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Abstract. Neural embedding has been widely applied as an effective
category of vectorization methods in real-world recommender systems.
However, its exploration of users’ explicit feedback on items, to create
good quality user and item vectors is still limited. Existing neural em-
bedding methods only consider the items that are accessed by the users,
but neglect the scenario when a user gives high or low rating to a par-
ticular item. In this paper, we propose Pref2Vec, a method to gener-
ate vector representations of pairwise item preferences, users and items,
which can be directly utilized for machine learning tasks. Specifically,
Pref2Vec considers users’ pairwise item preferences as elementary units.
It vectorizes users’ pairwise preferences by maximizing the likelihood es-
timation of the conditional probability of each pairwise item preference
given another one. With the pairwise preference matrix and the gener-
ated preference vectors, the vectors of users are yielded by minimizing
the difference between users’ observed preferences and the product of
the user and preference vectors. Similarly, the vectorization of items can
be achieved with the user-item rating matrix and the users vectors. We
conducted extensive experiments on three benchmark datasets to assess
the quality of item vectors and the initialization independence of the user
and item vectors. The utility of our vectorization results is shown by the
recommendation performance achieved using them. Our experimental
results show significant improvement over state-of-the-art baselines.

Keywords: Vectorization, Neural Embedding, Recommender systems

1 Introduction

Based on neural networks, neural embedding has emerged as a successful cat-
egory of vectorization techniques in recommender systems [8,2], among which
word2vec [22,23] is a fundamental and effective algorithm. It was initially pro-
posed for natural language processing problems and considers two states 1 or
0 for each word, representing either appearance or absence of the word in doc-
uments. It assumes that the words appearing closer to each other would have
higher statistical dependence. Given its effectiveness, many variants have been
proposed for machine learning problems, such as name speech recognition [25],
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entity resolution [19], machine translation [30], social embedding [12, 24] and rec-
ommender systems [11, 1]. Several pioneering efforts have been applied to real-
world recommendation scenarios with neural embedding like prod2vec [11] and
item2vec [1], that have been proposed by straightforwardly employing word2vec,
where each user is considered as a document, and each item is simply regarded
as a word. Consequently each item can only have two possible states 1 or 0,
representing whether the user has performed a particular action (e.g. purchase,
click, etc.) on the item or not. Using sets and sequences of items for each user,
they learn the vector representations of the items.

Though such representations create good quality item vectors for some tasks,
they lack the functionality to capture higher levels of granularities of users’ feed-
back for vectorization. This could lead to incorrect interpretations, as the top-
ranked item and low-ranked items would be treated equally. Thus it is expected
to severely limit the vectorization quality for many tasks like calculating item
similarities for single item recommendations, clustering user or items, etc. Cur-
rently, the efforts are limited for neural embedding-based methods, especially for
datasets involving ratings. Therefore, we investigate the neural item embedding
problem, to create quality vectorization for items using users’ historical rating
information with higher granularities (e.g. ratings in range 1 to 5).

To solve this problem, we propose Pref2Vec which involves three components:
(1) The first step transforms the given user-item rating matrix into a users’
pairwise preference matrix. On doing this, each pairwise preference of items
has one of the two statuses i.e. occurrence or absence, which is similar to the
situation of words in word2vec. (2) Then we employ neural embedding to create
vector representations for pairwise item preferences by maximizing the likelihood
estimation of the conditional probability of each pairwise item preference given
another one. Using these preference vectors, the vectors of users can be generated
by minimizing the difference between users’ observed preferences and the product
of the user and preference vectors in the second step of Pref2Vec. (3) In the
last step, using the user vectors, the item vectors are generated similarly by
minimizing the difference between items’ observed ratings and the product of
user and item vectors.

We evaluate the effectiveness of our Pref2Vec method in three experimental
tasks on movie recommendation datasets to demonstrate its promising perfor-
mance, where items are the movies for which user ratings are provided. (1) In
the first task, we assess the quality of item vectors, by considering the movie
genres as ground-truths. We find the similarities between each pair of items,
using the generated item vectors and then using the ground truth (genres). The
difference between these two similarities for item pairs are considered as the er-
rors, using which we are able to compute RMSE (root mean squared error) and
MAE (mean absolute error), as a quality measures for comparison. We contrast
the quality of our item vectors with the quality of item vectors of other standard
techniques, like: a) item vectors generated using matrix factorization and b) neu-
ral embedding item vectorization by using the sets of items that are rated by
users as words. (2) In the second task, we run the vectorizations of the user and
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item vectors multiple times. We calculate the average variance of the generated
values and the mean average covariance of the generated vectors, to establish
that our vectorization process is highly independent of initialization. We contrast
this with the vectorizations generated by matrix factorization. (3) Moreover, we
compare the recommendation ranking generated using Pref2Vec with the stan-
dard collaborative filtering algorithms using the NDCG measure. Our results for
these experimental tasks show performance gains over the comparison partners.

