
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

On automatic algorithm configuration of vehicle routing problem solvers

© 2019 the Author(s)

Published version

Rasku, Jussi; Musliu, Nysret; Kärkkäinen, Tommi

Rasku, J., Musliu, N., & Kärkkäinen, T. (2019). On automatic algorithm configuration of vehicle
routing problem solvers. In J. Rasku (Ed.), Toward automatic customization of vehicle routing
systems (2, pp. 1-22). Springer. Journal on Vehicle Routing Algorithms.
https://doi.org/10.1007/s41604-019-00010-9

2019

Vol.:(0123456789)1 3

Journal on Vehicle Routing Algorithms (2019) 2:1–22
https://doi.org/10.1007/s41604-019-00010-9

REGULAR PAPER

On automatic algorithm configuration of vehicle routing problem
solvers

Jussi Rasku1 · Nysret Musliu2 · Tommi Kärkkäinen1

Received: 2 February 2018 / Accepted: 30 January 2019 / Published online: 22 February 2019
© The Author(s) 2019

Abstract
Many of the algorithms for solving vehicle routing problems expose parameters that strongly influence the quality of obtained
solutions and the performance of the algorithm. Finding good values for these parameters is a tedious task that requires exper-
imentation and experience. Therefore, methods that automate the process of algorithm configuration have received growing
attention. In this paper, we present a comprehensive study to critically evaluate and compare the capabilities and suitability of
seven state-of-the-art methods in configuring vehicle routing metaheuristics. The configuration target is the solution quality
of eight metaheuristics solving two vehicle routing problem variants. We show that the automatic algorithm configuration
methods find good parameters for the vehicle route optimization metaheuristics and clearly improve the solutions obtained
over default parameters. Our comparison shows that despite some observable differences in configured performance there
is no single configuration method that always outperforms the others. However, largest gains in performance can be made
by carefully selecting the right configurator. The findings of this paper may give insights on how to effectively choose and
extend automatic parameter configuration methods and how to use them to improve vehicle routing solver performance.

Keywords Vehicle routing problem · Automatic algorithm configuration · Metaheuristics · Meta-optimization

1 Introduction

The vehicle routing problem (VRP) is a practical, relevant,
and challenging problem that has been extensively studied
by the artificial intelligence (AI) and operations research
(OR) communities. One of the main trends in solving VRPs
is the shift toward more generic and robust route optimi-
zation algorithms [56]. However, optimization models
and algorithms are still typically hand-tuned by experts
on a case-by-case basis [14, 56]. The need for an expert
in this process creates a barrier for the widespread use of

the latest scientific advances to solve real-life optimization
problems. Therefore, to build more flexible academic and
commercial solvers for routing problems, the hand-tuning
of the algorithms should be automated. One step toward
this goal is to automate the search of the right optimization
parameters [14, 31]. This opportunity has been recognized,
e.g., by Hutter et al. [30]: “automated algorithm configura-
tion methods ...will play an increasingly prominent role in
the development of high-performance algorithms and their
applications.”

Automatic algorithm configuration [31] (or parameter
tuning [15]) means off-line modification of an algorithm’s
parameters. Recently, researchers have proposed several
automatic configuration methods, which have proven suc-
cessful in different domains such as evolutionary compu-
tation [55], Boolean satisfiability [1, 30], and mixed-inte-
ger programming [25, 34]. In the field of vehicle routing
research, Pellegrini and Birattari [48] compared the perfor-
mance of different metaheuristics with and without auto-
matic algorithm configuration and concluded that, in every
instance, the automatically configured version of the solu-
tion algorithm yielded better results than the correspond-
ing non-configured one. Furthermore, automatic algorithm

Electronic supplementary material The online version of this
article (https ://doi.org/10.1007/s4160 4-019-00010 -9) contains
supplementary material, which is available to authorized users.

 * Jussi Rasku
 jussi.rasku@jyu.fi

1 Faculty of Information Technology, University of Jyvaskyla,
P.O. Box 35, 40014 Jyväskylä, Finland

2 Christian Doppler Laboratory for Artificial Intelligence
and Optimization for Planning and Scheduling, Institute
of Logic and Computation, DBAI, TU Wien, 1040 Vienna,
Austria

http://orcid.org/0000-0002-4401-8013
http://crossmark.crossref.org/dialog/?doi=10.1007/s41604-019-00010-9&domain=pdf
https://doi.org/10.1007/s41604-019-00010-9

2 Journal on Vehicle Routing Algorithms (2019) 2:1–22

1 3

configuration enabled a fair comparison, which makes it a
recommended practice for algorithm developers [16].

Besides our preliminary work presented in [52], there is
no comprehensive comparative study on automatic algo-
rithm configuration of vehicle routing solvers. Consequently,
this study addresses this knowledge gap by investigating the
performance of recent automatic configuration methods in
the domain of routing algorithms. In particular, our aim is
to answer the following questions:

1. Are existing automatic algorithm configuration methods
suitable for configuring routing algorithms?

2. How do these configurators compare, and are there
methods that should be preferred when configuring rout-
ing algorithms?

3. How does the performance of configurators vary with
different metaheuristics, vehicle routing variants, and
problem instances?

4. How robust are the methods in configuring routing algo-
rithms?

To address these questions, we compare the performance
of seven state-of-the-art automatic algorithm configura-
tion methods on metaheuristics for two different variants
of the vehicle routing problem. This extends our previous
study [52] by adding new configuration targets, improving
experimental setup, and including a thorough analysis of the
configuration method performance and resulting parameter
configuration values. In our experiments we concentrate on
optimizing solution quality instead of algorithm runtime on
relatively small problem instance sets. Our results confirm
that with these conditions the algorithm performance can
be clearly improved by using automatic configuration. Also,
while some configuration methods perform better, and are
more robust in some algorithm configuration tasks, no single
method invariably outperforms all the others.

The paper is structured as follows: Sects. 2 and 3 intro-
duce the vehicle routing and the algorithm configuration
problems, and describe the automatic algorithm configura-
tion methods used in this paper. Section 4 contains a litera-
ture review on algorithm configuration in routing. Section 5
describes the experimental design used to test the configu-
rators followed by Sect. 6 where the numerical results and
analysis are presented and discussed. Finally, Sect. 7 con-
cludes the study and proposes topics for future research.

2 The vehicle routing problem

In the classical vehicle routing problem (VRP) the goal is
to find optimal routes for vehicles leaving from a depot to
serve a specified number of customers. Each customer must
be visited exactly once by exactly one vehicle. Each vehicle

must leave from the depot and return there after serving all
customers on its route. Typical objectives are to minimize
the number of vehicles and the total length of the routes.
Thus, VRP is a generalization of the well-known travelling
salesman problem (TSP).

Multiple extensions and variants of VRP have been pro-
posed in the literature. Many of these add new constraints,
such as vehicle capacity, maximal route length, and time
windows, or introduce new features, such as stochasticity,
split deliveries, or multiple depots. For an introduction to
different variants and extensions to VRP, refer to [32]. Prob-
lems where several constraints and complex objectives are
combined to tackle real-world cases are called ‘rich’ VRPs
[12].

In this paper, we focus on two variants: the capacitated
vehicle routing problem (CVRP) and the vehicle routing
problem with stochastic demands (VRPSD). In CVRP, each
customer has a demand that needs to be fulfilled and each
identical vehicle has a capacity that cannot be exceeded. The
objective is to find feasible routes so that the number of vehi-
cles and the total distance of routes are minimized. Also the
vehicles in VRPSD have limited capacity, but in this variant
the exact demands of the customers are not known until they
are served. However, the distributions of the demands are
known and should be considered in the optimization of the
routes [8].

Algorithms for solving the VRP can be divided into two
families: exact and heuristic. The aggregated results from
Uchoa et al. [59] suggest that exact algorithms cannot con-
sistently solve CVRP instances with more than two hun-
dred customers, and, therefore, different (meta)heuristics
have been proposed to solve larger problems. Examples of
such methods include simulated annealing (SA), tabu search
(TS), evolutionary algorithms (EA), ant colony optimization
(ACO), and iterated local search (ILS). For surveys of the
topic, refer to Laporte [35] and Mester and Bräysy [42].

Recently, the trend has been toward developing adaptive
and cooperative hybrid algorithms [4, 33, 49, 56], but as Hut-
ter et al. [31], Battiti and Brunato [6], and Sevaux et al. [54]
have noted, even these tend to have many parameters that
need to be fixed. Therefore, these new approaches further
emphasize the need for automatic algorithm configuration.

3 The algorithm configuration problem

Many advanced search algorithms have free parameters that
can be set by the user. The parameters are usually used to
balance the algorithm elements and make trade-offs between
diversification, intensification, co-operation, and other
aspects [61]. These parameters must be configured in order
for the method to perform well, which is a nontrivial task.
In fact, Smit and Eiben [55] point out that finding the right

3Journal on Vehicle Routing Algorithms (2019) 2:1–22

1 3

values for the parameters “is a complex optimization task
with a nonlinear objective function, interacting variables,
multiple local optima, and noise.” With stochastic local
search (SLS, see [24]) algorithms for VRP, this noise comes
from the random problem instance selection and stochastic-
ity of the algorithm that is being configured.

One of the main challenges of automatic algorithm con-
figuration according to Eiben et al. [15] comes from the
complex interactions between the parameters. Sometimes
the parameters can be configured individually, but the result
may be suboptimal, whereas trying all different combina-
tions is often impossible due to the sheer number of possible
combinations.

Next, we define the algorithm configuration problem and
describe approaches that have been proposed to solve it.

3.1 Introducing the problem

Hutter et al. [30] defines the goal of automatic algorithm
configuration to be finding a set of parameter values, a
parameter configuration, for a given target algorithm so
that the algorithm achieves the best possible performance,
or utility, on the given input data set. Formal definitions of
the problem are presented by Birattari et al. [9] and by Hut-
ter et al. [30].

Depending on when the algorithm parameters are
changed, automatic algorithm configuration and parameter
control can be distinguished from each other [15]. Auto-
matic algorithm configuration is the off-line task of finding
good values for the parameters before the actual deployment
of the algorithm into production. In contrast, parameter con-
trol reactively changes the values of the parameters while the
algorithm is running.

Algorithm parameters can be numerical, ordinal, or cate-
gorical. Numerical parameters have a value that is an integer
or a real number. Ordinal and categorical parameters have a
finite set of values that the parameter may take, but categori-
cal parameters cannot be ordered in a meaningful way.

3.2 Automatic algorithm configuration methods

The performance of different configuration methods (or con-
figurators) has been studied earlier, for example, for mixed-
integer programming solvers [26], evolutionary algorithms
[45, 55], and SAT solvers [1, 30, 37]. Actually, Kadioglu
et al. [34] states that there has been a renaissance in the field
of automatic algorithm configuration during the first decade
of the 21st century. For a recent review of these methods see
Hoos [23]. Eiben and Smit [16] presents a similar survey for
the evolutionary algorithm tuning community. In addition to
exploring the concepts such as robustness and performance
measures, they propose a useful taxonomy for the configura-
tion methods.

Recently, the focus has been in overcoming the chal-
lenges posed by heterogeneous and large problem
instances. Prime examples of this research are recent
studies from Styles and Hoos [57] and Mascia et al. [41],
where new techniques for reducing computational effort
are proposed. These alone are not always sufficient, as
finding good parameter configurations still often requires
considerable computational resources. Combining auto-
matic configuration with parallel and cloud computing
demonstrates how increased availability of computational
resources can allow performing the configuration tasks
within reasonable time [18, 28].

In this study, we focus on seven state-of-the-art algorithm
configuration methods: CMA-ES [21, 64], GGA [1], Iterated
F-Race [3], ParamILS [30], REVAC [46], SMAC [27], and
URS [64]. The primary criterion to include a method into
this study was previously documented use of the automatic
algorithm configuration method on VRP or TSP targets. The
secondary criterion was the availability of an implementa-
tion, as not all recently introduced automatic configuration
methods are publicly available. Short descriptions for each
of the selected methods are given below.

