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Abstract

We study time-resolved charge transport in a superconducting nanowire using time-dependent
Landauer—Biittiker theory. We find that the steady-state Majorana zero-bias conductance peak
emerges transiently accompanied by characteristic oscillations after a bias-voltage quench. These
oscillations are suppressed for trivial impurity states (IS) that otherwise show a similar steady-state
signal as the Majorana zero mode (MZM). In addition, we find that Andreev bound states or quasi-
Majorana states (QMS) in the topologically trivial bulk phase can give rise to a zero-bias conductance
peak, also retaining the transient properties of the MZM. Our results imply that (1) time-resolved
transport may be used as a probe to distinguish between the topological MZM and trivial IS; and (2)
the QMS mimic the transient signatures of the topological MZMs.

1. Introduction

Topological quantum computing [1] is an active field of research based on the key idea to reduce quantum
decoherence issues by using topologically protected states [2, 3]. Majorana fermions are their own antiparticles
[4], and their condensed-matter analogs, Majorana bound state or Majorana zero mode (MZM), retain this
feature [5]. They are thus considered to be promising candidates for technological advances in topological
quantum computing [6—8] since their non-abelian statistics allow performing quantum computation protected
from environmental perturbations [9]. Even though various experimental signatures of MZM have been
reported [10—17], a clear and unambiguous detection and the consequent control of these states has proven
difficult so far. For example, other types of bound states [ 18], surface states or interfacial impurity states (IS) also
give rise to in-gap states that contribute to transport or scanning tunneling spectroscopy signals. Therefore
probes that unambiguously distinguish between MZM and IS are highly desirable.

Time-resolved spectroscopies allow for studying the dynamics of various processes such as charge transport
[19]. For instance, in a transport setup exhibiting the MZM, there is no guarantee of instantly relaxing to a
steady-state configuration once the junction has been ‘switched on’ by, e.g. applying an external perturbation. In
contrast, the nonequilibrium problems are often much richer and more interesting than equilibrium properties
[20-22]. This is especially relevant when nowaday transport measurements are pushing the temporal resolution
to sub-picosecond regime [23—30], and these ultrafast processes can be observed in real time.

In this paper we propose time-resolved transport as a probe in order to reveal the difference between
topological MZM and ordinary IS. We simulate the transient dynamics in a quantum wire coupled to metallic
electrodes using the time-dependent Landauer—Biittiker formalism [31-36] extended to include
superconducting states in a Nambu spinor representation. By comparing the time-dependent build-up of a
steady-state current after a sudden quench of the bias voltage between (i) a topological state with MZM and (ii) a
non-topological state with trivial IS, we discover that the dynamics for (i) and (ii) look different. For case (i) the
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Figure 1. A schematic NSN junction where two normal metal electrodes are connected to a nanowire where superconductivity is
induced by the proximity effect from an adjacent s-wave SC. The electrodes are connected to a source—drain voltage Vsp. The magnetic
field B orients the spins along the z direction.

time-resolved current shows pronounced oscillations that shift with the applied bias voltage and correspond to
transitions between the biased electrodes and the MZM. For case (ii) the corresponding oscillations are
suppressed. In addition, we study the transient response of quasi-Majorana states (QMS) in the topologically
trivial phase [37—44], and we find that the QMS mimic the signatures of the MZM both in the stationary and
transient regimes. The resulting Fourier spectra of the time-resolved current could therefore be used to identify
the MZM or QMS.

2.Model and method

We consider a normal metal-superconductor—normal metal (NSN) junction, see figure 1. The superconducting
central region of the junction is a nanowire in proximity to an s-wave bulk SC with order parameter A. The
nanowire in addition features a strong spin—orbit interaction (e.g. InSb [45, 46] or InAs [13, 47]) which favors
aligning the spins along the £y direction. An external magnetic field parallel to the nanowire breaks time-
reversal symmetry and aligns the spins along the £z direction, introducing a Zeeman splitting V; = gugB/2
where gis the Landé factor and yi5 the Bohr magneton. A suitable combination of these effects has been shown to
hosta MZM in the nanowire, exponentially localized at the edges [5, 10, 48—51]. Specifically the infinite
nanowire is in a topologically nontrivial phase for V; > A > 0and certain intervals of the chemical potential
[48,49, 51], from which MZM emerge in the case of a finite wire. For the present study, the specific structure of
the electrodes, other than being a normal metal with relatively broad bandwidth (e.g. Au, Ag or Cu), is
unimportant as we concentrate on the effects within the nanowire.

We write the total Hamiltonian as

H:He+Hc+I:Iw> (1)

where the individual components for the electrodes and coupling are characterized by the single-particle energy
dispersion in the electrodes €, and by the coupling matrix elements Tj;, between the states in the nanowire and
the electrodes [33]:

A= enél\ e 2
kA
and
He = Y (Tjaéf i + hec). (3)
kA

Here kA labels the kth basis element in the Ath electrode, and jlabels the atomic sites on the nanowire. The
nanowire, in turn, is characterized by [51, 52]

HW = Z[— %(f;fjurl + hC) - (/1, - ])E]TE] — %(if}UzEjJrl + hC) + Vzé\]TJﬁI\j + A(é\ﬁé\ji + h.C.)], (4)
i

where ], yi, i, Vz,and A are parameters for hopping, chemical potential, spin—orbit coupling, Zeeman splitting,
and pairing potential, respectively. The operators ¢\’ annihilate (create) electrons with spin s € {1, | }ina
region specified by x. The spin indices are summed when suppressed and o, ; are Pauli matrices. For indices x, y
belonging either to the electrodes or to the nanowire, the creation and annihilation operators satisfy the
anticommutation relations { &, 6;5,} = 8y 0.

Attimest > 0 the electrode energy levels are suddenly shifted, corresponding to a quench of the bias voltage,
€y — € + eVy. Foratwo-terminal device (A € {S, D}, see figure 1) this out-of-equilibrium condition is
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defined by the source—drain voltage Vsp = Vs — Vp. The transport setup is considered partition-free [53—55]
meaning that the whole system is initially contacted in a global thermo-chemical equilibrium at unique chemical
potential y and at inverse temperature 3 = (kg T) .