2 Related Work

Vectorization techniques are of great importance in machine learning. Specially
in the area of natural language processing, neural embedding techniques for vec-
torization of words have been used in many applications [27,29, 2,8, 28, 30, 25].
Neural embedding techniques assume that the words that occur close to each
other in the text are more dependent than the words that are far off. However,
vectorization techniques using neural networks were inefficient to train, espe-
cially when the size and vocabulary of the dataset increased. But, the widely
used word embedding technique word2vec that was introduced a few years ago,
made creation of vector representations of words very efficient. It employs highly
scalable skip-gram language model, that is fast to train and preserves the seman-
tic relationships of the words in their vector representations. This technique for
word embedding has recently shown considerable improvement in applications
like name entity resolution [19] and word sense detection [3].

The success of word2vec has probably lead to the adoption of the neural em-
bedding techniques in domains other than word representations. Djuric et al. [9]
used vectorization of paragraphs as well as vectorization of words contained in
each paragraph to create a hierarchical neural embedding framework. Also, Le et
al. [20] created an algorithm that learns vector representations of sentences and
text documents. They represent each document as dense vector that is utilized
to predict words in the document. Moreover, Bordes et al. [4] have introduced
the approach that embeds entities and relationships of multi-relational data in
low-dimensional vector spaces, to be used for text classification and sentiment
analysis tasks. Socher et al. [26] attempted to improve this approach by repre-
senting entities as an average of their constituting word vectors. Also, there have
been recent efforts to learn the vector representations of nodes in graphs [24, 12].

Moreover, several recent recommendation applications have employed neural
word embedding. of prod2vec and user2vec by Grbovic et al. [11]. The prod2vec
model creates vector representations of products by employing neural embedding
on sequences of product purchases, where each product purchase is considered as
a word. Whereas, the user2vec model considers a user as a global context in order
to learn the vector representations of user and products. Similarly, item2vec [1]
employs neural embedding on sets of items on which the user has taken action
(e.g. songs played or products purchased), while ignoring the sequential infor-
mation. The experimental results for these techniques show their effectiveness.

Although there have been many applications of neural embeddings in various
areas including collaborative filtering, to the best of our knowledge, among the
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available neural embedding techniques on the rating information, there is no
straightforward way to incorporate different levels of item ratings. He et al. [13]
have utilized deep neural network frameworks for recommendation, but they
also consider items in 1 and 0 state. Besides, there has not been an attempt
to generate and utilize preference vectors. Hence, in this paper we attempt to
generate preference vectors as an intermediate step, which can be utilized to
generate good quality user and item vectors for various data mining tasks.

3 Problem Formulation

In this section, we formulate the neural rating vectorization problem, aiming to
create vector representations for users and items by considering users’ historical
rating preference on items. Since matrix factorization can be actually regarded as
traditional preference vectorization technique, let’s firstly review its definition.

Consider a set of users U with m users, a set of items I with n items and
a rating matrix R of dimension m X n containing ratings on n items given by
m users. Each element r,; of the uth row and ith column of R is the rating
given by a particular user v € U for the item i € I, where most of the elements
in R are unknown as users generally can provide ratings only for a very small
number of items. The objective of the rating vectorization problem is to generate
a vector u for each user u € U and a vector ¢ for each item ¢ € I, where the dot
product of each user v and item ¢ is close to the corresponding rating r, ; of i
by u. Formally, the problem can be defined as follows:

Definition 1 (Matrix Factorization). Given a set of users U with m users,
a set of items I with n items, a rating matriz R of dimension m X n containing
ratings on n items given by m users, the matriz factorization problem aims
to create two low-rank dimensional matrices U of dimension k x m and V of
dimension k x n for users and items respectively by minimizing the following
objective function:

arg min Z Ou,i (ru,i — uTi) ,

UV cUier

where ¢, ; = 1, if u has rated i; otherwise 0, We define a novel neural rating
vectorization problem. It treats the possible ratings on each item ¢ as an intrinsic
property of the item, which indicates the quality of 7 and thus are independent
from users. The neural rating vectorization problem aims to generate rating
vectors on items by maximizing the likelihood estimation of the conditional
probability of each score on item given another one. Formally, the neural item
embedding problem can be defined as:

Definition 2 (Neural Item Embedding). Let U, I and R be a set of users
U with m users, a set of items I with n items, and a rating matriz R of dimen-
sion m X n containing ratings on n items given by m wusers, respectively. The
neural item embedding problem aims to create low rank vector representations of
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dimension k x m for items I by minimizing the following objective function:

argImin — Z Z Gu,i®u,j10g Prob(r; = ry; | 15 =Tu ), (1)

wel i,jel i)

where Prob(r; =y ; | rj = 1y ;) is the probability that user u provides a score of
Tu, to item 7 given that the same user v assigns a score of r,, ; to another item j.
Once we obtain the item vectors by solving the above problem, user vectors can
be generated directly by minimizing the difference between items’ observed rat-
ings and the product of user and item vectors: argmin Y, ;i Gu.i (ru; —u')

Note that the probability Prob(r; = 7y, | rj = ry ;) in Equation (1) actually
involves two aspects of information: (1) the co-occurrence of ratings on each pair
of items by same users, and (2) the rating scores or relative preferences of users
holds on items. Thus it is extremely hard to be formulated by straightforwardly
adapting that in word2vec [22,23] with hierarchical softmax of the vectors.

4 The Pref2Vec Algorithm

Pref2Vec solves the neural item embedding problem in Definition 2 in three steps.
Firstly, we generate vectors of pairwise item preference. We use these preference
vectors in the second step to generate user vectors, that are in turn used to
create item vectors in the third step.

4.1 Pairwise Preference Vectorization

To create vectors of pairwise item preferences, we create the pairwise preference
matrix and use it to create the sets of positive pairwise preferences for each
user. Then, we utilize neural language models to learn representations of positive
preferences in lower dimensional space using available positive preference pairs.

Consider a set of users U = {uq,ug, ..., Uy}, asetofitems I = {1y, Is,...,I,}
and their corresponding rating matrix R of dimension m x n. Each row of R con-
tains ratings R, = {r1,72,...,7,} given by a user u for the n items, where most

of the elements in R, are unknown as users generally can provide ratings only
for a very small number of items. This allows us to build a set of pairwise pref-
erence for each user by using a preference function: p(i,j) € {+1,—1}, where
i=1...n,j =1...n,4 # j and both r; and r; are known. The preference
function p(i, j) has a value of +1 if r; > r; and —1 otherwise.

Now, we create the sets of positive preferences P, for each user u. Without
losing generality, here we only consider the conditions of positive preference
pairs, as all of the negative preferences can be straightforwardly transformed
into positive ones by reversing the positions of the two items. With n items, we
should consider a total of N = n(n — 1) unique preference pairs, denoted as P =
{p1,p2,...,pn}. Each users’ preferences P, is a subset of P, formally P, C P
for any user u. Now, Pref2Vec proceeds with learning the vector representations
of the preferences on the collection of preference sets P = {Py, Ps, ..., Py} for
all of the users.
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We consider the word2vec framework [22, 23] that generates vector represen-
tations of words. They presented the continuous skip-gram model, which assumed
that for each target word the sequence of its surrounding words are trivial and
can be ignored. This is achieved by maximizing the cumulative logarithm of the
conditional probability for the surrounding words given each target word in the
corpus with neural networks. Our approach is very similar, since we consider our
collection of preference sets: P as the corpus, the preference sets Py, Ps, ..., Py,
by the users as the sentences and the preferences py,po, ..., pyx as the words.

