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Abstract
We study time-resolved charge transport in a superconducting nanowire using time-dependent
Landauer–Büttiker theory.We find that the steady-stateMajorana zero-bias conductance peak
emerges transiently accompanied by characteristic oscillations after a bias-voltage quench. These
oscillations are suppressed for trivial impurity states (IS) that otherwise show a similar steady-state
signal as theMajorana zeromode (MZM). In addition, wefind that Andreev bound states or quasi-
Majorana states (QMS) in the topologically trivial bulk phase can give rise to a zero-bias conductance
peak, also retaining the transient properties of theMZM.Our results imply that (1) time-resolved
transportmay be used as a probe to distinguish between the topologicalMZMand trivial IS; and (2)
theQMSmimic the transient signatures of the topologicalMZMs.

1. Introduction

Topological quantum computing [1] is an activefield of research based on the key idea to reduce quantum
decoherence issues by using topologically protected states [2, 3].Majorana fermions are their own antiparticles
[4], and their condensed-matter analogs,Majorana bound state orMajorana zeromode (MZM), retain this
feature [5]. They are thus considered to be promising candidates for technological advances in topological
quantum computing [6–8] since their non-abelian statistics allowperforming quantum computation protected
from environmental perturbations [9]. Even though various experimental signatures ofMZMhave been
reported [10–17], a clear and unambiguous detection and the consequent control of these states has proven
difficult so far. For example, other types of bound states [18], surface states or interfacial impurity states (IS) also
give rise to in-gap states that contribute to transport or scanning tunneling spectroscopy signals. Therefore
probes that unambiguously distinguish betweenMZMand IS are highly desirable.

Time-resolved spectroscopies allow for studying the dynamics of various processes such as charge transport
[19]. For instance, in a transport setup exhibiting theMZM, there is no guarantee of instantly relaxing to a
steady-state configuration once the junction has been ‘switched on’ by, e.g. applying an external perturbation. In
contrast, the nonequilibriumproblems are oftenmuch richer andmore interesting than equilibriumproperties
[20–22]. This is especially relevant whennowaday transportmeasurements are pushing the temporal resolution
to sub-picosecond regime [23–30], and these ultrafast processes can be observed in real time.

In this paperwe propose time-resolved transport as a probe in order to reveal the difference between
topologicalMZMand ordinary IS.We simulate the transient dynamics in a quantumwire coupled tometallic
electrodes using the time-dependent Landauer–Büttiker formalism [31–36] extended to include
superconducting states in aNambu spinor representation. By comparing the time-dependent build-up of a
steady-state current after a sudden quench of the bias voltage between (i) a topological state withMZMand (ii) a
non-topological state with trivial IS, we discover that the dynamics for (i) and (ii) look different. For case (i) the
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time-resolved current shows pronounced oscillations that shift with the applied bias voltage and correspond to
transitions between the biased electrodes and theMZM. For case (ii) the corresponding oscillations are
suppressed. In addition, we study the transient response of quasi-Majorana states (QMS) in the topologically
trivial phase [37–44], andwefind that theQMSmimic the signatures of theMZMboth in the stationary and
transient regimes. The resulting Fourier spectra of the time-resolved current could therefore be used to identify
theMZMorQMS.

2.Model andmethod

Weconsider a normalmetal–superconductor–normalmetal (NSN) junction, see figure 1. The superconducting
central region of the junction is a nanowire in proximity to an s-wave bulk SCwith order parameterΔ. The
nanowire in addition features a strong spin–orbit interaction (e.g. InSb [45, 46] or InAs [13, 47])which favors
aligning the spins along the±y direction. An externalmagnetic field parallel to the nanowire breaks time-
reversal symmetry and aligns the spins along the±z direction, introducing a Zeeman splittingVZ=gμBB/2
where g is the Landé factor andμB the Bohrmagneton. A suitable combination of these effects has been shown to
host aMZM in the nanowire, exponentially localized at the edges [5, 10, 48–51]. Specifically the infinite
nanowire is in a topologically nontrivial phase forVZ>Δ>0 and certain intervals of the chemical potential
[48, 49, 51], fromwhichMZMemerge in the case of afinite wire. For the present study, the specific structure of
the electrodes, other than being a normalmetal with relatively broad bandwidth (e.g. Au, Ag orCu), is
unimportant as we concentrate on the effects within the nanowire.

Wewrite the totalHamiltonian as

= + +ˆ ˆ ˆ ˆ ( )H H H H , 1e c w

where the individual components for the electrodes and coupling are characterized by the single-particle energy
dispersion in the electrodes òkλ and by the couplingmatrix elementsTjkλ between the states in the nanowire and
the electrodes [33]:

å=
l

l l lˆ ˆ ˆ ( )†H c c 2e
k

k k k

and

å= +
l

l lˆ ( ˆ ˆ ) ( )†H T c c h.c. . 3c
jk

jk j k

Here kλ labels the kth basis element in theλth electrode, and j labels the atomic sites on the nanowire. The
nanowire, in turn, is characterized by [51, 52]

å m
a

s s= - + - - - + + + D ++ +  
⎡
⎣⎢

⎤
⎦⎥ˆ (ˆ ˆ ) ( ) ˆ ˆ ( ˆ ˆ ) ˆ ˆ (ˆ ˆ ) ( )† † † †H

J
c c J c c c c V c c c c

2
h.c.