For a compact notation we introduce Nambu spinors [56—58]
@x = (éx, CTDX, @x, ﬁ)i = (et E;r I Cels E;T )T, and the anticommutation relation is then understood
componentwise { @Ji, (CT);,)T} = 6y, 0"”. Here we denote quantities in the Nambu ® spin space by an underline.
This representation allows for writing the Hamiltonian for the nanowire in a Bogoliubov—de Gennes form
[59,60]

1 AT 2 PRI
= EZ[@;‘Q;@;‘ +(2;b;®j1 + he)l, ©)]
j

where we introduced on-site and nearest-neighbor contributions [52]

J—u+Vy A 0 0
4= _OA M_]OJFVZ ]—;?—VZ Z ’ ©
0 0 A p—7J]=V
-J/2 0 —a/2 0
b= oz(;Z ](/)2 —]0/2 _(?)/2 : %

0 a/2 0  J/2

respectively. The electrode and coupling parts of the Hamiltonian are then also expanded in the Nambu ® spin
basis although they do not involve the SC pairing potential:

N 1 At N
Ho= =5 O 0P (8
3
with €\ = erndiag(l, —1, 1, —1)and
Z(_]_]k/\ik/\ + h.c) )
]k)\

with Ijk/\ = I}k,\diag(l, -1, 1, —1).

By using the nonequilibrium Green’s function approach [32] we conveniently access both transient and
steady-state responses in the setup above. The one-electron Green’s function is defined as a contour-ordered
tensor product of the spinor field operators [57]

Gy(z 2) = —i(T,[d:(2) ® &)2N1), (10)

where the contour-ordering operator 7, is taken for the variables z, z’ on the Keldysh contour «y[32]. The form
in equation (10) automatically handles both normal and anomalous components of the Green’s function [61].
In appendix A we show that the equations of motion for the Green’s function are exactly the same as those in
[33, 35], and hence we derive in a similar fashion a closed expression for the time-dependent one-particle
reduced density-matrix (TD1RDM) within the nanowire, p(t) = —i1G=(¢, t) from the lesser Green’s function
(see appendices B-D). In order to obtain a closed solution to the equation of motion we have described the
electrodes within wide-band approximation (WBA), where the electronic levels of the nanowire are in a narrow
range compared to the bandwidth of the electrodes. The coupling strength between the nanowire and the
electrodes is characterized by the frequency-independent tunneling rate I .

Asthe TD1RDM gives us full information on the local charge and current densities within the nanowire, we
calculate the total current through the nanowire by considering a bond current between two atomic sites. In
addition, the traditional bond-current operator has to be adapted to include the contribution from the spin—
orbit coupling and from the SC pair potential [62—64]. In appendix E we derive the following expression for the
bond current between the sites jand j + 1 within the nanowire:

] iat A AF A Qi A /
Ljn1= Zlm[—g(@fﬁoﬂn) + () — ;(<C}C<J’+1>D — {&en) + 24 Z (m1Cmi ] (11)

where (-) denotes elements of the TD1RDM.




10P Publishing

NewJ. Phys. 21 (2019) 103038 R Tuovinen et al

1.004 L 100
. S10-3 W
=075 S10-6 ” *
NCD 210—9 _.l“h...
0 20 40 60
No.504 site
N
So.254 60
~
3
= 0.001 2400
—0.010 —0.005 _ 0.000 0.005 0.010
eV (J)

Figure 2. Differential conductance versus applied bias voltage for nanowires of varying length N,,. The zero-bias peak builds up for
sufficiently long nanowires (N,, = 50). The probability density for the corresponding zero-energy modes shows exponential
localization around the wire edges for N,, = 60 (inset). Model parameters for the nanowireare ] = 1,a = 0.5,V = 0.25,A = 0.1,
andp = 0.

3. Results

3.1. Emergence of the MZM

Using equation (11) we calculate the (steady-state) current—voltage characteristics for nanowires of varying
lengths. The parameter space of the model in equation (4) is rather broad. Instead of mapping out the individual
details of each parameter, we concentrate our discussion on representative points in the parameter (phase)
space. Namely, for the nanowire we choose ] = 1, = 0.5, Vz = 0.25, A = 0.1,and = 0[52] using which
the nanowire possesses the topological Majorana state for long enough nanowires. We have investigated many
parameters in this topological regime and found that they do not result in qualitatively different behavior. This
choice also fixes the units to the hopping energy; if the values of this quantity are in the eV regime, then times are
measured in the units of inverse hoppings which is on the order of femtoseconds. The coupling strength from
the terminal sites of the nanowire to the electrodes is chosen such that the tunneling rate I'y = 0.01. The bias
voltage is applied symmetrically for the source and drain electrodes Vs = — V), = V, and we consider the zero-
temperature limit.

In figure 2 we show the differential conductance against the applied bias voltage (around a low voltage
window). We observe clearly how the MZM behaves as a ‘half a fermion’ on both terminals of the nanowire
leading to two peaks of half the conductance quantum. The inset of figure 2 shows the exponential localization of
the MZM for N,, = 60. These two zero-energy states are far apart and the coupling between them is weak, and
we see a single zero-bias peak whose value is exactly one conductance quantum. The coupling between these two
zero-energy states is enhanced for shorter nanowires leading to the splitting of the peak.