However, the key difference in our approach is that we completely ignore the
spatial information within the preference sets. This is because unlike words in
sentences, the order of the preferences for a user (in a non-temporal setup) is
inconsequential. This is the reason why we have a set representation of prefer-
ences for a user, as opposed to a sequence representation. Actually this property
makes our scenario even better fit the skip-gram model than natural language
processing, where the preferences have no sequence information and thus the
sequence of the “surrounding preferences” can be ignored without any accuracy
loss. Therefore, in the Pref2Vec framework, we learn the vector representations
of the products by minimizing the following objective function over the entire
collection IP of preference sets:

argmin — Z Z log Prob(p; | pi), (2)

21,82, y0n PrEP (pi,p; )€ Pr it
where Prob(p; | p;) is the hierarchical softmax of the respective vectors of the

exp(i, 4,)

ey, expligl)’
J. are the initial and target vector representations respectively of preferences p;
and p;. Iy is the target vector representations of any preference p; in Pj. From
Equation (2), we see that Pref2Vec model ignores the sequence of preferences
within a user preferences set. The context is set to the level of preference sets,
where the preference vectors that fall in the same preference sets will have similar
vector representations.
Remarks: Our approach is also inspired by item2vec [1], that uses a straightfor-
ward application of word2vec by considering a set of items (accessed by a user)
as a sentence and the individual items as words. Similar to Pref2Vec, item2vec
also ignores the sequential information of items in a set. item2vec has been effi-
ciently used in scenarios where we have a simple sequence of items, e.g. products
purchased, videos watched, etc. In such cases, for each user the items are in 0
or 1 state. However, if the user feedback is provided in higher granularities (e.g.
user ratings), then simply considering the sequence of items rated by the user
and treating them equally, is expected to severely limit the quality of vectors.
On the other hand, Pref2Vec enables the utilization of rating information by
incorporating pairwise item preferences in the vectorization process.

preference p; and p;. In particular, Prob(p; | p;) = where %, and

4.2 User Vector Generation

However, the preference vectors generated in the previous section cannot be uti-
lized directly for recommendation tasks, that often require good quality user and
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item vectors as an input. In this section we describe the second step of Pref2Vec
and aim to find vectors corresponding to the m users, given the preference vectors
for each pair of items and known ground truths for the preferences.

For a particular user let p;, p, ...p, be the preference vectors, each of length
k, for which the respective values of preference function are py,po,...,p, €
{+1,—1}. The corresponding user vector can be achieved by minimizing the
cumulative difference between users’ each observed preference p; and the product
of the user and preference vectors u ' p,. Thus we can formulate this problem as
linear classification, where p,,p,...p, are training instances, the values of the
preference functions py, po, ..., p, are ground truth. With consideration of a bias
b, we aim to predict the coefficients of a linear classification model, which is the
user vector w. In this study, we use Logistic regression [16] to solve the problem.
The loss function with L2 norm is : arg Iglil’l S log(1+exp(—pi(up;, +b))) +

u,
2|u|[?, where w is a vector of length k, b is a number and A is the tuning
parameter for L2 norm. We use the gradient descent method for optimization.
Given a learning rate «, the update formulas are derived as follows:

T

—Pi
e a(; 1+exp(pi(qui+b))pi+)\u) -
" 3

beb- O‘(i 1+ exp(p;(}ZTPi + b))>

i=1

The generated user vectors u corresponding to each of the m users, form a
user matrix U of dimension m x k.

4.3 Item Vectors Generation

The last step of Pref2Vec is to find item vectors given the rating matrix R, xn

and the user matrix U, x generated in the previous section. For this we optimize

matrix I, «x, by minimizing the difference between items’ observed ratings and

the product of user and item vectors, i.e. UIT & R. The n rows of I would be

the item vectors. We minimize the loss function: argmin||[R — UIT||* + 3||I|]?,
I

where A is the tuning parameter for L2 normalization. We use the gradient
descent method for optimization. Given a learning rate 7, the update formula is:

I+ I —n(-2(R-UI")TU + \I) (4)

5 Experiments

The following three research questions guide the remainder of the paper.

