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Abstract. To adapt all-immersive digitalization, the Finnish National Curriculum 2014
(FNC-2014) ‘digi-jumps’ by integrating programming into elementary education. However,
applying the change to mathematics teachers’ everyday praxis is hindered by a too high-
level specification. To elaborate FNC-2014 into more concrete learning targets, we review
the computer science syllabi of countries that are well ahead, as well as the education rec-
ommendations set by computer science organizations, such as ACM and IEEE. The whole
mathematics syllabus should be critically viewed in the light of these recommendations and
feedback collected from software professionals and educators. The feedback reveals an im-
balance between supply and demand, i.e., what is over-taught versus under-taught, from the
point of the requirements of current working life. The surveyed software engineers criticize the
unnecessary surplus of calculus and differential equations, i.e., continuous mathematics. In
contrast, the emphasis should shift more towards algorithms and data structures, flexibility
in handling multiple data representations, and logic: in short – discrete mathematics. The
ground for discrete mathematics should be prepared early enough, started already from pri-
mary level and continued consistently throughout the secondary till tertiary education. This
paper aims to contribute to the further refinement of the mathematics syllabus by proposing
such a discrete mathematics subset that especially supports the needs of computer science
education, the focus being on algorithms and data structures, and logic in particular.

Keywords: K–12 computer science education, programming in mathematics syllabus, dig-
ital skills gap, professional development of software professionals, effectiveness of education,
continuous vs. discrete math, computational vs. specificational thinking

1 INTRODUCTION

Digitalization triggers pressure to change the current education system. Both domestic and multi-
national governing bodies have recognized the skills gap between computer science and the growing
need for a digitally fluent workforce. Consequently, the EU has outlined a strategy for improving
e-skills for the 21st century to foster competitiveness, growth, and jobs. Just-published technical
reports provide guidance for educators and politicians at the European level [39,6], highlighting the
pervasive and ubiquitous nature of digitalization. The digital literacy, responsible use of technology,
and civic participation are thus relevant to everybody. In consolidation, digitally skillful workers are
more likely to keep their positions and, if displaced, are re-employed more quickly than employees
without digital skills [35].

The skills gap concerns not only the lack of SW professionals but also the quality of their skills.
The STEM shortage paradox highlights the peculiarity of having hard-to-fill open positions and at
the same time an excess of graduates who cannot find a job [23,40]. One explanation is the skills
mismatch. In compliance, employers point out the candidates’ shortcomings, such as the incapability



of breaking down problems into manageable chunks and solving them, and the gaps in technical,
data modeling, and analytical skills. In the US, for example, the skills related to data analysis,
database skills, data management, and statistics outnumber other requested digital competencies
of job advertisements [5].

The promotion of computer science (CS) education is global. In consequence, a number of
countries all over the world have already introduced CS into their K–12 curricula. In line with
others, FNC-2014 comprises algorithmic thinking and adapting good coding conventions as CS
contents that are included in the mathematics syllabus [19], see Table. 1:

Table 1. Computing-related additions in FNC-2014. Typically, a student is 6–7 years old in Year 1.

Years 1–2 Years 3–6 Years 7–9

Digital compe-
tence

using digital media, tech-
nological fluency

impact of technology, tech-integration

Math step-by-step instructions visual programming algorithmic thinking,
good computing conventions

Crafts robots, automation embedded systems,
own artifacts

In pursuit of consistent CS support, the entire mathematics syllabus should be reviewed along
with these newly introduced additions. Thus, this study asks:

– RQ1: What elementary mathematics syllabus areas should be strengthened for the anticipated
CS emphasis?

– RQ2: Are there mathematics syllabus areas that are currently overemphasized from this view-
point?

– RQ3: According to the feedback from software engineers, is the current CS-supportive syllabus
missing any crucial points?

First, Specifying the discipline of CS and relating it to mathematics chapter reviews the discourse of
CS as a scientific discipline, its neighboring disciplines, and the learning targets of mathematics in
anticipation of supporting CS. Related Work introduces already-existing directives and recommen-
dations of institutions that aim at building flexible future software engineers, such as ACM/IEEE.
There, we focus on suggested mathematics courses in particular. For an age-appropriate reality
check, we reflect on the elementary-level mathematics and computing syllabi of current strong per-
formers in CS, i.e., the UK and US. Results and Discussion cross-expose the recommendations with
feedback from in-service software engineers by focusing on the mathematics topics that are the
top-scorers in profitability. To sum up, Conclusions sketch a hypothetical learning trajectory for a
CS support attached to the corresponding topics in the mathematics syllabus.

2 Specifying the discipline of CS and relating it to mathematics

Most natural sciences and engineering disciplines rely on calculus, differential equations, and linear
algebra as a mathematical foundation appropriate for continuous phenomena [31]. Systems relying
on such phenomena can be adequately tested. For instance, a bridge does not need tests for all
possible loads between zero and a maximum value. Testing the maximum load under typical and



extreme weather conditions suffices. In contrast, Parnas highlights the different nature of software
[33]. Unlike bridge load tests, testing a piece of software with typical and extreme values does
not guarantee the expected behavior with untested values. Furthermore, software is rarely concise
enough to be tested inside out, and unlike mathematical theorems, it is not comprehensively checked
by other experts in the field. Thus, frequent errors and failures are common [9].

As we will discuss later, computer scientists have suggested topics such as logic, formal gram-
mar, and set theory as an appropriate mathematical basis for mastering software and improving
its quality. In addition, the importance of algorithmic thinking has been revealed. In traditional
engineering degree programs, classic mathematics and physics are included early on. The rationale
is to develop a suitable mindset, that is, a way of thinking that facilitates profound learning of
engineering topics. The basis is constructed already in elementary school physics and mathematics.
Similarly, professional computer science and software development need a suitable mindset that
should be developed before studying the bulk of the software topics. However, because software
cannot be appropriately mastered with mechanisms suited for continuous phenomena, this mindset
is not the same as that of, say, an electrical engineer.

The discussion about the educational needs in Finland suffers from a poor distinction between
Computer Science (CS), Software Engineering (SWE), and Information and Communication Tech-
nology (ICT). For more than a decade, the Finnish mobile phone company Nokia was very successful
and its educational needs had a significant impact on the Finnish educational discourse. In addition
to SW engineers, Nokia needed expertise in the fields of hardware, radio technology, and signal
processing. Therefore, SWE and ICT were emphasized instead of CS, with SWE largely perceived
analogous to traditional engineering, less through its relation to CS. As a consequence, Finnish
scholars and educators have only partially conceived the special character of CS and SWE as disci-
plines distinct from ICT, thus requiring a different educational foundation, which implies changes
to the mathematics syllabus as well.

To clarify the conceptual difference, we define the relation of CS to SWE more closely. Parnas
equates it to the relationship between physics and electrical engineering [34, p. 21]: physics belongs
to the natural sciences, which target an understanding of a wide variety of phenomena, whereas
electrical engineering is an engineering discipline striving to create useful artifacts. Although elec-
trical engineering is based on physics, it is neither a subfield nor an extension of it. Analogously, CS
is a science, and SWE is an engineering discipline based on CS. Therefore, CS degrees must focus
on the underlying computational phenomena and the acquisition of new knowledge of these, while
SWE degrees concentrate on implementing trustworthy, human-friendly software cost-effectively.

