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ABSTRACT

Real-world data exhibiting high order/dimensionality and
various couplings are linked to each other since they share
some common characteristics. Coupled tensor decomposition
has become a popular technique for group analysis in recent
years, especially for simultaneous analysis of multi-block
tensor data with common information. To address the multi-
block tensor data, we propose a fast double-coupled non-
negative Canonical Polyadic Decomposition (FDC-NCPD)
algorithm in this study, based on the linked CP tensor decom-
position (LCPTD) model and fast Hierarchical Alternating
Least Squares (Fast-HALS) algorithm. The proposed FDC-
NCPD algorithm enables simultaneous extraction of common
components, individual components and core tensors from
tensor blocks. Moreover, time consumption is greatly reduced
without compromising the decomposition quality when han-
dling large-scale tensor blocks. Simulation experiments of
synthetic and real-world data are conducted to demonstrate
the superior performance of the proposed algorithm.

Index Terms— Tensor decomposition, coupled ten-
sor decomposition, Hierarchical Alternating Least Squares
(HALS), linked CP tensor decomposition (LCPTD)

1. INTRODUCTION

Tensor decomposition has been successfully applied to an
ensemble of disciplines including blind source separation,
signal processing, classification, data mining and neuro-
science [1, 2, 3, 4, 5]. For instance, in EEG data analysis,
spatial, temporal and spectral information can be simultane-
ously considered via tensor decomposition, which in turn pr-
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ovides solutions with convincing physiological or pathologi-
cal interpretations [5]. However, when it comes to joint analy-
sis of multi-block tensor data, such as multiset or multimodal
neurophysiological data fusion [6], conventional methods
meet challenges in maintaining feature/component compara-
bility and utilizing coupled information across tensors. Joint
analysis of data from different samples can potentially reveal
underlying structures and inner-relationships among data
[7, 8]. Furthermore, joint analysis can take full advantage of
prior information to improve the accuracy and stability of so-
lutions [9]. Therefore, increasing recognition of joint analysis
makes coupled tensor decomposition more extensively uti-
lized. Coupled tensor decomposition can jointly analyze the
multi-block tensors represented by various samples, mean-
while provide a simultaneous extraction of common compo-
nents, individual components and core tensors [10]. To date,
coupled tensor decomposition has been applied in the fields
of neuroscience, multi-dimensional harmonic retrieval, array
signal processing and metabolic physiology [8, 11, 12, 13].

Compared with tensor decomposition originally designed
for single tensors [1], coupled tensor decomposition can
utilize shared information among tensors to improve de-
composition identifiability with keeping feature/component
comparability. In addition, coupled tensor decomposition has
the advantage of imposing constraints on particular modes or
components compared to its matrix counterparts [14]. Any
combination of constraints, including independence, sparsity,
orthogonality and non-negativity, can be added more easily
and flexibly [14]. Moreover, it is more reliable to consider
the high-order feature of tensors in data analysis [5].

In the analysis of EEG data collected from multiple sub-
jects under the same stimulus, the time consumed by the
depletion process in the coupled algorithms (assuming that
shared information exists in both modes of space and fre-
quency) would go extremely heavy, due to the high-order,
high-dimensional and nonnegative nature of EEG data. To
address this problem, we propose a fast double-coupled non-
negative Canonical Polyadic Decomposition (FDC-NCPD)
algorithm. This algorithm is based on linked CP tensor
decomposition (LCPTD) model [10] and fast Hierarchical



Alternating Least Squares (Fast-HALS) algorithm [15]. With
the proposed algorithm, time consumption is greatly reduced
without losing decomposition quality in the analysis of large-
scale tensor blocks.

The rest of this paper is organized as follows. Section 2
introduces the LCPTD model. In section 3, a fast double-
coupled implementation of LCPTD model is proposed. In
section 4, simulation experiments are conducted to verify the
performance of the proposed algorithm. The last section con-
cludes this paper.

