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26 Abstract

29 We consider two formally determined inverse problems for the wave equation in more than
30 one space dimension. Motivated by the fixédrangle inverse scattering problem, we show that a
31 compactly supported potential is uniquelypdetermined by the far field pattern generated by plane
32 waves coming from exactly two opposite directions. This implies that a reflection symmetric
33 potential is uniquely determinedsby its fixed angle scattering data. We also prove a Lipschitz
34 stability estimate for an associated problem. Motivated by the point source inverse problem in
35 geophysics, we show that a compactly supported potential is uniquely determined from boundary
36 measurements of the waves generated by exactly two sources - a point source and an incoming
37 spherical wave. These sesults "are proved using Carleman estimates and adapting the ideas
38 introduced by Bukhgeim and Klibanov on the use of Carleman estimates for inverse problems.
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1 Introduction

Coefficient determination problems for hyperbolic PDEs arise in areas sdeh as geophysics and
medical imaging. Formally determined problems, that is, problems wherethe parameter count for
the unknown coefficient equals the parameter count of the measured dataj present special theoretical
and computational challenges, particularly for problems in more than onespace dimension. In this
article we discuss a number of longstanding open formally determined probléems for hyperbolic
PDEs. We obtain uniqueness and stability results for these inverse problems when we have data
from two measurements or the coefficient is reflection symmetrié.

Our results are for the perturbed wave equation with the unknown coefficient associated with
zeroth order perturbation of the wave operator - we assume the velocity is a constant. This case
is relevant in quantum mechanical applications (see [RiS19] for a‘more detailed discussion) and in
cases where the sound speed is constant but the materialydensity is variable and unknown. In
many applications, the unknown coefficient of interest is associated with the non-constant velocity
of propagation for the hyperbolic PDE and determining these coefficients is a more difficult problem.

1.1 The plane wave scattering problems

Let us first introduce some notation. Given @ye R™, n > 1 we may write z as ¢ = (y,2) with
y € R 2z € R. Further, e := €. = (0,0,---,0,1), B will denote the open unit ball, S its
boundary, [J = 82 — A, and v will denote, the outward unit normal to the associated surface.

S
Here are two of the longstanding problems associated with far field patterns. Suppose ¢(x) is
a smooth function on R", m > A, with compact support. Given a unit vector w in R"™, consider the
IVP with a plane wavegource:

OU +qU =0, (x,t) e R" xR, (1.1)
U(z,t) =0(t —z-w), reR" t<<O0. (1.2)

This was studiedsin [RU14] and the following proposition is a consequence of the arguments in the
proof of Thegrem 4 in [RU14].

Proposition 1i1. The IVP (1.1), (1.2) has a unique distributional solution U(z,t,w) given by
Uz, t,w) =0t —z-w)+u(z,t,w)H({t —x-w)

wherew(x, tyw)s'a smooth function on the regiont > x-w, is the unique solution of the characteristic
1VP

Ou + qu = 0, (r,t) ER" xR, t>2x-w, (1.3)
1 0
uw(z, - w,w) = —2/ q(x + ow) do, xz € R", (1.4)
—00
u(z,t,w) =0, zeR" z-w<t<<O. (1.5)
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Also, for any real T, on the region {(z,t) : x - w < t < T}, |u(x,t,w)| is bounded. above by a
continuous function of ||q||cn+a. Further, when n = 3, given a unit vector 6, R" and“a real
number s, we have (as distributions in s)

. 1
rlgglo ru(rf,r —s,w) = o

/ ug(x, 7 — 8,w) dSg
z-0=T1

for any T > 0 for which the support of q is in the region x -0 < T.

We mention that u(z,t,w) is also characterized as u(x,t,w) &, v|y>g.,) Where v solves the
inhomogeneous PDE v+ qv = —¢d(t — x-w) in R™ x R with p|;<<o = 0s However, since v vanishes
in {t < - w} by finite speed of propagation, only the behaviour, in the set {t > z - w} will play a
role. For the proofs of the main results it will be natural to work'in the region {t > = - w}, and
hence the proposition is stated in this setting. The proof of the upper bound on |u(z,t,w)| is not
covered in the proof of Theorem 1 in [RU14] and we postpone its proof to subsection 2.4. Also, the
upper bound given is not optimal but adequate forfour purposes.

Motivated by Proposition 1.1, for n = 3,hwe definesthe far field pattern of w(z,t,w) in the
direction @, with delay s, as
1
alf,w,s) = / we (T, T =08, w)dSy 0] =1, lw| =1, seR.
27 z-0=T1
This definition can be extended te all odd dimensions n > 3 [MUOS8]. It is closely related to other
definitions of far field patterns in scattering theory; please see [RU14] for a discussion about this.

There are two longstandingopen problems in scattering theory, the backscattering problem,
consisting of examining the injegtivity, stability and inversion of the map

@ (=W wiB) =1, ser (backscattering problem)

and the fixed anglescattering problem (also called the single scattering problem), consisting
of examining, for a fixed w, the injectivity, stability and inversion of the map

g =@, w,s)|6=1, ser (fixed angle scattering problem).

These problems/are often formulated in terms of the scattering amplitude aq(k,w, ), where £ > 0
is a frequency, which appears in stationary scattering theory (relations between the time domain
and stationary approaches are discussed in [UhO1]). Both these problems remain open, including
the injectivity of these maps, but there are partial results for both these problems.

For the/backscattering problem, the map has been shown to be analytic, shown to be injective
when ¢ 1s small enough in some norm or when q is restricted to angularly controlled perturbations
of ansingle qo. Further, it has been shown that one can recover the principal singularities of q.
We only mention here the works [ER92, GU93, MUO08, OPS01, RU14, RR12, St90], and refer to
the introduction of [RU14] for further references and discussion. However, for the backscattering
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problem, one does not even know whether the backscattering data is enough to distinguish between
zero and non-zero ¢, that is, whether a(—w,w, s)|,=1,ser = 0 implies ¢ = 0.

For the fixed angle scattering problem, uniqueness is known for potentials that are small or
belong to a generic set, the principal singularities can be recovered, and the zerao potential can be
distinguished. See [BLMS89, St92, Ru0l, BCLV18] and further results and references in [Mel§].
Ramm, in [Rall], claims to prove uniqueness for the fixed angle scattering,problem for real valued
smooth compactly supported potentials. However, it was pointed out to.usypersonal communica-
tion) that the proof in [Rall] is incorrect since Lemma 3.1 in [Ralljyeontradicts a consequence of
the Paley-Wiener theorem.

For the fixed angle scattering problem for n = 3, without loss,of generality, we take w = e, so
the fixed angle scattering problem consists of examining the imjectivity, stability, and inversion of
the map

q— 04(0, €, S)’|0|:1, scR:

Since ¢ is compactly supported, we assume that q is supportgd in B. From Proposition 1.1, the
single scattering problem is equivalent to the recovery of g from the Radon transform (in x) of
u¢(x,t,e) over the planes x -0 = 7, 7 > 1, for allit. € R. Since us(z,t, e) is compactly supported for
each fixed ¢, from Helgason’s Support Theorem (see [Hell]), the problem is equivalent to recovering
q, given uy(xz,t,e) for all t € R and all.z such that x| > 1. Now, from (1.3) - (1.5), that ¢ = 0
outside B and the observation that the characteristic BVP

Ou 20, (r,t)€R*\B) xR, t>zx-e,
u=_f, on S XxRN{t>x-e},
us0, mue<t<<O,

is well posed, knowing u(z4t, e)hh (S x R) N {t > x - e} is equivalent to knowing u(z,t,e) on
(R3\ B) x R)N{t > x - e}. Hence the fixed angle scattering problem is equivalent to studying the
injectivity, stability anddinversion of the map

q = u(x,t, )| (z.0e(SxR)N{t>2-e} - (1.6)

Of course Helgasen’s Support Theorem is an injectivity result and the associated stability estimates
are weak so the.equivalence'stated above is only formal, as far as stability and inversion is concerned.
For use below, wemote that the map (1.6) makes sense for any n > 1.

A problem close to the fixed angle scattering problem is of interest in geophysics. Suppose
q(y, z) 18 a smooth function on R™ with support in z > 0. If U(x,t,e) is the solution of the IVP
(1.1)¢%(1.2) with@w = e, then geophysicists make measurements only on z = 0 and they are interested
in the invexrsion of the map

q— U(ya = 07 t, e)|(y,t)€R"*1><R' (]‘7)

This problem is still open but there are partial results for this problem. When ¢ depends only on
z, the'problem is a well understood one dimensional inverse problem for a hyperbolic PDE thanks
to the work of Gelfand, Levitan, Krein and others - see [Sy86] for a survey of the results. For the
multidimensional problem, in [SS85], Sacks and Symes showed that this map is differentiable and
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its derivative is injective at points ¢(-) where ¢ depends only on z. In [Ro02], Romanov showed
this map is invertible and constructed its inverse if the domain of this map was restricted to'q(y, z)
which are analytic in y.

If ¢ is compactly supported, say ¢ is supported in B, in addition to being supported in z > 0,
then the study of the map (1.7) is closely related to the study of the map (1.6)x Since ¢ = 0 on
z <0, from (1.3) - (1.5) and the well-posedness of the characteristic BVP

Ou=0, yeR" 2<0,t> 2
uly,z=0,t) = f,  (y:t) R x [0je0),
u(y,z,2) =0, 2<0, yeR
we conclude that knowing u(y, z = 0,t) for all (y,t) € R" A%]0, co)iwe'can determine u,(y, 2 = 0,t)
for all (y,t) € R"~! x [0,00) - actually one can write an explicit, formula using the fundamental

solution of the wave operator. Finally, since ¢ = 0 outside B, from (1.1) - (1.2) and Holmgren’s

theorem on unique continuation for
- 4

U =0, Uyf) eR" xR, 2>0, |(y,2)] > 1,
U(y’z = O,t) = f7 Uz(yvz = Oat) =9 (y7t) € Rn_l X R,

we conclude that knowing U(y, 0,t), U, (y,0,t) for (y,#),€ R*~! x R, uniquely determines U (y, z,t)
on S x R. Hence, this geophysics problémuis equivalent to the study of the map (1.6).

The injectivity and stabilityfef the fixed angle scattering map (1.6) remains open but we show
stability if we have data from two experiments; we show that the map

q — [u(@yt, e)|s,, u(z, t, —e)ls, ] (1.8)
is injective and its inverse is Lips?nitz stable in certain norms; here
Y =A{(y,z,t) € S X (#£00,T]: t > z}, Y ={(y,zt) € S x (=00, T]: t > —2z}.

Thgorem 1.2 (Two planewave data). Suppose q;, i = 1,2 are smooth functions on R™ with support
in B and u;(z,t, e)fu(@yt, —e) the solutions of (1.3) -(1.5)) with ¢ = ¢; and w = e, —e. If T > 6
and ||gil|cn+e < My i = 1,2,.then

a1 — @2l 2By =w2) (v, -, e) || sy + 1(wr —w2) (-5, =)l s,y + (1 —u2) (-5 )| (snqe=2)

with the implied €onstant determined by T and M.

