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Tiivistelmä

Väitöskirjassa tutkitaan integraaligeometriaan liittyviä inversio-ongel-
mia. Geodeettinen sädemuunnos on operaattori, joka laskee funktion
polkuintegraalin geodeesia pitkin. Väitöskirjassa määritetään monia
ehtoja, joilla tällainen tieto määrää funktion yksikäsitteisesti ja va-
kaasti. Lisäksi osana väitöskirjan työtä on toteutettu numeerinen mal-
li, jota voidaan käyttää tietokonetomografiassa.

Väitöskirjan johdannossa esitetään inversio-ongelmien peruskäsitteitä
ja tietokonetomografiaan läheisesti liittyviä matemaattisia malleja. Joh-
dannon pääpaino on integraaligeometriaan liittyvien mallien määrittelys-
sä, tutkimusaiheen kirjallisuuskatsauksessa ja väitöskirjan tutkimustu-
losten esittelyssä. Lisäksi annetaan lista integraaligeometrian tärkeistä
avoimista matemaattisista ongelmista.

Väitöskirjan ensimmäisessä artikkelissa osoitetaan, että symmetri-
nen solenoidaalinen tensorikenttä voidaan määrätä yksikäsitteisesti sen
geodeettisesta sädemuunnoksesta Cartan-Hadamard monistolla, kun
tietyt geometriasta riippuvat vähenemisehdot täyttyvät. Tutkittu inte-
graalimuunnos esiintyy sirontaan liittyvissä käänteisongelmissa kvant-
tifysiikassa ja yleisessä suhteellisuusteoriassa.

Väitöskirjan toisessa artikkelissa näytetään, että paloittain vakio
vektoriarvoinen funktio voidaan määrittää yksikäsitteisesti sen matrii-
sipainotetusta geodeettisesta sädemuunnoksesta reunallisella Rieman-
nin monistolla, jos geometria sallii aidosti konveksin funktion olemas-
saolon ja epäsingulaarinen matriisipaino riippuu jatkuvasti sen sijain-
nista moniston yksikköpallokimpulla. Tällaista integraalimuunnosta voi-
daan käyttää mallintamaan attenuoitua sädemuunnosta sekä inversio-
ongelmia konnektiolle ja Higgsin kentälle.

Väitöskirjan kolmannessa ja neljännessä artikkelissa tutkitaan geo-
deettista sädemuunnosta suljettujen geodeesien yli toruksella, kun funk-
tioiden säännöllisyys on alhainen. Neljännessä artikkelissa tarkastel-
laan lisäksi tällaisen muunnoksen yleistystä, kun funktion integraalit
tunnetaan isometrisesti upotettujen alempiasteisten toruksien yli. Ar-
tikkeleissa todistetaan uusia rekonstruktiokaavoja, regularisointistra-
tegioita ja vakausestimaatteja tällaisille integraalimuunnoksille. Saa-
duilla tutkimustuloksilla on sovelluskohteita erilaisissa laskennallisissa
tomografiamenetelmissä.
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Abstract

This dissertation is concerned with integral geometric inverse prob-
lems. The geodesic ray transform is an operator that encodes the
line integrals of a function along geodesics. The dissertation estab-
lishes many conditions when such information determines a function
uniquely and stably. A new numerical model for computed tomography
imaging is created as a part of the dissertation.

The introduction of the dissertation contains an introduction to in-
verse problems and mathematical models associcated to computed to-
mography. The main focus is in definitions of integral geometry prob-
lems, survey of the related literature, and introducing the main results
of the dissertation. A list of important open problems in integral ge-
ometry is given.

In the first article of the dissertation, it is shown that a symmetric
solenoidal tensor field can be determined uniquely from its geodesic
ray transform on Cartan-Hadamard manifolds, when certain geometric
decay conditions are satisfied. The studied integral transforms appear
in inverse scattering theory in quantum physics and general relativity.

In the second article of the dissertation, it is shown that a piece-
wise constant vector-valued function can be determined uniquely from
its geodesic ray transform with a continuous and non-singular matrix
weight on Riemannian manifolds that admit a strictly convex function
and have a strictly convex boundary. These integral transforms can
be used to model attenuated ray transforms and inverse problems for
connections and Higgs fields.

