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Abstract
Many of the algorithms for solving vehicle routing problems expose parameters that strongly influence the quality of obtained 
solutions and the performance of the algorithm. Finding good values for these parameters is a tedious task that requires exper-
imentation and experience. Therefore, methods that automate the process of algorithm configuration have received growing 
attention. In this paper, we present a comprehensive study to critically evaluate and compare the capabilities and suitability of 
seven state-of-the-art methods in configuring vehicle routing metaheuristics. The configuration target is the solution quality 
of eight metaheuristics solving two vehicle routing problem variants. We show that the automatic algorithm configuration 
methods find good parameters for the vehicle route optimization metaheuristics and clearly improve the solutions obtained 
over default parameters. Our comparison shows that despite some observable differences in configured performance there 
is no single configuration method that always outperforms the others. However, largest gains in performance can be made 
by carefully selecting the right configurator. The findings of this paper may give insights on how to effectively choose and 
extend automatic parameter configuration methods and how to use them to improve vehicle routing solver performance.

Keywords Vehicle routing problem · Automatic algorithm configuration · Metaheuristics · Meta-optimization

1 Introduction

The vehicle routing problem (VRP) is a practical, relevant, 
and challenging problem that has been extensively studied 
by the artificial intelligence (AI) and operations research 
(OR) communities. One of the main trends in solving VRPs 
is the shift toward more generic and robust route optimi-
zation algorithms [56]. However, optimization models 
and algorithms are still typically hand-tuned by experts 
on a case-by-case basis [14, 56]. The need for an expert 
in this process creates a barrier for the widespread use of 

the latest scientific advances to solve real-life optimization 
problems. Therefore, to build more flexible academic and 
commercial solvers for routing problems, the hand-tuning 
of the algorithms should be automated. One step toward 
this goal is to automate the search of the right optimization 
parameters [14, 31]. This opportunity has been recognized, 
e.g., by Hutter et al. [30]: “automated algorithm configura-
tion methods ...will play an increasingly prominent role in 
the development of high-performance algorithms and their 
applications.”

Automatic algorithm configuration [31] (or parameter 
tuning [15]) means off-line modification of an algorithm’s 
parameters. Recently, researchers have proposed several 
automatic configuration methods, which have proven suc-
cessful in different domains such as evolutionary compu-
tation [55], Boolean satisfiability [1, 30], and mixed-inte-
ger programming [25, 34]. In the field of vehicle routing 
research, Pellegrini and Birattari [48] compared the perfor-
mance of different metaheuristics with and without auto-
matic algorithm configuration and concluded that, in every 
instance, the automatically configured version of the solu-
tion algorithm yielded better results than the correspond-
ing non-configured one. Furthermore, automatic algorithm 
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configuration enabled a fair comparison, which makes it a 
recommended practice for algorithm developers [16].

Besides our preliminary work presented in [52], there is 
no comprehensive comparative study on automatic algo-
rithm configuration of vehicle routing solvers. Consequently, 
this study addresses this knowledge gap by investigating the 
performance of recent automatic configuration methods in 
the domain of routing algorithms. In particular, our aim is 
to answer the following questions:

1. Are existing automatic algorithm configuration methods 
suitable for configuring routing algorithms?

2. How do these configurators compare, and are there 
methods that should be preferred when configuring rout-
ing algorithms?

3. How does the performance of configurators vary with 
different metaheuristics, vehicle routing variants, and 
problem instances?

4. How robust are the methods in configuring routing algo-
rithms?

To address these questions, we compare the performance 
of seven state-of-the-art automatic algorithm configura-
tion methods on metaheuristics for two different variants 
of the vehicle routing problem. This extends our previous 
study [52] by adding new configuration targets, improving 
experimental setup, and including a thorough analysis of the 
configuration method performance and resulting parameter 
configuration values. In our experiments we concentrate on 
optimizing solution quality instead of algorithm runtime on 
relatively small problem instance sets. Our results confirm 
that with these conditions the algorithm performance can 
be clearly improved by using automatic configuration. Also, 
while some configuration methods perform better, and are 
more robust in some algorithm configuration tasks, no single 
method invariably outperforms all the others.

The paper is structured as follows: Sects. 2 and 3 intro-
duce the vehicle routing and the algorithm configuration 
problems, and describe the automatic algorithm configura-
tion methods used in this paper. Section 4 contains a litera-
ture review on algorithm configuration in routing. Section 5 
describes the experimental design used to test the configu-
rators followed by Sect. 6 where the numerical results and 
analysis are presented and discussed. Finally, Sect. 7 con-
cludes the study and proposes topics for future research.

2  The vehicle routing problem

In the classical vehicle routing problem (VRP) the goal is 
to find optimal routes for vehicles leaving from a depot to 
serve a specified number of customers. Each customer must 
be visited exactly once by exactly one vehicle. Each vehicle 

must leave from the depot and return there after serving all 
customers on its route. Typical objectives are to minimize 
the number of vehicles and the total length of the routes. 
Thus, VRP is a generalization of the well-known travelling 
salesman problem (TSP).

Multiple extensions and variants of VRP have been pro-
posed in the literature. Many of these add new constraints, 
such as vehicle capacity, maximal route length, and time 
windows, or introduce new features, such as stochasticity, 
split deliveries, or multiple depots. For an introduction to 
different variants and extensions to VRP, refer to [32]. Prob-
lems where several constraints and complex objectives are 
combined to tackle real-world cases are called ‘rich’ VRPs 
[12].

In this paper, we focus on two variants: the capacitated 
vehicle routing problem (CVRP) and the vehicle routing 
problem with stochastic demands (VRPSD). In CVRP, each 
customer has a demand that needs to be fulfilled and each 
identical vehicle has a capacity that cannot be exceeded. The 
objective is to find feasible routes so that the number of vehi-
cles and the total distance of routes are minimized. Also the 
vehicles in VRPSD have limited capacity, but in this variant 
the exact demands of the customers are not known until they 
are served. However, the distributions of the demands are 
known and should be considered in the optimization of the 
routes [8].

Algorithms for solving the VRP can be divided into two 
families: exact and heuristic. The aggregated results from 
Uchoa et al. [59] suggest that exact algorithms cannot con-
sistently solve CVRP instances with more than two hun-
dred customers, and, therefore, different (meta)heuristics 
have been proposed to solve larger problems. Examples of 
such methods include simulated annealing (SA), tabu search 
(TS), evolutionary algorithms (EA), ant colony optimization 
(ACO), and iterated local search (ILS). For surveys of the 
topic, refer to Laporte [35] and Mester and Bräysy [42].

Recently, the trend has been toward developing adaptive 
and cooperative hybrid algorithms [4, 33, 49, 56], but as Hut-
ter et al. [31], Battiti and Brunato [6], and Sevaux et al. [54] 
have noted, even these tend to have many parameters that 
need to be fixed. Therefore, these new approaches further 
emphasize the need for automatic algorithm configuration.

3  The algorithm configuration problem

Many advanced search algorithms have free parameters that 
can be set by the user. The parameters are usually used to 
balance the algorithm elements and make trade-offs between 
diversification, intensification, co-operation, and other 
aspects [61]. These parameters must be configured in order 
for the method to perform well, which is a nontrivial task. 
In fact, Smit and Eiben [55] point out that finding the right 
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values for the parameters “is a complex optimization task 
with a nonlinear objective function, interacting variables, 
multiple local optima, and noise.” With stochastic local 
search (SLS, see [24]) algorithms for VRP, this noise comes 
from the random problem instance selection and stochastic-
ity of the algorithm that is being configured.

One of the main challenges of automatic algorithm con-
figuration according to Eiben et al. [15] comes from the 
complex interactions between the parameters. Sometimes 
the parameters can be configured individually, but the result 
may be suboptimal, whereas trying all different combina-
tions is often impossible due to the sheer number of possible 
combinations.

Next, we define the algorithm configuration problem and 
describe approaches that have been proposed to solve it.

3.1  Introducing the problem

Hutter et al. [30] defines the goal of automatic algorithm 
configuration to be finding a set of parameter values, a 
parameter configuration, for a given target algorithm so 
that the algorithm achieves the best possible performance, 
or utility, on the given input data set. Formal definitions of 
the problem are presented by Birattari et al. [9] and by Hut-
ter et al. [30].

Depending on when the algorithm parameters are 
changed, automatic algorithm configuration and parameter 
control can be distinguished from each other [15]. Auto-
matic algorithm configuration is the off-line task of finding 
good values for the parameters before the actual deployment 
of the algorithm into production. In contrast, parameter con-
trol reactively changes the values of the parameters while the 
algorithm is running.

Algorithm parameters can be numerical, ordinal, or cate-
gorical. Numerical parameters have a value that is an integer 
or a real number. Ordinal and categorical parameters have a 
finite set of values that the parameter may take, but categori-
cal parameters cannot be ordered in a meaningful way.

3.2  Automatic algorithm configuration methods

The performance of different configuration methods (or con-
figurators) has been studied earlier, for example, for mixed-
integer programming solvers [26], evolutionary algorithms 
[45, 55], and SAT solvers [1, 30, 37]. Actually, Kadioglu 
et al. [34] states that there has been a renaissance in the field 
of automatic algorithm configuration during the first decade 
of the 21st century. For a recent review of these methods see 
Hoos [23]. Eiben and Smit [16] presents a similar survey for 
the evolutionary algorithm tuning community. In addition to 
exploring the concepts such as robustness and performance 
measures, they propose a useful taxonomy for the configura-
tion methods.

Recently, the focus has been in overcoming the chal-
lenges posed by heterogeneous and large problem 
instances. Prime examples of this research are recent 
studies from Styles and Hoos [57] and Mascia et al. [41], 
where new techniques for reducing computational effort 
are proposed. These alone are not always sufficient, as 
finding good parameter configurations still often requires 
considerable computational resources. Combining auto-
matic configuration with parallel and cloud computing 
demonstrates how increased availability of computational 
resources can allow performing the configuration tasks 
within reasonable time [18, 28].