In regard to mathematics, the latest specifications of Association for Computing Machinery
(ACM) and Institute of Electrical and Electronics Engineers (IEEE) explicate the similarity of
required skills both in CS and SWE [3,4]. Even if CS is more scientific as a discipline and more deeply
grounded in mathematics, SW engineers benefit from more theoretically-oriented CS education and
discrete mathematics to be able to implement quality software. Hence, the conceptual difference does
not diverge the required mathematics and CS fundamentals. Consequently, Meziane and Vadera
concluded, ‘There is very little difference between the SWE and CS programs currently offered in
English Universities’ [30].



3 Related Work

3.1 ACM recommendations

The standards developed by the ACM promote CS as a discipline, and in compliance, provide
normative recommendations for teaching CS at the tertiary level. The recommendations are used
as a premise in curriculum planning in a number of Finnish universities. The CS concepts introduced
in the first courses are important either for their own sake or for further topics. Obviously, the first
fundamental concepts are also the most evident candidates in the considerations of advancing basics
at the elementary school level.

CS Knowledge Areas of ACM ACM introduces Curriculum Guidelines for Undergraduate
Degree Programs in Computer Science (ACM-CS2013) [3]. The material is divided into Knowledge
Areas (KA) and further to Knowledge Units (KU) that match with no particular course, instead,
courses may incorporate topics from one or multiple KAs. Topics are divided into Core and Elective,
and the Core is further subdivided into Tier-1 (to be fully completed) and Tier-2 (at minimum 80%
coverage). The KAs with the most Tier1 hours are, where time allocation is thought to correlate
with the importance of a topic:

1. Software Development Fundamentals (43 h)
2. Discrete Systems (37 h)
3. Algorithms and Complexity (19 h)
4. Systems Fundamentals (18 h)

The natural flow of concepts is to introduce Software Development Fundamentals (SDF) by
simultaneously strengthening the mathematical foundation with Discrete Systems (DS). In de-
scending order of allocated hours, Algorithms and Complexity (AL) come next, where mastering
common algorithms is considered general CS knowledge. Complexity considerations consist of eval-
uating the efficiency of algorithms based on their execution time and consumed resources. Systems
Fundamentals (SF) give an insight into system infrastructure and low-level computing by acquaint-
ing students with computer architecture, main hardware resources and memory, and, e.g., sequential
and parallel execution.

From the list above, items 2 and 3 link closely with mathematics. According to ACM, DS com-
prises the following areas in descending order of emphasis (Tier-1 + Tier-2 hours): Proof Techniques
(11), Basic Logic (9), Discrete Probability (8), Basics of Counting (5), Sets, Relations, and Func-
tions (4), and Graphs and Trees (4). AL, in turn, consists of basic and advanced KUs of Analysis,
Strategies, Fundamental Data Structures, Automata, Computability, and Complexity. Algorithms
and data structures are at the center of gravity of SDF, besides the introduction of the programming
basics.

The most relevant mathematics to support CS ACM-CS2013 highlights the tight and mutual
interdependence between mathematics and CS. However, ACM-CS2013 focuses on the common
denominator part, instead of being prepared for a full range of different career options specifically.
Thus, only directly relevant requirements are specified for the KA of DS, such as the elements of set
theory, logic, and discrete probability. On the other hand, ACM-CS2013 states that ‘while we do
not specify such requirements, we note that undergraduate CS students need enough mathematical



maturity to have the basis on which to then build CS-specific mathematics’. It also mentions that
‘some programs use calculus . . . as a method for helping develop such mathematical maturity ’ [3].

Thus, the recommendations make a distinction between such mathematics that is an important
requirement for all students in the faculty, in distinction to mathematics that is relevant only to
specific areas within CS, exemplified by linear algebra that ‘plays a critical role in some areas of
computing such as graphics and the analysis of graph algorithms. However, linear algebra would not
necessarily be a requirement for all areas of computing ’ [3].

If discrete mathematics – including logic – were emphasized in the elementary school mathe-
matics curriculum, an age-appropriate and tested subset of ACM Basic Logic could be found in the
National Curriculum and GCSE Mathematics of the UK. The UK has taught discrete mathematics
already for a longer period, see Section 3.3. In programming, logic is frequently employed, not only
when implementing conditions in selections and iterations. Subsequently, university-level logic tar-
gets more sophisticated and far-reaching knowledge than these. Basic Logic of DS introduces such
topics as normal forms, validity, inference rules, and quantification.

Although the domain of probability associates significantly weaker to the programming funda-
mentals than logic, for instance, it gives readiness for various prominent topics. These topics include
the analysis of average-case running times, randomized algorithms, cryptography, information the-
ory, as well as games.

3.2 SWEBOK recommendations

The Guide to the Software Engineering Body of Knowledge (SWEBOK) of the IEEE breaks down
the mathematical foundations into smaller knowledge areas [7]. Because of their direct mathematics
linkage, we focus on both Chapters 13 and 14 of the guide in particular, i.e., Computing and
Mathematical Foundations.

Computing Foundation comprises algorithms and data structures. The chapter classifies data
structures based on following dichotomies: linear – nonlinear, homogeneous – heterogeneous, and
stateful – stateless. For instance, linear structures organize items on one dimension (lists, stacks),
in contrast to non-linear structures exemplified by trees and heaps. Well-designed data structures
accelerate data storage and retrieval; the efficiency of algorithms depends significantly on the selec-
tion of a suitable data structure. Appropriate data structures foster algorithm development. When
the effects of selected algorithms and data structures are combined, performance and memory con-
sumption may range from poor to extremely efficient.

Chapter 14 highlights CS as applied mathematics. The foundational KAs concentrate on logic
and reasoning as the essences that a SW engineer must internalize in particular. The chapter
describes mathematics as a tool of studying formal systems, widely interpreted as abstractions
on diverse application domains. These abstractions do not limit to numbers only, but in addition
comprise symbols, images, and videos.

The following subtopics constitute the foundational KAs of mathematics. The topics are divided
by us into continuous (c) and discrete (d) mathematics. The assumption is that the order implies
their importance:

1. Sets, Relations, and Functions (c/d)
2. Basic Logic (d)
3. Proof Techniques (d)
4. Basics of Counting (d)
5. Graphs and Trees (d)



6. Discrete Probability (d/c)
7. Finite State Machines (d)
8. Grammars (d)
9. Numerical Precision, Accuracy, and Errors (c)

10. Number Theory (d)
11. Algebraic Structures (d)

Immediately, a notably smaller portion of continuous mathematics compared with traditional
engineering education leaps out. In particular, calculus, differential equations, and linear algebra
are conspicuous by their absence. Instead, several topics target a better position of underlying
logic (2,3); and primers for data types, data structures and algorithms (1,4,5,9,11). In addition, the
subtopics of Basics of Counting (4), and Discrete Probability (6) and Number Theory (10) scaffold
a deeper understanding of probability and cryptography. Numerical Precision, Accuracy, and Errors
(9) section reveals underlying HW and memory specifics that have an effect on, for instance, the
resolution of measurements and impossibility of expressing most real numbers precisely.

