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Abstract

Penttala, Jani
Heavy Quarkonia in Non-Relativistic Quantum Chromodynamics
Master’s thesis
Department of Physics, University of Jyväskylä, 2019, 86 pages.

Quarkonia are bound states of a quark-antiquark pair having the same flavour. In
this work, we go through how the effective field theory of non-relativistic quantum
chromodynamics (NRQCD) can be used to describe quarkonia formed by heavy
quarks. The Lagrangian describing the theory is derived at lowest orders and used
to determine the velocity-scaling of different operators. The velocity-scaling rules
are then used to estimate contributions of different Fock states in quarkonia.

We then describe the decay of S-wave quarkonia by writing the decay widths as
power series in the velocity of the quark. The equations for the decay widths contain
unknown constants that also appear in the inclusive cross sections of quarkonium
production, and their connection to the quarkonium wave function is also shown.

The results for the decay widths at different orders of the quark velocity are
studied. It is found that the convergence of the power series is slow, with the
convergence depending on the decay process.

Keywords: particle physics, quarkonium, effective field theory, quantum field theory,
quantum chromodynamics
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Tiivistelmä

Penttala, Jani
Raskaat quarkonium-hiukkaset epärelativistisessa kvanttiväridynamiikassa
Pro gradu -tutkielma
Fysiikan laitos, Jyväskylän yliopisto, 2019, 86 sivua

Quarkonium-hiukkaset ovat saman makulajin kvarkki-antikvarkkiparista muodos-
tuvia sidottuja tiloja. Tässä työssä käydään läpi epärelativistiseksi kvanttiväridy-
namiikaksi kutsuttavaa efektiivistä kenttäteoriaa, jota voidaan käyttää raskaiden
kvarkkien muodostamien quarkonium-hiukkasten kuvaamiseen. Teoriaa kuvaava La-
grangen funktio johdetaan alimmissa kertaluvuissa, ja sitä käytetään johtamaan eri
operaattorien skaalautuminen kvarkin nopeuden suhteen. Skaalaussääntöjen avulla
johdetaan tämän jälkeen arviot eri Fock-tilojen suuruuksille quarkoniumissa.

Orbitaalista kvanttilukua L = 0 vastaavien quarkonium-hiukkasten hajoamisle-
veydet kirjoitetaan potenssisarjana kvarkin nopeuden suhteen. Hajoamisleveyksien
yhtälöissä esiintyy tuntemattomia vakioita, jotka esiintyvät myös quarkoniumin
inklusiivisen tuoton vaikutusaloissa. Näiden tuntemattomien vakioiden yhteys quar-
koniumin aaltofunktioon käydään myös läpi.

Hajoamisleveyksien lausekkeista saatavia arvoja tutkitaan eri kertaluvuissa kvar-
kin nopeuden suhteen. Havaitaan, että potenssisarjan suppeneminen on hidasta ja
riippuu hajoamisprosessista.

Avainsanat: hiukkasfysiikka, quarkonium, efektiivinen kenttäteoria, kvanttikenttäteo-
ria, kvanttiväridynamiikka
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1 Introduction

Quarkonium particles are mesons that are formed by a quark-antiquark pair of the
same flavour. The heavy masses of the c- and b-quarks allow us to consider heavy
quarkonium particles as bound states of a single flavor. This is in contrast with
the light quarkonia, formed by light quarks, that are mixtures of quark-antiquark
states of different flavours. This makes the heavy quarkonia simpler, as they can
to a good approximation be described by a single QQ̄ Fock state. The quarkonium
particles formed by a cc̄-pair are called charmonium, and similarly quarkonia formed
by a bb̄-pair are called bottonium. The t-quark cannot form a quarkonium state as
it decays before forming a bound state. The charmonium and bottonium particles
are the focus of this thesis, and we will from now on mean them when referring to
quarkonia.

Quarkonium particles are interesting as they allow us to probe quantum chromo-
dynamics (QCD) at different regions [1, p. vii]. For the physics of the bound QQ̄ state
the non-perturbative effects of QCD dominate, whereas the decay and production of
the heavy quark-antiquark pair are described by perturbative scattering processes.
The quarkonia are also important because of the large amount of data available [2,
p. 380].

The non-perturbative effects of QCD, however, are not simple. Therefore it is
easier to describe quarkonia using an effective field theory. In quarkonia the velocity
of the quark is small, which allows us to write the Lagrangian as a power series in
the quark velocity. This is the basis for the non-relativistic QCD (NRQCD) which is
an effective field theory used in describing quarkonia. The non-perturbative physics
can then be absorbed into unknown constants which are separated from the effects
related to the short-distance scattering processes. The separation of the short- and
long-distance effects is called factorization, and it is important as it allows us to
treat the annihilation and production of the heavy quark-antiquark pair separately
from the formation of the bound state [3, p. 3].

Our treatment of quarkonia follows closely reference [3] where NRQCD is discussed
thoroughly. In this thesis we focus on the S-wave states of the quarkonia, e.g., particles
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ηc and J/ψ in the case of charmonium and ηb and Υ in the case of bottonium. We
especially focus on calculating their decay widths in the framework of NRQCD.

In section 2 we first show how the NRQCD Lagrangian can be derived. We then
use the field equations from this Lagrangian to derive estimates for the relevant
operators in powers of the quark velocity. These estimates are called the velocity-
scaling rules and they are extremely useful in estimating the contributions of different
operators and different Fock states. We also introduce the 4-fermion operators that
can be linked to the decay of quarkonia. In section 3 we use the velocity-scaling
rules to study the Fock state expansion of S-wave quarkonia. In section 4 we match
NRQCD to QCD and deduce the coefficients of the 4-fermion operators. In section
5 we then show how the 4-fermion operators can be linked to the decay widths
and write the equations for the decay widths in NRQCD. The decay widths can be
expressed as power series in the quark velocity in NRQCD. Inclusive production of
quarkonia is also briefly discussed along with its connection to decay. In section 6
we study the NRQCD equations for the decay widths and their accuracy at different
orders in the quark velocity.

The notation follows the standard notation used in particle physics. We use the
natural units where c = h̄ = 1, except when deriving the NRQCD Lagrangian where
the powers of c are explicit. The metric is defined as gµν = diag(+1,− 1,− 1,− 1).
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2 NRQCD Lagrangian

2.1 Heavy quark and antiquark terms

The high masses of the c- and b-quarks allow us to treat quarkonium states as
approximately pure QQ̄ states. Because of the high mass, the momentum to mass
fraction P/(Mc) ≈ v is also small. This allows us to write quantities in terms of the
first few terms of power series in the velocity v. It is possible to find the NRQCD
Lagrangian by starting from the QCD Lagrangian and expanding it as a power series.
However, it isn’t beforehand clear how each operator in the Lagrangian scales in
terms of the velocity. Therefore it is easier to do the expansion first in powers of 1/c
and then deduce the velocity-scaling rules of the operators from the most dominating
terms in the power series. This derivation of the NRQCD Lagrangian follows closely
the one presented in reference [4].

The part of the QCD Lagrangian corresponding to heavy quarks and antiquarks
is

cLheavy = cΨ̄(iγµDµ −Mc)Ψ (2.1)

where Dµ = ∂µ + ig
c
Aµ is the covariant derivative, g is the strong coupling constant

and Aµ is the gluon field. We have not set c = 1 in the Lagrangian Lheavy as keeping
it will make the power counting in 1/c explicit. We will consider the heavy quark
and antiquark parts of the Lagrangian separately. This allows us to write the explicit
power counting but in turn we will lose the interaction terms between the quarks and
antiquarks. Technically, this corresponds to neglecting the high momentum terms at
some momentum cutoff Λ and making NRQCD an effective field theory that has to
be matched to QCD [3, p. 8-9]. This will be discussed more in detail once we have
done the power series expansion of the Lagrangian.

First let’s consider the heavy quark part of the Lagrangian. It will be helpful to
write the corresponding fermion field as

Ψ = e−iMc2tΨ̃ = e−iMc2t

ψ
χ

 . (2.2)
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We want to write the Lagrangian in terms of the field ψ that will be identified with
the heavy quark field. This can be done with the help of the Dirac equation [5,
p. 102]

(iγµDµ −Mc)Ψ = 0. (2.3)

Substituting the field (2.2) into the Dirac equation we get

e−iMc2t
(
iγjDj + i

c
γ0Dt −Mc+Mcγ0

)
Ψ̃ = 0. (2.4)

We can now use the Dirac-Pauli representation of the gamma matrices [5, p. 111]

γ0 =
1 0

0 −1

 γi =
 0 σi

−σi 0

 γ5 =
0 1

1 0

 (2.5)

to write this as i
c
Dt iσjDj

−iσjDj − i
c
Dt − 2Mc

ψ
χ

 =
 i

c
Dtψ + iσjDjχ

−iσjDjψ −
(
i
c
Dt + 2Mc

)
χ

 = 0. (2.6)

From the lower equation we can solve the χ field:

χ = 1
i
c
Dt + 2Mc

(
−iσjDj

)
ψ. (2.7)

The operator iDt here corresponds to the difference E −Mc2 because of the field
redefinition (2.2). The energy of the quark is always bigger than the mass, which
means that the operator iDt acting on ψ gives a positive number. Therefore the
solution (2.7) for the χ field is sensible as the denominator is always non-zero. Also,
because the momentum is small we have i

c
Dt = E/c−Mc ≈Mc·O((P/Mc)2)� 2Mc.

This allows us to write

1
i
c
Dt + 2Mc

= 1
2Mc

(
1− i

2Mc2Dt +O
(
1/c3

))
. (2.8)

Substituting now (2.2), (2.7) and (2.8) into the heavy quark Lagrangian (2.1) we
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get

cLquark =c
(
ψ† −χ†

) (
iγµDµ +

(
γ0 − 1

)
Mc

)ψ
χ


=cψ†

(
1 iσiDi

1
i
c
Dt+2Mc

) i
c
Dt iσjDj

−iσjDj − i
c
Dt − 2Mc


 1

1
i
c
Dt+2Mc

(
−iσkDk

)
ψ

=ψ†iDtψ − ψ†iσiDi
c

i
c
Dt + 2Mc

iσkDkψ

=ψ†iDtψ − ψ†iσiDi
1

2M

(
1− i

2Mc2Dt

)
iσkDkψ +O

(
1/c3

)
=ψ†iDtψ + 1

2Mψ†σiDiσ
jDjψ −

i

4M2c2ψ
†σiDiDtσ

jDjψ +O
(
1/c3

)
.

(2.9)

We can now use the identity

σiσj = δij + iεijkσk (2.10)

to calculate

σiDiσ
jDj =

(
δij + iεijkσk

)
DiDj = δijDiDj + i

2σ
kεijk[Di,Dj] = D2 + g

c
σ ·B (2.11)

where
Bk = −1

2ε
ijkGij = − c

gi

1
2ε

ijk[Di,Dj] (2.12)

is the strong interaction equivalent of the magnetic field. Here

Gµν = −ic
g

[Dµ,Dν ] (2.13)

is the gluon field strength tensor [6, p. 2]. Similarly, we define

Ej = Gj0 = c

gi

[1
c
Dt,D

j
]

(2.14)

to correspond to the electric field in QCD. Note that the units of E and B fields
defined here are the same, which would correspond to Gaussian units in the standard
electromagnetic definitions. This choice here has been made to make sure that
the fields have similar effect with respect to the power counting in 1/c. Using the
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definition (2.14) we get

σiσjDi[Dt,Dj] =
(
δij + εijkσk

)
Di(−gi)Ej = −gi

(
δijDiEj + εijkσkDiEj

)
=gi(D · E + iσ ·D× E).

(2.15)

The signs in the last equality follow from the definitions D = Dj and E = Ej. In
the same way,

σiσj[Dt,Di]Dj =
(
δij + εijkσk

)
(−gi)EiDj = gi(E ·D + iσ · E×D). (2.16)

Now we can write the Lagrangian (2.9) as

cLquark =ψ†iDtψ + 1
2Mψ†σiDiσ

jDjψ

− i

8M2c2ψ
†σiσj

(
Di[Dt,Dj]− [Dt,Di]Dj + {DiDj,Dt}

)
ψ +O

(
1/c3

)
=ψ†

(
iDt −

1
2M (iD)2

)
ψ + g

2Mc
ψ†σ ·Bψ

+ g

8M2c2ψ
†
(

D · E− E ·D + iσ ·D× E− iσ · E×D
)
ψ†

− i

8M2c2ψ
†σiσj{DiDj,Dt}ψ +O

(
1/c3

)
.

(2.17)

We would like the time derivative to appear only in the first term of the Lagrangian
(2.17) or in the field E. This can achieved by the following field redefinition:

ψ =
(

1 + A2

8M2c2

)
ψ′ (2.18)

where A = σiDi. From this definition of A we notice that

A† = σiD†i = σi(−Di) = −A (2.19)

and using (2.11) we get

A2 = σiσjDiDj = D2 +O(1/c). (2.20)
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The Lagrangian then becomes

cLquark =ψ′†
(
iDt −

1
2M (iD)2

)
ψ′ − i

8M2c2ψ
′†
{
A2,Dt

}
ψ′ + g

2Mc
ψ′†σ ·Bψ′

+ g

8M2c2ψ
′†(D · E− E ·D + iσ ·D× E− iσ · E×D)

+ 1
8M2c2ψ

′†
(
iDtA

2 + iA2Dt −
1

2M (iD)2A2 − 1
2MA2(iD)2

)
ψ′ +O

(
1/c3

)
=ψ′†

(
iDt −

1
2M (iD)2

)
ψ′ + g

2Mc
ψ′†σ ·Bψ′

+ g

8M2c2ψ
′†(D · E− E ·D + iσ ·D× E− iσ · E×D)

+ 1
8M3c2ψ

′†
(
D2
)2
ψ′ +O

(
1/c3

)
(2.21)

This is the part of the Lagrangian corresponding to the quark field.
We can calculate the antiquark part similarly. We write the antiquark field as

Ψ = eiMc2tΨ̃ = eiMc2t

ψ
χ

 (2.22)

which differs from (2.2) by the sign in the exponent. This time, we want to identify
the field χ with the antiquark. The Dirac equation becomes now

eiMc2t
(
iγjDj + i

c
γ0Dt −Mc−Mcγ0

)
Ψ̃ = 0, (2.23)

and in matrix form i
c
Dt − 2Mc iσjDj

−iσjDj − i
c
Dt

ψ
χ

 =
( icDt − 2Mc

)
ψ + iσjDjχ

−iσjDjψ − i
c
Dtχ

 = 0. (2.24)

This is the same as (2.6) with the substitutions ψ → χ and M → −M , which allows
us to infer from equation (2.7) that we must have

ψ = 1
− i
c
Dt + 2Mc

iσjDjχ. (2.25)

For the antiquark, −iDt corresponds to the kinetic energy so that the denominator
of equation (2.25) is again positive. Substituting equations (2.22) and (2.25) into
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the Lagrangian (2.1) we get

cLantiquark = c
(
ψ† −χ†

) (
iγµDµ −

(
γ0 + 1

)
Mc

)ψ
χ


= cχ†

(
iσiDi

1
− i
c
Dt+2Mc

−1
) i

c
Dt − 2Mc iσjDj

−iσjDj − i
c
Dt


 1
− i
c
Dt+2Mc

(
iσkDk

)
1

χ
= χ†iDtχ− χ†iσiDi

c
i
c
Dt − 2Mc

iσkDkχ

(2.26)

Again, this is the same as (2.9) with ψ → χ and M → −M so we can deduce the
antiquark part of the Lagrangian from (2.21):

cLantiquark =χ′†
(
iDt + 1

2M (iD)2
)
χ′ − g

2Mc
χ′†σ ·Bχ′

+ g

8M2c2χ
′†(D · E− E ·D + iσ ·D× E− iσ · E×D)

− 1
8M3c2χ

′†
(
D2
)2
χ′ +O

(
1/c3

) (2.27)

where we have scaled the antiquark field by

χ =
(

1 + A2

8M2c2

)
χ′. (2.28)

Summing the Lagrangians (2.21) and (2.27) and suppressing the primes we can
now write the full heavy quark Lagrangian:

cLheavy =ψ†
(
iDt −

1
2M (iD)2

)
ψ + g

2Mc
ψ†σ ·Bψ + 1

8M3c2ψ
†
(
D2
)2
ψ

+ g

8M2c2ψ
†(D · E− E ·D)ψ + ig

8M2c2ψ
†(σ ·D× E− σ · E×D)ψ

+ χ†
(
iDt + 1

2M (iD)2
)
χ− g

2Mc
χ†σ ·Bχ− 1

8M3c2χ
†
(
D2
)2
χ

+ g

8M2c2χ
†(D · E− E ·D)χ+ ig

8M2c2χ
†(σ ·D× E− σ · E×D)χ

+O
( 1
c3

)
.

(2.29)

The Lagrangian (2.29) shows the most important terms of the heavy quark Lagrangian.
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However, as was discussed earlier the separation of the quarks and antiquarks makes
NRQCD an effective field theory that has to be matched to QCD [7]. Therefore each
of the terms in (2.29) may have a coefficient that depends on αs. Setting now c = 1
and writing these coefficients, the heavy quark Lagrangian in NRQCD is

Lheavy =ψ†
(
iDt + 1

2MD2
)
ψ + χ†

(
iDt −

1
2MD2

)
χ

+ c1

8M3

(
ψ†
(
D2
)2
ψ − χ†

(
D2
)2
χ
)

+ c2

8M2

(
ψ†(D · gE− gE ·D)ψ + χ†(D · gE− gE ·D)χ

)
+ c3

8M2

ψ†(σ · iD× gE− σ · gE× iD)ψ

+ χ†(σ · iD× gE− σ · gE× iD)χ
+ c4

2M
(
ψ†σ · gBψ − χ†σ · gBχ

)
.