In this study, we focus on seven state-of-the-art algorithm 
configuration methods: CMA-ES [21, 64], GGA [1], Iterated 
F-Race [3], ParamILS [30], REVAC [46], SMAC [27], and 
URS [64]. The primary criterion to include a method into 
this study was previously documented use of the automatic 
algorithm configuration method on VRP or TSP targets. The 
secondary criterion was the availability of an implementa-
tion, as not all recently introduced automatic configuration 
methods are publicly available. Short descriptions for each 
of the selected methods are given below.

CMA-ES is a continuous optimization method that was 
proposed by Hansen [21]. The method is based on the 
ideas of self-adaptive evolution strategies. It works by 
sampling new vectors from a multivariate Gaussian distri-
bution, whose covariance matrix is cumulatively adapted 
using the search evolution path to form rotationally invar-
iant scatter estimates. CMA-ES is known to be reasonably 
robust and is therefore suitable for automatic algorithm 
configuration [55]. We extended CMA-ES with a basic 
discretization scheme to make it support ordinal and cat-
egorical parameters, as they were not supported natively. 
Recently, Vidal et al. [60] used CMA-ES to configure a 
hybrid VRP solver with eight numerical parameters.
GGA  (Gender-Based Genetic Algorithm) is a robust pop-
ulation-based automatic algorithm configuration method 
proposed by Ansótegui et al. [1]. The method divides the 
population into two genders, where the selection pressure 
is only on the other gender. If the dependencies between 
the configured parameters are specified, they are taken 
into account in recombination phase. In addition, GGA 
uses the aging and death of individuals, and random 
mutations in the new offspring. The parameters of GGA 
include truncation percentage X for breeding selection, 
tree branch inheritance probability B, mutation rate M 
along with mutation variance S, and maximum age A. 
GGA also requires the initial population size P and num-
ber of generations G to be set. Ansótegui et al. [1] did not 
report the number of optimized parameters being con-
figured in their experiments, but according to [30] the 
number of parameters for these targets ranges from 4 to 
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26 with varying composition of categorical and numeri-
cal parameters.
F-Race [9] races a finite set of candidate parameter con-
figurations against each other. The method draws inspira-
tion from Maron and Moore [39] where racing was used 
to solve a similar problem. At each step of F-Race, can-
didates are evaluated by running the target algorithm on 
a single problem instance from the training set. A Fried-
man test is then used to eliminate those configurations 
that are significantly worse than the best one. The race is 
terminated when a maximum number of configurations 
have been sampled, when the predefined computational 
budget is used, or when the Friedman test indicates that 
a dominating best configuration is found.
I/F-Race (Iterated F-Race) is an iterated extension of the 
F-Race proposed by Balaprakash et al. [3]. In I/F-Race, 
a relatively small set of new candidates is sampled dur-
ing each iteration. After each race iteration some or all 
of the surviving candidates are promoted as elite. Each 
candidate in the new iteration is sampled from a distri-
bution centered on a randomly selected elite candidate. 
The standard deviations for this distribution are reduced 
on each iteration [37]. I/F-Race is parametrized by the 
number of iterations I, the computation budget for each 
iteration ebI , the number of candidates for each itera-
tion NI , and the stopping condition parameter Nmin . The 
additional stopping parameter allows a race iteration to 
be terminated when only Nmin candidates are remaining 
[9, 37], which will help ensure sufficient exploration in 
the parameter configuration space [10]. The experiments 
described by Birattari et al. [10] contained at most 12 
configured parameters.
ParamILS [30] uses iterated local search (ILS), which 
has proven to be a good heuristic for solving a variety 
of discrete optimization problems [38]. It uses an one-
exchange neighborhood (one change to one parameter 
at a time) to search the space of all possible algorithm 
parameter value combinations. The ParamILS algorithm 
starts by sampling R random parameter configurations 
from which it selects the one performing best on the tar-
get algorithm. Then it performs a local search where it 
moves toward a local optimum. To avoid getting stuck, 
ParamILS employs random perturbations and restart 
strategies. The ILS approach allows ParamILS to con-
figure any algorithm, even those with many parameters. 
However, ParamILS is able to handle only ordinal and 
categorical parameters and requires discretization of con-
tinuous parameters.
REVAC (Relevance Estimation and Value Calibra-
tion) by Nannen and Eiben [46] is a population-based 
estimation-of-distribution algorithm. REVAC starts 
from an assumption of a uniform distribution over the 
range of each free parameter. It samples new individu-

als from the constantly updated parameter distribu-
tions and aims, through transformation operations with 
multi-parent crossover (where N best individuals are 
selected) and an interval shrinking operation governed 
by a parameter H, to narrow down on the most promis-
ing range of each parameter. After the initial population 
of size M has been evaluated, only one new individual 
is sampled at each iteration. After the method has fin-
ished, relevance estimates can be used to recognize 
which parameters are essential to the performance of 
the target algorithm. Categorical parameters are not 
supported. EA targets configured by REVAC seem to 
typically have around six parameters [55].
SMAC [27] is the latest configurator from a series of 
sequential model-based optimization (SMBO) methods 
[5, 25, 29]. SMBO is an iterative framework for meth-
ods that alternate between fitting a regression model, 
and using that model to predict performance of new can-
didates. However, SMAC is the first one to extend this 
paradigm to general algorithm configuration problems. 
Thus, while Bartz-Beielstein et al. [5] were one of the 
first to use these black box continuous optimization meth-
ods in algorithm configuration, Hutter et al. [27] further 
extended the applicability of SMBO by adding support 
for multiple instances, categorical and conditional param-
eters, and an option to model the parameter configura-
tion response surface more accurately. More precisely, a 
random forest with instance features is used to create a 
surrogate model for the algorithm’s performance, which 
is then used in local search of promising configurations. 
SMAC and ParamILS were used and tested in scenarios 
with nearly 80 free parameters by Hutter et al. [28].
URS (Uniform Random Sampling) [64] is used in this 
study as a reference parameter configurator. During an 
iteration, a candidate is sampled uniformly from the set 
of all possible parameter configurations and evaluated on 
all instances in the training set, while keeping track of 
the best encountered configuration. The method sets a 
baseline for the more sophisticated configuration methods 
presented above.

The features of the seven automatic algorithm configuration 
methods are summarized in Table 1. The first group of col-
umns from the left shows which target algorithm parameter 
types are supported by the configurator. The second group 
shows the algorithmic building blocks that the configurators 
employ to allocate search efforts effectively. Here, effective 
allocation is one that concentrates the target algorithm evalu-
ations mostly on the promising parameter configurations. 
The features also ensure that exploration and exploitation 
are balanced and the stochasticity of the search and target 
algorithm properly addressed [64]. Sampling is a strategy 
that all configurators share, but otherwise these methods 
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use different approaches to solve the automatic algorithm 
configuration problem.

The third group lists effort reduction techniques that are 
used to save parameter configuration evaluations by chang-
ing how candidate configurations are tested: Capping [30] 
terminates the evaluation as soon as it becomes clear that 
the candidate configuration cannot produce a good param-
eter configuration. This is convenient when the objective is 
to minimize the runtime of a target algorithm, but capping 
is not applicable to solution quality-based configuration 
that we are doing in this paper. In racing [9] good and bad 
parameter configurations are recognized early by increas-
ing the number of instances and random seeds to evaluate 
on each step of the race. This technique is closely related 
to blocking [40], where the parameter configuration candi-
dates are evaluated on the same instances and seeds called a 
block. These techniques control the noise from the variance 
in the configuration objective between instances and seeds. 
Sharpening [55] controls the number of available problem 
instances per iteration, and seed configurations allow the use 
of the default or other user-provided parameter configura-
tions at initialization.

The concepts racing, blocking, and sharpening can be 
combined like in the intensify approach of ParamILS and 
SMAC [27, 30]. There, the history of evaluations on the best 
parameter configuration is stored and after a new evalua-
tion is added, new configurations are compared against the 
history on the same problem instances and seeds. New con-
figurations are rejected or declared as the new best-known 
configuration early, that is, after there is enough evidence.

Conditional parameters, also known as parameter hier-
archies, were introduced in ParamILS [31]. They allow the 
user to specify that algorithm parameters are active only 
with activation of some other parameter, and, thus, available 
for automatic configuration. This prevents the configurator 
from changing parameter values when they have no effect. 
An in-depth survey of techniques and concepts related to 
automatic algorithm configuration is given by Hoos [23].

The rightmost column of Table 1 shows the total number 
of features for each configuration method. Out of the listed 
methods, CMA-ES, URS and REVAC, rely on a smaller 
number of features compared to others as they do not use 
the more sophisticated search effort reduction techniques. 
We are aware that generic continuous optimization methods 
such as CMA-ES and URS can be augmented with effort 
reduction mechanisms. For example, in [64] they were used 
to identify good parameter configurations with minimal 
evaluation effort, similarly to racing in I/F-Race. However, 
CMA-ES has also been used in algorithm configuration 
without such extensions (see, e.g., [60]), and, addition-
ally, our research was better served with distinctly different 
approaches to automatic algorithm configuration than vari-
ations on the I/F-Race pattern. Those interested in extending Ta
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continuous optimization methods such as CMA-ES with 
effort reduction techniques are referred to [64].

4  Automatic algorithm configuration 
in routing

In this section, we give a short survey on configuring rout-
ing algorithms. Because the number of articles on automatic 
algorithm configuration of VRP algorithms is relatively 
small, we also survey the relevant studies for the traveling 
salesman problem (TSP).

