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Cancer risks by gene, age, and gender in 6350 carriers of
pathogenic mismatch repair variants: findings from the

Prospective Lynch Syndrome Database
A full list of authors and affiliations appears at the end of the paper.

Purpose: Pathogenic variants affecting MLH1, MSH2, MSH6, and
PMS2 cause Lynch syndrome and result in different but imprecisely
known cancer risks. This study aimed to provide age and organ-
specific cancer risks according to gene and gender and to determine
survival after cancer.

Methods: We conducted an international, multicenter prospective
observational study using independent test and validation cohorts
of carriers of class 4 or class 5 variants. After validation the cohorts
were merged providing 6350 participants and 51,646 follow-
up years.

Results: There were 1808 prospectively observed cancers. Patho-
genic MLH1 and MSH2 variants caused high penetrance dominant
cancer syndromes sharing similar colorectal, endometrial, and
ovarian cancer risks, but older MSH2 carriers had higher risk of
cancers of the upper urinary tract, upper gastrointestinal tract,

brain, and particularly prostate. PathogenicMSH6 variants caused a
sex-limited trait with high endometrial cancer risk but only
modestly increased colorectal cancer risk in both genders. We did
not demonstrate a significantly increased cancer risk in carriers of
pathogenic PMS2 variants. Ten-year crude survival was over 80%
following colon, endometrial, or ovarian cancer.

Conclusion: Management guidelines for Lynch syndrome may
require revision in light of these different gene and gender-specific
risks and the good prognosis for the most commonly associated
cancers.

Genetics in Medicine (2020) 22:15–25; https://doi.org/10.1038/s41436-
019-0596-9

Keywords: Lynch syndrome; MLH1; MSH2; MSH6; PMS2

INTRODUCTION
Lynch syndrome (LS) results from pathogenic variants in
the mismatch repair (MMR) genes and is the most common
hereditary cancer syndrome, affecting an estimated 1 in 300
individuals. Pathogenic variants in each of the MMR genes
path_MLH1, path_MSH2, path_MSH6, and path_PMS2
result in different risks for cancers in organs including the
colorectum, endometrium, ovaries, stomach, small bowel,
bile duct, pancreas, and upper urinary tract. Accurate
estimates of these risks are essential for planning appro-
priate approaches to the prevention or early diagnosis of
cancers but the robustness of previous studies has been
limited by factors including retrospective design,1,2 lack of
validation in independent cohorts,3–5 and inconsistent
classification of genetic variants. Unexpected findings from
previous studies have included path_MLH1 and
path_MSH2 carriers appearing to have a lifetime risk of
colorectal cancer (CRC) of approximately 50%, despite
surveillance colonoscopy,6–8 and that shorter intervals

between colonoscopies do not seem to reduce the incidence
of CRC in LS.9,10 These findings challenge the assumptions
that CRC in LS usually develops from a noninfiltrative
adenoma precursor and that CRC can be prevented by
colonoscopic detection and removal of adenomas in the
colon and rectum. Additionally, previous studies in the
Prospective Lynch Syndrome Database (PLSD) have shown
no increase in cancer risk in path_PMS2 carriers before 40
years of age and, although observation years were limited in
older path_PMS2 carriers, LS-associated cancers other than
endometrial and prostate were not observed.6–8

In this study we collected prospective data from a new
large cohort of path_MMR carriers to validate previous
findings from PLSD. We also updated information on the
original cohort to ensure consistent classification of
pathogenicity of MMR gene variants. We then combined
both data sets, providing larger numbers that allowed us to
derive more precise risk estimates for cancers in LS
categorized by gene and gender.
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MATERIALS AND METHODS
Recruitment and follow-up
The PLSD database design and its inclusion criteria have been
described previously in detail.6–8 This study was a prospective
observational study without a control group in which we
counted cancers detected during follow-up in 6350 carriers of
path_MMR variants.
Carriers, including probands and their relatives, were