(2.30)

The first term iDt in the Lagrangian (2.30) doesn’t need to have a coefficient as it can
be set to one by field redefinitions similar to (2.18) and (2.28). The term D2/(2M)
also doesn’t have a coefficient because we want to define the mass parameterM to be
the coefficient of this term. This is so because then the energy of the quark has the
same expansion E = M+p2/(2M)+ . . . in both NRQCD and QCD and therefore we
can identify the mass M with the pole mass Mpole in the QCD propagator, as argued
in reference [3, p. 11]. The rest of coefficients need to be matched by calculating
physical quantities in both QCD and NRQCD. They go as ci = 1 +O(αs) [8],which
shows that the Lagrangian (2.29) we derived is correct at the lowest order. As
mentioned in reference [4] each of the correction terms has a physical interpretation.
The c1 term is the first relativistic correction to the energy of the particle, the c2

term is equivalent to the Darwin term in the fine structure of the hydrogen atom,
the c3 term corresponds to the spin-orbit coupling, and the c4 term arises from the
QCD magnetic moment interaction.

The whole NRQCD Lagrangian can be written as

LNRQCD = Llight + Lgluon + Lheavy (2.31)

where
Llight = Ψ̄lighti /DΨlight (2.32)
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is the part concerning the light quarks u, d and s, and

Lgluon = −1
2 trGµνG

µν (2.33)

is the contribution of the gluon fields. The masses of the light quarks have been
neglected in equation (2.32) as they are much smaller than the heavy quark masses.
The gluon field can be written as

Gµν =− i

g
[Dµ,Dν ] = − i

g
[∂µ + igAµ,∂ν + igAν ] = ∂µAν − ∂νAµ + ig[Aµ,Aν ]

Aµ=Aaµta=
(
∂µA

a
ν − ∂νAaµ

)
ta + igAbµA

c
ν

[
tb,tc

]
=
(
∂µA

a
ν − ∂νAaµ − gfabcAbµAcν

)
︸ ︷︷ ︸

Gaµν

ta = Ga
µνt

a.

(2.34)

Here ta are the standard basis of the fundamental representation of SU(Nc), where
Nc is the number of colors [9, p. 502]. Substituting this into the gluon Lagrangian
we get

Lgluon =− 1
2 trGµνG

µν = −1
2G

a
µνG

µν,b tr
{
tatb

}
= −1

2G
a
µνG

µν,b1
2δ

ab = −1
4G

a
µνG

µν,a

=− 1
4
(
∂µA

a
ν − ∂νAaµ − gfabcAbµAcν

)(
∂µAν,a − ∂νAµ,a − gfadeAµ,dAν,e

)
=− 1

2(∂µAaν∂µAν,a − ∂µAaν∂νAµ,a) + gfabc(∂µAaν)Aµ,bAν,c

− 1
4g

2fabcfadeAbµA
c
νA

µ,dAν,e.

(2.35)

2.2 Velocity-scaling rules

We want to estimate how big the expectation values of the operators are to deduce
which terms are more relevant than others. It is possible to write how these estimates
are related to the powers of the quark velocity v, and these are called the velocity-
scaling rules of the operators. The velocity-scaling rules can be calculated from the
self-consistency of the field equations corresponding to the NRQCD Lagrangian (2.29)
as described in reference [8]. We will follow this derivation of the velocity-scaling
rules here.
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First of all, we only need to consider the lowest order terms in 1/c and the
gluon field. We can also leave the antiquark part of the Lagrangian out as the
velocity-scaling will be the same for both quarks and antiquarks. This can be seen
from the fact that the NRQCD Lagrangian (2.30) is similar for quarks and antiquarks.
This means that we can focus on the field equations calculated using the following
Lagrangian:

L =ψ†
(
iDt + 1

2MD2
)
ψ − 1

2 trGµνG
µν (2.36)

It is easier to do the calculations in the Coulomb gauge where ∇ ·Aa = 0. Then we
get

L =ψ†
(
i∂t − gAa0ta + 1

2M∇
2 + ig

2M
(
taAa + tbAb

)
· ∇− g2

2MAa ·Abtatb
)
ψ

− 1
2 trGµνG

µν

=ψ†i∂tψ − gAa0ψ†taψ + 1
2Mψ†∇2ψ + ig

M
ψ†taAa · ∇ψ − g2

2MAa ·Abψ†tatbψ

− 1
2(∂µAaν∂µAν,a − ∂µAaν∂νAµ,a) + gfabc(∂µAaν)Aµ,bAν,c

− 1
4g

2fabcfadeAbµA
c
νA

µ,dAν,e

(2.37)

For a moment, we will consider the Hamiltonian field equations that can be
derived from the Lagrangian. The Hamiltonian density is defined by [10, p. 34]

H =
∑

fields
πi
∂L
∂π̇i
− L (2.38)

where
π = ∂L

∂φ̇
(2.39)

is the conjugate momentum density of the field φ. Here we have used the notation
φ̇ = ∂0φ. The Hamiltonian field equations

π̇ = −δH
δφ

φ̇ = +δH
δπ

(2.40)

give us a set of equations equivalent to the Lagrangian field equations [10, p. 35]. In
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equations (2.40) one must use the functional derivative

δ

δφ
= ∂

∂φ
− ∂µ

∂

∂(∂µφ) . (2.41)

The NRQCD Lagrangian (2.31) doesn’t depend on ∂0A
0, as can be seen by

considering the parts Llight, Lgluon and Lheavy separately. Therefore the conjugate
momentum density of A0 is

π0 = ∂L
∂Ȧ0

= 0 (2.42)

This is an important result, as the vanishing of the conjugate momentum π0 tells
us that there are no dynamical particles created by A0 and therefore gluons are
created and annihilated by the vector potential A. The vanishing of the conjugate
momentum π0 also tells us that the Hamiltonian doesn’t depend on π0. Using this
fact we can calculate from the second Hamiltonian field equation (2.40) the time
derivative of the scalar potential A0:

∂0A
0 = δH

δπ0 = 0. (2.43)

We can use this result to simplify the field equations.
Let’s now turn to the field equations. First of all, we can approximate the

strength of the field ψ by considering the expectation value of the heavy quark
number operator 〈

H
∣∣∣∣∫ d3xψ†ψ

∣∣∣∣H〉 ≈ 1 (2.44)

where H is a quarkonium state. This result follows from the fact that for quarkonium
the dominating Fock state is

∣∣∣QQ̄〉 and the quarkonium state is normalized by
〈H|H〉 = 1. Because the quarkonium is localized to the volume 1/P 3 ≈ 1/(Mv)3 we
get ψ†ψ = O(M3v3).

Next we can consider the kinetic energy term of the Lagrangian, D2/(2M). For
this we have the estimate 〈

H

∣∣∣∣∣
∫

d3xψ†
D2

2Mψ

∣∣∣∣∣H
〉
≈Mv2 (2.45)

from which it follows that D = O(Mv). This is exactly what we would expect from
the identification of −iD as the momentum operator.
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The field equation for the field ψ from the Lagrangian (2.36) is

∂L
∂ψ†
− ∂µ

∂L
∂(∂µψ†)

=
(
iDt + 1

2MD2
)
ψ = 0. (2.46)

This means that Dt must scale scale as D2/(2M) which gives us Dt = O(Mv2).
For now, we will assume that the scalar potential A0 will have a larger contribution

than the vector potential A. This will simpify our equations as we can drop the higher
order terms with the vector potential. We will confirm later that this assumption is
valid after we have found the velocity-scaling rules for the gluon fields. With this
assumption, we can expand equation (2.46) as

(
i∂0 − gAa0ta + 1

2M∇
2
)
ψ = 0. (2.47)

The scaling of gA0 cannot be faster than the other terms. Therefore we must have
gA0 = O(Mv2). The field equation for A0 is, dropping again the vector potential
terms,

∂L
∂Aa0

− ∂µ
∂L

∂(∂µAa0)
=− gψ†taψ + ∂µ∂

µA0,a − ∂µ∂0Aµ,a

− gfabc
(
Aν,c∂0Abν + Aµ,b∂µA

0,c + ∂µ
(
Aµ,bA0,c

))
+ g2f bacf bdeAcµA

µ,dA0,e

=− gψ†taψ −∇2A0,a

− gfabc
(
Aν,c∂0Abν + 2Aµ,b∂µA0,c + A0,c∂0A

0,b
)

+ g2f bacf bdeAcµA
µ,dA0,e

(∗)= − gψ†taψ −∇2A0,a − gfabc
(
Ai,c∂0Abi + 2Ai,b∂iAc,0

)
+ g2f bacf bdeAciA

i,dA0,e

≈− gψ†taψ −∇2A0,a = 0
(2.48)

where in (∗) we have used the antisymmetricity of fabc. From this we see that on
the other hand gA0 = O(g2(Mv)3/(Mv)2) = O(g2Mv), assuming that the gradient
operating on A0 scales as Mv. This assumption corresponds to the assumption
that the gluons have a momentum of order Mv which is the momentum scale for
quarks and antiquarks. Comparing this with our previous estimate for gA0 we see
that g2 = O(v) and therefore αs = g2/(4π) = O(v) at the momentum scales of the
quarkonium. It should be noted that in general the magnitude of αs depends on the
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momentum scale. For example, in reference [3, p. 13] it is estimated that αs(Mv2) is
of order 1. For our purposes the important momentum scale is the momentum of
the quarks and antiquarks Mv and for that we can estimate αs(Mv) = O(v).

The field equation for Ai is

∂L
∂Aai

− ∂µ
∂L

∂(∂µAai )

= ig

M
ψ†ta∇iψ − g2

2MAi,bψ†
{
ta, tb

}
ψ + ∂µ∂

µAi,a − ∂µ∂iAµ,a

− gfabc
(
Aν,c∂iAbν + Aµ,b∂µA

i,c + ∂µ
(
Aµ,bAi,c

))
+ g2f bacf bdeAcµA

µ,dAi,e

= ig

M
ψ†ta∇iψ − g2

2MAi,bψ†
{
ta, tb

}
ψ + ∂µ∂

µAi,a

− gfabc
(
Aν,c∂iAbν + 2Aµ,b∂µAi,c + Ai,c∂jA

j,b
)

+ g2f bacf bdeAcµA
µ,dAi,e

≈ ig
M
ψ†ta∇iψ − g2

2MAi,bψ†
{
ta, tb

}
ψ + ∂µ∂

µAi,a − gfabcA0,c∂iAb0 = 0.

(2.49)

After multiplying this equation by g, the orders of the terms are M3v5, gAiM2v4,
gAiM2v2 andM3v5, from left to right. This means that we must have gAi = O(Mv3),
which confirms the validity of our assumption A0 � Ai. It should be noted that
these scalings of A0 and Ai were calculated only for the Coulomb gauge. Choosing a
different gauge we would get a different scaling.

We can also deduce the velocity-scaling of the operators E and B. At the lowest
order gE = −g∇A0 = O(M2v3) and gB = ∇× gA = O(M2v4). Even though the
velocity-scaling of gA0 and gA depends on the selected gauge, the fields gE and gB
are gauge invariant and therefore the scaling of these operators doesn’t depend on
the selected gauge. With these, we have calculated the velocity-scaling rules for all
of the operators needed. These are collected in table 1.

2.3 4-fermion operators

The NRQCD Lagrangian conserves the quark and antiquark numbers. To consider
the decay of a quarkonium particle we need to include 4-fermion operators in the
Lagrangian. These operators annihilate and create a quarkonium state and can be
used through the optical theorem to examine the annihilation of the quarkonium.
These operators cannot be arbitrary, however, as they need to satisfy certain symme-
tries of NRQCD. These symmetries are the gauge symmetry, rotational symmetry,
phase symmetry of the heavy quark and antiquark operators, charge conjugation and
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Table 1. Estimates for the magnitudes of the operators

Operator Scaling
αs(Mv) v
ψ (Mv)3/2

χ (Mv)3/2

Dt Mv2

D Mv
gA0 (Coulomb gauge) Mv2

gA (Coulomb gauge) Mv3

gE M2v3

gB M2v4

parity [11]. This narrows down the possible operators to certain combinations of the
quark and antiquark fields, spin matrices, color matrices, the covariant derivatives,
and the E and B fields. The extra terms to the Lagrangian can written as

δL =
∑

dim=6

fi
M2Oi +

∑
dim=8

fi
M4Oi + higher order (2.50)

where Oi are the added operators are fi are coefficients that have to be matched to
QCD. The mass dimensions of the operators are matched with the powers of the
quark mass so that the coefficients fi are dimensionless. Note that there are no
dimension 7 terms as these would violate the conservation of parity by the inclusion
of a single covariant derivative in the term. These are also the operators with
velocity-scaling up to v8, as according to table 1 each power of mass adds at least
one power of velocity.

The possible dimension 6 operators are [3, p. 24]:

O1
(

1S0
)

= ψ†χχ†ψ O1
(

3S1
)

= ψ†σχ · χ†σψ

O8
(

1S0
)

= ψ†taχχ†taψ O8
(

3S1
)

= ψ†σtaχ · χ†taσψ,
(2.51)

where the operators are understood to be normal-ordered. The naming of the
operators is as follows: the subscripts 1 and 8 refer to color singlet and color octet
operators, respectively. The color octet operators are given by the ta matrices of the
fundamental presentation of SU(Nc). The 2S+1LJ part refers to the spin S, orbital
angular momentum L and total angular momentum J quantum numbers of the
QQ̄ state that the operator annihilates and creates. For example, the action of the
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operator O1(1S0) is non-vanishing only on the quarkonium state where the QQ̄ pair
is in the color singlet with the quantum numbers 1S0.

At dimension 8, the number of possible operators is a lot larger. Our main
interest is to study operators that act on

∣∣∣QQ̄〉 Fock states in the center-of-mass
frame. Therefore we will list here the only dimension 8 operators that have a non-
vanishing contribution to QQ̄ scattering in center-of-mass frame. These are [3, p. 25]:

O1
(

1P1
)

= ψ†
(
− i2

↔
D
)
χ · χ†

(
− i2

↔
D
)
ψ

O1
(

3P0
)

= 1
3ψ
†
(
− i2

↔
D · σ

)
χχ†

(
− i2

↔
D · σ

)
ψ

O1
(

3P1
)

= 1
2ψ
†
(
− i2

↔
D× σ

)
χ · χ†

(
− i2

↔
D× σ

)
ψ

O1
(

3P2
)

= ψ†
(
− i2

↔
D(iσj)

)
χχ†

(
− i2

↔
D(iσj)

)
ψ

P1
(

1S0
)

= 1
2

[
ψ†χχ†

(
− i2

↔
D
)2
ψ + h.c.

]

P1
(

3S1
)

= 1
2

[
ψ†σχ · χ†σ

(
− i2

↔
D
)2
ψ + h.c.

]

P1
(

3S1,
3D1

)
= 1

2

[
ψ†σiχχ†σj

(
− i2

)2 ↔
D(i

↔
Dj)ψ + h.c.

]

(2.52)

Here we have defined the derivative operator

χ†i
↔
Dψ = (iDχ)†ψ + χ†(iDψ) (2.53)

which is the only combination of derivatives that doesn’t vanish in the center-of-mass
frame. For example the derivative (iDχ)†ψ − χ†(iDψ) would be proportional to
the total momentum of QQ̄ pair and therefore such a derivative doesn’t contribute
in the center-of-mass frame of the QQ̄ pair. However, a quarkonium particle may
have contributions from states

∣∣∣QQ̄g〉 in which case the total momentum of QQ̄ pair
doesn’t vanish in the rest frame of the quarkonium. For such states other types
of derivative operators could have non-vanishing contributions. We will talk about
contributions of these kinds of states to the quarkonium in section 3 and see that
they are suppressed by powers of velocity, meaning that omitting these terms is
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justified. The notation M (ij) means the traceless symmetric tensor

M (ij) = 1
2
(
M ij +M ji

)
− 1

3δ
ij. (2.54)

It should also be mentioned that the operator P1(3S1,
3D1) is non-vanishing only

for states with the initial quark-antiquark pair in 3S1 state and the final state in
3D1 or vice versa. In addition to the singlet operators (2.52) there are also the
corresponding octet operators where the color matrices ta are added between the
quark and antiquark fields, similarly as with the dimension 6 operators in equation
(2.51). These are then denoted by the subscript 8.

2.4 Field Operators

To do the actual calculations, we need to consider the field operators ψ and χ in
more detail. First of all, we will use the non-relativistic normalization where the
states are normalized by

〈H(k1)|H(k2)〉 = (2π)3δ(k1 − k2) (2.55)

as opposed to the standard relativistic normalization where there is an extra factor
2E. This is the standard normalization used in NRQCD and will be make comparing
the results to the literature easier.

The field operators are defined as the solutions to the equations of motion from
the free field Lagrangian. In our case we define the free field Lagrangian for the
heavy quarks with the Lagrangian (2.29) where αs has been set to zero. In this limit
the covariant derivatives become standard partial derivatives that commute. This
allows us to write the heavy quark part of the free Lagrangian at all orders using
equations (2.9) and (2.26)

L0 = ψ̃†i∂tψ̃ − ψ̃†iσi∂i
1

i∂t + 2M iσk∂kψ̃ + χ̃†i∂tχ̃− χ̃†iσi∂i
1

i∂t − 2M iσk∂kχ̃

= ψ̃†i∂tψ̃ + ψ̃†
1

i∂t + 2M∇
2ψ̃ + χ̃†i∂tχ̃+ χ̃†

1
i∂t − 2M∇

2χ̃
(2.56)

Here we denote the fields by ψ̃ and χ̃ to remind us that the field redefinition (2.18)
needs to be done, so that ψ̃ =

(
1 +∇2/(8M2)

)
ψ and similarly for χ̃. The field
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equations are then
(
i∂t + 1

i∂t + 2M∇
2
)
ψ̃ = 0 and

(
i∂t + 1

i∂t − 2M∇
2
)
χ̃ = 0. (2.57)

The actual fields ψ and χ also satisfy the same field equations as can be verified by
opening ψ̃ and χ̃. The solutions to the field equations can then be written as

ψ(x) =
∫ d3q

(2π)3 e
−ix·q+itM∑

s,c

ξsψs,c(q) (2.58)

and
χ(x) =

∫ d3q
(2π)3 e

ix·q−itM∑
s,c

ηsχs,c(q) (2.59)

as can be seen by substituting these into the field equations (2.57). Here ψs,c(q) is
the quark annihilation operator, χs,c(q) is the antiquark creation operator and s

and c are the spin and color indices, respectively. For the creation and annihilation
operators we have the anticommutation relations defined by

{
ψs1,c1(q1),ψ†s2,c2(q2)

}
= (2π)3δs1s2δc1c2δ(q1 − q2) (2.60)

for the quark creation operator ψ† and

{
χ†s1,c1(q1),χs2,c2(q2)

}
= (2π)3δs1s2δc1c2δ(q1 − q2) (2.61)

for the antiquark creation operator χ, in similar way as in QCD. The quark and
antiquark spinors ξs and ηs are defined here so that they both form an orthogonal
basis. Their normalization is required to be η†sηs = χ†sχs = 1 by the non-relativistic
normalization convention (2.55). For the quark spinors it is most convenient to
choose the basis as

ξ↑ =
1

0

 ξ↓ =
0

1

. (2.62)

These are the eigenvectors of the Pauli matrix σ3 which means that they correspond
to the spin up and down states in the z-direction. For the antiquark spinors we
choose instead

η↑ =
 0
−1

 η↓ =
1

0

. (2.63)
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The reasoning behind this is that the charge conjugation symmetry requires us to
have [9, p. 70]

ηs = iσ2(ξs)∗ (2.64)

which gives us the definition (2.63).