CMA-ES is a continuous optimization method that was
proposed by Hansen [21]. The method is based on the
ideas of self-adaptive evolution strategies. It works by
sampling new vectors from a multivariate Gaussian distri-
bution, whose covariance matrix is cumulatively adapted
using the search evolution path to form rotationally invar-
iant scatter estimates. CMA-ES is known to be reasonably
robust and is therefore suitable for automatic algorithm
configuration [55]. We extended CMA-ES with a basic
discretization scheme to make it support ordinal and cat-
egorical parameters, as they were not supported natively.
Recently, Vidal et al. [60] used CMA-ES to configure a
hybrid VRP solver with eight numerical parameters.
GGA (Gender-Based Genetic Algorithm) is a robust pop-
ulation-based automatic algorithm configuration method
proposed by Ansótegui et al. [1]. The method divides the
population into two genders, where the selection pressure
is only on the other gender. If the dependencies between
the configured parameters are specified, they are taken
into account in recombination phase. In addition, GGA
uses the aging and death of individuals, and random
mutations in the new offspring. The parameters of GGA
include truncation percentage X for breeding selection,
tree branch inheritance probability B, mutation rate M
along with mutation variance S, and maximum age A.
GGA also requires the initial population size P and num-
ber of generations G to be set. Ansótegui et al. [1] did not
report the number of optimized parameters being con-
figured in their experiments, but according to [30] the
number of parameters for these targets ranges from 4 to

4 Journal on Vehicle Routing Algorithms (2019) 2:1–22

1 3

26 with varying composition of categorical and numeri-
cal parameters.
F-Race [9] races a finite set of candidate parameter con-
figurations against each other. The method draws inspira-
tion from Maron and Moore [39] where racing was used
to solve a similar problem. At each step of F-Race, can-
didates are evaluated by running the target algorithm on
a single problem instance from the training set. A Fried-
man test is then used to eliminate those configurations
that are significantly worse than the best one. The race is
terminated when a maximum number of configurations
have been sampled, when the predefined computational
budget is used, or when the Friedman test indicates that
a dominating best configuration is found.
I/F-Race (Iterated F-Race) is an iterated extension of the
F-Race proposed by Balaprakash et al. [3]. In I/F-Race,
a relatively small set of new candidates is sampled dur-
ing each iteration. After each race iteration some or all
of the surviving candidates are promoted as elite. Each
candidate in the new iteration is sampled from a distri-
bution centered on a randomly selected elite candidate.
The standard deviations for this distribution are reduced
on each iteration [37]. I/F-Race is parametrized by the
number of iterations I, the computation budget for each
iteration ebI , the number of candidates for each itera-
tion NI , and the stopping condition parameter Nmin . The
additional stopping parameter allows a race iteration to
be terminated when only Nmin candidates are remaining
[9, 37], which will help ensure sufficient exploration in
the parameter configuration space [10]. The experiments
described by Birattari et al. [10] contained at most 12
configured parameters.
ParamILS [30] uses iterated local search (ILS), which
has proven to be a good heuristic for solving a variety
of discrete optimization problems [38]. It uses an one-
exchange neighborhood (one change to one parameter
at a time) to search the space of all possible algorithm
parameter value combinations. The ParamILS algorithm
starts by sampling R random parameter configurations
from which it selects the one performing best on the tar-
get algorithm. Then it performs a local search where it
moves toward a local optimum. To avoid getting stuck,
ParamILS employs random perturbations and restart
strategies. The ILS approach allows ParamILS to con-
figure any algorithm, even those with many parameters.
However, ParamILS is able to handle only ordinal and
categorical parameters and requires discretization of con-
tinuous parameters.
REVAC (Relevance Estimation and Value Calibra-
tion) by Nannen and Eiben [46] is a population-based
estimation-of-distribution algorithm. REVAC starts
from an assumption of a uniform distribution over the
range of each free parameter. It samples new individu-

als from the constantly updated parameter distribu-
tions and aims, through transformation operations with
multi-parent crossover (where N best individuals are
selected) and an interval shrinking operation governed
by a parameter H, to narrow down on the most promis-
ing range of each parameter. After the initial population
of size M has been evaluated, only one new individual
is sampled at each iteration. After the method has fin-
ished, relevance estimates can be used to recognize
which parameters are essential to the performance of
the target algorithm. Categorical parameters are not
supported. EA targets configured by REVAC seem to
typically have around six parameters [55].
SMAC [27] is the latest configurator from a series of
sequential model-based optimization (SMBO) methods
[5, 25, 29]. SMBO is an iterative framework for meth-
ods that alternate between fitting a regression model,
and using that model to predict performance of new can-
didates. However, SMAC is the first one to extend this
paradigm to general algorithm configuration problems.
Thus, while Bartz-Beielstein et al. [5] were one of the
first to use these black box continuous optimization meth-
ods in algorithm configuration, Hutter et al. [27] further
extended the applicability of SMBO by adding support
for multiple instances, categorical and conditional param-
eters, and an option to model the parameter configura-
tion response surface more accurately. More precisely, a
random forest with instance features is used to create a
surrogate model for the algorithm’s performance, which
is then used in local search of promising configurations.
SMAC and ParamILS were used and tested in scenarios
with nearly 80 free parameters by Hutter et al. [28].
URS (Uniform Random Sampling) [64] is used in this
study as a reference parameter configurator. During an
iteration, a candidate is sampled uniformly from the set
of all possible parameter configurations and evaluated on
all instances in the training set, while keeping track of
the best encountered configuration. The method sets a
baseline for the more sophisticated configuration methods
presented above.

The features of the seven automatic algorithm configuration
methods are summarized in Table 1. The first group of col-
umns from the left shows which target algorithm parameter
types are supported by the configurator. The second group
shows the algorithmic building blocks that the configurators
employ to allocate search efforts effectively. Here, effective
allocation is one that concentrates the target algorithm evalu-
ations mostly on the promising parameter configurations.
The features also ensure that exploration and exploitation
are balanced and the stochasticity of the search and target
algorithm properly addressed [64]. Sampling is a strategy
that all configurators share, but otherwise these methods

5Journal on Vehicle Routing Algorithms (2019) 2:1–22

1 3

use different approaches to solve the automatic algorithm
configuration problem.

The third group lists effort reduction techniques that are
used to save parameter configuration evaluations by chang-
ing how candidate configurations are tested: Capping [30]
terminates the evaluation as soon as it becomes clear that
the candidate configuration cannot produce a good param-
eter configuration. This is convenient when the objective is
to minimize the runtime of a target algorithm, but capping
is not applicable to solution quality-based configuration
that we are doing in this paper. In racing [9] good and bad
parameter configurations are recognized early by increas-
ing the number of instances and random seeds to evaluate
on each step of the race. This technique is closely related
to blocking [40], where the parameter configuration candi-
dates are evaluated on the same instances and seeds called a
block. These techniques control the noise from the variance
in the configuration objective between instances and seeds.
Sharpening [55] controls the number of available problem
instances per iteration, and seed configurations allow the use
of the default or other user-provided parameter configura-
tions at initialization.

The concepts racing, blocking, and sharpening can be
combined like in the intensify approach of ParamILS and
SMAC [27, 30]. There, the history of evaluations on the best
parameter configuration is stored and after a new evalua-
tion is added, new configurations are compared against the
history on the same problem instances and seeds. New con-
figurations are rejected or declared as the new best-known
configuration early, that is, after there is enough evidence.

Conditional parameters, also known as parameter hier-
archies, were introduced in ParamILS [31]. They allow the
user to specify that algorithm parameters are active only
with activation of some other parameter, and, thus, available
for automatic configuration. This prevents the configurator
from changing parameter values when they have no effect.
An in-depth survey of techniques and concepts related to
automatic algorithm configuration is given by Hoos [23].

The rightmost column of Table 1 shows the total number
of features for each configuration method. Out of the listed
methods, CMA-ES, URS and REVAC, rely on a smaller
number of features compared to others as they do not use
the more sophisticated search effort reduction techniques.
We are aware that generic continuous optimization methods
such as CMA-ES and URS can be augmented with effort
reduction mechanisms. For example, in [64] they were used
to identify good parameter configurations with minimal
evaluation effort, similarly to racing in I/F-Race. However,
CMA-ES has also been used in algorithm configuration
without such extensions (see, e.g., [60]), and, addition-
ally, our research was better served with distinctly different
approaches to automatic algorithm configuration than vari-
ations on the I/F-Race pattern. Those interested in extending Ta

bl
e

1
 F

ea
tu

re
s o

f t
he

 a
ut

om
at

ic
 a

lg
or

ith
m

 c
on

fig
ur

at
io

n
m

et
ho

ds
 u

se
d

in
 th

is
 st

ud
y

M
et

ho
d

Pa
ra

m
et

er
 ty

pe
s

A
lg

or
ith

m
ic

 c
on

ce
pt

s
Eff

or
t r

ed
uc

tio
n

te
ch

ni
qu

es
N

um
be

r o
f

fe
at

ur
es

C
at

eg
or

i-
ca

l
O

rd
in

al
N

um
er

i-
ca

l
C

on
tin

u-
ou

s
Sa

m
pl

in
g

Po
pu

la
-

tio
ns

St
at

is
-

tic
al

m

od
el

Lo
ca

l
se

ar
ch

Re
st

ar
ts

C
ap

pi
ng

R
ac

in
g

B
lo

ck
in

g
Sh

ar
pe

n-
in

g
Se

ed

co
nfi

gs
.

C
on

d.

pa
ra

m
s.

C
M

A
-E

S
✓

✓
✓

✓
✓

✓
6

G
G

A

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

10
I/F

-R
ac

e
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
12

Pa
ra

m
IL

S
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

11
R

EV
A

C
✓

✓
✓

✓
✓

5
SM

A
C

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

12
U

R
S

✓
✓

✓
✓

✓
5

6 Journal on Vehicle Routing Algorithms (2019) 2:1–22

1 3

continuous optimization methods such as CMA-ES with
effort reduction techniques are referred to [64].

4 Automatic algorithm configuration
in routing

In this section, we give a short survey on configuring rout-
ing algorithms. Because the number of articles on automatic
algorithm configuration of VRP algorithms is relatively
small, we also survey the relevant studies for the traveling
salesman problem (TSP).

Coy et al. [14] recognized the importance of configuring
VRP metaheuristics already in 2001 and proposed a proce-
dure to find a set of good parameter values for a target VRP
algorithm. Their procedure is based on a statistical design of
experiments that requires expert knowledge on each step of
the process. Similar to the more recent automatic algorithm
configuration methods, their procedure contains local, inex-
act steepest descent search on the response surface and uses
an average of the locally optimal parameter configurations
as the final result. The authors concluded that their method
managed to improve the default settings of their VRP algo-
rithms, and that the procedure outperformed random param-
eter sampling.

Pellegrini [47] used F-Race to configure two heuristic
algorithm variants solving a specific rich VRP variant, a
VRP with with multiple time windows and heterogeneous
fleet. Later, Pellegrini and Birattari [48] showed the ben-
efits of automatically configuring VRP metaheuristics. They
configured the IRIDIA VRPSD solvers with F-Race and
noted that the configured algorithms were able to clearly
outperform the out-of-the-box implementations with default
parameters. Becker et al. [7] used racing to configure the
parameters of a commercial VRP solver on a heterogeneous
training set of 47 real-world routing problem instances.

Balaprakash et al. [3] used automatic algorithm configu-
ration on three different routing variants, including VRPSD,
to show the advantages of the iterated F-Race over the stand-
ard F-Race. Garrido et al. [17] proposed a hyperheuristic
where REVAC was used to choose the low-level heuristics
solving CVRPs. More recently, Vidal et al. [60] used CMA-
ES to automatically configure his record breaking hybrid
genetic algorithm (GA) for multi-depot and periodic vehicle
routing problems. By using a meta-GA to configure a hybrid
GA, Wink et al. [62] were able to reduce the optimality gap
on CVRP benchmark instances from Augerat et al. [2] by
91 % (a 0.55 percentage point improvement) compared to an
extensively hand-tuned hybrid GA. They were also able to
find a new best-known solution for a 200-customer instance
in another problem set by using the same automatic configu-
ration approach.