Coy et al. [14] recognized the importance of configuring 
VRP metaheuristics already in 2001 and proposed a proce-
dure to find a set of good parameter values for a target VRP 
algorithm. Their procedure is based on a statistical design of 
experiments that requires expert knowledge on each step of 
the process. Similar to the more recent automatic algorithm 
configuration methods, their procedure contains local, inex-
act steepest descent search on the response surface and uses 
an average of the locally optimal parameter configurations 
as the final result. The authors concluded that their method 
managed to improve the default settings of their VRP algo-
rithms, and that the procedure outperformed random param-
eter sampling.

Pellegrini [47] used F-Race to configure two heuristic 
algorithm variants solving a specific rich VRP variant, a 
VRP with with multiple time windows and heterogeneous 
fleet. Later, Pellegrini and Birattari [48] showed the ben-
efits of automatically configuring VRP metaheuristics. They 
configured the IRIDIA VRPSD solvers with F-Race and 
noted that the configured algorithms were able to clearly 
outperform the out-of-the-box implementations with default 
parameters. Becker et al. [7] used racing to configure the 
parameters of a commercial VRP solver on a heterogeneous 
training set of 47 real-world routing problem instances.

Balaprakash et al. [3] used automatic algorithm configu-
ration on three different routing variants, including VRPSD, 
to show the advantages of the iterated F-Race over the stand-
ard F-Race. Garrido et al. [17] proposed a hyperheuristic 
where REVAC was used to choose the low-level heuristics 
solving CVRPs. More recently, Vidal et al. [60] used CMA-
ES to automatically configure his record breaking hybrid 
genetic algorithm (GA) for multi-depot and periodic vehicle 
routing problems. By using a meta-GA to configure a hybrid 
GA, Wink et al. [62] were able to reduce the optimality gap 
on CVRP benchmark instances from Augerat et al. [2] by 
91 % (a 0.55 percentage point improvement) compared to an 
extensively hand-tuned hybrid GA. They were also able to 
find a new best-known solution for a 200-customer instance 
in another problem set by using the same automatic configu-
ration approach.

Even though there are studies of automatic algorithm con-
figuration of routing solvers, we were able to find only three 
comparative studies on automatic algorithm configuration of 
TSP solvers. Montero et al. [44] compared F-Race, REVAC, 
and ParamILS to recognize unused operators in solving the 
TSP with an evolutionary algorithm. In a second study, 
Montero et al. [45] focused on comparing the performance 
of the three previously mentioned configurators. They con-
cluded that all three methods have comparable configuration 
performance and that they are able to improve the perfor-
mance of metaheuristics targeting single problem instances. 
Yuan et al. [64] compared CMA-ES, URS, and three other 
methods in configuring the ACO algorithm for the TSP, and 
Styles and Hoos [57] introduced two racing protocols that 
allow different levels of difficulty of problem instances in 
training and validation sets. To solve the TSP instances they 
used an implementation of the Lin–Kernighan algorithm 
(LKH). They concluded that for various sizes of configu-
ration problems, especially for those with many numerical 
parameters, CMA-ES appears to be a robust algorithm.

In addition to our workshop paper [52] reporting some 
preliminary results, we are not aware of comparative studies 
on automatic algorithm configuration methods configuring 
vehicle routing solvers. VRP solvers have been configured in 
many studies, but the lack of comparative experiments with 
different automatic algorithm configurators makes it hard 
to determine which method one should use when dealing 
with different VRP metaheuristics. Also, from the existing 
literature, it is hard to infer how much the solution quality 
is expected to improve when a VRP metaheuristic is config-
ured with automatic algorithm configuration.

5  Comparison of methods for configuring 
VRP solvers

Next, we will describe our computational comparison for the 
automatic algorithm configuration methods. We will explain 
the experiments that we carried out, and the costs and ben-
efits of adding a layer of meta-optimization on top of a VRP 
solver. As noted in the study by Hepdogan et al. [22], the 
configurator for heuristic algorithms should be fast, efficient, 
and outperform random parameter value selection. Thus, the 
additional complexity caused by the automatic algorithm 
configuration must be empirically justified. We will also pre-
sent the VRP solvers used as the target algorithms.

5.1  Solvers and benchmark problems

VRPH is a heuristic solver library for the CVRP developed 
by Groër et al. [20]. The library uses the Clarke-Wright 
construction heuristic and a selection of well-known local 
search operators: one-point-move (1ptm), two-point-move 
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(2ptm), three-point-move (3ptm), two-opt (two), three-opt 
(tho), and Or-opt (oro). These operators can be enabled and 
disabled using six switches common to all solvers (listed 
as shared in Table 2). VRPH implements also the cross-
exchange operator, but we disabled it because of its tendency 
to produce infeasible routes.

Other solver parameters do not have an effect on the 
behavior of the local search operators. Use of the library’s 
local search operators is orchestrated by three metaheuris-
tics: Record-to-Record travel (RTR, 6 + 8 free param-
eters, where the first 6 are the shared parameters between 
all VRPH metaheuristics and the other 8 parameters are 
specific to the RTR metaheuristic), Simulated Annealing 
(SA, 6 + 5), and neighborhood ejection (EJ, 6 + 3). We 
omit the descriptions of the heuristics, metaheuristics, and 
solver parameters and refer the reader to Groër et al. [20] 
and Table 2.

The other set of solvers we used in our experiments was 
the IRIDIA VRPSD metaheuristics presented by Bianchi 
et al. [8]. For local search, the IRIDIA VRPSD solvers rely 
on only one operator, Or-opt. For the metaheuristic, one 
can choose between ant colony optimization (ACO, 2 + 6 
parameters), evolutionary algorithm (EA, 2 + 3), iterated 
local search (ILS, 2 + 1), simulated annealing (SA, 2 + 4), 
and tabu search (TS, 2 + 3). The two shared parameters, p 

and t, are related to determining the local search move cost 
approximation method. For a thorough explanation of the 
solver parameters refer to Table 2 and Bianchi et al. [8].

The size of the training set is an important variable when 
doing automatic algorithm configuration. If the training set 
is excessively large, evaluating every parameter set on all 
instances, as it is done in URS and REVAC, becomes infea-
sible. Even the more sophisticated configuration methods 
require a significant subset of a large heterogeneous training 
set to get a reliable estimate on the parameter configura-
tion utility. Conversely, if the training set is small, there is a 
danger that it is not a representative sample, and even if the 
resulting parameter configuration can be used to solve the 
training set effectively it may have been over-tuned and its 
performance does not generalize [1]. For our configuration 
tasks, we decided to use a training and validation set size 
of 14 instances, which is consistent with the experiences 
of Becker et al. [7] from configuring real-world routing 
problems.

We acknowledge that the chosen number of instances is 
atypically small for automatic algorithm configuration tasks. 
The reasons leading to small number of training instances 
was threefold: 1. Out of the compared configuration meth-
ods, only the advanced ones support sharpening and block-
ing. To avoid major modifications and extensions to the less 

Table 2  Free parameters of the 
VRPH and VRPSD solvers

The following parameter type key is used: ‘B’ for Boolean switch (was treated as numerical, or as categori-
cal if the option was available), I for integer values (numerical), R for real values (numerical, continuous)

VRPH Name Type Default Range VRPSD Name Type Default Range

Shared 1ptm B 1 {0, 1} Shared p B 0 {0, 1}

2ptm B 1 {0, 1} t B 0 {0, 1}

two B 1 {0, 1} ACO m I 7 [1, 100]
oro B 0 {0, 1} � R 0.5 [0.0, 1.0]
tho B 0 {0, 1} � R 0.3 [0.0, 1.0]
3ptm B 0 {0, 1} � R 0.1 [0.0, 1.0]

EJ m I 10 [0, 45] q R 1e7 [10.0, 1e7]
t I 1000 [0, 1e4] � R 1.0 [0.0, 5.0]
s B 0 {0, 1} EA p I 10 [1, 1e3]

RTR D I 30 [1, 100] mr R 0.5 [0.0, 1.0]
� R 0.01 [0.0, 0.1] amr B 0 {0, 1}

K I 5 [0, 100] ILS x R 10.0 [0.0, 1e3]
N I 4 [0, 75] SA � R 0.01 [0.0, 0.1]
P I 2 [1, 10] � R 0.98 [0.0, 1.0]
p B 1 {0, 1} � I 1 [1, 100]
a B 1 {0, 1} � I 20 [1, 100]
t I 0 [0, 50] TS ttf R 0.8 [0.0, 1.0]

SA T R 2.0 [0.0, 10.0] pt R 0.8 [0.0, 1.0]
n I 200 [0, 1e3] po R 0.3 [0.0, 1.0]
i I 2 [0, 10]
� R 0.99 [0.8, 1.0]
N I 10 [0, 100]
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sophisticated configurators, we simply evaluate the entire 
training set for each parameter configuration candidate. A 
large training instance set would make this approach infea-
sible. 2. We wanted to keep the size constant over all targets, 
and 14 was the size of the smallest problem set used in our 
experiments. 3. Finally, we would like to point out that a 
promising practical application of automatic configuration 
in vehicle routing is the automatic fine tuning of algorithms 
used in real-world routing [11, 53]. Especially in industry 
one might not be able to access a large number of specific 
routing problems because of time and human resource limi-
tations. By using a restricted problem set size we tried to 
ensure that this study stays relevant to this audience.

For the VRPH solving CVRPs, we used the classic 
benchmark set CMT with 14 problem instances originating 
from Christofides et al. [13], which has problems with sizes 
ranging from 50 to 200 customers. Paired with the three 
metaheuristics, this creates configuration targets VRPH-EJ-
C, VRPH-RTR-C, and VRPH-SA-C. We used a threefold 
cross-validation with stratified sampling by problem size for 
this benchmark set because dividing this set into separate 
training and validation sets would have produced prohibi-
tively small problem sets.