recruited for prospective follow-up in each participating
center. Genetic variants were assumed to be inherited and
were found by genetic testing either prior to, at, or after
inclusion for follow-up. Inclusion was from the first
prospectively planned and completed colonoscopy and all
recruits had subsequent follow-up of one year or more. Any
cancers that were diagnosed before or at the same age as the
first prospectively planned and completed colonoscopy were
scored as previous cancers. Time to first cancer after inclusion
was calculated for each organ or groups of organs. For
example, when calculating time to colon cancer, only cases
without previous colon cancer were included and the first
colon cancer after inclusion was scored as an event. When
calculating the time to any cancer (penetrance), only patients
without any cancer prior to or at inclusion were counted. For
each calculation, each patient was censored at the first event
or last observation, whichever came first. Thus, there is no
information in this report on synchronous or metachronous
cancer(s) in the same organ or group of organs.
The independent cohort of path_MMR carriers used for

validation were recruited from newly participating centers
and also included a small number of additional patients from
previously contributing centers. Only carriers of variants
confirmed as class 4 or 5 (clinically actionable) in the
International Society for Gastrointestinal Hereditary Tumours
(InSiGHT) database (https://databases.lovd.nl/shared/genes)
were included and used for validation by comparison with the
previously published cohort.
Before merging the previous and validation cohorts, all

variants in the previous cohort were reassessed and only cases
with variants now scored as class 4 or class 5 were included.
Follow-up data for these cases were also updated, adding
more follow-up years when possible.
All patients were followed up prospectively according to

local clinical guidelines (summarized in Table S1). Follow-up
protocols, compliance and stage of cancers at diagnosis were
not study parameters for this report but will be the focus of
future studies proposed for PLSD. Each patient was censored
at the age at which the last information was available, which
might have been a colonoscopy, any other clinical examina-
tion, a report from an examination done by others, or
information that the patient had died, whichever came last.
Observation time was censored at organ removal (therapeutic
or prophylactic) when calculating incidences for cancer in
specific organs.
The following information was used for analyses: gender,

path_MMR variant, age at inclusion, age at last update, age at
any cancer, type of cancer as indicated by the first three

positions in the International Classification of Diseases
version 9 (ICD-9) diagnostic system and age at death. All
cancer diagnoses, including cancers identified prior to or at
inclusion, were based upon clinical and histopathological
reports at the collaborating centers and were recorded for
each carrier.

Statistical methods
Annual incidence rates (AIRs) by age were calculated in 5-
year cohorts from 25 to 75 years of age. Cumulative incidence,
denoted by Q, was computed starting at age 25, assuming zero
incidence rate before age 25, using the formula Q(age)=Q
(age− 1)+ [1−Q(age− 1)] × AIR(age) where AIR(age) is
the annual incidence rate as estimated from the correspond-
ing 5-year interval. The 95% confidence intervals (CIs) were
calculated using the Lagrange multiplier test (details in online
supplementary information S6). P values for differences
between cumulative incidences were computed assuming
standard normal distribution of Zdiff=Qdiff/SEQdiff. The
results are the observed cumulative incidences of cancers.
These may be considered as risks for cancers, and are
described below as risks.
Survival after cancer was estimated by the Kaplan–Meier

survival function as crude survival from age at diagnosis until
last observation or death. Crude survival is influenced by
many factors in old age, and inclusion for survival calculations
was restricted to cases diagnosed before 65 years of age. This
limited the numbers included when calculating survival for
late onset cancers. Because of the serious prognosis for less
frequent gastric, small intestine, bile duct, and pancreatic
cancers, crude survival for earlier onset, more frequent
cancers was right censored when such cancers were diagnosed
to avoid underestimation of survival.

Ethics
The study adhered to the principles set out in the Declaration
of Helsinki. It was approved by the Oslo University Hospital
ethical committee ref. S-02030 and its data governance rules
by the Norwegian Data Inspectorate ref. 2001/2988-2. Genetic
testing was performed with informed consent according to
local and national requirements and all reporting centers
exported only de-identified data to PLSD.