Even though there are studies of automatic algorithm con-
figuration of routing solvers, we were able to find only three
comparative studies on automatic algorithm configuration of
TSP solvers. Montero et al. [44] compared F-Race, REVAC,
and ParamILS to recognize unused operators in solving the
TSP with an evolutionary algorithm. In a second study,
Montero et al. [45] focused on comparing the performance
of the three previously mentioned configurators. They con-
cluded that all three methods have comparable configuration
performance and that they are able to improve the perfor-
mance of metaheuristics targeting single problem instances.
Yuan et al. [64] compared CMA-ES, URS, and three other
methods in configuring the ACO algorithm for the TSP, and
Styles and Hoos [57] introduced two racing protocols that
allow different levels of difficulty of problem instances in
training and validation sets. To solve the TSP instances they
used an implementation of the Lin–Kernighan algorithm
(LKH). They concluded that for various sizes of configu-
ration problems, especially for those with many numerical
parameters, CMA-ES appears to be a robust algorithm.

In addition to our workshop paper [52] reporting some
preliminary results, we are not aware of comparative studies
on automatic algorithm configuration methods configuring
vehicle routing solvers. VRP solvers have been configured in
many studies, but the lack of comparative experiments with
different automatic algorithm configurators makes it hard
to determine which method one should use when dealing
with different VRP metaheuristics. Also, from the existing
literature, it is hard to infer how much the solution quality
is expected to improve when a VRP metaheuristic is config-
ured with automatic algorithm configuration.

5 Comparison of methods for configuring
VRP solvers

Next, we will describe our computational comparison for the
automatic algorithm configuration methods. We will explain
the experiments that we carried out, and the costs and ben-
efits of adding a layer of meta-optimization on top of a VRP
solver. As noted in the study by Hepdogan et al. [22], the
configurator for heuristic algorithms should be fast, efficient,
and outperform random parameter value selection. Thus, the
additional complexity caused by the automatic algorithm
configuration must be empirically justified. We will also pre-
sent the VRP solvers used as the target algorithms.

5.1 Solvers and benchmark problems

VRPH is a heuristic solver library for the CVRP developed
by Groër et al. [20]. The library uses the Clarke-Wright
construction heuristic and a selection of well-known local
search operators: one-point-move (1ptm), two-point-move

7Journal on Vehicle Routing Algorithms (2019) 2:1–22

1 3

(2ptm), three-point-move (3ptm), two-opt (two), three-opt
(tho), and Or-opt (oro). These operators can be enabled and
disabled using six switches common to all solvers (listed
as shared in Table 2). VRPH implements also the cross-
exchange operator, but we disabled it because of its tendency
to produce infeasible routes.

Other solver parameters do not have an effect on the
behavior of the local search operators. Use of the library’s
local search operators is orchestrated by three metaheuris-
tics: Record-to-Record travel (RTR, 6 + 8 free param-
eters, where the first 6 are the shared parameters between
all VRPH metaheuristics and the other 8 parameters are
specific to the RTR metaheuristic), Simulated Annealing
(SA, 6 + 5), and neighborhood ejection (EJ, 6 + 3). We
omit the descriptions of the heuristics, metaheuristics, and
solver parameters and refer the reader to Groër et al. [20]
and Table 2.

The other set of solvers we used in our experiments was
the IRIDIA VRPSD metaheuristics presented by Bianchi
et al. [8]. For local search, the IRIDIA VRPSD solvers rely
on only one operator, Or-opt. For the metaheuristic, one
can choose between ant colony optimization (ACO, 2 + 6
parameters), evolutionary algorithm (EA, 2 + 3), iterated
local search (ILS, 2 + 1), simulated annealing (SA, 2 + 4),
and tabu search (TS, 2 + 3). The two shared parameters, p

and t, are related to determining the local search move cost
approximation method. For a thorough explanation of the
solver parameters refer to Table 2 and Bianchi et al. [8].

The size of the training set is an important variable when
doing automatic algorithm configuration. If the training set
is excessively large, evaluating every parameter set on all
instances, as it is done in URS and REVAC, becomes infea-
sible. Even the more sophisticated configuration methods
require a significant subset of a large heterogeneous training
set to get a reliable estimate on the parameter configura-
tion utility. Conversely, if the training set is small, there is a
danger that it is not a representative sample, and even if the
resulting parameter configuration can be used to solve the
training set effectively it may have been over-tuned and its
performance does not generalize [1]. For our configuration
tasks, we decided to use a training and validation set size
of 14 instances, which is consistent with the experiences
of Becker et al. [7] from configuring real-world routing
problems.

We acknowledge that the chosen number of instances is
atypically small for automatic algorithm configuration tasks.
The reasons leading to small number of training instances
was threefold: 1. Out of the compared configuration meth-
ods, only the advanced ones support sharpening and block-
ing. To avoid major modifications and extensions to the less

Table 2 Free parameters of the
VRPH and VRPSD solvers

The following parameter type key is used: ‘B’ for Boolean switch (was treated as numerical, or as categori-
cal if the option was available), I for integer values (numerical), R for real values (numerical, continuous)

VRPH Name Type Default Range VRPSD Name Type Default Range

Shared 1ptm B 1 {0, 1} Shared p B 0 {0, 1}

2ptm B 1 {0, 1} t B 0 {0, 1}

two B 1 {0, 1} ACO m I 7 [1, 100]
oro B 0 {0, 1} � R 0.5 [0.0, 1.0]
tho B 0 {0, 1} � R 0.3 [0.0, 1.0]
3ptm B 0 {0, 1} � R 0.1 [0.0, 1.0]

EJ m I 10 [0, 45] q R 1e7 [10.0, 1e7]
t I 1000 [0, 1e4] � R 1.0 [0.0, 5.0]
s B 0 {0, 1} EA p I 10 [1, 1e3]

RTR D I 30 [1, 100] mr R 0.5 [0.0, 1.0]
� R 0.01 [0.0, 0.1] amr B 0 {0, 1}

K I 5 [0, 100] ILS x R 10.0 [0.0, 1e3]
N I 4 [0, 75] SA � R 0.01 [0.0, 0.1]
P I 2 [1, 10] � R 0.98 [0.0, 1.0]
p B 1 {0, 1} � I 1 [1, 100]
a B 1 {0, 1} � I 20 [1, 100]
t I 0 [0, 50] TS ttf R 0.8 [0.0, 1.0]

SA T R 2.0 [0.0, 10.0] pt R 0.8 [0.0, 1.0]
n I 200 [0, 1e3] po R 0.3 [0.0, 1.0]
i I 2 [0, 10]
� R 0.99 [0.8, 1.0]
N I 10 [0, 100]

8 Journal on Vehicle Routing Algorithms (2019) 2:1–22

1 3

sophisticated configurators, we simply evaluate the entire
training set for each parameter configuration candidate. A
large training instance set would make this approach infea-
sible. 2. We wanted to keep the size constant over all targets,
and 14 was the size of the smallest problem set used in our
experiments. 3. Finally, we would like to point out that a
promising practical application of automatic configuration
in vehicle routing is the automatic fine tuning of algorithms
used in real-world routing [11, 53]. Especially in industry
one might not be able to access a large number of specific
routing problems because of time and human resource limi-
tations. By using a restricted problem set size we tried to
ensure that this study stays relevant to this audience.

For the VRPH solving CVRPs, we used the classic
benchmark set CMT with 14 problem instances originating
from Christofides et al. [13], which has problems with sizes
ranging from 50 to 200 customers. Paired with the three
metaheuristics, this creates configuration targets VRPH-EJ-
C, VRPH-RTR-C, and VRPH-SA-C. We used a threefold
cross-validation with stratified sampling by problem size for
this benchmark set because dividing this set into separate
training and validation sets would have produced prohibi-
tively small problem sets.

In order to examine the effect different problem sets can
have on configuration performance, and how well the per-
formance gains generalize to similar problems, we used the
A and B CVRP sets from Augerat et al. [2]. These sets have
27 and 23 instances with sizes from 31 to 79 customers.
The problem sizes and demand distributions are similar, but
the customers in set A are uniformly distributed and in B
clustered. To fix one variable, the size of the training set,
we decided to use a subset of the original instance set in our
experiments. We used a stratified sampling of 14 instances
from set A and set B, to construct disjoint training and vali-
dation sets. This forms the next three configuration targets:
VRPH-EJ-A, VRPH-RTR-A, and VRPH-SA-A.

Finally, to test the IRIDIA VRPSD solvers, we used train-
ing and validation subsets, again with a stratified sampling

of 14 instances each, from the IRIDIA problem set of 120
randomly generated instances with 50 to 200 customers [8].
Supporting material1 for [8] includes the algorithms and
description of the problem instances. The configuration tar-
gets for VRPSD are: VRPSD-ACO, VRPSD-EA, VRPSD-
ILS, VRPSD-SA, and VRPSD-TS.

The experimental setup is illustrated in Fig. 1. To sum-
marize, we selected seven automatic configuration methods,
three target algorithms solving the CVRP, and five solving
the VRPSD. For each of the eight target algorithms solving
a set of VRP benchmarks, the configurators try to find a set
of parameters that maximize the quality of the solutions pro-
duced. This means there are interchangeable objects in the
three levels: a problem set, a solver with the metaheuristic
and local search operators, and a configurator that optimizes
solver performance. In addition, two of these levels have
free parameters: the solver has parameters being configured
and the configurator has its own parameters that must be set
manually by the experimenter. Furthermore, the selection of
the problem instances to the training and validation sets may
cause variability in the configuration performance.

5.2 Experimental design

The VRP solvers used in this study were considered to be
black boxes from the configurators’ point of view. Only the
free parameters and their ranges were known prior to starting
the configuration task.

When using heuristic algorithms, reaching the optimum
in a reasonable time is not guaranteed. Thus, we cannot
use the total running time of the target algorithm to com-
pare parameter configuration efficiency, even if it is a more
common target for automatic algorithm configuration (see,
e.g., [30]). Instead of solver time, we decided to optimize
for solution quality and set a 10 CPU second cutoff for all

Fig. 1 The experiment setup
where the total number of con-
figurators, configuration targets,
and VRP problem instance sets
are given in the parenthesis

1 http://iridi a.ulb.ac.be/supp/Iridi aSupp 2004-001/index .html.

http://iridia.ulb.ac.be/supp/IridiaSupp2004-001/index.html

9Journal on Vehicle Routing Algorithms (2019) 2:1–22

1 3

invocations of VRP solvers. If an algorithm had not stopped
after 10 s, it was terminated and with the quality of the cur-
rent best solution.

Choosing 10 s as the CPU cutoff was not arbitrary. The
experimental design presented here already creates a large
number of combinations to test, and the stochasticity in
the target algorithms and in the configurators themselves
requires multiple configuration trials for statistical reliability.
Thus, the algorithm runtime had to be reasonably small. Fig-
ure 2 illustrates the effect cutoff has on actual elapsed time
of the algorithm and the resulting solution quality. VRPH
solvers are able to utilize the more generous computational
resources only with two targets and the additional time gives
diminishing returns after 10 s. Also, while considering the
effect of this decision, please note the scaling of the x-axis.
The curves have a negative exponential multiplier, and thus,
the quality improvement is logarithmic (not linear) when the
CPU time is increased for VRPSD targets. Furthermore, the
selected cutoff is in line with [19], where the Augerat et al.
[2] instances are solved within 0.3 % of optimal solution
on average in 3.5 s. Similarly, Groër [19] reports that the
larger CMT [13] instances are solved close to optimality on
average in 12.94 s (RTR) or 21.9 s (EJ) on a 2.3 GHz AMD
processor.

From Fig. 2 we also see that VRPSD can utilize the more
generous computational resources. In their experiments Pel-
legrini and Birattari [48] used a slightly more generous CPU
timeout of 30 s for these targets, although with significantly
slower AMD Opteron 244 processor than the Intel Xeon E7
used in this study. Yuan et al. [64] used a 5 s cutoff for ACO
solving medium sized TSP instances, which was then config-
ured using, e.g., CMA-ES. These further validate the deci-
sion of using a relatively strict cutoff in such configuration
scenarios. Furthermore, because our comparison already had
many changing variables (configurator, target metaheuristic
and its parameters, problem sets and instances, and local

search operator selection), we decided to fix the cutoff for
all targets.

We acknowledge that the runtime of a routing algorithm
to solve large real-world problem with thousands of cus-
tomers may be measured in hours, especially in cases with
complex constraints such as dynamic travel times, com-
partment compatibilities, or other extensions including
separate pickups and deliveries or a heterogeneous fleet
[7]. Despite this, modern metaheuristics are usually able
to find proper solutions for all but the largest benchmark
problems in a few seconds.