In order to examine the effect different problem sets can 
have on configuration performance, and how well the per-
formance gains generalize to similar problems, we used the 
A and B CVRP sets from Augerat et al. [2]. These sets have 
27 and 23 instances with sizes from 31 to 79 customers. 
The problem sizes and demand distributions are similar, but 
the customers in set A are uniformly distributed and in B 
clustered. To fix one variable, the size of the training set, 
we decided to use a subset of the original instance set in our 
experiments. We used a stratified sampling of 14 instances 
from set A and set B, to construct disjoint training and vali-
dation sets. This forms the next three configuration targets: 
VRPH-EJ-A, VRPH-RTR-A, and VRPH-SA-A.

Finally, to test the IRIDIA VRPSD solvers, we used train-
ing and validation subsets, again with a stratified sampling 

of 14 instances each, from the IRIDIA problem set of 120 
randomly generated instances with 50 to 200 customers [8]. 
Supporting material1 for [8] includes the algorithms and 
description of the problem instances. The configuration tar-
gets for VRPSD are: VRPSD-ACO, VRPSD-EA, VRPSD-
ILS, VRPSD-SA, and VRPSD-TS.

The experimental setup is illustrated in Fig. 1. To sum-
marize, we selected seven automatic configuration methods, 
three target algorithms solving the CVRP, and five solving 
the VRPSD. For each of the eight target algorithms solving 
a set of VRP benchmarks, the configurators try to find a set 
of parameters that maximize the quality of the solutions pro-
duced. This means there are interchangeable objects in the 
three levels: a problem set, a solver with the metaheuristic 
and local search operators, and a configurator that optimizes 
solver performance. In addition, two of these levels have 
free parameters: the solver has parameters being configured 
and the configurator has its own parameters that must be set 
manually by the experimenter. Furthermore, the selection of 
the problem instances to the training and validation sets may 
cause variability in the configuration performance.

5.2  Experimental design

The VRP solvers used in this study were considered to be 
black boxes from the configurators’ point of view. Only the 
free parameters and their ranges were known prior to starting 
the configuration task.

When using heuristic algorithms, reaching the optimum 
in a reasonable time is not guaranteed. Thus, we cannot 
use the total running time of the target algorithm to com-
pare parameter configuration efficiency, even if it is a more 
common target for automatic algorithm configuration (see, 
e.g., [30]). Instead of solver time, we decided to optimize 
for solution quality and set a 10 CPU second cutoff for all 

Fig. 1  The experiment setup 
where the total number of con-
figurators, configuration targets, 
and VRP problem instance sets 
are given in the parenthesis

1 http://iridi a.ulb.ac.be/supp/Iridi aSupp 2004-001/index .html.

http://iridia.ulb.ac.be/supp/IridiaSupp2004-001/index.html
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invocations of VRP solvers. If an algorithm had not stopped 
after 10 s, it was terminated and with the quality of the cur-
rent best solution.

Choosing 10 s as the CPU cutoff was not arbitrary. The 
experimental design presented here already creates a large 
number of combinations to test, and the stochasticity in 
the target algorithms and in the configurators themselves 
requires multiple configuration trials for statistical reliability. 
Thus, the algorithm runtime had to be reasonably small. Fig-
ure 2 illustrates the effect cutoff has on actual elapsed time 
of the algorithm and the resulting solution quality. VRPH 
solvers are able to utilize the more generous computational 
resources only with two targets and the additional time gives 
diminishing returns after 10 s. Also, while considering the 
effect of this decision, please note the scaling of the x-axis. 
The curves have a negative exponential multiplier, and thus, 
the quality improvement is logarithmic (not linear) when the 
CPU time is increased for VRPSD targets. Furthermore, the 
selected cutoff is in line with [19], where the Augerat et al. 
[2] instances are solved within 0.3 % of optimal solution 
on average in 3.5 s. Similarly, Groër [19] reports that the 
larger CMT [13] instances are solved close to optimality on 
average in 12.94 s (RTR) or 21.9 s (EJ) on a 2.3 GHz AMD 
processor.

From Fig. 2 we also see that VRPSD can utilize the more 
generous computational resources. In their experiments Pel-
legrini and Birattari [48] used a slightly more generous CPU 
timeout of 30 s for these targets, although with significantly 
slower AMD Opteron 244 processor than the Intel Xeon E7 
used in this study. Yuan et al. [64] used a 5 s cutoff for ACO 
solving medium sized TSP instances, which was then config-
ured using, e.g., CMA-ES. These further validate the deci-
sion of using a relatively strict cutoff in such configuration 
scenarios. Furthermore, because our comparison already had 
many changing variables (configurator, target metaheuristic 
and its parameters, problem sets and instances, and local 

search operator selection), we decided to fix the cutoff for 
all targets.

We acknowledge that the runtime of a routing algorithm 
to solve large real-world problem with thousands of cus-
tomers may be measured in hours, especially in cases with 
complex constraints such as dynamic travel times, com-
partment compatibilities, or other extensions including 
separate pickups and deliveries or a heterogeneous fleet 
[7]. Despite this, modern metaheuristics are usually able 
to find proper solutions for all but the largest benchmark 
problems in a few seconds.

As the utility metric we use an aggregated solution 
objective function value over the training instance set. 
Aggregation is a sum over the estimated objective func-
tion values for the resulting VRP solutions in the instance 
set. Thus, the configuration task is to minimize:

Here, ĉ is the utility metric estimator, It is the training prob-
lem set, â is an estimator for the utility function for algorithm 
a a, which in turn solves problem instance i ∈ It guided by 
parameter configuration � . Because the metaheuristic algo-
rithm a is stochastic, we also define â to be an estimator 
of the algorithm solution quality. In practice, the estimate 
is formed through repeated evaluation of the algorithm on 
the same problem instance and parameter configuration, but 
with different random seed.

Even if we did not solve rich problems in this study, 
the number of evaluations that can be allocated into find-
ing a reasonably good parameter configuration remains an 
important factor. Especially since we would like to keep 
this study relevant to the operations research practition-
ers who are solving large-scale real-world vehicle routing 
instances with complex constraints who could benefit from 

(1)minimize
𝜃

ĉ =
∑

i∈It

â(i, 𝜃)

(a) VRPH (b) VRPSD

Fig. 2  Effect of a cutoff to the elapsed algorithm runtime and resulting solution quality on an automatically configured solver
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automatic algorithm configuration. In their case, the num-
ber of solver invocations cannot be too large.

In our experiments each configuration task was given an 
evaluation budget that defines the number of solver invoca-
tions allowed during a configuration task. One call of the 
routing solver with one parameter configuration and one 
problem instance is counted as one evaluation. To compare 
the effect of different budgets, every configurator—solver 
combination was run with evaluation budgets of 100, 500, 
and 1000. In addition, VRPSD-ACO was configured with 
an evaluation budget of 5000 to see the effect of a larger 
budget.

Whenever the option was available, configurators were 
set to expect non-deterministic behavior from the target 
algorithm. Thus, allocating the budget for new parameter 
configurations and problem instances and controlling the 
stochasticity through additional evaluations was left for the 
configurator.

GGA, I/F-Race, ParamILS, and SMAC use effort reduc-
tion techniques that can save evaluations, for example, by 
evaluating only a subset of the training instances on each 
iteration, whereas CMA-ES, REVAC, and URS evaluated 
all problem instances in the training set on each iteration. 
All the tested target parameters could be represented with an 
integer or real number with a suitable range and an optional 
discretization step (in ParamILS).

All seven automatic algorithm configuration methods 
contain a set of parameters related to the basic technique and 
its actual implementation. The default parameters provided 
by the original authors were used in the experiments when-
ever possible. A full listing of the configurator parameters 
can be found in the online supplementary material for this 
paper. Also, the target algorithm defaults were provided as 
a seed configuration for all configurators excluding REVAC 
and URS, which did not support it.

CMA-ES is claimed to be quasi-parameter-free [21], 
so we did not change the initial parameters of the Python 
implementation.2 For optimization, all continuous param-
eters were normalized between 0.0 and 1.0 with an initial 
standard deviation of �0 = 0.5 . The restart mechanism of 
this CMA-ES implementation was not used, because it is not 
applicable to fixed and relatively small evaluation budgets. 
Also, instead of relying entirely on the self-adaptive param-
eters, on tasks with an evaluation budget of 100, we used a 
population size of 7 to help CMA-ES stay within the speci-
fied budget.

For GGA, we used the implementation of [1] with 
the default values (10, 90, 10, 3, 10) for (X, B, M, A, S). 
Ansótegui et al. used several different population and gen-
eration ratios. We decided to use the P∕G = 2∕1 ratio to 

avoid extinction of the population. For evaluations with the 
budget of 5000, we used the P∕G = 4∕3 ratio that Ansótegui 
et al. [1] used to configure SAT solvers. Using this ratio 
we set the population size and number of generations care-
fully on a budget-to-budget basis, because in order to use the 
evaluation budget effectively, the evolutionary process must 
converge at the right time. Because GGA did not respect the 
specified budget for evaluations, setting G and P was the 
only way to get it to spend approximately the right number 
of target algorithm evaluations. Also, GGA required each 
instance to be paired with a fixed random seed.

F-Race is implemented for the statistical software envi-
ronment R. The Iterated F-Race automatic algorithm config-
uration method irace3 from López-Ibánez et al. [37] uses 
it to implement the iterated variant of the racing method. 
We used defaults, but for an evaluation budget of 100, the 
parameter ebI , which governs the computation budget for 
each iteration step, was set to 60 to make I/F-Race more 
closely respect the evaluation budget.

ParamILS [30] and SMAC [27] are available online.4 
For ParamILS, we used linear discretization of 10 steps for 
each of the continuous free parameters. Selecting the most 
suitable discretization for each parameter can be seen as an 
additional level of configuration, and therefore, it was omit-
ted from this study. To take the stochastic nature of the target 
algorithms into consideration, we used the ParamILS built-
in FocusedILS approach to limit the time spent on evaluating 
each parameter configuration [30]. SMAC was used with 
default parameters. Its ability to use problem instance char-
acteristics to improve the predictive power of the surrogate 
model for the target algorithm was not used.