3.3 CS-supportive mathematics syllabi of the UK and the US in K–12

Table 2. Mathematics syllabi (KS=key stage, G=grade, HS=high school. In the UK, each key stage covers
several grades ranging from two to four; KS4 is followed by the GCSE exams.)

UKNC USCC

Algo-
rithms

KS1: understand what algorithms are
KS2: use logical reasoning to explain the functionality
of simple algorithms
KS3: key algorithms of searching and sorting, such as
binary search and merge sort
GCSE: data handling and algorithms visualized with
flowcharts

G3: algorithms in problem solving heuris-
tics, e.g., based on place value in addition/-
subtraction
G5: the same with multiplication
G6: and division

Logic
(in CS)

KS2: logical reasoning, e.g., in explaining the function-
ality of simple algorithms
KS3: Boolean logic (AND/OR/NOT)

General: Construct viable arguments and
critique the reasoning of others. Logical
progression of statements

Sets KS3: enumerate sets, unions/intersections, tables, grids
and Venn diagrams
KS4: data sets from empirical distributions, identifying
clusters, peaks, gaps and symmetry, expected frequen-
cies with tables, trees and Venn diagrams

G6: data sets, identifying clusters, peaks,
gaps, symmetry
G7: random sampling to generate data sets
HS: interpreting differences in shape, cen-
ter and spread of a distribution

Stat
Prob

Chart interpretations(K2), distributions/ rel. frequen-
cies, bivariate data, P scale: 0–1, P of mutually ex-
clusive events(K3); bigger samples, population, his-
tograms, scatter and box plots, combined dependent
events(K4)

Variability(G6), generalizations and ran-
dom sampling (G7), bivariate data(G8)

Linear
algebra

KS4: (in Geometry) translations as 2D vectors, addi-
tion and subtraction of vectors, multiplication with a
scalar, diagrammatic and column representations
GCSE: transformations & vectors

HS: addition, subtraction, multiplication
of matrices, multiplication with a scalar,
identity matrix, transformations as 2x2
matrices



For comparison, we went through the National Curriculum (UKNC) and General Certificate of
Secondary Education (UKGCSE) of the UK [16,22,8], and the Core Curriculum of the US (USCC)
[11], see Table 2. In UKNC and USCC, all the suggested mathematics syllabus areas remain at the
basic level, which is necessary taking into account elementary students’ rudimentary abstraction
skills. In addition to reducing its complexity, the new content should be carefully bridged with the
prior knowledge by starting early enough, proceeding in spiral revisits, and by exploiting lots of
different type of exercises including hands-on exercises and visual clues. To ensure mathematics-
compatibility, a hypothetical learning trajectory is sketched and further extended to the proposed
CS topics. Next, we will review potential discrete mathematics contents in UKNC and USCC
starting from algorithms and data structures, logic, sets, statistics and probability, and ending up
with linear algebra.

Algorithms and data structures In UKNC, the definition of algorithms in KS1 is followed by
studying the behavior of selected algorithms in KS2, after which the key algorithms are digested. The
CS syllabus of the GCSE sets a few learning targets for algorithms: at a minimum, binary search
and merge sort are to be introduced [22]. In USCC, since CS is not compulsory, algorithms are
not that pertinently present, however, computing strategies used in problem solving, are perceived
as algorithms. Paper-and-pencil calculations provide affordances of applying such algorithms, for
example, long division may be systematized as the strategy of ‘divide, multiply, subtract, drop the
next free number, repeat’. Because of all-immersive digitalization, many such educational sweet-
spots are missed, e.g. phone books for demonstrating search algorithms.

Logic The basics of logic are present in UKNC. A comprehensive subset is provided, yet in the UK
Boolean logic is currently included in the computing and not in the mathematics syllabus. However,
Boolean logic would also fit well in the mathematics syllabus as a consistent continuum of studying
inequalities and their truth values. A readily field-tested elementary syllabus is found in GCSE CS
[22] as well. It contains the following topics:

– binary and hexadecimal notations
– binary addition and shift
– Boolean values (true, false)
– Boolean operators (AND, OR, NOT)
– truth tables

In USCC, logic is substituted by logical thinking as part of critical thinking skills and consistency
in arguments. In addition collaborative learning techniques are utilized, in particular sociomath-
ematical norms [46]. Yackel and Cobb emphasize the need for a rationale and justification for a
solution. It is a mathematics teacher’s duty to challenge students to invent multiple alternatives
ending up with the same result. Among the presented alternatives, the class should evaluate the
most sophisticated and elegant method.

Sets, statistics, and probability Sets may be employed to illustrate nested number sets of
natural numbers (N), integers (Z), and reals (R) that match with variable types (unsigned, int,
float) in programming. However, due to differences in how, e.g., reals appear in both, we note that
this juxtaposition is prone to misconceptions. For instance, in:



i n t x=1; f l o a t y=x /2 ;

division may produce a value of zero depending on the programming language selected. All the
same, not every int is necessarily a float, in contradiction to the mathematics subset relation of
Z ⊂ R. In mathematics, sets are a basic abstraction of containment, likewise in programming, they
could be exploited as a cognitive scaffold that assists in understanding e.g. collections and their
operations. The same operations are exploitable even if the collection type would change from a set
to an array, a list, a vector or a matrix. Therefore, set theory would be useful in any mathematics
syllabus designed to support CS. Currently, sets are a part of UKNC, but absent from USCC
and FNC-2014. Sets prompt types in programming and they can be utilized in abstracting both
primitives and collections. UKNC specifies the syllabus of sets containing the following topics:

– sets visualized by Venn diagrams

– set operations: subset, proper subset, intersection, and union, combinations of these

– sets represented as lists, and

– set and its complement

Statistics and probability have only a small role in the conceptual core of CS, however they are
useful tools for further studies, e.g., statistical analyses in STEM reports or probability exploited
in game applications.

Linear algebra Linear algebra basics are included in the USCC as matrices and basic opera-
tions, and as vectors and transformations in UKNC, whereas they are missing from the FNC-2014.
However, linear algebra basics could be a beneficial addition, even if supported by ACM-CS2013
only as an elective mathematics topic. The need for matrices is increasing, because of topicality of
their application areas. Hence many libraries, e.g., in Python exploit them extensively. As a topic,
matrices and vectors (that can be handled as matrices) belong together. Matrix manipulations,
such as transformations (scaling, translation, reflection and rotation) are especially applicable in
many popular fields of graphics, animations and game engines. In addition, matrices are extensively
exploited in machine learning, data analysis, and pattern recognition.

4 Method

This study complies with the scope of curriculum theory [37], and its key question of what knowl-
edge is the most valuable and how the knowledge should be constructed in order to ensure consistent
proceeding. Here, we are concerned with the educational and sociological aspects due to the aim
of improved employability and filling the digital skills gap. This study is restricted to elementary
mathematics and compares FNC-2014 with UKNC and USCC [16,18,11] and with the recommen-
dations given by the ACM and IEEE [3,7]. The comparison exploits content analysis in searching
for the mathematics syllabus anticipated to be the most useful for CS students.

