
Siyuan Xue

Designing and implementing Web API for RAI

software

Master’s Thesis
in Information Technology

November 15, 2019

University of Jyväskylä

Faculty of Information Technology

Kokkola University Consortium Chydenius

Author: Siyuan Xue
Contact information: siyuan.xue@outlook.fi
Phonenumber: 045-356 0601
Title: Designing and implementing Web API for RAI software
Työn nimi: Design and implement Web API for RAI software
Project: Master’s Thesis in Information Technology
Page count: 52+5
Abstract: The information silo becomes a significant problem with the software evo-
lution from desktop applications to web-based applications. In this thesis, the re-
search problem is derived from a customer’s requirement to integrate two different
health information systems. The design and creation research approach is employed
in this study, which involves aware, suggestion, development, evaluation and con-
clusion. This paper focuses on building Web Service to break the information silo
in healthcare systems, especially between the Electronic Health Record (EHR) and
other health information systems. As the outcome of this study, a RESTful Web API
is constructed to resolve the information silo issue. Meanwhile, the different alter-
native solutions to construct each component of the Web API and open issues are
summarized in the evaluation phase.
Suomenkielinen tiivistelmä: NA
Keywords: Web Service, Web API, REST, resident assessment instrument, maturity
model, service description
Avainsanat: NA

Copyright c© 2019 Siyuan Xue

All rights reserved.

Glossary

AD Active Directory
API Application Programming Interface
CoHA Classification of HTTP-based APIs
CORS Cross-Origin Resource Sharing
CRUD Create Read Update Delete
DL Description Language
DTD Document Type Definition
EHR Electronic Health Record
FR Functional Requirement
GUI Grapic User Interface
HATEOAS Hypermedia As The Engine Of Application State
HTML Hypertext Markup Language
HTTP HyperText Transfer Protocol
HTTPS HyperText Transfer Protocol Secure
IDE Intelligent Development Editor
IDP Identity Provider
JSON JavaScript Object Notation
NFR Non-Functional Requirement
OAI Open API Initiative
OS Operating System
OSI Open Systems Interconnection
PHP Hypertext Preprocessor
PID Personal Identifier
POX Plain Old XML
RAI Resident Assessment Instrument
RAML RESTful API Modeling Language
RDF Resource Description Framework

i

REST Representational State Transfer
RMM Richardson Maturity Model
RP Relying Party
RPC Remote Procedure Call
RSS Rich Site Summary
SDK Software Development Kits
SGML Standard Generalized Markup Language
SOAP Simple Object Access Protocol
SSL Secure Sockets Layer
TLS Transport Layer Security
UC Use Case
UI User Interface
URL Uniform Resource Location
WADL Web Application Description Language
WSDL Web Service Description Language
WWW World Wide Web
XSD XML Schema Definition
YAML Yet Ain’t Markup Language

ii

Contents

Glossary i

1 Introduction 1

2 Background 3
2.1 Application programming interface 3

2.1.1 Remote Procedure Call API . 3
2.1.2 Message API . 4
2.1.3 Resource API . 5

2.2 Representational State Transfer . 5
2.2.1 Resource . 6
2.2.2 Representation . 6
2.2.3 REST API . 7

2.3 Communication protocols . 8
2.3.1 HyperText Transfer Protocol (HTTP) 8
2.3.2 HTTP methods . 9
2.3.3 Simple Object Access Protocol (SOAP) 10

2.4 Media types . 11
2.4.1 XML . 12
2.4.2 JavaScript Object Notation (JSON) 13

2.5 Versioning strategy . 13
2.5.1 Version control models . 13
2.5.2 Versioning method . 14

2.6 Security . 15
2.6.1 Hypertext Transfer Protocol Secure (HTTPS) 15
2.6.2 Authentication and authorization 16

2.7 Web API description . 19
2.7.1 OpenAPI . 20

2.8 Web API quality evaluation . 21
2.8.1 Richardson Maturity Model (RMM) 22

iii

2.8.2 Classification of HTTP-based APIs: the CoHA Maturity Model 23
2.8.3 WS3 maturity model . 24

3 Design and implementation of the RAI Web API 27
3.1 Case description . 27
3.2 RAI API requirements . 30
3.3 RAI API design . 33

3.3.1 Resource . 34
3.3.2 Resource operations . 35
3.3.3 Media type . 37
3.3.4 RAI API versioning . 38
3.3.5 RAI API security . 39
3.3.6 Service description . 41

4 Evaluation 44
4.1 Design dimension . 44
4.2 Profile dimension . 45
4.3 Semantic dimension . 45
4.4 Open issues . 45

4.4.1 GET method security vulnerability 45
4.4.2 Lacking authorization method 46

5 Conclusion 47

References 49

Appendices

A RAI API request and response example

B Swagger-PHP annotation code snippet for generating OpenAPI definition

C RAI API OpenAPI definition code snippet

iv

1 Introduction

With the progress of the Internet, software previously developed as desktop appli-
cations is now provided as web-based applications. This software is becoming more
dependent on the Internet, and most application data is stored in the cloud rather
than on a local computer. To access the stored data, the user must use a specific
software. Therefore, software systems easily become information silos, which are
systems that manage data and do not share it with other systems [29]. However, the
data exchange between different systems brings many benefits, such as increasing
data reusability and accuracy.

The information silo problem is a significant issue among healthcare systems, as
the healthcare service field uses diverse information systems to gather and manage
different health data. The most common is the Electronic Health Record (EHR) sys-
tem, which is used in healthcare organizations to manage patients’ health informa-
tion. Besides the EHR, there are also other health information systems used within a
healthcare organization (e.g., a nursing home or social care) to access, manage, and
share health information.

The information managed by one health information system should be made ac-
cessible for the other systems, but in reality, this is rarely the case. The different
health information systems can be from different manufacturers, which makes it
challenging to share and utilize patient data among these distinct systems. There-
fore, how to integrate disparate systems and bridge the gaps between them is an
important question.

In this study, using a Web Service is considered a way to integrate different
healthcare systems. A Web Service is a software system that enables machine-to-
machine interaction by providing a machine-processable service description and a
set of standards related to network transportation and data serialization [2].

The research problem addressed in this thesis is derived from a customer’s need
to integrate two different health information systems. Currently, the user must man-
ually copy and paste to transfer data between the systems, which introduces a num-
ber of issues. First, the process creates extra workload (i.e., a lot of repetitive and
meaningless work). Second, it increases the risk of introducing errors, especially as

1

the data can be life critical.
This thesis aims to solve the issue by adopting a design and creation research

approach [38]. This approach involves five phases: awareness, suggestion, devel-
opment, evaluation, and conclusion. In the awareness phase, the research moti-
vation and problem are analyzed. The background research and literature review
are carried out in the suggestion phase to offer supportive ideas for solving the re-
search problem. These ideas are implemented in the development phase, a step that
demonstrates the process of how an idea becomes an artifact that solves a problem.
In the evaluation phase, the developed artifact is critically assessed. In the conclu-
sion phase, the results from the design process and created artifact are summarized.

The expected result of this work is an artifact in the form of a Web Service that
addresses the integration issue. The remainder of the thesis is organized as follows:
Chapter 2 includes background information. Chapter 3 presents the development
process, system requirements, and system design. Chapter 4 provides an evaluation
of the developed artifact. Chapter 5 provides a summary and discusses open issues
and future work.

2

2 Background

2.1 Application programming interface

Application Programming Interface (API) is an overloaded concept, which refers to
different terms depending on the context. An API is a set of rules regarding the
interaction between different software, such as a desktop application, an Operating
System (OS), and a web application. For example, if a Linux desktop application
needs to save a file, the desktop application must invoke the Linux Filesystems API
to perform the saving operation.

When an API is implemented as a Web Service, it is called a Web API and refers
to a set of rules for interactions between the software service provider and its con-
sumer. Most popular web applications provide a Web API for programmers to re-
trieve data, utilize the web application’s computing capability, and construct third-
party applications. For instance, the Google Maps platform publishes Web APIs to
third-party software vendors that wish to utilize the Google Map service. The user
can take advantage of the Google Map service to meet massive calculation demands
with the Google Cloud’s computing capability.

There are different ways of implementing a Web API. Robert Daigneau [9] de-
scribes the most common styles, which include: The Remote Procedure Call (RPC)
API, the Message API, and the Resource API. These are discussed in detail below.

2.1.1 Remote Procedure Call API

A Remote Procedure Call (RPC) is a mechanism by which an application invokes a
service provided by another application [27]. The applications are isolated and can
even be located in different machines. In the RPC process, the request is a message
in RPC message format, which includes the RPC program number, program ver-
sion number, and procedure number; an application sends one or more messages to
invoke the remote service.

RPC is the core concept of the RPC API. In an RPC API, the invoking process
starts with a client sending a request to a remote server. The client process is blocked
until the response is received. When the server receives the request, it extracts the

3

procedure number and the corresponding parameters and dispatches the informa-
tion to the correct process. The server returns the response to the client once the
invoked process is complete.

An RPC API provides a narrow view of the data [34]. The business logic is im-
plemented in the RPC API server side and published as a single endpoint to service
all the RPC requests. When the API consumer must perform a specific operation,
he/she only has access to specific data fields. Therefore, the bandwidth used by the
protocol is reduced. Suitable for publishing a single endpoint, RPC API requires the
API consumer to be tightly coupled with the API server, which limits the evolution
of both the RPC API and its consumer.

2.1.2 Message API

A Message API is invoked by receiving a self-descriptive message via a Hypertext
Transfer Protocol (HTTP) at the designated Uniform Resource Indicator (URI). The
message includes two parts: a header and body. The header is optionally used to
indicate the meta information of the request, such as the authentication credentials
and the request state information, while the message body contains the primary
data, such as the procedure to execute and the arguments for it.

In a Message API, the message format is diverse. The most typical are XML and
the standardized XML, the Simple Object Access Protocol (SOAP). Besides those
two options, there are some proprietary formats in use, usually called Plain Old
XML (POX).

The Message API request sequence is similar to that of the RPC API. When a
client consumes the Message API, it sends a request containing the message to the
server. The server will process it to determine which procedure should handle the
request. Once the process is complete, the server returns a result to the client. The
message is the key concept of the Message API, which means the Web API’s design
is equivalent to the message’s definition. The Web APIs perform as endpoints to
receive the request, parse the message, and forward it to the procedure.

