
This is a self-archived version of an original article. This version 
may differ from the original in pagination and typographic details. 

Author(s): 

Title: 

Year: 

Version:

Copyright:

Rights:

Rights url: 

Please cite the original version:

CC BY-NC-ND 4.0

https://creativecommons.org/licenses/by-nc-nd/4.0/

The impact of maternal weight in pregnancy on glucose metabolism in non-diabetic
offspring in late adulthood

© 2019 Elsevier B.V.

Accepted version (Final draft)

Westberg, Anna P.; Kautiainen, Hannu; Salonen, Minna K.; Kajantie, Eero; von
Bonsdorff, Mikaela; Eriksson, Johan G.

Westberg, A. P., Kautiainen, H., Salonen, M. K., Kajantie, E., von Bonsdorff, M., & Eriksson, J. G.
(2019). The impact of maternal weight in pregnancy on glucose metabolism in non-diabetic
offspring in late adulthood. Diabetes Research and Clinical Practice, 158, Article 107926.
https://doi.org/10.1016/j.diabres.2019.107926

2019



Journal Pre-proofs

The impact of maternal weight in pregnancy on glucose metabolism in non-
diabetic offspring in late adulthood

Anna P. Westberg, Hannu Kautiainen, Minna K. Salonen, Eero Kajantie,
Mikaela von Bonsdorff, Johan G. Eriksson

PII: S0168-8227(19)31395-6
DOI: https://doi.org/10.1016/j.diabres.2019.107926
Reference: DIAB 107926

To appear in: Diabetes Research and Clinical Practice

Received Date: 30 September 2019
Revised Date: 4 November 2019
Accepted Date: 11 November 2019

Please cite this article as: A.P. Westberg, H. Kautiainen, M.K. Salonen, E. Kajantie, M. von Bonsdorff, J.G.
Eriksson, The impact of maternal weight in pregnancy on glucose metabolism in non-diabetic offspring in late
adulthood, Diabetes Research and Clinical Practice (2019), doi: https://doi.org/10.1016/j.diabres.2019.107926

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover
page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version
will undergo additional copyediting, typesetting and review before it is published in its final form, but we are
providing this version to give early visibility of the article. Please note that, during the production process, errors
may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier B.V.

https://doi.org/10.1016/j.diabres.2019.107926
https://doi.org/10.1016/j.diabres.2019.107926


 1 

The impact of maternal weight in pregnancy on glucose metabolism in non-diabetic offspring 

in late adulthood 

Anna P. Westberg1,2, Hannu Kautiainen1,3, Minna K. Salonen1,4, Eero Kajantie4, 5,6, Mikaela von 

Bonsdorff1,7, Johan G. Eriksson1,2,4,8,9 

1. Folkhälsan Research Center, Helsinki, Finland. 

2. Department of General Practice and Primary Health Care, University of Helsinki and 

Helsinki University Hospital, Helsinki, Finland. 

3. Primary Health Care Unit, Kuopio University Hospital, Kuopio, Finland. 

4. Department of Public Health Solutions, Unit of Chronic Disease Prevention, National 

Institute for Health and Welfare, Helsinki 

5. Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, 

Finland. 

6. PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, 

Oulu, Finland. 

7. Gerontology Research Center and Faculty of Sport and Health Sciences, University of 

Jyväskylä, Finland 

8. National University of Singapore, Yong Loo Lin School of Medicine, Department of 

Obstetrics and Gynecology, Singapore 

9. Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, 

Singapore;  

 

Correspondence: Anna P. Westberg 

Department of General Practice and Primary Health Care, University of Helsinki 

PO Box 20 

00014 University of Helsinki, Helsinki, Finland 

Tel: +358 294 1911, e-mail: anna.westberg@helsinki.fi 

Orcid ID:  0000-0001-7585-3647 

 

 

  



 2 

 

Abstract 

Aims 

We aimed to examine the association between maternal adiposity and glucose metabolism in adult 

offspring without diabetes, simultaneous taking offspring own adiposity into account. 