2. REVIEW OF LCPTD MODEL

To deal with multi-block tensors with coupling information,
researchers in [10] proposed a generalized model of simul-
taneous decomposition, namely LCPTD model, which is de-
fined as follows:

X (s)≈X̂
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=
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where X (s) ∈ ℜI1×I2×···IN and X̂
(s)
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the original and estimated tensors, respectively. U (n,s) =[
u

(n,s)
1 ,· · ·,u (n,s)

R

]
∈ ℜIn×R denotes the n-mode factor ma-

trix of sth tensor. S , R, N are denoted as the number, rank
and order of tensors, respectively. G(s) ∈ ℜR×R×···R de-
notes the sth core tensor with non-zero entries only on the
super-diagonal. λ(s)

r is the (r, r, r)th element of G(s).
The LCPTD model assumes that each factor matrix

U (n,s) = [U
(n)
C U

(n,s)
I ] ∈ ℜIn×R consists of two parts:

U
(n)
C ∈ ℜIn×Ln , 0 ≤ Ln ≤ R and U

(n,s)
I ∈ ℜIn×(R−Ln).

The former shared by all tensor blocks represents the cou-
pling (same or highly correlated) information, whereas the
latter corresponds to the individual characteristics of each
tensor block.

3. ALGORITHM IMPLEMENTATION

In this section, an optimization criterion of squared Euclidean
divergence minimization is used to evaluate the error between
the original and estimated tensors. For simplicity, we assume
that the element λ(s)

r in core tensors can be absorbed into the
non-normalized component u (N,s)

r . Therefore, the cost func-
tion can be expressed in a simplified form as:
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The above minimization problem can be transformed into
R sub-problems via the HALS algorithm [16], which can
be optimized sequentially and iteratively. More exactly, the
learning rule of u (n,s)

r can be formulated as follows:
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If r ≤ Ln, u (n,s)
r will be calculated by combining all ten-

sor information and assigned to each s. Otherwise, it needs
to be calculated separately. The calculation of ζ(n,s)r in equa-
tion (3) which seems relatively simple may result in rather
high computational cost, especially for large-scale problems
[15]. To address the above issue, we further introduce the
Fast-HALS algorithm [15] to LCPTD model instead of HALS
algorithm (LCPTD-HALS algorithm only considered the in-
troduction of HALS algorithm in the LCPTD model [10]). A
detailed analysis of HALS and Fast-HALS algorithms can be
found in [15, 16]. In the proposed algorithm, ζ(n,s)r in equa-
tion (3) can be represented as:
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where ξ

(s)
(n) = (U (s)TU (s))~ ⊘ (U (n,s)TU (n,s)). ‘~’ and

‘⊘’ are denoted as Hadamard (element-wise) product and
element-wise division, respectively. u (n,s)

r , n ̸= N needs to
be normalized to unit variance by u

(n,s)
r ← u

(n,s)
r /∥u (n,s)

r ∥2
in each iteration. Meanwhile, the denominators of equa-
tion (3) can be omitted due to the normalization of u

(n,s)
r .

In order to obtain the nonnegative components, a simple
“half-rectifying” nonlinear projection is applied as u

(n,s)
r ←

∥u (n,s)
r ∥+ after (3). These R stages are updated alternatively

one after another until convergence.
In the end, the (r, r, r)th element λ

(s)
r of core tensors

which has been absorbed into u
(N,s)
r can be obtained as

λ
(s)
r = ∥u (N,s)

r ∥2, and u
(N,s)
r needs to be normalized as

u
(N,s)
r ← u

(N,s)
r /∥u (N,s)

r ∥2. Compared with the mode-n
matricization Y

(s)
r,(n) of Y (s)

r in (3), which is performed re-

peatedly in each iteration, mode-n matricization X
(s)
(n) in (5)

only needs to be executed once in the initialization before
the iteration. This greatly improves the computational ef-
ficiency of the proposed algorithm. With the consideration



that tensors are only assumed to be coupled in two modes
(i.d., Ln = 0, n > 2), this extended fast-HALS-based algo-
rithm with nonnegative and CP constraints is termed as the
fast double-coupled nonnegative CP Decomposition (FDC-
NCPD). Please refer to [17] for the detailed description of
standard notations and basic tensor operations due to the
limited length of paper.