3.2. Transient signature of the MZM

We evaluate transient currents through a N,, = 50 nanowire by considering the two centermost sites in
equation (11). In addition to the topological SC with the MZM, we consider an ordinary SC wire (same as

figure 2 but for V; = 0) and three auxiliary cases of magnetic impurities deposited at the edges of an ordinary
SC. Inaccordance with the Anderson’s theorem, non-magnetic impurities cannot reduce the superconducting
gap A for an ordinary (time-reversal invariant) superconductor, and therefore there cannot be any in-gap states
from non-magnetic impurities [65—67]. With this in mind, we introduce an interaction potential containing
both magnetic (M) and non-magnetic () parts [68]

Himp = Z M(E]TTLA‘]‘T — LA‘LLA‘]‘D + _/\/'(E;Tfﬂ + f}lfﬁ), (12)
J

where the index j runs over the host sites in the ordinary superconductor where the impurities are attached to.
The parameters M and N for these IS can be modeled by modified tight-binding parameters [69, 70] for the
terminal sites in the nanowire, j = {1, N,,} in equations (6) and (7), fi and \72 (modified parameters signified by
atilde). For the ordinary SC wire supplemented with impurities we also concentrate our discussion on
representative points in the nontopological parameter (phase) space. We keep the time-reversal invariant bulk
superconductor unchanged by setting A=A=01, although it has also been reported that impurities may
suppress or even destroy superconductivity locally [71-74]. For the ordinary SC we have V; = 0 butin order to
introduce magnetic impurities we set V%, = 0,and the energy of these in-gap states may be tuned close to zero by
varying V4. For our purposes the exact formulation of the magnetic impurities is not too important as long as
there is a separate state within the gap with different topological character compared to the MZM. In addition to
the on-site scattering potential in equation (12), the hybridization of the impurities with the underlying
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Table 1. Model parameters for the superconducting nanowire. Modified tight-binding parameters for the terminal
sites of the nanowire are signified by tildes.

Case o 1t J T @ a % v, A X
(1) Ordinary SC 0 0 1 1 0.5 0.5 0 0 0.1 0.1
(2) Topological SC 0 0 1 1 0.5 0.5 0.25 0.25 0.1 0.1
(3) Ordinary SC +IS1 0 0 1 0.2 0.5 0.1 0 0.21 0.1 0.1
(4) Ordinary SC +1S2 0 0 1 0.5 0.5 0.25 0 0.43 0.1 0.1
(5) Ordinary SC + 1S3 0 0 1 1 0.5 0.5 0 0.67 0.1 0.1

superconductor J (and @)may be different than the bulk hopping J (and ), resulting in an effective tunnel
barrier around the impurity [66, 69, 70, 75, 76].

The different cases considered in our comparative simulations are collected in table 1. We single out the in-
gap states by applying a small bias window so that the oscillations in the time-resolved signal are only due to
virtual transitions from the biased Fermi level of the electrode to the in-gap state (zero mode) in the nanowire.

The steady-state dI/dV signals of cases (2)—(5) look qualitatively similar showing a zero-bias peak
(figure 3(a)) as we tuned the magnetic impurity with the parameter for \72 to appear close to zero energy, like the
MZM. The resonances corresponding to the magnetic impurities around zero energy are broadened compared
tothe MZM for J < J due to an increased effective tunnel barrier [77-81]. The broadening of the MZM
resonance is therefore systematically narrower than the one of IS. The MZM emerges completely from the
physical mechanism described by the model in equation (4), and the width of the MZM peak is therefore
completely specified by the coupling to the leads. While the model parameters of the nanowire are locally
modified for the description of the IS, the coupling Hamiltonian in equation (3), importantly, remains
independent of the modified central region. In particular, this means that the Hamiltonian of the nanowire and
the corresponding eigenstates result in the observed behavior for the same tunneling rate I". Due to this
broadening, the transient signals in figure 3(b) for these cases can be qualitatively different. First, for the ordinary
SCwithout the MZM, case (1), the current signal is zero on average due to there being no transport channels
within the SC gap and the small bias window. Second, for the topological SC with the MZM, case (2), the
transient oscillations last for thousands of units of inverse hopping (for hopping energies in the eV scale we have
J ! ~ 0.658 fs), i.e. up to picoseconds. The MZM at the edges of the nanowire are weakly coupled to each other
although they are far apart, and even though the MZM is also directly connected to the electrodes, the
hybridization of the MZM is weak leading to a very narrow resonance and a long lifetime. This generic finding is
not limited to our parameter choice for the MZM. Third, for the ordinary SC with magnetic impurities, cases
(3)—(5) the transient oscillations may be suppressed (compared to the MZM) due to the broader resonance. For
case (3) the transient current rises rapidly but also saturates relatively fast to its stationary value within couple of
hundred time units. The IS is directly connected to the electrodes resulting in a strong hybridization and in a
relatively fast decay of the transient. When the effective tunnel barrier due to the magnetic impurity is decreased,
cases (4) and (5), the transient time scales approach case (2) although they do not exceed it. The decay rate can be
approximated by the expectation value of the tunneling rate operator: v = Z?:1<90j|r| <pj>, where I' = 3, I\
and |) are the MZM or IS eigenvectors, see the dashed lines in figure 3(b). For identical wire-electrode coupling,
the decay time 1/ of the MZM transient current is between 1.5 and 5 times the one of the IS.

Additionally, the transient oscillations for the MZM, case (2), are more pronounced than the ones for the IS,
cases (3)—(5). This difference can be seen by taking the Fourier transforms of the time-dependent signals, see
figure 3(c). The Fourier transforms are calculated from an extended temporal window (up to t = 10000] ") for
better frequency resolution, we subtract the steady-state value from the sample points in order to get rid of a
divergence at zero frequency, and ultimately we take the absolute value of the result. The low-frequency regime
shows pronounced peaks for the MZM case, and the frequency of the first peak exactly corresponds to the
difference between the biased Fermi level of the electrode and the MZM (indicated by (i) in the figure). The
analogous peaks for the IS are suppressed due to the broader resonances and shorter lifetimes. Before entering
the band of all possible transitions outside the SC gap (w > 2A = 0.2, indicated by (iii) in the figure) we observe
additional transitions between the MZM and states close to the gap edge (indicated by (ii) in the figure). These
resonances remain independent of the applied voltage confirming that they result from intra-level transitions
within the nanowire. The resonances due to the IS are tuned to be close to the zero energy, but they are still
strictly speaking nonzero compared to the actual MZM. This is seen as an additional Fourier peak forming
around w = 0 for cases (4) and (5). This could be understood as an artificial intra-level transition between the
magnetic IS. Importantly, this peak is not seen for the MZM. Overall the transient features of the MZM can be
distinguished from the IS.
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Figure 3. (a) Differential conductance versus applied bias voltage for ordinary and topological SCs oflength N,, = 50. The shaded
areas refer to the bias windows in panel (b). (b) Transient currents for applied bias voltages eV = {0.02, 0.05}J. The dashed lines are
given by (1 — e™7")Igs where Igg is the steady-state current and y is the decay rate, see text. (c) Fourier spectra corresponding to panel
(b). The shaded areas (i)—(iii) result from different transitions, see text. Model parameters for the ordinary and topological
superconductorsare] = 1, = 0.5, V, = {0.0,0.25}, A = 0.1,and pz = 0. For the ordinary superconductor with IS the model
parameters are changed for the terminal sites of the nanowire, = {0.2, 0.5, 1.0}, @ = {0.1, 0.25, 0.5}, and