A corollary of Theorem 1.2 is a result for single measurement data provided ¢ is compactly
supported and’an even function in z, or more generally, for a fixed incoming direction w, ¢ is
symmetric @bout the plane z - w = ¢ for some c. If ¢(y, z) is an even function of z and u(x,t,e)
u(z;ty—e) are the solutions of (1.3) - (1.5) for w = e and w = —e then one observes that

u(y, —z,t,e) = u(y, z,t,—e), V(y,z,t) e R" xR, t > —z

hence knowing u(-, -, €)|x, is equivalent to knowing u(-,-, —e)ls,, so Theorem 1.2 implies the follow-
ing corollary.

Page 6 of 45
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Corollary 1.3 (Fixed angle scattering for symmetric potentials). Suppose q;, i ="1,2 are smooth
functions on R™ with support in B and u(z,t,e) the solution of (1.3) -(1.5) with.g = ¢; andw = e.
If ¢i(y, 2) = qi(y, —z) for all (y,z) € R", i =1,2, if T > 6, and if ||gi||cn+e <M, 9=1,2, then

a1 — qall 2Byl (w1 —u2) (- )| sy + 1(ur —u2) (- )l misiap=21)

with the implied constant determined by T and M.

~

Recently, in [RS19], we have improved upon the result in Corollary'1.3 and proved stability for
the fixed angle scattering problem under even, odd or y-controlled perturbhations.

1.2 The point source and spherical wave source problems

Consider the following IVP problem associated to @ point soufce

OV +qV = §(ait), (zyt)E€ R x R, (1.9)
V =0, .t <0. (1.10)

This problem has been studied in [RO74]wand elsewhere and the following is a consequence of the
results in [B117].

Proposition 1.4. If q(x) is dleompactly supported smooth function on R® which is zero in a
neighborhood of the origin then (L.9)p(1.10) has a unique distributional solution given by

Vi) = iw +o(a, ) H(t — |])

where v(x,t) is a smooth function on t > |z| (see Figure 1.1) and is the unique solution of the
Goursat problem

Ov + qv =0, t> |z, (1.11)

1 1
v(x, |z|) = _877/0 q(sz)ds, z € R3, (1.12)

We take ¢ = 04in a neighborhood of the origin because the behavior of v(x,t) is subtle near
x = 0,t/= 0 if ¢(0) # 0. Further, we need this assumption for the result stated below.

Anothertlongstanding open problem, which we call the point source problem, is the injec-
tivity, stability and inversion of the map

q = V] §x[1,00)-

Romanov has observed that v| Sx[1,00) = 0 implies ¢ = 0 and several people have observed that the
map is injective for small ¢ - see [RS11].



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - IP-102101.R1

w defined here

Figure 1.1: Domains of 4 andyw

Next we describe another inverse problem. Consideér the following IVP associated to an incoming

spherical wave &
OW + W&, (2t €R® xR, (1.13)
1
w= LI Ny cre < 1, (1.14)
dr |z

We show the following regarding the solution of this IVP.

Proposition 1.5. Suppose q #&wa compactly Supported smooth function on R3 with ¢ = 0 in a
neighborhood of the origin. The IVP, (1.13), (1.14) has a unique distributional solution which is
smooth on the region t # *|x|. Further, on the region t < |x|, W (x,t) may be expressed as

Wt = ﬁ‘w +w(e, ) H(E + |2))

where w(x,t) is a smooth functionon the region —|x| < t < |z| and satisfies

Ow +4qw = 0, (x,t) ER]* xR, —|z|<t<|z|, z#0 (1.15)

1 o
w(z, —|af) = _87T/1 q(st)ds, T eR’ x#0 (1.16)
(z,t) =0, —lz| <t < -1 (1.17)

The behavior of W above the upper cone ¢t = |z| is subtle and perhaps not well understood.

Anothertopen problem, proposed by Romanov, which we call the spherical wave problem,
is the injectivity, stability and inversion of the map

q — wlgx[-1,1)-

By a unique continuation argument one may observe that ¢ = 0 if w| sx[-1,1) = 0. In [Balg], it was
shown that the map is injective if ¢ is restricted to angularly controlled perturbations of a fixed gg

Page 8 of 45
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or if ¢ is small in a certain norm. For the two dimensional case, in [Ro02], it was‘shown that the
map is injective and an inverse may be constructed provided ¢(r@) is restricted to functions which
are analytic in . The spherical wave problem remains open in all dimensionssgreater than 1:

The spherical wave problem may be regarded as a type of backscattering problem with the
difference that the data comes from the solution of only one IVP. For the backs¢attering problem
we are given very limited data from each of a large number of solutiens of the PDE. An inability
to fruitfully combine data from many solutions is what makes the backscattering problem difficult.
We believe the spherical wave problem may be an easier problem and its solution may provide
insight into the solution of the backscattering problem.

The point source problem and the spherical wave problem remain.open, but given the data for
both problems the associated map is injective.

Theorem 1.6 (Point source and spherical source data). For q which are smooth functions on R3
with support in B and zero in a neighborhood of the origin, lep v(x,t), w(x,t) be the functions in
Proposition 1.4 and Proposition 1.5. The map

q— [UISX[1,3]aw’S><[—1,1)] (1.18)

18 injective.

The article [Lal9] describes‘two other pairsrof data which lead to results similar to Theorem
1.2 and Theorem 1.6 by using Proposition 2.1 and Proposition 4.1 in our article.

To prove Theorem 1.2 and The{)rem 1.6 we use the two solutions of the PDE to construct an H*
solution of (O + ¢)a = 0 on'a cylindrical region B x [T1, T], for some T3, T», such that « restricted
to a characteristic surface (either ¢ = z or ¢ = |z|) in the interior of the region is an integral of q.
Then we adapt the teechnique ing[IY01] to prove stability for certain hyperbolic inverse problems.
In [IYO01] (see [BY17] for a better organized presentation), the a:—g is related to ¢ where as, for our
problems, « restricted to a,characteristic surface is related to ¢; thus a need to adapt the technique
in [IYO1].

The techniquedn [FYO1)is itself a modification of the breakthrough ideas, introduced in [BK81],
for solving formally determined inverse problems for hyperbolic and parabolic PDEs. However,
the problem studied in [BK81] and [IYO01] required a source in the form of an initial condition
a(z,0) = f(z) with f(z) > 0 at each point on the domain. In geophysical and some other
applicationsy such sources are difficult to generate and the preferred source is an impulsive source
such as a peint source a(z,0) = d(x) or a plane wave source a(z,t) = 6(t — x - w) for t << 0. Our
results are for these impulsive sources in space dimension greater than one, for which there are just
a few results - we have mentioned some results earlier and [KI105] is interesting. For a survey of
the results for problems associated with a source of the form a(z,0) = f(x) with f(x) > 0 at each
point in the domain, as in [Be04], [Kh89], [IYO01], [SU13] and several other articles, we refer the
reader to [BY17], [K113], [Bu00] and [Is06].
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We use the following notation through out this article. Given z € R", n_> 1 we may write x
as ¢ = (y,2) with y € R"1 2 € R, or we may write a non-zero z as x = 7 where r =| and
0 = x/|z|. We define the radial and angular derivatives

o, = —

xr

and note that 1
V() = |fr|2+ﬁ2|9ijf($)|2- ~ (1.19)
i#]
Further e := (0,0,---,0,1), B will denote the open unit ball, S it§sboundary and (0 = 97 — A,.
We say the map f : X — Y is stable if f is injective and its,inverse is'locally Lipschitz for some
norms on X and Y. We say a<b if a < Cb for some constant C.

If £ is a non-negative integer, A is the closure of a'bounded open subset of R” and f: A - R
then || f|| x4y will denote the Sobolev space norm of f'on Ajand for a fixed weight ¢ and o >0
L

1/2 1/2
o 204 2 21402 — 200 | £12
1l : (/A 275 (1T 12 + o )) S floos - (/A e |f) .

If A'is a bounded hypersurface in R" and f : A=> R'then || f|| x4y will denote the Sobolev space
norm of f on A, with derivatives only in diréctions, tangential to A, and

1/2 1/2
T < / 62“”(|VAf|2+02|f|2)) 1l = ( / emm?)
A A

where V 4 f denotes the gradient of f on A made up only of derivatives of f in directions tangential
to A. Further, for any bounded weal valued function f, the supremum of |f| will be denoted by

£ lloo-

2 Proofs for the two plane wave sources problem

We define the¢ follewing useful subsets of R” x R;

Q= B x [-T,T), Y :=Sx[-T,T], r=Qn{t=z},
QR+ =QN{x(t —z) 20}, Y =X N{£( - 2) = 0},
Q+,T = Q-i- N {t < T}7 E+,T = E-i— N {t < T},

fortany 7 € R.

10

Page 10 of 45



Page 11 of 45

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - IP-102101.R1

2.1 The main proposition for plane wave sources

The following proposition is crucial in the proof of Theorem 1.2. We postponeiits proof tosubsection
2.3. Suppose p(z) and g(x) are smooth functions on R™, n > 1, with support innB. Define

o) = [ ol ds
~
and let p(z,t) € H'(Q_) be the solution, guaranteed by Lemma 3.6, of the characteristic BVP

(O0+4+¢p=0, onQ@Q,
y),  (y.2) €B;
), (y, zgt) &3,

Proposition 2.1. Suppose p, ¢ and p are as above, flabounded function on Q, and o € HY(Q)
with o smooth on Q4, a+ p smooth on Q_, als € HNE), Gya € L*(X). If
- 4

O+ q@)a(z,t) = p(x) f(z,t), (x,t) € @, (as distributions) (2.1)
a2 = [ plos) d N (02 € B, (22)

then
HPHLZ(B)ﬁHaHHI(E) el 2y + ol g =ary), (2.3)

provided T > 6. Here the constant depends only.on ||q||cc, || fllcc and T

2.2 Proof of Theorem 1.2\

Suppose ¢;, i = 1,24apé smooth functions on R™ with support in B, u;(z,t,e), u;(z,t, —e) the
corresponding solutions of\(1.3)-(1.5) for w = e, —e. Then, by Proposition 1.1,

O+ q1)(ui(z, t,€) —ualm, t,e)) = —(q1 — q2)(x)ua(z, t, e), (x,t) e R"" x RN {z < t},

=gtz o) = = [ @@ (.)€ R

(up —u2)(z,t,e) =0, (x,t) e R" x RN{z <t < -1},
and

(O +qp) (wilz, ti—e) — ua(z,t,—e)) = —(q1 — q2)(z)ua(z, t, —e), (z,t) e R" x RN{—z < t},
1

=)z =50 == [ @ -w@sds,  (@.2) R

(up —u2)(z,t,—e) =0, (z,t) eR" x RN{—2z <t < -1}

Define .
ply) = 5 /R(% —q2)(y,2)dz, ye R

11
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and let p € H'(Q_) be the solution, guaranteed by Lemma 3.6, of the characteristic BVP

ply,z,2) =ply),  (y,2) € B,
p(y,z,t) =ply),  (y.2,1) € X
For (z,t) € Q, define
t t>
UQ($,t) _ Ug(.’]f, 76)7 Z? ~
—ug(x,—t, —e), t<'zy
and
(Ul*UQ)(x,t,6), tZZ?
a(z,t) =
—(uy — u2)(z, —t, —e) — p(wyt), t <z

The function a combines the measurements associated with the,directions e and —e, and the
function p has been subtracted in Q_ so « is H' across the plane t = z. The function p is only
required for the stability estimate; if one is only interested inga uniqueness result for the inverse
problem, the function p will be zero if the data for ¢, and ¢z agree, hence p = 0 in this case.