The request message includes its type of information and content. There are
mainly three message types, Command Message, Event Message, and Document
Message. The Command Message is for the API to complete a specific task; the
Event Message is dedicated to describe the triggered event, and the Document Mes-
sage is a document to an entity record. The response is also in the message. It
contains the processing result; the request acknowledges or the failure if the process

4

fails.
A Message API usually provides a service description for the Message API con-

sumer to generate the client-side code with tools. The most commonly used is
the Web Service Description Language (WSDL). Message API also enables the Re-
quest/Acknowledge interaction pattern rather than the Request/Response pattern.
In the Request/Response pattern, once the server receives a request from the client,
it starts to process the request, and the client process will be blocked until a response
is returned to the client. However, in the Request/Acknowledge interaction pattern,
the server will forward the request to an asynchronous background process and re-
turn an acknowledgment to the client to notice the client that the request is accepted
and in processing. The server only takes responsibility to dispatch the request and
return the acknowledge. Once the acknowledge is returned, the server will be avail-
able to serve the client. This approach is considered to achieve asynchrony. With
this approach, the Message API consumer can avoid being blocked by the server.

2.1.3 Resource API

A Resource API is a type of API that utilizes the URI to identify the request desti-
nation, the HTTP server method to represent the process action, and the media type
to determine the content type. As the name implies, a Resource API enables the
channel to manipulate the resources. Most, but not all, Resource APIs conform to
the Representational State Transfer (REST) style. The resource and REST concept are
discussed further in Section 2.2.1 and Section 2.2.

2.2 Representational State Transfer

The Representational State Transfer concept originally appeared in Roy Fielding’s
Ph.D. dissertation in 2000 [15]. Fielding aimed to present a network-based commu-
nication architecture concept for constructing high-quality application architectures.
REST refers to a set of architectural constraints and principles. If an architecture
conforms to the RESTful constraints and principles, it can be defined as a RESTful
architecture. REST is not a new technology, component, or service. The idea behind
it is to optimize the usage of the web’s existing features and capabilities and the
guidelines and constraints in the current web standards. Although web technolo-
gies profoundly impact REST, the REST architectural style is not bound to HTTP.

5

However, HTTP is currently the only REST-related instance.

2.2.1 Resource

A resource in REST is a key abstraction of information. Any information in a REST-
ful architecture, such as a file, an image, a service, or an object (e.g., a user account),
can be abstracted as a resource. Therefore, when the author of a RESTful architec-
ture designs a hypertext reference, the design must fit within the resource definition
[15]. A resource maps a group of entities regardless of the entity in any particular
moment; meanwhile, an entity in different moments can be recognized as distinct
resources, even though the entity value is the same. The source code version control
in software engineering is taken as an example to illustrate the resource mapping.
The source code file is a resource, and the file has multiple versions (e.g., "latest ver-
sion," "revision 1.0.0," or "production version"), such that each version is considered
a resource.

2.2.2 Representation

Representation is the description of a resource’s state, with a sequence of bytes and
metadata for describing the bytes. A representation is transferred between the REST
components, such as a web server and browser, to perform actions on a resource to
acquire the current or intended state. A representation can be in a different data
format, known as a media type (see Section 2.4). Since different media types are
feasible for different use cases, some media types can be processed directly by the
representation recipient; some require the recipient to render. For example, if a web
server responds to a browser request in a Hypertext Markup Language (HTML)
format, the browser must render the HTML response into a Graphic User Interface
(GUI). If the web server responds in a JSON format, the browser can use the data
directly with the JavaScript language.

REST is an architectural style that is derived from web architecture by applying
the following list of constraints [26].

1. Client-Server: This constraint categorizes the user interface and data storage
into the client and server modes to increase Web applications’ cross-platform
capabilities, simplify server components, and increase application extensibil-
ity.

6

2. Stateless: This constraint requires that every request sent by the client to the
server must contain all the information necessary for the request, and the re-
quest’s status information is stored in the client side to avoid using any infor-
mation on the server. Thus, the client and server remain relatively indepen-
dent.

3. Cache: This constraint specifies that the server responding with data must
implicitly or explicitly state whether the response is cacheable or noncacheable
to improve the efficiency of the response data usability in the client side.

4. Uniform interface: This constraint requires that each web component opera-
tion be performed through a unified interface to simplify the web architecture
and clarify the request purpose. The uniform interface is an essential REST
feature, which distinguishes it from other web architectures.

5. Layered system: This constraint divides the Web architecture into several lev-
els of functional layers and requires that each component only interacts with
the adjacent layer to make the Web application’s structure clearer and more
purposeful.

6. On-demand code: This constraint means that the client can extend its func-
tionality in the form of downloading and running server code to enhance its
flexibility.

2.2.3 REST API

As depicted in Figure 2.1, Web APIs perform as Web Service endpoints. A client will
interact with a Web Service via the Web APIs. As a web architectural style, the REST
is widely used in Web API design. If a Web API conforms to the REST architectural
style, it can be defined as a REST API. There are many well-known public RESTful
Web API services, such as Google APIs. A well-constructed RESTful Web API will
attract third-party application programmers to utilize the Web Service.

7

Figure 2.1: Web API and Web Service relationship

2.3 Communication protocols

2.3.1 HyperText Transfer Protocol (HTTP)

HTTP is an object-oriented communication protocol that belongs to the application
layer in the Open Systems Interconnection (OSI) model, and it is suitable for dis-
tributed hypermedia information systems due to its speed and straightforwardness.
For example, it defines how the browser requests the web document from the web
server and how the web server responds to the browser request. In a hierarchical
respect, HTTP is a transaction-oriented application-layer protocol, which is an es-
sential basis for the reliable exchange of files (including text, sound, images, and
other multimedia files) on the World Wide web (WWW). It establishes the rules for
communication between the browser and the web server [14]. The basic HTTP fea-
tures:

• Fast and straightforward indicates that when a client sends requests to a server,
it only needs to transfer the request method and path. The most commonly
used request methods are GET, HEAD, and POST, which indicate the request’s
purpose. Since the HTTP procedure is simple, the HTTP server’s program size
is small and fast.

• Connectionless tells the server to limit the processing to only one request per
connection. The server disconnects after processing the client’s request and
receiving a response from the client. The client can save transmission time
with this connectionless protocol.

• Stateless denotes that the protocol has no memory for transaction process-
ing. The stateless feature indicates that if the subsequent processing requires
prior information, it must be retransmitted, which may result in increasing

8

the amount of data transferred per connection. Meanwhile, it responds faster
when the server does not need prior information.

2.3.2 HTTP methods

There are nine HTTP request methods, known as "request actions," defined in the
HTTP/1.1 protocol. The different methods specify the resource mode specified by
different operations. The server will also respond differently according to the dis-
parate request methods [14].

• GET

The GET request aims to retrieve the resource specified by the request. In
general, the GET method should only be used for data reading instead of for
nonidempotent operations , which may lead to side effects. The GET method
requests the specified page information and returns the response body. This
method is considered insecure because it is arbitrarily accessed by the web
crawler.

• HEAD

The HEAD request is similar to the GET method and is a request to issue a
specified resource to the server. However, the server does not return the re-
source’s content portion in response to the HEAD request. With this method,
the client can obtain the server’s response header information without trans-
mitting the entire content. The HEAD method is often used by the client to
view the server’s performance.

• POST

The POST request submits data, such as a form data submission or a file up-
load, to the specified resource and requests that the server process it. The re-
quest data comprises the request body. The POST method is a nonidempotent
method because this request may create new resources and/or modify existing
resources.

• PUT

The PUT request uploads its latest content to the specified resource location.
With this idempotent method, the client can transmit the specified resource’s
latest data to the server to replace the specified resource’s content.

9

• DELETE

The DELETE request is used to request the server to delete the resource iden-
tified by the requested URI. In this idempotent method, a DELETE request is
used when the client intends to delete or archive the target resource.

• CONNECT

CONNECT is a reserved keyword in the HTTP/1.1 protocol, and it is primarily
assigned to create a proxy server in pipe mode. For example, CONNECT is
used to establish access to the SSL encryption servers, which communicate
with an unencrypted HTTP proxy server.

• OPTIONS

The OPTIONS request is similar to the HEAD request and is for fetching client-
side viewing of server performance. This method will request the server to
return all HTTP request methods supported by the resource. It will replace
the resource name with ’*’ and send an OPTIONS request to the server to test
whether the server function is normal. When an "XMLHttpRequest" JavaScript
object performs Cross-Origin Resource Sharing (CORS), it uses the OPTIONS
method to send a sniff request to determine whether there is access to the spec-
ified resource.

• TRACE

TRACE requests the server to echo the request information it receives. This
method is mainly used for testing or diagnosing HTTP requests.

• PATCH

The PATCH request is similar to the PUT request and performs the resource
updates. Different from the PUT method, the PATCH method commits to up-
dating part of the resource.

2.3.3 Simple Object Access Protocol (SOAP)

SOAP is a communication protocol that defines how applications share messages
[37]. The SOAP specification is built upon the XML and involves the rules to rep-
resent the data in XML format. The main body of the SOAP specification wraps
around the XML content, so it inherits the XML standards, such the XML Schema
and XML Namespaces.

10

XML messaging is a method for applications to exchange information, but it
lacks consensus when two applications communicate with each other. Consequently,
SOAP performs as a collaboration specification to make the communication mes-
sage format uniform. A SOAP message is a "letter" in an envelope, and "letter" con-
tains one or two parts: an optional header and body. The header is for storing the
metadata describing how the message should be delivered, such as authentication
or authorization assertions and routing settings. The body contains the message
content formatted into a valid XML. Besides the standard SOAP message, SOAP
also provides a particular type of message, a fault message, which is used to de-
scribe the errors encountered during the communication process. It contains the
fault code, string, actor, and details. The fault code should be found in its names-
pace. The fault string should occur in a human-readable expression. The fault actor
states who processes the message to trigger the error, and the fault details show the
application-specific error; furthermore, the error must relate to the message body.

SOAP is suitable for any transport protocol because it is a standardized packag-
ing protocol. The most typical transport protocol is HTTP. When the HTTP is used
to convey a SOAP message, the pattern naturally matches the SOAP RPC process.
The SOAP request message is posted to the server with the POST method until the
SOAP response returned.

2.4 Media types

Media types identify the data format used in the HTTP request and response; the
HTTP request and response’s Content-Type header references the media types. The
media type follows the pattern

type "/" subtype *(";" parameter)

The type in the pattern describes the primary media type, such as application, im-
age, or text; the subtype is the subordinate of the primary media type, such as XML
and JSON. The parameter is the alternative to supplying customized arguments.
In the section below, two subtypes, XML (see Section 2.4.1) and JSON (see Section
2.4.2), are listed and elaborated.