Methods 

This longitudinal birth cohort study (Helsinki Birth Cohort Study) included 1,440 non-diabetic 

subjects examined at a mean age of 62 years. Subjects were divided into quartiles according to 

maternal body mass index (BMI). The impact of maternal BMI on offspring body composition was 

also studied. 

Results 

There were no differences in fasting glucose between the groups. In men, maternal BMI was 

inversely associated with mean 2-hour glucose concentration after a 75 g oral glucose tolerance test 

(p<0.001) and mean homeostatic model assessment of insulin resistance (HOMA-IR) (p=0.049). 

According to the subjects’ own BMI, high maternal BMI was associated with lower 2-hour glucose 

concentrations only in non-obese men and with lower HOMA-IR only in obese men. Maternal BMI 

was not associated with glucose concentrations nor with HOMA-IR in women. In addition, 

maternal BMI was positively associated with a higher offspring lean body mass in men. 

Conclusions 

High maternal BMI was associated with lower 2-hour plasma glucose concentration, especially in 

non-obese men. Offspring lean body mass may be a mediating factor for the association.  

 

Keywords: Maternal obesity, offspring health, BMI, glucose metabolism, insulin sensitivity 
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Introduction 

The obesity epidemic is a major challenge to global health today also involving women of 

reproductive age 1,2. Maternal pre-pregnancy obesity and excess gestational weight gain during 

pregnancy are well-recognized risk factors for immediate adverse pregnancy outcomes, such as 

gestational diabetes and pre-eclampsia 3-5. Furthermore, multiple studies have recently focused on 

the impact of maternal adiposity on offspring health later in life 6.  

The mechanisms underlying the association between maternal obesity and offspring later health are 

likely to be multifactorial and to include epigenetic programming in early life 7. In animal studies, 

maternal adiposity has been found to alter the metabolic regulatory pathways of the fetus, including 

shifting the hypothalamic response to leptin, changing appetite control and altering beta cell 

function in the pancreas 8,9. Additionally, studies in human subjects show that maternal obesity is 

linked to changes in DNA methylation in sites associated with offspring adiposity, indicating 

epigenetic remodeling 10. 

In regard of cardiometabolic outcomes, maternal obesity has been linked to childhood adiposity, 

adverse body-fat distribution, adverse lipid profile, elevated blood pressure and insulin resistance in 

the offspring 11-13. Childhood body mass index (BMI) might be a mediating factor between maternal 

BMI and the other cardiometabolic outcomes 11,14. Similar results have been reported in adolescents 

and young adults 15-18.  

The associations between maternal BMI and offspring cardiometabolic outcomes in late adulthood 

have been less studied. A birth cohort study in the UK showed an association between maternal 

obesity and all-cause mortality and cardiovascular events in adult offspring 19. In previous studies 

from the Helsinki Birth Cohort Study (HBCS), we found that maternal adiposity increased the risk 

of cardiovascular disease and type 2 diabetes in the offspring. The association for type 2 diabetes 

was stronger in women.20  

In this study, we focused on the impact of maternal BMI on glucose and insulin metabolism in non-

diabetic offspring in late adulthood. Impaired fasting glucose, impaired glucose tolerance and 

insulin resistance are known risk factors for type 2 diabetes 21. Based on previous studies, we 

hypothesized that a high maternal BMI would be linked to impaired glucose regulation and insulin 

resistance in the offspring. 

 

Methods 

This study is a part of the HBCS, a cohort consisting of 13,345 subjects who were born in one of 

the two largest delivery hospitals in Helsinki in 1934-1944 and who lived in Finland in 1971, when 

all Finnish residents received a unique social security number. In 2001-2004, 2,003 cohort members 

participated in a clinical examination. This clinical cohort was obtained by sending a questionnaire 

to all subjects from HBCS born at Helsinki University Hospital and living in Finland in year 2000 

(n= 8,760). Out of the 6, 874 individuals who responded, 2,901 were randomly chosen to participate 

and, 2,003 of them did.  