2
i h.c. h.c. , 4w

j
j j j j j j j j j j1 2 1 Z 3

where J,μ,α,VZ, andΔare parameters for hopping, chemical potential, spin–orbit coupling, Zeeman splitting,
and pairing potential, respectively. The operators ˆ(†)cxs annihilate (create) electronswith spin Î  { }s , in a
region specified by x. The spin indices are summedwhen suppressed andσ2,3 are Paulimatrices. For indices x, y
belonging either to the electrodes or to the nanowire, the creation and annihilation operators satisfy the
anticommutation relations d d=¢ ¢{ˆ ˆ }†c c,xs ys xy ss .

At times t>0 the electrode energy levels are suddenly shifted, corresponding to a quench of the bias voltage,
  +l l leVk k . For a two-terminal device (λä{S, D}, seefigure 1) this out-of-equilibrium condition is

Figure 1.A schematicNSN junctionwhere two normalmetal electrodes are connected to a nanowirewhere superconductivity is
induced by the proximity effect froman adjacent s-wave SC. The electrodes are connected to a source–drain voltageVSD. Themagnetic
field


B orients the spins along the z direction.
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defined by the source–drain voltageVSD=VS−VD. The transport setup is considered partition-free [53–55]
meaning that thewhole system is initially contacted in a global thermo-chemical equilibrium at unique chemical
potentialμ and at inverse temperature b º -( )k TB

1.
For a compact notationwe introduceNambu spinors [56–58]

F º F F F F º    
ˆ ( ˆ ˆ ˆ ˆ ) (ˆ ˆ ˆ ˆ )† †c c c c, , , , , ,x x x x x

T
x x x x

T1 2 3 4
, and the anticommutation relation is then understood

componentwise d dF F =
m n mn{ ˆ ( ˆ ) }†,x y xy . Herewe denote quantities in theNambu⊗spin space by an underline.

This representation allows forwriting theHamiltonian for the nanowire in a Bogoliubov–deGennes form
[59, 60]

å= F F + F F ++ˆ [ ˆ ˆ ( ˆ ˆ )] ( )† †
H a b

1

2
h.c. , 5w

j
j j j j j j 1

wherewe introduced on-site and nearest-neighbor contributions [52]
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respectively. The electrode and coupling parts of theHamiltonian are then also expanded in theNambu⊗spin
basis although they do not involve the SCpairing potential:

å= F F
l

l l lˆ ˆ ˆ ( )†
H

1

2
8e

k
k k k

with  = - -l l ( )diag 1, 1, 1, 1k k and

å= F F +
l

l lˆ ( ˆ ˆ ) ( )†
H T

1

2
h.c. 9c

jk
j jk k

with = - -l l ( )T T diag 1, 1, 1, 1jk jk .
By using the nonequilibriumGreenʼs function approach [32]we conveniently access both transient and

steady-state responses in the setup above. The one-electronGreen’s function is defined as a contour-ordered
tensor product of the spinorfield operators [57]

¢ = - á F Ä F ¢ ñg( ) [ ˆ ( ) ˆ ( )] ( )†
G z z z z, i , 10xy x y

where the contour-ordering operator g is taken for the variables ¢z z, on theKeldysh contour γ [32]. The form
in equation (10) automatically handles both normal and anomalous components of theGreenʼs function [61].
In appendix Awe show that the equations ofmotion for theGreenʼs function are exactly the same as those in
[33, 35], and hencewe derive in a similar fashion a closed expression for the time-dependent one-particle
reduced density-matrix (TD1RDM)within the nanowire, r º - <( ) ( )t G t ti , from the lesser Greenʼs function
(see appendices B–D). In order to obtain a closed solution to the equation ofmotionwe have described the
electrodes withinwide-band approximation (WBA), where the electronic levels of the nanowire are in a narrow
range compared to the bandwidth of the electrodes. The coupling strength between the nanowire and the
electrodes is characterized by the frequency-independent tunneling rateΓλ.

As the TD1RDMgives us full information on the local charge and current densities within the nanowire, we
calculate the total current through the nanowire by considering a bond current between two atomic sites. In
addition, the traditional bond-current operator has to be adapted to include the contribution from the spin–
orbit coupling and from the SC pair potential [62–64]. In appendix Ewe derive the following expression for the
bond current between the sites j and j+1within the nanowire:

åa
= - á ñ + á ñ - á ñ - á ñ + D á ñ+  +   +   +   + 

=
 

⎡
⎣⎢

⎤
⎦⎥( ˆ ˆ ˆ ˆ ) ( ˆ ˆ ˆ ˆ ) ˆ ˆ ( )†

( )
†

( )
†

( )
†

( )I
J

c c c c c c c c c c2 Im
2 2

2 , 11j j j j j j j j j j
m

j

m m, 1 1 1 1 1
1

where á ñ· denotes elements of the TD1RDM.
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3. Results

3.1. Emergence of theMZM
Using equation (11)we calculate the (steady-state) current–voltage characteristics for nanowires of varying
lengths. The parameter space of themodel in equation (4) is rather broad. Instead ofmapping out the individual
details of each parameter, we concentrate our discussion on representative points in the parameter (phase)
space. Namely, for the nanowirewe choose J=1,α=0.5,VZ=0.25,Δ=0.1, andμ=0 [52] usingwhich
the nanowire possesses the topologicalMajorana state for long enough nanowires.We have investigatedmany
parameters in this topological regime and found that they do not result in qualitatively different behavior. This
choice alsofixes the units to the hopping energy; if the values of this quantity are in the eV regime, then times are
measured in the units of inverse hoppings which is on the order of femtoseconds. The coupling strength from
the terminal sites of the nanowire to the electrodes is chosen such that the tunneling rateΓλ=0.01. The bias
voltage is applied symmetrically for the source and drain electrodesVS=−VD≡V, andwe consider the zero-
temperature limit.