The third and fourth articles of the dissertation study the geodesic
ray transform over closed geodesics on flat tori when the functions have
low regularity assumptions. The fourth article studies a generalization
of the geodesic ray transform when the integrals of a function are
known over lower dimensional isometrically embedded flat tori. New
inversion formulas, regularization strategies and stability estimates are
proved in the articles. The new results have applications in different
computational tomography methods.
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1. Introduction

One of the most fundamental inverse problems asks if an unknown
function is determined uniquely from the knowledge of the values of its
line integrals over all possible lines in Euclidean space. This is in fact
the mathematical model used for X-ray computed tomography (CT).
This can be viewed as an integral transform acting on functions. Its
many possible generalizations model other tomographic methods such
as computerized axial tomography (CAT), positron-emission tomogra-
phy (PET) and single-photon emission tomography (SPECT). It also
has close connection to other inverse problems and applications such
as seismic imaging, electrical impedance tomography, polarization to-
mography, quantum state tomography, inverse spectral problems and
inverse scattering problems. This thesis studies generalizations of X-
ray tomography on Riemannian manifolds.

This introductory part of the thesis is organized as follows. We
discuss inverse problems and X-ray computed tomography in general
in sections 1.1 and 1.2 respectively. We shortly describe the articles
(A)–(D) in section 1.3. Preliminaries on Riemannian manifolds are
given in section 2. We define different geodesic tomography models and
corresponding inverse problems in section 3. We also survey related
solved and unsolved problems in section 3. We introduce the main
results of this thesis in section 4. The results are proved in the included
articles (A)–(D).

1.1. Inverse problems. Inverse problems is a field of mathematics
where one typically measures data outside or on the boundary of an
object and wants to recover knowledge of its internal structure. Such
mathematical problems occur often in medical, engineering and phys-
ical applications. In some inverse problems, measurements are done
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very far from an object. Such problems can be naturally studied using
noncompact spaces in mathematical models.

Typical mathematical questions that one studies in inverse problems
include:

i) (Forward problem) What is a good mathematical model that
captures the physical phenomenon which relates measurement
data to physical parameters of an unknown object? Does the
mathematical model define data uniquely?

ii) (Uniqueness) Do measurements determine the unknown phys-
ical parameters uniquely? If not, can non-uniqueness be char-
acterized?

iii) (Reconstruction) How can the unknown physical parameters be
computed from measurement data?

iv) (Stability) Do the unknown physical parameters depend contin-
uously on measurement data? Does there exists a quantitative
stability estimate?

v) (Simulations and regularization) How can reconstruction meth-
ods be implemented into numerical algorithms? How to over-
come instability caused by ill-posedness and measurement noise,
finiteness of measurements, and numerical approximations?

The questions i)–ii) are encountered in (A), the question ii) in (B),
and the questions iii)–v) in (C) and (D). The textbooks [42, 45, 57]
and the survey [80] can be used to find more details and references on
inverse problems in general.

1.2. X-ray tomography and its generalizations. Let f be a func-
tion Rn → R. One defines the X-ray transform in Rn as

Rf(x, v) =

ˆ
R

f(x+ tv)dt (1)

where (x, v) ∈ Rn × Sn−1 whenever the integral is well-defined and
finite. This is the standard mathematical model for X-ray tomography
measurements, and it is also known as the Radon transform if n = 2.
In higher dimensions, the X-ray transform and the Radon transform
are different operators [28]. The corresponding uniqueness problem
asks if Rf = Rg implies that f = g. The other questions i)–v) of
section 1.1 could be asked as well.

The inverse problems associated to the X-ray transform were first
studied by Johann Radon in 1917 [73]. Fritz John characterized the
range of the X-ray transform in R3 in terms of ultrahyperbolic equa-
tions (called John’s equations) in 1938 [41]. Later, the mathematical
problem was restudied independently by Allan Cormack in 60s [12, 13].
Godfrey Hounsfield studied practical CT imaging a few years later.
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For their seminal works on CT imaging, Cormack and Hounsfield won
the 1979 Nobel Prize in Physiology or Medicine. The monographs
[59, 43, 28] and the surveys [72, 29, 46] are recommended references on
the mathematics of the X-ray and Radon transforms.