For REVAC, we used the implementation from Montero 
et al. [44, 45]. To allow it to use the evaluation budget effec-
tively, the control parameters M, N, and H were set using 
the ratios recommended in the literature: N = M∕2 and 
H = N∕10 with a minimum value of 2 for H. For evaluation 
budgets of 100, 500, and 1000, M was given values 5, 10, 
and 20, respectively.

Similarly to [64], each configuration task had 10 trials for 
VRPH-A and VRPSD targets. In threefold cross-validation 
of the VRPH-C targets, the cross-validation was repeated 
five times. The folds were different between repetitions but 
the same between the target algorithms and budgets. This 
blocking guarantees that the configuration tasks are compa-
rable between methods. After configuring the algorithms, 
the resulting parameter configurations were evaluated by 

2 Version 0.9.93.4r2658, http://www.lri.fr/~hanse n/cmaes intro .html.

3 Version 0.9, http://iridi a.ulb.ac.be/irace /.
4 Versions 2.3.5 (ParamILS) and 2.0.2 (SMAC), http://www.cs.ubc.
ca/labs/beta/Proje cts/Param ILS/http://www.cs.ubc.ca/labs/beta/Proje 
cts/SMAC/.

http://www.lri.fr/%7ehansen/cmaesintro.html
http://iridia.ulb.ac.be/irace/
http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/
http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/
http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
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running them on all problem instances 10 times and cal-
culating the aggregated objective cost for each repetition.

All configuration tasks were run on a computing server 
with 64 Intel(R) Xeon(R) CPU E7 2.67 GHz cores and 1 
TB of RAM. The server was running the OpenSUSE 12.3 
operating system.

6  Numerical results and analysis

The experiment data contain results of 2695 configuration 
runs.5 Together with the verification evaluations these took 
around 250 CPU days to compute. Considering all results, 
automatic algorithm configuration methods were able to find 
improved configurations over defaults in 84.1% of the con-
figuration trials. This is a promising result considering that 
the smallest used budget of 100 evaluations is a very tight 
restriction for automatic algorithm configuration. Also, the 
default parameters of the VRPH solvers are expected to be 
tailored for typical scientific benchmark instances such as 
those we used. The suitability of the defaults is even more 
prominent in the case of VRPSD, where the solvers and the 
benchmarks instances come from the same source.

6.1  Performance of the configurators

A median aggregated solution quality and median absolute 
deviation were calculated for each configuration task. The 
median was taken over a set of 10 evaluations on validation 
set for each of the 10 resulting parameter configurations (that 
is, over 100 aggregated quality values).

The median was used, because we were mostly interested 
in measuring the typical performance of a configurator. 
Meanwhile, the median absolute deviation gives an estimate 
for the robustness of the configurators. The aggregated solu-
tion quality for each configuration task is given as a devia-
tion from the sum of best-known solutions for instances in 
the validation set (relative optimality gap). The VRPSD 
benchmarks had no recorded best-known solutions, so we 
used the best observed solution for each problem instance 
as the best-known solution. Please note that the result data, 
with a full set of figures and tables with other descriptive 
statistics, can be found in the online supplementary material.

The results in Tables 3, 4, and 5 are grouped by the tar-
get algorithm. The -C and -A suffixes are used to differen-
tiate between the CMT and Augerat et al. [2] benchmarks 
for the VRPH targets. Each row shows results for a single 
configuration task consisting of a triplet: target algorithm, 
evaluation budget, and problem instance set. When com-
paring the results we note that out of the tested configu-
rators only ParamILS and SMAC strictly, and URS and 
REVAC closely, respected the evaluation budget. Other 
methods frequently ignored the input parameter for the 
evaluation budget and exceeded or fell short of the budget. 
Results deviating from the given budget by more than 5% 
are marked with italics. A nonparametric Mann–Whitney 
U-test ( p < 0.05 ) was used with the Bonferroni adjustment 

Table 3  Median automatic 
configuration results for the 
VRPH CMT targets with 
threefold cross-validation

Results are given as percentage from the aggregated best-known solution (relative optimality gap). Statisti-
cally better results of the single best, or pair of best solvers (in cases where no single configurator domi-
nated), are in bold typeface. Evaluation budget (EB) violations of more than 5% are italicized, with + indi-
cating exceeding and − falling short of the budget

EB CMA-ES GGA I/F-Race ParamILS REVAC SMAC URS

VRPH-EJ-C, defaults: 0.96 (0.12)
   100 0.99(0.08)− 0.86(0.09)+ 0.72(0.09)+ 0.93(0.10)+ 1.00(0.22) 0.81(0.10) 0.77(0.12)
   500 0.83(0.12)+ 0.79(0.10)− 0.71(0.06) 0.76(0.10) 0.68(0.09) 0.70(0.09) 0.73(0.10)
   1000 0.78(0.09) 0.81(0.09)− 0.66(0.06) 0.71(0.09) 0.73(0.09) 0.69(0.09) 0.75(0.09)

VRPH-RTR-C, defaults: 1.42 (0.06)
   100 1.24(0.14) 0.90(0.14)− 1.04(0.15)+ 1.00(0.11) 1.22(0.25) 0.94(0.06) 0.81(0.14)
   500 0.82(0.15) 0.84(0.03)− 0.75(0.05) 0.91(0.17) 1.06(0.14) 0.78(0.12) 0.83(0.10)
   1000 0.76(0.08) 0.85(0.06)− 0.63(0.09) 0.67(0.06) 0.74(0.03) 0.79(0.06) 0.78(0.06)

VRPH-SA-C, defaults: 0.80 (0.05)
   100 1.70(0.52) 0.88(0.18) 0.73(0.04)+ 0.89(0.09) 1.68(0.36) 0.77(0.03) 1.39(0.26)
   500 1.09(0.21) 0.89(0.11)− 0.81(0.08)− 0.84(0.08) 1.29(0.10) 0.78(0.04) 1.04(0.18)
   1000 1.03(0.16) 0.89(0.10)− 0.79(0.08) 0.75(0.09) 1.15(0.12) 0.77(0.03) 0.97(0.13)

5 (((3 × 3) × (3 × 5)) + ((3 + 5) × 3 + 1) × 10) × 7      The 3 VRPH-C 
targets with 3 different budgets were configured using threefold cross-
validation repeated 5 times. The 3 VRPH-A targets and 5 VRPSD 
targets, each with 3 different budgets, plus (1) VRPSD ACS with 
a budget of 5000, with 10 trials each. All the previous experiments 
were done for all the 7 automatic configuration methods.
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to test whether the differences to defaults and other con-
figurators were statistically significant. Whenever a single 
dominating method for an algorithm target was not found, 
existence of a dominating pair of methods was checked. 
Statistically significantly better automatic algorithm con-
figuration methods (or pairs) for each configuration task 
are marked in bold typeface.

If we consider only the best configuration found for 
each configuration task, and average over all targets, 
automatic algorithm configuration was able to reduce 
the optimality gap by 0.72. This is a 69.7% improvement 

compared to using default parameters. According to our 
results, this is the improvement that can be expected when 
a suitable configurator is used. On average, the optimal-
ity gap was reduced by 0.27 (a 25.2% improvement over 
defaults). The greatest single improvement was seen on 
VRPSD-TS, where ParamILS was able to reduce the opti-
mality gap on by 1.51, allowing an 81.2% improvement 
over defaults.

Before focusing on the differences between configuration 
methods, we compare the performance of more sophisti-
cated methods against the reference configurator that was 

Table 4  Median automatic 
configuration results for the 
VRPH Augerat et al. [2] targets 
on the validation set B

EB CMA-ES GGA I/F-Race ParamILS REVAC SMAC URS

VRPH-EJ-A, defaults: 0.73 (0.03)
   100 0.42(0.06) 0.43(0.08)+ 0.50(0.14)+ 0.44(0.08) 0.42(0.07) 0.41(0.06) 0.38(0.03)
   500 0.40(0.06)+ 0.37(0.02)− 0.37(0.04) 0.42(0.09) 0.42(0.06) 0.37(0.02) 0.38(0.04)
   1000 0.38(0.03)+ 0.40(0.05) 0.37(0.04) 0.37(0.02) 0.42(0.05) 0.35(0.02) 0.37(0.03)

VRPH-RTR-A, defaults: 1.40 (0.05)
   100 0.38(0.07) 0.36(0.17)+ 0.38(0.20)+ 0.44(0.08) 0.50(0.16) 0.62(0.21) 0.37(0.22)
   500 0.35(0.06)− 0.34(0.06) 0.42(0.23) 0.45(0.16) 0.32(0.08) 0.66(0.26) 0.37(0.09)
   1000 0.34(0.06) 0.31(0.09)− 0.34(0.11) 0.39(0.22) 0.38(0.11) 0.63(0.27) 0.34(0.06)

VRPH-SA-A, defaults: 0.90 (0.01)
   100 0.90(0.19) 0.65(0.12)+ 0.61(0.16)+ 0.70(0.24) 0.98(0.10) 0.65(0.12) 0.73(0.17)
   500 0.62(0.25)+ 0.48(0.17)− 0.39(0.11) 0.61(0.12) 0.66(0.10) 0.38(0.24) 0.58(0.20)
   1000 0.41(0.22)+ 0.38(0.24)− 0.33(0.20) 0.38(0.22) 0.53(0.17) 0.34(0.15) 0.34(0.23)

Table 5  Median automatic 
configuration results for the 
VRPSD IRIDIA targets on the 
validation set

EB CMA-ES GGA I/F-Race ParamILS REVAC SMAC URS

VRPSD-ACO, defaults: 0.63 (0.04)
   100 0.39(0.07) 0.43(0.07)+ 0.41(0.04)+ 0.39(0.04) 0.43(0.06) 0.37(0.02) 0.39(0.04)
   500 0.31(0.05)+ 0.38(0.03) 0.36(0.05) 0.36(0.04) 0.41(0.05) 0.30(0.08) 0.35(0.05)
   1000 0.28(0.06)+ 0.37(0.03)− 0.37(0.03) 0.33(0.07) 0.37(0.03) 0.27(0.07) 0.35(0.06)
   5000 0.30(0.09) 0.32(0.06) 0.27(0.06) 0.26(0.06) 0.40(0.02) 0.16(0.06) 0.31(0.05)