As the utility metric we use an aggregated solution
objective function value over the training instance set.
Aggregation is a sum over the estimated objective func-
tion values for the resulting VRP solutions in the instance
set. Thus, the configuration task is to minimize:

Here, ĉ is the utility metric estimator, It is the training prob-
lem set, â is an estimator for the utility function for algorithm
a a, which in turn solves problem instance i ∈ It guided by
parameter configuration � . Because the metaheuristic algo-
rithm a is stochastic, we also define â to be an estimator
of the algorithm solution quality. In practice, the estimate
is formed through repeated evaluation of the algorithm on
the same problem instance and parameter configuration, but
with different random seed.

Even if we did not solve rich problems in this study,
the number of evaluations that can be allocated into find-
ing a reasonably good parameter configuration remains an
important factor. Especially since we would like to keep
this study relevant to the operations research practition-
ers who are solving large-scale real-world vehicle routing
instances with complex constraints who could benefit from

(1)minimize
𝜃

ĉ =
∑

i∈It

â(i, 𝜃)

(a) VRPH (b) VRPSD

Fig. 2 Effect of a cutoff to the elapsed algorithm runtime and resulting solution quality on an automatically configured solver

10 Journal on Vehicle Routing Algorithms (2019) 2:1–22

1 3

automatic algorithm configuration. In their case, the num-
ber of solver invocations cannot be too large.

In our experiments each configuration task was given an
evaluation budget that defines the number of solver invoca-
tions allowed during a configuration task. One call of the
routing solver with one parameter configuration and one
problem instance is counted as one evaluation. To compare
the effect of different budgets, every configurator—solver
combination was run with evaluation budgets of 100, 500,
and 1000. In addition, VRPSD-ACO was configured with
an evaluation budget of 5000 to see the effect of a larger
budget.

Whenever the option was available, configurators were
set to expect non-deterministic behavior from the target
algorithm. Thus, allocating the budget for new parameter
configurations and problem instances and controlling the
stochasticity through additional evaluations was left for the
configurator.

GGA, I/F-Race, ParamILS, and SMAC use effort reduc-
tion techniques that can save evaluations, for example, by
evaluating only a subset of the training instances on each
iteration, whereas CMA-ES, REVAC, and URS evaluated
all problem instances in the training set on each iteration.
All the tested target parameters could be represented with an
integer or real number with a suitable range and an optional
discretization step (in ParamILS).

All seven automatic algorithm configuration methods
contain a set of parameters related to the basic technique and
its actual implementation. The default parameters provided
by the original authors were used in the experiments when-
ever possible. A full listing of the configurator parameters
can be found in the online supplementary material for this
paper. Also, the target algorithm defaults were provided as
a seed configuration for all configurators excluding REVAC
and URS, which did not support it.

CMA-ES is claimed to be quasi-parameter-free [21],
so we did not change the initial parameters of the Python
implementation.2 For optimization, all continuous param-
eters were normalized between 0.0 and 1.0 with an initial
standard deviation of �0 = 0.5 . The restart mechanism of
this CMA-ES implementation was not used, because it is not
applicable to fixed and relatively small evaluation budgets.
Also, instead of relying entirely on the self-adaptive param-
eters, on tasks with an evaluation budget of 100, we used a
population size of 7 to help CMA-ES stay within the speci-
fied budget.

For GGA, we used the implementation of [1] with
the default values (10, 90, 10, 3, 10) for (X, B, M, A, S).
Ansótegui et al. used several different population and gen-
eration ratios. We decided to use the P∕G = 2∕1 ratio to

avoid extinction of the population. For evaluations with the
budget of 5000, we used the P∕G = 4∕3 ratio that Ansótegui
et al. [1] used to configure SAT solvers. Using this ratio
we set the population size and number of generations care-
fully on a budget-to-budget basis, because in order to use the
evaluation budget effectively, the evolutionary process must
converge at the right time. Because GGA did not respect the
specified budget for evaluations, setting G and P was the
only way to get it to spend approximately the right number
of target algorithm evaluations. Also, GGA required each
instance to be paired with a fixed random seed.

F-Race is implemented for the statistical software envi-
ronment R. The Iterated F-Race automatic algorithm config-
uration method irace3 from López-Ibánez et al. [37] uses
it to implement the iterated variant of the racing method.
We used defaults, but for an evaluation budget of 100, the
parameter ebI , which governs the computation budget for
each iteration step, was set to 60 to make I/F-Race more
closely respect the evaluation budget.

ParamILS [30] and SMAC [27] are available online.4
For ParamILS, we used linear discretization of 10 steps for
each of the continuous free parameters. Selecting the most
suitable discretization for each parameter can be seen as an
additional level of configuration, and therefore, it was omit-
ted from this study. To take the stochastic nature of the target
algorithms into consideration, we used the ParamILS built-
in FocusedILS approach to limit the time spent on evaluating
each parameter configuration [30]. SMAC was used with
default parameters. Its ability to use problem instance char-
acteristics to improve the predictive power of the surrogate
model for the target algorithm was not used.

For REVAC, we used the implementation from Montero
et al. [44, 45]. To allow it to use the evaluation budget effec-
tively, the control parameters M, N, and H were set using
the ratios recommended in the literature: N = M∕2 and
H = N∕10 with a minimum value of 2 for H. For evaluation
budgets of 100, 500, and 1000, M was given values 5, 10,
and 20, respectively.

Similarly to [64], each configuration task had 10 trials for
VRPH-A and VRPSD targets. In threefold cross-validation
of the VRPH-C targets, the cross-validation was repeated
five times. The folds were different between repetitions but
the same between the target algorithms and budgets. This
blocking guarantees that the configuration tasks are compa-
rable between methods. After configuring the algorithms,
the resulting parameter configurations were evaluated by

2 Version 0.9.93.4r2658, http://www.lri.fr/~hanse n/cmaes intro .html.

3 Version 0.9, http://iridi a.ulb.ac.be/irace /.
4 Versions 2.3.5 (ParamILS) and 2.0.2 (SMAC), http://www.cs.ubc.
ca/labs/beta/Proje cts/Param ILS/http://www.cs.ubc.ca/labs/beta/Proje
cts/SMAC/.

http://www.lri.fr/%7ehansen/cmaesintro.html
http://iridia.ulb.ac.be/irace/
http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/
http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/
http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
http://www.cs.ubc.ca/labs/beta/Projects/SMAC/

11Journal on Vehicle Routing Algorithms (2019) 2:1–22

1 3

running them on all problem instances 10 times and cal-
culating the aggregated objective cost for each repetition.

All configuration tasks were run on a computing server
with 64 Intel(R) Xeon(R) CPU E7 2.67 GHz cores and 1
TB of RAM. The server was running the OpenSUSE 12.3
operating system.

6 Numerical results and analysis

The experiment data contain results of 2695 configuration
runs.5 Together with the verification evaluations these took
around 250 CPU days to compute. Considering all results,
automatic algorithm configuration methods were able to find
improved configurations over defaults in 84.1% of the con-
figuration trials. This is a promising result considering that
the smallest used budget of 100 evaluations is a very tight
restriction for automatic algorithm configuration. Also, the
default parameters of the VRPH solvers are expected to be
tailored for typical scientific benchmark instances such as
those we used. The suitability of the defaults is even more
prominent in the case of VRPSD, where the solvers and the
benchmarks instances come from the same source.

6.1 Performance of the configurators

A median aggregated solution quality and median absolute
deviation were calculated for each configuration task. The
median was taken over a set of 10 evaluations on validation
set for each of the 10 resulting parameter configurations (that
is, over 100 aggregated quality values).

The median was used, because we were mostly interested
in measuring the typical performance of a configurator.
Meanwhile, the median absolute deviation gives an estimate
for the robustness of the configurators. The aggregated solu-
tion quality for each configuration task is given as a devia-
tion from the sum of best-known solutions for instances in
the validation set (relative optimality gap). The VRPSD
benchmarks had no recorded best-known solutions, so we
used the best observed solution for each problem instance
as the best-known solution. Please note that the result data,
with a full set of figures and tables with other descriptive
statistics, can be found in the online supplementary material.

The results in Tables 3, 4, and 5 are grouped by the tar-
get algorithm. The -C and -A suffixes are used to differen-
tiate between the CMT and Augerat et al. [2] benchmarks
for the VRPH targets. Each row shows results for a single
configuration task consisting of a triplet: target algorithm,
evaluation budget, and problem instance set. When com-
paring the results we note that out of the tested configu-
rators only ParamILS and SMAC strictly, and URS and
REVAC closely, respected the evaluation budget. Other
methods frequently ignored the input parameter for the
evaluation budget and exceeded or fell short of the budget.
Results deviating from the given budget by more than 5%
are marked with italics. A nonparametric Mann–Whitney
U-test (p < 0.05) was used with the Bonferroni adjustment

Table 3 Median automatic
configuration results for the
VRPH CMT targets with
threefold cross-validation

Results are given as percentage from the aggregated best-known solution (relative optimality gap). Statisti-
cally better results of the single best, or pair of best solvers (in cases where no single configurator domi-
nated), are in bold typeface. Evaluation budget (EB) violations of more than 5% are italicized, with + indi-
cating exceeding and − falling short of the budget

EB CMA-ES GGA I/F-Race ParamILS REVAC SMAC URS

VRPH-EJ-C, defaults: 0.96 (0.12)
 100 0.99(0.08)− 0.86(0.09)+ 0.72(0.09)+ 0.93(0.10)+ 1.00(0.22) 0.81(0.10) 0.77(0.12)
 500 0.83(0.12)+ 0.79(0.10)− 0.71(0.06) 0.76(0.10) 0.68(0.09) 0.70(0.09) 0.73(0.10)
 1000 0.78(0.09) 0.81(0.09)− 0.66(0.06) 0.71(0.09) 0.73(0.09) 0.69(0.09) 0.75(0.09)

VRPH-RTR-C, defaults: 1.42 (0.06)
 100 1.24(0.14) 0.90(0.14)− 1.04(0.15)+ 1.00(0.11) 1.22(0.25) 0.94(0.06) 0.81(0.14)
 500 0.82(0.15) 0.84(0.03)− 0.75(0.05) 0.91(0.17) 1.06(0.14) 0.78(0.12) 0.83(0.10)
 1000 0.76(0.08) 0.85(0.06)− 0.63(0.09) 0.67(0.06) 0.74(0.03) 0.79(0.06) 0.78(0.06)

VRPH-SA-C, defaults: 0.80 (0.05)
 100 1.70(0.52) 0.88(0.18) 0.73(0.04)+ 0.89(0.09) 1.68(0.36) 0.77(0.03) 1.39(0.26)
 500 1.09(0.21) 0.89(0.11)− 0.81(0.08)− 0.84(0.08) 1.29(0.10) 0.78(0.04) 1.04(0.18)
 1000 1.03(0.16) 0.89(0.10)− 0.79(0.08) 0.75(0.09) 1.15(0.12) 0.77(0.03) 0.97(0.13)

5 (((3 × 3) × (3 × 5)) + ((3 + 5) × 3 + 1) × 10) × 7 The 3 VRPH-C
targets with 3 different budgets were configured using threefold cross-
validation repeated 5 times. The 3 VRPH-A targets and 5 VRPSD
targets, each with 3 different budgets, plus (1) VRPSD ACS with
a budget of 5000, with 10 trials each. All the previous experiments
were done for all the 7 automatic configuration methods.

12 Journal on Vehicle Routing Algorithms (2019) 2:1–22

1 3

to test whether the differences to defaults and other con-
figurators were statistically significant. Whenever a single
dominating method for an algorithm target was not found,
existence of a dominating pair of methods was checked.
Statistically significantly better automatic algorithm con-
figuration methods (or pairs) for each configuration task
are marked in bold typeface.

If we consider only the best configuration found for
each configuration task, and average over all targets,
automatic algorithm configuration was able to reduce
the optimality gap by 0.72. This is a 69.7% improvement

compared to using default parameters. According to our
results, this is the improvement that can be expected when
a suitable configurator is used. On average, the optimal-
ity gap was reduced by 0.27 (a 25.2% improvement over
defaults). The greatest single improvement was seen on
VRPSD-TS, where ParamILS was able to reduce the opti-
mality gap on by 1.51, allowing an 81.2% improvement
over defaults.