In this particular study, subjects with previously and newly diagnosed diabetes were excluded 

(n=315). These subjects were identified from the nationwide prescription register of the Social 

Insurance Institution (SII) as receiving special reimbursement for diabetes medication costs 

(information available form year 1964) and/or having purchased drugs for treatment of diabetes 

(available from year 1995). In Finland, diabetes medication is partly compensated by the state, and 

in order to receive the reimbursement, one must be diagnosed by a physician and approved by a 

physician at the SII. Newly diagnosed diabetes was based upon findings in the oral glucose 

tolerance test (OGTT) performed in association with the clinical study. Additionally, 244 subjects 

were excluded because they had incomplete data on maternal weight and height and 4 subjects were 

excluded because they lacked information about diabetes. Finally, this study cohort included 1,440 

non-diabetic subjects who attended the clinical examination, had complete data on maternal weight 

and height as well as the main outcome variables in this study. 
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Information on the subjects and their mothers was collected from hospital birth records, child 

welfare records and school healthcare records. Data include information on maternal weight in late 

pregnancy, maternal height, maternal age at delivery, parity, gestational age and birth weight and 

height. Maternal BMI was calculated as late pregnancy weight/height2 and maternal body surface 

area (BSA) was calculated by using the Mosteller formula 22. We also calculated the subjects’ 

ponderal index at birth with the formula birth weight/birth height3. 

Glucose tolerance was assessed with a two-hour 75 g OGTT, and glucose concentrations were 

measured at baseline (FPG) and at two hours (2hPG) and expressed as mmol/L. Plasma insulin 

concentrations were measured at fasting and at two hours. HOMA-IR was used as a proxy for 

insulin sensitivity and HOMA-IR was calculated with the formula (fasting plasma glucose (mmol/l) 

x fasting serum insulin (mU/l))/22.5. The main outcomes were 2hPG and HOMA-IR. 

Measurements acquired at the clinical examination included subjects’ adult weight and height, waist 

circumference, lean body mass, fat percent, blood pressure, cholesterol and triglycerides 

concentrations and high sensitive C-reactive protein (hs-CRP). Subjects’ own BMI was calculated 

as adult weight/height2 and BSA by using the Mosteller formula. Blood pressure was measured 

from the right arm in a sitting position and the mean of two successive readings was used. Blood 

was drawn for the measurement of glucose, insulin, lipids and inflammatory markers. Lean body 

mass and body fat percentage were assessed by using an eight-polar tactile electrode system (Bio-

impedance, InBody 3.0). The methods used to measure glucose and insulin concentrations, blood 

pressure, cholesterol concentrations, triglyceride concentrations and hs-CRP are described in detail 

in Eriksson et al.23. Subjects’ smoking status was assessed with a questionnaire and defined as 

whether currently smoking. The amount of leisure-time physical activity (LTPA) was based on a 

12-month validated exercise questionnaire; the Kuopio Ischemic heart disease Risk Factor Study 

and physical activity was presented as metabolic equivalent of task (MET) per week 24. 

The study was approved by the Ethics Committee of Hospital District of Helsinki and Uusimaa and 

conducted according to guidelines in the Declaration of Helsinki. All subjects gave a written 

informed consent. 

 

Statistical analyses 

The maternal and offspring characteristics are presented as means with standard deviation (SD) for 

continuous variables and as frequencies with percentages for categorical variables. For describing 

the characteristics of the men and women they were divided into quartiles according to maternal 

BMI. The quartiles were maternal BMI <24.6 kg/m2 (quartile I), 24.6-26.2 kg/m2 (quartile II), 26.3-

28.0 kg/m2 (quartile III) and >28.0 kg/m2 (quartile IV). In further analyses the men and women were 

divided into three groups according to their own adult BMI. The BMI cutoffs for overweight and 

obesity were used, with BMI <25.0 kg/m2 in the lowest BMI group, 25.0-29.9 kg/m2 in the middle 

BMI group and ≥30 kg/m2 in the highest BMI group 25. Statistical significances for the unadjusted 

hypothesis of linearity across categories of maternal BMI were evaluated by using the Cochran-

Armitage test for trend and analysis of variance with an appropriate contrast. Adjusted hypothesis 

of linearity (orthogonal polynomial) was evaluated using analysis of covariance. Models were 

adjusted for age, BMI, smoking and LTPA as covariates. The bootstrap method was used when the 

theoretical distribution of the test statistics was unknown or in the case of violation of the 

assumptions (e.g. non-normality). The normality of variables was evaluated using the Shapiro–Wilk 

W test. Stata 15.0 (StataCorp LP; College Station, Texas, USA) statistical package was used for the 

analysis. 