VRPSD-EA, defaults: 0.77 (0.03)
   100 0.72(0.10) 0.68(0.08)+ 0.57(0.04)+ 0.59(0.07) 0.67(0.06) 0.53(0.05) 0.58(0.05)
   500 0.62(0.06)+ 0.57(0.07)− 0.48(0.04) 0.57(0.06) 0.58(0.04) 0.51(0.04) 0.49(0.05)
   1000 0.56(0.07) 0.56(0.06)− 0.48(0.04) 0.55(0.06) 0.57(0.04) 0.49(0.04) 0.49(0.05)

VRPSD-ILS, defaults: 0.78 (0.04)
   100 0.71(0.06) 0.75(0.06)+ 0.74(0.07)+ 0.76(0.03) 0.78(0.05) 0.72(0.03) 0.78(0.03)+

   500 0.73(0.03)+ 0.72(0.08)− 0.76(0.05) 0.76(0.03) 0.77(0.13) 0.71(0.07) 0.78(0.03)
   1000 0.73(0.03)+ 0.71(0.04)− 0.74(0.08) 0.76(0.03) 0.77(0.13) 0.77(0.03) 0.78(0.03)

VRPSD-SA, defaults: 0.79 (0.04)
   100 0.83(0.05) 0.77(0.07)+ 0.88(0.06)+ 0.88(0.08) 1.18(0.23) 0.86(0.05) 0.87(0.06)+

   500 0.84(0.03) 0.78(0.06) 0.87(0.06) 0.85(0.06) 0.88(0.12) 0.88(0.04) 0.86(0.06)
   1000 0.84(0.03) 0.77(0.06)− 0.82(0.03) 0.85(0.06) 0.88(0.11) 0.85(0.02) 0.86(0.06)

VRPSD-TS, defaults: 1.86 (0.13)
   100 0.75(0.08) 1.80(0.05)+ 1.75(0.07)+ 0.72(0.14) 1.77(0.07) 1.73(0.10) 1.78(0.04)
   500 0.60(0.11)+ 1.74(0.09)+ 1.74(0.11) 0.61(0.12) 1.73(0.09) 1.74(0.07) 1.70(0.04)
   1000 0.59(0.10) 1.75(0.09)− 1.80(0.08) 0.59(0.10) 1.73(0.09) 1.83(0.10) 1.70(0.04)
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the uniform random sampling (URS). Contrary to expec-
tations, the configurators are able to produce statistically 
significantly better results over URS only in 35.8% of the 
pairwise Mann–Whitney U tests ( p < 0.05 ). In contrast, the 
observed performance was worse than URS in 35.3% of the 
pairwise comparisons. However, as can be seen from the 
main result tables (Tables 3, 4, and 5), the results in con-
trast to URS are not evenly distributed. Additionally, the two 
Augerat et al. [2] instance sets were included to see how well 
the performance gains of automatic algorithm configuration 
generalize to similar problems. Therefore, it was expected 
a see that random strategy (URS) works well. According 
to Coy et al. [14], such behavior can be caused by a large 
heterogeneity among the problem instances in a problem set, 
but it seems this applies also to heterogeneity between train-
ing and validation sets. Also I/F-Race, and to some extent 
SMAC, show a good generalization ability from a problem 
set to another on these targets.

Another noteworthy observation is that REVAC seems to 
struggle with all algorithm targets and it is able to beat URS 
only in 6.1% of the pairwise parameter configuration com-
parisons. As a whole, our results indicate that performance 
of REVAC on routing targets is worse than that of SMAC 
and I/F-Race. This is in contrast to results from Montero 
et  al. [44], where they reported only small differences 
between F-Race, ParamILS, and REVAC in automatically 
configuring an EA for the TSP. If we leave out the Augerat 
et al. [2] targets and REVAC from the pairwise comparisons 
against URS, configurators are better than URS in 50.4% and 
worse in 26.4% of the tests. In addition, as the evaluation 

budget is increased, the advantages of more sophisticated 
configuration methods become more apparent (see, e.g., 
ACO in Table 5).

Table 6 shows that SMAC, I/F-Race, and CMA-ES are 
the methods that most frequently tend to find good param-
eter configurations for the VRP metaheuristics in this study. 
However, please note that CMA-ES, I/F-Race and GGA have 
the tendency to exceed the specified evaluation budget. Of 
the statistically significant results, only I/F-Race for the 
VRPH-SA-C and VRPH-SA-A targets with a budget of 100 
exceeded the given budget by more than 15% (by 25 % to be 
exact) and this may give them some unfounded advantage. 
Still, considering the competitive performance of I/F-Race 
on those targets with budgets of 500 and 1000 this should 
not induce significant bias into our analysis.

I/F-Race, together with SMAC, and in some cases URS, 
seem to be the configuration methods to choose when faced 
with a highly limited computational budget. These methods 
are able to quickly produce relatively high-quality param-
eter configurations. However, no single method clearly 
dominates the others. The summary of winning configura-
tors in Table 6 illustrates that different automatic algorithm 
configuration methods are successful with different targets, 
although if a method manages to find good parameter con-
figurations for a target with a specific evaluation budget, it 
seems to be able do this with other budgets as well.

Regarding the parameter types and composition, our 
results support the observation made by Yuan et al. [64] that 
CMA-ES is suitable for configuration tasks with a high num-
ber of continuous parameters. We also note that I/F-Race 

Table 6  Configurator performance on the metaheuristics, which are split into three difficulty classes ( D
c
 , 1 being easiest and 3 hardest)

Based on the results, the suitability of the default parameters (d.s.) is estimated. Here 1 stands for good default parameters. Middle columns keep 
score for the statistically significantly best configurators for each target. The #P column indicates the number of parameters for each metaheuris-
tic, and #P

B
 , #P

I
 , and #P

R
 their division into Boolean, Integer, and Real valued parameters. Rightmost columns show the ranking between VRP 

solvers with the default and the automatically configured parameters. Also, the table illustrates how the ranking changes when the solvers are 
configured. Results with bold ranks are of better or equal utility in comparison to the best solver for that instance set with default parameters

Target #P(B∕I∕R) d.s. Dc CMA-ES GGA I/F-Race ParamILS REVAC SMAC URS Rank on 
defaults

EB’s

100 500 1000

VRPH-EJ-C 9 (7/2/0) 3 3 1 1 2 1 1 2
VRPH-RTR-C 14 (9/4/1) 3 3 1 1 3 3 2 1
VRPH-SA-C 11 (6/3/2) 1 1 1 1 1 2 3 3
VRPH-EJ-A 9 (7/2/0) 3 3 1 2 1 1 2 2 3
VRPH-RTR-A 14 (9/4/1) 3 3 3 1 1 1
VRPH-SA-A 11 (6/3/2) 2 2 2 2 2 3 3 2
VRPSD-ACO 8 (2/1/5) 3 1 3 4 1 1 1 1
VRPSD-EA 5 (3/1/1) 3 3 1 1 2 2 2 2
VRPSD-ILS 3 (2/0/1) 3 1 1 4 3 4 4
VRPSD-SA 6 (2/2/2) 1 1 1 3 5 5 5
VRPSD-TS 5 (2/0/3) 2 2 3 3 5 4 3 3

Total wins 6 2 7 3 0 10 3
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seems to perform well in tasks that contain many Boolean 
parameters.

Random sampling (URS) works surprisingly well on 
VRPH-EJ, VRPH-RTR, and VRPSD-EA. The ruggedness 
of the configuration target fitness landscape probably inter-
feres with the exploitation schemes of the more advanced 
automatic configuration methods. URS is, by definition, very 
explorative and is therefore capable of effectively explor-
ing large areas of the parameter configuration search space. 
Hutter et al. [27] utilizes this in another configurator called 
ROAR, which can be described roughly as URS with con-
figuration effort reduction techniques. However, as we can 
see from the result of configuring VRPSD-TS, sampling is 
not a strategy without disadvantages.

SMAC dominates in configuring VRPSD-ACO with a 
budget of 5000 evaluations (Fig. 3a). We also observe a 
possible case of over-tuning in the results of REVAC and 
CMA-ES. The effect is smaller with CMA-ES so there is a 
possibility that CMA-ES cannot effectively use the larger 
budget and prematurely converges to a local optimum.

Overall, despite the relatively small training set size, there 
is reasonably little over-tuning as can be seen from Fig. 4. 
In a case of over-tuning the figure would show good perfor-
mance on training set, but poor performance on validation 
set. That is, the data point would be clearly above the dashed 
line designating unequal performance between the sets. The 
largest over-tuning effect is seen on the left side of the fig-
ure where SMAC automatically configures VRPH-RTR-A 
(Fig. 4a). In fact, VRPH-RTR-A and VRPH-SA-A targets 
show relatively large difference in training and validation 
set solution quality. This is due to the inherent differences 
of the training and validation sets with the Augerat et al. 
[2] targets. This is not surprising as this benchmark set was 
included to test how well the performance gains of automatic 
algorithm configuration transfer to solving similar problem 

(a) VRPSD-ACO (b) VRPH-RTR-C

Fig. 3  Comparison of different configurators on two selected targets

(a) VRPH targets

(b) VRPSD targets

Fig. 4  Solution quality on validation versus training set
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instances. Furthermore, if the data is examined per configu-
ration method, none of the configurators shows a clear ten-
dency to over-tune.