Infigure 2we show the differential conductance against the applied bias voltage (around a low voltage
window).We observe clearly how theMZMbehaves as a ‘half a fermion’ on both terminals of the nanowire
leading to two peaks of half the conductance quantum. The inset offigure 2 shows the exponential localization of
theMZM forNw=60. These two zero-energy states are far apart and the coupling between them isweak, and
we see a single zero-bias peakwhose value is exactly one conductance quantum. The coupling between these two
zero-energy states is enhanced for shorter nanowires leading to the splitting of the peak.

3.2. Transient signature of theMZM
Weevaluate transient currents through aNw=50 nanowire by considering the two centermost sites in
equation (11). In addition to the topological SCwith theMZM,we consider an ordinary SCwire (same as
figure 2 but forVZ=0) and three auxiliary cases ofmagnetic impurities deposited at the edges of an ordinary
SC. In accordancewith the Andersonʼs theorem, non-magnetic impurities cannot reduce the superconducting
gapΔ for an ordinary (time-reversal invariant) superconductor, and therefore there cannot be any in-gap states
fromnon-magnetic impurities [65–67].With this inmind, we introduce an interaction potential containing
bothmagnetic () and non-magnetic ( ) parts [68]

 å= - + +       ˆ (ˆ ˆ ˆ ˆ ) (ˆ ˆ ˆ ˆ ) ( )† † † †H c c c c c c c c , 12
j

j j j j j j j jimp

where the index j runs over the host sites in the ordinary superconductor where the impurities are attached to.
The parameters and  for these IS can bemodeled bymodified tight-binding parameters [69, 70] for the
terminal sites in the nanowire, j={1,Nw} in equations (6) and(7), m and

~
VZ (modified parameters signified by

a tilde). For the ordinary SCwire supplementedwith impurities we also concentrate our discussion on
representative points in the nontopological parameter (phase) space.We keep the time-reversal invariant bulk

superconductor unchanged by settingD = D =
~

0.1, although it has also been reported that impuritiesmay
suppress or even destroy superconductivity locally [71–74]. For the ordinary SCwe haveVZ=0 but in order to
introducemagnetic impurities we set ¹~

V 0Z , and the energy of these in-gap statesmay be tuned close to zero by
varying

~
VZ. For our purposes the exact formulation of themagnetic impurities is not too important as long as

there is a separate statewithin the gapwith different topological character compared to theMZM. In addition to
the on-site scattering potential in equation (12), the hybridization of the impurities with the underlying

Figure 2.Differential conductance versus applied bias voltage for nanowires of varying lengthNw. The zero-bias peak builds up for
sufficiently long nanowires (Nw50). The probability density for the corresponding zero-energymodes shows exponential
localization around thewire edges forNw=60 (inset).Model parameters for the nanowire are J=1,α=0.5,VZ=0.25,Δ=0.1,
andμ=0.
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superconductor J (and a)may be different than the bulk hopping J (andα), resulting in an effective tunnel
barrier around the impurity [66, 69, 70, 75, 76].

The different cases considered in our comparative simulations are collected in table 1.We single out the in-
gap states by applying a small biaswindow so that the oscillations in the time-resolved signal are only due to
virtual transitions from the biased Fermi level of the electrode to the in-gap state (zeromode) in the nanowire.

The steady-state dI/dV signals of cases (2)–(5) look qualitatively similar showing a zero-bias peak
(figure 3(a)) aswe tuned themagnetic impurity with the parameter for

~
VZ to appear close to zero energy, like the

MZM.The resonances corresponding to themagnetic impurities around zero energy are broadened compared
to theMZM for <J J due to an increased effective tunnel barrier [77–81]. The broadening of theMZM
resonance is therefore systematically narrower than the one of IS. TheMZMemerges completely from the
physicalmechanismdescribed by themodel in equation (4), and thewidth of theMZMpeak is therefore
completely specified by the coupling to the leads.While themodel parameters of the nanowire are locally
modified for the description of the IS, the couplingHamiltonian in equation (3), importantly, remains
independent of themodified central region. In particular, thismeans that theHamiltonian of the nanowire and
the corresponding eigenstates result in the observed behavior for the same tunneling rateΓ. Due to this
broadening, the transient signals infigure 3(b) for these cases can be qualitatively different. First, for the ordinary
SCwithout theMZM, case (1), the current signal is zero on average due to there being no transport channels
within the SC gap and the small biaswindow. Second, for the topological SCwith theMZM, case (2), the
transient oscillations last for thousands of units of inverse hopping (for hopping energies in the eV scale we have
J−1∼0.658 fs), i.e. up to picoseconds. TheMZMat the edges of the nanowire areweakly coupled to each other
although they are far apart, and even though theMZM is also directly connected to the electrodes, the
hybridization of theMZM isweak leading to a very narrow resonance and a long lifetime. This generic finding is
not limited to our parameter choice for theMZM.Third, for the ordinary SCwithmagnetic impurities, cases
(3)–(5) the transient oscillationsmay be suppressed (compared to theMZM) due to the broader resonance. For
case (3) the transient current rises rapidly but also saturates relatively fast to its stationary valuewithin couple of
hundred time units. The IS is directly connected to the electrodes resulting in a strong hybridization and in a
relatively fast decay of the transient.When the effective tunnel barrier due to themagnetic impurity is decreased,
cases (4) and (5), the transient time scales approach case (2) although they do not exceed it. The decay rate can be
approximated by the expectation value of the tunneling rate operator: g j j= å á G ñ= ∣ ∣j j j1