RESULTS
The newly recruited validation cohort included 3527
path_MMR carriers and 26,682 observation years while the
original cohort included 2823 path_MMR carriers and 24,964
follow-up years after updating. In the validation cohort,
neither cumulative risk for any cancer (penetrance) nor
cumulative risk for CRC for each MMR gene differed
significantly from those in the original PLSD cohort6–8 (P >
0.05 at all ages, see Fig. 1 and Table S2). Upon merger of the
new and original cohorts, the combined data set comprised
6350 path_MMR carriers, 3480 females and 2870 males, who
were included from a mean age of 46.8 years (range 25–74
years, Fig. 2) providing 51,646 observation years. There were
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2607 (41.1%) path_MLH1 carriers, 2495 (39.3%) path_MSH2,
841 (13.2%) path_MSH6, and 407 (6.4%) path_PMS2
(Table S3).
During prospective observation, 1808 cancers were diag-

nosed (Table S4). Cancers of the colon (n= 580, 32.1% of all
cancers), skin (n= 215, 11.9%), endometrium (n= 173,
9.6%), and rectum (n= 127, 7.0%) were most frequent. Skin
cancers were not systematically reported the same way by all
centers and skin cancers were not included in the results
presented below. The combined data set included sufficient
observation years and events to calculate precise AIRs
(Table S5) by gender from 25 to 75 years of age and

cumulative incidences of cancers by age and gender, for organ
groups or each organ separately (Table 1). The cumulative
incidence of any first cancer (penetrance) by gene and gender
is presented in Fig. 3. The highest cancer risks were found in
path_MLH1 and path_MSH2 carriers. The overall penetrance
for path_MSH6 variants was significantly lower in males than
females (p < 0.0001 at 70 years of age): both genders had
similar, modestly increased risks for CRC, while females had
high risks for gynecological cancers. Thus, path_MSH6
variants caused a sex-limited trait with high penetrance in
females but only an 18% lifetime risk for CRC in males,
limiting the utility of family history for identification of
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Fig. 1 Cummulative risk of any cancer and of colorectal cancer in orginal and validation cohorts. Cumulative risk of any cancer: a original cohort,6

b validation cohort; and cumulative risk of colorectal cancer (CRC): c original cohort6 and d validation cohort. There were no significant differences between
original and validation cohorts. Center values are means and error bars show 95% confidence intervals (CIs).
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path_MSH6-associated LS. Notably, the risk of cancer for
path_PMS2 carriers was not increased at all before 50 years of
age, and only nonsignificantly increased at older ages. Breast
cancer risks were very similar across all four genes, with
cumulative risks to age 60 and 75 years of 7.0–8.1% and
12.3–15.1% representing only a marginal increase compared
with reported general population risks.
The risks of colon, stomach, small bowel, bile duct,

gallbladder, and pancreatic cancers were higher for male
than female path_MLH1 carriers. In early adult life,
path_MSH2 carriers of both genders had the same high risk
for CRC. At older ages, carriers of path_MSH2 variants
(including survivors of early cancers) were at relatively high
risk of upper urinary tract cancers, prostate cancer, upper
gastrointestinal cancer, and brain tumors.
Five- and 10-year crude survival after cancers in different

organs that were diagnosed after inclusion and before 65 years
of age in path_MLH1, path_MSH2, and path_MSH6 carriers
are presented in Table 2. Most patients survived ten years or
more following cancers of the colon (88%), rectum (70%),
endometrium (89%), ovary (84%), prostate (70%) breast
(82%), upper urinary tract (67%), or urinary bladder (68%),
but not after pancreatic (29%), bile duct (42%), or brain (15%)
cancers.

DISCUSSION
This study first determined prospectively observed cancer
risks and survival in cohort of 3527 path_MMR carriers newly
recruited to PLSD. This validated findings reported previously
in the similarly sized original PLSD cohort, allowing us to
combine both sets of data, providing a series of 6350
genetically confirmed cases in which we calculated more
precise cancer risks than have been available before by age,

gene, and gender. Factors that might have reduced observed
cancer risks in this series included colonoscopy with
polypectomy and possible use of aspirin, including participa-
tion in clinical trials. As the series was censored for
therapeutic or prophylactic organ removal, these measures
are less likely to have impacted the findings. Partial colectomy
or surgery for rectal cancer were demonstrated previously to
have little effect on risk for subsequent colon cancer in the
original cohort.7 Survivorship biases may also be present
given the long follow-up of some cases. Conversely, the use of
family and personal history of cancer to identify path_MMR
carriers for follow-up could have selected for coexisting non-
LS cancer predisposing genetic variants and/or environmental
factors that may have increased observed cancer incidences.
This study therefore provides averaged risk estimates for
cancers in path_MMR carriers identified and followed up by
expert centers in 18 countries. Although geography and
differences in follow-up practices might impact cancer risks,
no significant differences were identified between the original
cohort recruited in Europe but excluding Germany and the
validation cohort recruited mainly in Germany, the Americas,
and Australasia. Neither did differences between countries in
policy on colonoscopic surveillance interval impact colorectal
cancer incidence in a previous PLSD study.9