28



29

3 Quarkonium States

3.1 Fock state expansion

Any quarkonium state vector can be written as a linear combination of states with
the quark, antiquark and gluons. That is, a state for a particle H can be written
schematically as

|H〉 = cQQ̄
∣∣∣QQ̄〉+ cQQ̄g

∣∣∣QQ̄g〉+ cQQ̄gg
∣∣∣QQ̄gg〉+ . . . (3.1)

We can estimate the contribution of each of these terms. The first term involving
only the quark-antiquark pair should be the most dominant one. The contribution
of the terms with additional gluons can be estimated by the energy shift of the
quarkonium state that they produce. The quarkonium states are eigenstates of the
Hamiltonian such that Ĥ |H〉 = EH |H〉. On the other hand, the Hamiltonian can be
divided into “free” and “interaction” parts such that Ĥ = Ĥfree + ĤI . The free field
Hamiltonian is the Hamiltonian corresponding to the free field Lagrangian (2.56),
and the rest of the Hamiltonian is defined to be in the interaction part. Then we
can write the expectation value of the energy as

EH = 〈H| Ĥ |H〉 = 〈H| Ĥfree |H〉+ 〈H| ĤI |H〉 =
∑

Fock states
EiPi + 〈H| ĤI |H〉 (3.2)

where Ei is the expectation value of the energy for the Fock state i, Pi is the
probability of finding a state i in the quarkonium and we have also assumed that
the states are normalized such that 〈H|H〉 = 1. Now can write

〈H| ĤI |H〉 = EH −
∑

Fock states
EiPi =

∑
Fock states

(EH − Ei)Pi (3.3)

so that each interaction term in the Hamiltonian contributes to the energy shift
∆E = ∑

Fock states EiPi − EH . We can estimate the total energy of the quarkonium
by EH = 2M + O(Mv2) because it should be mainly given by the masses of the
quark-antiquark pair and their kinetic energies.
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As discussed in section 2.2, the gluons are created by the vector potential A. This
means that at leading order in v the gluons are produced by the term (ig/M)ψ†A·∇ψ
in the NRQCD Lagrangian (2.30). This kind of a term keeps the heavy quark spins
unchanged, as it doesn’t depend on the Pauli spin matrices that would cause a
difference in spins between the Fock states. The contribution to the energy shift by
this term is

∆EQQ̄g = − ig
M

〈
H

∣∣∣∣∫ d3xψ†A ·∇ψ
∣∣∣∣H〉 = O

(
Mv4

)
(3.4)

by the velocity-scaling rules of section 2.2. On the other hand, the energy shift can
also be written as the product

∆EQQ̄g = PQQ̄g(EQQ̄g − EH) (3.5)

and we can estimate the energy difference EQQ̄g−EH to be of the order of the kinetic
energy of the particles. In the case of a gluon with energy of order Mv, the kinetic
energy of the gluon dominates and the probability must be PQQ̄g = O(v3) to agree
with equation (3.4). In the case of gluons with low energy of order Mv2, the kinetic
energy is O(Mv2) and we have PQQ̄g = O(v2) instead. We then see that these low
energy gluons are more dominant. This interaction creates or annihilates a gluon
with orbital angular momentum L = 1, and it can be thought of as an analogue
to the electric dipole transition E1 in nuclear physics. This kind of an interaction
requires the orbital angular momentum of the QQ̄ pair to change by ∆L = ±1 [11],
and is called an electric transition.

These estimates only apply if the spin-states of the quark-antiquark pairs are the
same both in Fock-states QQ̄ and QQ̄g. If the spin states are different, then the
dominant term for gluon production is (1/2M)ψ†σ · gBψ = (1/2M)ψ†σ ·∇× gAψ.
This term changes the spins of the QQ̄ pair by ∆S = ±1 because of the Pauli spin
matrix involved. For gluons with momenta of order Mv we can use the velocity-
scaling rules from table 1 to estimate the energy shift caused by this term to be
O(Mv4). This tells us that the probability of finding the corresponding

∣∣∣QQ̄g〉 state
is P = O(v3).

For gluons with momenta of order k = Mv2, however, the arguments for the
velocity-scaling do not apply. We can determine the velocity-scaling of the vector
potential A corresponding to these gluons using a different reasoning. Gluons
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with momentum Mv2 have a wavelength of 1/(Mv2) which is a lot larger than the
separation between the quark-antiquark pair that is of order r ≈ 1/P ≈ 1/(Mv).
Therefore the gluon sees the QQ̄-pair as a color dipole, and the interaction between
the gluon and the QQ̄-pair is proportional to the separation r. The interaction
cannot depend on any other mass-dimensional parameter of the quarkonium as the
gluon sees it as a color dipole. We can therefore write

〈
H
∣∣∣ψ†(gA)2ψ

∣∣∣H〉 ≈ f(k)
〈
H
∣∣∣ψ†r2ψ

∣∣∣H〉 ≈ f(k)
(Mv)2 (3.6)

where f(k) is some function of the gluon’s momentum. Here we have two powers of
r, one from each gluon field, and the expectation value of r2 can be approximated
by 1/P 2. On the other hand, we know that the gluon field gA has dimensions of
mass so that the expectation value (3.6) has dimensions of mass squared. This
means that we must have f(k) ∝ k4 = M2v8, as the gluon momentum k is the
only mass-dimensional parameter it depends on. Therefore we get the estimate
gA = O(Mv4/(Mv)) = O(Mv3) for gluons with momentum Mv2. Then we also get
the estimate B = O(kA) = O(M2v5) and ∆EQQ̄g = O(Mv5). This means that for
such a state we have the probability P = O(v3). This is the same as for gluons with
momenta O(Mv), so the probability is P = O(v3) for the QQ̄g state with the spin
difference ∆S = ±1 from the dominating QQ̄ state. In this case the orbital angular
momentum of the QQ̄ pair doesn’t change so that ∆L = 0. This type of a transition
is called a magnetic transition.

Of course, there are also states with a higher number of gluons and even with light
quark pairs qq̄ included in the Fock state expansion (3.1). However, these states can
only be reached from the dominating

∣∣∣QQ̄〉 state by either higher order interaction
terms or multiple transitions. This also applies to QQ̄g states that differ by ∆L > 1
from the dominating state. This means that they are suppressed even further by
velocity. It is argued in [3, p. 18] that we can generalize the previous estimates for
QQ̄g states to even higher order Fock states by the multipole expansion. This means
that we can estimate the probability of finding a state by considering how many
electric and magnetic transitions we need to make to reach it from the dominating
QQ̄ state. Each electric transition changes the quantum numbers of the QQ̄ pair
by ∆L = ±1 and ∆S = 0 and adds a suppression factor of v2, while each magnetic
transition changes the quantum numbers by ∆L = 0 and ∆S = ±1 and suppresses
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the state by v3. In both of these transitions the color state of the pair can change, so
that a color-singlet state always changes to a color-octet state while the color-octet
may change either to a color-singlet or a color-octet state [11]. For example, if the
dominating state is a |1S0〉 color-singlet state, the state |3P1gg〉 is suppressed by
v2+3 = v5 and the QQ̄ pair can be in either color-singlet or color-octet state.

There is one addition that has to be made to these probability estimates of
the Fock states. In the Fock state expansion (3.1), the states can carry different
quantum numbers and therefore we can have different

∣∣∣QQ̄〉 Fock states contributing
to the quarkonium state. However, the heavy quark Lagrangian (2.29) conserves the
total angular momentum J , parity P and charge conjugation C quantum numbers
which allows us to deduce the possible QQ̄ states [3, p. 17]. These are the same
quantum numbers that are also conserved in QCD, which means that we can label the
quarkonium states by JPC . If the quark-antiquark pair has the angular momentum
L and the total spin quantum number S = 0, 1 in the Fock state

∣∣∣QQ̄〉, the conserved
quantum numbers are

J = |L− S|, . . . , L+ S P = (−1)L+1 C = (−1)L+S. (3.7)

If we now have a QQ̄ state with different quantum numbers but the same JPC , the
conservation of parity P implies that we must have L′ = L ± 2, L ± 4, . . . for the
other state. Because the total spin S can only have values 0 and 1, the C parity
conservation implies that S ′ = S so that the total spin doesn’t change. If the spin is
S = S ′ = 0, the conservation of angular momentum J tells us that the we must also
have J = L = L′ which means that the quantum numbers of the

∣∣∣QQ̄〉 are uniquely
defined. For the case S = S ′ = 1, the conservation of angular momentum implies
that we can have L = J + 1 and L′ = J − 1 or vice versa. This means that only
3(J + 1)J and 3(J − 1)J states can mix in the pure quark-antiquark states of the
quarkonium. For example, the states 3S1 and 3D1 can be mixed in the JPC = 1−−

quarkonium states. However, this mixing is suppressed because the orbital angular
momentum can change only through terms that contain powers of ∇ [3, p. 18]. The
change of two units of orbital angular momentum needs at least two powers of ∇,
meaning that this mixing is suppressed by v2. This mixing could cause problem
when trying to figure out the quantum numbers of the dominating

∣∣∣QQ̄〉 state, but
usually we can use the quarkonium spectra to determine the quantum numbers. This
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relies on the fact that in general states with higher L have a higher mass.
We can now determine the Fock state expansion for the charmonium particles

ηc and J/ψ. The spin parities of these are 0−+ and 1−−, respectively. These are
the lowest-lying charmonium states so we can expect them to be dominated by the
L = 0 orbital angular momentum |cc̄〉 state. The spin parities then tell us that at
the lowest order, |ηc〉 ≈ |1S0〉 and |J/ψ〉 ≈ |3S1〉. Using the previous arguments for
the probabilities of the states and considering the possible quantum numbers for the
cc̄ pair, we can write these to higher orders by

|ηc〉 =
∣∣∣1S[1]

0

〉
+O(v)

∣∣∣1P [8]
0 g

〉
+O

(
v3/2

) ∣∣∣3S[8]
1 g

〉
+O

(
v2
)

and (3.8)

|J/ψ〉 =
∣∣∣3S[8]

1

〉
+O(v)

∣∣∣3P [8]
1 g

〉
+O

(
v3/2

) ∣∣∣1S[8]
0 g

〉
+O

(
v2
)
. (3.9)

Here the cc̄ pair has been denoted using the spectroscopic notation, with the addition
that the superscript [1] denotes a color-singlet and [8] a color-octet state. Similar
expansions can also be written for the lowest-lying bottonium states: ηb has the
same Fock state expansion as ηc except that the cc̄ pair has been replaced by a bb̄
pair, and in the same way Υ has an identical expansion with J/ψ.

3.2 S-wave Fock states

In a similar way as in equation (5.43) of reference [9, p. 149], we can write the 1S0

quark-antiquark Fock state as

∣∣∣1S0(p)
〉

=
∫ d3k

(2π)3 ψ̃(k)ε
s1s2

√
2
δc1c2

√
Nc

∣∣∣∣Qs1c1

(p
2 + k

)
Q̄s2c2

(p
2 − k

)〉
(3.10)

Here ψ̃ is the wave function in momentum space, ε is the two-dimensional Levi-Civita
symbol and si and ci are the spin and color indices. The wave function can be written
as

ψ̃(k) = Y 0
0 (θ,φ)ϕ(k) = 1√

4π
ϕ(k) (3.11)

where Y 0
0 is the spherical harmonic with quantum numbers l = 0, m = 0 and ϕ(k) is

the radial wave function in momentum space, normalized in such a way that
∫

d3k
∣∣∣ψ̃(k)

∣∣∣2 =
∫

dk k2|ϕ(k)|2 = 1. (3.12)
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The 3S1 state can be similarly written as

∣∣∣3S1(p,mS)
〉

=
∫ d3k

(2π)3
1√
4π
ϕ(k)Ss1s2(mS) δ

c1c2

√
Nc

∣∣∣∣Qs1c1

(p
2 + k

)
Q̄s2c2

(p
2 − k

)〉
.

(3.13)
Here mS is the polarization of the state, which can be −1, 0 or +1. It corresponds
to the projection of spin in the z-direction. Consequently, the coupling of the spins
depends on the polarization, which is indicated in the spin matrix Ss1s2(mS). The
spins are combined using the standard Clebsch-Gordan coefficients:

|mS = +1〉 = |s1 =↑, s2 =↑〉

|mS = 0〉 = 1√
2
(
|s1 =↑, s2 =↓〉+ |s1 =↓, s2 =↑〉

)
|mS = −1〉 = |s1 =↓, s2 =↓〉

(3.14)

Other
∣∣∣QQ̄〉 states could be written in a similar way as (3.10), taking into account

the coupling of the spins and orbital angular momentum.
In the following calculations we need to explicitly calculate how operators act

on the
∣∣∣QQ̄〉 Fock state. It is instructive to see how these calculations can often

be simplified by separating the spin and color parts of the operator. Let us now
consider an operator χ†ÂŜĈψ acting on a 1S0 or 3S1 state where Ŝ and Ĉ are the
spin and color parts of the operator, respectively. Then we can write

χ†ÂŜĈψ
∣∣∣QQ̄〉 =

∫ d3k1 d3k2

(2π)6
∑
s1s2

η†s2Ŝξs1M
s1s2

∑
c1c2

Ĉc1c2
δc1c2

√
Nc

· χ†(k1)Âψ(k2)
∣∣∣∣Q(p

2 + k
)
Q̄
(p

2 − k
)〉

.

(3.15)

Here the notation has been changed so that operators χ†(k) and ψ(k) annihilate a
state with momentum k irrespective of the spin or color and M s1s2 is the matrix
for coupling the spins. For the Fock state 1S0 we have M s1s2 = εs1s2 and for 3S1

we have M s1s2 = Ss1s2(mS). We have assumed that the quark-antiquark pair is in
the color-singlet state so that colors are coupled by the δc1c2 matrix. In the case of
a color-octet state this would be a linear combination of the Gell-Mann matrices
ta. From equation (3.15) we can see that the color and spin parts can be treated
separately. In this case, the color part gives us simply the trace of the operator Ĉ.
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The spin part we write in the following way:

∑
s1s2

η†s2Ŝξs1M
s1s2 = Tr

(∑
s1s2

M s1s2ξs1η
†
s2Ŝ

)
. (3.16)

By using the definitions for the spinors (2.62) and (2.63) with the spin matrices from
equations (3.10) and (3.13), we can write the spin sums as

1S0 :
∑
s1s2

M s1s2ξs1η
†
s2 = 1√

2
12 and 3S1 :

∑
s1s2

M s1s2ξs1η
†
s2 = 1√

2
ελ · σ, (3.17)

with 12 being 2× 2 identity matrix and ελ the polarization vectors [5, p. 137]

ε+1 = − 1√
2
(
1 i 0

)
ε0 =

(
0 0 1

)
ε−1 = 1√

2
(
1 −i 0

)
.

(3.18)

Equation (3.15) now simplifies to

ψ†ÂŜĈχ
∣∣∣QQ̄〉 = Tr

(
MSŜ

)
Tr
(

1√
Nc

Ĉ

)

·
∫ d3k1 d3k2

(2π)6 ψ†(k1)Âχ(k2)
∣∣∣∣Q(p

2 + k
)
Q̄
(p

2 − k
)〉 (3.19)

where MS = ∑
s1s2 M

s1s2ξs1η
†
s2 is the matrix for the spin part from equation (3.17)

depending on the total spin and the polarization of the
∣∣∣QQ̄〉 state.
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4 Matching NRQCD to QCD

We want to determine to coefficients of the 4-fermion operators in equation (2.50).
This can be done by requiring that invariant amplitudes calculated both in NRQCD
and QCD give the same results. We will calculate the invariant amplitude for the
process QQ̄→ QQ̄ to do the matching.

4.1 Invariant amplitudes from NRQCD

The operators in equation (2.50) correspond to a 4-fermion interaction shown in
figure 1 and their Feynman rules are straightforward to calculate. For the lowest
order diagrams shown in figure 1 with only one interaction vertex, we can get their
contribution to the invariant amplitude QQ̄ → QQ̄ by the substitutions ψ → ξ,
χ→ η, − i

2

↔
D→Mv(1 +O(v2)). Here ξ and η are the quark and antiquark spinors

and v is the velocity of the quark in the center-of-mass frame. The velocity of the
antiquark in the center-of-mass frame is then −v. Using these substitutions the
invariant amplitude from the 4-fermion operators (2.51) and (2.52) is then

M = 1
M21c ⊗ 1c

[
f1
(

1S0
)
ξ′†η′η†ξ + f1

(
3S1

)
ξ′†ση′ · η†σξ + f1

(
1P1

)
ξ′†v′η′ · η†vξ

+ 1
3f1

(
3P0

)
ξ′†v′ · ση′η†v · σξ + 1

2f1
(

3P1
)
ξ′†v′× ση′ · η†v× σξ

+ f1
(

3P2
)
ξ′†v′(iσj)η′η†v(iσj)ξ + v2g1

(
1S0

)
ξ′†η′η†ξ + v2g1

(
3S1

)
ξ′†ση′ · η†σξ

+ 1
2
(
v(ivj)v′(iv′j)

)
g1
(

3S1,
3D1

)
ξ′†σiη′η†σjξ +O

(
v3
)]

+ color-octet operators.