In addition to the comparison, the effectiveness of the university-level SWE studies reflects back
to the curriculum design. We do not collect any new data but reuse the data of existing studies
[27,38,41,24]. The results of the previous studies are cross-correlated to confirm their validity in
order to draw conclusions about the most profitable mathematics topics.



5 Results and Discussion

In this section, we first review the feedback from the field: SW professionals evaluate the curricu-
lum topics according to their profitability in working life. Being informed of both the recommenda-
tions and criticisms of the current realization, we summarize the necessary mathematics syllabus
content and bridge the learning trajectories from elementary to higher education mathematics.

Fig. 1. The comparison of usefulness and ade-
quacy of mathematics education evaluated by
SW professionals [27,38] (N = 181; N = 212),

originally in [31].

5.1 Feedback from SW engineers

To evaluate the effectiveness of their education, SW
engineers have scored the profitability of plenty of cur-
riculum topics [27]. An imbalance between supply and
demand was discovered and as a remedy, the author
recommends putting less emphasis on the topics of mi-
nor importance – or teaching them in a way that makes
them more relevant to SWE students. The study was
run in the year 1997 and repeated in 1998. The dif-
ferences between outcomes remained modest. In 1998,
the sample size was N = 181, and the survey consisted
of 75 topics of CS, SWE, etc. A few years later, in
2004, Kitchenham & al. conducted a research focusing
on the curricula and graduates of four British univer-
sities [24]. The methodology was somewhat different
and so was the obtained list of the most under-taught
topics. The findings regarding mathematics were, how-
ever, the same.

Then in 2009, a decade after Lethbridge’s original
research setup, Puhakka et al. published an analogous
study conducted in Tampere University of Technol-
ogy [38] (N = 212). Out of the original 75 subtopics,
three were removed because of their not being common
in Finnish curricula. Both sub-figures of Fig. 1 illus-
trate the differences between math-related perceptions
among SW professionals in the examined cohorts of US
and Finland. First, we observe that the results corre-
late surprisingly well, taking into account a timespan
and continent switch. The scientifically significant val-
ues of R2 are 0.88 in the upper, and 0.91 in the lower
figure.

The green circles in sub-figures designate the ar-
eas considered either useful (the upper) or in need of
more emphasis (the lower) to build work-life compe-
tence of SW professionals. The lower sub-figure, how-
ever, demonstrates the rarity of topics in need of more
emphasis. Negative values indicate a post-graduate
knowledge loss, whereas positive values a knowledge



gain, in other words, inadequate learning of such top-
ics in higher education. The latter sub-figure is visually telling. Only algorithms and data structures
are in need of more emphasis. In addition to these, the Lethbridge top-ten consists of no other math-
ematical, but instead, such items as negotiation, human-computer interaction, and leadership.

In comparison with both previous surveys, Surakka separates the sample into the cohorts of SW
engineers, academics (professors, lecturers) and students, see Fig. 2. The winner is again clear: algo-
rithms and data structures, also the prominence of discrete mathematics compared with continuous
mathematics is unchallenged, yet the bias has an academic flavor: discrete mathematics scores the
highest among professors and lecturers (3.1).

Fig. 2. The mathematics areas perceptions [1(not important), 4(very important)] of Surakka’s engineers,
academics, and students contrasted with Lethbridge and Puhakka et al.; N = 11, 19, 24; 181; 212 – respec-
tively. Originally in [31].

5.2 TEK, Aarresaari

The society follows the effectiveness measures of higher education. In a yearly basis, the association
of Academic Engineers and Architects in Finland, TEK, collects the feedback of university gradu-
ates. The latest survey, 2017 TEK graduate survey, is referred to update the current emphasis areas
of the graduates [43, p.21].

Unfortunately, in regard to mathematics, the granularity of the survey is more coarse-grained
than in the previous studies examined. The more general information addresses the importance of
certain skills, such as problem solving and information retrieval skills. Only two aspects are studied
more than anticipated by their importance, i.e., the difference of importance − learned in studies
is negative. The two areas are ‘knowledge of the research of the own field’ and ‘mathematics and
natural sciences’, that is, they are learned more than actually needed in working life. In comparison,



‘practical application of theories’ is one of the top-scorers. ’Problem solving’ is regarded the most
important skill among graduates, and after project management and oral communication skills, an-
alytical thinking also scores highly. In Aarresaari data, learning skills in overall and self-regulatory
skills in particular are valued the highest, exemplified by such skills as ‘ability to learn’ and ‘self-
steerability/initiative’ [2]. These key areas intimately reflect the current requirement of a flexible
workforce capable of recreating itself based on the current need. Also analytical thinking skills and
problem solving score high. In contrast, ‘theoretical skills’ are valued much lower to their applica-
tive counterparts, and ‘theoretical knowledge of one’s own domain’ and ‘mathematics and natural
sciences’ actually count among few topics over-taught, i.e., during their studies, the graduates learn
them maybe too theoretically without exploiting the learned content in practice.

Fig. 3. TEK graduate survey in 2017; N = 1985

The TEK survey for university graduates confirms the findings of over-taught topics: ‘knowl-
edge of the research field’ and ‘mathematical and natural science’, see Fig. 3. Even if the theoretical
aspects of one’s research field are over-emphasized, the practical application of theories is yet in-
sufficient. Moreover, the resolution is partly lost in bundling mathematics and natural sciences
together. Lethridge/Puhakka/Surakka studies suggest chemistry being constantly among the low-
scorers, whereas parts of mathematics, especially those fostering algorithmic and logical thinking,
are appreciated.

In the TEK and Aarresaari survey, high-valued self-regulatory skills are seconded by such prac-
tical aspects that can be situated under the broader umbrella concept of ‘specificational thinking’.
These skills comprise, e.g., communication and negotiation skills with a client as part of user-
centered design. However, the specificational thinking in its entirety is more about modeling and
abstracting data, which as topics were absent from these surveys. Specificational thinking will be
treated more thoroughly in Ch. 5.5.



5.3 CS-supportive mathematics for primary and secondary education

In constructing a strong basis for CS, both ACM and SWEBOK emphasize discrete mathematics,
confirmed by the feedback from the field. After programming basics, ACM values discrete systems
as the second most prominent, and algorithms, data structures, and complexity as the third most
prominent KAs, whereas the in-service SW engineers appreciate the latter more. In SWEBOK, nine
out of eleven mathematics KAs comprise discrete mathematics. Spearheading in CS, the UK invests
in discrete mathematics already at the elementary level and, in addition, provides CS as a subject
of its own right that allows more in-depth topics.