11

2.4.1 XML

XML is a markup language that can be used to create a markup. It was created
by W3C to overcome the limitations of HTML, which is the basis of all web pages.
XML is a standard text format for representing structured information on the web,
without complex syntax and all-encompassing data definitions. Derived from the
Standard Generalized Markup Language (SGML) XML adapts to many purposes,
for example, data exchange, constructing Web Services, and inventing new Internet
languages. In the data transfer process, XML always retains data structures such as
parent-child relationships. Different applications may share and parse an XML file
to avoid the traditional string parsing or disassembly process. In Web Services, the
transferred data is formatted into XML to enable the protocols to be standardized;
the most representative is SOAP (see Section 2.3.3). Many new Internet languages
are invented based on XML, such as WSDL, Rich Site Summary (RSS), and Resource
Description Framework (RDF) [6].

When creating an XML document, a corresponding XML constraint document
is preferred to regulate the XML format. The widely used constraint techniques are
the Document Type Definition (DTD) and Schema.

The DTD acts as a template for one or more XML files. A valid XML file should
conform to its DTD, regarding the elements and their attributes, arrangement/order,
and available contents in the XML file [5]. The elements and attributes are cre-
ated according to the application’s requirements. Due to the different industries’
characteristics, it is challenging to create a DTD with high integrity and adaptabil-
ity. Therefore, a DTD is usually defined by a particular application area, such as
medicine, construction, industry, commerce, and administration. The more exten-
sive the range of elements defined by a DTD, the more complicated it is.

Similar to the DTD, the XML Schema Definition (XSD) is another XML definition
language used to describe the structure of an XML document. The XML Schema is
based on the XML language and is also an XML application. Although the DTD,
which provides specifications for XML documents, solves the problem of XML doc-
ument standardization, the file format type and XML file format type are still incon-
sistent. Meanwhile, the data types in DTD cannot always fulfill the industry’s de-
mands; therefore, the XML Schema was introduced. The Schema pattern describes
the structure and data types of elements and attributes, the sequence of elements,
the scope ranges, enumeration, and pattern matching [5].

12

2.4.2 JavaScript Object Notation (JSON)

JSON is a lightweight data exchange format. It is a subset of ECMAScript that stores
and represents data in a text format that is completely independent of the program-
ming language [30]. JSON become to be a competitive data exchange language be-
cause of its simplicity and clear. JSON is not only easy to read and write, it is also
easy for machine parsing and generation, and it effectively prompts the network
transmission efficiency. The structure of JSON is mainly composed of key-value
pairs, in which structs or arrays can be used to organize key-value pairs. In addi-
tion, JSON supports nesting, allowing data nesting in a JSON format.

As a data format, JSON utilizes a documentation definition called the JSON
Schema to define the format. Similar to the XML Schema, the JSON Schema was
written under IETF draft in 2011 and was developed to Draft-07 version. Now, it is
based on the JSON format for defining JSON data structures and validating JSON
data content [30][17].

2.5 Versioning strategy

During a Web API’s development, the Web API’s stability is important to the client,
as every slight change could impact the Web API consumer. However, as no one can
predict the future, the system is inevitably necessary to add or modify existing re-
sources, which will cause system upgrading. That means once the Web API service
is publicly published to consumers, every revision of the Web API should consider
the impacts to the Web API consumers. Thus, a version control strategy should be
selected and applied [12]. A Web API version control strategy is like a long-term
agreement between the Web API provider and consumer. The strategy will directly
determine whether the consumer uses the Web API, or whether the consumer will
abandon the Web API after any upgrading.

2.5.1 Version control models

The common Web API version control models are "The Knot," "Point-to-Point," and
"Compatible Versioning [24]."

• The Knot: There is no versioning. Only one version is available online. All the
users must use the latest API version. Any API modification will affect all the
users and even the entire ecosystem.

13

• Point-to-Point: Every Web API revision is marked with a version number, and
each version is standalone. The Web API consumer application must migrate
to the corresponding Web API version, which contains the required new fea-
tures.

• Compatible Versioning: It is similar to The Knot; there is a single version run-
ning on the service, but the later version of the Web API should be compatible
with the earlier version.

A typical compatible versioning strategy, semantic versioning is demonstrated
in the following section. Semantic versioning enables the versions’ backward com-
patibility.

Semantic versioning is based on conventions that have been widely used by var-
ious closed and open-source software. For this theory to work, there must be a
well-defined public API, which can be achieved through file definitions or code en-
forcement requirements. In any case, the clarity of this API is very important. Once
the API is defined, the changes can be represented by modifying the corresponding
version number. The version number pattern is MAJOR.MINOR.PATCH. The MA-
JOR number indicates the public API’s stable version. When any change is released
and not backward compatible, the MAJOR number is incremented. The MINOR
number is used to mark when the public API releases new features, and the PATCH
number increment represents bug fixes. All the version numbers should be nonneg-
ative integers without leading zeros. A suffix such as -alpha or -belt may append the
version number to denote the version is in some process. For instance, 1.0.1-alpha
version indicates that the first stable version of the public API with the first bug fixes
is in the Web API development team’s internal testing process [31].

2.5.2 Versioning method

The versioning method intends to where should the version number be placed. Ac-
cording to Troy Hunt [23], there are two mainstream versioning methods, version
number in URI and Media Type.

• Version number in URI
This method refers to the API version information denoted in the service Uni-
form Resource Location (URL), either in the path (/v1/user/1) or as a query
parameter (/user/1?version=1). The benefit of this method is that the version

14

number is visualized in the request URL. The disadvantage is that it violates
the principle of RESTful architecture. In theory, a URL should correspond to
a specific resource in the server. Adding a version number will confuse the
resource’s concept, make the whole architecture confusing, and increase the
cost of future maintenance.

• Version number in Media Type
The media type in an HTTP request header is used to denote the API version
information to announce to the API server which resource is requested. Sim-
ilarly, if no media type is set, the latest version of the API will respond as a
default.

2.6 Security

2.6.1 Hypertext Transfer Protocol Secure (HTTPS)

The Hypertext Transfer Protocol Secure (HTTPS) is a network security transmission
protocol that is the combination of the HTTP and Secure Sockets Layer (SSL) or
Transport Layer Security (TLS) protocols. The primary purpose of HTTPS develop-
ment is to provide identity authentication for network servers and protect the data
packet privacy and integrity in network communications. In short, HTTPS uses the
SSL or TLS technology to encrypt data during the HTTP protocol to ensure data
security [8].

As Section 2.3.1 indicates, HTTP is only a network communication protocol not
a secure protocol. Since HTTP does not support self-encryption, it is impossible to
encrypt a data packet in network communications. That is, the data packets are
sent in plain text, which means there is no way to guarantee data privacy. When
data transfers use HTTP protocol, any user between the requester and responder
can tamper with a request since there is no mechanism to verify the data packet
integrity. Since the HTTP protocol cannot prove the data package integrity, there is
no way to know whether the request or response content has been tampered with
during the data packet transmission [22].

HTTPS was introduced to prevent security risks. An example of a client and
server communication explains how HTTPS works: Before a client sends a request
to a server using HTTPS, an SSL connection should be established between them.
The SSL connection aids the client in verifying the server’s identity and for both the

15

client and the server to reach a common understanding of which encryption algo-
rithm is in use in their communication and what is the key to encrypt and decrypt
the request data. Once the SSL connection is established, the client and server can
encrypt and decrypt the request and response data with the key.

2.6.2 Authentication and authorization

Every request sent to the Web API must contain the information to validate the re-
quest. The validation involves two processes: one is authentication, which involves
identifying the request sender to decide whether the Web API should accept and
process the request; the second is authorization, which refers to whether the request
sender has the privilege to use the target resource. There are several open specifica-
tions available for authentication and authorization.

OpenID

OpenID is an open authentication protocol supported by many websites, such as
Google, Microsoft, and PayPal. To use OpenID, the user must first obtain an OpenID
account, such as a Google account, on the OpenID Identity Provider (IDP). The user
can use the OpenID account to log in to any Relying Party (RP) that accepts OpenID
authentication. The OpenID protocol provides a framework for communication be-
tween the IDP and the RP. The latest version of OpenID is the third generation,
named OpenID Connect, which is an interoperability authentication protocol based
on the OAuth 2.0 specifications. It is implemented with a JSON data format, and it is
easier for developers to integrate than the previous authentication protocol. OpenID
Connect allows the developer to authenticate users across websites and applications
without having to own and manage the users’ credentials. OpenID Connect allows
all types of clients, including browser-based JavaScript and native mobile applica-
tions, to initiate login traffic and receive verifiable assertions about logged-in users
[33].

OAuth 2.0

OAuth 2.0 is an open-standard authorization protocol that is widely used in pub-
lic APIs, such as Facebook and Google APIs. According to the OAuth 2.0 protocol
specifications, an end-user can grant a third-party application access to protected re-
sources, such as photos, videos, and contact lists that are stored on a server, without
exposing the end-user’s credentials to the third-party application. OAuth 2.0 allows

16

an end-user to provide a token to the third-party application instead of their user
name and password. Each token authorizes the third-party application to access a
certain group of resources within a limited time period. When the token expires,
the third-party application must either obtain a new token or refresh using a refresh
token. The OAuth 2.0 protocol defines four roles: client, resource owner, authoriza-
tion server, and resource server (see Table 2.1) [20]. Figure 2.2 shows the OAuth 2.0

Table 2.1: OAuth 2.0 roles [20].

Role Description

Resource owner An entity who can grant access to a protected resource
(e.g., a person as an end-user of a third-party applica-
tion).

Resource server The server stores the protected resources, validates
access tokens, and responds with the requested re-
source.

Client An application delegated by a resource owner to re-
quest a resource from a resource server (e.g., a third-
party application).

Authorization
server

The server takes the responsibility of issuing an ac-
cess token after verifying the resource owner’s iden-
tity and authorization.

abstract protocol flow, which describes the interactions among the OAuth 2.0 roles;
the flow is listed below.

• (A) The client requests the resource owner to grant authorization. The resource
owner can provide its credentials to the client directly or to the authorization
server as an intermediary.

• (B) The client receives the credentials from the resource owner.

• (C) The client forwards the credentials to the authorization server.

• (D) The authorization server authenticates the client and the credentials from
the previous steps and issues an access token, if valid.

17

Figure 2.2: OAuth 2.0 abstract protocol flow [20]

• (E) The client requests the protected resources from the resource server using
the access token.

• (F) The resource server responds with the protected resource if the access token
is valid.