Notably, in the current study no colorectal, endometrial,
ovarian, or urinary tract cancers were observed before 50
years of age in path_PMS2 carriers, giving even lower point
estimates than have been reported previously.6–8,11–13 We
conclude that although path_PMS2 variants have been shown
robustly to cause a rare recessively inherited cancer syndrome
of childhood and adolescence termed constitutional mismatch
repair deficiency (CMMRD) syndrome (https://www.omim.
org/entry/276300), the cancer risk in heterozygotes is not
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increased in young to middle-aged adults and remains
uncertain in older individuals. The relative lack of follow-up
years for path_PMS2 carriers is a weakness of the current
study and further expansion of this group in PLSD would be
particularly helpful. Recent studies have suggested that
path_PMS2 variants may not enhance initiation of CRC
tumorigenesis but instead, PMS2 protein deficiency may favor
progression of MMR proficient adenomas to CRC.14 If this is

correct, surveillance and polypectomy could be more effective
in preventing CRC in path_PMS2 carriers than in other LS
patients and may be a factor in the low incidence of CRC in
path_PMS2 carriers in this study, but cannot explain the low
incidence of the other LS-associated cancers.
Our results confirmed that female path_MSH6 carriers are at

high risk of cancer of the endometrium compared with other
organs and that the CRC risk associated with path_MSH6 is
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Fig. 3 Cumulative risk for any cancer (penetrance) of path_MMR gene variants causing Lynch syndrome by gender. a cumulative risk of any
cancer for each LS gene in males, b cumulative risk of any cancer for each LS gene in females. Path_MSH6 had significantly higher penetrance in females
compared with males. Center values are means and error bars show 95% confidence intervals (CIs).

Table 2 Crude survival (%) after selected cancers diagnosed after initiation of colonoscopy surveillance and before age 65
years for path_MLH1, path_MSH2, and path_MSH6 carriers

Cancer Organ n 5-year survival (%) 95% CI (%) 10-year survival (%) 95% CI (%)

Colorectala

Colon 274 95 [90–97] 88 [81–93]

Rectal and sigmoid 62 75 [61–85] 70 [52–82]

Gynecologicala

Endometrium 136 89 [82–94] 89 [82–94]

Ovarian 41 84 [68–93] 84 [68–93]

Urinary tracta

Ureter and kidney 53 86 [71–94] 67 [41–84]

Urinary bladder 31 81 [60–92] 68 [42–84]

Others

Prostatea 26 96 [75–99] 70 [37–88]

Breasta 51 92 [78–98] 82 [64–92]

Stomach 15 72 [47–86] 72 [47–86]

Small bowel 24 81 [59–92] 71 [41–87]

Biliary tract 8 42 [15–67] 42 [15–67]

Pancreas 6 29 [6–58] 29 [6–58]

Brain 2 15 [2–37] 15 [2–37]
CI confidence interval.
aRight censored for International Classification of Diseases version 9 (ICD-9) diagnostic system 151, 152, 156, or 157.
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lower than that in path_MLH1 and path_MSH2 carriers. As
only a minority of males with path_MSH6 variants will
develop LS-associated cancers, “skipped generations” will be
common in path_MSH6 families and such families are not
identified efficiently by current clinical criteria for LS that
assume high penetrance in both genders.15 Testing of incident
endometrial cancers for MMR deficiency, as has been adopted
widely for CRC, may provide a more effective strategy to
identify path_MSH6 families.16 Recently reported significant
increases in breast cancer risk in MSH6- and PMS2-associated
LS17 were not confirmed in this study.
Based on the differences in cancer risks associated with the

four path_MMR genes, we propose that LS should now be
considered as a generic term for four clinically distinct
inherited cancer risk syndromes. Our findings suggest that
carriers of path_PMS2 variants should not be grouped
together with carriers of path_MLH1 and path_MSH2 for
genetic counseling or clinical management, and the lower risk
and later onset of CRC in path_MSH6 carriers may also
justify specific guidelines for surveillance that are tailored to
this genotype.16