 

Results 

Table 1 shows maternal and neonatal characteristics according to quartiles of maternal BMI. 

Women in the highest maternal BMI quartile were older at the time of delivery, had a bigger BSA 
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and a higher parity. Gestational age, birth weight, birth length and ponderal index increased across 

the maternal BMI quartiles. 

Table 2 shows adult characteristics according to maternal BMI quartiles for men and women. Both 

among men and women, the subjects’ own BSA, adult weight, BMI and lean body mass increased 

across the maternal BMI quartiles. Women had a bigger waist circumference and a higher body fat 

percentage in the higher maternal BMI groups. 

In men, no difference was observed in FPG according to maternal BMI (results not shown). In men 

2-hour glucose concentration was 6.56 mmol/l in the highest maternal BMI group and 7.24 mmol/l 

in the lowest group (p for trend across maternal BMI quartiles <0.001, adjusted for age, BMI, 

smoking and LTPA). HOMA-IR was 2.78 in the lowest maternal BMI quartile, 2.61 in maternal 

BMI quartiles II and III and 2.66 in the highest maternal BMI quartile (p for trend 0.049 across 

maternal BMI quartiles adjusted for age, BMI, smoking and LTPA). There were no significant 

differences in women in fasting or 2-hour glucose concentrations nor in HOMA-IR according to 

maternal BMI. 

Figure 1 shows fasting and 2-hour plasma glucose concentrations according to quartiles of maternal 

BMI for men and women across adult BMI groups. In men with BMI <25.0 kg/m2, there was a 

significant decrease in 2-hour glucose concentrations across maternal BMI groups (p for trend 

=0.002 after adjustment for age, BMI, smoking and LTPA). Similar results were observed in men 

with BMI between 25.0 and 29.9 kg/m2 (adjusted p for trend=0.023). No such trend was observed 

in FPG and maternal BMI in men. There were no significant associations between maternal BMI 

and glucose concentrations in women in different adult BMI groups. 

Figure 2 shows the trend of HOMA-IR according to quartiles of maternal BMI for men and women 

across adult BMI groups. In men with BMI ≥30 kg/m2, there was a decrease in HOMA-IR across 

maternal BMI groups (p for trend =0.049, adjusted for age, BMI, smoking and LTPA). There was 

no significant difference in HOMA-IR according to maternal BMI in non-obese men nor in women. 

In men, lean body mass increased across maternal BMI (p for trend 0.043 adjusted for age, BMI, 

smoking and LTPA, results not shown). In women the corresponding p-value was 0.18 (adjusted for 

age, BMI, smoking and LTPA, results not shown). 

 

Discussion 

Within a cohort of 1,440 non-diabetic subjects from the HBCS, we investigated the impact of 

maternal adiposity on adult offspring glucose concentrations and insulin sensitivity, according to 

subjects own BMI. A high maternal BMI was related with a better glucose metabolism, especially 

in non-obese men. Furthermore, maternal BMI was linked to a better insulin sensitivity in obese 

men. In women, there was no association between maternal BMI and glucose-insulin metabolism. 

The strengths of this study include a long follow up period and reliable information about the 

mothers and the subjects at birth from hospital birth records. In this study, the subjects were 

followed up from birth until the mean age of 62 years. The subjects’ adulthood characteristic, such 

as weight and height, were reliably measured at clinical examinations. Plasma glucose and insulin 

concentrations were retrieved from a blood test taken at the clinical examination and HOMA-IR is 

considered to be an appropriate tool for measuring insulin sensitivity in epidemiological studies 26. 