Algorithmic thinking In pondering the difference between the mindsets of mathematicians and
computer scientists, Knuth points out that computer scientists need to be concerned about algo-
rithms and their computing specifics, such as the notion of complexity or economy of operations
[25]. Denning equates algorithmic and computational thinking [14], which he, in turn, associates
with general problem solving [15]. When solving a problem, it is beneficial to start by decomposing
it to smaller solvable subproblems that may be implemented as subroutines in a code. At its sim-
plest, an algorithm may thus be understood as a subroutine, a sequence of commands that can be
called repeatedly as many times as desired [13, for instance]. Fig. 4 suggests dividing the algorithms
into the following sub-topics:

1. The introduction of the key algorithms of searches and sorts. These can be trained without
computers as well.

2. Complexity considerations.
3. Data structures and corresponding operations.

Fig. 4. Algorithms at elementary level

Algorithmic thinking has been
brought within reach of school or
even pre-school children with multi-
ple initiatives such as [28], and with-
out utilizing computers, as demon-
strated by the CS-unplugged move-
ment [42], and algorithmic plays [21].
Puzzles and games can be very ed-
ucative and thought-provoking, thus
this approach is also exploited by
a number of universities in familiar-
izing students with algorithms [26].
Unplugging removes the extra cog-
nitive load of knowing the program-
ming details. To be acquainted with
well-known algorithms, binary-search
and merge-sort are considered an age-
appropriate start, backed up with the
CS syllabus of UKNC.

In general, a student should learn
to save resources, i.e., time and mem-
ory, as a part of good coding conven-
tions. In algorithm development, it is



crucial to select an appropriate algorithm and data structure for a task. In consequence, a student
must be aware of the consequences of poor choices, where estimating the complexity of the algo-
rithm is educative. The combined effect of algorithm and data structure can be huge. In extending
the data amounts, the differences highlight further. The same control structures are applicable
as usual, i.e., sequencing, selection, iteration and recursion. In visualizing the control flow, a flow
chart is educational. Iterations and recursions, especially if nested, can easily increase the number
of iterations.

Sets

xA’      A

U
A={x}

n(A) = 1 
x∈A ↔x∉A’
P(A)+P(A’)=1

A={x | x∊B, x>2 } descriptive
B={0,1,2,3}
C={x | x∊A, x<2},C={}, C=∅

visualized with 
Venn diagrams

 represented as lists and 
set comprehensions  

complemented

A⊂B 
proper subset

A⊆B 
subset

A∩B 
A intersects B

A∪B 
A union B

A∩B∩C 

Fig. 5. Sets in UKNC

Fig. 6. A tree representation of an arithmetic relation
chain, and a failed attempt to yield a similar tree [31].

Data structures: sets and other represen-
tations In programming-oriented mathemat-
ics, data structures can be seen as an appli-
cation of set theory that conceptualizes collec-
tions. Sets are missing from FNC-2014, whereas
UKNC defines a functional subset visualized in
Fig. 5. Sets (näıve set theory) in UKNC are a
gentle kick-start for the set theory, familiarizing
students with different notations, e.g., the inter-
changeable use of either a list or a Venn diagram
(excluding some special cases). A number of ba-
sic concepts are introduced, such as a set and
its complement, a universe, and a subset. Set
operations cover union and intersection.

In programming, collections are of various
types: a set is an unordered collection of val-
ues where no value may occur twice, a list an
ordered collection where the same value may
occur multiple times, and a map a collection of
values identified by keys; the map may also be
interpreted as a representation of a mathemat-
ical function. Data structures should introduce
the very basic structures, such as arrays, lists,
maps and optionally also more sophisticated
tree structures, and demonstrate the efficiency
of each basic operation of adding, deleting, and
selecting (searching). Sorting can be interpreted
as an application of search in compliance with
divide-and-conquer heuristics: after an item is
found and in the right position, search is ap-
plied iteratively till all items are sorted.

Multiple external representations (MERs)
elucidate the data and problem from different
perspectives. For example, a function may be
represented as an expression, a curve, a map
from ‘argument set’ to ‘image set’, a table with
two columns, or a function machine. Flexibility
in moving from one representation to another



indicates a deeper understanding of the concept
[29], which facilitates problem solving. Wilkie and Clark denote representational flexibility as flu-
ency with the order of operations; commutative, associative, and distributive laws; and equivalence
of expressions [45]. In programming, representational fluency is practiced, e.g., with the syntactic
diversity of operations, such as addition: x+ y, +(x, y), or (+ x y). Fig. 6 illustrates the use of the
MathCheck learning tool [44] in studying the relationship between textual and tree representations.
Such exercises aim at training the precedence and left- and right-associativity rules in particular.
The exercises help students to grasp the distinction between semantics and syntax by differentiat-
ing between associativity as a semantic notion and left- and right-associativity as syntactic notions.
Furthermore, the example in Fig. 6 reveals that the relation operators (= and ≥, and so on) are
neither left- nor right-associative unlike arithmetic operators (+, −, and so on). Consequently, in
x = y ≥ z, the first comparison result is not passed as an argument to the second, but instead,
a Boolean AND is performed on both. Thus, drawing = as a child of ≥, or vice versa, would be
misleading. Being even, the relation operators must share the root of a tree as Fig. 6 illustrates. This
also makes it explicit that although y occurs only once, both comparisons use it as an argument.

In problem solving, the ability to model and abstract the data is crucial. USCC specifies Model-
ing as a syllabus area of HS mathematics [12,11]. It links to a broader pedagogical idea of using the
open-ended problems of everyday life by combining skills from mathematics, statistics and tech-
nology, and ‘ . . . and the ability to recognize significant variables and relationships among them.
Diagrams of various kinds, spreadsheets and other technology, and algebra are powerful tools for
understanding and solving these problems.’ Although modeling, say, a banking system for imple-
mentation as software is fundamentally different from modeling a physical or statistical problem,
the need to recognize and formalize the essential aspects of the problem is common. Specificational
thinking is necessary for both SW engineers and their customers to reach a common vision.

Fig. 7. Logic in UKNC [31]



Logic In formalizing CS, a formula, CS = mathematics + logic, proposed by Dijkstra, aims at
describing its distinctiveness [17]. In accordance, he calls students to learn formal mathematics and
logic to construct a well-grounded basis for CS. UKNC points out that already at the elementary
level a novice programmer needs simple Boolean logic, at least the operators of AND, OR and NOT,
and their combinations, see Fig. 7. In the same context, UKNC introduces logic gates in circuits,
thereby creating a link between CS and physics (electronics).

To skim other logic uses, we reviewed ACM course descriptions. The logic applications were
proofs, correctness, the combinational and sequential logic of state machines, and in addition to
these, reasoning that targets translating natural language (e.g., English) sentences into predicate
logic statements. Such a skill would stand out in specificational thinking in Ch. 5.5.

semi-interq:
28/2=14

UQ

MED

LQ

Statistics

illustrated by e.g.
Pie              Bar          Line

characterized by 

Histogram, 
frequency polygon 

Cumulative frequency 

Box and whiskers

Strong positive
correlation

Negative
correlationMean<Mode Mode<Mean

Fig. 8. Statistics in UKNC [31]

Fig. 9. Probability in UKNC [31]

Statistics, probability The syllabus areas
of statistics and probability are inter-related
at the elementary level, justifying combining
the topics under the same label. Building the
knowledge base and gaining experience of these
topics may be initiated, for instance, by col-
lecting the data of concrete phenomena, such
as measuring the heights of students of a class
and constructing a histogram of the heights of
the class. Students should be capable of read-
ing and interpreting these charts. For instance,
the shape of the height histogram should resem-
ble the typical bell-shape of a normal distribu-
tion making it timely to introduce the concepts
of mean, median, and mode in this context. In
addition to histograms, the alternative way of
representing this information is to construct a
cumulative frequency chart, in the UKNC sub-
set visualized in Fig. 8, the left bottom corner.
Ultimately, information could be reduced to a
box-and-whiskers chart.