Using Lemma 3.6, we see that for (x,t) € @ werhave in the sense of distributions

O+ q)a(z,t) = O+ q1) (w1 —a)@tse) It — 2) — (u1 — uz)(z, —t, —e)H(z — 1))
—(q1 — q2)Us + 26(t=2) (0 + 3z)(u1 —ug)(x,t,e)
+25(t €2)(0¢ + 0.) ((u— ug)(z, —t, —e))
= —(q1 — @)U+ 26(t — 2)(0 + az)(ul uz)(a:, t,e)
+20(t +2)(—0 +0:)(u1 — u2)(z, —t, —e)
= —(q1 = @)U+ 20t — 2)(0¢ + 0,)(u1 — ug)(y, z,2,€)
+20(t #2)(£0 + 0.)(u1 — u2)(y, 2, —2, —e)
)

==(q1 — @)us+ 20(t — 2 %((ul —u2)(y, 2,2, €) + (ug —u2)(y, z,—2z, —€))

) d *°
= —(q0—q2)u2 — 0 t—z@ / qy ds+/ q(y, s)ds

5 d
= =(g1i'— @)z — 6(t —2)— [ qly,

dz R
= =(q1 = q2)(z)ta(z, 1).

Further; for (y, 2).€ B, we have

ol 2) S — )z e = —5 [ (- w)ws)ds

(S (1~ w) (2.2~ 52 = 5 [ =) ds = 5 [ (01— @) ds

= —;/z (@1 — g2)(y, 5) ds;

—0o0

12
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1
2
3
4
5
g SO
8 a(y,Z,Z‘l—) :a(y,Z,Z—).
9 Hence, a € H(Q) with
10 ~
i O+a)a=—(q— )i, (2,t)€Q,
12 1 [* -
2 o) =5 [ @-e)wsds ) B
—00

14

Further |y, € H'(X) and 0, € L?(X) - we verify this at the end of this proefiSo from Proposition
15
16 2.1 we have
:; lar — @2l 2my<sllallmis) + 10vall 2y + ([Pl sar (2.4)
19 with the constant dependent only on the supremum of @2 ém@), ||¢1]lec and 7', hence dependent
20 only on T and ||g;||gn+4, ¢ = 1,2. Using the definition ofrer andyLemma 3.3 (together with the
21 analogue of Lemma 3.3 in {t < z}) we have
22
23 10yl L2y <10y (u1 — u2) (-, - )l p2(sy ) + 100 (w1 — ug)l, sme)ll2s ) + 10vpll 2 ) + ol i (zar)
;‘5‘ <lellmrsy) + llellaieary + lla+ pllar @y # 1t ell g sar) + [10voll 2y + el e =ar)
2% <llellgisy + g sary + ol axes -y +olla ey + 190l 2s)
;é el gy + el grsar + ol areans (2.5)
29 where we used Lemma 3.6 in the last step. For (y, z,2) € ¥ NT we have
30 _ 1 1
31 p(y, 2, 2) = py) = §/qu(y, 8)ds — Q/RQQ(y, s) ds
32
33 1 /\/1—?J|2 ( )d 1 /\/1—y|2 ( )d

=3 qi\y,s)as — 5 q2\Y, s)as

s il e
» e — )@ VI WP V=T )
37 :(%—Ul)(y,’Z‘,|Z|,€)
gg :—a(y,|z\,|z|)
40 Hence
41 ol g1 (many < el 71 (mamy (2.6)
jé and using this in (2.5) we obtain
44 Ovel Loy =z sy + el g sar)-
22 Inserting thege estimatesin (2.4) and using (2.6) and Lemma 3.6 we have
j; lar — a2l my=llallg sy + g sar
49 ez, + lle+pllasy + lellar =) + el =
50 <z, + lle+pllars_y + el g sar),
51
55 and the thedrem is proved except for the verification of the claims a|y € H'(X) and d,a € L*(%).
53
>4 Now, by definition, a|x, , (a 4 p)|s_ and p|s_ are smooth and « is continuous across I' N X,
gg hencererls, € H'(X). Further, (O + q1)a = —(q1 — q2)ii2 € L*(Q), « is smooth near t = T and
57 @ € H'(Q), so a is a solution of a backward IBVP for a hyperbolic PDE with RHS in L2, smooth
58 initial data, and H' Dirichlet boundary data, so d,a € L?(X) by Theorem 3.1 in [BY17].
59

60 13
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2.3 Proof of Proposition 2.1

Figure 2.1: The regions/(() and*Q)

For any a > 1 define
Oy, 2, 1) = 5(a = N 5ly|” — (¢ — 2)°.

From Lemma 3.1, for large enough A,
(e, t) = W31

is strongly pseudoconvex (Definitiomy1.1 in [Ta96]) w.r.t 0+ ¢ in a neighborhood of Q.

Since T' > 6, we claim there is an a > 1 such that the smallest value of ¢ on Q N {t = z} is
strictly larger than the largest valite of ¢ on QN{|t| = T}. The largest value of ¢ on QN {|t| =T}
is bounded above by 5(a+ 1)2 #5 — (I'—1)? and the smallest value of ¢ on QN {t = 2z} is 5(a —1)?,
so we want

5(a—1)2>5(a+1)2+5— (T —1)?

which is equivalent to
(T —1)* > 20a + 5.

Hence for T %6 any a € (1, ((T — 1)? — 5)/20) will work. Therefore we can find a T’ € (1,7T), T
close to T, and reéal ¢ and 9> 0 such that

e pLc—SsonB x{T'<|t|<T},

e Y >e+0onQN{t==z}

Wefixan a € (1, ((T — 1)2 — 5)/20) and the large enough \. Let x(¢) be a smooth function on
R with x =1 on [t| <T" and x = 0 on |t| > T and define

5(x7t) = X(t) Oé(.li,t), (x7t) € Q

14
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Since ¢ is strongly pseudo-convex w.r.t U + g near ) and the combined Dirichlet'and Neumann
boundary operators satisfy the strong Lopatinskii condition with respect to 1) and [J (see Definition
1.6 in [Ta96]), that 3 € HY(Q), (O + q)B € L*(Q), Bls € HY(X), 0,8|x € LAX), and 3 = Ownear
QN {t==+T}, from Theorem 1 in [Ta96] we have (for o large enough depending on ||g|joc and T')

o117 50N O+ Q)83 5.0 + o IBIT o5 + 11008 o5 (2.7)
with the constant dependent only on T" and ||¢||cc-
~
Now
(O+¢)f =x(O+ @)+ x"a 42X o,
hence
(O +)BI=IO + g)af + (Ix e X" ([l 5 )
SO
- 4
Q-+ 08l o0s [ it | 2% (Jaf? + |aq?)
Q Bx{T'<[t|<T}
</ 620¢|p’2+620(0—6)/ ‘Oé|2—|-|04t|2. (28)
Q Bx{T'<|t|<T}

Using Lemma 3.4 for « on @4, a corresponding result for o+ p on (), and Lemma 3.6 for p, along
with (2.1), (2.2), we have

/B><{T/<t|<T} o + lee* < 1O Qo) + lelznm) + lalfn s, + 18l 7z,
+ e + p“%{l(E_) + [0y (o + P)H%Q(z_) + HPH%P(ZHF)
4/3 1 e llallF oy + llallzn s + 10velZam + 1ol E sy + 1000l 72s )

ol sory

4”@”%{1@) + ”04”%{1(2) + ||au04HQL2(2) + HPH%ﬂ(zmr)-

Using this in (2.8) and noting ¢|r > ¢ + d, we obtain

1@+ )BI3E o< /Q ¥ |2 4 29 a2,
+ 620(676)(||a||?{1(2) + ||au0<”%2(z) + HpH?ﬁIl(ZﬂF))

—206 k
4/626201”2?2 +e 2|l +e U(||Of||%{1(z) + HaVaH%P(Z) + HPH%ﬂ(zmr))
for somesk > 0. Hence from (2.7) and using 8 = y« for the terms on X

—206 k
MBIE 0= /Q 27 pl2 + 2 a3 o + € (lalFn ) + 10val3amy + lolBnean)  (29)

15
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From Lemma 3.5 applied with 7" instead of T, noting Q4+ N{t < T'} Cc Q, X4 N L T’} C X4,
and a = S on Q4 N{t <T'}, we have

1ol or=ollal oo, v + O+ @ol3 o, v + 1ol s, 0+ 19403 0 B

<8I} g, + /Q 7VIpf2 + ¢ ([lal3 s + 19001248 -

2068

for some £ > 0. Using this and (2.9) and noting e™*?° is small compared to diferlarge o, we obtain

a3 o< /Q 2 bl + € (1ol sry + ol @t 19ualfs) ) - (2.10)

From (2.2) we have

d [* d
Uw(y7z7z) _— Uw(y7z7z) b o.w(y7z7z)
e p(y,z) =e E /oop(% 5)ds e dz(a(y,z, z))

= 260w(y72’Z) (az + at)(y7 Z? Z),

o (2.10) implies that for large enough o

/Fe%‘”lp!Q#/Qe%ﬂPQ + (“/’H%ﬂ(zmr) + el ) + Ha”o‘”%Q(E)) ' (2.11)

Using the definition of h(co) in Lemma 3.2 we have

T
/ 27 |p|2 = / 20028y 2|2 / 20w E0=0W22) gt dy iz
Q B\ -T

< 1) fo .2 dyd

o0 (2.11) implies that

[ N dydz <hio) [ =y, dy
+ e (1ol s + el sy + 100l ) -

Hence, frompllemima 3.2, taking o large enough we obtain

[ o=, dy dz=et” (Il sy + e, +10.01Exs)

with, the constant dependent on ||q||oo, || f|lco and T'. Fixing a large enough o (which also depends
on ||gllsesllfllcc and T') we get

HPH%Q(B)—\<|’/)H%{1(EOF) + HO(H?ql(z) + ”aVaHQLQ(E)

and the proof is complete.