3.3. Comparison between MZMs and QMS
Even though we found a distinction between trivial IS and the topological MZM, one may still wonder whether
and how other in-gap states deeply in the topologically trivial regime for the same model of the nanowire would
contribute to the time-resolved signal. Recently, it has been studied that in the parameter regime A < V; < p
the resulting in-gap QMS emerge without additional surface or IS but by adding a smooth confining potential
[37-40, 42]. These states can also be tuned arbitrarily close to zero energy, thereby mimicking the behavior of

the MZM.

We implement a confining potential within the nanowire as a simple function of the lattice coordinate
j € [0,N,,) labeling the atomic sites on the nanowire:
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[ j . — (N, — 1
cost| 9] s G DD
L | 2(N,y — 1) | s

where s controls the smoothness at the edges. We then re-cast the values of the spin—orbit interaction and pair
potential accordingly: @ — a f(j)and A — Af(j). Large values of s correspond to an abrupt hard-wall
confinement where both aand A remain constant (nonzero) throughout the nanowire (cf previous
subsections). For smaller values of s the spin—orbit coupling and the induced superconductivity go to zero
smoothly at the edges of the nanowire.

To study the topologically trivial parameter regime we focus our discussion on three additional cases: For an
N,, = 50 nanowireweseta = 0.5, V; = 1.2, A = 0.1,and px = 2.0 both with abrupt (s — 00) and smooth
(s = {17,9}) confinement potentials according to equation (13). In figure 4(a) we show how the QMS is brought
to a MZM-like state (peak at zero bias) by making the confining potential smoother. We have checked that other
shapes for the potential profile do not modify the results qualitatively. The transient signature, see figures 4(b)
and (), of these states is also similar to the MZM: (1) The current oscillates with a dominant frequency
corresponding to the lead-nanowire transition, and (2) the lifetime of the oscillations is similar or even longer
compared to the MZM case. However, unless the QMS appears exactly at zero energy, the transient oscillations
are suppressed, and the Fourier peak corresponding to the ‘smooth enough’ case is considerably more
pronounced. It is also possible that more than one Majorana or quasi-Majorana pair coexist leading to multiple
in-gap resonances of both zero and nonzero energies [82, 83]. In these situations we would expect a rich
transient signature with oscillations between different Majorana (and quasi-Majorana) states reflecting all the
intricacies of the in-gap level structure.

4, Conclusion

We studied the time-dependent features of MZMs and QMS in a superconducting nanowire in contrast with
magnetic IS. The transient features related to MZM and QMS were found to be different than the ones resulting
from magnetic impurities: The MZM and QMS transients were found to decay very slowly with a pronounced
oscillation frequency due to a weaker hybridization of the MZM and QMS with the electrode states compared to
the IS. Compared to the MZM and QMS, the broadening of the resonances related to the IS and the consequent
faster decay times could be attributed to the impurity-induced hopping disorder and the consequent increased
effective tunnel barrier around the impurities. This finding could be utilized in possible detection and
identification of the MZM or QMS via ultrafast transport measurements [23-30, 84]. In order to estimate a limit
for the time scales that one needs to be able to resolve, we refer to the experiment of Mourik et al [10], who found
an induced superconducting energy gap of 250 peV. Using this as an upper limit for the energy scale of the in-
gap oscillations, the fastest temporal oscillation period related to such processes would be 16.5 picoseconds
(frequency of 60 GHz). While this might be at limits of what is routinely measurable, recent ultrafast transport
measurements showed a sub-picosecond time resolution [30] and should definitely be able to resolve the
oscillations predicted by us.

We also found that even though the QMS are only protected by the smoothness of the confining potential (in
contrast to the topological protection of the MZM), the QMS may still mimic the transient signature of the
MZM. This effect could also be utilized by employing braiding schemes for the QMS in topological quantum
computation [40]. Since topological properties of the MZM should be robust against electronic interactions
[51], it would be a promising direction for future work to understand this effect for the QMS and how it might be
manipulated and controlled.

In practice the sudden switch of the bias voltage employed here could be replaced by a short light pulse in the
THz regime to excite the system away from its thermal equilibrium. In the case of an ultrashort laser excitation
the current response of MZM or QMS could initially be suppressed and then recover transiently with the
oscillations as a characteristic signature, similarly to the amplitude mode oscillations of laser-driven ordered
phases [85—-87]. Together with ultrafast optical switching of chiral superconductors [88, 89] or nonequilibrium
engineering of topologically nontrivial states of matter [90—-98] our findings highlight the great potential of
ultrafast techniques for advances towards topological quantum computation.
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Figure 4. (a) Low-voltage regime of the differential conductance for the MZM (cf figure 3) and QMS with varying confining potential.
If the confining potential is not smooth enough, the QMS appear at nonzero energies 46, ,. The inset shows the potential profile at the
left end of the nanowire. (b) Transient currents for the separate cases in panel (a) when applying a bias voltage eV = 0.02]. (c) Fourier
spectra corresponding to panel (b). Model parameters for the QMS casesare « = 0.5, Vz = 1.2, A = 0.1,and pt = 2.0.

Acknowledgments

RT and MAS acknowledge funding by the DFG (Grant No. SE 2558 /2-1) through the Emmy Noether program.
RVL acknowledges funding from the Academy of Finland (Project No. 317139). EP and GS acknowledge EC
funding through the RISE Co-ExAN (Grant No. GA644076). EP also acknowledges funding from the European
Union project MaX Materials design at the eXascale H2020-EINFRA-2015-1, Grant Agreement No. 676598 and
Nanoscience Foundries and Fine Analysis-Europe H2020-INFRAIA-2014-2015, Grant Agreement No. 654360.
GS also acknowledges Tor Vergata University for financial support through the Mission Sustainability Project
2DUTOPI.