(4.1)

Here fi are the coefficients for the Oi operators and gi coefficients for the Pi
operators, ξ and η are the 2-spinors of the incoming quark and antiquark, and vi is
the velocity of the incoming quark. The corresponding quantities for the outgoing
quark-antiquark pair are denoted by primes. The notation 1c ⊗ 1c is a shorthand
notation for ξ′†c 1cη′cη†c1cξc where ξc and ηc are the vectors describing the color state of
the incoming quark and antiquark. As argued in section 3.2, these can be written as a
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Figure 1. 4-fermion interaction in NRQCD that corresponds to the 4-fermion
operators in section 2.3

trace of the color identity matrix 1c times the color matrix ηcξ†c of the quark-antiquark
pair. This is non-zero only if the pair is in the color-singlet state. We define similarly
the notations ξ′†η′η†ξ = 1s⊗ 1s and ξ′†σiη′η†σjξ = σi⊗ σj to simplify the equations.
Rearranging the terms, equation (4.1) now becomes

M = 1
M21c ⊗ 1c

1s ⊗ 1s

(
f1
(

1S0
)

+ v · v′f1
(

1P1
)

+ v2g1
(

1S0
))

+ σi ⊗ σi
(
f1
(

3S0
)

+ v2 3g1(3S1)− g1(3S1,
3D1)

3 + v · v′f1(3P1) + f1(3P2)
2

)

+ σi ⊗ σj
vjv′if1(3P0)− f1(3P2)

3 + viv′j
f1(3P2)− f1(3P1)

2

+
(
vivj + v′iv′j

)
g1
(

3S1,
3D1

)+O
(
v3
)+ color-octet operators.

(4.2)

It should be also noted that the initial and final states may be superpositions of
different color and spin combinations of the quark and antiquark. For example, if the
initial QQ̄-pair has total spin S = 1 and polarization mS = 0 the initial state would
consist of a linear combination of |s1 =↑, s2 =↓〉 and |s1 =↓, s2 =↑〉 spin states. In
this case, we need to sum over these different combinations in the invariant amplitude.
These sums are left implicit in equation (4.2).
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(a) (b)

Figure 2. Lowest order QQ̄→ QQ̄ diagrams. These do not contribute to the
decay of the quarkonium.

4.2 Invariant amplitudes in QCD

We can calculate the invariant amplitude corresponding to the QQ̄→ QQ̄ process
also in QCD. This invariant amplitude needs to match with the one from NRQCD
as physical quantities can be calculated from these and they need to be the same
for both theories. We can then calculate the coefficients in (2.50) by matching
invariant amplitudes of NRQCD to QCD. Our goal is to calculate quarkonium decay
widths using NRQCD, and it will turn out that only the imaginary parts of the
coefficients will affect the decay widths. Therefore we are interested only in matching
the imaginary parts of the coefficients, which allows us to consider only the imaginary
part of the invariant amplitude. This will greatly simplify calculations.

To do the matching, we need to consider all the Feynman diagrams of the process
QQ̄→ QQ̄ in QCD. The lowest order diagrams for this process are shown in figure
2. By the Cutkosky rules [9, p. 236], the imaginary part of the invariant amplitude
corresponds to on-shell particles in the intermediate state. The intermediate gluon
in figure 2a has to be a virtual one because of the energy-momentum conservation,
and therefore the corresponding invariant amplitude doesn’t have an imaginary part.
Figure 2b doesn’t have intermediate particles and the imaginary part corresponding
to this invariant amplitude also vanishes. Neither of the diagrams in figure 2 then
contributes to the imaginary parts of the 4-fermion operator coefficients and we need
to consider higher-order diagrams.

At higher orders in αs we have actual contributions to the decay width. All
contributing diagrams of order α2

s are in figure 3. It should be noted that diagrams
where the imaginary part comes from an on-shell heavy quark pair in the intermediate
state are not included, as these diagrams do not describe an annihilation process of
the quarkonium. In practice, this means that all diagrams where the initial QQ̄-pair



40

isn’t annihilated at some point can be neglected.
We will from now on focus only on ηc and J/ψ charmonium particles and their

decay. The corresponding results for bottonia particles ηb and Υ can be deduced
by simple substitutions. As we will discuss in section 5.3, only the color-singlet
|cc̄〉 states will contribute to the decay of ηc and J/ψ at the lowest orders of v.
This means that we can neglect most of the diagrams in figure 3, as they contain a
cc̄(singlet)→ g vertex that requires us to take the trace of the product of the color
singlet and octet matrices δijT aji = Tr(T a) = 0. Therefore we will calculate only the
contributions from the diagrams 3a and 3b as the other diagrams do not contribute
to the decay widths at the order of v we are considering in section 5.3.

Because we have used the non-relativistic normalization for the NRQCD states,
we should use that same normalization for the QCD invariant amplitude calculations
to match the coefficients correctly. That is, we define the Dirac spinors to be

us(p) =
√
E +m

2E

 ξs
σ·p
E+mξs

 vs(−p) =
√
E +m

2E

− σ·p
E+mηs

ηs

. (4.3)

The invariant amplitude can then be calculated using the standard QCD Feynman
rules in the Feynman gauge [12, p. 505]. We also choose to do the calculations in
the center-of-mass frame where the incoming quark and antiquark have momenta
in opposite directions, as this is also the momentum frame used in NRQCD. Then
all the incoming and outgoing quarks and antiquarks in diagrams 3 have the same
energy E.

We can now proceed to calculate the invariant amplitude for the diagram 3a.
Using the notation in figure 4, the invariant amplitude is

iM3a =
∫ d4k

(2π)4 ūs3(p3)
(
−igstajiγα

) i
(
/q2 +m

)
q2

2 −m2 + iε

(
−igstbihγβ

)
vs4(p4)

· v̄s2(p2)
(
−igstbgfγν

) i
(
/q1 +m

)
q2

1 −m2 + iε

(
−igstafeγµ

)
us1(p1) ·

(
−igµα
k2

1 + iε

)(
−igνβ
k2

2 + iε

)

=
∫ d4k

(2π)4
1(

k2 + iε
)(

(p1 + p2 − k)2 + iε
)(

(p1 − k)2 −m2 + iε
)

· 1
(p3 − k)2 −m2 + iε

· g4
st
a
jit

b
iht

b
gf t

a
fe · ū3γµ

(
/q2 +m

)
γνv4︸ ︷︷ ︸

L′µν

v̄2γ
ν
(
/q1 +m

)
γµu1︸ ︷︷ ︸

Lµν

(4.4)
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3. Lowest order diagrams contributing to the decay of cc̄.
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p1, e p3, j

p2, g p4, h

k1 = k

q1 = p1 − k, f q2 = p3 − k, i

k2 = p1 + p2 − k

α, a

β, b

µ, a

ν, b

Figure 4. Diagram for calculating the invariant amplitudeM3a

Here m is the physical mass of the heavy quark which can be identified with the
NRQCD mass parameter M at the lowest order. The loop integral can be simplified
by noting that we are only interested in the imaginary part of invariant amplitude.
Only the imaginary parts of the operators have a contribution to the decay widths,
so we are interested in matching only those. The imaginary part of the invariant
amplitude can be obtained by using the Cutkosky cutting rules for simplifying the
loop integral. According to the cutting rules, we can calculate the loop integral by
“cutting” propagators that can correspond to on-shell particles. In the case of figure
4 this corresponds to cutting the diagram at the gluon propagators as shown in the
figure. The Cutkosky rules tell us that such a diagram gives us 2 ImM after we
have done the substitution

1
k2 + iε

→ −2πiδ
(
k2
)

(4.5)

for the cut gluon propagators in the loop integral. We then get

∫ d4k

(2π)4
1(

k2 + iε
)(

(p1 + p2 − k)2 + iε
)(

(p1 − k)2 −m2 + iε
)(

(p3 − k)2 −m2 + iε
)

→
∫ d4k

(2π)2

−δ(k2)δ
(
(p1 + p2 − k)2

)
(
(p1 − k)2 −m2

)(
(p3 − k)2 −m2

)
(4.6)
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and therefore

2 ImM3a =
∫ d4k

(2π)2

δ(k2)δ
(
(p1 + p2 − k)2

)
(
(p1 − k)2 −m2

)(
(p3 − k)2 −m2

)f(k)

=
∫ d4k

(2π)2
δ(k2

0 − k2)δ(4E2 − 4Ek0)
(−2Ek0 + 2p1 · k)(−2Ek0 + 2p3 · k)f(k)

=
∫ d3k

(2π)2
δ(E2 − k2)

16E(−E2 + p1 · k)(−E2 + p3 · k)f(k0 = E,k)

=
∫ dΩ d|k|

(2π)2
|k|2δ(E − |k|)

32E|k|(−E2 + p1 · k)(−E2 + p3 · k)f(k0 = E,k)

=
∫ dΩ

(2π)2
f(k0 = E, |k| = E,Ω)

32E2(E − |p1| cos θ1)(E − |p3| cos θ3)

= 1
27π2E4

∫
dΩ f(k0 = E, |k| = E,Ω)

(1− v cos θ1)(1− v cos θ3) .

(4.7)

Here f(k) is the rest of the integral and θi is the angle between k and pi.
We can write the quark spinor part L′µνLµν of the integral (4.4) in a different

way. First of all, we can use the momentum forms of the Dirac equation [9, p. 803]

(
/p−m

)
u(p) = ū(p)

(
/p−m

)
= 0 and

(
/p+m

)
v(p) = v̄(p)

(
/p+m

)
= 0 (4.8)

to simplify it. For this we need to use the anticommutation relation of the gamma
matrices

{γµ,γν} = 2gµν . (4.9)

The anticommutation relation (4.9) now allows us to write

L′µνL
µν =ū3γµ

(
/q2 +m

)
γνv4v̄2γ

ν
(
/q1 +m

)
γµu1

=ū3
(
− /q2γµ +mγµ + 2q2,µ

)
γνv4v̄2γ

ν
(
−γµ /q1 + γµm+ 2qµ1

)
u1

=
(
ū3
(
− /p3 +m

)
γµ + ū3(/kγµ + 2q2,µ)

)
γνv4

· v̄2γ
ν
((
−γµ /p1 +m

)
u1 + (γµ/k + 2qµ1 )u1

)
(∗)=ū3(/kγµ + 2p3,µ − 2kµ)γνv4v̄2γ

ν(γµ/k + 2pµ1 − 2kµ)u1

=ū3(−γµ/k + 2p3,µ)γνv4v̄2γ
ν(−/kγµ + 2pµ1)u1.

(4.10)

where the Dirac equations (4.8) were used at (∗). We can also use the same trick as
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in (3.16), allowing us to write:

ū3(−γµ/k + 2p3,µ)γνv4v̄2γ
ν(−/kγµ + 2pµ1)u1

= Tr(v4ū3(−γµ/k + 2p3,µ)γν) Tr(u1v̄2γ
ν(−/kγµ + 2pµ1)).

(4.11)

In general, we might have a sum over different spin combinations for the incoming
and outgoing QQ̄ states. In that case, to get the total invariant amplitude we need
to sum the expression (4.7) over these combinations. The spins of the quarks and
antiquarks appear only in the spinors, meaning that the invariant amplitude becomes

ImM3a = 1
28π2E4

∫
dΩ 1

(1− v cos θ1)(1− v cos θ3) · g
4
st
a
jit

b
iht

b
gf t

a
fe

· Tr

 ∑
outgoing

spins

v4ū3(−γµ/k + 2p3,µ)γν

Tr

 ∑
incoming

spins

u1v̄2γ
ν(−/kγµ + 2pµ1)

.
(4.12)

By substituting the expressions for the spinors from (4.3), the spinor sum can also
be written as

∑
spins

us1(p1)v̄s2(p2) =
∑
spins

E +m

2E

 ξs1

σ·p1
E+mξs1

(η†s2
σ·p2
E+m −η†s2

)

=
∑
spins

E +M

2E

 ξs1η
†
s2

σ·p2
E+m −ξs1η

†
s2

σ·p1
E+mξs1η

†
s2

σ·p2
E+m − σ·p1

E+mξs1η
†
s2

 = E +m

2E

 A σ·p2
E+m −A

σ·p1
E+mA

σ·p2
E+m − σ·p1

E+mA

.
(4.13)

In the last equality we have written A = ∑
ξs1η

†
s2 . The Pauli spin matrices along

with the identity matrix form a linear basis for the 2× 2 matrices [12, p. 110], which
means that we can write A as a sum

A = a1 + b · σ (4.14)

where a is a complex number and b is a 3-component complex vector. We now
want to use this to write the spinor sum (4.13) as a combination of Dirac gamma
matrices. Using the Pauli spin matrix identity (2.10) along with the fact that in the
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center-of-mass frame p2 = −p1, we get

∑
spins

us1(p1)v̄s2(p2)

= E +m

2E

a
 − σ·p1

E+m −1
− σ·p1
E+m

σ·p1
E+m − σ·p1

E+m

+ bi

 −σi σ·p1
E+m −σi

− σ·p1
E+mσ

i σ·p1
E+m − σ·p1

E+mσ
i


=E +m

2E

−a
 σ·p1

E+m 1

p2
1

(E+m)2
σ·p1
E+m

− bi
 pi1

E+m + iεijk σ
kpj

E+m σi

− p2
1

(E+m)2σi + 2pi σ·p1
(E+m)2

pi1
E+m − iε

ijk σ
kpj1

E+m




=− 1
2E

a
 σ · p1 E +M

E −M σ · p1

+ bi

 pi1 + iεijkσkpj1 (E +m)σi

(−E +m)σi + 2pi1 σ·p1
E+m pi1 − iεijkσkp

j
1


=− 1

2E

a
σ · p1 0

0 σ · p1

+ a

 0 E

E 0

+ a

 0 m

−m 0


+ bi

pi1 0
0 pi1

+ bi

iεijkσkpj1 0
0 −iεijkσkpj1


+ bi

 0 Eσi − pi1 σ·p1
E+m

−Eσi + pi1
σ·p1
E+m 0

+ bi

 0 mσi + pi1
σ·p1
E+m

mσi + pi1
σ·p1
E+m 0


=− 1

2E

a(pi1γ0γiγ5 + Eγ5 +mγ0γ5
)

+ bi
(
pi11 + iεijkpj1γ

kγ5 + Eγi − pi1p
j
1

E +m
γj +mγ0γi + pi1p

j
1

E +m
γ0γj

)
=− 1

2E

a( /p1γ
0γ5 +mγ0γ5

)

+ bi
(
pi11 + iεijkpj1γ

kγ5 + Eγi − pi1p
j
1

E +m
γj +mγ0γi + pi1p

j
1

E +m
γ0γj

).
(4.15)

Here we have used the Dirac-Pauli representation of the gamma matrices (2.5). The
repeated indices are summed over, as usual.

We can now calculate the trace part of equation (4.12) for the incoming particles.
To do this, we need the following trace properties of the gamma matrices [9, p. 805]:

• Trace of an odd number of gamma matrices γµ is zero.