To examine robustness, we study the median absolute 
deviations (MAD) in Tables 3, 4, and 5. Out of the tested 
configuration methods, SMAC is the most robust. That is, is 
able to consistently produce good parameter configurations. 
It closely followed by I/F-Race as they both have the lowest 
average MAD and still provide good automatic configuration 
performance. However, the differences over all experiments 
are small, and even SMAC fails to always produce good 
parameter configurations for configuring some targets such 
as VRPH-RTR-A and VRPSD-TS where in turn CMA-ES 
excels.

6.2  Configuration target difficulty

By comparing the configuration performance of URS against 
other methods in Tables 3, 4, and 5, we recognize three 
difficulty classes in the tested VRP algorithm targets (see 
Table 6). The first class consists of targets VRPH-SA-C, 
VRPSD-ACO, VRPSD-ILS, and VRPSD-SA, which seem to 
have relatively smooth parameter configuration landscapes 
where sophisticated intensification and search techniques 
work well. Pellegrini and Birattari [48] reported similar 
results that showed that ACO, ILS, and SA are metaheuris-
tics that respond favorably to automatic configuring and 
that F-Race outperforms random sampling on these targets. 
Note that the default parameters for the targets VRPH-SA-
C and VRPSD-SA seem to be already very good because 
only 25.6% of the parameter configurations produced by 
the configurators show improved performance over them. 
GGA seems to be the best method to automatically configure 
VRPSD-SA, although it, likewise, struggles to find better 
configurations than the defaults. For the other targets in this 
class, 95.3% of the produced configurations are better than 
the defaults. As we can see from Fig. 3, the results also seem 
to be getting better as we increase the evaluation budget.

The second class of automatic algorithm configuration 
problems contains VRPSD-TS and VRPH-SA-A. Configu-
ration performance on these targets shows large variation. 
For VRPSD-TS, only CMA-ES and ParamILS are able to 
find parameter configurations that clearly outperform the 
defaults, whereas other methods are able to only slightly 
improve the solution quality. VRPH-SA-A shows similar 
behavior with high variance. For this algorithm, all of the 
configurators, except REVAC, were repeatedly able to pro-
duce a parameter configuration that allowed solving all of 
the 14 instances in the Augerat et al. [2] validation set to 
optimality. One such configuration is given later in Table 7.

In the third difficulty class, we have the targets VRPH-EJ, 
VRPH-RTR, and VRPSD-EA. Based on our experiments, 
these seem to be hard to configure effectively and even the 

more sophisticated automatic algorithm configuration meth-
ods struggle to challenge the uniform random sampling on 
these targets. As can be seen from Table 6 these targets share 
the feature of having many binary parameters. If we examine 
the boxplot of Fig. 5, the multimodal nature of these configu-
ration targets can be seen as clustering of outliers around a 
local optimum of the configuration search space. However, 
even for these targets, the configurators were able to improve 
the solution quality over the default parameter configuration 
with a success rate of 93.8%. Additionally, improvements 
were often found even with an evaluation budget as small 
as 100.

Our experiments clearly indicate that the nature of the 
configured target or, more specifically, the solver algorithms 
and the problem instance set, has great impact to the con-
figurability, configuration method selection, and generic 
performance of the solver. In Table 6, the solver perfor-
mance is compared among the metaheuristics solving the 
same problem set. In solving the CVRP, we can see that 
VRPH-RTR clearly benefits from using automatic algo-
rithm configuration. For the CMT instances, VRP-SA-C 
produces the best-quality solutions with default parameters, 
but after configuration has been performed, it is beaten by 
VRPH-RTR-C and VRPH-EJ-C. With Augerat et al. [2] 
instances on small configuration budgets VRPH-EJ-A and 
VRPH-RTR-A are performance-wise very similar. With an 
evaluation budget of 1000, GGA is able to find very good 
parameters for VRPH-RTR-A, which outperforms the other 
two solvers on the Augerat instance set. Note that the large 
median absolute deviation in VRPH-SA-A results indicates 
that there is a lot of variation between the configured param-
eter configurations or their evaluations, which means that 
this good performance is inconsistent. The reason behind 
this may be in the optimal cooling schedule band for SA is 
known to be narrow [43]. For the IRIDIA instances, auto-
matic configuration changes the ranking between the solvers 
only slightly. VRPSD-ACO is the winner in solving given 
VRPSD instances with VRPSD-EA being a close second, 
not surprisingly given the state-of-the-art performance of the 
evolutionary approach in the literature [50, 60].

6.3  Automatically configured parameters

The parameter configurations with the best median solution 
quality can be found in Table 7. However, it is likely that 
the parameter values are highly instance and solver imple-
mentation specific, which limits our ability to make general 
recommendations. Also, please remember that a 10 s cutoff 
was used in our experiments, and this should be consid-
ered when generalizing the parameter values. Still, the best 
found parameter configurations offer a basis for our discus-
sion on algorithm nature and solution space structure in the 
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conclusions. Table 7 also allows comparison of parameter 
values and resulting solution quality between the default 
configuration and the configured one. Out of the compared 
configurators SMAC and GGA seem to be most successful 
in finding very good parameter configurations. If this evi-
dence is combined with observations from boxplots such 
as the one presented in Fig. 5, the overall impression is that 
SMAC has more consistent performance, while GGA is 
occasionally able find better configurations.

Analysis of the configured parameter configurations 
reveals that in VRPSD-TS, where we observe strikingly dif-
ferent performance between two groups of configurators, 

the good utility is achieved when at least one of the values 
for the parameters ttf, pt , and po is at the minimum or maxi-
mum. This can also be seen from Table 7. Statistically, it 
is improbable for a uniform sampling to produce exactly 
the parameter endpoint value of an interval. Therefore, 
methods that uniformly sample from within the given range 
are unable to find these good parameter configurations for 
VRPSD-TS, whereas configurators that use a robust statis-
tical model or local search are well-suited to the task. The 
effect was not considered by Balaprakash et al. [3] when 
they introduced the iterative sampling extension to F-Race, 
and, to our knowledge, this effect has not previously been 

Table 7  The best median solution quality Q for a single parameter configuration

Local search operators Optimized parameters

QC QA 1pm/2pm/two/oro/tho/3pm m t s

VRPH EJ default 0.96 0.73 1 / 1 / 1 / 0 / 0 / 0 10 1000 0
VRPH EJ C (SMAC) 0.54 1 / 1 / 1 / 0 / 1 / 1 17 7465 1
VRPH EJ A (SMAC) 0.34 1 / 1 / 1 / 0 / 0 / 1 19 5316 1

QC QA 1pm/2pm/two/oro/tho/3pm D � K N P p/a t

VRPH RTR default 1.42 1.40 1 / 1 / 1 / 0 / 0 / 0 30 0.01 5 4 1 1/1 0
VRPH RTR C (GGA) 0.40 1 / 1 / 1 / 1 / 0 / 1 18 0.01 51 11 4 0/0 39
VRPH RTR A (GGA) 0.01 1 / 1 / 1 / 1 / 0 / 0 98 0.04 43 30 6 1/0 6

QC QA 1pm/2pm/two/oro/tho/3pm T n i � N

VRPH SA default 0.80 0.90 1 / 1 / 1 / 0 / 0 / 0 2.00 200 2 0.99 10
VRPH SA C (GGA) 0.63 1 / 1 / 1 / 0 / 0 / 0 2.00 200 5 0.99 10
VRPH SA A (SMAC) 0.01 1 / 1 / 1 / 1 / 1 / 1 8.79 498 5 0.99 23

Obj.f. est. Optimized parameters

Q p t m au � � q �

VRPSD ACO default 0.63 0 0 7 0.50 0.30 0.10 1.0e7 1.00
VRPSD ACO (GGA) 0.15 0 0 1 0.53 0.85 0.41 4.2e6 3.12

Q p t p mr amr

VRPSD EA default 0.77 0 0 0 0.20 0
VRPSD EA (GGA) 0.42 1 1 1 0.63 1

Q p t x

VRPSD ILS default 0.78 0 0 10.00
VRPSD ILS (SMAC) 0.70 0 0 29.80

Q p t � � � �

VRPSD SA default 0.79 0 0 0.01 0.98 1 20
VRPSD SA (GGA) 0.77 0 0 0.08 0.18 1 20

Q p t ttf pt po

VRPSD TS default 1.86 0 0 0.80 0.80 0.30
VRPSD TS (CMA-ES) 0.51 1 0 1.00 1.00 1.00
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reported in automatic algorithm configuration literature. 
The original F-Race would probably find the values of these 
good parameter configurations, given parameter range end 
points are chosen as design points in the factorial design. 
However, VRPSD-TS is a special target in this regard, and 
F-Race based on factorial design candidate configuration 
generation would probably show far worse automatic con-
figuration performance on different kind of targets. This is 
especially true in our configuration scenarios because a full 
factorial design requires a rather large configuration budget. 
Also, note that Pellegrini and Birattari [48] did not use the 
iterative variant of F-Race, and, thus, this behavior did not 
manifest in their results.

If we now turn to the resulting parameter configurations 
of the VRPH targets, we can examine how the probability 
of a local search heuristic to be selected changes with the 
metaheuristic and the instance set (see Fig. 6). Out of the 
tested targets, VRPH-SA-C seems to somewhat differ from 
the rest in its composition of local search operators. With 
this algorithm, configurations that avoid the more compu-
tationally intensive Or-opt, three-opt, and three-point-move 
operations yield higher utility (routes with a lower cost). 
Also, in VRPH-SA-C the selection of the operator plays a 
major role in the resulting solution quality as the local search 
operator composition of the top 10% parameter configura-
tions differs clearly from the worst 90%. A similar effect 
can be observed in VRPH-EJ-A, where the use of two-opt 
operators is preferred over other operations.

It seems that definite connections exist among the 
composition of local search operators, performance of a 
metaheuristic, and the instances to be solved. Automatic 
algorithm configuration makes it possible to find suitable 
local search operator composition to optimize the perfor-
mance of a routing solver. This verifies the observation made 
by Garrido et al. [17] that careful selection of local search 

operators for a set of instances is a relatively stable way of 
improving the overall performance of a solver. However, in 
this study we refrain from examining the differences in local 
search operator selection between the configurators further.