Appendix A. Transport setup and partitioning the Green’s function

Even though in the main text we considered a two-terminal device, the description readily allows for a more
general treatment, and we now label by A an arbitrary number of electrodes. The central region C, for which we
had the superconducting nanowire in the main text, can also take a more arbitrary shape. We only assume there
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to be no direct connection between any of the electrodes but the coupling is always through the central region.
Then, the Hamiltonian for the full transport setup may be partitioned accordingly

bi 0 - ke
p=| 0 B2 lac (A1)
hei hey -+ hec

with (M) = €xaOan O for the electrodes, and (hcy)mky = Tk for the couplings. For the central region,
hcc, we may use the ‘on-site’ and ‘nearest-neighbor’ contributions (equations (6) and (7) in the main text), or
consider some other arbitrary structure. We further denote the matrices for the full transport setup as boldface
symbols. It is important to notice how the electrode blocks, hy\ = k) (2), are different for the vertical and
horizontal branches of the Keldysh contour due to the shift in energylevelsat t > 0. Also, we stress here that the
block structure in equation (A.1) does not refer to the Nambu®spin space but it is of dimension

(N, + 1) x (N, + 1)where N, is the number of electrodes. Each block then accounts for the individual
dimension of the corresponding partition. The matrix elements in the Green’s function in equation (10) in the
main text (indices x, y belonging either to the electrodes or to the central region) therefore label the transport
setup in the same block form

Qll Q12 QIC

G= Q21 Q.zz Q?C ' (A2)
Ga Ge -+ Gee
We may derive the equation of motion for the Green’s function by
10, Gy (2, 2) = 0,10z 2)($.(2) ® &)(2)) — 0z, 2)(d, ) ® D)), (A.3)

where the step function is defined on the Keldysh contour yaccording to the contour-ordering operator 7, [32].
Evaluating the derivative gives

10.Gy (2, 2) = 8(z, 2) (£:(2), &2} — {(T,[i0.8.(2)] ® &), (A4)

where the anticommutator gives simply 4, 1 and the evolution of the spinor operator can further be derived
from its equation of motion. Depending on which region the index x belongs to (and the corresponding
structure of the Hamiltonian in that region), the time-evolution of the field operator is completely specified. The
equations of motion for the whole transport setup then take the matrix form [32, 33, 35, 99]

[i0,1 — h(2)]G(z, ') = (2, 2/)1, (A.5)
Gz )[—i0s1 — h(@)] = 8z 1, (A6)

which the Green’s function satisfies being antiperiodic along the contour (Kubo—Martin-Schwinger boundary
condition [100, 101]).

We see that the equations of motion are the same as those of [33, 99], hence we may in similar fashion, using
the Langreth rules [32, 102], derive an equation for the equal-time lesser Green’s function with indices on the
central region Gc. This is akey quantity as it relates to the time-dependent one-particle reduced density-matrix
(TDIRDM) by p (1) = —iGZc(t, t). From now on we will only discuss quantities in the subspace of the
central region, so we will drop the subscript ‘CC’. The lesser Green’s function at the equal-time limit is given by
[99]

idi§<(t, t) — [hce(®), G<(t, D] = —[GR - = 4+ G- 4 + G! » X1, 1) + hee, (A7)
t

where the time-convolutions on the horizontal and vertical branches of the Keldysh contour are defined as

[f-gl(t, t) = J; dif (1, Dg(F, Hand[f * g1t 1) = —i fo g drf (t, T)g (7, t). The superscripts R, A,
<,], [ refer to the retarded, advanced, lesser, right and left Keldysh components, respectively [32, 99]. The
embedding self-energy, 3, accounts for the coupling between the central region and the electrodes [33].

We note that the left-hand side of equation (A.7) corresponds to a Liouville-type of equation for the density
matrix of an isolated central region whereas the right-hand side gives rise to an open transport setup as in
connection to the electrode environment. The time-convolutions on the right-hand side can further be
identified as source and drain terms, and the ones including the imaginary track of the Keldysh contour to
include the initial contacting of the separate regions. Importantly, within the so-called WBA for the embedding
self-energy, equation (A.7) becomes a closed equation for the equal-time lesser Green’s function and the
TD1RDM can be solved analytically.
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Appendix B. Solution to the equation of motion

In order to close the equation of motion we now describe the electrodes in the framework of WBA, where the
electronic levels of the central region are in a narrow range compared to the electrode bandwidth. The validity of
WBA has been discussed in, e.g. [21, 103—105], and for the purpose of the present work (weak coupling of the
central region to electrodes of large bandwidth), this is a well-justfied approximation. In frequency space the
retarded Keldysh component of the embedding self-energy can then be written as

1 .
Sx @) =D Tyr———————— Tioan & —ilr /2. (B.1)
k W — €k T+ 17

The advanced component is given simply by conjugating this. The other components of the self-energy (<, [)
may further be derived from the retarded and advanced components [32, 99]. The time-domain quantities in
equation (A.7) are then obtained by Fourier transforming. Looking at equation (A.7) and the earlier work
[33, 99] we may use the fact that the same equations have the same solutions, i.e. including the Nambu ® spin
structure in the Hamiltonian of the central region (e.g. spin—orbit coupling, Zeeman splitting and pairing field)
adds no extra complication to the evolution of the Green’s function. The only difference is in the Nambu ® spin
structure of the matrices.