• Trace of γ5 times an odd number gamma matrices γµ is zero.
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• Tr(γµγν) = 4gµν

• Tr(γ5) = Tr(γ5γµγν) = 0

• Tr(γµγνγργσ) = 4(gµνgσρ + gµσgρν − gµρgσν)

• Tr(γµγνγργσγ5) = −4iεµνρσ

Using these, the trace can be written as

Tr

 ∑
incoming

spins

u1v̄2γ
ν(−/kγµ + 2pµ1)


=− 1

2E Tr
γν(−/kγµ + 2pµ1) ·

a( /p1γ
0γ5 +Mγ0γ5

)

+ bi

pi11 + iεijkpj1γ
kγ5 + Eγi − pi1p

j
1

E +m
γj +mγ0γi + pi1p

j
1

E +m
γ0γj


=− 1

2E

4aimkαεναµ0 + bi
(
− 4εijkεναµkpj1kα − 4Ekα

(
gναgµi + gνigαµ − gµνgαi

)

+ 8Epµ1gνi + 4 pi1p
j
1

E +m

(
kνgµj + kµgνj − kjgµν − 2pµ1gνj

)).
(4.16)

Denoting the coefficients in (4.14) by a′ and b′ for the outgoing quark-antiquark
pair, we can also write the trace for the outgoing particles as

Tr

 ∑
outgoing

spins

v4ū3(−γµ/k + 2p3,µ)γν

 = Tr


 ∑

outgoing
spins

u3v̄4γν(−/kγµ + 2p3,µ)


†

= Tr

 ∑
outgoing

spins

u3v̄4γν(−/kγµ + 2p3,µ)


∗

= − 1
2E

− 4a′∗imkβενβµ0 + b′∗i
(
− 4εijkε k

νβµ p
j
3k

β − 4Ekβ
(
gνβδ

i
µ + δiνgβµ − gµνδiβ

)

+ 8Ep3,µδ
i
ν + 4 pi3p

j
3

E +m

(
kνδ

j
µ + kµδ

j
ν − kjgµν − 2p3,µδ

j
ν

)).
(4.17)
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We can now calculate the spinor part L′µνLµν :

L′µνL
µν = Tr

 ∑
outgoing

spins

v4ū3(−γµ/k + 2p3,µ)γν

Tr

 ∑
incoming

spins

u1v̄2γ
ν(−/kγµ + 2pµ1)


= 4
E2

a′∗am2kαk
βεναµ0ενβµ0 + imb′∗iakαε

ναµ0
(
−εijkε k

νβµ p
j
3k

β + 2Ep3,µδ
i
ν

)
+ ima′∗bikβενβµ0

(
εijkεναµkpj1kα − 2Epµ1gνi

)
+ b′∗ibj

εjklεναµlpk1kα
(
εimnε n

νβµ pm3 k
β − 2Ep3,µδ

i
ν + 2 pi3p

m
3

E +m
p3,µδ

m
ν

)

+ 2E2kβkα
(
δαβg

ij + giαδjβ
)
− 2E2

(
kipj3 − kjpi3 + kjpi1 − kip

j
1 + kα(pα3 + pα1 )gij

)
+ εimnε n

νβµ pm3 k
β

(
−2Epµ1gjν + 2 pj1p

m
1

E +m
pµ1g

mν

)
+ 4E2p1,µp

µ
3g

ij

+ 2 E

E +m
pi3p

m
3

(
kjpm1 + pµ1kµg

mj − kmpj1 − 2p3,µp
µ
1g

jm
)

+ 2 E

E +m
pj1p

m
1

(
kipm3 + pµ3kµg

mi − kmpi3 − 2p1,µp
µ
3g

im
)

− E

E +m

(
pj1p

m
1

(
2kαkαgim + 2kmki − 2pi1km + pm1 k

i
)

+ pi3p
m
3

(
2kαkαgjm + 2kmkj − 2pj3km + pm3 k

j
))

+ pj1p
l
1p
i
3p
m
3

(E +m)2

(
2kµkµgml + 4kmkl − 2pm1 kl + 2pl1km

)

− 2pl3km + 2pm3 kl − 2pµ1kµgml − 2pµ3kµgml4p1,µp
µ
3g

ml)


(4.18)

Our ultimate goal here is to match the QCD invariant amplitude (4.12) to the
NRQCD one (4.2). The NRQCD invariant amplitude is calculated only to the
accuracy O(v3), so we need to consider the QCD invariant amplitude only to that
order. By noting that p = mv(1 +O(v2)) and by equation (4.7) k0 = E and |k| = E,
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we can simplify equation (4.18):

L′µνL
µν = 4

E2

a′∗am2
(
−kiki

)
2 + b′∗ibj

εjklεναµlpk1kα(εimnε n
νβµ pm3 k

β − 2Ep3,µδ
i
ν

)
+ 2E2kβkα

(
δαβg

ij + giαδjβ
)
− 2E2

(
kipj3 − kjpi3 + kjpi1 − kip

j
1 + kα(pα3 + pα1 )gij

)
+ εimnε n

νβµ pm3 k
β
(
−2Epµ1gjν

)
+ 4E2p1,µp

µ
3g

ij

− E

E +m

(
pj1p

m
1

(
2kαkαgim + 2kmki

)
+ pi3p

m
3

(
2kαkαgjm + 2kmkj

))
+O

(
v3
)

= 4
E2

2a′∗am2E2 + b′∗ibj

2εjklεimnklknpk1pm3

− 2E2
(
2p1 · p3δ

ij − 2pi1p
j
3 − p1 · kδij − p3 · kδij + kjpi1 + kipj3

)
+ 2E2kikj − 2E2

(
kipj3 − kjpi3 + kjpi1 − kip

j
1 − 2E2δij + p1 · kδij + p3 · kδij

)
− 4E4δij + 4E2p1 · p3δ

ij − pj1pm1 kmki − pi3pm3 kmkj +O
(
v3
).

(4.19)

Here we have also used properties of the Levi-Civita symbols to simplify the results.
Let’s now denote the velocity of the incoming quark by v and the velocity of the

outgoing quark by v′. We then have p1 = vE and p3 = v′E. Because the incoming
and outgoing quarks have the same energy, we must have |v| = |v′| = v. We can
also denote k = Ek̂ where k̂ is the unit vector pointing in the direction of k. Now
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we get

L′µνL
µν = 4

E2

2a′∗am2E2

+ b′∗ibj

2εjklεimnklknpk1pm3 + 2E2
(
2pi1p

j
3 − 2kjpi1 − 2kipj3 + kjpi3 + kipj1

)

+ 2E2kikj − pj1pm1 kmki − pi3pm3 kmkj +O
(
v3
)

= 4
2a′∗am2 + b′∗ibjE2

2εjklεimnk̂lk̂nvkv′m + 4viv′j − 4k̂jvi − 4k̂iv′j

+ 2k̂jv′i + 2k̂ivj + 2k̂ik̂j − vjvmk̂mk̂i − v′iv′mk̂mk̂j +O
(
v3
).

(4.20)

We can now go on to perform the angular integral of (4.12). First of all, we note
that
∫

dΩ f(Ω)
(1− v cos θ1)(1− v cos θ3)

=
∫

dΩ f(Ω)
(
1 + v(cos θ1 + cos θ3) + v2

(
cos2 θ1 + cos2 θ3 + cos θ1 cos θ3

)
+O

(
v3
))

=
∫

dΩ f(Ω)
(
1 + k̂i

(
vi + v′i

)
+ k̂ik̂j

(
vivj + v′iv′j + viv′j

)
+O

(
v3
))
.

(4.21)

By looking at this and equation (4.20), we see that the angular dependence is in the
k̂ vector. To evaluate the integral, we need to use the formula

∫
dΩ k̂i1 k̂i2 . . . k̂i2n = 4π

(2n+ 1)!!
∑

combinations
δi1i2δi3i4 . . . δi2n−1i2n (4.22)

where k̂i are the components of the unit vector over which we integrate. If the
number of k̂i is odd the integral is zero by symmetry. Here ij can be any index 1,2,3.
This equation can derived from a similar formula [13, p. 80]

∫
dΩ

(
k̂1
)2α1(

k̂2
)2α2(

k̂3
)2α3 =

2Γ
(
α1 + 1

2

)
Γ
(
α2 + 1

2

)
Γ
(
α3 + 1

2

)
Γ
(
α1 + α2 + α3 + 3

2

)
= 4π (2α1 − 1)!! (2α2 − 1)!! (2α3 − 1)!!

(2n+ 1)!!

(4.23)
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where αi are positive integers, n = α1 + α2 + α3 and the identity Γ(z/2 + 1) =
z!!
√
π/2z+1 has been used. The difference between equations (4.22) and (4.23) is

that in equation (4.22) we don’t know how many of the indices are the same. We can
prove it using equation (4.23) by noting that if the number of indices with i = 1,2,3
is 2α1, 2α2, 2α3, respectively, then the left side of equation (4.22) is simply equation
(4.23). The right side of equation (4.22) can on the other hand be written as

4π
(2n+ 1)!!

∑
combinations

δi1i2δi3i4 . . . δi2n−1i2n

= 4π
(2n+ 1)!! · (2α1 − 1)!! (2α2 − 1)!! (2α3 − 1)!!

(4.24)

which is also the same as (4.23). Because this is true for all numbers of same indices
αi, equation (4.22) holds in general. We can then use it to calculate for example:

∫
dΩ k̂i =

∫
dΩ k̂ikjkk = 0,∫

dΩ k̂ik̂j = 4π
3 δij, and∫

dΩ k̂ik̂j k̂kk̂l = 4π
15
(
δijδkl + δikδjl + δilδjk

)
.

(4.25)
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Using these, we get from the angular integral
∫

dΩ 1
(1− v cos θ1)(1− v cos θ3)L

′
µνL

µν

=
∫

dΩ
(
1 + k̂a(va + v′a) + k̂ak̂b

(
vavb + v′av′b + vav′b

)
+O

(
v3
))

· 4
2a′∗am2 + b′∗ibjE2

2εjklεimnk̂lk̂nvkv′m + 4viv′j − 4k̂jvi − 4k̂iv′j + 2k̂jv′i

+ 2k̂ivj + 2k̂ik̂j − vjvmk̂mk̂i − v′iv′mk̂mk̂j +O
(
v3
)

=
∫

dΩ 4
2a′∗am2

(
1 + k̂a(va + v′a) + k̂ak̂b

(
vavb + v′av′b + vav′b

))

+ b′∗ibjE2

2k̂ik̂j
(
1 + k̂a(va + v′a) + k̂ak̂b

(
vavb + v′av′b + vav′b

))
+
(
−4k̂jvi − 4k̂iv′j + 2k̂jv′i + 2k̂ivj

)(
1 + k̂a(va + v′a)

)
− vjvmk̂mk̂i + 2εjklεimnk̂lk̂nvkv′m + 4viv′j − v′iv′mk̂mk̂j

+O
(
v3
)

=16π
2a′∗am2

(
1 + 2

3v
2 + 1

3v
iv′i
)

+ b′∗ibjE2

2
3δ

ij + 2
15
(
2v2δij + vav′aδij + 2vivj + 2v′iv′j + viv′j + vjv′i

)
+ 1

3
(
−2vivj − 2v′iv′j − 8viv′j + 4v′ivj

)
− 1

3v
jvi + 2

3ε
jklεimlvkv′m + 4viv′j − 1

3v
′iv′j

+O
(
v3
)

=32π
a′∗am2

(
1 + 2

3v
2 + 1

3v · v′
)

+ b′∗ibjE2

1
3δ

ij + 2
15δ

ijv2 + 2
5δ

ijv · v′

− 11
30
(
vivj + v′iv′j

)
+ 2

5v
iv′j + 11

15v
′ivj

+O
(
v3
).

(4.26)

For the energy of the quark we have E = m
(
1 + 1

2v
2 +O(v4)

)
, so we can write the
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whole invariant amplitude as

ImM3a = 1
28π2E4 · g

4
st
a
jit

b
iht

b
gf t

a
fe · 32π

a′∗am2
(

1 + 2
3v

2 + 1
3v · v′

)

+ b′∗ibjE2

1
3δ

ij + 2
15δ

ijv2 + 2
5δ

ijv · v′ − 11
30
(
vivj + v′iv′j

)
+ 2

5v
iv′j + 11

15v
′ivj


+O

(
v3
)

= g4
s

23πm2 · t
a
jit

b
iht

b
gf t

a
fe

a′∗a(1− 2v2
)(

1 + 2
3v

2 + 1
3v · v′

)

+ b′∗ibj
(
1− v2

)1
3δ

ij + 2
15δ

ijv2 + 2
5δ

ijv · v′ − 11
30
(
vivj + v′iv′j

)
+ 2

5v
iv′j

+ 11
15v

′ivj

+O
(
v3
)

= g4
s

23πm2 · t
a
jit

b
iht

b
gf t

a
fe

a′∗a(1− 4
3v

2 + 1
3v · v′

)

+ b′∗ibj

1
3δ

ij − 1
5δ

ijv2 + 2
5δ

ijv · v′ − 11
30
(
vivj + v′iv′j

)
+ 2

5v
iv′j + 11

15v
′ivj


+O

(
v3
).

(4.27)

The color matrix part can be simplified further into color-singlet and color-octet
operators. Using the Fierz identity [12, p. 110]

tabct
a
de = 1

2

(
δbeδcd −

1
Nc

δbcδde

)
(4.28)
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we can write

tajit
b
iht

b
gf t

a
fe = 1

4

(
δjeδfi −

1
Nc

δjiδfe

)(
δifδgh −

1
Nc

δihδfg

)
= 1

4

[(
Nc −

2
Nc

)
δjeδgh + 1

N2
c

δjhδeg

]

= 1
4

[(
Nc −

2
Nc

)(
δjeδgh −

1
Nc

δjhδge

)
+
(

1− 1
N2
c

)
δjhδge

]

= N2
c − 1
4N2

c

δjhδge + N2
c − 2
2Nc

tajht
a
ge = CF

2Nc

δjhδge + N2
c − 2
2Nc

tajht
a
ge

= CF
2Nc

1c ⊗ 1c + N2
c − 2
2Nc

ta ⊗ ta

(4.29)

where CF = (N2
c − 1)/(2Nc) is the Casimir invariant for the fundamental representa-

tion [9, p. 501]. We have used here the same notation for 1c ⊗ 1c and ta ⊗ ta as in
section 4.1.

We can also identify the parts with the coefficients a and bi to correspond to the
identity spin matrix and Pauli matrices acting on the QQ̄ state. This can be seen by
noting that

∑
incoming

spins

ξ†s11sηs2 = Tr

 ∑
incoming

spins

ηs2ξ
†
s1

 = Tr(a1 + b · σ) = 2a, (4.30)

∑
incoming

spins

ξ†s1σ
iηs2 = Tr

 ∑
incoming

spins

ηs2ξ
†
s1σ

i

 = Tr
(
(a1 + b · σ)σi

)
= 2bi (4.31)

and similarly for the outgoing spins. With this, we can identify 4a′∗a =
η†s41sξs3ξ

†
s11sηs2 and 4b′i∗bj = η†s4σ

iξs3ξ
†
s1σ

jηs2 . We can again use the same nota-
tion as in section 4.1, for example η†s41sξs3ξ

†
s11sηs2 = 1s ⊗ 1s.
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p1, e p3, j

p2, g p4, h

k1 = k

q1 = p1 − k, f q2 = p3 − k, i

k2 = p1 + p2 − k

α, b

β, a

µ, a

ν, b

Figure 5. Diagram for calculating the invariant amplitudeM3b

Using these substitutions along with (4.29) the invariant amplitude becomes

ImM3a = g4
s

25πm2 ·
(
CF
2Nc

1c ⊗ 1c + N2
c − 2
2Nc

ta ⊗ ta
)1s ⊗ 1s

(
1− 4

3v
2 + 1

3v · v′
)

+ σi ⊗ σj
1

3δ
ij − 1

5δ
ijv2 + 2

5δ
ijv · v′ − 11

30
(
vivj + v′iv′j

)
+ 2

5v
iv′j + 11

15v
′ivj


+O

(
v3
)

=πα2
s

2m2 ·
(
CF
2Nc

1c ⊗ 1c + N2
c − 2
2Nc

ta ⊗ ta
)1s ⊗ 1s

(
1− 4

3v
2 + 1

3v · v′
)

+ σi ⊗ σi
1

3 −
1
5v

2 + 2
5v · v′


+ σi ⊗ σj

2
5v

iv′j + 11
15v

′ivj − 11
30
(
vivj + v′iv′j

)+O
(
v3
).

(4.32)

Now we also need the calculate the invariant amplitude for the diagram 3b. We
can proceed with this in the same way as with the diagram 3a. Using the notation
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in figure 5, we get

iM3b =
∫ d4k

(2π)4 ūs3(p3)
(
−igstajiγα

) i
(
/q2 +m

)
q2

2 −m2 + iε

(
−igstbihγβ

)
vs4(p4)

· v̄s2(p2)
(
−igstagfγν

) i
(
/q1 +m

)
q2

1 −m2 + iε

(
−igstbfeγµ

)
us1(p1) ·

(
−igµβ
k2

1 + iε

)(
−igνα
k2

2 + iε

)

=
∫ d4k

(2π)4
1(

k2 + iε
)(

(p1 + p2 − k)2 + iε
)(

(p1 − k)2 −m2 + iε
)

· 1
(k − p4)2 −m2 + iε

· g4
st
a
jit

b
iht

a
gf t

b
fe · ū3γν

(
/q2 +m

)
γµv4︸ ︷︷ ︸

L′νµ

v̄2γ
ν
(
/q1 +m

)
γµu1︸ ︷︷ ︸

Lµν

.

(4.33)

Again, the Cutkosky rules tell us to cut the gluon propagators and we get

ImM3b =
∫ d4k

(2π)2
δ(k2)δ((p1 + p2 − k)2)(

(p1 − k)2 −m2
)(

(p4 − k)2 −m2
)f(k)

= 1
27π2E4

∫
dΩ f(k0 = E, |k| = E,Ω)

(1− v cos θ1)(1− v cos θ4)

= 1
27π2E4

∫
dΩ f(k0 = E, |k| = E,Ω)(

1− k̂ · v1
)(

1− k̂ · v4
)

(4.34)

as the only difference to equation (4.7) is that now we have p4 instead of p3. The
Dirac equations (4.8) allow us to simplify the spinor part of the integral:

L′νµL
µν =ū3γν

(
/q2 +m

)
γµv4v̄2γ

ν
(
/q1 +m

)
γµu1

=ū3γν
(
/kγµ + γµ /p4 − 2p4,µ + γµm

)
v4v̄2γ

ν
(
−/kγµ − γµ /p1 + 2pµ1 + γµm

)
u1

=ū3γν(/kγµ − 2p4,µ)v4v̄2γ
ν(−/kγµ + 2pµ1)u1

=− ū3γν(−/kγµ + 2p4,µ)v4v̄2γ
ν(−/kγµ + 2pµ1)u1

(4.35)

We see that the incoming quark part is the same as in the diagram 3a and therefore
we get equation (4.16) also in this case. For the part corresponding to the outgoing
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quark-antiquark pair, we get instead

Tr

 ∑
outgoing

spins

v4ū3γν(−/kγµ + 2p4,µ)

 = Tr

 ∑
outgoing

spins

u3v̄4(−/kγµ + 2p4,µ)γν


∗

= − 1
2E

− 4a′∗imkβεµβν0 + b′∗i
(
− 4εijkε k

µβν p
j
3k

β − 4Ekβ
(
gνβδ

i
µ + δiνgβµ − gµνδiβ

)

+ 8Ep4,µδ
i
ν + 4 pi3p

j
3

E +m

(
kνδ

j
µ + kµδ

j
ν − kjgµν − 2p4,µδ

j
ν

)).
(4.36)

by using equation (4.15) and the gamma matrix properties. In the center-of-mass
frame p3 = −p4 so that this can be written as

Tr

 ∑
outgoing

spins

v4ū3γν(−/kγµ + 2p4,µ)


= 1

2E

− 4a′∗imkβενβµ0

+
(
−b′∗i

)(
− 4εijkε k

νβµ p
j
4k

β − 4Ekβ
(
gνβδ

i
µ + δiνgβµ − gµνδiβ

)

+ 8Ep4,µδ
i
ν + 4 pi4p

j
4

E +m

(
kνδ

j
µ + kµδ

j
ν − kjgµν − 2p4,µδ

j
ν

))

(4.37)

where we have also permuted indices on the Levi-Civita symbols. This equation can
be compared with equation (4.17) that is the corresponding one for the diagram 3a.
We see that that equations (4.37) and (4.17) are the same with the substitutions
p3 → p4 and b′∗i → −b′∗i, except for the overall minus sign. The minus sign is
cancelled by the one in equation (4.35) so that we can read L′νµLµν from equation
(4.20) with the substitution p3, b

′∗i → p4,−b′∗i. In fact, we can read the angular
integral over L′νµLµν using these same substitutions as we also have v4 instead of v3
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in the integral (4.34). We then get

ImM3b = 1
27π2E4 · g

4
st
a
jit

b
iht

a
gf t

b
fe

∫
dΩ

L′νµL
µν(

1− k̂ · v1
)(

1− k̂ · v4
)

= g4
s

23πm2 · t
a
jit

b
iht

a
gf t

b
fe

a′∗a(1− 4
3v

2 + 1
3v1 · v4

)

+ b′∗ibj

1
3δ

ij − 1
5δ

ijv2 + 2
5δ

ijv1 · v4 −
11
30
(
vi1v

j
1 + vi4v

j
4

)
+ 2

5v
i
1v
j
4 + 11

15v
i
4v
j
1


+O

(
v3
).