We also had the possibility to adjust for variables that are often lacking in epidemiological studies, 

such as smoking status and physical activity. 

A limitation to this study is that the analyses are based on maternal BMI prior to delivery, since we 

do not have information about pre-pregnancy BMI. Neither were we able to adjust for gestational 

diabetes, since it was not diagnosed in pregnant women in Finland in 1930s and 1940s. Gestational 

diabetes has been linked to unfavorable effects on maternal and cord blood metabolomes that may 

mediate programming of obesity and cardiovascular events 27. However, maternal obesity is 

independently associated with adverse offspring neonatal outcomes also in mothers with gestational 

diabetes 28. As with most observational studies regarding developmental origins of diseases, we are 
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unable to differentiate the underlying impact of genetic, environmental and epigenetic factors or to 

confirm causality. Further, we do not have information about paternal characteristics’, since 

information about the fathers was not available from hospital records. We are thus unable to 

elucidate the influences of paternal genetic and epigenetic traits. Hypothetically, paternal weight 

could alter the results in a way that we are not able to detect due to lack of data. 

This study includes subjects who were alive and healthy enough to attend a clinical examination at 

mean age of 62 years and who did not suffer from diabetes at the time. We excluded subjects with 

diabetes, so that diabetes and diabetes medication would not interfere with the glucose and insulin 

measurements. On the other hand, the requirement of offspring survival until adult age and the 

exclusion of subjects with diabetes may cause a selection bias. 

Previous studies have shown associations between maternal adiposity and offspring obesity and 

cardiovascular risk factors in children, adolescents and young adults 11-18. However, only a few 

studies have focused on the risk of diabetes and cardiovascular disease in offspring in late 

adulthood according to maternal adiposity 19,20,23. In HBCS, we have previously shown an 

association between maternal BMI and type 2 diabetes in adult offspring, particularly in women, but 

not between maternal BMI and offspring fasting glucose concentration or HOMA-IR 20,23. The 

present study adds to previous studies by focusing solely on non-diabetic offspring and by 

simultaneously taking offspring own adult BMI into account. In addition, we included 2-hour 

glucose concentration as a main outcome. 

Differences in adult body composition might partly explain the results. Preceding studies from 

HBCS have shown that low birth weight predicted lower lean body mass in adulthood and that a 

high birth weight in combination with a high maternal BMI was associated with an adverse body 

composition in adulthood 23,29. In this study, men and women with higher maternal BMI had a 

higher lean body mass in the crude model. After adjustment for age, BMI, smoking and LTPA, 

there was a significant positive relationship between maternal BMI and lean body mass, but only in 

men. There is some evidence suggesting that a low muscle mass is a risk factor for type 2 diabetes 

and that it is also associated with poorer glucose metabolism and insulin sensitivity in subjects 

without diabetes 30,31. Skeletal muscle is a major organ of glucose uptake during postprandial 

hyperglycemia 32. In the present study, the increase in lean body mass with higher maternal BMI 

may be a protective factor for glucose intolerance. On the other hand, type 2 diabetes is also 

associated with an excessive loss of skeletal muscle mass, hence complicating the interpretation of 

the results 33.  

We observed different outcomes in men and women. There are sex differences in the development 

of type 2 diabetes and men are diagnosed with diabetes at a lower age and with a lower BMI than 

women 34. In mice, maternal high fat diet leads to higher oxidative stress in beta cells in male 

offspring, and in female offspring, estradiol seems to protect from oxidative stress 35. Additionally, 

sex differences are well reported in previous studies regarding maternal obesity and offspring later 

health 36. 

Our findings provide novel information about the long-term effects of maternal BMI on glucose 

metabolism in the offspring. Obesity in pregnant women has increased in prevalence globally, 

resulting in an urgent need to better understand the long-term consequences of maternal obesity 2. 

Further understanding of these associations may improve primary prevention of obesity in young 

women and, consequently, of cardiometabolic outcomes in the offspring. 