Before focusing on the differences between configuration
methods, we compare the performance of more sophisti-
cated methods against the reference configurator that was

Table 4 Median automatic
configuration results for the
VRPH Augerat et al. [2] targets
on the validation set B

EB CMA-ES GGA I/F-Race ParamILS REVAC SMAC URS

VRPH-EJ-A, defaults: 0.73 (0.03)
 100 0.42(0.06) 0.43(0.08)+ 0.50(0.14)+ 0.44(0.08) 0.42(0.07) 0.41(0.06) 0.38(0.03)
 500 0.40(0.06)+ 0.37(0.02)− 0.37(0.04) 0.42(0.09) 0.42(0.06) 0.37(0.02) 0.38(0.04)
 1000 0.38(0.03)+ 0.40(0.05) 0.37(0.04) 0.37(0.02) 0.42(0.05) 0.35(0.02) 0.37(0.03)

VRPH-RTR-A, defaults: 1.40 (0.05)
 100 0.38(0.07) 0.36(0.17)+ 0.38(0.20)+ 0.44(0.08) 0.50(0.16) 0.62(0.21) 0.37(0.22)
 500 0.35(0.06)− 0.34(0.06) 0.42(0.23) 0.45(0.16) 0.32(0.08) 0.66(0.26) 0.37(0.09)
 1000 0.34(0.06) 0.31(0.09)− 0.34(0.11) 0.39(0.22) 0.38(0.11) 0.63(0.27) 0.34(0.06)

VRPH-SA-A, defaults: 0.90 (0.01)
 100 0.90(0.19) 0.65(0.12)+ 0.61(0.16)+ 0.70(0.24) 0.98(0.10) 0.65(0.12) 0.73(0.17)
 500 0.62(0.25)+ 0.48(0.17)− 0.39(0.11) 0.61(0.12) 0.66(0.10) 0.38(0.24) 0.58(0.20)
 1000 0.41(0.22)+ 0.38(0.24)− 0.33(0.20) 0.38(0.22) 0.53(0.17) 0.34(0.15) 0.34(0.23)

Table 5 Median automatic
configuration results for the
VRPSD IRIDIA targets on the
validation set

EB CMA-ES GGA I/F-Race ParamILS REVAC SMAC URS

VRPSD-ACO, defaults: 0.63 (0.04)
 100 0.39(0.07) 0.43(0.07)+ 0.41(0.04)+ 0.39(0.04) 0.43(0.06) 0.37(0.02) 0.39(0.04)
 500 0.31(0.05)+ 0.38(0.03) 0.36(0.05) 0.36(0.04) 0.41(0.05) 0.30(0.08) 0.35(0.05)
 1000 0.28(0.06)+ 0.37(0.03)− 0.37(0.03) 0.33(0.07) 0.37(0.03) 0.27(0.07) 0.35(0.06)
 5000 0.30(0.09) 0.32(0.06) 0.27(0.06) 0.26(0.06) 0.40(0.02) 0.16(0.06) 0.31(0.05)

VRPSD-EA, defaults: 0.77 (0.03)
 100 0.72(0.10) 0.68(0.08)+ 0.57(0.04)+ 0.59(0.07) 0.67(0.06) 0.53(0.05) 0.58(0.05)
 500 0.62(0.06)+ 0.57(0.07)− 0.48(0.04) 0.57(0.06) 0.58(0.04) 0.51(0.04) 0.49(0.05)
 1000 0.56(0.07) 0.56(0.06)− 0.48(0.04) 0.55(0.06) 0.57(0.04) 0.49(0.04) 0.49(0.05)

VRPSD-ILS, defaults: 0.78 (0.04)
 100 0.71(0.06) 0.75(0.06)+ 0.74(0.07)+ 0.76(0.03) 0.78(0.05) 0.72(0.03) 0.78(0.03)+

 500 0.73(0.03)+ 0.72(0.08)− 0.76(0.05) 0.76(0.03) 0.77(0.13) 0.71(0.07) 0.78(0.03)
 1000 0.73(0.03)+ 0.71(0.04)− 0.74(0.08) 0.76(0.03) 0.77(0.13) 0.77(0.03) 0.78(0.03)

VRPSD-SA, defaults: 0.79 (0.04)
 100 0.83(0.05) 0.77(0.07)+ 0.88(0.06)+ 0.88(0.08) 1.18(0.23) 0.86(0.05) 0.87(0.06)+

 500 0.84(0.03) 0.78(0.06) 0.87(0.06) 0.85(0.06) 0.88(0.12) 0.88(0.04) 0.86(0.06)
 1000 0.84(0.03) 0.77(0.06)− 0.82(0.03) 0.85(0.06) 0.88(0.11) 0.85(0.02) 0.86(0.06)

VRPSD-TS, defaults: 1.86 (0.13)
 100 0.75(0.08) 1.80(0.05)+ 1.75(0.07)+ 0.72(0.14) 1.77(0.07) 1.73(0.10) 1.78(0.04)
 500 0.60(0.11)+ 1.74(0.09)+ 1.74(0.11) 0.61(0.12) 1.73(0.09) 1.74(0.07) 1.70(0.04)
 1000 0.59(0.10) 1.75(0.09)− 1.80(0.08) 0.59(0.10) 1.73(0.09) 1.83(0.10) 1.70(0.04)

13Journal on Vehicle Routing Algorithms (2019) 2:1–22

1 3

the uniform random sampling (URS). Contrary to expec-
tations, the configurators are able to produce statistically
significantly better results over URS only in 35.8% of the
pairwise Mann–Whitney U tests (p < 0.05). In contrast, the
observed performance was worse than URS in 35.3% of the
pairwise comparisons. However, as can be seen from the
main result tables (Tables 3, 4, and 5), the results in con-
trast to URS are not evenly distributed. Additionally, the two
Augerat et al. [2] instance sets were included to see how well
the performance gains of automatic algorithm configuration
generalize to similar problems. Therefore, it was expected
a see that random strategy (URS) works well. According
to Coy et al. [14], such behavior can be caused by a large
heterogeneity among the problem instances in a problem set,
but it seems this applies also to heterogeneity between train-
ing and validation sets. Also I/F-Race, and to some extent
SMAC, show a good generalization ability from a problem
set to another on these targets.

Another noteworthy observation is that REVAC seems to
struggle with all algorithm targets and it is able to beat URS
only in 6.1% of the pairwise parameter configuration com-
parisons. As a whole, our results indicate that performance
of REVAC on routing targets is worse than that of SMAC
and I/F-Race. This is in contrast to results from Montero
et al. [44], where they reported only small differences
between F-Race, ParamILS, and REVAC in automatically
configuring an EA for the TSP. If we leave out the Augerat
et al. [2] targets and REVAC from the pairwise comparisons
against URS, configurators are better than URS in 50.4% and
worse in 26.4% of the tests. In addition, as the evaluation

budget is increased, the advantages of more sophisticated
configuration methods become more apparent (see, e.g.,
ACO in Table 5).

Table 6 shows that SMAC, I/F-Race, and CMA-ES are
the methods that most frequently tend to find good param-
eter configurations for the VRP metaheuristics in this study.
However, please note that CMA-ES, I/F-Race and GGA have
the tendency to exceed the specified evaluation budget. Of
the statistically significant results, only I/F-Race for the
VRPH-SA-C and VRPH-SA-A targets with a budget of 100
exceeded the given budget by more than 15% (by 25 % to be
exact) and this may give them some unfounded advantage.
Still, considering the competitive performance of I/F-Race
on those targets with budgets of 500 and 1000 this should
not induce significant bias into our analysis.

I/F-Race, together with SMAC, and in some cases URS,
seem to be the configuration methods to choose when faced
with a highly limited computational budget. These methods
are able to quickly produce relatively high-quality param-
eter configurations. However, no single method clearly
dominates the others. The summary of winning configura-
tors in Table 6 illustrates that different automatic algorithm
configuration methods are successful with different targets,
although if a method manages to find good parameter con-
figurations for a target with a specific evaluation budget, it
seems to be able do this with other budgets as well.

Regarding the parameter types and composition, our
results support the observation made by Yuan et al. [64] that
CMA-ES is suitable for configuration tasks with a high num-
ber of continuous parameters. We also note that I/F-Race

Table 6 Configurator performance on the metaheuristics, which are split into three difficulty classes (D
c
 , 1 being easiest and 3 hardest)

Based on the results, the suitability of the default parameters (d.s.) is estimated. Here 1 stands for good default parameters. Middle columns keep
score for the statistically significantly best configurators for each target. The #P column indicates the number of parameters for each metaheuris-
tic, and #P

B
 , #P

I
 , and #P

R
 their division into Boolean, Integer, and Real valued parameters. Rightmost columns show the ranking between VRP

solvers with the default and the automatically configured parameters. Also, the table illustrates how the ranking changes when the solvers are
configured. Results with bold ranks are of better or equal utility in comparison to the best solver for that instance set with default parameters

Target #P(B∕I∕R) d.s. Dc CMA-ES GGA I/F-Race ParamILS REVAC SMAC URS Rank on
defaults

EB’s

100 500 1000

VRPH-EJ-C 9 (7/2/0) 3 3 1 1 2 1 1 2
VRPH-RTR-C 14 (9/4/1) 3 3 1 1 3 3 2 1
VRPH-SA-C 11 (6/3/2) 1 1 1 1 1 2 3 3
VRPH-EJ-A 9 (7/2/0) 3 3 1 2 1 1 2 2 3
VRPH-RTR-A 14 (9/4/1) 3 3 3 1 1 1
VRPH-SA-A 11 (6/3/2) 2 2 2 2 2 3 3 2
VRPSD-ACO 8 (2/1/5) 3 1 3 4 1 1 1 1
VRPSD-EA 5 (3/1/1) 3 3 1 1 2 2 2 2
VRPSD-ILS 3 (2/0/1) 3 1 1 4 3 4 4
VRPSD-SA 6 (2/2/2) 1 1 1 3 5 5 5
VRPSD-TS 5 (2/0/3) 2 2 3 3 5 4 3 3

Total wins 6 2 7 3 0 10 3

14 Journal on Vehicle Routing Algorithms (2019) 2:1–22

1 3

seems to perform well in tasks that contain many Boolean
parameters.

Random sampling (URS) works surprisingly well on
VRPH-EJ, VRPH-RTR, and VRPSD-EA. The ruggedness
of the configuration target fitness landscape probably inter-
feres with the exploitation schemes of the more advanced
automatic configuration methods. URS is, by definition, very
explorative and is therefore capable of effectively explor-
ing large areas of the parameter configuration search space.
Hutter et al. [27] utilizes this in another configurator called
ROAR, which can be described roughly as URS with con-
figuration effort reduction techniques. However, as we can
see from the result of configuring VRPSD-TS, sampling is
not a strategy without disadvantages.

SMAC dominates in configuring VRPSD-ACO with a
budget of 5000 evaluations (Fig. 3a). We also observe a
possible case of over-tuning in the results of REVAC and
CMA-ES. The effect is smaller with CMA-ES so there is a
possibility that CMA-ES cannot effectively use the larger
budget and prematurely converges to a local optimum.

Overall, despite the relatively small training set size, there
is reasonably little over-tuning as can be seen from Fig. 4.
In a case of over-tuning the figure would show good perfor-
mance on training set, but poor performance on validation
set. That is, the data point would be clearly above the dashed
line designating unequal performance between the sets. The
largest over-tuning effect is seen on the left side of the fig-
ure where SMAC automatically configures VRPH-RTR-A
(Fig. 4a). In fact, VRPH-RTR-A and VRPH-SA-A targets
show relatively large difference in training and validation
set solution quality. This is due to the inherent differences
of the training and validation sets with the Augerat et al.
[2] targets. This is not surprising as this benchmark set was
included to test how well the performance gains of automatic
algorithm configuration transfer to solving similar problem

(a) VRPSD-ACO (b) VRPH-RTR-C

Fig. 3 Comparison of different configurators on two selected targets

(a) VRPH targets

(b) VRPSD targets

Fig. 4 Solution quality on validation versus training set

15Journal on Vehicle Routing Algorithms (2019) 2:1–22

1 3

instances. Furthermore, if the data is examined per configu-
ration method, none of the configurators shows a clear ten-
dency to over-tune.

