j(4q(s−1)−2)(1 + 2 j2q(1−s)) +

+∞∑
j= j0

2−2 j < +∞

(4.3.32)

for all q ∈ (0, 1) and each s > 1.By (4.1.29), (4.3.32), and the fact that E is conformal
on Ms, we conclude that KE ∈ Lq

loc(R
2) for all q ∈ (0, 1). ��

4.4 Proof of (1.0.9) in Theorem 1.2

Proof Analogously to the proof of (1.0.10) in Sect. 4.2, via Lemma 3.5 (4), (3.0.41),
and (3.0.42) it suffices to construct E ∈ Es satisfying that E ∈ W 1,p

loc (R2,R2) for
some p > 1 and KE ∈ Lq

loc for all q < max{1/(s − 1), M(p, s)}. Here we denote
M(p, s) = 3p/((2s − 1)p + 4 − 2s) with p > 1. The construction is divided into
two cases.

Case 1: s ∈ (1, 2). Let E be as in (4.1.31). Then E ∈ Es . By (4.1.25), (4.1.29), and
the fact that E(z) = z2 for all z ∈ Ms, we obtain that E ∈ W 1,p

loc (R2,R2) for all
p ≥ 1. From (4.1.17), (4.1.22), and (4.1.13), it follows that

KF2− j (z) = K f −1
3

( f −1
4 ◦ f2 ◦ f −1

1 (z))K f −1
4

( f2 ◦ f −1
1 (z))K f2◦ f −1

1
(z) ≈ 2(2s−2) j

for all j ≥ j0 and L2-a.e. z ∈ Q2− j . Together with L2(Q2− j ) ≈ 2−2 j , we then
obtain

∫
�1

Kq
E =

+∞∑
j= j0

∫
Q2− j

K q
F2− j

≈
+∞∑
j= j0

2− j2(1+q(1−s)) < ∞ (4.4.1)

for all q < 1/(s − 1). By (4.4.1), (4.1.29), and the fact that E is conformal on Ms,

we have that KE ∈ Lq
loc(R

2) for all q < 1/(s − 1).

Case 2: s ∈ [2,∞). Redefining δt in (4.3.3) as

δt = t
p+2
p−1 log

p
p−1 (t−1).

We follow the methods in Sect. 4.3 to define a new f −1
4 . Set j0 � 1. There are then

new F2− j : Q2− j → Q̃2− j for all j ≥ j0, E1 : �1 → �̃1, E2 : �2 → �̃2, and
E : R2 → R

2. It is not difficult to see that the new E is homeomorphic and satisfies
(2.2.1) for E on L2-a.e. R2. To show that E satisfies all requirements, it is enough to
check that E ∈ W 1,p

loc (R2,R2) and KE ∈ Lq
loc(R

2) for all q ∈ (0, M(p, s)).
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From (4.1.12), (4.1.17), (4.3.14), (4.3.22), and (4.3.26), we have that

|DF2− j (z)| �
{

2− j

δ2− j
∀z ∈ f1 ◦ f −1

2 (∪4
k=1Tk),

2 j(1−2s) ∀z ∈ f1 ◦ f −1
2 (T0),

(4.4.2)

for all j ≥ j0. It follows from (4.4.2) and (4.3.29) that

∫
Q2− j

∣∣DF2− j

∣∣p =
4∑

k=0

∫
f1◦ f −1

2 (Tk )

∣∣DF2− j

∣∣p � δ
1−p
2− j 2

− j(2+p) + 2 j(p(1−2s)−2).

Therefore

∫
�1

|DE |p =
+∞∑
j= j0

∫
Q2− j

∣∣DF2− j

∣∣p �
+∞∑
j= j0

1

j p
+

+∞∑
j= j0

2− j(p(2s−1)+2) < ∞.