16
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2.4 Proof of Proposition 1.1

The only part of the proposition not proved in the proof of Theorem 1 in [RU14]"issthe upper
bound on |u(x,t,w)|. We use the notation in the proof of Theorem 1 in [RU14]. If ¢ is C?V then
(O+q)Ry is in CN~1 and hence in L? (R, HN~1(R")), so by Theorems 9.3.1, 9.3.2:and the remark

loc

after that in [H676], we conclude that Ry € H'(R, HN=1(R")) locally and, for any given T,

IRN | i1 (=010, N1 (R ) SO + Q) BN || 22((— 00,1, 8- (rn y SF(H 0] 02 )
for some continuous function F, with the constant dependent on {|gljg~-1.and T. Hence, if N —1 >
n/2 then for any ¢ € (—oo,T] we have
[N (& Hoo<NEBN (& ) =1 ey ST BN [ 1 488501 v =iy < F ([l gl 2 )
hence if N —1 > n/2 then
[ult, -, W)llco<F(llall gon) 0 VB T,
so taking N = 2+ |n/2] or higher, we see that

lutt, -, W)l F(llgllenss),  VE<T.

3 Lemmas for the two plane wave sources problem

We recall the following useful subsets of R” x R,
N

Q = B/x [-T, T}, ¥:=8x[-T,T], r=nit=-z},
Qs = Q{4(t 94 > 0},  Su =X {+(t—2) >0},
Qrr=Qpn{t<7} Xy, =S n{t<7}

for any 7 € R.

3.1 Carleman weight and estimates for the plane waves problem

There_are,some /differences between definitions given in [H676] and [Ta96] for pseudoconvexity
and' strong pseudo-convexity so we specify the definitions we plan to use. Suppose P(z,D) is a
differential ‘operator with principal symbol p(z,&) with real coefficients, over a region Q, and ¢
a smooth function on Q with V¢ # 0 at each point of . We say the level surfaces of ¢ are
pseudoconvex w.r.t P(x, D) on Q if (1.3), (1.4) from [Ta96] hold at every point of Q. We say the
level'surfaces of ¢ are strongly pseudoconvex w.r.t P(x, D) on € if (1.3)-(1.6) from [Ta96] hold at
évery point of ). We say the function ¢ is strongly pseudoconvex w.r.t P(z, D) on Q if (1.2) of
[Ta96] holds at every point of ).

17
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For second order operators P(x, D) with real principal part, one may verify that the pseudocon-
vexity and strong pseudoconvexity conditions for level surfaces of ¢ are equivalent - see Theorem
1.8 on page 16 in [Ta99]. Further, if the level surfaces of ¢ are strongly pseudoeonvex w.r.t P(w, D)
in Q then, from Theorem 8.6.3 in [H676], for large enough A

Y =e

is strongly pseudoconvex w.r.t P(z, D) on 2. So to construct a stromglyspseudoconvex weight
for a second order operator with real coefficients, one just needs to constritet a function ¢ whose
level surfaces are pseudoconvex w.r.t P(z, D).

Our goal is to construct on @ a function ¥(y, z, t) strongly'pseudoconvex w.r.t J and decreasing
in |t — 2| for a fixed y, 2.

Lemma 3.1. Define

¢<y,2,t) = C(a—2)2+d’y‘2—(t—z)2, y7z) ERna teR

§
and
¢(y, Z, t) N — e>‘¢(y72,t);

then v is strongly pseudoconvex w.r.t 1 on the region.z # a if c >4, d>c—1, A >> 0.

Proof. As explained at the beginning of subsection 3.1, it is enough to prove that the level surfaces
of ¢ are pseudoconvex on z # a'ifie > 4, d > ¢+ 1, and also that V, . ;¢ is non-zero at each point
in the region z # a.

For convenience we take N
1
oW, z,t) = 5(6(@ — 2)2 + d‘y’Q —(t— 2)2)

and the principal symbol'of.[ 1 to be

1 —
p(y?z7t7777 CaT) = 5(_7_2 + |77‘2 + <2), (U,C,T) cR" 1 x R x R.

We first note/that V¢ is mon-zero at every point in the region z # a because ¢, = c¢(z — a) # 0 on
the region z # a¢ Next, all'y, z, ¢ derivatives of p are zero, the mixed partials of p and ¢ are zero
(except for'@.; =il)g@nd
pr=—T, Vop =1, p; =G,
b= —(t—2), Vyo =dy, 6. = c(z—a) — (= — 1),
O = —1, (‘Zﬁyi,y‘j) =dlp,—1, ¢..=c—1, ¢ =1

The condition (1.3) in [Ta96], in expanded form, is condition (8.4.5) in [H676], so the level surfaces
of ¢ are-pseudoconvex w.r.t [ iff

—(—7)2 +dnTn+ (c— 1)C2 +2¢(—7) >0

18



Page 19 of 45

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - IP-102101.R1

whenever (n,(,7) # 0 and
=P+ (== 2) + - (dy) + (- (e(z —a) = (2 — )= 0.
It will be enough to require that
— 2 dnP + (c—1)¢ =207 >0 (3.1)

whenever (,(,7) # 0 and 72 = |n|?> + (2. Because of homogeneity, we can take 7 = +1 and

In|? 4+ ¢2 = 1, so it would be enough to require that Dy

fQ):=—1+d1 =)+ (c—1)¢*+2C>0  whenever ¢ c/[-1,1].
Now
fQ=(—d=-1)+2( +d-1
is a downward opening parabola when ¢ —d — 1 < 0 so itssminimum<on [—1, 1] will be at the end

points. Hence the minimum of f(¢) on [—1,1] will be ¢/~ 4. Seuit will be enough to require that
c>4ande<d+1,thatisc>4and d >c— 1. O

- 4
Next, we compute the limit of an integral associated with the Carleman weight we use in the
proof of Proposition 2.1.
Lemma 3.2. If ¢(y, z,t) = c(a — 2)> + d|y|> =t —&)2 witha > 1, ¢ > 0,d > 0, ¢ = *? for some
A >0 and

ol
ho) = stip / P20 (0,50 —0(5:5:2)) gy
(y,2)eBYST

for some T > 0, then lim,_, h(c)= 0.

Proof. Since A > 0 and ¢(y,25%) 20, for any (y, z) € B we have
w(:U? Z, Z) — w(y7 Z, t) — eA¢(y,z,z) — e)‘(z)(yvzvt) — 6)‘¢(y7zvz)(1 — e_A((b(yvzvz)_(b(:%Z?t)))

= 6)\¢(y,z,z)(1 _ e*)\(tfz)z) >1— ei/\(tfz)?

Now, for s > 0,
1 —e"%>min(1/2,s/2),
hence

2('¢(y’ th) - ¢(y7 2, Z)) < - min(L )‘(t - Z)2)

T T _ , T—2 o,
/ e2a(w(y,z,t)fw(y,z,z) dt < / efcrmm(l,)\(tfz) )dt :/ efamm(l,)\t )dt
-T -T —T-z

T+1
< / e % min(1,\¢?) dt.
I

Hence, by-the dominated convergence theorem

T+1 _ )
0 < lim h(o) < lim e~ min(LAT) gy — ),

o—00 o—oo J_p_q

19
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3.2 Energy estimates for the plane wave problem

We derive three energy estimates needed in the proof of Theorem 1.2. The first is an estimate for
an exterior problem, the second estimates the energy on ¢t = +7" and the third estimates the energy
on t = z. In deriving these estimates, we will use the following simple integration by parts results
on @+ and other sets having a similar form: if v is smooth in @, then

1 ~
6tvdxdt—/ vdS—/ v.dS;
Q+ {t=1} V2 Ji=y
and if V' is a smooth vector field on @+ with values in R™, then (with ¥ denoting the gradient in
x variables)
V-Vd:];dt:/ V-VdS+i/ Ve,dS.
Q+ DI V2 Ji=2

Lemma 3.3 (Energy estimate for exterior problem)s Supposenn > 1, T' > 1, p(x)a smooth function
on R™ with support in B and a(y, z,t) a smooth function ony(R™ x R) N {t > z} with

Oa =0, on (v, 2, Ipe€R™ xR, |(y,2)|>1, t > z, (3.2)

0
a.n2) = [ pluzts)ds o)=L (33)
aly, z,t) =05 on{(y,z,t): 2 <t < -1} (3.4)

then
10vadir2es ) <lall sy + llall gy s,

with the constant dependent only.on T.
N

Proof. The result follows from' standard estimates for the wave operator obtained using multiplier
methods. Define
Hr={(y,zt): |(y.2)| 21, —T<t<T, z<th

then from domain of dependence arguments and (3.3), (3.4), we can show that the intersection of
the support of a.and Hr is bounded and hence, on this set, |z| is bounded above by a constant
dependent ondT'.

We define the smooth function

0 z

a(ysz) = a(y,z,2) = / p(y,z+s)ds = / p(y, s) ds, (y,z) € R",
—00 —00
and nhoting that p is supported in B, for |(y, z)| > 1 we have
0, if [yl > 1,
a(y,z) =aly,z,z) =<0, if [y <1and z <0,
Jzp(y,s)ds, |yl <1andz>0,

20
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1
2
3
4
5
? We have the identities
g 2000 = (& 4 |[Val*); — 2V - (V)
10 2(z - Va)Oa = 2(a¢(z - Va))e + V- (z(|Val]* — af) — 2(z - Va)Va) + nag — (n —2)|Val*.
11
12 For any 7 € [T, T], integrating the first identity over the region Hy N{t& 7} and moting that « is
13 compactly supported for each fixed ¢, a(y, z, z) = a(y, z) and (o + ) (y,2,2) =0Qon {t = z}NHrp,
14 we have
15 -
16 / o? +|Val? dz = 2/ ar oy dS +/ (a2 BVal? £ 20qa.)(y, 2, 2) dy dz
17 HTm{t_T} E+ﬂ{t<’7’} HTﬂ{t_Z}
1
12 = 2/ ap apdS + / \Vya(y, 232)* + (@t o) (y, 2, 2)* dy dz
20 E+ﬂ{t<T} HTﬁ{t—z}
1

21 < e/ a?dS + / a?ds +/ IV, alysz)|* dy dz (3.5)
22 E+ € 2+ HTﬂ{t:Z}
23
24 for all € > 0. Integrating the second relation over Hy we obtaigl
25
26 / 202+ a? — |Val?dS = (n —2)|Val® —na?) dxdt—Q/ at (x-Va)dx
27 2+ HT ‘$|21,t=T
28 + / 2(apsh ) (- Va) — 2| Vyal* + z(af — a?)
29 Han{t=2)
30
31 :/ ((n—2)\Va|2—na?)dxdt—2/ at (x-Va)dx
32 Hy > 1,t=T
33 _ )
34 —/ 2|Vya(y, 2)|* dy dz. (3.6)

HTﬂ{t_Z}
35
36 Hence using (1.19) and (3.5) we o\btam from (3.6) that
37
38 / o2dS< | > (@) dS+/ a? + yVande/ o + |Val? da
39 S+ il Hpn{t=T}
40
4 —i—/ |y aly, 2)|* dy dz
42 Hraft==}
43
44 / Z i0) dS+/ / o? + |Val? dz dr ~|—/ of +|Val* dx
45 pIET i<j Hrn{t=7} Hrn{t=T}
46
47 + [ V) dyds
48 Hrn{t=z}

2T
Pt < (1 + ) / o + 3 (Qya)?dS + (2T + 1)6/ a2ds
€ b oy 2

51 " <y i
>2 +/ \Vyaly, 2)|* dy dz
53 Hrn{t=z}
54
55 So;.choosing € small enough, we obtain
56
57 / af dS=lalF s,y + / IVyaly, 2)[* dy dz.
58 E+ HTﬂ{t:z}
59
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Now, a(y,z) =0 for |y| > 1 and when z < 0. Further,

aly,z) = a(y, V1 - y?), when 2z >0, |y| <1

SO
[ maeaas < [ 19y@ VT PR dy
Hrn{t=z} ly|<1
= [ ST TPa VAP
Y=
1
= [ (VTP 29, VT TPy
iy
< [ 19, —v0)3)0. D, ¥
<lalls)
<l sngeesy) .
and the proof is complete. ]

Next we estimate the energy near £. = T by the energy on t = z.