The credentials mentioned in the flow refer to how the client represents the re-
source owner’s authorization to get an access token from the authorization server.
This process is defined in OAuth 2.0 as an authorization grant. There are four grant
types specified in [20]: authorization code, implicit, resource owner password, and
client credentials.

In this thesis, the resource owner password grant type is focused on and ex-
plained. When a client uses a resource owner password as the grant type, the re-
source owner provides its user name and password to the client, who can pass
directly, and they can pass directly to the authorization server to obtain an access
token. The resource owner password should be assigned to a highly trusted client,
since leaking the resource owner’s credentials is quite a high risk if the client se-
cretly records them. Even though the client is highly trusted by the resource owner,
a long access token lifetime or a refresh token should be considered to reduce the
risk.

Figure 2.3 demonstrates the resource owner password credentials flow in three
steps:

• (A) The resource owner sends the username and password to the client.

18

• (B) The client requests an access token from the authorization server by pre-
senting the resource owner’s credentials.

• (C) The authorization server responds with an access token if the resource
owner’s credentials are valid.

When the client performs step B, a list of parameters is required in the request.

• username: the resource owner’s credential

• password: the resource owner’s credential

• grant_type: this should be "password" when using a resource owner password
as an authorization grant

• client_id: the client identifier

• client_secret: the client password

Figure 2.3: Resource owner password credentials flow [20]

2.7 Web API description

RESTful API description languages (DLs) are specific domain languages used for
describing RESTful APIs, including resources, interfaces, and resource representa-
tion formats. The DLs describe RESTful API in a data serialization language, such

19

as JSON, Yet Ain’t Markup Language (YAML), and XML, which are both human
and machine-readable. Being human-readable means the DL is usable in API de-
sign and development and as API user documentation, since every stakeholder of
the API has the same understanding. Meanwhile, being machine-readable means
the DL can be processed by automated tools to generate code and render documen-
tation User Interface (UI) , such as the Swagger Codegen [11] and Swagger UI [36].

In this section, several primary DLs are listed [13].

• The Web Application Description Language (WADL) [19] was introduced by
Sun Microsystems in 2009 as a HTTP-based Web Service DL. It is extended
from XML and suitable for describing Web Service interfaces.

• The RESTful API Modeling Language (RAML) [32] is an open-specification
language created by the RAML Workgroup as a nonprofit project in 2014. The
language is built on a YAML or JSON format and is lightweight and suitable
for describing Web Services.

• API Blueprint [4] is an open-source project proposed Web API DL. Different
from other DLs, it is built on a Markdown-flavor language , which can easily
render to HTML using the Markdown tool.

• The OpenAPI Specification [18] is an open specification originally provided
by the Swagger project in 2010. The project was later donated to the Open
API Initiative (OAI) in 2016. The OpenAPI Specification is a standardized,
language-agnostic, human-readable, and machine-acceptable language built
on a YAML or JSON format, which enables the API stakeholders to discover
and understand the API’s capabilities without requiring any other assistance.

2.7.1 OpenAPI

In this thesis, the OpenAPI Specification is chosen as the RESTful API DL. There-
fore, it is necessary to illustrate its schema. The OpenAPI Specification schema is
composed of eight objects (see Table 2.2) under the root object, the OpenAPI object.

To utilize the OpenAPI Specification, Swagger provides several tools for differ-
ent purposes. Swagger UI [36] is a tool to generate a web UI from the OpenAPI
Specification; it allows the API development team and consumers to visualize and
try out the APIs. The Swagger editor [11] is an OpenAPI Specification Intelligent De-
velopment Editor (IDE) to assist the API development team to modify the OpenAPI

20

Table 2.2: OpenAPI schema objects

Object name Description

Openapi The OpenAPI Specification version number

Info It provides the API’s metadata (e.g., the API version
number).

Servers It contains the API server configurations (e.g., base
path).

Components It is a common object that can be reused, such as a
parameter, response, or schema.

Paths It contains the endpoint’s relative paths and opera-
tions.

Security It specifies the security mechanisms required to autho-
rize the requests.

Tags A list of tags for sorting the endpoints.

ExternalDocs API extension documents

Specification document. Swagger Codegen [11] is used for generating both server
and client Software Development Kits (SDK) from the OpenAPI Specification.

2.8 Web API quality evaluation

Web APIs are widely used by various software [3]. Therefore, the quality (i.e., us-
ability and stability) of a Web API is essential. There are different ways to evaluate
a Web API’s quality. For example, as a Web API is a type of software, the software
quality criteria can be employed to evaluate them [28]. To this end, Meskens [28]
proposes a set of software quality criteria to assist software developers in decid-
ing whether the developed software should be redesigned or reimplemented. The
criteria include reliability, flexibility, reusability, maintainability, and testability.

Daud and Kadir [10] and Chahal and Singh [7] also present three metrics for
measuring the quality of software: cohesion, coupling, and complexity. Cohesion
shows whether the features in a software module are related to one another [25].
Coupling evaluates the software modules’ dependency. Complexity measures the
difficulty to use the software.

21

The following sections will describe the Richardson Maturity Model (RMM),
Classification of HTTP-based APIs (CoHA), and W3 maturity models.

2.8.1 Richardson Maturity Model (RMM)

Maturity models are created to evaluate the quality of software design. These mod-
els can also be applied to evaluate Web APIs. For this purpose, the most widely
known is perhaps the RMM, which was invented by Leonard Richardson. The
model classifies Web APIs into four maturity levels from the lowest to the high-
est: the Swamp of POX (level 0), Resources (level 1), HTTP Verbs (level 2), and
Hypertext As The Engine Of Application State (HATEOAS) (level 3) [16].

Figure 2.4: HATEOAS response example

The model’s first maturity level indicates that HTTP only acts as a remote inter-
action transport system without utilizing any other HTTP features, such as different
HTTP methods or the HTTP protocol’s metadata. For example, SOAP belongs to
this level, as it only sends "Plain Old XML" (POX) back and forth [16]. A server-side
process is usually invoked instead of invoking the RPC interface explicitly. Each
interface functions as an endpoint; the request body will be parsed to determine the
processing to invoke. This method is equivalent to downgrading the HTTP appli-
cation layer protocol to the transport layer protocol. The HTTP header and payload
are entirely isolated, the HTTP header is only used to guarantee the transport, and
no business logic is involved; the payload contains all the business logic so that the
API can ignore any information in the HTTP header.

The second level, Resources, introduces the concept of web resource into Web
APIs. The multiple resource groups gather all the available information from the
APIs. Each resource is uniquely identified and addressed [16]. The client may in-
dividually access the resources through the corresponding operations, for example,
"GET" to fetch resource information.

22

The third level is to introduce HTTP methods and handle HTTP response status
codes. If there are multiple resources, multiple URIs should be created. Because
the URI and resource utilize multiple-to-one mapping, multiple URIs may point to
a single resource, but a single URI cannot map to multiple resources. The URIs
may associate with multiple HTTP methods to operate these resources, for exam-
ple, using POST/GET/PUT/DELETE to perform the Create, Read, Update, Delete
(CRUD) operations, respectively [16]. In this case, both the HTTP header and pay-
load contain business logic. Most so-called RESTful APIs existing in the public API
market are at this level.

The highest level is HATEOAS. According to Fielding [15], hypermedia is a pre-
requisite for REST. Anything else should not be proclaimed as REST. Since the re-
sponse includes the link address, the client is free to choose what information to
download. The client receives the link, which states the available options. Conse-
quently, the API does not have to simultaneously return three different versions of
the user profile image, as illustrated in Figure 2.4. The response contains hints for
the client that there are three available image sizes to choose from and the location.
In this way, clients can make choices that suit their needs according to different sce-
narios. Moreover, if the client only needs images in one format, downloading all
three versions of the image will waste resources. HATEOAS not only reduces the
network load but also enhances the client’s flexibility and the APIs’ discoverability.

The core concept of hypermedia is the so-called link element, and these inter-
linked resources describe a protocol, a series of steps that lead us to a certain goal,
such as ordering and payment. HATEOAS is the essence of hypermedia: through
the links between resources, the state of the entire application is changed, that is,
hypermedia converts the state of distributed applications. The exchange between
the server and client is a representation of the resource’s rather than the applica-
tion’s state, and the representation of the transfer includes a link that reflects the
application’s state [16].

2.8.2 Classification of HTTP-based APIs: the CoHA Maturity Model

CoHA [1] provides a five-level maturity model to evaluate Web APIs, which in-
cludes the levels WS-*, RPC URI-Tunneling, HTTP-based Type I, and HTTP-based
Type II, shown in Figure 2.5(b).

At the lowest level, WS-*, the Web API consumer requests the Web API via HTTP,
and the request payload is encapsulated in the SOAP protocol and sent to the URIs

23

assigned to the Web API. At this level, the Web API is the most difficult to use,
maintain, and enhance because the request payload and assigned URIs are usually
proprietary. Therefore, the Web API and its consumers are tightly coupled.

At the RPC URI-Tunneling level, the resource modeling is used without enforc-
ing the operations (see Section 2.3.1), such as GET or POST, applied to the resource
URIs. Again, the Web API and its consumers are tightly coupled.

At the HTTP-based Type I level, the HTTP protocol’s resource modeling and
semantic operations (see Section 2.3.1) are adopted. The resource is represented
in multiple data formats as representations for the Web API consumer to choose
from. Moreover, the Web API must be stateless for each request, which increases its
scalability.

At the HTTP-based Type II level, the self-described message must be provided
on the basis of HTTP-based Type I and should define the resource representation
and operations. Therefore, the Web API should only notice the Web API consumer
interacting with the uniform interfaces ; the rest of the request information is already
in the self-described message. The highest level is REST. At this level, the Web API
should conform to the REST architectural style (see Chapter 2.2).

Figure 2.5: (a) Richardson and (b) CoHA maturity models [35]

2.8.3 WS3 maturity model

Ivan Salvadori and Frank Siqueira [35] present the WS3 maturity model for evalu-
ating Web APIs. The WS3 maturity model is a three-dimension model, where each
dimension focuses on one aspect of the Web API evaluation: the design dimension,
the profile dimension, and the semantic dimension.

24

The design dimension, which is derived from the RMM, describes a Web API’s
structural characteristics. Since it is derived from the RMM, the design dimension
is comprised of four levels. These maturity levels are listed from the lowest to the
highest.

• RPC: The Web API that complies to this level is an RPC API (see Section 2.1.1).

• Resource: The data provided by the Web API is constructed into resource form,
as described in the REST architecture style (see Section 2.2.1).

• Protocol compliance: The resources are accessible via URI and operated through
the HTTP methods (see Section 2.3.2).