To examine robustness, we study the median absolute
deviations (MAD) in Tables 3, 4, and 5. Out of the tested
configuration methods, SMAC is the most robust. That is, is
able to consistently produce good parameter configurations.
It closely followed by I/F-Race as they both have the lowest
average MAD and still provide good automatic configuration
performance. However, the differences over all experiments
are small, and even SMAC fails to always produce good
parameter configurations for configuring some targets such
as VRPH-RTR-A and VRPSD-TS where in turn CMA-ES
excels.

6.2 Configuration target difficulty

By comparing the configuration performance of URS against
other methods in Tables 3, 4, and 5, we recognize three
difficulty classes in the tested VRP algorithm targets (see
Table 6). The first class consists of targets VRPH-SA-C,
VRPSD-ACO, VRPSD-ILS, and VRPSD-SA, which seem to
have relatively smooth parameter configuration landscapes
where sophisticated intensification and search techniques
work well. Pellegrini and Birattari [48] reported similar
results that showed that ACO, ILS, and SA are metaheuris-
tics that respond favorably to automatic configuring and
that F-Race outperforms random sampling on these targets.
Note that the default parameters for the targets VRPH-SA-
C and VRPSD-SA seem to be already very good because
only 25.6% of the parameter configurations produced by
the configurators show improved performance over them.
GGA seems to be the best method to automatically configure
VRPSD-SA, although it, likewise, struggles to find better
configurations than the defaults. For the other targets in this
class, 95.3% of the produced configurations are better than
the defaults. As we can see from Fig. 3, the results also seem
to be getting better as we increase the evaluation budget.

The second class of automatic algorithm configuration
problems contains VRPSD-TS and VRPH-SA-A. Configu-
ration performance on these targets shows large variation.
For VRPSD-TS, only CMA-ES and ParamILS are able to
find parameter configurations that clearly outperform the
defaults, whereas other methods are able to only slightly
improve the solution quality. VRPH-SA-A shows similar
behavior with high variance. For this algorithm, all of the
configurators, except REVAC, were repeatedly able to pro-
duce a parameter configuration that allowed solving all of
the 14 instances in the Augerat et al. [2] validation set to
optimality. One such configuration is given later in Table 7.

In the third difficulty class, we have the targets VRPH-EJ,
VRPH-RTR, and VRPSD-EA. Based on our experiments,
these seem to be hard to configure effectively and even the

more sophisticated automatic algorithm configuration meth-
ods struggle to challenge the uniform random sampling on
these targets. As can be seen from Table 6 these targets share
the feature of having many binary parameters. If we examine
the boxplot of Fig. 5, the multimodal nature of these configu-
ration targets can be seen as clustering of outliers around a
local optimum of the configuration search space. However,
even for these targets, the configurators were able to improve
the solution quality over the default parameter configuration
with a success rate of 93.8%. Additionally, improvements
were often found even with an evaluation budget as small
as 100.

Our experiments clearly indicate that the nature of the
configured target or, more specifically, the solver algorithms
and the problem instance set, has great impact to the con-
figurability, configuration method selection, and generic
performance of the solver. In Table 6, the solver perfor-
mance is compared among the metaheuristics solving the
same problem set. In solving the CVRP, we can see that
VRPH-RTR clearly benefits from using automatic algo-
rithm configuration. For the CMT instances, VRP-SA-C
produces the best-quality solutions with default parameters,
but after configuration has been performed, it is beaten by
VRPH-RTR-C and VRPH-EJ-C. With Augerat et al. [2]
instances on small configuration budgets VRPH-EJ-A and
VRPH-RTR-A are performance-wise very similar. With an
evaluation budget of 1000, GGA is able to find very good
parameters for VRPH-RTR-A, which outperforms the other
two solvers on the Augerat instance set. Note that the large
median absolute deviation in VRPH-SA-A results indicates
that there is a lot of variation between the configured param-
eter configurations or their evaluations, which means that
this good performance is inconsistent. The reason behind
this may be in the optimal cooling schedule band for SA is
known to be narrow [43]. For the IRIDIA instances, auto-
matic configuration changes the ranking between the solvers
only slightly. VRPSD-ACO is the winner in solving given
VRPSD instances with VRPSD-EA being a close second,
not surprisingly given the state-of-the-art performance of the
evolutionary approach in the literature [50, 60].

6.3 Automatically configured parameters

The parameter configurations with the best median solution
quality can be found in Table 7. However, it is likely that
the parameter values are highly instance and solver imple-
mentation specific, which limits our ability to make general
recommendations. Also, please remember that a 10 s cutoff
was used in our experiments, and this should be consid-
ered when generalizing the parameter values. Still, the best
found parameter configurations offer a basis for our discus-
sion on algorithm nature and solution space structure in the

16 Journal on Vehicle Routing Algorithms (2019) 2:1–22

1 3

conclusions. Table 7 also allows comparison of parameter
values and resulting solution quality between the default
configuration and the configured one. Out of the compared
configurators SMAC and GGA seem to be most successful
in finding very good parameter configurations. If this evi-
dence is combined with observations from boxplots such
as the one presented in Fig. 5, the overall impression is that
SMAC has more consistent performance, while GGA is
occasionally able find better configurations.

Analysis of the configured parameter configurations
reveals that in VRPSD-TS, where we observe strikingly dif-
ferent performance between two groups of configurators,

the good utility is achieved when at least one of the values
for the parameters ttf, pt , and po is at the minimum or maxi-
mum. This can also be seen from Table 7. Statistically, it
is improbable for a uniform sampling to produce exactly
the parameter endpoint value of an interval. Therefore,
methods that uniformly sample from within the given range
are unable to find these good parameter configurations for
VRPSD-TS, whereas configurators that use a robust statis-
tical model or local search are well-suited to the task. The
effect was not considered by Balaprakash et al. [3] when
they introduced the iterative sampling extension to F-Race,
and, to our knowledge, this effect has not previously been

Table 7 The best median solution quality Q for a single parameter configuration

Local search operators Optimized parameters

QC QA 1pm/2pm/two/oro/tho/3pm m t s

VRPH EJ default 0.96 0.73 1 / 1 / 1 / 0 / 0 / 0 10 1000 0
VRPH EJ C (SMAC) 0.54 1 / 1 / 1 / 0 / 1 / 1 17 7465 1
VRPH EJ A (SMAC) 0.34 1 / 1 / 1 / 0 / 0 / 1 19 5316 1

QC QA 1pm/2pm/two/oro/tho/3pm D � K N P p/a t

VRPH RTR default 1.42 1.40 1 / 1 / 1 / 0 / 0 / 0 30 0.01 5 4 1 1/1 0
VRPH RTR C (GGA) 0.40 1 / 1 / 1 / 1 / 0 / 1 18 0.01 51 11 4 0/0 39
VRPH RTR A (GGA) 0.01 1 / 1 / 1 / 1 / 0 / 0 98 0.04 43 30 6 1/0 6

QC QA 1pm/2pm/two/oro/tho/3pm T n i � N

VRPH SA default 0.80 0.90 1 / 1 / 1 / 0 / 0 / 0 2.00 200 2 0.99 10
VRPH SA C (GGA) 0.63 1 / 1 / 1 / 0 / 0 / 0 2.00 200 5 0.99 10
VRPH SA A (SMAC) 0.01 1 / 1 / 1 / 1 / 1 / 1 8.79 498 5 0.99 23

Obj.f. est. Optimized parameters

Q p t m au � � q �

VRPSD ACO default 0.63 0 0 7 0.50 0.30 0.10 1.0e7 1.00
VRPSD ACO (GGA) 0.15 0 0 1 0.53 0.85 0.41 4.2e6 3.12

Q p t p mr amr

VRPSD EA default 0.77 0 0 0 0.20 0
VRPSD EA (GGA) 0.42 1 1 1 0.63 1

Q p t x

VRPSD ILS default 0.78 0 0 10.00
VRPSD ILS (SMAC) 0.70 0 0 29.80

Q p t � � � �

VRPSD SA default 0.79 0 0 0.01 0.98 1 20
VRPSD SA (GGA) 0.77 0 0 0.08 0.18 1 20

Q p t ttf pt po

VRPSD TS default 1.86 0 0 0.80 0.80 0.30
VRPSD TS (CMA-ES) 0.51 1 0 1.00 1.00 1.00

17Journal on Vehicle Routing Algorithms (2019) 2:1–22

1 3

reported in automatic algorithm configuration literature.
The original F-Race would probably find the values of these
good parameter configurations, given parameter range end
points are chosen as design points in the factorial design.
However, VRPSD-TS is a special target in this regard, and
F-Race based on factorial design candidate configuration
generation would probably show far worse automatic con-
figuration performance on different kind of targets. This is
especially true in our configuration scenarios because a full
factorial design requires a rather large configuration budget.
Also, note that Pellegrini and Birattari [48] did not use the
iterative variant of F-Race, and, thus, this behavior did not
manifest in their results.

If we now turn to the resulting parameter configurations
of the VRPH targets, we can examine how the probability
of a local search heuristic to be selected changes with the
metaheuristic and the instance set (see Fig. 6). Out of the
tested targets, VRPH-SA-C seems to somewhat differ from
the rest in its composition of local search operators. With
this algorithm, configurations that avoid the more compu-
tationally intensive Or-opt, three-opt, and three-point-move
operations yield higher utility (routes with a lower cost).
Also, in VRPH-SA-C the selection of the operator plays a
major role in the resulting solution quality as the local search
operator composition of the top 10% parameter configura-
tions differs clearly from the worst 90%. A similar effect
can be observed in VRPH-EJ-A, where the use of two-opt
operators is preferred over other operations.

It seems that definite connections exist among the
composition of local search operators, performance of a
metaheuristic, and the instances to be solved. Automatic
algorithm configuration makes it possible to find suitable
local search operator composition to optimize the perfor-
mance of a routing solver. This verifies the observation made
by Garrido et al. [17] that careful selection of local search

operators for a set of instances is a relatively stable way of
improving the overall performance of a solver. However, in
this study we refrain from examining the differences in local
search operator selection between the configurators further.

7 Conclusions and future research

In this paper, we have presented a comprehensive empiri-
cal evaluation of seven well-known automatic algorithm
configuration methods in the task of configuring eight
metaheuristic algorithms solving two vehicle routing prob-
lem (VRP) variants. The tested configurators were CMA-ES,
GGA, I/F-Race, ParamILS, REVAC, SMAC, and URS. The
VRPH library, which is used to solve capacitated vehicle
routing problems, offers three solvers with EJ, SA, and RTR
metaheuristics. The IRIDIA solvers for the VRPSD uses
ACS, EA, ILS, SA, and TS metaheuristics. The solvers had
from 3 to 14 free parameters. Each configurator was given a
task to find a parameter configuration producing high quality
solutions for each algorithm used to solve a relatively small
benchmark set of VRP instances. Runtime of the solvers was
limited to 10 s.

The results show that, in general, the configuration meth-
ods were able to find parameter configurations that produced
better solutions than the solver default, even when restricted
to as little as 100 solver invocations. This is consistent with
previous research where it has been shown repeatedly that
automatic algorithm configuration can remarkably improve
the performance of stochastic search algorithms over the
default parameters. Despite this prior assumption, the low
computational cost of achieving performance improvement
can be considered surprising. Using just a plain random uni-
form sampling strategy with a highly limited computational
budget would often produce a clearly better performing

Fig. 5 The distribution of the
parameter configuration utility
for VRPH-EJ-A target

18 Journal on Vehicle Routing Algorithms (2019) 2:1–22

1 3

parameter configuration than the defaults. Occasionally,
random sampling even beat the more advanced configura-
tors by a clear margin as sophistication does not dominate in
cases where the solution space has little structure to exploit.

To answer the question of configuration method suit-
ability, our analysis suggests that there is no single best
automatic algorithm configuration method for the tested
VRP metaheuristics. However, the statistically significant
evidence in this study verified that CMA-ES is a good
choice when dealing with targets that have many continu-
ous parameters, and that I/F-Race is well-suited for algo-
rithm configuration targets that have many on-off switches
for enabling and disabling solver features. Our experimen-
tation also revealed that GGA and REVAC require a lot of
trial-and-error and expertise to find parameter values that
enable them to use the evaluation budget effectively. This
creates an additional level of parameters to tweak on top
of the original problem, which makes it hard to effectively
apply these configuration methods.