Venn diagrams and relative frequency charts
prompt probability. The relative frequency of
an event, e.g., which percentage of students are
in the range of 140–150 cm, provides an ob-
vious scaffold to investigate the probability of
a randomly-selected student being 140–150 cm
tall, and prepares for generalizations concerning
bigger populations. In Venn, the bin of 140–150
cm students can represent the set A, where the
complement set of A represents all the students
not within this height category. In the universe
of this class (or any other), a selector will get ei-
ther a student from the set A or its complement
A with 100% probability, i.e., P (A)+P (A) = 1.



In Finnish elementary mathematics, probability links closely with statistics in the described man-
ner. UKNC progresses further by including the multiplication and addition rules, see Fig. 9. In the
figure, a decision tree clearly demonstrates that the sun either is shining or not, no other options
exist. As a consequence of the shining sun, a bird will sing more probably. Furthermore, the tree
assists in constructing the combined probabilities correctly: the multiplication rule applies horizon-
tally to each branch at a time, and the products are added vertically. In a tree, all the probability
branches of one joint must sum up to one. For statistics, and probability, UKNC specifies a valid
and deliberately planned mathematics syllabus for an elementary level that could be emulated as
such in FNC-2014.

5.4 CS-supportive mathematics at high school

In the Finnish high school system, CS is not provided as a subject of its own. Instead, the cross-
curriculum thread of digital competence started at elementary level continues as the utilization
of CS and practicing technological fluency throughout the high school. After completing the first
course of mathematics (MAY1), a student either chooses honors mathematics (the MAA* courses),
or regular mathematics (the MAB* courses) [20]. The respective courses are listed in Table 3. This
study concentrates on honors mathematics in particular, which comprises ten compulsory courses
(MAY1-MAA10), and three optional courses (MAA11–MAA13), because of its partial support for
discrete mathematics. The courses of discrete mathematics consist of ‘Number theory and proofs’
(MAA11) and ‘Algorithms in mathematics’ (MAA12) that are currently optional.

In HS, algorithms are introduced only in the elective courses of ‘Number theory and proofs’
(MAA11), and ‘Algorithms in mathematics’ (MAA12). Closest to logic is the elective MAA11
with conjunctives and truth values. Instead, we propose a compulsory status for these courses
to ensure a proper support for CS. Due to the proposal, some compulsory courses ought to be
converted as optional as a fair exchange. Maybe the advanced courses of derivation and integration
could be potential candidates, since the SW engineers’ feedback manifest the excess of continuous
mathematics, such as calculus. Moreover, the electric version of matriculation examination will be
taken into use in the year 2019 implying hands-on exercises with computers. The developing of
these questions is currently proceeding. In anticipation of this change, mathematics teachers should
prepare their students to master the required applications and programmable environments.

Table 3. High school mathematics divided in MAA* and MAB* courses and grouped by learning trajec-
tories (stat. and prob., logic, algorithms, cont.mathematics, and geometry), see Fig. 11.

stat. and prob.
course description
MAB5 stat. and prob.

(MAB8) stat. and prob. II

MAA10 prob. and stat.
combinatorics

arithmetic(logic/algor. in yellow)
course description
MAY1 numbers,sequences
MAB4 modeling,patterns
MAB6 commercial math
MAY1 numbers,sequences
MAA8 root,log functions

(MAA11) number theory,proofs
(MAA12) algorithms in math

cont.mathematics
course description
MAB2 expression,equations

(MAB7) mathematics.analysis

MAA2 polynomials
MAA6 derivative
MAA9 integral calculus

(MAA13) adv.calculus

geometry
course description
MAB3 geometry

MAA3 geometry
MAA4 vectors
MAA5 analytic g.
MAA7 trigonometry



5.5 Specificational thinking

In the SW engineers’ feedback, specificational thinking and related skills become ever more pro-
nounced. Specificational thinking shares certain analogies with computational thinking, and it could
be described as its practical cousin. Taken that computational thinking comprises the theoretical
basis and the acquaintance of a software process, at least in the abstract, specificational thinking
extends to the real working life and project-based conditions, where the threads of modeling and
user-centric design mix in, see Fig. 11. Modeling implies both data modeling and conceptual visu-
alizations in order to describe the system. User-centered design attempts to ensure such products
that respond to users’ expectations and needs, which starts by specifying user requirements, often
referred to as user stories in agile project management.

As a complementary part of the negotiation skills that were highly appreciated in the SW
graduate surveys, capturing all the essentials in a specification benefits from an adequate amount
of domain knowledge and observations as a typical practice of user-centered design. Translating all
the information and observations as clearly-worded specifications – while minimizing the chances
for misunderstandings – requires a sense of the nuances of a spoken language, preciseness, and
the capacity for recognizing the sentences as implicit logical propositions. First, use cases and
requirements are defined together with a customer. It is difficult to design SW so that it meets
the needs of its end users. Indeed, [9] lists twelve common causes for SW project failures. Three of
them are unrealistic or unarticulated project goals; badly defined system requirements; and poor
communication among customers, developers, and users. We believe that specificational thinking
alleviates these problems: to provide usable and user-friendly products requires a fair reflection on
the actual needs and expectations of end users, and clothing them as precise specification text.

In writing a good specification, it is hard to anticipate all its consequences, especially if one is not
a professional, which is illustrated by the next example. A man sitting in a wheelchair tried to buy
winter boots at one supermarket, in Helsinki [1]. For the purpose, he had received a voucher worth
at most 70 euro granted by social security authorities. However, the shoes did cost 74.50 euro. The
remaining part, 4.50, the man would have paid himself. However, a cashperson refused and appealed
to the instructions. After a while, a superior of the cashperson arrived, the next arrival being a
safeguard. Finally, an outsider paid the winter boots from her own money to resolve the awkward
stalemate. Afterwards, the supermarket analyzed what went wrong. Cashpersons had been given a
written specification of how to process the social security vouchers: first, check the maximum value
of a voucher, then, a purchase not exceeding that value. The cashperson obeyed the instructions
literally. However, this was not the intention, but instead, to prevent from using the vouchers as
worth of more than their maximum, i.e., they are no reduction coupons. The supermarket fixed the
instructions and returned the money to the customer who had paid the boots.

At first glance, this incident may seem to have nothing in common with SW development,
however, it illustrates such defects in specificational thinking that are a major source of problems
throughout an SW process: it is very hard to see the unintended consequences in advance. Be-
forehand, the authors may think that they have written a decent specification; afterwards, it is
self-evident to everybody that it allows some drastic and unintended interpretations. Commonly, a
failure scenario is considered too improbable, too crazy, to worry about, until it does occur. Con-
cerning software project failures more generally, the subtitle of [9] is ‘We waste billions of dollars
each year on entirely preventable mistakes’. The publication lists many examples and argues, ‘Even
organizations that get burned by bad software experiences seem unable or unwilling to learn from
their mistakes.’