• Atomic resources: Both the resource and its properties are accessible and op-
erated through the HTTP methods. For example, the resident as a resource
can be operated via GET/POST/PUT/DELETE "/resident/id". However, the
Web API also provides another endpoint to operate the resident’s email via
PUT "/resident/id/email".

A Web API profile dedicates to describing the resource structure and the opera-
tions on the resources provided by a Web API. The profile dimension evaluates how
a Web API is described to guide its consumers. The profile dimension is divided into
two levels: the lower level (interaction profile) and the upper level (domain profile).

• Interaction profile: The Web API documentation should include the resource
description, resource operations descriptions, and resource representation de-
scription.

• Domain profile: The Web API documentation should also provide instructions
for the Web API consumer on how to achieve a specific goal, such as the order
of the resource operations to achieve a goal and the pre- and postcondition of
a resource operation.

The semantic dimension focuses on how the resources are represented and con-
sumed semantically. The semantic technology enables the Web API consumer to
easily understand the resources and avoid ambiguity. The semantic dimension is
divided into two levels: the lower level (semantic description) and the upper level
(linked data).

25

• Semantic Description: The resources’ properties and operations are semanti-
cally described.

• Linked data: The resources are not only semantically described, but their rela-
tionship is also described.

26

3 Design and implementation of the RAI Web API

3.1 Case description

The Resident Assessment Instrument (RAI) software is a web application that is
used within different care facilities to assist nurses in developing individualized
care plans for residents. Examples of care facilities where the system is used in-
clude nursing homes and hospitals. In this context, a resident is a client or patient
who is receiving healthcare or therapy. The RAI software aims to help nurses collect
information about a resident’s health status, such as observation information, medi-
cation usages, and diagnosis history, which is used as indicators for drawing up and
revising care plans as well as evaluating the care plans’ goal achievement [21].

The RAI provides a standardized approach that applies a resident’s health situ-
ation process evaluation, which includes the following steps:

1. Assessment: Collecting data from a resident, including the resident’s demo-
graphic and clinical information, observations, and specific care type informa-
tion.

2. Decision-making: Analyzing the assessment data and determining and under-
standing the resident’s condition.

3. Care planning: Making a plan to achieve the resident’s care goal(s).

4. Implementation: Implementing the care plan; the nurse will provide care ser-
vices and therapies according to the care plan, such as monitoring the resi-
dent’s activities of daily living.

5. Evaluation: Reviewing the care plan goal(s), determining the resident’s needs,
and implementing revisions to the care plan.

The RAI software supports nurses in completing the above process online. Each
nurse that uses the system is granted a user account. The users are grouped into
different roles associated with different user privileges. For example, the head nurse
should be in an administration role to have the privilege of creating a new user
account, which an ordinary nurse should not have.

27

The RAI software also provides an organization structure to map to the care facil-
ity’s organization structure. For instance, Figure 3.1 illustrates a healthcare center’s
organization structure, where each team is mapped to the RAI software’s organi-
zation structure. When a resident is admitted to the team, a resident case will be
created in the ward in which the resident is admitted. The case indicates when a
resident starts to be assessed by the nurse with a start date and end date in the
team. During the case period, the nurse may create serial assessments to evaluate
the resident’s health status.

When a case has been created, the nurse can start the first resident assessment
by creating an assessment form in the RAI software according to the resident’s care
type, for example, home or long-term care. The assessment form contains multiple
questions regarding different aspects of a resident’s health status. The nurse must
collect the answers by interviewing and observing the resident. The completed as-
sessment form is uploaded to the RAI software to analyze and calculate indicators
to support decision-making. With the help of the analysis results, the nurse may
obtain a better understanding of the resident’s health issues. The nurse will make a
care plan in the RAI software, focusing on the highlighted issues.

Figure 3.1: Healthcare center organization structure example

The RAI software is implemented as a web application that utilizes a 3-tier web
architecture composed of the following tiers: a data tier, an application tier, and a
presentation tier (Figure 3.2). The data tier is comprised of a Microsoft SQL database

28

server, and each customer owns an independent database instance. The resident
data is collected and inserted by the nurses.

Figure 3.2: RAI software system architecture

The application tier functions as a middleware between the data and the presen-
tation tiers and implements the business logic server, which is the only interface to
the database. Hence, any data operation must be executed through the provided
Message API (see Section 2.1.2). The business logic server also contains the authen-
tication, authorization, and the business logic servers.

The presentation tier is placed on the top of the system’s architecture and uses
the data provided by the application tier to generate the User Interface (UI). Since
the application is web-based, a separate web server is used within this tier to create
the UI.

Figure 3.3 shows a sequence diagram of how the application processes an event
in those three tiers. When the user queries for the information through the UI, the
web server composes a request using a proprietary protocol in the HTTP request
body and sends it to the business logic server. The business logic server checks the
user’s credential to determine its identity and privileges. After successful authen-
tication, the business logic server processes the request and queries the requested
data from the connected database. The business logic server composes the response
and returns it to the web server so that the web server can render the UI for the user.

29

Figure 3.3: Client request sequence diagram

3.2 RAI API requirements

The RAI software only provides a Graphic User Interface (GUI) for user interaction,
which means users can only send and receive data through the GUI. The GUI is only
sufficient for a user to interact with the RAI software through a browser. It should
be possible to reuse the health information data stored by other software systems.
Therefore, a Web API should be provided on top of the RAI software (RAI API) to
enable system interaction.

The requirements for developing a Web API are derived from two different user
groups (Figure 3.4): the development team of the company that constructed the
RAI software and collaborators that provide other health information systems, for
example, an Electronic Health Record (EHR) system.

The development team would like to utilize the RAI API to access the business
logic server to build an integration application to import and export data against the
integration target system’s API services. The integration application is an adapter
between an external health information system and the RAI software to execute the
operations on both the external system API and the RAI API for synchronizing user
accounts, resident information, organization structure, and partial assessments.

30

Figure 3.4: RAI API use case diagram

The following list contains the RAI API use cases (UC) and the functional re-
quirements (FR) derived from these use cases.

• UC-1 Log in: The integration application logs into the RAI API to get authen-
tication so the integration application is able to execute the other operations.

• UC-2 Synchronize user: The integration application fetches the user account
list from the external system’s API and maps it to the RAI software through
the operations provided by the RAI API.

– FR-1 Create user account

– FR-2 Query user account

– FR-3 Get user role list

– FR-4 Modify user account

– FR-5 Assign a role to a user

• UC-3 Synchronize organization structure: The integration application gets the
organization structure from the external system API and maps it to the RAI
software using the below operations in the RAI API.

31

– FR-6 Get organization structure

– FR-7 Create organization

– FR-8 Modify organization structure

• UC-4 Synchronize resident: The integration application will get a notification
from the external system when a change occurs on the resident records. The
integration application will synchronize the resident records in the RAI soft-
ware by utilizing the operations listed below.

– FR-9 Create resident

– FR-10 Get resident information

– FR-11 Update resident information

– FR-12 Delete resident

• UC-5 Synchronize assessment: The integration application will get a notifica-
tion from the external system when an assessment question answer is avail-
able. The integration application will fetch the question answer and populate
to the assessment using the operations listed below.

– FR-13 Get the latest created assessment

– FR-14 Modify assessment

A collaborator, such as an EHR manufacturer, uses the API to synchronize resi-
dent information and partial assessments.

• UC-6 Synchronize resident: The EHR system will push resident information
to the RAI software through the RAI API using the below operations.

– FR-15 Create resident

– FR-16 Update resident information

• UC-7 Synchronize assessment: The EHR system will synchronize assessments
data from the RAI software through the RAI API using the below operation.

– FR-17 Get the latest created assessment

Besides the software requirements listed above, the following non-functional
software requirements (NFR) should be implemented.

32

• NFR-1: The response time for each request should not be more than 2 seconds.

• NFR-2: The RAI API up-time shall not be less than 1 hour/month.

• NFR-3: The RAI API shall identify all the users before allowing them to access
the data.

• NFR-4: The RAI API shall track all the user’s operations in the system and
provide a complete log.

• NFR-5: The RAI API shall provide an active documentation which allows the
user to try out the system in real time.

The RAI API is used by the development team and collaborators (see Section
3.1). It is planned to be a public API to be used by various software systems to inter-
act with RAI software in the future. In other words, systems will depend on the RAI
API. Thus, it is under continuous development to enable new features and bug cor-
rections. This means that the RAI API will inevitably perform necessary upgrades
and generate more versions. Therefore, avoiding version lock and promiscuity be-
tween the software and the RAI API as much as possible is critical. The RAI API
must be compatible with the current software, which depends on the RAI API and
the upgrade itself.

• NFR-6 RAI API versioning strategy shall be backward compatible.

3.3 RAI API design

The RAI API architecture is composed of following list components.

• The version control component describes the versioning strategy implemented
in the RAI API development and deployment. Semantic versioning is applied
in the RAI API.

• Resource controllers manage the retrieval of data from the business logic server
and construct it to the RAI API resources.

• The data format component determines how the resources are represented in
the interfaces.

33

• The security component acts as a security protection layer in both data trans-
mission and user access control.

• The interface component includes the RAI API’s endpoints for the user to ac-
cess and utilize the RAI API.

• The service description component aims to provide instructions correspond-
ing to the different components.

3.3.1 Resource

A resource is a fundamental concept of a RESTful API, which is also implemented in
the RAI API. A resource in this context is comparable to an object in object-oriented
programming. Each resource has its own properties, such as an identifier, type, and
common methods, including create, read, update, and delete.

There are six different resources implemented in the RAI API: user, role, organi-
zation, person, case, and assessment. A brief description of these resources follows.

• User: The RAI API user. Each RAI API user has a user account. Every opera-
tion against the RAI API is performed via a user account.

• Role: Represents a set of user privileges. A role can be granted to a user to
enable specific application features.

• Organization: Represents a node within a customer’s organization, for exam-
ple, a hospital ward or a care facility team.

• Resident: Represents the resident, who is the primary object for which an as-
sessment is made.

• Case: Represents an assessment period. The case starts from when the first
resident assessment is created and ends when the last assessment is completed
in an organization.

• Assessment: Represents an assessment form, which is an aggregation of ques-
tions. An assessment must be made as part of a resident’s case.

Figure 3.5 shows the relationship between the resources. A single resident can
be associated with multiple cases created in different organizations. A case can be

34

Figure 3.5: Resources relationship

associated with multiple assessments. As described in Section 3.1, a user may have
multiple roles, while a role may be associated with multiple users.