It is useful to introduce a nonhermitian effective Hamiltonian h.g = hcc — iL'/2 for which the left and
right eigenvalue equations are

(UMb = € (PH;  he|TR) = €|UR), (B.2)

where the eigenvectors and eigenvalues correspond tothe 4 x 4 Nambu ® spin space. The solution for the
TD1RDM expanded in the left eigenbasis takes the explicit form [33]

(WHpM ) =S {D el + WD je(t) + II5 45(0)]
B

+ VT e 600y 41, (B.3)
where
Dy = <‘I’?|£,\|\Pk>, (B.4)
Mg = [& UG (B.5)
! (WA V= e)w+ Va— €
4 (t) = fd_w fw— p)el@r-er (B.6)
o mw— Pt Va— Dw+h—e) '

Qjx = fd—w fw= - = (B.7)

21 (W — )(w+ WV — e)w+ WV — g)w — )

Here f(w — p) = (e%@~# + 1)~!is the Fermi function at inverse temperature 3and chemical potential .
Evaluating the TD1RDM in a physically relevant basis, e.g. the localized site basis of the central region {|) }, is
then readily done as a basis transformation from the left eigenbasis to the desired one
<90m|\115'{> <\I’E|@n> plL Wyl B

(@ulp®lg,) ]Zk WO () (THp(0)Ty), (B.8)
which follows from the biorthogonality of the left and right eigenvectors. The TD1RDM is then simply given by
evaluating the terms in equations (B.5), (B.6) and (B.7) for all indices j, k and time parameter ¢, and then inserting
into equations (B.3) and (B.8).

The integrands in equations (B.5), (B.6) and (B.7) have a fairly simple analytic structure: The ‘1/(w — z)’
type of terms have simple poles at w = z whereas the Fermi function has simple poles at the Matsubara
frequencies given by w, = (2n + 1) /(—if). Expressions similar to those in equations (B.5), (B.6), (B.7) have
been found, e.g. in [106, 107] and integrated correspondingly using contour integration techniques. In [33] the
frequency integrals in equations (B.5), (B.6), (B.7) were evaluated analytically in the zero-temperature limit to
obtain a result for the TD1RDM in terms of logarithms and exponential integral functions. Here we evaluate
these integrals analytically at arbitrary (inverse) temperature in the Fermi functions, and we will detail these
steps next.
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Figure C1. Poles in the complex z plane for the integrand in equation (C.1). The locations of the poles are only for illustration.

Appendix C. Details of the Fermi integrals

Making a change of variables z = f(w — p)in equation (B.5) gives

1
A“"*ﬂf 2 (zfzo(zfz»(e ) (D

where we definedz; = 8(¢; — py)and z, = 3 (ef — iy with iy = p + V. This integrand has simple poles at
z =12,z = zand z = w, = i(m + 2mn), see figure C1. The spectrum of the complex eigenvalues of the
nonhermitian matrix k. is such that the eigenvalues, ¢;, lie in the lower-half plane (LHP) whereas the complex
conjugated ones, €}, lie in the upper-half plane (UHP). For the ‘(z — z,,)~ " contributions the residues are simply
one and for the Fermi function we have Res [(e? + 1)7!, z = w,] = —1. Then, we can close the integral in
equation (C.1) in the UHP as shown in figure C1, and using the residue theorem we get

Ay = iﬁ[ ! s L ] (C2)

z—ze2+1 n=0 Wy, — 20wy, — 2)

The infinite sum can be written as

> 1 e 1
g li(m + 27wn) — z][i(7 + 27n) — 2] ; 27r1(n + ‘Z‘”)zwi(n + %)
1 & 1
)2 20 (n + ay(n + b)
1

= T oh—a 1/)(5) V(@] (C.3)

where we defined a = (iz; + 7) /27, b = (iz; + 7) /27, and ¢ is the digamma function which is defined as the
logarithmic derivative of the gamma function, ¥ (z) = ;—Z logI'(z) [108]. We can then insert the result of the
sum back into equation (C.2) and couple the terms by simplifying

: *
Aoy — 1 1 1 1 Bl —m)) (l_ 5(@‘!&)) ’ '
MET Ej{emftw 1 lw(z 2mi 3 27i (4

where we also inserted back the definitions of Z’s. It is important to notice that we did not do anything but
manipulations after using the residue theorem; the infinite sum was rewritten in terms of a special function
which is broadly known in computational sciences and readily implemented for example in the GNU Scientific
Library [109]. Equation (C.4) is our final result for A, j for arbitrary values of 3. We note in passing that it would
give completely equivalent result if the integral was closed in the LHP.

Making the same change of variables in equation (B.6) as in the previous case leads to

dz e%(zfzz)t
e C.
k(1) = 6 f:)o 21 (z — 2)(z — 2)(z — z3)(e® + 1) )

where we definedz; = 3(¢; — p),z, = B(¢j — pr)and z3 = 3 (€f — ). Also in this case we notice poles in the
complex plane, similarly as in figure C1. In this case, however, we may close the integral only in the UHP due to
the exponential in the numerator, and we get according to the residue theorem
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%(23—22)1‘ S %(Wn_ZZ)t
T (1) = B2 < -3 e . (C.6)
— z3)

(zz—2)(z3—)(>+1) o w, — 2)(w, — 22) (W,

We may manipulate the infinite sum in equation (C.6) as

Lami(n+ 2217

> es
Wn — 2) (W — 22)(Wy — 23) - ng() 27ri(n + iZ]Jﬂr)27ri(n + i22+7r)27ri(n + %)

27

e%(anzZ)t

o0
2 (
" T
i 00 ex(n+b)
>

TS it amthnt o

(C.7)

wherewedefined a = (iz; + ) /27, b = (iz, + 7) /27, ¢ = (izzs + 7) /27 and x = — 27t /3. In this case the
infinite sum will give another type of special function, the hypergeometric function ,F; [110]:
i i eXx(n+b)

Q@) = (n+ a)(n + b)(n + ¢) B @2m)}@a — b)a — o)(b —¢)

i

« {eb"[b SR a1+ e e + SR+ b e+ SRR G 1+ G eX)]}. (C8)
a C

The hypergeometric function together with the Pochhammer symbol are defined as [110, 111]

o0
(p)n(q)n s" 1 n = 1)
F > > s == VN n — C9
F(p, g1y s) ; o, » p(p+ 1) (ptn—1) n>0, (C9
Inserting the definitions for g, b, cand x (and also the previously introduced variables z) leads to
i b2t et/ Be-ilei- 1)t
o e — 2wy — 2)(wa — 23) B — e)ef — €5 — W)
% 6;5 — € — W 6;5 — €
< AT =t B+ E T D — iyt B) — Fej— 1, B) { (C.10)
1%\ W
where we defined an auxiliary function
1 1 iz 3  ifz _, .,
z,t, 3) = AL, - +—, =+ —,¢ Zﬂ/ﬁ). C.11
§@n ) iﬁz+7r21(2 w2 ©.11)