Lemma 3.4 (Energy estimate near t = ). If 1 <7 < T, q is a smooth function on B and a(x,t)
is a smooth function on Q4 then

/B(!Vz,taF +lal?) (e, 7) dalalag) + 1O+ @allZag,) + lalfne, ) + 10, ),

with the constant dependentonly em|lgllcc and T

t=T1
t=1
0}
t=z
<K
N i

Figure 3.1: The t = 7 section of @

Proof. Below L =[O+ q. For any 7 € [—1,T], the plane ¢t = 7 cuts t = z inside @ when 7 < 1 and
does not cut t = z inside @) when 7 > 1 - see Figure 3.1. We define two energies associated with
top and bottom surfaces of the boundary of Q4 ;.

22
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e If —1 <7 <1 then define

D= [ (et ad+ VaP)e ) dedy
Bn{z<t}

/ (02 + (a1 + 0z)? + [V, al?) (y, 2, e
Bn{z<t}

o If 7 > 1 then define
E(r):= / (0® + a2 + |Val*)(y, 247) dz dy;
J(1) = J?l).
For any 7 € [—1,T], integrating the relation
20¢(0a + o) = (aF + |Val? +a®)p— 2V - (wVa),

over the region Q4 ; we obtain 4

E(r)=J(r)+ 2/ o (Ha$a) + 2/ a0,a.dS
Q+,r D)

+7

=J(T)+2/ at(La+(1—q)a)+2/ a0, dS
Q+ .7 by

+.7

.
<J(1) +/ |Lal? +/ Vol + |2 dS + / E(t)dt
Q+ Xy 0
with the constant dependent on/||¢||«. Hence, by Gronwall’s inequality, for all 7 € [—1, T, we have

E(r)<JTI)+/ yLa\2+/ \Veia|® + |af? dS
DIES

Q+

with the constant dependent em@and |/¢||oc- O

Next we estimate the weighted energy on t = 2.

Lemma 3.5 {Encrgy estimate near ¢t = z). If T > 1, q¢ a smooth function on B and o, are
smooth functionston Q4 then

+0volld o5,

ol or <ollaliog, + 1O+ dalfeq,

for allie > large enough, with the constant dependent only on ||q|leo, [[¥llc2(q,) and T

Proof. Below £ = O+ q. Define p := e’¥a. For any 7 € [1,T], define the energy on the plane
t'=7 as (see Figure 3.1)

Mﬂ=é@%+ﬁ+VWM%ﬂM@

23
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and the energy on the plane ¢t = z as

Tim [ @20+ ) + V)2, 2)
For any 7 € [1,T], integrating the relation
2ue(Op+ o) = (i + |Vul* + 0 4)e — 2V - (1 Vi), (3.7)

over the region Q4 , and using 20%uu; < o(u? + o?p?)), we obtain

J=E(T)— 2/ pe(Lp+ (0 — qQ)p) — 2/ LeOuf dS
Q+,T )

+im

~

<E(T)+a/ |va:,t,u|2+02ﬂ2+/ |utLu|+/ W0, 1| dS.
Q+ Q+ Xy

Integrating this over 7 € [1,T] and noting that

T
| E@ar< [ Vaanluote
1 Q+ IS
we obtain

sxo [ (9l + ol | gl + [ udunlas (3.8)
Q+ Q+ DS

with the constant dependent only on 7" and ||¢fec.

Now p = e’ so
<@l IV l=e (Ve sa] + olal). (3.9)
Further, since « is smooth in the regionit > 2, on ()4 we have
Lp=O+qpu=e" (£a +20(drae = Vi - Va) + 0allp + 02 (45 = [VY[)a)

which implies
1Lu|Re? (|Lal + o|Vaial + o?|al). (3.10)

Hence using (3.9), (3.10)yand noting
202|Vial la| < 0| Vaial? + o3a?,

(3.8) implies
IZLalZ, o, +olla

oq, tllalios, +100liss, (3.11)

with the constant dependent only on 7" and ||¢||cc-

Now & = e~ “¥p s0 |a| < e=7¥|u| and
s + cul=e ™7 (s + el + o)),
Vyalse ™ (IVyul + olul)
hence
oz + ai* + | Vyal? + 0?0’ <e 27 (|2 + ) + [Vyul® + o [ul?),
so the lemma follows from (3.11) and the definition of J. O

24
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3.3 The construction of p(z,t)

Lemma 3.6 (The estimates for p(z,t)). If T > 1, ¢ € C(R"™) and p(y) is.a compactly, supported
smooth function on R"™! then the characteristic boundary value problem

H+q)p=0, on Q— (3.12)
p(y,z,z) :ﬁ(y), on I’ ~ (313)
p(y, Zat) = ﬁ(y)7 on X_ (314)

has a unique solution in HY(Q_) with d,p € L*(X_), p(-,7) € HY(B)ppt(-,7) € L*(B) and
ol ey + oG D) sy + ot Tl 2sy + 10wl _y slloler =) <ol a1 znr)
for all T € [T, —1], with the constant dependent only on ||q|lec and T'. Further

@O +9)(p(y, 2, 1) H(z F)) =0~ gon Q.

Proof. Below £ = [+ ¢. Since p(y) is also a smoeth function on R” independent of z, we redefine p
to be a smooth compactly supported function on, R™which agrees with the old p on a neighborhood
of B. This redefinition does not changemthe lemma and avoids introducing a new symbol.

Arguing as one would to preve Proposition, 1.1 (see the proof of Theorem 1 in [RU14]), the
characteristic IVP

(O+q)p =0; (y,2,t) ER" xR, t > 2, (3.15)
plyiz ap=pys=),  (y,2) R, (3.16)
ply, %t) =0, 2 <t<<0, (3.17)

is well posed and has a smooth'solution. On 3, define the function

r ﬁ y,z,t , on % )
fly,z,t) = {( ) i
ply,2), on¥_;

f is in H'(2) becdause'p =g on I'. Hence, by standard theory (see Theorem 3.1 in [BY17]), the
backward IBVP

O+q¢p=0, onQ, (3.18)
p=p, on@Qn{t=1} (3.19)
p=f ~ onx, (3.20)

has a unique solution in H'(Q) with 9,5 € L*(X) and p(-,7) € HY(B), pi(-,7) € L*(B) for all
7 €=7, —1]. Also, from domain of dependence arguments one can see that p = g on @4, and in
particular p = p on I'. Let p be the restriction of p to Q_; this is the desired solution.
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To prove uniqueness, we need to show that if p(y) = 0 and p € H*(Q_) is a solution of (3.12)-
(3.14), then p = 0. Given a smooth function 9 on _ which is supported in the interior of @_, the
IBVP

O+q¢=1v, (x,t)€Bx(-T,x)
¢(,=T) =0, 0¢(-,—T) =0, on B
op=0, onSx[-T, o00)

_ ~
has a solution which is smooth on B x [-T,00) (from Theorem 5.1/in Ghapter IV of [La85] and its
application to ¢ derivatives of ¢). Hence, using the definition ofta,weak soltition of (3.12) - (3.14)
with p = 0, we have

/ p(0+q)¢=0;
Q_

note that there is no contribution from the boundary of ., not even from I', because the boundary
terms on I' involve p or the first order derivatives of p in directions tangential to I'. Hence

/_p¢=0 4

for every smooth function ¥ on ()_ which is supported in the interior of ¢)_. Hence p =0 on Q_.

We next show that (O + q)(p(y, z, )H(z =%))=.0 on Q. Let ¢(z,t) be a smooth function on @
with support in the interior of Q). Noting that p is smooth on @+ and (O + ¢)p = 0 on Q4, from
the construction of p we know that

0=<Lﬁ,¢>=<ﬁ,z¢>=/ ﬁ£¢+/Q pLo

Q+

N
= [ oo g g+ Ve (6Vap - 5¥a0)+ [ oo
Q+ Q-

1
= —— 0 Uz —p 4 d
/QPL¢+\/§/F¢(Pt+P) p(¢e + ) dS

= oS [ o= 00 2) oty 2,2 0t 2, 2))

d
Z/QpL¢+2/3¢(y,z’Z)dZ(ﬁ(y,z,z))dydz

=/Qp£¢+2/9¢(y,z,Z)CZ(ﬁ(y))dydz

2| oto.

Henee L(p(y, z,t)H(z —t)) =0 on Q.

We fiow obtain the estimate in the lemma. We construct a sequence of functions p € H2(Q_)
such that py, = pon T, pp(-,7) = p(-,7) in HY(B), O¢pr(-,7) — pe(-,7) in L?(B) for all 7 € [-1, —T]

26
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and pp — pin HY(X_), 0,pr — O,p in L*(X_). Using multiplier methods and enefgy estimates as
in the proof of Lemma 3.6 in [BY17], one can show that
ok Gy T By + 100k T 2By + 10wpkll 2=y <l okl a0y + okl 5 =2y

for all T € [-T,—1]. Hence, letting k — oo, we obtain
1oCs I sy + 10ep( T 228y + 10upl 2=y = ol 1 @yt el 22 -

~
So the estimate in the lemma will follow if we can show that

ol oy + el g oy <sloll g (sany- (3.21)

T - /S )P + 15V )P + 3 1B 50,)5(y) 2 Sy
i#j

On the other hand, on T, p(y, z, 2) = p(y) so ’

I3y = V2 / 1) + V0 (y) Py d=< / V1= Ty (pw) + 1V,6(4)I%) dy
B ly[<1

< /S 216w + [Vyp(y)I?) dSye
%HPH%ﬂ(ZmF)-

Further, on Y_ the tangential derivatives of p are derivatives in the directions 0;, 2V, — y0, and
YiOy; — y;0y, of the function p(y)which is a smooth extension of the restriction of p to ¥_. Hence

o2 ) = /E DA + 29,50 + 3 100y, — 4;0y)5() | Sy
- £
< / B4 1900 + 3 widy, — 130,)5(4) S, -
5 i#j
4”%’“%{1(201“)'

So we have proved (3.21).