The resource in RAI API can be one single type resource such as a resident or an
assessment or collections of the single type of resources. For example, "GET /users"
(see Table 3.1) represents a collection of user resources. A resource in the RAI API
can be a single type resource, such as a resident or an assessment or a collections of
single type resources. For example, "GET /users" (Table 3.1) represents a collection
of user resources.

A resource can also be a different type of resource combination. For example,
"GET /resident/id/cases" (Table 3.1) is an interface for fetching the combination of
a resident resource by ID and a case resource collection associated with the resident.

3.3.2 Resource operations

As REST architecture 2.1.3 describes, the CRUD operations on the resources should
use a specific HTTP method. In the RAI API, CRUD operations can be executed
on each resource through the HTTP methods "POST," "GET," "PUT," and "DELETE,"
which correspond to the "Create," "Read," "Update," and "Delete" operations. Table
3.1 shows the resources’ URIs and corresponding operations. Because each opera-
tion is an HTTP request, the server should return a response. The response indicates
whether the operation was successful by parsing the HTTP status code. A Web Ser-

35

Table 3.1: Software requirements and corresponding resource operations

Software

require-

ment

URI Method Description

FR-1 /user POST Create a user account with user prop-

erties, such as user name and creden-

tials

FR-2 /user?username

=USERNAME

GET Search user account by username

FR-3 /users GET Fetch user list

FR-4 /user/{id} PUT Modify user account

FR-5 /user/{id}/role POST Assign a role to the user account

FR-6 /organization?

organization_

name=ORG_NAME

GET Get organization structure, if no query

argument is supplied, the entire orga-

nization will be returned

FR-7 /organization POST Create organization node

FR-8 /organization/{id} PUT Modify organization node, (e.g., move

organization, update organization

name)

FR-9 /resident POST Create resident entity

FR-10, FR-

15

/resident/{id} GET Get resident information by resident

ID

FR-11, FR-

16

/resident/{id} PUT Update resident information, e.g.

change resident name

FR-12 /resident/{id} DELETE Remove resident entity by resident ID

FR-13, FR-

17

/resident/{id}/cases GET Get resident and its cases collection

FR-13, FR-

17

/resident/{id}/cases

/assessment?latest=1

GET Get latest assessment, which is the lat-

est created under the resident

36

vice uses four sets of HTTP status codes: 2XX (Success), 4XX (Client errors), and
5XX (Server errors). Table 3.2

Table 3.2: RAI API response status code and description

Response status
code

Description

200 OK. This code states the successful general request;
the response will contain a related entity description.

201 Created. This is reserved to state the "POST" request
to successfully create a new entity.

204 No content. This is reserved to state the "DELETE"
request to successfully delete an entity.

400 Bad request. This states that the client sent an invalid
request, so the server refuses the operation (e.g., the
input parameter format should be a valid JSON ; an
XML format parameter is supplied).

401 Unauthorized. This states that the client cannot pass
through the authorization.

403 Forbidden. This states that the user does not have per-
mission to access the target entity.

404 Not found. This states that the target entity is not
found.

409 Conflict. This states that the operation on the target
resource has encountered an error because of a conflict
with another resource or itself.

500 Internal server error. This states that there is a general
unknown error on the server side.

3.3.3 Media type

In the RAI API, JSON is chosen and utilized as the resource representation format on
both the server and client side. In other words, the content data in both the service
request and the response are in JSON format. As Appendix A shown, when an RAI

37

API client requests a resource from the server, the server responds in a default media
type, such as "application/json;" meanwhile, an available media type list is attached
to the response to indicate the alternative media types. This process is defined as
the HTTP transparent content negotiation, whose mechanism is implemented in the
initial phase of service development.

The service configuration allows the client to specify a request content type in the
HTTP "Content-Type" header and the expected response content type in the HTTP
"Accept" header. The specified content type is used to notify the server of which
media type is chosen from the available media type list. In the RAI API, the client
can specify the request content type as "Content-Type=application/json" if the re-
quest has a body and the body content type is JSON, and the response content type
is presented by the HTTP "Content-Type" header if the response body content type
is JSON.

Moreover, the client can also specify the expected format of the response con-
tent like "Accept=application/json" in the response header "Content-Type." If the
expected content type is not supported, the HTTP status code 406 (Not acceptable)
will be returned. The following syntax is a complete example of the request and
response flow. "Content-Type" and "Accept" in the request state the requested body
media type and the expected response body media type, and "Content-Type" in the
response states the response body media type as "application/json."

3.3.4 RAI API versioning

Semantic versioning, a widely used backward-compatible versioning strategy, is
used in the RAI API. According to the semantic versioning specification [31], be-
cause a legacy RAI software API version was released, the MAJOR version is noted
as "2," which refers to the RAI API’s second MAJOR version. The MINOR and
PATCH versions are "0," which indicates that both the minor and patch are released
as the first version. Before the first official RAI API is released, the suffix "alpha" is
appended behind the version number to notate that the RAI API is in an internal
testing stage, and the suffix "beta" indicates the RAI API is published to the pub-
lic for a testing stage. For instance, "2.0.0-alpha" and "2.0.0-beta" are test versions,
"2.0.0" is the first official release version, and "2.0.1" is the first MAJOR and MINOR
version with the first bug correction version.

The version notation is placed in the URL before the resource, for example,
"/v2/user." The "v2" represents the version "v" prefix of the MAJOR version number

38

"2". According to the backward-compatible strategy, only the latest version under
the MAJOR version is deployed. Hence, from a API user’s perspective, the minor
versions are not visible. Furthermore, the full version number (e.g., 2.0.1) is noted
in the RAI API documentation and upgrade changelogs.

3.3.5 RAI API security

In the RAI API, two major components are implemented to ensure information se-
curity. These are the Hypertext Transfer Protocol Secure (HTTPS) and OAuth 2.0.

There are two roles that consume the RAI API in this section: the RAI software
user and the client system. The RAI software user refers to a person who has a user
account in the RAI software. The RAI software is the authority of the user identity.
The client system is a software that consumes the RAI API to access the resources
stored in the RAI software. When a user wants to access the RAI software resource,
he/she will delegate the client system to access the RAI software through the RAI
API.

• HTTPS
The HTTPS is used to prevent man-in-the-middle attacks in the RAI API, which
could happen in the data transmission via the network. As described in Sec-
tion 2.6.1, the TLS 1.2 protocol is the latest released version without any known
security vulnerability. Therefore, TLS 1.2 is set as the minimum requirement
for the client system to interact with the RAI API interfaces, which means that
the client system must support the TLS 1.2 version during the SSL handshake.

• OAuth 2.0
The user access security in the RAI API is responsible for verifying the user
identity with the RAI software. The resource controller (see Section 3.3) will
supply the requested resource based on the user identity. As a result, the busi-
ness logic server has evolved from a legacy desktop application; it maintains
all the users’ identity and privileges information. Therefore, the business logic
server acts as an authentication server.

OAuth 2.0 defines a specification for authorization only, while OpenID Con-
nect is placed on top of OAuth 2.0 to enable authentication (see Section 2.6.2).
Since the business logic server is defined to manage the user identity authen-
tication, the OpenID Connect does not need to be implemented in the RAI

39

API to perform the RAI software user identity authentication. Therefore, only
OAuth 2.0 is implemented as the authentication and authorization flow for the
RAI API client systems. There is a component in the RAI API that implements
OAuth 2.0 as an authentication and authorization server.

The OAuth 2.0 implementation in the RAI API includes three procedures:

1. Enrolling the client system: When the client system wants to consume the
RAI API, the manufacturer of the client system should submit an appli-
cation to the RAI API administrator to enroll the client system so he/she
may grant a client credential to the client system.

2. Verifying the user and client system identity and privileges to grant an
access token: When an RAI software user wants to delegate the client
system to get the RAI API interface access right, the client system should
send a request to the RAI API to obtain an access token. The request
should contain the user and client system credentials for the RAI API to
verify the access token.

3. Verifying the access token to grant interface access: When an RAI soft-
ware user wants to delegate the client system to access the RAI API re-
source, the client system should send a resource request with an access
token. The RAI API will respond with the corresponding resource after
verifying the access token.

When a new client system enrolls to use the RAI API, the RAI API administra-
tor must create a client account in the RAI API that includes the parameters,
client_id, client_secret, grant_type, and scope (see Section 2.6.2). The client_id
and client_secret parameters are assigned in plain text by the RAI API ad-
ministrator as the client system credential to identify the client system. The
grant_type parameter should be set as a password to specify the client sys-
tem requests, using an access token with the resource owner’s password (see
Section 2.6.2). The scope parameter states which interfaces the client system
should be able to access, for example, read and create resident.

Figure 3.6 shows the sequence of verifying the user and client system identity
and privileges.

I. Login: When a user logs in to the client system, he/she will provide user
credential to the client system, which will forward the user credential,

40

client credential, grant type, and accessing interfaces scope to the RAI
API.

II. GetAccessToken: The RAI API takes responsibility for verifying the client
system using the client credential and interface scope.

III. VerifyUser: The user credential is forwarded to the business logic server
to verify the user.

IV. ReturnUserInfo: The business logic server returns the user identity to RAI
API to bind with the access token.

V. ReturnToken: If the client and user are valid, an access token, which is
bound with the user information, is returned to the client system. The
access token is stored in the client system for resource requests before the
expiry time.

When the user logged into the client system, every request delegated by the user
to the client system will be sent with the access token. RAI API validates and parses
the access token to get the user’s information. RAI API will request the resource for
the user since the access token is valid. If the access token is expired, the user can
use the refresh token to get a new access token without requiring the user to log in
again.

3.3.6 Service description

The RAI API is implemented according to the OpenAPI Specification, so it can be
defined with an OpenAPI definition. OpenAPI definitions are files in either JSON
or YAML (YAML Ain’t Markup Language) format. If a RESTful API provides an
OpenAPI definition, the RESTful API user may utilize it as a service description,
which is in machine-readable form. The OpenAPI definition is imported into many
programming applications to automatically generate client code, for example, the
Swagger editor [11] is an open-source software to generate a Software Development
Kit (SDK) to help both Web API server and client development.

Since the RAI API is programmed in the Hypertext Preprocessor (PHP) lan-
guage, the OpenAPI definition of the RAI API is generated from its source code with
the help of an open-source software named Swagger-PHP. When an interface is im-
plemented in the RAI API, a set of annotation codes that conforms to Swagger-PHP
specifications (e.g., Listing B) is added to the source code to describe the interface,

41

Figure 3.6: Verifying the RAI API user and client system identity and privileges to
grant an access token

including the interface path, method, request and response schemas, and security
schema. Swagger-PHP will scan through all the source code files and collect the
annotations to generate the OpenAPI definition file.