(4.4.3)

By (4.4.3), (4.1.29), and the fact that E(z) = z2 for all z ∈ Ms, we conclude that
E ∈ W 1,p

loc (R2,R2). By (4.1.12), (4.1.13), Lemma 2.1, and (4.1.17), we have
∫
f1◦ f −1

2 (T1)
Kq

F2− j
≈

∫
f1◦ f −1

2 (T1)
Kq

f −1
3

( f −1
4 ◦ f2 ◦ f −1

1 )Kq

f −1
4

( f2 ◦ f −1
1 )Kq

f2◦ f −1
1

∣∣J f2◦ f −1
1

∣∣

≤
∫
T1

Kq

f −1
3

( f −1
4 )Kq

f −1
4

�
∫
T1

Kq

f −1
4

(4.4.4)

for all q ≥ 0 and all j ≥ j0.Notice ̃(γ2− j /2) = α2− j and ̃(γ2− j ( 12 −δ2− j )) = β2− j /2
for all j ≥ 1. By Fubini’s theorem, (4.3.16), (4.3.6), and (4.3.2), we then have

∫
T1

Kq

f −1
4

�
∫ γ

2− j
2

γ2− j (
1
2−δ2− j )

∫ xp+(y)

xp

(
2 j(2s−4)

δ2− j ̃(y)

)q

dx dy

≈2 jq(2s−4)γ2− j

δ
q
2− j

∫ γ
2− j
2

γ2− j (
1
2−δ2− j )

1

̃q(y)
dy

=2 jq(2s−4)γ2− j

(1 − q)δ
q
2− j

2δ2− j γ2− j

2α2− j − β2− j

(
̃1−q(

γ2− j

2
) − ̃1−q(γ2− j (

1

2
− δ2− j ))

)

�
δ
1−q
2− j 2

−2 j[1+q(1−s)]

1 − M(p, s)
(4.4.5)

for any fixed q ∈ (0, M(p, s)). Combining (4.4.4) with (4.4.5) implies that

∫
f1◦ f −1

2 (T1)
Kq

F2− j
� δ

1−q
2− j 2

−2 j[1+q(1−s)] ∀ j ≥ j0. (4.4.6)
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By symmetry of f −1
4 between T1 and T3, it follows from (4.4.6) that

∫
f1◦ f −1

2 (T3)
Kq

F2− j
=

∫
f1◦ f −1

2 (T1)
Kq

F2− j
� δ

1−q
2− j 2

−2 j[1+q(1−s)] (4.4.7)

for all j ≥ j0. By (4.3.31) and (4.3.29), we have that

∫
f1◦ f −1

2 (T0)
Kq

F2− j
� 2−2 j (4.4.8)

and

∫
f1◦ f −1

2 (T2∪T4)
Kq

F2− j
� δ2− j 2−2 j

(
22 j(s−1)

δ2− j

)q

= δ
1−q
2− j 2

2 j[q(s−1)−1] (4.4.9)

for all j ≥ j0. From (4.4.6), (4.4.7), (4.4.8), and (4.4.9), we conclude that

∫
�1

Kq
E =

+∞∑
j= j0

∫
Q2− j

K q
F2− j

=
+∞∑
j= j0

4∑
k=0

∫
f1◦ f −1

2 (Tk )
Kq

F2− j

�
+∞∑
j= j0

2−2 j + 2
− j

(
(p+2)(1−q)

p−1 +2[1+q(1−s)]
)
log

p(1−q)
p−1

(
2 j

)
. (4.4.10)

Note that

(p + 2)(1 − q)

p − 1
+ 2[1 + q(1 − s)] > 0 ⇔ q < M(p, s).

It from (4.4.10) follows that
∫
�1

Kq
E < ∞ for all q ∈ (0, M(p, s)). Together with

(4.1.29) and the fact that E is conformal on Ms, we conclude that KE ∈ Lq
loc(R

2) for
all q ∈ (0, M(p, s)). ��

5 Proof of Theorem 1.1

Proof Let � be as in (1.0.1). The representation of ∂� in Cartesian coordinates is

(x2 + y2)2 − 4x(x2 + y2) − 4y2 = 0.