Another aspect of specificational thinking is the ability to choose an appropriate representation
for the data and required operations. In bigger organizations, it is a duty of an SW architect to
translate the specification into an architectural design, often illustrated as UML diagrams. To be
capable of making efficient and unambiguous designs requires technical skills, awareness of the
variety in possible data structures, and their implications for efficiency and required resources. For
instance, Fig. 10 shows two fragments of Tampere region bus timetables:

Line 2 Rauhaniemi–Pyynikintori

05 10 36 48
06 00 12 24 36 48
07 00 14 26 38 50

08–14 02 14 26 38 50
15 02 07 14 26 38 50

16–18 02 14 26 38 50

Line 55 Vesilahti–Tampere
A B C D E F

06:20 06:35 - 06:50 06:59 07:25
07:30 07:45 08:02 08:05 08:15 08:41
08:40 08:55 - 09:07 09:17 09:39
- 09:45 - 09:57 10:07 10:29
- - - 10:40 10:50 11:12

Fig. 10. Two fragments of bus timetables (Monday–Friday)

On the left, full hours are shown in the first column, and the rest of each line lists departure
times in minutes after the full hour. On the right, each line represents a route via bus stops from
A to F: departure times are shown stop-by-stop; ‘-’ denotes no visit. Students could be asked to
discuss the advantages and disadvantages of these two representations, and possible justifications
for each.

In avoidance of the unintended consequences and bad design, it is crucial to admit the very
existence of these specificational problems, them necessitating specificational thinking to be taken
seriously. To exercise it at elementary level, an educative and sufficient learning objective would be
to deal with real and open-ended specification problems. For instance, a teacher could ask a student
to write instructions for another student to follow. The instructions may describe, say, a location
of an object hidden in the schoolyard. Afterwards, the students should discuss how the instructions
were to be improved to find the object even quicker. By the same token as those ‘follow-my-
instructions’ games, programming can provide epistemologically productive learning experiences.
Papert claims that, ‘...in teaching the computer how to think, children embark on an exploration
about how they themselves think. The experience can be heady: Thinking about thinking turns the
child into an epistemologist’ [32]. Sooner or later, a novice will notice that a computer functions
differently from what he intended because it obeyed his instructions precisely. The situation is akin
to the example of buying boots, where reaching a common understanding between humans was
tricky, yet a computer is even more stubborn in its obedience.

The modest goal of these exercises is that in a future our students will be more discerning and
resourceful in specifying and implementing SW projects than decision makers of today.

5.6 The learning trajectories bridged from elementary to higher education
mathematics

To track the consistent proceeding in learning, we draft a hypothetical syllabus of CS-supportive
mathematics by enhancing it with discrete mathematics. For learning proceedings, ‘learning tra-
jectory’ is the selected theoretical framework rooted in Piaget’s cognitive constructivism [36] and



active learning theories [10]. It targets a definition of a consistent path for a learner to follow. The
path should consist of well-justified building blocks. Fig. 11 illustrates the learning trajectories as
vertical dashed lines, dedicated to each topic proposed in the previous sections: algorithms and data
structures that comprise sets, logic, statistics, and probability. The trajectories are crossing through
four horizontal layers of Elementary mathematics, computational thinking, HS mathematics, and
Tertiary mathematics. In Finland, only elementary education is compulsory, whereas continuing to
high school or tertiary education is elective.

The learning trajectories of algorithms and data structures, and logic are marked with light green
and blue to highlight their prominence. Currently, the elementary mathematics syllabus in FNC-
2014 does not define any specific learning targets for the topics except that of ‘algorithmic thinking’
anticipated to start with problem solving and decomposition. In programming, the decomposition
implies a program’s division into subroutines. In algorithms, the introduction of the simplest sort
and search algorithms would be a natural learning goal. Data structures are prompted by number
sets of natural numbers (N), integers (Z), and reals (R) that match with variable types (unsigned,
int, float) in programming. In addition to simple primitives, types in CS can be more complex, such
as primitive containers of arrays, lists, and vectors. Structuring data in various ways, modeling and
visualizing it, assists in raising the abstraction level, thus ultimately in problem solving as well.

The second most prominent trajectory is logic. Like algorithmic thinking, in FNC-2014, logic
is included only as a requirement of logical thinking. However, in programming, logic is highly
exploitable in defining the conditions in selection and iteration structures. The logic subset in
Fig. 7 proposes enhancements to mathematics, physics, and native language syllabi in Y7–9. To
add further value to this age range, the UKNC syllabus areas of statistics and probability (Fig. 8
and 9) were worth considering in descending order of importance. However, due to time constraints,
adding content to the mathematics syllabus is problematic. CS, as a separate subject, would solve
the problem. Below elementary mathematics, the computational thinking (CT) layer illustrates the
computing enhancement and how the process divides into abstraction, automation, and analysis
phases. In this layer, the mathematics fundamentals have their CS counterparts. The schedule in
mathematics Y7–9 implies an appropriate introduction order of the CS fundamentals as well.

In regard to the hypothesized trajectories, sets are unfortunately missing from the FNC-2014,
both from elementary and high school education, whereas the situation of statistics and probability
is much brighter. They start already at the elementary level, and in high school the following
courses are allocated for the topic: MAB5, MAB8, and MAA10. However, high school is elective,
and, regrettably, rigidly targets the matriculation examinations, whose importance has lately grown
as a selection criterion for tertiary education. Tertiary mathematics elucidates the required skills for
modern SWE by representing the most prominent topics only that can be considered as a continuum
of the trajectories sketched in the figure.
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6 Conclusions

RQ1: Mathematics syllabus areas to be strengthened? According to the reviewed studies, SW en-
gineers need stronger algorithms and data structure skills. In accordance, fluency with multiple
representations and modeling is considered beneficial in illustrating and structuring data, thus im-
proving problem solving skills. To further strengthen the theoretical basis primarily necessitates the
inclusion/teaching of logic, and secondarily set theory, statistics, and probability. In increasing dis-
crete mathematics, the UKNC mathematics and CS provide an exemplar to emulate in elementary
education in Finland.

However, discrete mathematics does not benefit only future SW engineers, but all students in
becoming generally educated and acquainted with CS. Even though continuous and discrete mathe-
matics are posed as opposite, in practice, they are deeply interconnected and complement each other.
Natural sciences continue to exploit continuous mathematics as before, so continuous mathematics
must keep a significant role in the curriculum. However, to meet the challenges of digitalization, we
believe that it is beneficial to move emphasis from continuous to discrete mathematics.

RQ2: The overemphasized mathematics syllabus areas? Curriculum planning is a zero-sum game.
If the volume of discrete mathematics were increased, some areas ought to be decreased correspond-
ingly. The proposal is to move some emphasis from continuous to discrete mathematics already at
the elementary level. To get all the suggested content to fit in the mathematics syllabus is challeng-
ing, thus adding CS as a separate subject is a distinct option.