This calculation was only for the infinite sum in equation (C.6). Inserting the definitions of z’s into the first term
gives

e‘%(l3*22)f e—i(fj—ff)t 1

(23— 2)(z — 2) (@ + 1) B2 — e))(ef — ¢ — V3) eBlei-m) 4 1’

(C.12)

Combining the terms finally gives

i —i(ej—ef
() = . et eDt 4 e~/ Be—ilej— )t
’ (e — 6j)(5>,f —€¢—W) eBlei—m) 4 1
* 5>kk —€—W e}f — €
XIS =t B+ =86 = 6 5) = =86 = 1, ) (C.13)
A A

for arbitrary values of 8. Similarly here, after using the residue theorem, we only manipulated the expressions so
that we could identify a known function ,F,. Conveniently, the hypergeometric function is also widely used in
computational sciences, and both fast and accurate implementations of it are available [112].

In the third case, in equation (B.7), we do the same change of variables as before to get

g [ dz 1
e =10 fm 2z — )z — )z — 2)(z — z) (e + 1) (19

where we definedz; = B(¢j — ), z, = B(¢j — 1), 23 = 3 (ef — ty)and zy = 3 (6§ — ). The pole structure
is again similar to the one shown in figure C1, and we may close also this integral in the UHP. Again, according to
the residue theorem we get as a result
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1 1
+

(73 —2)(zs — 2)(z3 —z) (e + 1) (zs — 2)(zs — 2)(24 — z3)(e™ + 1)
_ Z 1
n=0 Wy — 20wy — 22)(Wy, — 23) (W, — 24)
The infinite sum may again be manipulated as

i 1

oo Li(m + 2mn) — z][i(m + 27n) — ][i(7 + 271n) — z3][i(7 + 271) — z4]
i 1
n=0 2mi (n + 1Zl+7r)27ri(n + —iZZZtﬂ)ZWi(n + —izgw)Zﬂ'i(n + —iz“;ﬂ)

7

> 1
C.16
Z:: (n+a)n+bn+om+d’ (16)

Djx = iﬂa{

(C.15)

[

(27r)4

wherewedefined a = (iz; + 7)/2m, b = (iz, + ) /27, ¢ = (izz + 7) /2w and d = (iz4 + 7)/27. Also this
sum has an expression in terms of the digamma function

Ly 1 _ 1 [ (@ N Q)
et o+ a(n+bn+omn+d  QCotla@a—b@a—c@a—-d (b-—a®—ob-—4d
Y(c) " P(d)
c—a)c—bc—d) @d-a)d-bd-o |
(C.17)
Inserting the expressions for a, b, cand d, and then further the expressions for z;, z,, z; and z, leads to
> 1
;g) Wy — 2) Wy — 22) (W, — 23) (W, — 24)
_ i3 i *1 w(l+iﬁ(ff_“))_¢l+iﬁ(€>’§_w
213 | (e — e — € — VW 2 27 2 27
cae -
- = - w(l MRCIG Y MA)) _pfL g Blh = m it (C.18)
(e — €))(ex — €+ VWA 2 2 2 2T
Combining the terms in equation (C.15) gives as the final result
i 1 1 Blej— py) 1 Ble¥— )
efleg—m 4 o E[w(g o 2mi - ) o w(g kal )]
D je = * *
(e — ) — €j + VW,
i 1 1 Blej—w) 1 Blet — )
P m 1 ;[1/’(5 B 2]7ri ) o 1/}(5 o 2mi : ):|
o * * (C.19)
(ex — el — € — VOV
for arbitrary values of (.

Finally, inserting equations (C.4), (C.13) and (C.19)into (B.3) gives then the TD1IRDM at arbitrary
temperature. When the asymptotic behavior of the digamma and hypergeometric function is studied, the results
in equations (C.4), (C.13) and (C.19) can be shown to reduce to those in [33] at the zero-temperature limit
(6 — 00) [113]. We also note that congruent results involving equivalent special functions have recently been
reportedin [114-116].

Appendix D. Inclusion of sudden electromagnetic fields in the central region

Itis also possible to include a sudden switch-on of an electromagnetic field in the Hamiltonian of the central
region. For example, this includes the possibility for a static potential profile (e.g. a gate voltage) u,,,,,, between
basis states m, n of the central region, to be added to the ‘on-site’ contribution a (equation (6) in the main text).
Also, for the ‘nearest-neighbor’ contribution b (equation (7) in the main text), it is possible to consider a Peierls
phase,,, = —~,.m accounting for a magnetic field (normalized to the flux quantum ¢y = h/2e) when traversed
along a closed loop of states 1, n. For a general description, we simply consider a perturbed Hamiltonian fcc
out of equilibrium (signified by a tilde), and use the unperturbed Hamiltonian h¢c in equilibrium. Then, a
formula for the TD1RDM similar to equation (B.3) can be derived as [33]
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~L ~L ~ ~ ~Uk ~
(Wi1pO) = > Ml + () + I () + Q)] (D.1)
)
where the introduced terms I, T and () take a slightly more intricate form compared to those in equation (B.3)
as the eigenbases of the unperturbed and perturbed Hamiltonians, in general, do not need to be the same.
Therefore, we need to take the corresponding overlaps into account

~ ~L ~L
Do = (V5I0AYy), (D.2)
~ dw w —
M= | — f(~ ) —> (D.3)
2 (w+ W — &w+ W — &)
~L ~ ~R ~ . N
M) = 3 (W) (U] VA, Ty e fdw Flw — peieth-ar D)
\k(E) = T — — —> .
T e @, e et i @ u- @)
~L ~ ~R ~ ~R AT ~L
= (U8 (WhI VAN, Ty (T, VWL (W50
AjRAE) = ~oL ~R. AR~
mnpg (W) (W, 1W,) (W, [0 ) (W)
% efi(?jf?,f)tf dw flw—p) D.5)

21 (W — @)W+ Vi — &)W+ Vi — )W — &)

where the tildes signify that the corresponding quantities are calculated from the perturbed Hamiltonian ficc,
and we explicitly defined a ‘bias-voltage matrix’ V= W1 — (hee — hee). The eigenvalues {¢, €} and
eigenvectors { WL/R, r\I\IJL/R} refer to the complex eigenvalues and to the left/right eigenvectors of h.y and

he = hee — iL/2, respectively. In thelimit icc — hcc the result in equation (D.1) can be checked to reduce
to equation (B.3) [113].