(4.38)

The color part can again be separated into color-singlet and color-octet operators,
using the identity (4.28). This allows us to write

tajit
b
iht

a
gf t

b
fe = 1

4

(
δjfδgi −

1
Nc

δjiδgf

)(
δieδfh −

1
Nc

δihδfe

)
= 1

4

[(
1 + 1

N2
c

)
δjhδge −

2
Nc

δjeδgh

]

= 1
4

[
− 2
Nc

(
δjeδgh −

1
Nc

δjhδge

)
+
(
N2
c + 1
N2
c

− 2
N2
c

)
δjhδge

]

= N2
c − 1
4N2

c

δjhδge −
1
Nc

tajht
a
ge = CF

2Nc

1c ⊗ 1c −
1
Nc

ta ⊗ ta.

(4.39)

By substituting this into (4.38) and writing v = v1, v′ = v3 = −v4, g2
s = 4παs,

4a′∗a = 1s ⊗ 1s and 4b′i∗bj = σi ⊗ σj , we get final expressions for the invariant
amplitude of the diagram 3b:

ImM3b =πα2
s

2m2 ·
(
CF
2Nc

1c ⊗ 1c −
1
Nc

ta ⊗ ta
)1s ⊗ 1s

(
1− 4

3v
2 − 1

3v · v′
)

+ σi ⊗ σi
− 1

3 + 1
5v

2 + 2
5v · v′)

+ σi ⊗ σj
2

5v
iv′j + 11

15v
′ivj + 11

30
(
vivj + v′iv′j

)+O
(
v3
).

(4.40)

These are the only two diagrams that contribute to the color-singlet part of
the invariant amplitude at the lowest order, as discussed previously. We can then
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calculate the imaginary part of the total invariant amplitude for the color-singlet
part:

ImM =
∑

diagrams
ImMi = πα2

s

m2 ·
CF
2Nc

1c ⊗ 1c

1s ⊗ 1s

(
1− 4

3v
2
)

+ σi ⊗ σi25v · v′ + σi ⊗ σj
2

5v
iv′j + 11

15v
′ivj

+O
(
v3
)+ color-octet terms.

(4.41)

By comparing this with (4.2) we can read the coefficients of the operators at order
O(α2

s):

Im f1
(

1S0
)

= πCF
2Nc

α2
s, (4.42a)

Im g1
(

1S0
)

= −2πCF
3Nc

α2
s, (4.42b)

Im f1
(

3P0
)

= 3πCF
2Nc

α2
s and (4.42c)

Im f1
(

3P2
)

= 2πCF
5Nc

α2
s. (4.42d)

All the other coefficients are zero at this order. These agree with reference [3, p. 96].

4.3 Electromagnetic decays

The coefficients of the operators include contributions from all QQ̄→ QQ̄ processes.
By considering only certain diagrams we can calculate the part of the coefficient
that corresponds to that diagram. In this way, the coefficients (4.42) can be seen to
correspond to a gluonic decay of quarkonium. This means that we can also calculate
separately the part that comes from the electromagnetic interactions and is therefore
linked to the electromagnetic decay. At the lowest order, these diagrams are shown in
figure 6. The figures 6a and 6b have their strong interaction counterparts in figures 3a
and 3b. Therefore the invariant amplitudes for these processes are simple to calculate
from the results we got in the case of strong interaction processes. Calculating the
invariant amplitude we only need to make a substitution taijgs → δijeQ for each
QQg-vertex, where Q is the fractional charge of the heavy quark. In this way we
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(a) (b)

(c)

Figure 6. Lowest order diagrams contributing to the electromagnetic decay of
cc̄.

easily get the invariant amplitudes for the diagrams 6a and 6b:

ImM6a =πα
2Q4

2m2 · 1c ⊗ 1c

1s ⊗ 1s

(
1− 4

3v
2 + 1

3v · v′
)

+ σi ⊗ σi
1

3 −
1
5v

2 + 2
5v · v′)

+ σi ⊗ σj
2

5v
iv′j + 11

15v
′ivj − 11

30
(
vivj + v′iv′j

)+O
(
v3
) and

(4.43)

ImM6b =πα
2Q4

2m2 · 1c ⊗ 1c

1s ⊗ 1s

(
1− 4

3v
2 − 1

3v · v′
)

+ σi ⊗ σi
− 1

3 + 1
5v

2 + 2
5v · v′)

+ σi ⊗ σj
2

5v
iv′j + 11

15v
′ivj + 11

30
(
vivj + v′iv′j

)+O
(
v3
).

(4.44)

From this we can calculate the imaginary parts of the coefficients that correspond to
the process where there is a γγ intermediate state, as the third diagram 6c doesn’t
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p1, e p3, j

p2, g
p4, h

pf1 = k

k1 = p1 + p2 k2 = p1 + p2

pf2 = k − p1 − p2

α βµ ν

Figure 7. Diagram for calculating the invariant amplitudeM6c

have such an intermediate state. The non-zero coefficients are then:

Im fγγ
(

1S0
)

= πQ4α2, (4.45a)

Im gγγ
(

1S0
)

= −4
3πQ

4α2, (4.45b)

Im fγγ
(

3P0
)

= 3πQ4α2 and (4.45c)

Im fγγ
(

3P2
)

= 4
5πQ

4α2. (4.45d)

Figure 6c also has a corresponding strong interaction diagram in figure 3g.
In the case of strong interaction, this figure doesn’t contribute to the invariant
amplitudes for a color-singlet

∣∣∣QQ̄〉 state. However, figure 6c does have a non-zero
invariant amplitude in the color-singlet state and therefore it is useful to calculate
its contribution to the operator coefficients. This will correspond to a process where
the decay happens through a virtual photon. Using the notation in figure 7, we get
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the QCD invariant amplitude for diagram 6c:

iM6c = (−1)
∫ d4k

(2π)4 ūs3(p3)(iQeδjhγν)vs4(p4)v̄s2(p2)(iQeδgeγµ)us1(p1)

·
(
−igµα
k2

1 + iε

)(
−igνβ
k2

2 + iε

)
Tr

(iQfeδklγ
β
)−i(/pf1 +mf

)
p2
f1 −m2

f + iε
(iQfeδlkγ

α)
−i
(
/pf2 +mf

)
p2
f2 −m2

f + iε


=
∫ d4k

(2π)4
−1(

k2 −m2
f + iε

)(
(k − p1 − p2)2 −m2

f + iε
)(

(p1 + p2)2
)2 · δjhδge · δklδlk

· e4Q2Q2
f · ūs3(p3)γνvs4(p4)v̄s2(p2)γµus1(p1) Tr

(
γν
(
/pf1 +mf

)
γµ
(
/pf2 +mf

))
.

(4.46)

Here δklδlk corresponds to possible color charges in the fermion loop. In the case
of leptons there is no color charge associated with the fermion loop and we have
δklδlk = 1. For quarks this simply gives us δklδlk = Nc.

To calculate the imaginary part of the invariant amplitude we can again use the
Cutkosky cutting rules. This forces the fermions in the loop to be on the mass-shell
with the cut shown in figure 7. In principle one could also cut the photon propagators,
but the photons cannot be on the mass-shell and therefore the contribution from
these cuts vanishes. The on-shell condition for the intermediate fermions reduces the
possible particles in the fermion loop. For a quarkonium particle with mass mH to
decay into a fermion pair we must have mH > 2mf . For example, for charmonium
particles J/ψ and ηc we have mH ≈ 3.1 GeV so that the possible intermediate
fermions are u-, d-, s- and c-quarks and electrons and muons. Of these, the c-quark
intermediate state doesn’t correspond to a decay process. The rest of the fermions
have mf � mc so that in this case we can approximate mf/mc ≈ 0. This kind
of approximation can also be made for the bottonium particles, with the addition
that they can decay also into cc̄- and τ τ̄ -pairs. The Cutkosky rules then allow us to
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simplify the propagator part of the integral:

ImM6c =(2π)2

2

∫ d4k

(2π)4

−δ
(
k2 −m2

f

)
δ
(
(k − p1 − p2)2 −m2

f

)
(
(p1 + p2)2

)2 · f(k)

=− 1
27π2E4

∫
d4k δ

(
k2 −m2

f

)
δ
(
4E2 − 4k0E

)
f(k)

=− 1
29π2E5

∫
d3k δ

(
E2 − k2 −m2

f

)
f
(
k0 = E,k

)
=−

√
E2 −m2

f

210π2E5

∫
dΩ f

(
k0 = E, |k| =

√
E2 −m2

f ,Ω
)

≈− 1
210π2E4

∫
dΩ f

(
k0 = E, |k| = E,Ω

)

(4.47)

where again f(k) is rest of the integral (4.46).
We write spinor product for the incoming quark-antiquark pair as in equation

(4.15) and use the properties of gamma matrices to write

∑
spins

v̄s2γ
µus1 = Tr

∑
spins

us1 v̄s2γ
µ

 = − 2
E
bi
(
Egiµ − pi1p

j
1

E +m
gjµ
)
. (4.48)

For the outgoing state we get

∑
spins

ūs3γ
νvs4 = Tr

γν ∑
spins

vs4ūs3

 = Tr
∑

spins
us3 v̄s4γ

ν

∗

= − 2
E
b′i∗
(
Egiν − pi3p

j
3

E +m
gjν
)
.

(4.49)

The trace of the propagators in equation (4.46) can also be simplified using properties
of the gamma matrices:

Tr
(
γν
(
/pf1 +mf

)
γµ
(
/pf2 +mf

))
= pαf1p

β
f2 Tr(γνγαγµγβ) +m2

f Tr(γνγµ)

= 4pαf1p
β
f2(gναgµβ + gµαgνβ − gνµgαβ) + 4m2

fgµν

= 4
(
2kµkν − kν(p1 + p2)µ − kµ(p1 + p2)ν + gµν

(
−k2 +m2

f + kα(p1 + p2)α
))

= 4
(
2kµkν − kν(p1 + p2)µ − kµ(p1 + p2)ν + 2gµνE2

)
(4.50)
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In total we get then

∑
incoming

spins

v̄s2γ
µus1

∑
outgoing

spins

ūs3γ
νvs4 Tr

(
γν
(
/pf1 +mf

)
γµ
(
/pf2 +mf

))

= 16
E2 b

′i∗bj
(
Egjµ − pj1p

k
1

E +m
gkµ

)(
Egiν − pi3p

l
3

E +m
glν
)

·
(
2kµkν − kν(p1 + p2)µ − kµ(p1 + p2)ν + 2gµνE2

)
= 16
E2 b

′i∗bj

2E2kikj + 2E4gij − 2E3

E +m

(
pk1p

j
1g
ik + pi3p

l
3g
jl
)

− 2E
E +m

(
pj1p

k
1k

kki + pi3p
l
3k

lkj
)

+O
(
v3
)

=32E2b′i∗bj
(
k̂ik̂j − δij + 1

2
(
vivj + v′iv′j

)
− 1

2
(
vjvkk̂kk̂i + v′iv′lk̂lk̂j

)
+O

(
v3
))
(4.51)

where again v is the velocity of the incoming quark and v′ velocity of the outgoing
quark. Using equations (4.25) we can perform the angular integral:

∫
dΩ 32E2b′i∗bj

(
k̂ik̂j − δij + 1

2
(
vivj + v′iv′j

)
− 1

2
(
vjvkk̂kk̂i + v′iv′lk̂lk̂j

)
+O

(
v3
))

= 32E2b′i∗bj · 4π
(1

3δ
ij − δij + 1

2
(
vivj + v′iv′j

)
− 1

6
(
vjvi + v′iv′j

)
+O

(
v3
))

= −27πE2b′i∗bj
(2

3δ
ij − 1

3
(
vivj + v′iv′j

)
+O

(
v3
))

(4.52)

In total, the invariant amplitude is then

ImM6c = 1
23πE2 δjiδgf · δklδlk · g

4Q2Q2
fb
′i∗bj

(2
3δ

ij − 1
3
(
vivj + v′iv′j

)
+O

(
v3
))

=
(4πα)2Q2Q2

f

23πm2 δjiδgf · δklδlk · b′i∗bj
2
3

(
δij
(
1− v2

)
− 1

2
(
vivj + v′iv′j

)
+O

(
v3
))

=
4πα2Q2Q2

f

3m2 δjiδgf · δklδlk · b′i∗bj
(
δij
(
1− v2

)
− 1

2
(
vivj + v′iv′j

)
+O

(
v3
))

=
πα2Q2Q2

f

3m2 · δklδlk · 1c ⊗ 1c · σi ⊗ σj
(
δij
(
1− v2

)
− 1

2
(
vivj + v′iv′j

)
+O

(
v3
))
.

(4.53)

By comparing this with equation (4.2) we can read off the parts of the coefficients that
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are related to the decay through a virtual photon. For the decay of the quarkonium
into a lepton pair this is the leading order process and we get:

Im fl+l−
(

3S1
)

= πQ2α2

3 and (4.54a)

Im gl+l−
(

3S1
)

= −4πQ2α2

9 (4.54b)

with the rest of the coefficients being zero. For the decay of the quarkonium into
light hadrons (LH) through a virtual photon we need to sum over the intermediate
quarks. The non-zero coefficients are then

Im fγ∗→LH
(

3S1
)

= πNcα
2Q2

3
∑
i

Q2
i and (4.55a)

Im gγ∗→LH
(

3S1
)

= −4πNcα
2Q2

9
∑
i

Q2
i . (4.55b)

For example, for J/ψ we have ∑iQ
2
i = ∑

i=u,d,sQ
2
i = 2/3.



65

5 Quarkonium Decay and Production

5.1 Connection between the decay and the 4-fermion oper-
ators

We have now demonstrated how to calculate the coefficients of the 4-fermion operators.
With the explicit forms of the 4-fermion operators, we can go on to connect them
to the decay widths. This is done using the optical theorem. The optical theorem
allows us to link the invariant amplitude of the forward scattering to the sum of all
possible scattering processes [9, p. 231]:

2 ImM(a→ a) =
∑
f

∫
dΠf |M(a→ f)|2 (5.1)

where dΠf is the phase space element corresponding to the final state f . On the
other hand, the decay width of a particle H with mass M is [9, p. 237]

Γ = 2M · 1
2M

∑
f

∫
dΠf |M(H → f)|2 = 2 ImM(H → H). (5.2)

The prefactor 2M comes from the non-relativistic normalization of the states (2.55).
In equation (5.2) we sum over all final states. We can use this to distinguish the

parts of the decay width that correspond to different particles in the final state. In
QCD this is easily accomplished as we can calculate the invariant amplitudes corre-
sponding to decay processes H → f directly. In NRQCD however, the heavy quark
and antiquark numbers are conserved so that calculating the invariant amplitudes
M
(
QQ̄→ f

)
isn’t possible unless the final state f has exactly one heavy quark

and antiquark. In this work, we are interested in calculating the quarkonium decay
widths for processes where the final states don’t contain heavy quarks. Therefore
we need to calculate the width using the imaginary part of the forward scattering
amplitude M(H → H). At the lowest orders in αs, the NRQCD diagrams that
contribute to the imaginary part either have continuous heavy quark lines from the
initial state to the final state or a 4-fermion vertex. The first type we can identify
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with decays where the final state also contains heavy quarks. For decays with no
heavy quarks in the final state we can then identify that the whole contribution to
the decay width comes from the 4-fermion vertices.

Let us calculate the invariant amplitude corresponding to the 4-fermion vertices
in an operator form. The LSZ reduction theorem allows us to connect the transition
matrix to the interaction part of the Hamiltonian [9, p. 109]:

〈H| iT |H〉 = lim
T→∞(1−iε)

(
I

〈
H

∣∣∣∣∣T
(

exp
[
−i
∫ T

−T
dtHI(t)

])∣∣∣∣∣H
〉
I

)
connected
amputated

. (5.3)

The left side of this equation is defined as the forward scattering amplitude

〈H(K ′)| iT |H(K)〉 = (2π)4δ4(K −K ′)iM(H(K)→ H(K ′)). (5.4)

If we now expand the exponential in equation (5.3) to the first order and consider
only the 4-fermion vertex interactions, we get

(2π)4δ4(K −K ′)iM(H(K)→ H(K ′))4-fermion

=i
∫

d4x
∑

dim=6

fi
M2 〈H(K ′)| Oi(x) |H(K)〉+

∑
dim=8

fi
M4 〈H(K ′)| Oi(x) |H(K)〉

+ higher order.

(5.5)

This can be simplified by noting that the x-dependence of the operators can be
written in terms of momentum operators [9, p. 26]:

Oi(x) = eiP̂ ·xOi(0)e−iP̂ ·x. (5.6)

We can then write∫
d4x 〈H(K ′)|Oi(x)|H(K)〉 =

∫
d4x

〈
H(K ′)

∣∣∣eiP̂ ·xOi(0)e−iP̂ ·x
∣∣∣H(K)

〉
=
∫

d4x 〈H(K ′)|eiK′·xOi(0)e−iK·x|H(K)〉

= (2π)4δ4(K −K ′) 〈H(K ′)| Oi(0) |H(K)〉 ,

(5.7)
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and comparing to equation (5.5) we can identify

M(H(K)→ H(K ′))4-fermion

=
∑

dim=6

fi
M2 〈H(K ′)| Oi(0) |H(K)〉+

∑
dim=8

fi
M4 〈H(K ′)| Oi(0) |H(K)〉+ . . . .