In conclusion, we have studied the association between maternal BMI and glucose and insulin 

metabolism in non-diabetic offspring in adult life. Our main finding is that a high maternal BMI 

was associated with better glucose tolerance in non-obese men. The results may in part be explained 

by the increase in lean body mass, which may be a protective factor for glucose intolerance. This 

study gives further insight in the complex associations between maternal adiposity and offspring 

cardiometabolic outcomes later in life. 
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Table 1. Maternal and neonatal characteristics according to quartiles of maternal body mass index 

during late pregnancy. Data are presented as mean (SD) or number (%). 

 

Characteristics Maternal body mass index group P for trend 

 I 

N=357 

II 

N=363 

III 

N=359 

IV 

N=361 

 

BMI, (kg/m2), range <24.6 24.6-26.2 26.3-28.0 >28.0  

Maternal      

   Age (years) 27.3 (5.2) 28.0 (5.4) 28.8 (5.3) 30.4 (5.5) <0.001 

   Weight (kg) 60.0 (4.6) 64.9 (4.9) 69.4 (5.2) 76.1 (6.7) <0.001 

   Length (cm) 160.5 (6.1) 159.8 (5.9) 159.8(6.0) 158.6 (5.4) <0.001 

   BSA† (m2) 1.63 (0.09) 1.70 (0.09) 1.75 0.10) 1.83 (0.10) <0.001 

   Parity 1.6 (1.0) 1.8 (1.2) 2.0 (1.3) 2.2 (1.5) <0.001 

Neonatal      

   Boys, n (%) 163 (46) 178 (49) 142 (40) 153 (42) 0.10 

   Gestational age (weeks) 39.8 (1.6) 40.0 (1.6) 40.0 (1.5) 40.2 (1.5) 0.003 

   Weight (g) 

      Boys 

      Girls 

 

3280 (474) 

3178 (443) 

 

3471 (422) 

3380 (448) 

 

3605(427) 

3411(441) 

 

3630 (509) 

3521 (460) 

 

<0.001 

<0.001 

   Length (cm) 

      Boys 

      Girls 

 

49.9 (2.3) 

49.5 (1.9) 

 

50.7 (1.7) 

50.1 (1.9) 

 

51.0 (1.9) 

50.2 (1.8) 

 

51.2 (1.9) 

50.5 (1.7) 

 

<0.001 

<0.001 

   Ponderal index (kg/m3) 

      Boys 

      Girls 

 

26.2 (2.2) 

26.0 (2.0) 

 

26.5 (2.1) 

26.8 (2.2) 

 

27.1 (2.8) 

26.9 (2.0) 

 

26.9 (2.3) 

27.3 (2.4) 

 

0.003 

<0.001 
†Calculated with Mosteller formula 

BMI Body Mass Index, BSA Body Surface Area 
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Table 2. Adult offspring anthropometry and clinical characteristics for men and women according 

to quartiles of maternal body mass index during late pregnancy. Data are presented as mean (SD) or 

number (%). 

 

Characteristics Maternal body mass index group P for trend 

 I 

(<24.6) 

II 

(24.6-

26.2) 

III 

(26.3-

28.0) 

IV 

(>28.0) 

 

Women, n 194 185 217 208  

   Age (years) 62 (3) 62 (3) 61 (3) 61 (3) 0.17 

   Height (cm) 163 (6) 163 (6) 164 (6) 163 (5) 0.62 

   Weight (kg) 70.0 (11.5) 72.5 (12.4) 72.8 (13.5) 75.1 (14.2) <0.001 

   BMI (kg/m2) 26.3 (4.1) 27.2 (4.4) 27.0 (4.7) 28.4 (5.4) <0.001 

   Waist (cm) 88 (10) 89 (12) 89 (13) 92 (13) <0.001 

   Current smokers, n (%) 41 (21) 38 (21) 50 (23) 46 (22) 0.68 

   Lean body mass (kg) 46.1(5.3) 47.6(5.3) 48.0(5.8) 47.9(5.2) <0.001 

   Fat % 33.0(6.5) 33.0(6.6) 32.8(7.0) 34.8(7.3) 0.016 

   BSA† 1.78(0.16) 1.81(0.16) 1.82(0.18) 1.83(0.18) <0.001 

   LTPA (met/wk) 46.5 (34.8) 48.8 (37.8) 44.9 (40.7) 46.2 (49.0) 0.73 

   Blood pressure (mmHg)      