2 , where G º å Gl l

and jñ∣ are theMZMor IS eigenvectors, see the dashed lines infigure 3(b). For identical wire-electrode coupling,
the decay time 1/γ of theMZM transient current is between 1.5 and 5 times the one of the IS.

Additionally, the transient oscillations for theMZM, case (2), aremore pronounced than the ones for the IS,
cases (3)–(5). This difference can be seen by taking the Fourier transforms of the time-dependent signals, see
figure 3(c). The Fourier transforms are calculated from an extended temporal window (up to t=10000J−1) for
better frequency resolution, we subtract the steady-state value from the sample points in order to get rid of a
divergence at zero frequency, and ultimately we take the absolute value of the result. The low-frequency regime
shows pronounced peaks for theMZMcase, and the frequency of the first peak exactly corresponds to the
difference between the biased Fermi level of the electrode and theMZM (indicated by (i) in thefigure). The
analogous peaks for the IS are suppressed due to the broader resonances and shorter lifetimes. Before entering
the band of all possible transitions outside the SC gap ( w D =2 0.2, indicated by (iii) in thefigure)we observe
additional transitions between theMZMand states close to the gap edge (indicated by (ii) in thefigure). These
resonances remain independent of the applied voltage confirming that they result from intra-level transitions
within the nanowire. The resonances due to the IS are tuned to be close to the zero energy, but they are still
strictly speaking nonzero compared to the actualMZM.This is seen as an additional Fourier peak forming
aroundω=0 for cases (4) and (5). This could be understood as an artificial intra-level transition between the
magnetic IS. Importantly, this peak is not seen for theMZM.Overall the transient features of theMZMcan be
distinguished from the IS.

Table 1.Model parameters for the superconducting nanowire.Modified tight-binding parameters for the terminal
sites of the nanowire are signified by tildes.

Case μ m J J α a VZ
~
VZ D D

~

(1)Ordinary SC 0 0 1 1 0.5 0.5 0 0 0.1 0.1

(2)Topological SC 0 0 1 1 0.5 0.5 0.25 0.25 0.1 0.1

(3)Ordinary SC+ IS1 0 0 1 0.2 0.5 0.1 0 0.21 0.1 0.1

(4)Ordinary SC+ IS2 0 0 1 0.5 0.5 0.25 0 0.43 0.1 0.1

(5)Ordinary SC+ IS3 0 0 1 1 0.5 0.5 0 0.67 0.1 0.1

5
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3.3. Comparison betweenMZMs andQMS
Even thoughwe found a distinction between trivial IS and the topologicalMZM, onemay still wonder whether
and howother in-gap states deeply in the topologically trivial regime for the samemodel of the nanowirewould
contribute to the time-resolved signal. Recently, it has been studied that in the parameter regime mD < VZ

the resulting in-gapQMS emergewithout additional surface or IS but by adding a smooth confining potential
[37–40, 42]. These states can also be tuned arbitrarily close to zero energy, therebymimicking the behavior of
theMZM.

We implement a confining potential within the nanowire as a simple function of the lattice coordinate
jä[0,Nw) labeling the atomic sites on the nanowire:

Figure 3. (a)Differential conductance versus applied bias voltage for ordinary and topological SCs of lengthNw=50. The shaded
areas refer to the biaswindows in panel (b). (b)Transient currents for applied bias voltages eV={0.02, 0.05}J. The dashed lines are
given by - g-( )I1 e t

SS where ISS is the steady-state current and γ is the decay rate, see text. (c) Fourier spectra corresponding to panel
(b). The shaded areas (i)–(iii) result fromdifferent transitions, see text.Model parameters for the ordinary and topological
superconductors are J=1,α=0.5,VZ={0.0, 0.25},Δ=0.1, andμ=0. For the ordinary superconductor with IS themodel
parameters are changed for the terminal sites of the nanowire, = { }J 0.2, 0.5, 1.0 , a = { }0.1, 0.25, 0.5 , and

=~ { }V 0.21, 0.43, 0.67Z , respectively.
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where s controls the smoothness at the edges.We then re-cast the values of the spin–orbit interaction and pair
potential accordingly:α→α fs( j) andΔ→Δfs( j). Large values of s correspond to an abrupt hard-wall
confinement where bothα andΔremain constant (nonzero) throughout the nanowire (cf previous
subsections). For smaller values of s the spin–orbit coupling and the induced superconductivity go to zero
smoothly at the edges of the nanowire.