We argue that robustness, and being parameter-free,
are desirable properties for an automatic configuration
method. Based on our survey, out of the tested configura-
tors CMA-ES, I/F-Race, ParamILS, SMAC, and URS ful-
fill these requirements. If good performance and robustness
is required, and a relatively generous evaluation budget is
available, we would recommend SMAC and I/F-Race. Based
on our experiments they are both capable of reliably produc-
ing good quality parameter configurations. Also GGA is in
some situations a competitive choice, but in our experiments
it was not as robust as SMAC and I/F-Race. While we could
not give a definite recommendation on which single con-
figurator one should use to configure VRP metaheuristics,
the results together with the provided survey should help
VRP researchers and practitioners to select a method that is
probably a good fit. Also, confirming that these results apply
with other metaheuristics, time limits, and problem instance
sizes will warrant additional computational experiments of
configuring VRP algorithms.

The way a target algorithm responded to configuration
efforts varied between configurators, evaluation budgets, and
even between problem instance sets. We acknowledge that
the time limits do affect the results of the comparison of
metaheuristics or configuration methods. In our experiments,
we varied the evaluation budget and tested the configurator
performance on three problem instance sets, but used the
same time limit in all experiments. Considering this, the
results of our experiments conclude that there does not exist
a single, best configuration method for different algorithms.
However, we were able to distinguish differing configurator
behavior with the different evaluation budget constraints.
The results suggest that SMAC and I/F-Race would be most
appropriate configurators for larger instances with longer
execution times. Our study also showed that in our set of
configuration problems some configurators are more robust
than others.

Our recommended strategy to address the inconclusive
nature of the results is to have several state-of-the-art auto-
matic algorithm configuration methods at the user’s dis-
posal. Experimenting with different configurators helps
one to see when a good fit is found, as the solver usually
responds quickly to automatic configuration attempts even
with a small evaluation budget. Furthermore, our findings
have important implications for future practice. Contributed
evidence to the usefulness of automatic algorithm configu-
ration of VRP metaheuristics strongly suggests that rout-
ing algorithm developers should start using an automatic
algorithm configuration method in their experiments. This
is important in particular when making algorithm perfor-
mance comparisons, as configuring the parameters of a set
of algorithms allows one to avoid confirmation bias, that is,
the performance of the algorithm is not determined by the
suitability of its default parameters or the amount of manual
fine-tuning it receives.

Regarding generalization of the results, we see from
Table 1 that the included configurators address a large set
of different features and aspects of automatic algorithm

Fig. 6 Local search operator
composition of the 10% best
VRPH parameter configurations
for each VRPH target

19Journal on Vehicle Routing Algorithms (2019) 2:1–22

1 3

configuration. The same holds true for the various features
represented in benchmark problems and their solvers as
depicted in Table 2: we hypothesize that the experimental
results hold true also for different mixtures of the same solu-
tion method constituents. The use of these approaches is
common in designing heuristics for combinatorial optimiza-
tion problems [54].

Additional and extensive comparison between these con-
figurators with different experiment parameters, e.g., with
larger, more difficult, or ‘rich’ [12] problem instances or
with a longer metaheuristic CPU runtime, would be required
to reliably estimate how well our observations generalize.
The recent advances in the field of automatic algorithm
configuration addressing the issues with long running algo-
rithms are relevant here [18, 28, 41, 57]. The experiments
could also be extended with configuration targets that have
more binary and categorical parameters.

A typical use for a routing solver is to solve sets of slightly
different problem instances repeatedly. Automatic configura-
tion in such a scenario can be considered as modeling the
interactions of the triplet: instance, parameter configuration,
and solution quality. Further work is required to establish the
feasibility of utilizing these previously discovered interac-
tions in future solving tasks. This research avenue is also
recognized, e.g., in [61]. The reasonable next step could be
to explore the feature extraction of VRP instances, solutions,
and routes, and then investigate the suitability of instance-
specific algorithm configuration methods. These methods
use instance features to make utility predictions for the
parameter configuration candidates. SMAC can be used as
instance-specific method, but there are other methods, such
as ISAC from Kadioglu et al. [34]. Also, of particular inter-
est from practical operations research and vehicle routing
viewpoint would be extending our investigations to algo-
rithm selection. Especially applicability and implications of
using algorithm selectors, such as Hydra [63] or AutoFolio
from Lindauer et al. [36], should be explored.

It is also important to acknowledge the drawbacks of
automatic algorithm configuration. The configuration meth-
ods rarely provides useful information on why a certain
parameter configuration was selected. Here, domain knowl-
edge and understanding of the target algorithm is required to
understand the general implications of the resulting param-
eter configuration. This is especially important in academic
research, where understanding why an optimization strategy
works is of paramount importance. Therefore, we see imple-
menting in features like parameter sensitivity analysis and
visualization of the parameter configuration search space as
important development and research aims of configuration
method community.

Regarding validity of the study, we would like discuss
four things: configuration budget, CPU cutoff, problem

set size, configuration objective, and generalization of the
results to other VRP variants. The possible limitations of
the study are due to the extensive computational require-
ments required with each additional variability dimension
introduced to the comparison. Also, the research questions
and the specifics in solving vehicle routing problems made
it possible, or in some cases necessary, to fix some aspects
of the experimental setup.

In this study an evaluation budget was used to limit the
computational resources available during automatic algo-
rithm configuration. However, some configuration methods
failed to adhere to this budget. To control the effect this issue
might have on validity, we have addressed deviations from
the budget in our analysis.

We also acknowledge that future comparisons should
study the effect of a more generous configuration budget on
configuring VRP metaheuristics. In our study we tested a
single target with a budget of 5000 evaluations, which does
not allow analyzing the variation between configuration tar-
gets in the scenario of a larger budget.

The large number of experiments, and a decision to keep
as many of the variables constant as possible in the experi-
mental setup lead us to limit the CPU time of the solvers
to 10 s. We experimentally verified that the VRPH solver
performance stabilizes by the 10 s mark. However, it is likely
that this creates a bias to prefer parameter configurations
specifying a more explorative search strategy, especially on
larger instances of the CMT problem set and when solving
VRPSD instances. Similarly. the choice to use a problem set
size of 14 was done to keep it constant over all three con-
figuration target groups, and to include automatic algorithm
configuration methods that lack training set subset evalua-
tion mechanisms. We acknowledge that when using a small
training set, there is a danger of overfitting. However, in our
experiments only few selected configuration targets show
weak signs of such behavior, and these do not affect our
overall results and recommendations.

VRP is a challenging, well-known, and well-studied
combinatorial optimization problem that generalizes sev-
eral other problems. Therefore, it can serve as an interest-
ing benchmark for evaluating the robustness of automated
algorithm configuration methods and tools. In this study we
focused only on CVRP and VRPSD, but there are many
other variants with different constraints, objectives and
features. Also, even different problem instances of a single
variant can have differing characteristics (see, e.g., [51]).
Thus, we would like to see automatic algorithm configura-
tion method comparisons on the VRPTW (VRP with time
windows), PDP (pickup and delivery problem), large-scale
CVRP, and rich VRP benchmarks, which could show differ-
ent facets of configuring VRP solvers and perhaps provide
further support for our results.

20 Journal on Vehicle Routing Algorithms (2019) 2:1–22

1 3

Acknowledgements Open access funding provided by University of
Jyväskylä (JYU). The financial support by the Austrian Federal Min-
istry for Digital and Economic Affairs and the National Foundation for
Research, Technology and Development for Nyset Musliu is gratefully
acknowledged.

Compliance with ethical standards

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

OpenAccess This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

 1. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based
genetic algorithm for the automatic configuration of algorithms.
In: Gent, I. (ed.) Principles and Practice of Constraint Program-
ming - CP’09. Lecture Notes in Computer Science, vol. 5732, pp.
142–157. Springer, Berlin (2009)

 2. Augerat, P., Belenguer, J., Benavent, E., Corberán, A., Naddef, D.,
Rinaldi, G.: Computational results with a branch and cut code for
the capacitated vehicle routing problem. Technical Report 949-M,
Universite Joseph Fourier, Grenoble, France (1995)

 3. Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies
for the F-Race algorithm: sampling design and iterative refine-
ment. Technical Report TR/IRIDIA/2007-011, IRIDIA, Université
Libre de Bruxelles, Brussels, Belgium (2007)

 4. Barbucha, D.: Experimental study of the population parameters
settings in cooperative multi-agent system solving instances of
the VRP. In: Nguyen, N.T. (ed.) Transactions on Computational
Collective Intelligence IX. Lecture Notes in Computer Science,
vol. 7770, pp. 1–28. Springer, Berlin (2013)

 5. Bartz-Beielstein, T., Lasarczyk, C., Preuß, M.: Sequential param-
eter optimization. In: IEEE Congress on Evolutionary Computa-
tion—CEC’05, vol. 1, pp. 773–780 (2005)

 6. Battiti, R., Brunato, M.: Reactive search optimization: learning
while optimizing. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook
of Metaheuristics, International Series in Operations Research &
Management Science, vol. 146, 2nd edn, pp. 543–571. Springer,
New York (2010)

 7. Becker, S., Gottlieb, J., Stützle, T.: Applications of racing algo-
rithms: an industrial perspective. In: Proceedings of the 7th
International Conference on Artificial Evolution—EA’05, pp.
271–283. Springer, Berlin (2006)

 8. Bianchi, L., Birattari, M., Chiarandini, M., Manfrin, M., Mastro-
lilli, M., Paquete, L., Rossi-Doria, O., Schiavinotto, T.: Hybrid
metaheuristics for the vehicle routing problem with stochastic
demands. J. Math. Model. Algorithms 5(1), 91–110 (2005)

 9. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing
algorithm for configuring metaheuristics. In: Proceedings of the
Genetic and Evolutionary Computation Conference—GECCO’02,
pp. 11–18. Morgan Kaufmann, San Francisco, CA (2002)

 10. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-Race and
iterated F-Race: an overview. In: Bartz-Beielstein, T., Chiaran-
dini, M., Paquete, L., Preuss, M. (eds.) Experimental Methods for

the Analysis of Optimization Algorithms, pp. 311–336. Springer,
Berlin (2010)

 11. Bräysy, O., Hasle, G.: Vehicle Routing: Problems, Methods, and
Applications, chap. 12 Software tools and emerging technologies
for vehicle routing and intermodal transportation, pp. 351–380.
In: [58] (2014)

 12. Caceres-Cruz, J., Arias, P., Guimarans, D., Riera, D., Juan, A.A.:
Rich vehicle routing problem: survey. ACM Comput. Surv.
(CSUR) 47(2), 32 (2015)

 13. Christofides, N., Mingozzi, A., Toth, P.: The vehicle routing prob-
lem. Revue Française d’Informatique et de Recherche Opération-
nelle 10(2), 55–70 (1976)

 14. Coy, S.P., Golden, B.L., Runger, G.C., Wasil, E.A.: Using experi-
mental design to find effective parameter settings for heuristics. J.
Heuristics 7, 77–97 (2001)

 15. Eiben, A., Hinterding, R., Michalewicz, Z.: Parameter control
in evolutionary algorithms. IEEE Trans. Evolut. Comput. 3(2),
124–141 (1999)

 16. Eiben, A., Smit, S.: Parameter tuning for configuring and analyz-
ing evolutionary algorithms. Swarm Evol. Comput. 1(1), 19–31
(2011)

 17. Garrido, P., Castro, C., Monfroy, E.: Towards a flexible and adapt-
able hyperheuristic approach for VRPs. In: Arabnia, H.R., de la
Fuente, D., Olivas, J.A. (eds.) Proceedings of the 2009 Interna-
tional Conference on Artificial Intelligence—ICAI’09, pp. 311–
317. CSREA Press, USA (2009)

 18. Geschwender, D., Hutter, F., Kotthoff, L., Malitsky, Y., Hoos,
H.H., Leyton-Brown, K.: Algorithm configuration in the cloud: a
feasibility study. In: Pardalos, M.P., Resende, G.M., Vogiatzis, C.,
Walteros, L.J. (eds.) Learning and Intelligent Optimization: 8th
International Conference, Lion 8, Gainesville, FL, USA, February
16–21, 2014. Revised Selected Papers, pp. 41–46. Springer (2014)