Hence we can parametrize ∂� in a neighborhood of the origin as

�̃0 = {(x, y) ∈ R
2 : x ∈ [−2− j0 , 0], y2 = d(x)},
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M

EΩd

Ω1

Ω̃1

ΔΩ̃d

Fig. 4 The existence of an extension

where j0 � 1 and d(x) = −x3(4−x)
2−x2+2x+√

1+2x
. Since d(x) ≈ |x |3 for all |x | 	 1, there

are c1 > 0, c2 > 0 such that

−c1x
3 ≤ d(x) ≤ −c2x

3 ∀x ∈ [−2− j0 , 0].

Denote

�̃1 = {(x, y) ∈ R
2 : x ∈ [−2− j0 , 0], y2 = −c1x

3},
�̃2 = {(x, y) ∈ R

2 : x ∈ [−2− j0 , 0], y2 = −c2x
3},

�̃3 = {(x, y) ∈ R
2 : x = −2− j0 , y2 ∈ [c1(2− j0)3, d(−2− j0)},

�̃4 = {(x, y) ∈ R
2 : x = −2− j0 , y2 ∈ [d(−2− j0), c2(2

− j0)3]}.

Let �̃u and �̃d be the domains bounded by �̃0∪�̃2∪�̃4 and �̃0∪�̃1∪�̃3, respectively.
Denote by �u,�d and �k for k = 0, ..., 4 the images of �̃u, �̃d and �̃k under the
branch of complex-valued function z1/2 with 11/2 = 1, respectively.

We first prove the existence of an extension, see Fig. 4.
Let r = (2−2 j0 + c12−3 j0)1/4. Denote

M = {(x + 1, y) ∈ R
2 : (x, y) ∈ D},

�1 = B(0, r) \ (M ∪ �d), �2 = R
2 \ (�1 ∪ �d ∪ M),

�̃1 = {(x, y) ∈ R
2 : x ∈ [−2− j0 , 0], y2 ≤ c1|x |3} and �̃2 = R

2 \ (�̃1 ∪ �̃d ∪ �).

Analogously to the arguments in Sect. 4.1, we define E1 : �1 → �̃1 and E2 : �2 →
�̃2. Here η(x) = √

x(1 + c1x)1/4 and s = 3/2. Define

E(x, y) =

⎧⎪⎨
⎪⎩
E1(x, y) ∀ (x, y) ∈ �1,

E2(x, y) ∀ (x, y) ∈ �2,

(x2 − y2, 2xy) ∀ (x, y) ∈ M ∪ �d ,

(5.0.1)

and f0(x, y) = E(x +1, y). By the analogous arguments as in Sect. 4.1, we have that
f0 ∈ F .
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We next prove (1.0.3). Suppose f ∈ F . Then f̂ (u, v) = f (u − 1, v) is a homeo-
morphism of finite distortion on R

2 and f̂ (M \ �u) = � \ �̃u . By Remark 3.1, we
have that if K f̂ ∈ Lq

loc(R
2) then q < 2. Therefore if K f ∈ Lq

loc(R
2) then q < 2.

In order to prove (1.0.3), it then suffices to construct a mapping f0 ∈ F such that
K f0 ∈ Lq

loc(R
2) for all q < 2. Let E be as in (5.0.1) and f0(x, y) = E(x + 1, y).

Then f0 ∈ F . The same arguments as for the case s ∈ (1, 2) in Sect. 4.3 show that
KE ∈ Lq

loc(R
2) for all q < 2. Therefore K f0 ∈ Lq

loc(R
2) for all q < 2.

The strategies to prove (1.0.2), (1.0.4), (1.0.5), and (1.0.6) are same as the one to
prove (1.0.3). We leave the details to the interested reader. ��
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