To study the topologically trivial parameter regimewe focus our discussion on three additional cases: For an
Nw=50 nanowirewe setα=0.5,VZ=1.2,Δ=0.1, andμ=2.0 bothwith abrupt (  ¥s ) and smooth
(s={17, 9}) confinement potentials according to equation (13). Infigure 4(a)we showhow theQMS is brought
to aMZM-like state (peak at zero bias) bymaking the confining potential smoother.We have checked that other
shapes for the potential profile do notmodify the results qualitatively. The transient signature, seefigures 4(b)
and (c), of these states is also similar to theMZM: (1)The current oscillates with a dominant frequency
corresponding to the lead-nanowire transition, and (2) the lifetime of the oscillations is similar or even longer
compared to theMZMcase.However, unless theQMS appears exactly at zero energy, the transient oscillations
are suppressed, and the Fourier peak corresponding to the ‘smooth enough’ case is considerablymore
pronounced. It is also possible thatmore than oneMajorana or quasi-Majorana pair coexist leading tomultiple
in-gap resonances of both zero and nonzero energies [82, 83]. In these situations wewould expect a rich
transient signature with oscillations between differentMajorana (and quasi-Majorana) states reflecting all the
intricacies of the in-gap level structure.

4. Conclusion

We studied the time-dependent features ofMZMs andQMS in a superconducting nanowire in contrast with
magnetic IS. The transient features related toMZMandQMSwere found to be different than the ones resulting
frommagnetic impurities: TheMZMandQMS transients were found to decay very slowlywith a pronounced
oscillation frequency due to aweaker hybridization of theMZMandQMSwith the electrode states compared to
the IS. Compared to theMZMandQMS, the broadening of the resonances related to the IS and the consequent
faster decay times could be attributed to the impurity-induced hopping disorder and the consequent increased
effective tunnel barrier around the impurities. This finding could be utilized in possible detection and
identification of theMZMorQMS via ultrafast transportmeasurements [23–30, 84]. In order to estimate a limit
for the time scales that one needs to be able to resolve, we refer to the experiment ofMourik et al [10], who found
an induced superconducting energy gap of 250μeV.Using this as an upper limit for the energy scale of the in-
gap oscillations, the fastest temporal oscillation period related to such processes would be 16.5picoseconds
(frequency of 60GHz).While thismight be at limits of what is routinelymeasurable, recent ultrafast transport
measurements showed a sub-picosecond time resolution [30] and should definitely be able to resolve the
oscillations predicted by us.

We also found that even though theQMS are only protected by the smoothness of the confining potential (in
contrast to the topological protection of theMZM), theQMSmay stillmimic the transient signature of the
MZM.This effect could also be utilized by employing braiding schemes for theQMS in topological quantum
computation [40]. Since topological properties of theMZMshould be robust against electronic interactions
[51], it would be a promising direction for future work to understand this effect for theQMS and how itmight be
manipulated and controlled.

In practice the sudden switch of the bias voltage employed here could be replaced by a short light pulse in the
THz regime to excite the system away from its thermal equilibrium. In the case of an ultrashort laser excitation
the current response ofMZMorQMS could initially be suppressed and then recover transiently with the
oscillations as a characteristic signature, similarly to the amplitudemode oscillations of laser-driven ordered
phases [85–87]. Together with ultrafast optical switching of chiral superconductors [88, 89] or nonequilibrium
engineering of topologically nontrivial states ofmatter [90–98] ourfindings highlight the great potential of
ultrafast techniques for advances towards topological quantum computation.
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AppendixA. Transport setup and partitioning theGreen’s function

Even though in themain text we considered a two-terminal device, the description readily allows for amore
general treatment, andwe now label byλ an arbitrary number of electrodes. The central regionC, for whichwe
had the superconducting nanowire in themain text, can also take amore arbitrary shape.We only assume there

Figure 4. (a) Low-voltage regime of the differential conductance for theMZM (cffigure 3) andQMSwith varying confining potential.
If the confining potential is not smooth enough, theQMS appear at nonzero energies±δ1,2. The inset shows the potential profile at the
left end of the nanowire. (b)Transient currents for the separate cases in panel (a)when applying a bias voltage eV=0.02J. (c) Fourier
spectra corresponding to panel (b).Model parameters for theQMS cases areα=0.5,VZ=1.2,Δ=0.1, andμ=2.0.
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to be no direct connection between any of the electrodes but the coupling is always through the central region.
Then, theHamiltonian for the full transport setupmay be partitioned accordingly

=




   


⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )h

h h
h h

h h h

0
0

A.1

C

C

C C CC

11 1

22 2

1 2

with  d d=ll l ll¢ ¢ ¢ ¢( )h kk k kk for the electrodes, and =l l l( )h TC mk mk for the couplings. For the central region,
hCC, wemay use the ‘on-site’ and ‘nearest-neighbor’ contributions (equations (6) and(7) in themain text), or
consider some other arbitrary structure.We further denote thematrices for the full transport setup as boldface
symbols. It is important to notice how the electrode blocks, =ll ll ( )h h z , are different for the vertical and
horizontal branches of the Keldysh contour due to the shift in energy levels at t>0. Also, we stress here that the
block structure in equation (A.1) does not refer to theNambu⊗spin space but it is of dimension
(Ne+1)×(Ne+1)whereNe is the number of electrodes. Each block then accounts for the individual
dimension of the corresponding partition. Thematrix elements in theGreenʼs function in equation (10) in the
main text (indices x, y belonging either to the electrodes or to the central region) therefore label the transport
setup in the same block form

=




   