 19. Groër, C.: Parallel and serial algorithms for vehicle routing prob-
lems. Dissertation, University of Maryland (2008)

 20. Groër, C., Golden, B., Wasil, E.: A library of local search heu-
ristics for the vehicle routing problem. Math. Program. Comput.
2(2), 79–101 (2010)

 21. Hansen, N.: The CMA evolution strategy: a comparing review. In:
Lozano, J., Larranaga, P., Inza, I., Bengoetxea, E. (eds.) Towards
a New Evolutionary Computation. Advances on Estimation of
Distribution Algorithms, pp. 75–102. Springer, Berlin (2006)

 22. Hepdogan, S., Moraga, R., DePuy, G., Whitehouse, G.: Nonpara-
metric comparison of two dynamic parameter setting methods in
a meta-heuristic approach. J. Syst. Cybern. Inf. 5(5), 46–52 (2008)

 23. Hoos, H.H.: Automated algorithm configuration and parameter
tuning. In: Hamadi, Y., Monfroy, E., Saubion, F. (eds.) Autono-
mous Search, pp. 37–71. Springer, Berlin (2012)

 24. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and
Applications. Elsevier, Amsterdam (2004)

 25. Hutter, F., Bartz-Beielstein, T., Hoos, H., Leyton-Brown, K.,
Murphy, K.: Sequential model-based parameter optimization:
an experimental investigation of automated and interactive
approaches. In: Bartz-Beielstein, T., Chiarandini, M., Paquete,
L., Preuss, M. (eds.) Experimental Methods for the Analysis of
Optimization Algorithms, pp. 363–414. Springer, Berlin (2010a)

 26. Hutter, F., Hoos, H., Leyton-Brown, K.: Automated configuration
of mixed integer programming solvers. In: Lodi, A., Milano, M.,
Toth, P. (eds.) Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems. Lecture
Notes in Computer Science, vol. 6140, pp. 186–202. Springer,
Berlin (2010b)

 27. Hutter, F., Hoos, H., Leyton-Brown, K.: Sequential model-based
optimization for general algorithm configuration. In: Coello,
C.A.C. (ed.) Learning and Intelligent Optimization. Lecture Notes
in Computer Science, vol. 6683, pp. 507–523. Springer, Berlin
(2011)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

21Journal on Vehicle Routing Algorithms (2019) 2:1–22

1 3

 28. Hutter, F., Hoos, H., Leyton-Brown, K.: Parallel algorithm con-
figuration. In: Hamadi, Y., Schoenauer, M. (eds.) Learning and
Intelligent Optimization. Lecture Notes in Computer Science, vol.
7219, pp. 55–70. Springer, Berlin (2012)

 29. Hutter, F., Hoos, H., Leyton-Brown, K., Murphy, K.: Time-
bounded sequential parameter optimization. In: Blum, C., Battiti,
R. (eds.) Learning and Intelligent Optimization. Lecture Notes
in Computer Science, vol. 6073, pp. 281–298. Springer, Berlin
Heidelberg (2010c)

 30. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS:
An automatic algorithm configuration framework. J. Artif. Intell.
Res. (JAIR) 36, 267–306 (2009)

 31. Hutter, F., Hoos, H.H., Stützle, T.: Automatic algorithm configura-
tion based on local search. In: Proceedings of the Twenty-Second
AAAI Conference on Artificial Intelligence, pp. 1152–1157.
AAAI Press, Menlo Park, CA (2007)

 32. Irnich, S., Toth, P., Vigo, D.: Vehicle Routing: Problems, Meth-
ods, and Applications, chap. 1 the family of vehicle routing prob-
lems, pp. 1–33. In: [58] (2014)

 33. Jourdan, L., Basseur, M., Talbi, E.G.: Hybridizing exact meth-
ods and metaheuristics: a taxonomy. Eur. J. Oper. Res. 199(3),
620–629 (2009)

 34. Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC—
instance-specific algorithm configuration. In: Coelho, H., Studer,
R., Wooldridge, M. (eds.) 19th European Conference on Artifi-
cial Intelligence—ECAI 2010, Frontiers in Artificial Intelligence
and Applications, vol. 215, pp. 751–756. IOS Press, Amsterdam,
Netherlands (2010)

 35. Laporte, G.: What you should know about the vehicle routing
problem. Nav. Res. Log. 54(8), 811–819 (2007)

 36. Lindauer, M., Hoos, H., Hutter, F., Schaub, T.: Autofolio: An
automatically configured algorithm selector. J. Artif. Intell. Res.
53, 745–778 (2015)

 37. López-Ibánez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.:
The irace package, iterated race for automatic algorithm configu-
ration. Technical Report TR/IRIDIA/2011-004, IRIDIA, Univer-
sité Libre de Bruxelles (2011)

 38. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search:
framework and applications. In: Gendreau, M., Potvin, J.Y. (eds.)
Handbook of Metaheuristics, International Series in Operations
Research & Management Science, Chap. 12, vol. 146, 2nd edn,
pp. 363–397. Springer, New York (2010)

 39. Maron, O., Moore, A.W.: Hoeffding races: Accelerating model
selection search for classification and function approximation. In:
Cowan, J., Tesauro, G., Alspector, J. (eds.) Advances in Neural
Information Processing Systems, vol. 6, pp. 59–66. Morgan Kauf-
mann, San Francisco (1994)

 40. Maron, O., Moore, A.W.: The racing algorithm: model selection
for lazy learners. Artif. Intell. Rev. 11(1–5), 193–225 (1997)

 41. Mascia, F., Birattari, M., Stützle, T.: Tuning algorithms for tack-
ling large instances: an experimental protocol. In: Nicosia, G.,
Pardalos, P. (eds.) Learning and Intelligent Optimization. Lecture
Notes in Computer Science, vol. 7997, pp. 410–422. Springer,
Berlin (2013)

 42. Mester, D., Bräysy, O.: Active-guided evolution strategies for
large-scale capacitated vehicle routing problems. Comput. Oper.
Res. 34(10), 2964–2975 (2007)

 43. Miki, M., Hiroyasu, T., Jitta, T.: Adaptive simulated annealing for
maximum temperature. In: 2003 IEEE International Conference
on Systems, Man and Cybernetics—SMC 2003, vol. 1, pp. 20–25
(2003)

 44. Montero, E., Riff, M., Neveu, B.: New requirements for off-line
parameter calibration algorithms. In: 2010 IEEE Congress on
Evolutionary Computation—CEC’10, pp. 1–8 (2010)

 45. Montero, E., Riff, M.C., Neveu, B.: An evaluation of off-line
calibration techniques for evolutionary algorithms. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference—
GECCO’10, pp. 299–300. ACM, New York (2010)

 46. Nannen, V., Eiben, A.E.: Efficient relevance estimation and value
calibration of evolutionary algorithm parameters. In: 2007 IEEE
Congress on Evolutionary Computation—CEC’07, pp. 103–110
(2007)

 47. Pellegrini, P.: Application of two nearest neighbor approaches
to a rich vehicle routing problem. Technical Report TR/
IRIDIA/2005-015, IRIDIA, Université Libre de Bruxelles (2005)

 48. Pellegrini, P., Birattari, M.: Implementation effort and perfor-
mance. In: Stützle, T., Birattari, M., Hoos, H.H. (eds.) Engineer-
ing Stochastic Local Search Algorithms. Designing, Implementing
and Analyzing Effective Heuristics. Lecture Notes in Computer
Science, vol. 4638, pp. 31–45. Springer, Berlin (2007)

 49. Penna, P.H.V., Subramanian, A., Ochi, L.S., Vidal, T., Prins, C.:
A hybrid heuristic for a broad class of vehicle routing problems
with heterogeneous fleet. Ann. Oper. Res. 273(1–2), 5–74 (2017)

 50. Prins, C.: A simple and effective evolutionary algorithm for the
vehicle routing problem. Comput. Oper. Res. 31(12), 1985–2002
(2004)

 51. Rasku, J., Kärkkäinen, T., Musliu, N.: Feature extractors for
describing vehicle routing problem instances. In: SCOR, OASICS,
vol. 50, pp. 7:1–7:13. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2016)

 52. Rasku, J., Musliu, N., Kärkkäinen, T.: Automating the parameter
selection in VRP: an off-line parameter tuning tool comparison.
In: Fitzgibbon, W., Kuznetsov, A.Y., Neittaanmäki, P., Pironneau,
O. (eds.) Modeling, Simulation and Optimization for Science and
Technology, Proceedings of Optimization and PDEs with Appli-
cations Workshop, June 18–19, 2012, University of Jyväskylä,
Finland, Computational Methods in Applied Sciences, vol. 34,
pp. 191–209. Springer (2014)

 53. Rasku, J., Puranen, T., Kalmbach, A., Kärkkäinen, T.: Automatic
customization framework for efficient vehicle routing system
deployment. In: Diez, P., Neittaanmäki, P., Periaux, J., Tuovinen,
T., Bräysy, O. (eds.) Computational Methods and Models for
Transport: New Challenges for the Greening of Transport Sys-
tems, pp. 105–120. Springer, New York (2018)

 54. Sevaux, M., Sörensen, K., Pillay, N.: Adaptive and multilevel
metaheuristics. In: Martí, R., Panos, P., Resende, M. (eds.) Hand-
book of Heuristics, pp. 1–19. Springer, Cham (2018)

 55. Smit, S.K., Eiben, A.E.: Comparing parameter tuning methods for
evolutionary algorithms. In: 2009 IEEE Congress on Evolutionary
Computation—CEC’09, pp. 399–406 (2009)

 56. Sörensen, K., Sevaux, M., Schittekat, P.: Multiple neighbourhood
search in commercial VRP packages: evolving towards self-adap-
tive methods. Stud. Comp. Intell. 136, 239–253 (2008)

 57. Styles, J., Hoos, H.: Using racing to automatically configure algo-
rithms for scaling performance. In: Nicosia, G., Pardalos, P. (eds.)
Learning and Intelligent Optimization. Lecture Notes in Computer
Science, vol. 7997, pp. 382–388. Springer, Berlin (2013)

 58. Toth, P., Vigo, D.: Vehicle Routing: Problems, Methods, and
Applications. SIAM, Philadelphia (2014)

 59. Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., Subrama-
nian, A.: New benchmark instances for the capacitated vehicle
routing problem. Eur. J. Oper. Res. 257(3), 845–858 (2017)

 60. Vidal, T., Crainic, T.G., Gendreau, M., Lahrichi, N., Rei, W.: A
hybrid genetic algorithm for multidepot and periodic vehicle rout-
ing problems. Oper. Res. 60(3), 611–624 (2012)

 61. Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: Heuristics for
multi-attribute vehicle routing problems: a survey and synthesis.
Eur. J. Oper. Res. 231(1), 1–21 (2013)

22 Journal on Vehicle Routing Algorithms (2019) 2:1–22

1 3

 62. Wink, S., Back, T., Emmerich, M.: A meta-genetic algorithm for
solving the capacitated vehicle routing problem. In: IEEE Con-
gress on Evolutionary Computation—CEC’12, pp. 1–8 (2012)

 63. Xu, L., Hoos, H.H., Leyton-Brown, K.: Hydra: Automatically
configuring algorithms for portfolio-based selection. In: Twenty-
Fourth Conference of the Association for the Advancement of
Artificial Intelligence (AAAI-10), pp. 210–216 (2010)

 64. Yuan, Z., de Oca, M.A.M., Birattari, M., Stützle, T.: Continuous
optimization algorithms for tuning real and integer parameters of
swarm intelligence algorithms. Swarm Intell. 6(1), 49–75 (2012)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	On automatic algorithm configuration of vehicle routing problem solvers
	Abstract
	1 Introduction
	2 The vehicle routing problem
	3 The algorithm configuration problem
	3.1 Introducing the problem
	3.2 Automatic algorithm configuration methods

	4 Automatic algorithm configuration in routing
	5 Comparison of methods for configuring VRP solvers
	5.1 Solvers and benchmark problems
	5.2 Experimental design

	6 Numerical results and analysis
	6.1 Performance of the configurators
	6.2 Configuration target difficulty
	6.3 Automatically configured parameters

	7 Conclusions and future research
	Acknowledgements
	References