For the RAI API, the JSON format file is chosen as the OpenAPI definition. Fig-
ure C is a code snippet of the RAI API OpenAPI definition. It shows the version of
the OpenAPI Specification as 3.0.0, meta information, a server configuration, and an
example interface for querying user account information.

The RAI API OpenAPI definition file is exported to the Swagger UI (Figure 3.7),
a documentation generator made for generating visual documentation for the user
to view and interact with the API. The documentation is published as a public web
page, which will be supplied to the RAI API users as a visualized service descrip-
tion. Figure 3.7 is a screenshot that demonstrates the interface for querying a user
account. There are mainly three fields in the screenshot. Field 1 shows the path and
name of the endpoint. Field 2 lists the parameters of the request to the endpoint.
Field 3 provides a response status code, content type and example value.

42

Figure 3.7: A screenshot of querying a user account interface in Swagger UI

43

4 Evaluation

This chapter focuses on evaluating the RAI API that has been implemented for the
RAI software. The WS3 maturity model (see Section 2.5) is utilized to evaluate the
RAI API. The evaluation is composed of three dimensions in the maturity model:
the design dimension, the profile dimension, and the semantic dimension. Further-
more, the open issues in the RAI API design and implementation are discussed in
this chapter.

4.1 Design dimension

The data provided by the RAI API is modeled in the resource forms. As described in
Section 3.3.1, the resources include resident, case, assessment, role, user, and organi-
zation, and the operations are assigned to each resource to perform CRUD on it. The
resources are manipulated through and self-described in their representation. For
example, the resident resource contains the resident’s first name, last name, birth
date, gender, and personal identifier (PID). The data in the resident resource repre-
sentation is named semantically, such as first_name, last_name, birth_date, gender,
and PID, so that the developer of the RAI API consumer application can understand
the data by the data name.

However, HATEOAS (see Section 2.8.1) is not adopted in the RAI API due to the
project schedule limitation. That means there is no reference link in the resources
to achieve HATEOAS. In another respect, even though the data in the RAI API is
modeled in the resources, the resource properties (e.g., first name and last name)
are not directly accessible. For instance, if the RAI API consumer wants to update
a resident’s last name, the RAI API consumer must perform a PUT operation on
the endpoint of "/resident" instead of updating the last name directly by updating
"/resident/last_name."

Therefore, the RAI API achieves the third level, HTTP Verbs, in the RMM (see
Section 2.8.1) and the protocol compliance level in the design level of the WS3 ma-
turity model.

44

4.2 Profile dimension

The RAI API is documented and described with an OpenAPI Specification (see Sec-
tion 2.7.1) in which the security requirements, resources, operations, and represen-
tations are described. However, the description instructing the API to achieve a
specific goal is not explicitly documented. For example, the approach of deleting
a specific resident’s assessment should be a combination of several operations. The
RAI API consumer should first query the resident by the resident’s property, such as
their PID. Then, the assessment should be found with the resident’s ID. In the end,
the RAI API consumer can delete the assessment by its ID. The RAI API consumer
must be familiar with the operations to achieve a goal, which is usually not the com-
mon case. So far, the RAI API documentation does not contain the descriptions to
achieve any complicated goal. Therefore, the RAI API is assigned to the interaction
profile level in the WS3 maturity model.

4.3 Semantic dimension

As discussed in Section 4.1, the resources are named semantically, such as resident
and case, and are described by name and documentation. However, the RAI API
consumer cannot understand the relationships by either the resource name or the
documentation. For example, the relationship between the resident and the case is
vague. The lack of resource relationship description results in extra workloads, such
as more communication between the RAI API provider and consumer. Therefore,
the RAI API conforms to the semantic description level of the WS3 maturity model.

4.4 Open issues

The open issues in this thesis involve two aspects: querying a resource with the GET
method, which leads to security vulnerability, and lacking authentication methods.

4.4.1 GET method security vulnerability

According to the REST architectural style specification, the HTTP method should be
adopted in the resources to perform the operations. The GET method is reserved to
query resources, such as querying resident information using the resident’s PID (see

45

Section 2.3.2). However, the GET method requires passing the query parameters via
URL, and the parameters are recorded in the server logs and browser history. If the
parameters include any personal information, such as PID, the GET method will
lead to personal data leaking, which is considered a security vulnerability.

In the RAI API, the GET method is still employed as the method for querying re-
sources, but the querying request should only contain insensitive information in the
parameters. If the querying request involves any sensitive information, the POST
method is adopted. Since the POST method is not specified for querying resources
in the REST architectural style specification, a naming convention is applied on the
request URL to distinguish it from the other regular endpoints. For example, the
resident’s national identifier is considered sensitive information; therefore, the URL
of the endpoint for searching a resident by a national identifier is assigned as "/res-
ident/_search," and the HTTP method is POST. The underscore is used to indicate
that the endpoint is not for regularly querying with the GET method.

4.4.2 Lacking authorization method

The RAI API utilizes the OAuth 2.0 Password grant type as both an authentication
and authorization solution (see Section 3.3.5). According to the OAuth 2.0 specifica-
tion (see Section 2.6.2), the resource owner should send the user name and password
to the authorization server via the client application. In the RAI API, the RAI soft-
ware performs as the authorization server, which should store the resource owner’s
credentials. However, if the resource owner’s credentials do not allow being stored
in the RAI software, the third-party application cannot utilize the RAI API. For ex-
ample, the Microsoft Active Directory (AD) server is usually employed as the autho-
rization server in an organization. If the resource owner is required to be authorized
by the Microsoft AD server instead of the RAI software, the RAI API will not be able
to authorize the resource owner since there is no way for the RAI API to get the re-
source owner’s identity. This reduces the RAI API’s flexibility.

46

5 Conclusion

This Master’s thesis focuses on solving the information silo problem that exists and
hinders health data sharing among the different healthcare systems. The problem
is exacerbated by the RAI software. When the RAI software needs to integrate with
the EHR systems to exchange resident information (e.g., medication, patient demo-
graphic information), it lacks a method to interact with the EHR system since it
provides the end-user with only a GUI to access the data. Therefore, this thesis aims
to develop a solution for RAI software to interact with other EHR systems.

Using a Web API as a Web Service is considered a solution to the research prob-
lem. After reviewing the three types of API (see Section 2.1), the REST API is se-
lected as the most effective Web API style. In the background chapter (see Chapter
2), different alternative techniques in RAI API components are demonstrated; for
example, the data format component has two alternative options: XML and JSON.
In the design and implementation phase, the RAI API requirement and specifica-
tion are carried out; meanwhile, the alternative techniques are selected based on the
customer requirements. The RAI API project started at the end of 2018. It is derived
from a customer’s business requirement of the RAI software. The RAI API is de-
fined as a product that will be delivered continuously to different customers. The
RAI API’s first version was delivered to customers at the end of April, 2019. The
author of this thesis is responsible for taking charge of the software development
processes , including the requirement engineering, specification designing, and im-
plementation.

The future work concentrates on enhancing RAI API security and maturity. As
the open issues described, a safety search method is necessary to avoid sensitive
data leaking. The search method is vital for the customer to query the resources us-
ing more keys (e.g., resident national number). Another work from the open issues
is enabling more authorization grant types. That is also required by the customer
when the he/she develops a mobile application. The mobile application demands
the authorize code grant type. The last future work is leveling up the RAI API to
HATEOAS. Nevertheless, this thesis demonstrates the study processes of construct-
ing the RAI API; from the RAI API construction processes, the author of this thesis

47

learns how to develop a software as a solution to meet the customers’ requirements
as well as how to evaluate the solution, thereby improving it.

48

References

[1] ALGERMISSEN, J. Classification of http-based apis. URL http:

//algermissen.io/classification_of_http_apis.html, visited on
3.11.2019.

[2] ALONSO, G., CASATI, F., KUNO, H., AND MACHIRAJU, V. Web services. In
Web Services. Springer, 2004, ch. 5, pp. 123–149.

[3] BERMBACH, D., AND WITTERN, E. Benchmarking web api quality. In Interna-
tional Conference on Web Engineering (Lugano, Switzerland, June 2016), Springer,
pp. 188–206.

[4] BERNSTEIN, D., LUDVIGSON, E., SANKAR, K., DIAMOND, S., AND MORROW,
M. Blueprint for the intercloud-protocols and formats for cloud computing
interoperability. In 2009 fourth international conference on Internet and web appli-
cations and services (Venice, Italy, May 2009), IEEE, pp. 328–336.

[5] BEX, G. J., NEVEN, F., AND VAN DEN BUSSCHE, J. DTDs Versus XML Schema:
A Practical Study. In Proceedings of the 7th international workshop on the web and
databases: colocated with ACM SIGMOD/PODS 2004 (Paris, France, June 2004),
ACM, pp. 79–84.

[6] BRAY, T., PAOLI, J., SPERBERG-MCQUEEN, C. M., MALER, E., AND YERGEAU,
F. Extensible markup language (XML). World Wide Web Journal 2 (1997), 27–66.

[7] CHAHAL, K. K., AND SINGH, H. A metrics based approach to evaluate de-
sign of software components. In IEEE International Conference on Global Software
Engineering (Bangalore, India, October 2008), IEEE, pp. 269–272.

[8] CHOMSIRI, T. HTTPS Hacking Protection. In 21st International Conference on
Advanced Information Networking and Applications Workshops, AINAW’07. (Nia-
gara Falls, Ont., Canada, May 2007), IEEE, pp. 590–594.

[9] DAIGNEAU, R. Service Design Patterns: Fundamental Design Solutions for
SOAP/WSDL and RESTful Web Services. Pearson Education, Upper Saddle
River, New Jersey, 2011.

49

http://algermissen.io/classification_of_http_apis.html
http://algermissen.io/classification_of_http_apis.html

[10] DAUD, N. M. N., AND KADIR, W. M. W. Static and dynamic classifications
for SOA structural attributes metrics. In 8th. Malaysian Software Engineering
Conference (MySEC) (Langkawi, Malaysia, September 2014), IEEE, pp. 130–135.

[11] DE, B. API documentation. In API Management. Apress, Berkeley, CA, Springer,
2017, ch. 4, pp. 59–80.

[12] DE SOUZA, C. R., REDMILES, D., CHENG, L.-T., MILLEN, D., AND PATTER-
SON, J. How a good software practice thwarts collaboration: the multiple roles
of apis in software development. SIGSOFT Softw. Eng. Notes 29, 6 (2004), 221–
230.