RQ1 Is the quality of item vectors generated using the Pref2Vec approach better
than state-of-the-art vectorization algorithms? (See Section 5.1)

RQ2 Are the outputs of the proposed Pref2Vec algorithms independent from
their initialization? (See Section 5.2)
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RQ3 Can the vectorization results be utilized to improve the performance of
recommender systems? (See Section 5.3)

Datasets. We use three MovieLens* data sets in our experiments: MovieLens-
100K, MovieLens-1M and MovieLens-10M. MovieLens-100K dataset contains
100,000 ratings given by 943 users on 1682 movies. MovieLens-1M dataset is
larger with 1,000,000 ratings given by 6040 users on 3952 movies. Movielens-
10M is the largest dataset used, with 10 million ratings given by 69878 users
on 10681 movies. In MovieLens-100K as well as MovieLens-1M the ratings are
given as integers from 1 to 5. In MovieLens-10M, the ratings are given in the
range 0.5 to 5 with an increment of 0.5. In these datatsets there are 18 movie
genres, a movie can belong to one or more of them. For all the three datasets
we randomly assign 10 ratings for each user for testing and the rest for training.
We have used the vector length of 10 for all the vectorization methods.

5.1 Evaluation of Item Quality

Ground-truth. Since the datasets provide genre information for all of the items
(movies), we use the genre similarity as the ground truth. In particular, the
genres of each movie are provided (or can be transformed) in the form of binary
values. A value of 1 signifies that the movie belongs to a particular genre and
0 signifies the contrary. A movie can belong to more than one genre. So, let us
consider that genre vectors derived from the meta-data are: (G;...G;) , which
correspond to our item vectors I,...I;. Since, the genre vectors are binary
vectors, to find similarity between them we use: Jaccard similarity [6], an efficient
and popular measure for binary similarity. Jaccard similarity between two binary
vectors v, and vy, is simply calculated as: jacSim(v,,vp) = m,where
Fi1 is the number of features for which both v, and v, have value 1. Fpy; is
the number of features for which v, has value 0 and v, has 1. And, Fig is the
number of features where v, had the value 1 and v, has 0.

For the item vectors Iy, I, ..., I, (calculated in Section 4.3), the similarity

can be calculated for each pair of item vectors (I;,I;) as: cosSim(I;,I;) =
\I,I|Txil|]1]\7 where |I;| and |I;| are the length of the vectors I; and I;.
Evaluation Metrics. In order to evaluate the quality of item vectors we use the
RMSE (root mean squared error) and MAE (mean absolute error) measures. To
calculate these, we calculate the similarities between each pair of item vectors
and the similarities between their corresponding pairs of ground truths. Since
the item in our experiments are movies, the genre information about the movies
(available from metadata) is considered as ground truth. The differences between
the two similarities for each item are considered as errors, that are in turn used
to calculate RMSE and MAE. We use these measures because for good quality
item vectors, the vectors that are similar should also have similarity based on
their relevant meta data information. Therefore, the lower the values of RMSE
and MAE, the better is the quality of vectors.

* http://grouplens.org/datasets/movielens/
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Table 1. Quality of Generated Item Vectors against Baselines

Algorithm ML-100K ML-1M ML-10M Ref.
RMSE MAE RMSE MAE RMSE MAE
RM-Vectors  0.8674 0.8163 0.8790 0.8292 0.8563 0.8151 -
IS-Vectors 0.8238 0.7508 0.7018 0.5886 0.5864 0.4758 1]
MF-Vectors 0.6844 0.6431 0.6904 0.6478 0.6478 0.6071 (18]

P2V-Vectors 0.4770 0.3846 0.5165 0.4305 0.4456 0.3695 This paper

To calculate the errors we need: the difference between the similarities of
two item vectors and the similarities between the corresponding two genre vec-
tors. The errors are calculated for all pairs of items: e; ; = cosSim(I;,I;) —
jacSim(G;, Gj). Though cosine similarity and Jaccard similarity are differ-
ent measurements, their difference used here is expected to be highly indica-
tive of the error. There would be n(n — 1)/2 such errors. Now, RMSE =

n n 2 n n P
Zim i ® and MAE = Z=tam o]
the absolute value of the parameter.

, where the function | - | gives

Baselines. We choose the following methods to evaluate the quality of the item
vectors that are generated by the Pref2Vec framework, i.e. P2V-Vectors.

e RM-Vectors: Rating matrix R,,x, contains ratings by m users for n items,
and its columns are the simplest (and readily available) form of item vectors.

e IS-Vectors: Neural embeddings of items are created by considering the set
of items rated by users as sentences and items as words (similar to itemZ2vec [1]
approach). Comparison with this method would validate the importance of using
preference information for vectorization in Pref2Vec.

e MF-Vectors: In matrix factorization [18] user and item vectors are created
by randomly initializing matrices U,,xx and I« and then minimizing the dif-
ference between their product and the rating matrix (i.e. R — UIT).