7  Conclusions and future research

In this paper, we have presented a comprehensive empiri-
cal evaluation of seven well-known automatic algorithm 
configuration methods in the task of configuring eight 
metaheuristic algorithms solving two vehicle routing prob-
lem (VRP) variants. The tested configurators were CMA-ES, 
GGA, I/F-Race, ParamILS, REVAC, SMAC, and URS. The 
VRPH library, which is used to solve capacitated vehicle 
routing problems, offers three solvers with EJ, SA, and RTR 
metaheuristics. The IRIDIA solvers for the VRPSD uses 
ACS, EA, ILS, SA, and TS metaheuristics. The solvers had 
from 3 to 14 free parameters. Each configurator was given a 
task to find a parameter configuration producing high quality 
solutions for each algorithm used to solve a relatively small 
benchmark set of VRP instances. Runtime of the solvers was 
limited to 10 s.

The results show that, in general, the configuration meth-
ods were able to find parameter configurations that produced 
better solutions than the solver default, even when restricted 
to as little as 100 solver invocations. This is consistent with 
previous research where it has been shown repeatedly that 
automatic algorithm configuration can remarkably improve 
the performance of stochastic search algorithms over the 
default parameters. Despite this prior assumption, the low 
computational cost of achieving performance improvement 
can be considered surprising. Using just a plain random uni-
form sampling strategy with a highly limited computational 
budget would often produce a clearly better performing 

Fig. 5  The distribution of the 
parameter configuration utility 
for VRPH-EJ-A target
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parameter configuration than the defaults. Occasionally, 
random sampling even beat the more advanced configura-
tors by a clear margin as sophistication does not dominate in 
cases where the solution space has little structure to exploit.

To answer the question of configuration method suit-
ability, our analysis suggests that there is no single best 
automatic algorithm configuration method for the tested 
VRP metaheuristics. However, the statistically significant 
evidence in this study verified that CMA-ES is a good 
choice when dealing with targets that have many continu-
ous parameters, and that I/F-Race is well-suited for algo-
rithm configuration targets that have many on-off switches 
for enabling and disabling solver features. Our experimen-
tation also revealed that GGA and REVAC require a lot of 
trial-and-error and expertise to find parameter values that 
enable them to use the evaluation budget effectively. This 
creates an additional level of parameters to tweak on top 
of the original problem, which makes it hard to effectively 
apply these configuration methods.

We argue that robustness, and being parameter-free, 
are desirable properties for an automatic configuration 
method. Based on our survey, out of the tested configura-
tors CMA-ES, I/F-Race, ParamILS, SMAC, and URS ful-
fill these requirements. If good performance and robustness 
is required, and a relatively generous evaluation budget is 
available, we would recommend SMAC and I/F-Race. Based 
on our experiments they are both capable of reliably produc-
ing good quality parameter configurations. Also GGA is in 
some situations a competitive choice, but in our experiments 
it was not as robust as SMAC and I/F-Race. While we could 
not give a definite recommendation on which single con-
figurator one should use to configure VRP metaheuristics, 
the results together with the provided survey should help 
VRP researchers and practitioners to select a method that is 
probably a good fit. Also, confirming that these results apply 
with other metaheuristics, time limits, and problem instance 
sizes will warrant additional computational experiments of 
configuring VRP algorithms.

The way a target algorithm responded to configuration 
efforts varied between configurators, evaluation budgets, and 
even between problem instance sets. We acknowledge that 
the time limits do affect the results of the comparison of 
metaheuristics or configuration methods. In our experiments, 
we varied the evaluation budget and tested the configurator 
performance on three problem instance sets, but used the 
same time limit in all experiments. Considering this, the 
results of our experiments conclude that there does not exist 
a single, best configuration method for different algorithms. 
However, we were able to distinguish differing configurator 
behavior with the different evaluation budget constraints. 
The results suggest that SMAC and I/F-Race would be most 
appropriate configurators for larger instances with longer 
execution times. Our study also showed that in our set of 
configuration problems some configurators are more robust 
than others.

Our recommended strategy to address the inconclusive 
nature of the results is to have several state-of-the-art auto-
matic algorithm configuration methods at the user’s dis-
posal. Experimenting with different configurators helps 
one to see when a good fit is found, as the solver usually 
responds quickly to automatic configuration attempts even 
with a small evaluation budget. Furthermore, our findings 
have important implications for future practice. Contributed 
evidence to the usefulness of automatic algorithm configu-
ration of VRP metaheuristics strongly suggests that rout-
ing algorithm developers should start using an automatic 
algorithm configuration method in their experiments. This 
is important in particular when making algorithm perfor-
mance comparisons, as configuring the parameters of a set 
of algorithms allows one to avoid confirmation bias, that is, 
the performance of the algorithm is not determined by the 
suitability of its default parameters or the amount of manual 
fine-tuning it receives.

Regarding generalization of the results, we see from 
Table 1 that the included configurators address a large set 
of different features and aspects of automatic algorithm 

Fig. 6  Local search operator 
composition of the 10% best 
VRPH parameter configurations 
for each VRPH target
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configuration. The same holds true for the various features 
represented in benchmark problems and their solvers as 
depicted in Table 2: we hypothesize that the experimental 
results hold true also for different mixtures of the same solu-
tion method constituents. The use of these approaches is 
common in designing heuristics for combinatorial optimiza-
tion problems [54].

Additional and extensive comparison between these con-
figurators with different experiment parameters, e.g., with 
larger, more difficult, or ‘rich’ [12] problem instances or 
with a longer metaheuristic CPU runtime, would be required 
to reliably estimate how well our observations generalize. 
The recent advances in the field of automatic algorithm 
configuration addressing the issues with long running algo-
rithms are relevant here [18, 28, 41, 57]. The experiments 
could also be extended with configuration targets that have 
more binary and categorical parameters.

A typical use for a routing solver is to solve sets of slightly 
different problem instances repeatedly. Automatic configura-
tion in such a scenario can be considered as modeling the 
interactions of the triplet: instance, parameter configuration, 
and solution quality. Further work is required to establish the 
feasibility of utilizing these previously discovered interac-
tions in future solving tasks. This research avenue is also 
recognized, e.g., in [61]. The reasonable next step could be 
to explore the feature extraction of VRP instances, solutions, 
and routes, and then investigate the suitability of instance-
specific algorithm configuration methods. These methods 
use instance features to make utility predictions for the 
parameter configuration candidates. SMAC can be used as 
instance-specific method, but there are other methods, such 
as ISAC from Kadioglu et al. [34]. Also, of particular inter-
est from practical operations research and vehicle routing 
viewpoint would be extending our investigations to algo-
rithm selection. Especially applicability and implications of 
using algorithm selectors, such as Hydra [63] or AutoFolio 
from Lindauer et al. [36], should be explored.

It is also important to acknowledge the drawbacks of 
automatic algorithm configuration. The configuration meth-
ods rarely provides useful information on why a certain 
parameter configuration was selected. Here, domain knowl-
edge and understanding of the target algorithm is required to 
understand the general implications of the resulting param-
eter configuration. This is especially important in academic 
research, where understanding why an optimization strategy 
works is of paramount importance. Therefore, we see imple-
menting in features like parameter sensitivity analysis and 
visualization of the parameter configuration search space as 
important development and research aims of configuration 
method community.

Regarding validity of the study, we would like discuss 
four things: configuration budget, CPU cutoff, problem 

set size, configuration objective, and generalization of the 
results to other VRP variants. The possible limitations of 
the study are due to the extensive computational require-
ments required with each additional variability dimension 
introduced to the comparison. Also, the research questions 
and the specifics in solving vehicle routing problems made 
it possible, or in some cases necessary, to fix some aspects 
of the experimental setup.

In this study an evaluation budget was used to limit the 
computational resources available during automatic algo-
rithm configuration. However, some configuration methods 
failed to adhere to this budget. To control the effect this issue 
might have on validity, we have addressed deviations from 
the budget in our analysis.

We also acknowledge that future comparisons should 
study the effect of a more generous configuration budget on 
configuring VRP metaheuristics. In our study we tested a 
single target with a budget of 5000 evaluations, which does 
not allow analyzing the variation between configuration tar-
gets in the scenario of a larger budget.

The large number of experiments, and a decision to keep 
as many of the variables constant as possible in the experi-
mental setup lead us to limit the CPU time of the solvers 
to 10 s. We experimentally verified that the VRPH solver 
performance stabilizes by the 10 s mark. However, it is likely 
that this creates a bias to prefer parameter configurations 
specifying a more explorative search strategy, especially on 
larger instances of the CMT problem set and when solving 
VRPSD instances. Similarly. the choice to use a problem set 
size of 14 was done to keep it constant over all three con-
figuration target groups, and to include automatic algorithm 
configuration methods that lack training set subset evalua-
tion mechanisms. We acknowledge that when using a small 
training set, there is a danger of overfitting. However, in our 
experiments only few selected configuration targets show 
weak signs of such behavior, and these do not affect our 
overall results and recommendations.

VRP is a challenging, well-known, and well-studied 
combinatorial optimization problem that generalizes sev-
eral other problems. Therefore, it can serve as an interest-
ing benchmark for evaluating the robustness of automated 
algorithm configuration methods and tools. In this study we 
focused only on CVRP and VRPSD, but there are many 
other variants with different constraints, objectives and 
features. Also, even different problem instances of a single 
variant can have differing characteristics (see, e.g., [51]). 
Thus, we would like to see automatic algorithm configura-
tion method comparisons on the VRPTW (VRP with time 
windows), PDP (pickup and delivery problem), large-scale 
CVRP, and rich VRP benchmarks, which could show differ-
ent facets of configuring VRP solvers and perhaps provide 
further support for our results.
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