[13] DI MARTINO, B., POSILLIPO, A., NACCHIA, S., AND MAISTO, S. A. A Q&A
tool to produce an Ad-Hoc OpenAPI Specification to identify equivalent REST
API services. In IEEE International Conference on Smart Computing (SMART-
COMP) (Taormina, Italy, 2018), IEEE, pp. 375–380.

[14] FIELDING, R., AND RESCHKE, J. Hypertext transfer protocol (HTTP/1.1): Seman-
tics and content, 2014.

[15] FIELDING, R. T. Architectural styles and the design of network-based software archi-
tectures. PhD thesis, University Of California, Irvine, USA, 2000.

[16] FOWLER, M. Richardson Maturity Model: steps toward the glory of REST. URL
http://martinfowler.com/articles/richardsonMaturityModel.html,
visited on 3.11.2019.

[17] GALIEGUE, F., ZYP, K., ET AL. JSON schema: Core definitions and terminol-
ogy. URL http://json-schema.org/draft-04/json-schema-core.html,
visited on 3.11.2019.

[18] GITHUB, I. OpenAPI Specification. URL https://github.com/OAI/

OpenAPI-Specification/blob/master/versions/3.0, visited on 3.11.2019.

[19] HADLEY, M. J. Web Application Description Language (WADL). Tech. Rep. SMLI
TR-2006-153, Sun Microsystems, Inc., Mountain View, CA, USA, 2006.

[20] HARDT, D. The OAuth 2.0 authorization framework, October 2012.

50

http://martinfowler.com/articles/richardsonMaturityModel.html
http://json-schema.org/draft-04/json-schema-core.html
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0

[21] HAWES, C. H., MORRIS, J. N., PHILLIPS, C. D., FRIES, B. E., MURPHY, K.,
AND MOR, V. Development of the Nursing Home Resident Assessment In-
strument in the USA. Age and Ageing 26, 0002-0729 (1997), 19–25.

[22] HEATON, R. How does https actually work? URL https://robertheaton.

com/2014/03/27/how-does-https-actually-work/, visited on 15.01.2018.

[23] HUNT, T. Your API versioning is wrong, which is why I decided to do
it 3 different wrong ways. URL https://www.troyhunt.com/your-api-

versioning-is-wrong-which-is/, visited on 15.01.2018.

[24] INFOQ. The Costs of Versioning an API. URL https://www.infoq.com/news/

2013/12/api-versioning, visited on 15.01.2018.

[25] IZADKHAH, H., AND HOOSHYAR, M. Class Cohesion Metrics for Software
Engineering: A Critical Review. Computer Science Journal of Moldova 25, 1 (2017),
44–74.

[26] MASSE, M. REST API Design Rulebook: Designing Consistent RESTful Web Service
Interfaces. O’Reilly Media, Inc., Sebastopol, CA, 2011.

[27] MERRICK, P., ALLEN, S., AND LAPP, J. XML remote procedure call (XML-RPC).
Google Patents, USA, 2006.

[28] MESKENS, N. Software quality analysis system: a new approach. In Proceedings
of the 1996 IEEE IECON. 22nd International Conference on Industrial Electronics,
Control, and Instrumentation (Taipei, Taiwan, August 1996), IEEE, pp. 1406–1411.

[29] MILLER, A. R., AND TUCKER, C. Health information exchange, system size
and information silos. Journal of Health Economics 33, 0167-6296 (2014), 28 – 42.

[30] PEZOA, F., REUTTER, J. L., SUAREZ, F., UGARTE, M., AND VRGOČ, D. Foun-
dations of JSON schema. In Proceedings of the 25th International Conference on
World Wide Web (2016), International World Wide Web Conferences Steering
Committee, pp. 263–273.

[31] PRESTON-WERNER, T. Semantic Versioning 2.0.0. URL https://semver.

org/, visited on 3.11.2019.

[32] PROGRAMMABLEWEB. RAML-RESTful API modeling language. URL http:

//raml.org/, visited on 3.11.2019.

51

https://robertheaton.com/2014/03/27/how-does-https-actually-work/
https://robertheaton.com/2014/03/27/how-does-https-actually-work/
https://www.troyhunt.com/your-api-versioning-is-wrong-which-is/
https://www.troyhunt.com/your-api-versioning-is-wrong-which-is/
https://www.infoq.com/news/2013/12/api-versioning
https://www.infoq.com/news/2013/12/api-versioning
https://semver.org/
https://semver.org/
http://raml.org/
http://raml.org/

[33] RECORDON, D., AND REED, D. OpenID 2.0: a platform for user-centric iden-
tity management. In Proceedings of the second ACM workshop on Digital Identity
Management (Alexandria, Virginia, USA, 2006), ACM, pp. 11–16.

[34] REYES C. RPC Style vs. REST Web APIs. URL https://blog.jscrambler.

com/rpc-style-vs-rest-web-apis/, visited on 11.6.2019.

[35] SALVADORI, I., AND SIQUEIRA, F. A maturity model for semantic restful web
apis. In 2015 IEEE International Conference on Web Services (New York, NY, USA,
August 2015), IEEE, pp. 703–710.

[36] SMARTBEAR. Swagger UI. URL https://swagger.io/tools/swagger-ui/,
visited on 28.5.2019.

[37] SNELL, J., TIDWELL, D., AND KULCHENKO, P. Programming web services with
SOAP: building distributed applications. O’Reilly Media, Inc., Sebastopol, CA,
2002.

[38] VON ALAN, R. H., MARCH, S. T., PARK, J., AND RAM, S. Design science in
information systems research. MIS quarterly 28, 1 (2004), 75–105.

52

https://blog.jscrambler.com/rpc-style-vs-rest-web-apis/
https://blog.jscrambler.com/rpc-style-vs-rest-web-apis/
https://swagger.io/tools/swagger-ui/

A RAI API request and response example

Request:

POST /index.php/person HTTP/1.1

Host: localhost:8080

Content-Type: application/json

Accept: application/json

Authorization: Bearer ACCESS_TOKEN

{

"firstname": "test_firstname",

"lastname": "test_lastname",

"nni": "020202-0202",

"gender": "1",

"birth_date": "1949-05-01"

}

Response:

Content-Type ->application/json;charset=utf-8

Transfer-Encoding ->chunked

Connection ->keep-alive

X-Powered-By ->PHP/7.2.13

Expires ->Thu, 19 Nov 1981 08:52:00 GMT

{

"id": "09DC0050-EE5B-4B77-AF26-BFA96C59AB9F",

"firstname": "test_firstname",

"lastname": "test_lastname",

"nni": "020202-0202",

"gender": 1,

"birth_date": "1949-05-01",

"deceased": false

}

B Swagger-PHP annotation code snippet for

generating OpenAPI definition

/**

*@OA\Get(

* path="/user",

* tags={"User"},

* description="This interface is for query user account

informations including names, account name, user id, email,

etc by username, first_name or last_name.

The query parameters are ’and’ logic; if the username and

first name are supplied, the resulting user should fulfill

both username and first name conditions.

If no query parameters are given then full user list is

returned.",

* summary="Query user account information",

* operationId = "QueryUser",

* @OA\Parameter(

* name="username",

* in="query",

* description="username of Raisoft user",

* @OA\Schema(

* type="string"

*)

*),

* @OA\Parameter(

* name="firstname",

* in="query",

* description="first name of Raisoft user",

* @OA\Schema(

* type="string"

*)

*),

* @OA\Parameter(

* name="lastname",

* in="query",

* description="last name of Raisoft user",

* @OA\Schema(

* type="string"

*)

*),

* @OA\Response(

* response=200,

* description="user information",

* @OA\JsonContent(

* type="array",

* @OA\Items(ref="#/components/schemas/rs_user")

*)

* ,

* security={

* {

* "AuthServerSchema":{},

* "bearAuth":{}

* }

* }

*)

*/

C RAI API OpenAPI definition code snippet

{

"openapi": "3.0.0",

"info": {

"title": "RAI API service description",

"description": "",

"termsOfService": "http://swagger.io/terms/",

"contact": {

"email": "support@example.com"

},

"version": "0.0.1"

},

"servers": [

{

"url": "http://localhost:8080/index.php",

"description": "server root path"

}

],

"paths": {

"/user": {

"get": {

"tags": [

"User"

],

"summary": "Query user account information",

"description": "",

"operationId": "QueryUser",

"parameters": [

{

"name": "username",

"in": "query",

"description": "username of Raisoft user",

"schema": {

"type": "string"

}

},

{

"name": "firstname",

"in": "query",

"description": "first name of Raisoft user",

"schema": {

"type": "string"

}

},

{

"name": "lastname",

"in": "query",

"description": "last name of Raisoft user",

"schema": {

"type": "string"

}

}

],

"responses": {

"200": {

"description": "user information",

"content": {

"application/json": {

"schema": {

"type": "array",

"items": {

"$ref": "#/components/schemas/rs_user"

...

	Glossary
	1 Introduction
	2 Background
	2.1 Application programming interface
	2.1.1 Remote Procedure Call API
	2.1.2 Message API
	2.1.3 Resource API

	2.2 Representational State Transfer
	2.2.1 Resource
	2.2.2 Representation
	2.2.3 REST API

	2.3 Communication protocols
	2.3.1 HyperText Transfer Protocol (HTTP)
	2.3.2 HTTP methods
	2.3.3 Simple Object Access Protocol (SOAP)

	2.4 Media types
	2.4.1 XML
	2.4.2 JavaScript Object Notation (JSON)

	2.5 Versioning strategy
	2.5.1 Version control models
	2.5.2 Versioning method

	2.6 Security
	2.6.1 Hypertext Transfer Protocol Secure (HTTPS)
	2.6.2 Authentication and authorization

	2.7 Web API description
	2.7.1 OpenAPI

	2.8 Web API quality evaluation
	2.8.1 Richardson Maturity Model (RMM)
	2.8.2 Classification of HTTP-based APIs: the CoHA Maturity Model
	2.8.3 WS3 maturity model

	3 Design and implementation of the RAI Web API
	3.1 Case description
	3.2 RAI API requirements
	3.3 RAI API design
	3.3.1 Resource
	3.3.2 Resource operations
	3.3.3 Media type
	3.3.4 RAI API versioning
	3.3.5 RAI API security
	3.3.6 Service description

	4 Evaluation
	4.1 Design dimension
	4.2 Profile dimension
	4.3 Semantic dimension
	4.4 Open issues
	4.4.1 GET method security vulnerability
	4.4.2 Lacking authorization method

	5 Conclusion
	References
	A RAI API request and response example
	B Swagger-PHP annotation code snippet for generating OpenAPI definition
	C RAI API OpenAPI definition code snippet