It remains toconstruct the approximating sequence pi. From (3.15), one has

(8t + az)(,ét - ﬁz)(ya 2, Z) = Ayﬁ(:% Z) - Q(ya z)ﬁ(yv Z)v (y> Z) €B
which implies

d _

@((ﬁt = p2)(,2,2)) = Ayply, 2) — q(y, 2)p(y, 2), (y,2) € B

whichreombined with

(ot )2 2) = oy ) =0, (5.2) € B
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determines

(Y, 2, 2) / Ayp(y,s) —qly, 2)p(y, s) ds, (y,2) € B

Let us define the smooth function
1 [~ _ _ n
D=y [ Buples) - v el s s, (e R

Construct a smooth function y on (—oo, 0] with support in [—1,0] such that

and define
r3 ) 7Z7t ’ ,Z,t € % ’
fk(y,z t) _ ?(y )71 (y ) +
py) + k= x(k(t — 2))g(y, 2), (y,2,t) € X
We note that f;, € C!(X) because fe(y, 2, 24+) = frlszpz=phand 0, fi(y, z, 2+) = 8, f(y, z, 2—) for
(y,2) € S. Further f;, — f in H'(X) because v

Ik~ x(k(t = 2)g(y, )i (s <

0
2+/ ds — 0, as k — oo.

Let pr be the solution of theddBVP (3.18)-(3.20) except with f replaced by fi. Since fj is in
Cl and pp = p on t > z, by applying Theorem 3.1 in [BY17] to py and 0;pp one can show that
pr € H*(Q) and we have

16 — A1) (o T ermy, + 1106 (5 — pie) (- Dl 2wy + 100(5 — o)l L2y <k — Fller (s

for all 7 € [T, —1]. So if we take pj to be the restriction of py to Q_ then we have constructed the
desired py. Note that on I" we have pp = pr = p because pp = p on Q1 by a domain of dependence
argument. [

4 Proofs for the spherical and point source problem

Our functions will be defined mostly over the region above ¢ = —|x| and we avoid points where
x = 0 so we define
K={(z,t) eR¥*xR: —|z| <t, z#0}.

The following proposition will be crucial in the proof of Theorem 1.6.

28
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Proposition 4.1 (Main proposition for spherical and point source problem). Suppose p(z),q(z)
are smooth functions on R3, supported in B and zero in neighborhood of the origin. Let f{(#,t) be
a bounded function on K and a(x,t) a continuous function on K with t sections of o compactly
supported, o smooth on the subregions t > |z|, t < |z| with

O+ q)a(z,t) = p(x) f(z, 1), (z,t) € K, (as distributions) (4.1)
1
a(z, |z]) = /0 p(sx)ds, x # 0, (4.2)

and a|gy(—1,3) = 0, Orat|gyx(~1,3) = 0; then p = 0.

4.1 Proof of Theorem 1.6

a(x,t) = - (wl— w2)(X,

~ FEigure 4.1: Definition of «

Suppose ¢;(z), i = 1,2, aredmooth functions on R? with support in B and zero in a neighborhood
of the origin. Let v; and w;, =71, 2, be the functions, corresponding to ¢ = ¢;, whose existence
and uniqueness is guaranteed by, Propositions 1.4 and 1.5. Then

(0% q1)(v1 —v2) = —(q1 — g2)v2, t>|z|, (v,t) € R® xR,

1
(v1 —wvo)(x,|x|) = _817r/0 (1 — q2)(sx) ds, z € R3,

and
(O 4+ q1)(w1 —w2) = —(q1 — g2)wa, —|z| <t <|z|, (z,t) € R® xR,
(12 W) —le) =~ [ (- w)sn)ds, € B w20,
(w1 —we)(z,t) =0, — |z <t < -1
Fori(x,t) € K, define
mn {?fik?f-w, i<l
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and

— (w1 = w2)(z, —1), —la| <t <fal.

al(z,t) = {(vl e t>|z| >0,

Note that o has smooth extensions to the regions ¢t > |z| > 0, —|z| < t < |z|'and
a(z,t) =0, when 1<t < |z|.

because of (1.17). Also for x # 0

o, [z|+) — alz,|z[— :—/ a1 — q2)(sz ds—a/ (q=q2)(s7) ds

__/ (@1 — q2)(sx) ds 87rr ; (Q1—Q2)(39)-

Now

0 (H(t_‘x’)> =0, mfor (:c,i) cK

]

so, for (z,t) € K, we have

(e - fol)) = 0 (Jol 5T
A T (<t~ o)
456 %y
and, again on K, N

D(H(lz| —4)) = D1 - H(t — |2])) = —%5(75 =)

(4.3)

Taking smooth extensions of (viy— v2)(x,t) and (w1 — ws)(x, —t) to K, for (z,t) € K we have

O+ q)a(e, ) =B+ q1) (@1 — v2)(z, ) H(t = |2]) = (w1 — w2)(z, ) H(|z] = 1))

<(q0=a2) U2 + (v1 — v2) (2, )D(H (t = [2])) = (w1 — wo)(z, =)D(H (=] - 1))

+20(t=z)) (0 + 0 - V)(v1 — va)(x,t) — 26(|x| — ) (O — € - V) (w1 — wa))(z, —t)

==(q1 — q2) U2 + %5@ —7)((v1 —v2)(r0,t) + (w1 — w2)(r6, —t))
+25(t—7r)(0r 4+ 60 -V)(v1 —v2)(rf,7r) —26(t —r)((0y — 0 - V) (w

—(q1 — q2) 02 + %5(15 —7)((v1 — v2)(rh, 1) + (w1 — wa)(rl, —r))
+26(t r)di‘i((m ) (1, 7)) + 25(t — T)%((wl —w2) (10, 1))
=—(q1 —q2) V2 + %5(75 — T)C%(roz(w, r+) —ra(rf,r—))
—(q1 — q2) V2,

30
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because of (4.4). Summarizing, « is smooth on the regions ¢t > |z| > 0 and —|z| <# < |x| with
(D + Q1 o = (CII - (IZ)UQa (CL’, t) € Ka (45)

1
. ale o) =~ [ (@ - a)0)ds 020 (16)
0

oNOYTULT D WN =

12 1 [
13 oz, |r|+) — afz,|z]-) 87T/ (1 — @2)(sz)ds,  &#0, (4.7)
0

18 If the g1, g2 are such that
20 Vilsx,3 = V2lsx3y  Wilgx[—aiN= Walsxit1,1); (4.9)

22 then a|gy(—1,3 = 0 and we show that ¢ = go.

25 Firstly, we claim « is continuous across t = |z|lon K. Sitice v, (z,t) = va(z,t) on S x [1, 3], we
26 have vy (z, |z|) = va(x, |x|) for all z € S. Hence

1 1
28 / q1(sx)ds = / g2 (s@).ds, Ve €S,
0 0

and since the ¢; are supported in |z| <1y we have

oo
33 / (q1=q2)(sx)dz =0, Vr € R, |z| =1,
0
35 which implies
(©.9]
37 /\(ql — @) (sz)dz =0, Vz € R?
0
39 and hence, from (4.7), the jump in @ across t = |z| is 0.
Summarizing, a.dsssmooth on the regions t > |z| and —|z| < ¢t < |z|, continuous across t = |z|

and satisfies (4.5), (4.6), with a|g,(—13 = 0. So, from Lemma 5.2, we have 0,a|gy(—1,3 = 0, hence
44 q1 = @2 from Propesition 4.1. Note the hypothesis of Lemma 5.2 holds because of (4.5) and (4.8).

48 4.2 Proof of Proposition 4.1

51 Weddefine K= {(z,t) e R® x R: —|z| < t},
53 Q:={(z,t) eER¥*xR:e<|z| <1, —|z| <t <3}, Q+ =Qn{t>|z|}.

55 Suppose p,q are supported in B and zero on |x| < 3¢, € small. Choose an a between 4 and
56 4(1 —9¢2)~! and define

58 ¢z, t) =alal* = (t—|z)*,  (2,t) €R® xR;
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from Lemma 5.4 we know that
b=
is strongly pseudoconvex w.r.t [ in a neighborhood of @ for a large enough X. For convenience, at

times, we use the expressions ¢(r,t) and 1(r,t) instead of ¢(x,t) and ¢ (x, t); here r = |x|.

We claim (see Figure 4.2), that the smallest value of ¢ on the set {(z,|z]) 1 8¢ < |z] < 1} is

larger than the largest value of ¢ on o

{(z,t) s |z] <1, t =3} U{(z,—|z]) : |z| < 1} U{(z,t) “J&| < 2¢, t € R}.

On t =r, 3¢ < r < 1, the smallest value of ¢ is 9ae?. On t =.3, 0 < r <, the largest value of ¢ is
a—4. On t = —r, the largest value of ¢ is a — 4. On 0 < r < 2¢, t € R, the largest value of ¢ is
bounded above by 4ae?. Hence our claim is proved because wechosé'a between 4 and 4/(1 — 9¢2).

So we can find 6 > 0, ¢ € R and a small [ in (0, ¢)'such that (see Figure 4.2)
L

e ¢ < c¢— 0 on the set

Bx[3-=013U{(z,t): 0<|z| <O <t +7 < JU{(z,t): |z <26 —1<t <3
e Yy>c+dont=r3c<r<1.

Choose x(z,t), a compactly supported smooth, function on R? x R such that x is 1 near t = |z
and 0 on the parts of dQ) where we,do not have information. More specifically, we construct a
compactly supported smooth funetion yusuch that (see Figure 4.2)

e x(x,t) =1 on a neighborhoodvof {(x,t) :t =r, 3e <r <1}
e x(z,t) =0 when |z| <¢€o0r when t >3 —1/2;
o x(z,t)=0o0n {(@t):0<t+r<1/2,0<r<1};

e V. :x is nonzero only when € < |z| <2c¢or3—1<t<3-—1/20r when /2 <r+t <L

Define
Blx,t) = x(z,t)a(x,t), (z,t) € K;

B has the same regularity properties as «, 8 and (3, are zero on || = € by construction and 5 and
By are zere on S X (—1, 3] because of the hypothesis on «. Further, 3, 5; are zero on t = 3 and [ is
zerg in a neighborhood of ¢t = —r because of . Since 3 € H'(K) is compactly supported and 1 is
strongly pseudoconvex w.r.t O in a neighborhood of @, from Theorem 1 in [Ta96], we have

- / (V. B + ?B%)< / | BP, (4.10)
Q Q

for large o. Here and below £ = [+ q.