⎛

⎝
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⎞

⎠

⎟⎟⎟⎟
( )G

G G G
G G G

G G G

. A.2

C

C

C C CC
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Wemay derive the equation ofmotion for theGreen’s function by

q q¶ ¢ = ¶ ¢ áF Ä F ¢ ñ - ¢ áF ¢ Ä F ñ( ) [ ( ) ˆ ( ) ˆ ( ) ( ) ˆ ( ) ˆ ( ) ] ( )† †G z z z z z z z z z zi , , , , A.3z xy z x y y x

where the step function is defined on theKeldysh contour γ according to the contour-ordering operator g [32].
Evaluating the derivative gives

d¶ ¢ = ¢ F F ¢ - á ¶ F Ä F ¢ ñg( ) ( ){ ˆ ( ) ˆ ( )} [ ˆ ( )] ˆ ( ) ( )† †
G z z z z z z z zi , , , i i , A.4z xy x y z x y

where the anticommutator gives simply d 1xy and the evolution of the spinor operator can further be derived
from its equation ofmotion. Depending onwhich region the index x belongs to (and the corresponding
structure of theHamiltonian in that region), the time-evolution of the field operator is completely specified. The
equations ofmotion for thewhole transport setup then take thematrix form [32, 33, 35, 99]

d¶ - ¢ = ¢[ ( )] ( ) ( ) ( )h Gz z z z z1 1i , , , A.5z

d¢ - ¶ - ¢ = ¢
¬

¢( )[ ( )] ( ) ( )G hz z z z z1 1, i , , A.6z

which theGreen’s function satisfies being antiperiodic along the contour (Kubo–Martin–Schwinger boundary
condition [100, 101]).

We see that the equations ofmotion are the same as those of [33, 99], hencewemay in similar fashion, using
the Langreth rules [32, 102], derive an equation for the equal-time lesser Green’s functionwith indices on the
central region <GCC. This is a key quantity as it relates to the time-dependent one-particle reduced density-matrix
(TD1RDM) by r = - <( ) ( )t G t ti ,

CC CC . Fromnowonwewill only discuss quantities in the subspace of the
central region, sowewill drop the subscript ‘CC’. The lesser Green’s function at the equal-time limit is given by
[99]

- = - S + S + S +< < < <( ) [ ( ) ( )] [ · · ]( ) ( )⌉ ⌈
t

G t t h t G t t G G G t ti
d

d
, , , , h.c., A.7CC

R A

where the time-convolutions on the horizontal and vertical branches of the Keldysh contour are defined as

ò=
¥

[ · ]( ) ¯ ( ¯) (¯ )f g t t t f t t g t t, d , ,
0

and  ò t t t= -
b

[ ]( ) ( ) ( )f g t t f t g t, i d , ,
0

. The superscriptsR,A,

< ⌉ ⌈, , refer to the retarded, advanced, lesser, right and left Keldysh components, respectively [32, 99]. The
embedding self-energy,S, accounts for the coupling between the central region and the electrodes [33].

We note that the left-hand side of equation (A.7) corresponds to a Liouville-type of equation for the density
matrix of an isolated central regionwhereas the right-hand side gives rise to an open transport setup as in
connection to the electrode environment. The time-convolutions on the right-hand side can further be
identified as source and drain terms, and the ones including the imaginary track of theKeldysh contour to
include the initial contacting of the separate regions. Importantly, within the so-calledWBA for the embedding
self-energy, equation (A.7) becomes a closed equation for the equal-time lesser Greenʼs function and the
TD1RDMcan be solved analytically.
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Appendix B. Solution to the equation ofmotion

In order to close the equation ofmotionwe nowdescribe the electrodes in the framework ofWBA, where the
electronic levels of the central region are in a narrow range compared to the electrode bandwidth. The validity of
WBAhas been discussed in, e.g. [21, 103–105], and for the purpose of the present work (weak coupling of the
central region to electrodes of large bandwidth), this is a well-justfied approximation. In frequency space the
retardedKeldysh component of the embedding self-energy can then bewritten as

åw
w h

S =
- +

» - Gl l
l

l l( ) ( )T T
1

i
i 2. B.1mn

k
mk

k
k n mn,

R
,

The advanced component is given simply by conjugating this. The other components of the self-energy (< ⌈, )
may further be derived from the retarded and advanced components [32, 99]. The time-domain quantities in
equation (A.7) are then obtained by Fourier transforming. Looking at equation (A.7) and the earlier work
[33, 99]wemay use the fact that the same equations have the same solutions, i.e. including theNambu⊗spin
structure in theHamiltonian of the central region (e.g. spin–orbit coupling, Zeeman splitting and pairing field)
adds no extra complication to the evolution of theGreenʼs function. The only difference is in theNambu⊗spin
structure of thematrices.