Results. In Table 1, we compare the item vector qualities using RMSE and
MAE. For MovieLens-100K dataset, for both RMSE and MAE, P2V-Vectors
perform the best, followed by MF-Vectors. IS-Vectors are the third and the
RM-Vectors are the worst performing ones. The trend is same for the dataset
MovieLens-1M for RMSE. For MovieLens-1M in terms of MAE as well as for
MovieLens-10M (both RMSE and MAE), though P2V-Vectors are still the best
performing ones, the second best are IS-Vectors, followed by MF-Vectors and
then RM-Vectors. The improvement shown by P2V-Vectors is significant.

Pref2Vec firstly generates preference vectors, and then creates user vectors
with the generated preference vectors, and finally produces item vectors with the
generated user vectors. Since each step is an approximation process with certain
accuracy loss, the preference and user vectors should be more accurate than the
item vectors. Thus although we cannot assess the quality of user and preference
vectors resulting from lack of corresponding ground-truth information, we can
still claim that the quality of the preference, user and item vectors generated by
our Pref2Vec method can significantly outperform our baselines.
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5.2 Evaluation of Initialization Independence of Generated Vectors

Firstly, we describe the measurements to evaluate the independence of generated
vectors from their initialization. Let us consider that x different runs (resulting
from different initializations) of a vector generation method generate: user ma-
trices UM ... U®) and the corresponding item matrices IV ... I(®) Each user
matrix is of dimension m x k with the rows corresponding to m user vectors,
each of length k. Similarly each item matrix is of dimension n x k with the rows
corresponding to n item vectors, each of length k. Since the features of the vec-
torization results might be in a different order by different runs of algorithms,
we sort the generated features according to their cumulative values among all
of the users. The independence of these vectors from the initialization can be
measured using (a) variance of the elements of the U and I matrices and (b)
correlations between the user and item vectors generated in different runs. These
measures are explained in detail as follows.

Variance Calculation. Let U(? U(i) U(J) be the x values in the user ma-
trices at ith row and jth column from x different runs of a vectorlzatlon algo-

RN
rithm. Their variances can be calculated as: vary (i,5) = 2 Y7, ( i = Ui,j> ,

where U, ; is the average of Uz(j), U(Q) . U(w) With m x k£ dimensions of the
user matmx U, we can get m x k Varlance and the mean variance would be:
MVU = m><k Zi:l Zj:l vary (i, j).

Similarly, the variance of the item matrices at the ith row and jth col-

(1]),11(2]) . IZ.(;) from x different runs of a vectorization algorithm can be

_ 2 _
calculated as: var;(i,j) = 237, (I(l) - Iid') , where I; ; is the average of
1) 72 (z)
Ly Ly Ly
culated as: MVI = L 5" | Z?zl vary(i,j)
A lower value of the mean variance is indicative that the generated values that
comprise the user or item vectors do not vary much with different initializations.

umn [

The mean variance of the generated item vectors can be cal-

Correlation of Vectors. The independence of the vectors from the initializa-
tion of the generation technique can also be estimated by the correlation between
the vectors generated in different runs. We use Pearson correlation coefficient [15]
to calculate correlation p(x,y) between variables x and y.

A user matrix UY) generated in the j** run, contains m user vectors :
ugj ) uﬁ,%) For a particular user, the average of pairwise correlations between

@) 4O
the vectors generated in the x runs would be: AC(i) = 2= E;(;“S;;L )

And, the mean of these average correlation for all the m user vectors can simply

© u@ b
be calculated as: MAC = 2iz mxzxjézﬁll)fé :
(4)

Similarly, the mean average correlation for the item vectors, 2 . z,(f ) gener-
C = i E;’n:1 Zf:j+1 P(igj)’igl))

atedinz runs (j = 1...z), can be calculated as: M A 1) 3

A high value if M AC mean that the vectors generated during different runs are
close to each other and hence have high level of independence to initialization.
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Table 2. Initialization Independence of Generated Vectors

User Vectors Item Vectors
MVU MAC MVI MAC
MF 0.0730 0.0015 0.0773 0.0315
P2V 0.0015 0.8592 0 0.7881

Results. In Table 2, we show the results evaluating the initialization indepen-
dence of user and item vectors generated using Pref2Vec (shown as P2V) and
comparing them with the vectors generated by matrix factorization (shown as
MF). On the dataset MovieLens-100K we run both the methods 5 times, result-
ing in creation of 5 different pairs of user and item vectors for both of them. We
calculate MVU, MV T and M AC (for user and item vectors) for the vectoriza-
tion results generated by P2V and matrix factorization (MF).