32



Page 33 of 45

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - IP-102101.R1

3-l

r+t=I
r+t=0

Figure 4.2: Consttuction of,y
L /

For r € [3¢, 1], using (4.2), and that x is'lvin a neighborhood of ¢ = r with 3¢ < r < 1, we have

p(ro) = dir /01“ p(s0) ds.= d%’ <'r /Olp(TSH) ds>

d d
= J(ra(r&?“)) = $(Tﬂ("”977a))

=(x0 - VB +rpi+ B)(ro,r)
= (r(BrsBe) + B)(ro, 7).

Hence, using the support of prand Lemma 5.1 we have

/ 27V () 2 dr = / I p(a)[* do
B B\ B«

< / P (18, 4 8 + B2) (e, |2]) da
B\B.
<0812 00, + 181300, (4.11)

< [ @i (4.12)
Q

with the'last inequality a consequence of (4.10). Noting that « is continuous across ¢t = |z| and
smooth 'on each side of ¢t = |z| one may verify using a test function that

LB = L(xa) =xLa+ alx +2(xtau — Vx - Va).
So using;, the hypothesis of the proposition, we have

[LBl=sxIpfl+h  on@

for a bounded function h on @ with support on the region where V, ;X is non-zero; hence 1 < c—4¢
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on the support of h. So, in (4.12), using the function g(o) from Lemma 5.5, we obtain

/ 20 (z,|z|) ’p( )2d$</ 20 (x,t) |p( )|2dxdt+62g(c_6)
B Q
3
< / (2700 1al) ) 2 / @)~ g 27 (D)
<|z|<1 -1

#9(0)/ 2@ 2D |p(2)|2 4 e20(e=0)
B

Hence, from Lemma 5.5, for large enough o we have

/ 20 (z,|x|) ’p( )‘2 dx#e2o(c—6).
B

Since ¥(x, |x|) > ¢+ d on 3e < |x| < 1 and p(z) is supported in 3e.< |z| < 1, we obtain

20(0+6)/ |p($)’2 dw%e20(c—i)
B

/ () M,
B

for large enough o. So letting o — od wereonclude that

INCIRESE
B

which is equivalent to

and hence p =0 on B.

N
4.3 Proof of Proposition 1.5

Choose a x(r) € C29(R3), which is supported in |x| > 1/4 and 1 on |z| > 1/2. We seek W (z,t) in
the form
o(t + |z[)
47| x|

W(z,t) = x(x) + Wz, 1)

so we need to prove the wellsposedness of the inhomogeneous IVP

(O+ W = F(z,t), (2,t) e R® xR, (4.13)
W(z,t)=0, t<—1, (4.14)

where 5t
F(z,t) = —(0+q) (X(g;) m> . (4.15)

Latetwe show that F(x,t) =0 for t < —1 and F(z,t) € L}(R, H*(R?)) for all s < —7/2. So, from
Theorems 9.3.1, 9.3.2 and the remark after that in [H676], we conclude that (4.13), (4.14) has a
unique solution in the class of functions which are locally in H'(R, H*(R3)), s < —7/2.
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Next we address the regularity of W (z,t). We have

oNOYTULT D WN =

St + |2)

o Wiet) = =

, t<—1
and, for ¢t < —1, the wave front set of W is

13 S(t
14 WF ot + Jz]) cT ={(z, || : ow,0lz|) : = € R® J@#)>i, o € R}.
Am || ~

Since ¢ is smooth and (O 4 ¢)W = 0 on R3 x R, from Hormander’s propagation of singularities
18 theorem (Theorem 2.1 in Chapter 6 of [Ta81]), the wave front sethofW is invariant w.r.t the
19 bicharacteristic flow associated with [J, hence singularitiesf W are preserved along rays of [J.
20 Further, for ¢t < —1, the singularities of W must lie on ¢t =«=|a|."Since the z, ¢ rays are lines which
21 make a 45 degree angle with lines parallel to the ¢ axis, the onlywz, ¢ rays which lie on ¢t = —|z| for
22 t < —1 are those which lie on the cone t? = |z|?. Hencé the singularities of W lie on t* = |z|? only.

- 4
25 Since W (x,t) is supported on t = —|x| when ¢t/ < <1, from a domain of dependence argument
26 we see that W is supported in ¢ > —|z|. On'the region ¢ </|x|, we seek W (x,t) in the form

Wz, t) = ;W Poaw(z, ) H(t + |z))

31 where w(z,t) will be a smooth function em—|z| <t < |z|.

34 First (1.14) forces w(z,t) = 0 for =|z| <t < —1. Next, since

a(t
36 O <M> =0 when |z| < ¢,

47|x|
39 (1.13) forces
40 (O +a)w(z, YH(t + |2]) = —q()

When x # 0 we have (below n = 3)

St + |2)

hen ¢ . 4.1
Tl when t < |z| (4.16)

45 V (w (@ ) H (E ) = %w(%‘,m(t +z]) + (Vw) (2, ) H (¢t + |z]),

Z; A(w(ad) H (4 |z))) = w(x,t)é/(t +|2)) + 2% Vw(z, t) 5(t + |z|)

49 + IS w(e, )3t + ) + (Aw) (e, O H(t + |x]),

|z |
] Op(w(z, ) H (t + [z[)) = w(z, 1)0(t + [z[) + wi(z, t) H(t + |x]),
53 0f (w(a, ) H (t + [2]) = w(, )0 (t + ) + 2wi (2, 1)3(t + |2]) + we(a, ) H (t + |2]).

55 Hence, for z # 0

X

]
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Using this in (4.16) we see that we need to find a smooth w(z,t) on —|z| <t < |z|'such that

O+ qQuw=0 on —|z| <t< |zl (4.17)
and
(—|z|ws + = - Vw + w)(x, —|z|) = qé:_), x # O (4.18)

Now (4.18) may be written as

d B q(r0)
%(rw(rﬁ, —r)) = o

which combined with w(r6,t) = 0 for ¢ < —1 implies

r>0, |0|=1,

1 o0
rw(rf, —r) = _8/ q(s0) ds, r >0, [0|=1
™ T

and hence 1 oo
w(z, —|z|) = —/ q(s@)ds, x # 0. (4.19)
8w 1

The existence and uniqueness of a smooth w(z,t)'on/~|z| <t < |z| satisfying (4.17), (4.19) and
w(z,t) =0 on —|z| <t < —1 is proved in [Balsg].

We now prove the earlier claim that the F'(x,t) defined by (4.15) is in L?(R, H*(R3)) for all
s < —=7/2. From Theorem 7.3.1 in [FJ98] werhave

o () = (e

4r|z|

and since x(x) supported in |z| 21/4,"Vx(x) is supported in 1/4 < |z| < 1/2, g(z) is supported in
|x| < 1, we conclude that

5(t 412D
MR A @) - 290 v

= a(®)d(t + |z|) + b(x) &' (t + |z|)

Fio.t) 4 S+ D)

4 |x|

where a(x),b(x) arg’smoeth functions supported in 1/4 < |z| < 1. Now, for (¢,7) € R? x R, the
Fourier transform of b(z)d (¢ + |z|) is

FO@T ¢+ laD)€r) = [ ) (et e e du
X
= iT/ b(z) e I dy,
R3
implying
|F(b(z) &' (t + |x]))(&,7)] < Cl7). (used when 7 small)

Further, for 7 # 0, we have

F(b(x) &' (t + |2])) (&, 7) = _% 9 b()e~ i€ 92(4I7)

= —/ 1202 (r2b(z)e %) e dg
R3

T
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implying

oNOYTULT D WN =

1+ [¢))?
9 50 8¢+ la (e, < ¢ L
10 Hence, for s < 0, using the above upper bounds we have

12 b0 8 + oDl egn -y = [ [ 1+ 1EPY15000) 8+ el ) de

14 L
— 2\s T - - 9 -

i - <//R+/||/R) (1+ |¢)* [F ()0 EF ) (&, 7)I* dE d

17 (N . (e

18 4/_17 /Rg(lﬂél ) dfdr+/|7|>1/w(1+yg\ ) S5 e dr

T

(used when 7 not small)

> < [Lariepyass [ (e Chutly ds
R3 R3

23 #/ 7“2(1+7“2)8d7“+/ r2(1 + )2 dr
0 0

L /
25 is finite if 25 + 6 < —1, that is if s < —7/2. Henee a(x)d'(t + |z|) € L*(R, H*(R?)) if s < —7/2.
26 Using a similar argument one may show thatb(z)d(t +|z|)/€ L*(R, H*(R3)) for at least s < —7/2.

5 Lemmas for the spherical and point source problem

34 For this section, define K := {(z4#) € R? x R : —|z| < t, x # 0}, for € > 0 we define

)
36 Be={zeR3:|z| <€}, Q:={(z,t) eR3xR:e< || <1, —|z[ <t <3}, ¥:=8x(-1,3],
37 N
38 and, for 7 > 0, we define
39 Qi = Qnfte 2}, Q@ =Qn{t<lal}, Qir=QiN{t<7},
41 2+ :Eﬂ{tz |.CC|}, > :Eﬂ{t§ ’.’E‘}

45 5.1 Energy estimates for the spherical and point source problem

48 We deriye a weighted energy estimate on ¢ = r and an energy estimate for the exterior problem,
49 the first needed in the proof of Proposition 4.1 and the second needed in the proof of Theorem 1.6.

51 Lemima 5.10(Energy estimate on t = |z|). If ¢ is a smooth function on R® with support in B and
52 B,% are smooth functions on t > |x| > 0 such that 3, 0,5 are zero when |z| =€ (e > 0 is small) or
53 when x| =4, then
1
2 2 202 2 2
55 g (60 8% + 5z (@8 + 0262 (@b o l81R . + 1O + D6,
€ Z]
58 for all o > 0 large enough, with the constant dependent only on €, ||q|l and HQZJHCQ@+).
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Proof. For 0 > 1, let = €% 3; then on Q.

l=e™ 1B, [ Vaunl<e™ ([VarBl +olB]). (5.1)

Further, since § is smooth on the region t > |z|, we have

Lp= O+ q)p=e"V (LB +20(eBr — Vib - VB) + oS + a2(4; — |Y4?)3)

which implies
[Lul=e™ (1£8] + 0| VaeB] + o®[B]). ~ (5.2)

Define

1
J = / <(,Ut + 1) + FZ(QUF@)Q + 02ﬂ2> (@, |2]) dz
B\B "
and, for any 7 € [1, 3], define

E(7) := / (I Ve + o) (@) do.
B\B.
Note that from (1.19) we have

1
Vool + 2prpae = (g o 55 > ().
i%

For any 7 € [1, 3], integrating the relation
20 (O +0? ) =g + |Vul® + 0°1%) — 2V - (V)

over the region @ -, and noting that p@and O,p are zero when |z| = € or |z| = 1, we have
J-Br) -2 [ @t
Q+.r
> B -2 [ mlen+ @+ o)
Q+.r
<E@)+ [ (1eul + oDl

Q+

Integrating this over 7 € [1,3], using (5.1) - (5.2) and that o2|u| |pu|<c|p:|> + o®|u|? we obtain

I=o [ Vaanl+ ottt [ 1gul
Q+ Q+

<o [ EVaP 4P+ [ e (53
Q+ Q+
Now 1 =¢°%3 s0 B = e %y and hence, on Q., we have
B+ Bl + e + Pl VI BPRIQ il + P I = |uf
So this combined with (5.3) and the definition of J proves the lemma. O
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Next we obtain a uniqueness result for an exterior problem.