(5.8)

As we argued above, this invariant amplitude can be linked to quarkonium decays
where there are no heavy quarks in the final state. The optical theorem now gives us
the corresponding decay width:

Γ(H → no heavy quarks) =
∑

dim=6

2 Im fi
M2 〈H| Oi |H〉+

∑
dim=8

2 Im fi
M4 〈H| Oi |H〉+ . . . .

(5.9)
The matrix elements 〈H|Oi|H〉 are called long-distance matrix elements (LDME), as
they are linked to the non-perturbative effects of QCD. This is in contrast with the
coefficients Im fi that can be calculated from point-like scattering processes.

Depending on the particle, the matrix elements in (5.9) have different scalings in
powers of velocity. From now on, we will focus explicitly on ηc and J/ψ particles.
Higher charmonium states can be treated similarly by estimating the contributions
of different Fock states as in section 3.1 and using the corresponding velocity-scaling
rules from table 1 for the operators. For ηc and J/ψ we have the Fock state expansions
(3.8) and (3.9). We can now use the fact that the 4-fermion operators vanish for most
Fock states, and remember that they are labeled by the one Fock state for which they
give a non-vanishing contribution. Then we can write the ηc decay schematically as

Γ(ηc) = 2 Im f1(1S0)
M2

〈
1S

[1]
0

∣∣∣O1
(

1S0
) ∣∣∣1S[1]

0

〉
+ 2 Im g1(1S0)

M4

〈
1S

[1]
0

∣∣∣P1
(

1S0
) ∣∣∣1S[1]

0

〉
+O

(
v2
)
· 2 Im f8(1P0)

M2

〈
1P

[8]
0 g

∣∣∣O8
(

1P0
) ∣∣∣1P [8]

0 g
〉

+O
(
v3
)
· 2 Im f8(3S1)

M2

〈
3S

[8]
1

∣∣∣O8
(

3S1
) ∣∣∣3S[8]

1 g
〉

+ . . . .

(5.10)

In section 4 we calculated the imaginary parts of the coefficients f1(1S0) and g1(1S0),
finding that they are proportional to α2

s. The other coefficients also have to be at
least of order O(α2

s), so that we can use the velocity-scaling rules and the Fock state
expansion of ηc to see that the first term in the decay width has the least order in
velocity. We can similarly deduce that the following terms scale as v2, v4 and v3
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compared to the first one. This allows us to write

Γ(ηc) = 2 Im f1(1S0)
M2 〈ηc| O1

(
1S0

)
|ηc〉+ 2 Im g1(1S0)

M4 〈ηc| P1
(

1S0
)
|ηc〉+O

(
v3Γ

)
,

(5.11)

where the notation O(v3Γ) means that the discarded terms scale as v3 compared to
the dominant term in the decay width. For J/ψ we can similarly use the Fock state
expansion and the velocity-scaling rules to get the following expression for the decay
width:

Γ(J/ψ) = 2 Im f1(3S1)
M2 〈J/ψ| O1

(
3S1

)
|J/ψ〉+ 2 Im g1(3S1)

M4 〈J/ψ| P1
(

3S1
)
|J/ψ〉

+O
(
v3Γ

)
.

(5.12)

5.2 Quarkonium wave functions

The matrix elements 〈Oi〉 that we get can be related to the wave function of the
particle. This can be done by noting that the 4-fermion operators can be written
as Oi = ψ†K′nχχ†Knψ, where the operators K consist of spin and color matrices,
derivative operators, and fields E and B. This form allows us to see that the 4-
fermion operators can be divided into parts with the initial state and the final state
by inserting a sum over a complete set of states X:

〈H| Oi |H〉 =
∑
X

〈H|ψ†K′nχ |X〉 〈X|χ†Knψ |H〉 ≈ 〈H|ψ†K′nχ |0〉 〈0|χ†Knψ |H〉 .

(5.13)
In the last step we approximated that the contribution to the sum comes mostly
from the vacuum state. This is called the vacuum-saturation approximation. For
4-fermion operators that annihilate and create the dominant QQ̄-pair this is a
reasonable assumption, as the next-to-leading contribution comes from the term
〈H|ψ†K′nχ |gg〉 〈gg|χ†Knψ |H〉. Fock states

∣∣∣QQ̄gg〉 are generally suppressed by v4

according to the multipole expansion, which means that the vacuum-saturation
approximation also holds up to order v4 for matrix elements 〈H| Oi |H〉. For oper-
ators that annihilate the QQ̄-pair in a non-dominant state the vacuum-saturation
approximation is less justified.

We can now calculate the matrix element 〈ηc| O1(1S0) |ηc〉 using the vacuum
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saturation approximation:

〈ηc| O1
(

1S0
)
|ηc〉 ≈ 〈ηc|ψ†χ |0〉 〈0|χ†ψ |ηc〉 =

∣∣∣〈0|χ†ψ |ηc〉∣∣∣2. (5.14)

Following reference [3, p. 40], we define the radial wave function of ηc by

Rηc(r) =
√

2π
Nc

〈0|χ†(−r/2)ψ(r/2) |ηc〉 . (5.15)

Let us justify this definition. If ηc were a pure 1S0 state, we could use the explicit
form (3.10) to calculate this quantity. We would then get
√

2π√
Nc

〈0|χ†(−r/2)ψ(r/2)
∣∣∣1S0(0)

〉
=
√

2π
Nc

Tr
(

1√
2
12

)
Tr
(

1√
Nc

1Nc

)∫ d3q
(2π)3

1√
4π
ϕ(q)

∫ d3q1 d3q2

(2π)6 eir/2·q1e−ir/2·q2

· 〈0|χ†j,b(q2)ψi,a(q1)ψ†i,a(q)χj,b(−q) |0〉

=
∫ d3q

(2π)3ϕ(q)
∫ d3q1 d3q2

(2π)6 eir/2·q1e−ir/2·q2(2π)6δ(q2 + q)δ(q1 − q)

=
∫ d3q

(2π)3ϕ(q)eir/2·qe−ir/2·(−q) =
∫ d3q

(2π)3ϕ(q)eir·q = R(r)

(5.16)

which shows that the definition (5.15) is reasonable. With this definition for the ηc
wave function we can write the expectation value as

〈ηc| O1
(

1S0
)
|ηc〉 = |Rηc(0)|2

(
1 +O

(
v4
))
, (5.17)

remembering that the vacuum-saturation approximation used in equation (5.14)
holds at relative order v4. In general, however, the wave function or its derivative
defined in this way may be singular at the origin. Therefore we should instead use
regularized operators χΛ and ψΛ that can be defined by dimensional regularization
with scale Λ or with some other regularization scheme. We then define

Rηc(Λ) =
√

2π
Nc

〈0|χ†Λ(0)ψΛ(0) |ηc〉 . (5.18)

The interpretation of this is that instead of taking the value of the wave function at
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the origin we take the average over a sphere of size 1/Λ.
We can similarly define the renormalized Laplacian of the wave function by

∇2Rηc(Λ) =
√

2π
Nc

〈0|χ†Λ(0)
(1

2
↔
∇
)2
ψΛ(0) |ηc〉 . (5.19)

Let’s show again that this definition is justified. First of all, using the non-regularized
operators we can write

χ†(r2)
(1

2
↔
∇
)2
ψ(r1)

=1
4

[(
∇2

r2χ(r2)
)†
ψ(r1) + χ(r2)†∇2

r1ψ(r1)− 2(∇r2χ(r2))†∇r1ψ(r1)
]

=1
4

∫ d3q1 d3q2

(2π)6 χ†(q2)ψ(q1)

·
[(
∇2

r2e
−iq2·r2

)†
eiq1·r1 + eiq2·r2∇2

r1e
iq1·r1 − 2

(
∇r2e

−iq2·r2
)†
· ∇r1e

iq1·r1

]
=1

4

∫ d3q1 d3q2

(2π)6 χ†(q2)ψ(q1)ei(q1·r1+q2·r2)
(
−q2

2 − q2
1 + 2q1 · q2

)
.

(5.20)

Now it is easy to calculate to action of this operator on the 1S0 state:
√

2π
Nc

〈0|χ†(−r/2)
(1

2
↔
∇
)2
ψ(r/2)

∣∣∣1S0(0)
〉

=1
4

√
2π
Nc

Tr
(

1√
2
12

)
Tr
(

1√
Nc

1Nc

)∫ d3q
(2π)3

1√
4π
ϕ(q)

∫ d3q1 d3q2

(2π)6

· ei(q1·r/2−q2·r/2) ·
(
−q2

2 − q2
1 + 2q1 · q2

)
· 〈0|χ†j,b(q2)ψi,a(q1)ψ†i,a(q)χj,b(−q) |0〉

=1
4

∫ d3q
(2π)3ϕ(q)

∫ d3q1 d3q2

(2π)6 eir/2·(q1−q2)
(
−q2

2 − q2
1 + 2q1 · q2

)
· (2π)6δ(q2 + q)δ(q1 − q)

=
∫ d3q

(2π)3ϕ(q)eir·q
(
−q2

)
=∇2R(r).

(5.21)

This shows that the definition (5.19) is reasonable. We can now write the second
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matrix element in the equation for the ηc decay width (5.11) as

〈ηc| P1
(

1S0
)
|ηc〉 ≈

1
2

[
〈ηc|ψ†ΛχΛ |0〉 〈0|χ†Λ

(
i

2
↔
D
)2
ψΛ |ηc〉+ h.c.

]

≈ −1
2

[
〈ηc|ψ†ΛχΛ |0〉 〈0|χ†Λ

(1
2
↔
∇
)2
ψΛ |ηc〉+ h.c.

]
≈ −Nc

2π Re
(
R∗ηc∇

2Rηc

)
.

(5.22)

In the first equivalence we used the vacuum-saturation approximation, which holds at
order v4. In the second one we used the approximation

↔
D2 =

↔
∇2(1 +O(v2)). There-

fore this holds in total up to relative order v2, and we can use these approximations
in the expression for the decay width (5.11).

We can similarly define the wave functions for J/ψ. In this case we need to take
into account the polarization ε of the particle, and we define

RJ/ψ(Λ) = ε∗ ·
√

2π
Nc

〈0|χ†Λ(0)σψΛ(0) |J/ψ(ε)〉 (5.23)

and
∇2RJ/ψ(Λ) = ε∗ ·

√
2π
Nc

〈0|χ†Λ(0)σ
(1

2
↔
∇
)2
ψΛ(0) |J/ψ(ε)〉 . (5.24)

The reasoning here is that J/ψ is mainly a 3S1 state, so that the only difference
to the 1S0 case of ηc comes from the spin matrix. We can now write the matrix
elements in the J/ψ decay width (5.12) using the vacuum-saturation approximation,
and we get similar results as for ηc:

〈J/ψ| O1
(

3S1
)
|J/ψ〉 = Nc

2π
∣∣∣RJ/ψ

∣∣∣2(1 +O
(
v4
))

and (5.25)

〈J/ψ| P1
(

3S1
)
|J/ψ〉 = −Nc

2π Re
(
R∗J/ψ∇

2RJ/ψ

)(
1 +O

(
v2
))
. (5.26)

Having the ηc and J/ψ wave functions, we can also construct a spin-averaged wave
function. Spin effects come from terms like 1/M2ψ†σ · iD×Eψ and 1/Mψ†σ · gB in
the heavy quark Lagrangian (2.29). These scale as O(M4v7) which is suppressed by
a factor of v2 compared to the leading order terms that scale as O(M4v5). Therefore
we also expect the wave functions to be similar up to this accuracy, meaning that we
have

Rηc(r) = RJ/ψ(r)
(
1 +O

(
v2
))
. (5.27)
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If we only need the wave function at order O(v2) we can then combine these wave
functions into a spin-averaged wave function

RS(r) = 1
4
(
3RJ/ψ(r) +Rηc(r)

)
. (5.28)

This is the same definition as in reference [3, p. 41]. The coefficients have been
chosen to minimize the effects of the spin: in the quantum mechanical perturbation
theory, the effects of the spin for L = 0 states come from the spin-spin coupling
which is proportional to the inner product of the spin vectors 〈Sc · Sc̄〉 [14, p. 286].
This has the value +1/4 for a spin-triplet state and −3/4 for a spin-singlet state, so
the combination in equation (5.28) is chosen in such a way that the spin-spin couling
terms cancel each other.

5.3 Decay widths

Writing the matrix elements in terms of the wave functions, we can write the decay
widths of ηc and J/ψ as

Γ(ηc) = Nc Im f1(1S0)
πM2

∣∣∣Rηc

∣∣∣2 − Nc Im g1(1S0)
πM4 Re

(
R∗S∇2RS

)
+O

(
v3Γ

)
(5.29)

and

Γ(J/ψ) = Nc Im f1(3S1)
πM2

∣∣∣RJ/ψ

∣∣∣2 − Nc Im g1(3S1)
πM4 Re

(
R∗S∇2RS

)
+O

(
v3Γ

)
. (5.30)

By looking at the different diagrams that contribute to the imaginary parts of the
coefficients we can then conclude the equations for different partial widths. For
example, for the partial width Γ(ηc → light hadrons) we can substitute the values for
the coefficients (4.42a) and (4.42b) that we calculated in section 4.2. Similarly for the
decay J/ψ → l+l− we can take the values for the coefficients from equations (4.54a)
and (4.54b). However, to use the equations (5.29) and (5.30) we would need to know
the values for the coefficient Im f at order v2 higher than the first non-vanishing
order in v. For example, we would need to calculate Im fLH(1S0) at order α4

s and
Im fee(3S1) at order α2α2

s. So far, these have been calculated only up to order αs
relative to the first non-vanishing order. A complete collection of these for the 1S0

and 3S1 and states can be found in reference [15], and they are shown in table 2.
These can be calculated in a similar way as we have done here by including higher
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order diagrams when calculating the imaginary part of the invariant amplitude in
QCD.

Even though the coefficients Im f have not been calculated in the required
accuracy, we will still use the equations (5.29) and (5.30) also in this order when
comparing to experimental data. The reason for this is that in reference [3, p. 8]
it is argued that we should expect v to be greater than or of order αs(Q), where Q
is the energy scale associated with the process. This comes from the fact that the
velocity-scaling rules state that α(Mv) ≈ v, and because αs is a decreasing function
in terms of energy then we must have v > αs(Q) if Q > Mv. The natural energy
scale depends on the process, but here it is natural to take it as either the mass of
the heavy quark or the quarkonium particle. Therefore we could expect powers of
velocity to be more relevant than αs(M) in equations (5.29) and (5.30), and it is
somewhat justifiable to leave the α2

s corrections to Im f out. For the coefficients
Im g it is enough to calculate them in the order of v where the coefficient Im f is
non-vanishing. In this case it means that the order of Im g we have calculated is
enough. They also agree with the corresponding equations in reference [15], except
for the case 3S1 → LH where they have been calculated to orders α3

s and αα2
s in

the reference as this is lowest order where the corresponding coefficient Im f is
non-vanishing.

We can also write the equations for the decay widths at lower order in v, in which
case we have

Γ(ηc) = Nc Im f1(1S0)
πM2

∣∣∣Rηc

∣∣∣2 +O
(
v2Γ

)
(5.31)

and
Γ(J/ψ) = Nc Im f1(3S1)

πM2

∣∣∣Rψ

∣∣∣2 +O
(
v2Γ

)
. (5.32)

Here we should include the αs corrections to the coefficients Im f . If we don’t include
these corrections, these equations hold only at order O(vΓ).
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Table 2. Decay coefficients for quarkonium, from reference [15].

Channel Coefficient
3S1 → ggg

Im f = (π2 − 9)(N2
c − 4)CF

54Nc

α3
s

[
1 + (−9.46CF + 4.13CA − 1.161nf )

αs
π

]
Im g = −4 · 4.33(π2 − 9)(N2

c − 4)CF
54Nc

α3
s

3S1 → γgg

Im f = 2(π2 − 9)CFQ2α

3Nc

α2
s

[
1 + (−9.46CF + 2.75CA − 0.774nf )

αs
π

]
Im g = −4 · 4.332(π2 − 9)CFQ2α

3Nc

α2
s

3S1 → γ∗ → LH

Im f = πQ2
(∑

i

Q2
i

)
α2
[
1− 13

4 CF
αs
π

]
Im g = −4

3πQ
2
(∑

i

Q2
i

)
α2

3S1 → l+l−

Im f = πQ2α2

3

[
1− 4CF

αs
π

]
Im g = −4

3
πQ2α2

3
1S0 → gg

Im f = πCF
2Nc

α2
s

[
1 +

((
π2

4 − 5
)
CF +

(
199
18 −

13π2

24

)
CA −

8
9nf

)
αs
π

]
Im g = −4

3
πCF
2Nc

α2
s

1S0 → γγ

Im f = πQ4α2
[
1 +

(
π2

4 − 5
)
CF

αs
π

]
Im g = −4

3πQ
4α2
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5.4 Quarkonium production

We will briefly mention the treatment of quarkonium production in NRQCD. This is
similar to the quarkonium decay in the way that we can define quarkonium production
operators and link these to the cross section for inclusive production. This treatment
of quarkonium production follows section IV of reference [3].