4. SIMULATION RESULTS

In this section, simulation experiments of synthetic and real-
world ongoing EEG data are provided to illustrate and com-
pare the performance of NTF-HALS [16], NTF-FastHALS
[15], LCPTD-HALS [10] and FDC-NCPD algorithms.

The following experiments are done with the following
computer configurations; CPU: Intel Core i5-7500 @ 3.40Hz
3.41Hz; Memory: 8.00 Gb; System: 64-bit Windows 10;
Matlab R2016b.

4.1. Synthetic data

Data generation. The double-coupled nonnegative tensors
with noisy disturbance are generated as follows:

X (s)′ = σs
X (s)

∥X (s)∥F
+ σn

N (s)

∥N (s)∥F
, s = 1 · · ·S, (6)

where X (s) is constructed as in equation (1). N (s) denotes
noise term drawn from the standard uniform distribution on
the open interval (0, 1). Moreover, σs and σn represent the
levels of signal and noise, respectively. Signal-to-noise ratio
(SNR) is defined as SNR = 10log10(σs/σn).
Evaluation index. The performance index (PI) and Fit are
used to evaluate the decomposition quality in the following
experiments. More exactly, we use Fit value to measure the
tensor reconstruction capability of algorithms, which is de-

fined as: Fit = ∥X (s) − X̂
(s)
∥F /∥X (s)∥F , where X̂

(s)
is

the reconstructed version of X (s). We use PI value to evalu-
ate the accuracy of the estimated factor matrices [18].
Termination criteria. The iteration termination criteria for
all algorithms are set as |Fitnew−Fitold| < ε, ε = 1e−6 but
no more than 1000 iterations .

4.1.1. Convergence speed

In this experiment, execution time and iteration number
of LCPTD-HALS and FDC-NCPD algorithms are com-
pared against the dimensionality of tensors I1 = 7n, I2 =
8n, I3 = 9n with n varying from 1 to 10. The target ten-
sors are constructed as equation (6) under the noise scenario
SNR = 20 dB. The number of components, coupled com-
ponents and tensors are fixed to R = 4n, L1 = L2 = 2n,
S = 10, respectively. The performance curves averaged from
30 Monte Carlo runs are illustrated in Fig. 1.
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Fig. 1. Averaged execution time and iteration number versus
dimensionality of tensors

From Fig.1 (a), we can see that the FDC-NCPD algo-
rithm could greatly reduce the execution time compared
with LCPTD-HALS algorithm. This advantage becomes
more significant as the dimensionality of tensors increases.
Furthermore, in Fig.2 (b), the difference in the number of
iterations between two algorithms seems relatively small, es-
pecially when n ≥ 4, which indicates that the FDC-NCPD
algorithm outperforms significantly in terms of convergence
speed in each iteration. The increase of convergence speed
is in parallel with our analysis in section 3, replacing Y

(s)
r,(n)

in equation (3) by X
(s)
(n) in equation (5) greatly reduces the

calculation time.

4.1.2. Decomposition quality

In this experiment, we compare the Fit and PI performance of
FDC-NCPD with LCPTD-HALS and two conventional tensor
decomposition algorithms including NTF-HALS and NTF-
FastHALS. The noisy double-coupled non-negative tensors
are generated as equation (6) under different SNRs from -5
dB to 20 dB with a step size of 2 dB. For the dimensionality
of tensors, we set I1 = 40, I2 = 50, I3 = 60. The number
of components, coupled components and tensors are fixed to
R = 30, L1 = L2 = 20 and S = 10, respectively. The aver-
aged performance curves obtained from 20 Monte Carlo runs
are ploted as in Fig. 2.