Lemma 5.2 (Uniqueness for exterior problem). Suppose a(xz,t) is a continuous,functiomon K
which is smooth on the subregions t > |z| and t < |x| and satisfies

Oa =0, on (x,t) € K, |x| > 1,
a(z,t) =0, onl<t< |z,

Oz‘z = 0;

then o = 0 on the region {(z,t) : || > 1, —1<t<3}.

Proof. Firstly a = 0 on the conical type region C := {(x,t) :|&p> 1, |z| <t < 3}. This follows
from integrating the identity

2uu = (u? + |Vul?)e.= 2V (u;Vu)

over the region C' N {t < 7}, for all 7 € [1, 3], and observing that o is smooth C' and o = 0 on PN
(the lateral boundary of C) and the conicalsboundary of C. Note the conical boundary of C' is a
characteristic surface so & = 0 on this surface is. adequate for our purpose. Hence @ = 0 on the
region {(z,t) : || > 1, 1 <t <3}

Next, on the region {(x,t) : |[x| > 1,"=1 <t <1}, a is smooth and solves the backward IBVP
Oa = 0 with a = 0 on ¥_ (the lateral boundary) and o = 0,y = 0 on ¢t = 1. So again by standard
estimates o = 0 on this region.

A S

5.2 Carleman weight for.the spherical wave problem

Please refer to beginning of subsection 3.1 for the definition of pseudoconvexity and strong pseu-
doconvexity for.differential/operators and associated results that we use here.

Our goal isito construct a function, dependent only on r, ¢, which is decreasing in |t — r| for
a fixed ¢ and strongly pseudoconvex w.r.t [J. As discussed at the beginning of subsection 3.1,
one starts by constructing a function whose level surfaces are pseudoconvex w.r.t [l. We start by
charaeterizing all functions, dependent only on r, ¢, whose level surfaces are pseudoconvex w.r.t [J;
this may besuseful elsewhere.

Lemma 5. If ¢(r,t) is a smooth function on (0,00) X R such that (¢r, ¢¢) # (0,0) at every point
on this region, then the level curves of ¢p(x,t) = ¢(|z|,t) are strongly pseudoconver w.r.t O on the
region (R™ \ {0}) x R, n > 1, iff the following holds on (0,00) x R:

T(Pud? + Grodf — 20rPrdt) + Gr(d7 — 7) >0,  whenever |¢y| < |¢y| (5.4)
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Proof. As discussed at the beginning of subsection 3.1, since [J is a second order operator with real
principal symbol, the level surfaces of ¢ will be strongly pseudoconvex w.r.t [d.on a region“iff the
level surfaces of ¢ are pseudoconvex w.r.t [] on that region.

Define Q := (R™\ {0}) x R, ¢(z,t) := ¢(|z|,t) on Q and note that Wald 0. at every point
of 2. Below double indices imply summation. Temporarily we denote(t by zod7 by & and take
x = (o, 21, ,Zn), & = (&, -+ ,&n). The condition (1.3) in [Ta96], insexpanded form, is condition
(8.4.5) in [H576], so the level surfaces of ¢ are pseudoconvex w.r.t P(z, D)with principal symbol
p(x,§)) on  iff

T (0) S 0.9) g (0,6) + (G () B (0:6) g (1 B (0.8)) 7 (0) > 0
whenever (z,€) € Q2 x R™1, ¢ £0 and
p(2,€) =0, (Vep- VM)(%&)’: 0.
If we introduce g = —1 and ¢; = 1 for j = L,--- , m'thén the principal symbol of O is

ENSENSTSH

and the psuedo-convexity condition may-be rewritten as

€5 6kPa 2, &Sk > 0
whenever x € €2, £ # 0 and
ijjz = O, 6j£j¢mj =0.
Written in the original variables,@e pseudoconvexity condition is

7-2(51515 - 2T€j<5$jt + fjgkéxjxk > 07 V(fl',t) S Q7 (577—) 7é (07 0)7 7—2 - |§‘2) qut = 5 . VCCQZ

Since the condition ischemogeneous in (£, 7), we may take 7 = £1, |{| = 1 and the condition is
equivalent to

(Z\gtt - 25](5th + gjgk(l\gx]xk > 0
whenever (z,t)€ €, |§,=4 and by =E-Vyo.

Now

v . €
¢t = ¢t7 ¢Ij = ¢7‘7J
o o Ti ;T @ Ljlk
¢tt = ¢tt7 Qb:c:t = ert*]y ¢:cxk = Qbrrji + léjk - ¢7“]7-
J J 2 3
T T T T

With (é:5;) # (0,0) at every point, the pseudoconvexity condition is

. . 2 2 . 2
¢tt_2¢rt(x 5) +¢r7”(x 25) +¢T‘@_ 7"(1: 35) >0
T T r T
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at points where |¢|2 = 1 and ¢y = ¢.(z - €)/r. Since (¢, dr) # (0,0) at every point, the condition
¢t = ¢p(x - ) /7 holds only at points where ¢, # 0, so at such points we can write

8 _ o
r br
and hence the pseudoconvexity inequality is

¢ % b Gt =
0< ¢tt - 2¢r‘t¢7j +¢rr¢7§ + 7 - r¢%t

_ T(ﬁf)ttﬁbz + cbm«cé? —2¢rOrdt) + ¢r(¢% = ¢%)

o7 :
Also, since [£| = 1, we have
o _lo-8l _lolld |
|¢r ] r r
Further, if [¢¢| < |¢,| at some point then we can find an £ € Rywith [§| = 1 so that ¢, = ¢.(x-§)/r
at that point. Hence we have proved the lemma. ]

Next we construct a function of r, ¢ which is strongly pseudoconvex w.r.t [J and such that the
function is a decreasing function of |t/=m|.for a fixed r.

Lemma 5.4. For a > 4, if
¢, t) = ale|* — (t — |z[)”

then
Y, t) == D),

for large enough X, is strongly psendoconver w.r.t O on the region (R®\ {0}) x R.

Proof. From the discussion at the beginning of subsection 3.1 it is enough to prove that the level
surfaces of ¢ are stromigly, pseudéconvex w.r.t [J on the region (R?\ {0}) x R, so we use Lemma 5.3
to prove this.

For convenience we. take
L 2 1 2 2 1.9 2
o(r b= 5((” —(t—r)) = 5((&— 1)re+2rt —t°) = i(br +2rt —t%)
where b = — 1./ Hence

gf)r:bT‘—i-t, QZ)tZT’—t
¢7‘T = b7 ¢7"t = 17 d)tt = -1

Now ¢»= 0 and ¢; = 0 exactly at the points where r = ¢ and br +t¢ = 0, that is iff b = —1, because
we are working in the region where r £ 0. So we have to be sure that b # —1.
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Next, the condition |¢¢| < |¢,| is equivalent to
r—t)? < |br + |2

which simplifies to
(1=b*)r<2(b+1)t.
If we choose to have b+ 1 > 0 (that is a > 0) then the condition |¢;| <@,| is equivalent to

1 _ ~
. b, (5.5)

t >

Next, from Lemma 5.3, for ¢ to have strongly pseuodoconvex level surfaces w.r.t [J, we want

0 < (réu + ¢ )07 + (rdee — G )b7 — 2rdrircyy

—r 4 br 4 t)(br + )% + (br — br — t)(r — t)2 = 2r(r —E)(br + 1)

(b—1)r +t)(br + )2 — t(r — t)% — 2r(r —t)(br3-t)

(b—1)r +t)(br +1)* = (r — t)(tr — t* 4 2bi® + 2rt)

(b—1)r +t)(br + )% — (r — t)(2bs:? + 3rt =t%)

3+ rt2(b—1) + 20+ 1+ 3) 4+ r26(2W(b — 1) + b? + 2b — 3) + r>(b*(b — 1) — 2b)
rt2 (b4 1) + 3tr2(b* — 1) +b(b* — b= 2)r°

= (b+ 1)r(3t* +3(b — V)tr + blb— 2)#%)

N

= (
= (
= (
= (
=0
=3

whenever (5.5) holds. So assuming we choose b4 1 > 0, we want the quadratic form
f@t) ==w2b(b —2) +3(b — 1)rt + 3t

to be positive in the regiongm>\(1 — b)r/2. But (r,t) and (—r, —t) give the same value of the
quadratic form but opposite inequalities for ¢ > (1 — b)r/2, so we want this quadratic form to be
positive definite. If we choased > 2 then this quadratic form will be positive definite if

0£126(b —2) —9(b—1)> =3b> —6b—9 =3((b—1)* — 4),

that isif b > 3. So we conclude that if b > 3 then the level curves of ¢(r, t) are strongly pseudoconvex
in the region where r.# 0. O

Next, wercompute the limit of an integral associated with the Carleman weight we use in the
proof of Proposition 4.1.

Lemma 5.5. Let D = {x € R?: ¢ < |z| < 1} and ¥ (x,t) be the function in Lemma 5.4. Define

3
9(0) = sup / 2olbla)—b(a.jal)) gg.
zeD J—-1

then lim,_,~, g(o) = 0.
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Proof. Below x € D. Since A > 0 and ¢(z, |z|) > 0, we have
W(z, |z|) — p(x, t) = @D _ Ae@t) = Aéwlel) (] _ =Ml le])—d@t))
=M@l (1 — e*A(t*III)Q) > 1 — e Mt=lzl)?
Now, for s > 0,
1 —e" % >min(1/2,s/2),

hence -

2((z,t) = ¥(z, |z])) < —min(1, At — |2})?)

SO
3 3 . ) 3—|a] . )
/ 20t —v(ell) gy < / oo min(LAG—2])2) gy / e—omin(LA2) g
-1 -1 —1=|z|
3
</ efcrrnin(l,)\t2) dt.
- J2
. L
Hence, by the dominated convergence theorem
3 : )
0 < lim g(o) < lim e~ ML) gp — ),
g—00 o—Q 2
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