It is useful to introduce a nonhermitian effectiveHamiltonian = - Gh h i 2CCeff for which the left and
right eigenvalue equations are

 áY = áY Y ñ = Y ñ∣ ∣ ∣ ∣ ( )h h; , B.2L
eff

L
eff

R R

where the eigenvectors and eigenvalues correspond to the 4×4Nambu⊗spin space. The solution for the
TD1RDMexpanded in the left eigenbasis takes the explicit form [33]

*

* 

åráY Y ñ= G L + G P + P

+ G W
l

l l l l l l

l l l
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∣ ( )∣ { [ ( ) ( )]

} ( )( )
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V e , B.3

j k jk jk jk jk kj
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L L
, , , , ,

2
,

i
,

j k

where

G = áY G Y ñl l∣ ∣ ( ), B.4jk j k,
L L

* ò
w
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2
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* *   ò
w
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W =
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- + - + - -
l
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( )( )( )( )

( )f

V V

d

2
. B.7jk

j j k k
,

Here w m- = +b w m- -( ) ( )( )f e 1 1 is the Fermi function at inverse temperatureβ and chemical potentialμ.
Evaluating the TD1RDM in a physically relevant basis, e.g. the localized site basis of the central region jñ{∣ }, is
then readily done as a basis transformation from the left eigenbasis to the desired one

åj r j
j j

rá ñ =
á Y ñ

áY Y ñ

áY ñ

áY Y ñ
áY Y ñ∣ ( )∣

∣
∣

∣
∣

∣ ( )∣ ( )t t , B.8m n
jk

m j

j j

k n

k k
j k

R

L R

R

R L
L L

which follows from the biorthogonality of the left and right eigenvectors. The TD1RDM is then simply given by
evaluating the terms in equations (B.5), (B.6) and(B.7) for all indices j, k and time parameter t, and then inserting
into equations (B.3) and(B.8).

The integrands in equations (B.5), (B.6) and(B.7) have a fairly simple analytic structure: The ‘ w -( )z1 ’

type of terms have simple poles at w = z whereas the Fermi function has simple poles at theMatsubara
frequencies given by w p b= + -( ) ( )n2 1 in . Expressions similar to those in equations (B.5), (B.6), (B.7) have
been found, e.g. in [106, 107] and integrated correspondingly using contour integration techniques. In [33] the
frequency integrals in equations (B.5), (B.6), (B.7)were evaluated analytically in the zero-temperature limit to
obtain a result for the TD1RDM in terms of logarithms and exponential integral functions. Herewe evaluate
these integrals analytically at arbitrary (inverse) temperature in the Fermi functions, andwewill detail these
steps next.
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AppendixC.Details of the Fermi integrals

Making a change of variables b w m= -( )z in equation (B.5) gives

òb p
L =

- - +
l

-¥

¥

( )( )( )
( )z

z z z z

d

2

1

e 1
, C.1jk z,

1 2

wherewe defined z1=β(òj−μλ) and *b m= - l( )z k2 withμλ=μ+Vλ. This integrand has simple poles at
z=z1, z=z2 and p p= = +( )z w ni 2n , see figureC1. The spectrumof the complex eigenvalues of the
nonhermitianmatrix heff is such that the eigenvalues,  j, lie in the lower-half plane (LHP)whereas the complex
conjugated ones, *k , lie in the upper-half plane (UHP). For the ‘ - -( )z zn

1’ contributions the residues are simply
one and for the Fermi functionwe have + = = --[( ) ]z wRes e 1 , 1z

n
1 . Then, we can close the integral in

equation (C.1) in theUHP as shown infigure C1, and using the residue theoremwe get
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The infinite sum can bewritten as
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wherewe defined p p= +( )a zi 21 , p p= +( )b zi 22 , andψ is the digamma functionwhich is defined as the

logarithmic derivative of the gamma function, y = G( ) ( )z zlog
z

d

d
[108].We can then insert the result of the

sumback into equation (C.2) and couple the terms by simplifying
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k

wherewe also inserted back the definitions of z’s. It is important to notice that we did not do anything but
manipulations after using the residue theorem; the infinite sumwas rewritten in terms of a special functionψ
which is broadly known in computational sciences and readily implemented for example in theGNUScientific
Library [109]. Equation (C.4) is ourfinal result for Ll jk, for arbitrary values ofβ.We note in passing that it would
give completely equivalent result if the integral was closed in the LHP.

Making the same change of variables in equation (B.6) as in the previous case leads to

òb
p

P =
- - - +

l
-¥

¥ -b
( )

( )( )( )( )
( )

( )
t

z

z z z z z z

d

2

e

e 1
, C.5jk

z z t

z,
2

1 2 3

i
2

wherewe defined z1=β(òj−μ), z2=β(òj−μλ) and *b m= - l( )z k3 . Also in this casewe notice poles in the
complex plane, similarly as infigureC1. In this case, however, wemay close the integral only in theUHPdue to
the exponential in the numerator, andwe get according to the residue theorem

FigureC1. Poles in the complex z plane for the integrand in equation (C.1). The locations of the poles are only for illustration.
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Wemaymanipulate the infinite sum in equation (C.6) as
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wherewe defined p p= +( )a zi 21 , p p= +( )b zi 22 , p p= +( )c zi 23 and p b= -x t2 . In this case the
infinite sumwill give another type of special function, the hypergeometric function F2 1 [110]:
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The hypergeometric function together with the Pochhammer symbol are defined as [110, 111]
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Inserting the definitions for a, b, c and x (and also the previously introduced variables z) leads to
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This calculationwas only for the infinite sum in equation (C.6). Inserting the definitions of zʼs into the first term
gives

* *

*

*   

 

b- - +
=

- - - +l b m

- - -

-

b

l( )( )( ) ( )( )
( )

( ) ( )

( )z z z z V

e

e 1

e 1

e 1
. C.12

z z t

z

t

k j k j3 1 3 2

i

2

j k

k

i
3 2

3

Combining the termsfinally gives
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for arbitrary values ofβ. Similarly here, after using the residue theorem,we onlymanipulated the expressions so
thatwe could identify a known function F2 1. Conveniently, the hypergeometric function is alsowidely used in
computational sciences, and both fast and accurate implementations of it are available [112].