As indicated in Fig.2 (a), the four algorithms provide
nearly the same Fit performance under all SNRs. In Fig.2 (b),
we can see that FDC-NCPD and LCPTD-HALS algorithms
show better PI performance than the two conventional al-
gorithms. Moreover, the coupled algorithms obtain equal
performance in low SNRs (-5∼7 dB). When SNR is dis-
tributed in 7∼16 dB, FDC-NCPD algorithm yields slightly
better performance than LCPTD-HALS algorithm. However,
when SNR exceeds 17 dB, the proposed algorithm slightly
underperforms its competitors. This experiment also veri-
fies that joint/coupled analysis can effectively utilize prior
information to improve the decomposition accuracy.
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4.2. Real-world ongoing EEG data

Data description. In this experiment, we apply the FDC-
NCPD and LCPTD-HALS algorithms to the ongoing EEG
data, collected from 14 subjects while listening to an 8.5-
minute long tango music. We compare the performance of
two algorithms in terms of execution time, data Fit and the
number of components matched with musical features. The
details of data collection, data preprocessing and music fea-
ture extraction can be found in [19]. Through short-time
Fourier transform (STFT), 14 third-order tensors are formu-
lated with size of 64 × 146 × 510 (64 spatial channels, 146
frequency bins (1∼30Hz) and 510 temporal samples from
EEG data of each subject).
Parameter selection. For the selection of the number of
components, smoothed DIFFIT [20] is used in this study
with suggested R = 36. We assume that the coupling in-
formation exists both in brain activation areas and frequency
oscillations among participants. Thus, the number of coupled
components is set as L1 = L2 = 20, L3 = 0 (after analyzing
the components obtained by conventional method, we found
that there were nearly 20 spatial or frequency components
among participants with correlations of more than 0.96).
Random initializations are used for both factor matrices and
core tensors. Termination criteria of algorithms are identical
with Experiment 4.1.
Correlation analysis. The temporal, spectral and spatial
components can be extracted simultaneously via the FDC-
NCPD and LCPTD-HALS algorithms. Correlation analyses
are conducted between the temporal courses from EEG data
and the temporal courses of musical features, aiming to find
the brain activities corresponding to musical stimuli. In addi-
tion, we are interested in finding brain components with the
significant correlation coefficients(at level p < 0.05). The
method for determining significant correlation thresholds can
be found in [21]. Fig. 3 shows an example of 10th EEG com-
ponents (topography, spectrum and waveform) extracted from
subject #1, in which the temporal course of temporal com-
ponent is significantly correlated with the temporal course of
musical feature termed as ‘Pulse Clarity’ (0.1462 > 0.1167).
In addition, the corresponding spatial and spectral compo-
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Fig. 3. The 10th temporal component and its corresponding
spatial and spectral components from subject #1

Table 1. Performance of two algorithms in ongoing EEG data
analysis. I-total number of components matched with musical
feature, II-execution time, III-data Fit.

I II III

LCPTD-HALS 59.3 76442.65 0.7360
FDC-NCPD 65.6 350.97 0.7353

nents indicate that the posterior area of subject #1 is activated
with an alpha oscillation (8∼13Hz) when listening to the
tango music.
Results analysis. By 10 times of algorithm executions and
correlation analyses, the averaged results of execution time,
data Fit and the number of components matched with musical
features are illustrated in Table 1. It can be noted that the
FDC-NCPD algorithm extracts 6.3 interested components
more than the latter on the total number of components.
More importantly, the FDC-NCPD algorithm greatly reduces
the execution time by nearly 200 times, while yielding equal
performance on data Fit (the gap of 0.0007 can be negligible).

5. CONCLUSION

In this study, we introduced the Fast-HALS algorithm to
LCPTD model and proposed the FDC-NCPD algorithm, in
which the common components, individual components and
core tensors can be extracted simultaneously. Simulation ex-
periments of synthetic and real-world data were conducted,
showing that the proposed algorithm can significantly reduce
time consumption while retaining the decomposition quality.
Besides, it can extract a larger number of interested compo-
nents in the EEG data analysis. In the future studies, we can
further analyze brain activation regions and frequency oscil-
lations corresponding to the significantly correlated temporal
components.
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