The production operators can be written in terms of the produced quarkonium
particle and the same operators that appear in the 4-fermion operators. A general
production operator can be written as

OHn =
∑
X

∑
mJ

χ†K′nψ |HmJ +X〉〈HmJ +X|ψ†Knχ (5.33)

where K and K′ are combinations of the derivatives, spin and color matrices and
fields E and B, and H is the quarkonium particle that is produced. Here the sum
goes over all additional particles X and the polarizations mJ of the particle H.
These operators can also be labeled by the quark-antiquark pair that they create
and annihilate. For example, a production operator that creates and annihilates the
QQ̄ pair in the state 1S

[1]
0 can be written as

OH1
(

1S0
)

=
∑
X

∑
mJ

χ†ψ |HmJ +X〉〈HmJ +X|ψ†χ. (5.34)

These production operators appear in the cross section for the inclusive production
of the quarkonium. The idea is that the cross section formula factorizes so that we can
think of it as first producing the QQ̄-pair which then forms the bound quarkonium
state [3, p. 72]. We can then write the differential cross section in the following way
[16]:

dσa+b→H+X =
∑
n

dσa+b→QQ̄[n]+X

〈
0
∣∣∣OHn ∣∣∣0〉 . (5.35)

Here n denotes the different quantum numbers of the QQ̄-pair. We can again use
the vacuum-saturation approximation to simplify the expectation value 〈0|OHi |0〉. If
we approximate that the contribution in the sum of equation (5.33) comes mostly
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from the pure quarkonium state, we get
〈
0
∣∣∣OHn ∣∣∣0〉 =

∑
X

∑
mJ

〈
0
∣∣∣χ†K′nψ∣∣∣HmJ +X

〉 〈
HmJ +X

∣∣∣ψ†Knχ∣∣∣0〉
≈
∑
mJ

〈
0
∣∣∣χ†K′nψ∣∣∣HmJ

〉 〈
HmJ

∣∣∣ψ†Knχ∣∣∣0〉 = (2J + 1)
〈
0
∣∣∣χ†K′nψ∣∣∣H〉 〈H∣∣∣ψ†Knχ∣∣∣0〉

≈ (2J + 1)
∑
X

〈
H
∣∣∣ψ†Knχ∣∣∣X〉 〈X∣∣∣χ†K′nψ∣∣∣H〉 = (2J + 1) 〈H|Oi|H〉

(5.36)

where Oi is the 4-fermion operator with the same Kn and K′n operators between the
quark and antiquark fields. Here it should be noted that this does not hold for all
possible production operators, as the vacuum-saturation approximation cannot be
justified in all cases. For example, in the case of a color-octet operator, the vacuum
state cannot be the dominant one as the particle H has to be a color-singlet in
total. Therefore in that case states like |H + g〉〈H + g| would be more dominant
in the sum and the vacuum-saturation approximation isn’t applicable. However,
if the production operators creates and annihilates the QQ̄-pair with the same
quantum numbers as the dominant state in the particle H, the vacuum-saturation
approximation is justified and holds at relative order v4, in the similar way as we
argued with equation (5.13). The vacuum-saturation approximation is useful as
it allows us to link some of the production matrix elements to the decay matrix
elements. For example, we can link the leading-order matrix elements in the decay
of ηc and J/ψ to the following production matrix elements:

〈
ηc
∣∣∣O1

(
1S0

)∣∣∣ηc〉 =
〈
0
∣∣∣Oηc1

(
1S0

)∣∣∣0〉 (1 +O
(
v4
))

and (5.37)〈
J/ψ

∣∣∣O1
(

3S1
)∣∣∣J/ψ〉 = 3

〈
0
∣∣∣OJ/ψ1

(
3S1

)∣∣∣0〉 (1 +O
(
v4
))
. (5.38)
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6 Phenomenology

The long-distance matrix elements that appear in the equations for decay widths
and cross sections can be determined from lattice QCD simulations or by fitting to
corresponding experimental data. When doing that, one must keep in mind that the
quarkonium velocity can be rather large and therefore the convergence of the power
series may not fast. Therefore we will not try to determine the LDMEs by the decay
width data ourselves, but instead refer to the literature where these matrix elements
have been determined to a good precision. We will then use these LDMEs to study
the convergence of the power series. Only the decay widths will be considered here
for two reasons: our focus has been mainly on calculating the decay widths for
quarkonia, and the cross sections would involve color-octet matrix elements that
are not significant for decay widths [17]. Thus the decay widths allow us to study
NRQCD phenomenology with a minimal amount of unknown parameters.

6.1 Charmonium decay widths

For charmonium, we will use the LDME values from reference [18]. Following their
notation we will denote 〈O1〉J/ψ = 〈J/ψ|O1(3S1)|J/ψ〉 and 〈O1〉ηc = 〈ηc|O1(1S0)|ηc〉
and similarly for the matrix elements 〈J/ψ|P1(3S1)|J/ψ〉 and 〈ηc|P1(1S0)|ηc〉. Their
estimates are:

〈O1〉J/ψ = 0.440 GeV3,
〈P1〉J/ψ
〈O1〉J/ψ

= 0.441 GeV2,

〈O1〉ηc = 0.437 GeV3, and
〈P1〉ηc
〈O1〉ηc

= 0.442 GeV2.

(6.1)

These values were evaluated using experimental data for the decays ηc → γγ and
J/ψ → e+e−. The equations they used in determining these values were based
on equations (5.29) and (5.30) but also included some of the higher order terms
in velocity and αs. Therefore substituting the values (6.1) to the equations (5.29)
and (5.30) is not expected give an exact match with the experimental value. In
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determining these values, they also used the fact that the LDMEs can be defined
using the wave functions of the particle. This way, they were able to use a potential
model to calculate the wave functions with suitable regularizations and link the
matrix elements 〈O1〉 and 〈P1〉.

Using these values for the matrix elements, we have calculated the decay widths
from the equations (5.29) and (5.30) for various channels. The decay widths were
calculated at relative orders O(vΓ), O(v2Γ) and O(v3Γ). As discussed in section
5.3, the order O(vΓ) corresponds to equations (5.31) and (5.32) with the coefficient
Im f at the lowest non-vanishing order, order O(v2Γ) has αs-corrections added to
Im f , and O(v3Γ) also has coefficient Im g at the order where Im f is non-vanishing.
The results are presented in table 3, with the explicit orders of Im f and Im g shown.
The different decay channels used were J/ψ → ggg, J/ψ → γgg, J/ψ → γ∗ → LH,
J/ψ → l+l−, ηc → LH and ηc → γγ. Of these, the decays of J/ψ into ggg, γgg
and the virtual photon are only intermediates states that in the end are observed
as light hadrons. Therefore one could also combine these to calculate the width
J/ψ → LH. The mass of the charm quark used is mc = 1.4 GeV, and the values
for the coupling constants were also the same as in reference [18]. The coupling
constants were taken to be αs(mJ/ψ) = 0.25 and α(mJ/ψ) = 1/132.6 for processes
J/ψ → γ∗ → LH and J/ψ → l+l−, and αs(mηc/2) = 0.35 and α(mηc/2) = 1/133.6
for processes J/ψ → ggg, J/ψ → γgg, ηc → LH and ηc → γγ. The reason for taking
the coupling constants at different energy scales is that for processes QQ̄→ γ∗ the
energy transfer should correspond to the mass of the quarkonium particle, and for
the other processes one can estimate the energy transfer to be of the order of the
quark mass. As the difference between the masses of ηc and J/ψ is small compared
to their mass, at this accuracy it doesn’t make a difference which of these particles
is used for the energy scale of the coupling constant. Therefore it is justified to use
the energy scale mηc also for the coupling constants for the processes J/ψ → ggg

and J/ψ → γgg. The experimental values are from Particle Data Group (2018) [19].
For the decay J/ψ → l+l− we used the experimental value of J/ψ → e+e−, but we
could as well have used the corresponding muon channel as the experimental values
for these are almost identical.

Table 3 shows that the convergence of the power series is slow. For the decays of
J/ψ into ggg and γgg the results are especially suspicious, as it makes no sense to
say that the decay width is negative. This shows that for these decays the NRQCD
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Table 3. Charmonium decay widths calculated for different channels and at
different orders using NRQCD. The last column shows the ratio of the NRQCD
value to the experimental data.

Channel Accuracy Decay width (keV) NRQCD/Experiment
J/ψ → ggg

Im f : α3
s, Im g: 0 689 11.6

Im f : α4
s, Im g: 0 404 6.79

Im f : α4
s, Im g: α3

s −2280 −38.3
J/ψ → γgg

Im f : αα2
s, Im g: 0 424 51.9

Im f : αα3
s, Im g: 0 108 13.2

Im f : αα3
s, Im g: αα2

s −718 −87.9
J/ψ → γ∗ → LH

Im f : α2, Im g: 0 23.8 1.90
Im f : α2αs, Im g: 0 15.6 1.24
Im f : α2αs, Im g: α2 8.44 0.673

J/ψ → l+l−

Im f : α2, Im g: 0 11.9 2.14
Im f : α2αs, Im g: 0 6.84 1.22
Im f : α2αs, Im g: α2 3.28 0.590

ηc → LH
Im f : α2

s, Im g: 0 38 100 1.20
Im f : α3

s , Im g: 0 85 200 2.67
Im f : α3

s, Im g: α2
s 73 600 2.31

ηc → γγ
Im f : α2 , Im g: 0 15.5 3.10
Im f : α2αs , Im g: 0 9.67 1.93
Im f : α2αs, Im g: α2 4.98 0.994



80

decay widths are unreliable. For the other decays the results are more reasonable, but
even in these cases the results differ greatly order by order. It is especially notable
that the value of Γ(J/ψ → e+e−) differs from the experimental value even though
this was used in determining the LDMEs. This is because of additional higher order
contributions included in reference [18]. The other decay width used in determining
LDMEs, Γ(ηc → γγ), agrees with the experimental data almost exactly as for this
one the differences between our equation and the one in reference [18] are smaller.

In total, the electromagnetic decays and the decay ηc → LH seem to behave
more nicely. This can also be seen from the equations in table 2 for the coefficients
Im f and Im g. For these decays, we have Im g ≈ −4/3 Im f in contrast with
Im g ≈ −17.32 Im f that holds for the processes J/ψ → ggg and J/ψ → γgg. For
the power counting of equations (5.29) and (5.30) to work, we would need to have
|Im g · v2| � |Im f |. As we have the estimate v2 ≈ 0.23 [18], we see that in the case
of the processes J/ψ → ggg and J/ψ → γgg we have |Im g · v2| ≈ 4|Im f | and the
assumptions of the power counting do not hold. For the other processes we have
|Im g · v2| ≈ 0.3|Im f | � |Im f |, but even then the convergence of the power series is
poor.

6.2 Bottonium decay widths

We also studied the convergence of the power series for bottonium. The bottonium
LDMEs were calculated in reference [20], in a similar way as for charmonium.
This time they were fitted using Υ(nS) → e+e− data, giving us for the 1S state
〈O1〉Υ = 3.069 GeV3 and 〈P1〉Υ / 〈O1〉Υ = −0.193 GeV2. It is interesting that the
ratio of LDMEs is negative, as it should roughly correspond to the expectation value
〈p2〉 where p is the momentum of the quark [18]. One should, however, remember
that these quantities have been renormalized, meaning that the necessary subtractions
can make these quantities negative.

The bottonia states ηb and Υ can be handled in NRQCD in exactly the same
way as ηc and J/ψ. The only differences from equations (5.29) and (5.30) are that
one must remember to use the b-quark mass and charge instead of the corresponding
quantities for the c-quark. In table 4 we have calculated the bottonia decay widths
using NRQCD in the same way as we did for charmonium. Here we have used the
above LDME values for both Υ and ηb, as the corresponding LDMEs for ηb have
not been calculated. As discussed in section 5.2, the wave functions and therefore
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the LDMEs of Υ and ηb should be the same up to accuracy O(v2) so that we can
use the LDMEs from Υ to estimate the ones for ηb. For the mass of the b-quark we
used mb = 4.6 GeV, and for the couplings αs(mΥ) = 1/131 and α(mΥ) = 0.18 for all
processes. These are the values used in reference [20] when determining the LDMEs.
It would be preferable to use the coupling constants at the energy scale mΥ/2 for
the processes Υ→ ggg, Υ→ γgg and ηb → LH, but the results do not differ much
between the energy scales mΥ and mΥ/2 because the running of the couplings is
slow enough at these scales. Again, the NRQCD results have also been compared to
the experimental data from the Particle data group [19]. The experimental value for
Υ→ l+l− is from the decay Υ→ e+e−. One could also use the experimental values
from the decays Υ→ µ+µ− and Υ→ τ+τ− but the differences are not remarkable.

Apart from the channel Υ→ γgg, the convergence and accuracy of the NRQCD
results seems good. The width Γ(Υ → l+l−) is expected to agree with the exper-
imental data, as this the decay used in determining the LDME. It is surprising
that the width Γ(Υ → ggg) convergences rather well, as this channel gave non-
sensical results for charmonium. For the width Γ(ηb → LH), we also have surpris-
ingly good agreement with the experimental data, even though the LDMEs used
were for Υ and not ηb. One should, however, remember that the measured width
Γ(ηb → LH)exp ≈ Γ(ηc)exp = 10+5

−4MeV is not very precise so that the agreement is
unreliable. Nevertheless, the width Γ(ηb → LH) is at least correct order of magnitude
and the convergence seems to be good. The width Γ(Υ → γgg) is the only one
of these that differs greatly from experimental value. The power series seems to
converge quickly also in this case, however. This is puzzling as we would expect it
to approach the experimental value when we continue power series, which does not
seem to be the case here. One possible cause for this could be that the α2

s corrections
to the coefficient Im f are big and needed to take into account. In fact, table 4 shows
that the αs corrections to the coefficient Im f are significant whereas the terms with
the coefficient Im g do not have a big impact in the bottonium case.
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Table 4. Bottonium decay widths calculated for different channels and at
different orders using NRQCD. The last column shows the ratio of the NRQCD
value to the experimental data.

Channel Accuracy Decay width (keV) NRQCD/Experiment
Υ→ ggg

Im f : α3
s, Im g: 0 60.5 1.37

Im f : α4
s, Im g: 0 43.7 0.989

Im f : α4
s, Im g: α3

s 53.2 1.21
Υ→ γgg

Im f : αα2
s, Im g: 0 18.5 15.6

Im f : αα3
s, Im g: 0 10.6 8.91

Im f : αα3
s, Im g: αα2

s 10.1 10
Υ→ l+l−

Im f : α2, Im g: 0 1.96 1.47
Im f : α2αs, Im g: 0 1.37 1.02
Im f : α2αs, Im g: α2 1.39 1.04

ηb → LH
Im f : α2

s, Im g: 0 6560 0.656
Im f : α3

s, Im g: 0 10 400 1.04
Im f : α3

s, Im g: α2
s 10 500 1.05
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7 Conclusions

Non-relativistic QCD is an effective field theory that is particularly useful in studying
quarkonia. The primary assumption of NRQCD is that the heavy quarks and
antiquarks have velocities v � 1, so that they are non-relativistic and we can
separate the field operators of the heavy quarks from antiquarks. This is what we
did in section 2 where we wrote the NRQCD Lagrangian for the heavy quarks in
terms of the heavy quark and antiquark fields. We then were able to deduce the
velocity-scaling of each operator that appears in Lagrangian by the use of the field
equations. This is extremely useful, as it allows us to write quantities of interest
as a power series in velocity by using the velocity-scaling rules. In particular, it
allows us to write αs(Mv) = O(v), which means that we don’t need to treat the
power counting in αs and v separately. The desired quantities can then be written
systematically as a power series in the quark velocity.

In NRQCD, we get equations for decay widths and cross sections that can be
written in terms of long-distance matrix elements and coefficients which can be
determined by perturbative matching. The LDMEs are unknown constants that
have to be fitted from experimental data or calculated either from potential models
or lattice QCD simulations. The decay and production LDMEs are not independent:
we can often use the vacuum-saturation approximation and find that they are
proportional to each other, as shown in equation (5.36). NRQCD thus allows us to
use the same universal constants in quarkonium decay and production.

Our focus has been on calculating the decay widths of quarkonia using NRQCD.
We showed how the LDMEs arise from the 4-fermion operators and how the opera-
tor coefficients can be calculated by matching invariant amplitudes to QCD. The
matching was done for color-singlet operators at order α2

s for gluonic decays and α2

for electromagnetic decays. At this order, the operator coefficients agree with the
ones in the literature where they have been calculated to higher orders [15]. It can
then be seen from the equations of decay widths (5.29) and (5.30) that for ηc and
J/ψ the decay widths depend only on the pure |cc̄〉 Fock state at lowest orders. The
corresponding result holds also for the bottonium particles ηb and Υ, for which the
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decay widths depend mostly on the
∣∣∣bb̄〉 state.

These equations for the decay widths are written as a power series of the quark
velocity v. We therefore studied the convergence and the accuracy of these power
series for charmonium particles J/ψ and ηc and bottonium particles Υ and ηb. In
general, the power series do not seem to converge fast. This can be understood by
the fact that the quantities with respect to which we are expanding, αs and v, are
not particularly small. For charmonium, it is estimated that αs(mJ/ψ) ≈ 0.25 and
v ≈
√

0.23 ≈ 0.48 [18]. For bottonium these are a little smaller, with αs(mΥ) ≈ 0.18
and the estimate v ≈

√
0.1 ≈ 0.3. Another reason for the poor convergence is that

the coefficient Im g for the higher order terms is often bigger than coefficient Im f

for the leading order terms. This is especially true for processes QQ̄(3S1) → ggg

and QQ̄(3S1) → γgg, for which the power series fails completely in the case of
charmonium. The electromagnetic processes, along with the process QQ̄(1S0)→ LH,
behave more nicely and are more reliable. For bottonium, the convergence of the
power series is better in general, which is to be expected. To fully evaluate the
decay widths up to relative order O(v3Γ), however, one would need to calculate
the coefficients Im f with α2

s corrections relative to the first non-vanishing order.
Unfortunately, these corrections have not been calculated so far.

In total, NRQCD offers us a framework for a systematic treatment of quarkonia.
It allows us to treat the decay and production of quarkonium particles in a similar
way, with a few unknown constants that can also be linked to the quarkonium wave
function. While the magnitude of the quark velocity and αs means that the equations
do not give accurate results at lowest orders, in principle we can get better results by
continuing the power series. All in all, the factorization of non-perturbative effects
into LDMEs simplifies the treatment of quarkonia and allows us to quantify the
contributions of different Fock states.
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