In the third case, in equation (B.7), we do the same change of variables as before to get
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wherewe defined z1=β(òj−μ), b m= - l( )z j2 , *b m= - l( )z k3 and *b m= -( )z k4 . The pole structure
is again similar to the one shown infigureC1, andwemay close also this integral in theUHP. Again, according to
the residue theoremwe get as a result
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The infinite summay again bemanipulated as
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wherewe defined p p= +( )a zi 21 , p p= +( )b zi 22 , p p= +( )c zi 23 and p p= +( )d zi 24 . Also this
sumhas an expression in terms of the digamma function
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Inserting the expressions for a, b, c and d, and then further the expressions for z1, z2, z3 and z4 leads to
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Combining the terms in equation (C.15) gives as the final result
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for arbitrary values ofβ.
Finally, inserting equations (C.4), (C.13) and(C.19) into (B.3) gives then the TD1RDMat arbitrary

temperature.When the asymptotic behavior of the digamma and hypergeometric function is studied, the results
in equations (C.4), (C.13) and(C.19) can be shown to reduce to those in [33] at the zero-temperature limit
(b  ¥) [113].We also note that congruent results involving equivalent special functions have recently been
reported in [114–116].

AppendixD. Inclusion of sudden electromagneticfields in the central region

It is also possible to include a sudden switch-on of an electromagnetic field in theHamiltonian of the central
region. For example, this includes the possibility for a static potential profile (e.g. a gate voltage) umn, between
basis states m n, of the central region, to be added to the ‘on-site’ contribution a (equation (6) in themain text).
Also, for the ‘nearest-neighbor’ contribution b (equation (7) in themain text), it is possible to consider a Peierls
phase γmn=−γnm accounting for amagneticfield (normalized to theflux quantumf0=h/2e)when traversed
along a closed loop of statesm, n. For a general description, we simply consider a perturbedHamiltonian hCC

out of equilibrium (signified by a tilde), and use the unperturbedHamiltonian hCC in equilibrium. Then, a
formula for the TD1RDMsimilar to equation (B.3) can be derived as [33]
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where the tildes signify that the corresponding quantities are calculated from the perturbedHamiltonian hCC,
andwe explicitly defined a ‘bias-voltagematrix’ º - -~

l l ( )V V h h1 CC CC . The eigenvalues  { }, and

eigenvectors Y Y
~{ },L R L R

refer to the complex eigenvalues and to the left/right eigenvectors of heff and
= - G h h i 2CCeff , respectively. In the limit h hCC CC the result in equation (D.1) can be checked to reduce

to equation (B.3) [113].
Similarly, for the TD1RDMwith sudden electromagnetic fields in the central region in equation (D.1), we

can take the integrals in equations (D.3), (D.4) and(D.5) and evaluate them in the samemanner. This time the
pole structure is only a littlemore intricate due to different eigenvalues for the unperturbed and perturbed
Hamiltonians but it can be handled exactly in the sameway as above. For perturbed central regions at arbitraryβ
the explicit results are
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Again, inserting equations (D.6), (D.7) and(D.8) into (D.1) gives then the TD1RDM for a perturbed central
region at arbitrary temperature. Also here, the zero-temperature limit (b  ¥) presented in [33], is recovered
by the asymptotics of the digamma and hypergeometric functions in equations (D.6), (D.7) and(D.8) [113]. By
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careful inspection of equations (D.6), (D.7) and(D.8) in the limit of unperturbed central region (Y  Y
~

and
  ) it can be verified that they reduce to equations (C.4), (C.13) and(C.19) [113].

Appendix E.Derivation of the bond current

Wedefine the bond current flowing between site j and j+1 in the nanowire (central device) by the rate of
change of the number of particles in the region comprising the left electrode and the first j sites in the nanowire:

å å å= +
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where k andm respectively label the basis elements in the left electrode and the sites in the nanowire, and s is a
spin index. The bond current between sites j and j+1 is then defined by
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The temporal change in the number of particles can be derived from
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wherewe now separate the ‘normal’ and ‘superconducting’ contributions as = + Dˆ ˆ ˆH H Htot nor with
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wherewe separated the ‘on-site’ and ‘nearest-neighbor’ contributions in the spin-dependentmatrix elements of
ò and J. Also, the nanowire is coupled to the electrodes only via the terminal sites (1 andNw), so the coupling
Hamiltonian takes the form
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With the normal part of theHamiltonian, the commutator in equation (E.3) is nonzero only for the following
terms
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As the couplingHamiltonian Ĥc has one creation (annihilation) operator in the nanowire and one annihilation
(creation) operator in the electrode, so in principle the first two terms above can give a nonzero commutator, but
it turns out they cancel each other out.We are then left with the termon the second linewhich can be simplified
to give
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The remaining calculation is the commutatorwith the ‘superconducting’ part where the nonzero contribution
comes from
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Wemay then insert equations (E.8) and(E.9) into (E.3) and further into equation (E.2), and use themodel
parameters for the nanowire (wehave assumed a real pairing field) to obtain:
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Thismay further be simplified as in equation (11) in themain text.
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