The values of MVU and MV I of our algorithm are merely 0.0015 and 0 for
user and item vectors, which are sharply lower than that of the matrix factoriza-
tion method. Note that although the values of matrix factorization are smaller
than 0.1, they are still large because the values in the user and item matrices
are very small, and most of them are less than 1. Also, the values of M AC are
very high for P2V for both item and user vectors, especially in comparison with
the respective values for MF. This again shows that the user and item vectors
generated by P2V in different runs are highly correlated to each other.

Algorithm

5.3 Ranking Prediction based on Generated Vectors

Ranking Model using User Vectors. Here we describe the method to gener-
ate rankings for items with unknown ratings for user using the available Pref2Vec
preference and user vectors. This is done by firstly predicting the preference val-
ues p € {41, —1} for the preference vectors corresponding to the items with
unknown ratings. Then we employ a greedy order algorithm to derive approxi-
mately optimal ranking of the unrated items.

In Section 4.2 we showed the process that generates the user vector u and the
value b after optimization. Since the optimization process directly employs the
Logistic regression loss function, this allows us to also directly use Logistic re-
gression classification to predict pairwise preferences for a user. More specifically,
for a user with user vector u and accompanying value b, the user’s preference p,,
can be predicted as: p, = +1,if u'p +b > 0; —1 otherwise.

Hence, for a particular user, if there are ¢ items with unknown rankings
I,I,...1,, the values for the preference function p(I;,I;) € {+1,—1}, can be
predicted. Since the values for pairwise preference function are not a direct for-
mat to get the rankings, we use the greedy order algorithm proposed by Cohen et
al. [7,21], that efficiently finds an approximately optimal ranking for the target
user u. It is showed that based on reduction of cyclic ordering problem [10], the
determination of optimal ranking is a NP-complete problem and the algorithm
can be proved to have an approximation ratio of 2 [10].

Remarks. Alternatively, we could have directly used the user matrix U (Section
4.2) and the item matrix I (Section 4.3) to generate the ratings matrix (R =
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Fig. 1. Ranking Performance of Pref2Vec against baselines
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UIT), that could be used to generate ranking of unrated items. However, since
we follow sequential steps by first generating U from preference vectors, then
using U to create I and thereafter using U and I to create R; there is accuracy
loss at each step. On the other hand, our ranking model avoids such additional
inaccuracies by directly using preference vectors and U to generate rankings.

Baselines. We use the following baselines to access the performance of our
simple recommendation method P2VRank:

e CF: CF [5] is a memory-based collaborative filtering algorithm that uses the
Pearson correlation coefficient to calculate the similarity between users.

e MF: Given a raking matrix R, in matrix factorization [18] the user matrix U
and the item matrix I are optimized in order to minimize the difference: R—UI .
e EigenRank: EigenRank [21] uses greedy aggregation method to aggregate the
predicted pairwise preferences of items into total ranking.

e eALS: Element-wise Alternating Least Squares (eALS) [14] efficiently opti-
mizes a MF model with variably-weighted missing data. As eALS is an implicit
feedback algorithm, we consider only higher ratings (> 4) as positive feedback.

Results. The performance is evaluated using the standard ranking accuracy
metric NDCG [17] @3 and @5. In Fig 1, we sce that P2VRank outperforms
all comparison partners. Also, we also observed strong statistical significance
( = 0.05) on comparing P2VRank against MF for all the three datasets.

6 Conclusion

We proposed Pref2Vec to generate vector representations of pairwise item pref-
erences. We also presented the method to generate user and item vectors using
preference vectors. Also, our experimental results demonstrated that the qual-
ity of item vectors generated by Pref2Vec is better than that of the standard
techniques. We also verified that the generated user and item vectors are highly
independent of the initializations. In addition, we presented the technique to
generate rankings of items, using the generated user vectors, and showed that it
outperforms the standard recommendation techniques. Currently we only con-
sider the preference of one item over another for the creation of Pref2Vec and in
future we would like to consider the magnitudes of these preferences.
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