      Systolic 144 (21) 142 (20) 142 (20) 143 (22) 0.96 

      Diastolic 88 (9) 87 (11) 87 (10) 88 (11) 0.98 

   Cholesterol (mmol/L) 6.16 (1.08) 6.18 (0.95) 6.12 (1.00) 6.09 (1.01) 0.42 

   LDL-cholesterol (mmol/L) 3.72 (0.94) 3.80 (0.82) 3.74 (0.88) 3.77 (0.89) 0.76 

   HDL-cholesterol (mmol/L) 1.79 (0.43) 1.77 (0.47) 1.77 (0.42) 1.70 (0.39) 0.041 

   Triglycerides (mmol/L) 1.47 (0.77) 1.35 (0.70) 1.34 (0.70) 1.41 (0.73) 0.43 

   hs-CRP (mg/L) 3.33 (4.99) 3.68 (5.58) 3.05 (4.14) 3.16 (5.06) 0.46 

Men, n 163 178 142 153  

   Age (years) 62 (3) 61 (3) 61 (3) 62 (3) 0.80 

   Height (cm) 176 (6) 177 (6) 177 (6) 177 (6) 0.16 

   Weight (kg) 82.3 (11.8) 84.8 (12.2) 84.6 (13.2) 85.9 (13.8) 0.021 

   BMI (kg/m 2) 26.6 (3.4) 27.0 (3.6) 26.9 (3.9) 27.4 (4.0) 0.069 

   Waist (cm) 98 (9) 99 (10) 99 (11) 101 (12) 0.11 

   Current smokers, n (%) 37 (23) 50 (28) 51 (36) 61 (40) <0.001 

   Lean body mass (kg) 62.8(7.2) 64.7(7.5) 65.1(7.9) 65.0(8.0) 0.009 

   Fat % 23.1(5.1) 23.1(5.4) 22.3(6.3) 23.7(5.6)  0.54 

   BSA† 2.00(0.16) 2.04(0.16) 2.03(0.17) 2.05(0.18) 0.021 

   LTPA (met/wk) 49.3 (40.1) 46.0 (47.4) 41.8 (34.4) 45.9 (36.4) 0.30 

   Blood pressure (mmHg)      

      Systolic 147 (18) 146 (20) 144 (20 144 (18) 0.087 

      Diastolic 90 (9) 91 (10) 90 (11) 89 (11) 0.25 

   Cholesterol (mmol/L) 5.75 (1.04) 5.84 (1.07) 5.91 (0.99) 5.81 (1.03) 0.55 

   LDL-cholesterol (mmol/L) 3.62 (0.89) 3.68 (0.88) 3.73 (0.79) 3.64 (0.84) 0.72 

   HDL-cholesterol (mmol/L) 1.45 (0.34) 1.49 (0.36) 1.51 (0.41) 1.49 (0.43) 0.32 

   Triglycerides (mmol/L) 1.55 (0.78) 1.47 (0.77) 1.48 (0.78) 1.46 (0.74) 0.35 

   hs-CRP (mg/L) 2.90 (4.43) 2.56 (3.52) 2.49 (3.25) 3.81(7.66) 0.22 
†Calculated with Mosteller formula 

BMI Body Mass Index, BSA Body Surface Area, LTPA Leisure Time Physical Activity, MET 

Metabolic Equivalent of Task, Hs-CRP High sensitive C-reactive protein   
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Figure 1. Fasting (FPG) and 2-hour plasma glucose (2hPG) according to quartiles of maternal body 

mass index during late pregnancy in men and women in different adulthood body mass index 

groups (values adjusted for age, BMI, smoking and LTPA). 
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Figure 2. HOMA-IR according to quartiles of maternal body mass index in late pregnancy in men 

and women in different adulthood body mass index groups (values adjusted for age, BMI, smoking 

and LTPA).  

 

 

 

 

 