RQ3: Missing but crucial topics to support CS? The feedback from the SW engineers empha-
sized soft and practical skills more than hard and theoretical ones. For example, problem solving,
and communication and negotiation skills, as well as other project managerial skills are valued
high. In real projects, a freshman SW engineer faces the challenge of capturing the real needs and
expectations of a customer and being capable of verbalizing them as unambiguous textual speci-
fications and a design for an implementation team. For instance, USCC defines HS Modeling for
structuring data, and the area could be subset age-appropriately for the elementary level. These
skills constitute a substantial part of what we refer to as ‘specificational thinking’.

However, mathematics is by far the only subject to practice specificational thinking. In essence,
with such cross-curricula skills as good oral communication skills, appropriate observation and
interview techniques, critical and analytical thinking that imply logical thinking, and conceptual
modeling skills, students are more likely to excel in specificational thinking. Thus, achieving the
goal should be a combined effort of the subjects of native language, mathematics, and why not
social studies and philosophy, if available.

Further studies The emphasis shift from continuous to discrete mathematics must be executed in
an evidence-based manner, i.e., the learning outcomes must be carefully evaluated in co-operation
with pedagogical experts both in elementary and higher education. To advance this approach fur-
ther, the results should speak for themselves. To achieve the full potential of discrete mathematics in
higher education, traditional ‘Advanced Engineering Calculus’ would need its discrete mathematics
counterparts, say, ‘Programmers’ Introduction to Automata and Formal Languages’ or ‘Set The-
ory for Software Engineers’, which indisputably explicate the benefits of the renewed mathematics
syllabus for the good of CS.
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5. Beblavỳ, M., Fabo, B., Lenearts, K.: Demand for Digital Skills in the US Labour Market: The IT Skills
Pyramid. CEPS Special Report No. 154/December 2016 (2016)

6. Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., Engelhardt, K., Kampylis, P., Punie, Y.: Devel-
oping Computational Thinking: Approaches and Orientations in K-12 Education. In: EdMedia: World
Conference on Educational Media and Technology. pp. 13–18. Association for the Advancement of
Computing in Education (AACE) (2016)

7. Bourque, P., Fairley, R.E., et al.: Guide to the software engineering body of knowledge (SWEBOK
(R)): Version 3.0. IEEE Computer Society Press (2014), www4.ncsu.edu/˜tjmenzie/cs510/pdf/
SWEBOKv3.pdf

8. Brown, N.C., Sentance, S., Crick, T., Humphreys, S.: Restart: The resurgence of computer science in
UK schools. ACM Transactions on Computing Education (TOCE) 14(2), 9 (2014)

9. Charette, R.N.: Why Software Fails 42.9 (2005), https://spectrum.ieee.org/computing/
software/why-software-fails

10. Clements, D.H.: Linking research and curriculum development. International research in mathematics
education p. 599 (2002)

11. Core Standards Organization: Mathematics Standards — Common Core State Standards Initiative
(2015), http://www.corestandards.org/wp-content/uploads/Math_Standards1.pdf

12. Core Standards Organization: High School: Modeling. http://www.corestandards.org/Math/
Content/HSM/ (2017), http://www.corestandards.org/Math/Content/HSM/

13. CSTA: Computer science standards (2016), https://www.csteachers.org/resource/resmgr/
Docs/Standards/2016StandardsRevision/INTERIM_StandardsFINAL_07222.pdf

14. Denning, P.J.: The profession of IT Beyond computational thinking. Communications of the ACM
52(6), 28–30 (2009)

15. Denning, P.J.: Remaining trouble spots with computational thinking. Communications of the ACM
60(6), 33–39 (2017)

16. Department of Education: National Curriculum in England. Key stages 3 and 4 framework document
(2014)

17. Dijkstra, E.W., et al.: On the cruelty of really teaching computing science. Communications of the
ACM 32(12), 1398–1404 (1989)

18. English Department for Education: National Curriculum in England: Computing programmes of study
(2013)

19. Finnish National Board of Education: Finnish National Curriculum 2014 (2014), http://www.oph.
fi/download/163777_perusopetuksen_opetussuunnitelman_perusteet_2014.pdf

https://www.aamulehti.fi/kotimaa/kassa-noyryytti-pyoratuolissa-istuvaa-miesta-prismassa-olemme-sydamestamme-pahoillamme-24277883/
https://www.aamulehti.fi/kotimaa/kassa-noyryytti-pyoratuolissa-istuvaa-miesta-prismassa-olemme-sydamestamme-pahoillamme-24277883/
https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf
https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf
www4.ncsu.edu/~tjmenzie/cs510/pdf/SWEBOKv3.pdf
www4.ncsu.edu/~tjmenzie/cs510/pdf/SWEBOKv3.pdf
https://spectrum.ieee.org/computing/software/why-software-fails
https://spectrum.ieee.org/computing/software/why-software-fails
http://www.corestandards.org/wp-content/uploads/Math_Standards1.pdf
http://www.corestandards.org/Math/Content/HSM/
http://www.corestandards.org/Math/Content/HSM/
http://www.corestandards.org/Math/Content/HSM/
https://www.csteachers.org/resource/resmgr/Docs/Standards/2016StandardsRevision/INTERIM_StandardsFINAL_07222.pdf
https://www.csteachers.org/resource/resmgr/Docs/Standards/2016StandardsRevision/INTERIM_StandardsFINAL_07222.pdf
http://www.oph.fi/download/163777_perusopetuksen_opetussuunnitelman_perusteet_2014.pdf
http://www.oph.fi/download/163777_perusopetuksen_opetussuunnitelman_perusteet_2014.pdf


20. Finnish National Board of Education: Finnish National Core Curriculum for General Upper Secondary
Education (2015), http://www.oph.fi/download/172124_lukion_opetussuunnitelman_
perusteet_2015.pdf

21. Futschek, G., Moschitz, J.: Developing algorithmic thinking by inventing and playing algorithms. Pro-
ceedings of the 2010 Constructionist Approaches to Creative Learning, Thinking and Education: Lessons
for the 21st Century (Constructionism 2010) pp. 1–10 (2010)

22. GCSE: GCSE subject content for computer science. https://www.gov.uk/government/
uploads/system/uploads/attachment_data/file/397550/GCSE_subject_content_for_
computer_science.pdf (2015)

23. Harris, M.: The STEM shortage paradox. Physics World 27(10), 56 (2014)

24. Kitchenham, B., Budgen, D., Brereton, P., Woodall, P.: An investigation of software engineering cur-
ricula. Journal of Systems and Software 74(3), 325–335 (2005)

25. Knuth, D.E.: Algorithmic thinking and mathematical thinking. The American Mathematical Monthly
92(3), 170–181 (1985)

26. Lamagna, E.A.: Algorithmic thinking unplugged. Journal of Computing Sciences in Colleges 30(6),
45–52 (2015)

27. Lethbridge, T.C.: What knowledge is important to a software professional? IEEE Computer 33(5),
44–50 (2000)

28. Liukas, L.: Hello Ruby (2015), a childrens’ book available in 22 languages

29. McGowen, M., DeMarois, P., Tall, D.: Using the function machine as a cognitive root. (2000)

30. Meziane, F., Vadera, S.: A comparison of computer science and software engineering programmes in
English universities. In: 17th Conference on Software Engineering Education and Training (CSEE&T
2004), 1-3 March 2004, Norfolk, VA, USA. pp. 65–70. IEEE Computer Society (2004)
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