If the goals of follow-up and surveillance in LS were to
achieve good survival from CRC and gynecological cancers,
our results might be viewed as evidence of success. However,
as our study has no control group we cannot determine
whether the apparently better survival of many cancers in LS
patients than in patients with sporadic cancers reflects
differences in cancer biology, cancer surveillance or treatment,
or a combination of these factors. In a recent study in PLSD
we found no association between colonoscopy interval and
stage at diagnosis of CRC, suggesting that the traditional
model of the adenoma–carcinoma sequence may not apply to
all LS CRCs.18 In fact, the primary goal of surveillance in LS,
as understood by most professionals and patients, has been to
prevent CRC by removing visible precursor lesions in the
colorectum. We have reported6–8 and now confirm that CRC
continues to occur in LS even though the current surveillance
guidelines are applied with preventive intention. The
progressive development of colonoscopy techniques for
detection of lesions that may have otherwise have been
missed is a potential time trend confounder for our results,
although it is not yet known whether these advances improve
prevention of CRC in path_MMR carriers.
Gene and gender-specific risk estimates in LS are imperative

for development of new clinical guidelines for stratified
surveillance, management, and prevention of colorectal,
endometrial, ovarian, and other cancers. The results of the
current study provide a strong evidence base for developing
such guidelines. Although we have shown previously that the
occurrence of a first cancer in LS does not change significantly
the risks for subsequent cancers,7 the excellent survival from
the early onset and more frequent cancers in LS is leading to
an increasing cohort of older path_MMR carriers who are at
risk for cancers in other organs, some of which have worse
prognoses. LS patients are therefore subject to competing
cancer risks that may have impacted our results. By contrast,

in previous generations, most LS patients died from their first
cancer and an accurate picture of late onset cancers cannot be
obtained from segregation analyses of historical data. The
challenge of preventing or curing late onset cancers in LS
must be addressed through prospective studies including
interventional chemopreventive studies and new treatment
modalities such as immunotherapy.
Available clinical approaches for identifying LS and criteria

for the classification of pathogenicity of MMR gene variants
were developed assuming that all pathogenic variants have
high penetrance. This is neither the case for path_MSH6
variants in males nor for path_PMS2 carriers of either gender.
The criteria used for inclusion in the current study—class 4 or
5 (i.e., clinically actionable) variants only—may have
identified MSH6 and PMS2 variants with higher than
“average” penetrance, and/or individuals and families with
unidentified genetic or environmental modifiers that increase
penetrance. We may need to develop different criteria for the
identification and characterization of low-penetrance patho-
genic variants.
In conclusion, the lifetime risk of CRC in path_MLH1 and

path_MSH2 is approximately 50% despite attempted preven-
tion by surveillance colonoscopy and polypectomy. Female
path_MLH1, path_MSH2, and path_MSH6 carriers have a
rapidly rising risk of gynecological cancers from 40 years of
age. At older ages, path_MSH2 and path_MLH1 variants are
associated with urinary tract and upper gastrointestinal
cancers, and path_MSH2 carriers in particular are at increased
risk for prostate cancer. The low incidence of CRC in
path_MSH6 carriers causes a sex-limited trait with relatively
low penetrance in males that will lead to families escaping
detection by family history. Heterozygous carriers of
path_PMS2 variants do not have increased risk for CRC,
endometrial, or ovarian cancer before 50 years of age, and
may have only marginally increased risks at older ages.
International clinical guidelines for carriers of path_MMR
variants should be revised in line with the cancer risks with
which they are associated. The cancer risk algorithm at the
PLSD website (www.plsd.eu) is based upon the results
presented in this report and enables interactive calculation
of remaining lifetime risks for cancer in any LS patient by
giving their age, gender, and gene variant, thereby facilitating
personalized medicine for path_MMR carriers. Future
research should seek to address the reasons for continuing
occurrence of CRC in LS despite supposedly preventive
colonoscopy and the prevention and treatment of those LS
cancers that continue to have a poor prognosis.
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