Similarly, for the TD1RDM with sudden electromagnetic fields in the central region in equation (D.1), we
can take the integrals in equations (D.3), (D.4) and (D.5) and evaluate them in the same manner. This time the
pole structure is only a little more intricate due to different eigenvalues for the unperturbed and perturbed
Hamiltonians but it can be handled exactly in the same way as above. For perturbed central regions at arbitrary 5
the explicit results are

. ~k ~
Ny = ! 1 R Y B G OVl B (1 _ 5(61‘—#9) ’ D6
MET T gj{eff(zk*w 1 om [w(z 2mi 2 2mi Lo

~L ~ ~R ~
(U1 (U VAI,) T

ﬁ,\,jk(t) =3 R
mn (W (W, [W,)
i e~ iEG—&)t © et Bgmiti
(EI:|< - ?n)(gik —em— W)) eﬁ(glfim) +1
. & —en— Voo ek _ ¢
X g(flf - /‘l’,\) 3 ﬁ) - Nkim)\%y(fn - /uf)\) L, /6) + Nking(fm - W t, ﬁ) > (D7)
En_fm_‘/)\ En_fm_‘/)\
~L ~ ~R, ~ ~R ~ot ~L.
e 3 (12 ) (WA VAT) Do (U VAN ) (Vg1 ) i,
Ak = ~L AR AR AL
mnpq (W Wo) (U, 0,) (U, [0 ) (T W)
x 1 1 (l _ M)
(em = &+ VA (em — & + V) (em — ) 21 \2 2mi
1 Lw(l_ ﬁ(gn_ﬂ)\))
(& = em— V(& — )& — ¢ — VW 2r 2 2mi

N 1 i L Bley —
(6;k — 6,“)(6;k — &+ V/\)(qu — E;,k + W | efla-m 41 271 \2 27

N 1 i +Lwl_5(gj’“ﬂ 0.5)
(& —en = W& = &)(F — g = W[ e m 41 2m |2 2mi I

Again, inserting equations (D.6), (D.7) and (D.8) into (D.1) gives then the TD1RDM for a perturbed central
region at arbitrary temperature. Also here, the zero-temperature limit (5 — oo) presented in [33], is recovered
by the asymptotics of the digamma and hypergeometric functions in equations (D.6), (D.7) and (D.8)[113]. By
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careful inspection of equations (D.6), (D.7) and (D.8) in the limit of unperturbed central region @, — Wand
& — ¢)itcanbe verified that they reduce to equations (C.4), (C.13) and (C.19)[113].

Appendix E. Derivation of the bond current

We define the bond current flowing between site jand j + 1 in the nanowire (central device) by the rate of
change of the number of particles in the region comprising the left electrode and the first j sites in the nanowire:

i .
I\G = Z 6;j‘LSEkLs + Z Z 6rlylsems> (El)
ks m=1 s

where k and m respectively label the basis elements in the left electrode and the sites in the nanowire, and sis a
spin index. The bond current between sitesjand j + 1 is then defined by

d -
L= a(l\@) (E.2)

The temporal change in the number of particles can be derived from

d

—(Nj) = —i([N}, Hiatl), (E:3)
dt
where we now separate the ‘normal’ and ‘superconducting’ contributions as Hiot = Hyor + Ha with
N, . N,—1 L
Hnor - HL + HR + Hc + Z Z(ess 67;56715’ + hC) + Z Z(]ss Cnlsc(n+1)s’ + h.C.), (E4)
n=1 ss’ n=1 ss
A NW
Hy= A Z Cn1Cny + huc,, (E.5)
n=1

where we separated the ‘on-site’ and ‘nearest-neighbor’ contributions in the spin-dependent matrix elements of
eand J. Also, the nanowire is coupled to the electrodes only via the terminal sites (1 and N,,), so the coupling
Hamiltonian takes the form

A, = S (T8 a0 + he) + (Tin, &réngs + hc)l. (E.6)

kss'

With the normal part of the Hamiltonian, the commutator in equation (E.3) is nonzero only for the following
terms

A A~ At A PSS ] AT A Y
[I\]j: Hyor] = |:Z CrLsCkLs> Hc:| + |:Z Z CJlSCWIS’ Hc:|
ks

m=1 s
j Ny—1
A-‘- A ’ //,\1- A YNDN A~
+ ZZ CinsCms> Z Z( s Cos' C(n+1)s" +J SC(L+1)$//Cn5’) . (E.7)
m=1 s n=1s's"

As the coupling Hamiltonian H, has one creation (annihilation) operator in the nanowire and one annihilation
(creation) operator in the electrode, so in principle the first two terms above can give a nonzero commutator, but
it turns out they cancel each other out. We are then left with the term on the second line which can be simplified
to give

[I\Ga Hyor]l = Z]SS/(E;E(j+1)s' - e(TJ‘_H)SEjS’)- (E.8)
ss’

The remaining calculation is the commutator with the ‘superconducting’ part where the nonzero contribution
comes from

" A j N,
[N, Hal= [Z S el A Cuilay + h.c.]
= D (Al 8wt — Dbyl — AFE 00 + AFE] 250 (E.9)
1

We may then insert equations (E.8) and (E.9) into (E.3) and further into equation (E.2), and use the model
parameters for the nanowire (we have assumed a real pairing field) to obtain:
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fijer=—i

—

J st AT A At A at oA
_E[CjTC(jJrl)T + &1+t = CGrni6in + &G G0

Xreia st ot A _pt

- E[ el = et — iy 61 = ElpnrGiv]
' T oAt Tt

+ > ACmiEmt — Emrlmy — EntCmy + C Gt ) (E.10)
=1

This may further be simplified as in equation (11) in the main text.
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