The X-ray transform can be generalized many ways:

i) Instead of integrating over straight lines, suppose one knows
integrals of f over other families of curves. For example, data
could be measured over geodesics of a Riemannian manifold.

ii) Instead of integrating against the measure dt, suppose one
knows integrals of f against the weighted measure w(x, v)dt
where w(x, v) > 0 is a continuous function on Rn × Sn−1.

iii) Instead of integrating over straight lines, suppose one knows
integrals of f over other families of sets. For example, data
could be measured over hyperplanes.

iv) Instead of integrating a function, suppose one knows integrals
of a tensor field so that the value of f depends also on the
direction of an X-ray, not only on a point in Rn.

v) Some combination of the above cases.

The case i) corresponds to the geodesic X-ray transform, ii) to the
X-ray transform with weights, iii) to the Radon transform, and iv)
to tensor tomography. These different generalizations of the X-ray
transform are studied in this thesis. One of the fundamental properties
is that all of these integral transforms are linear. This reduces the
uniqueness problem to studying kernels of the transforms.

The field of inverse problems that studies these integral transforms,
among other problems of similar nature, is often called integral geome-
try. For example, the boundary rigidity problem asks if the knowledge
of distances between any two boundary points determines the geomet-
rical shape of a compact connected object with boundary uniquely (see
section 3.4 for a rigor formulation). This is an example of a nonlinear
integral geometry problem. We give a more detailed introduction to
integral geometry problems in section 3. More references and recent
developments in integral geometry can be found from the textbook [76]
and the surveys [66, 38].

1.3. On the articles in this thesis. The first article (A) with Lehto-
nen and Salo considers tensor tomography on Cartan-Hadamard man-
ifolds. Tensors can be used for modeling physical parameters that
have spatial and directional dependence. In this work, we characterize
the kernel of the geodesic ray transform for symmetric tensor fields of
any order under sufficient decay conditions. This generalizes injectiv-
ity results of the geodesic ray transform from compact manifolds with
boundary to noncompact manifolds.
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The second article (B) with Ilmavirta considers the geodesic ray
transform with matrix weights on manifolds that admit a strictly con-
vex function. In this work, we restrict our study to the class of piece-
wise constant vector-valued functions. We show injectivity of this
transform under the assumption that the weight is continuous and
invertible at any point. This assumption on weights is very mild,
and counterexamples for injectivity on smooth functions exist even
in Euclidean case. The geometric assumption is equivalent to a man-
ifold being nontrapping in dimension two. Injectivity of the geodesic
ray transform (without a weight) for smooth functions on nontrapping
manifolds is one of the most important unanswered geometric inverse
problem at the moment.

The third article (C) with Ilmavirta and Koskela studies the geo-
desic X-ray transform over periodic geodesics on the flat 2-torus. In
this work, reconstruction methods, including regularization and numer-
ical implementations, drive theoretical considerations. We prove new
reconstruction formulas for integrable functions, solve a minimization
problem associated to Tikhonov regularization in Sobolev spaces, and
prove that the unique minimizer provides a regularization strategy. We
have also computed and analyzed the adjoint and the normal operators.
Regularization of reconstructions is important since measurement noise
is amplified in practice due to ill-posedness of the problem. Another
reason for regularization is that one can collect only finitely many mea-
surements in practice. We created Matlab codes, performed numerical
tests and demonstrated how the developed methods can be applied in
practical CT imaging.

The fourth article (D) studies the d-plane Radon transforms on the
flat n-tori Tn. The main results in (D) extend theorems in (C) to higher
dimensions. In addition, new stability estimates in Bessel potential
norms and inversion formulas for periodic distributions are proved.
It is shown that the d-plane Radon transforms maps the Bessel po-
tential spaces continuously into the weighted Bessel potential spaces
on Tn × Gr(d, n) where Gr(d, n) is the collection of d-dimensional
subspaces of Qn. The use and analysis of such structures is the main
methodological advance compared to (C). Quite surprisingly, one of the
inversion formulas in (D) implies that a compactly supported function
on the plane with zero average is a sum of its X-ray data.

2. Preliminaries on Riemannian manifolds

Let (M, g) denote a Riemannian manifold with or without boundary.
We assume always that M is complete and dim(M) ≥ 2. We define
the following notations:
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• The unit tangent bundle is denoted by

SM = { (x, v) ∈ TM ; |v|g = 1 }. (2)

• If (x, v) ∈ SM , then γx,v denotes the unique unit-speed geodesic
such that γ(0) = x and γ̇(0) = v. The set of maximal unit-
speed geodesics of M is denoted by Γ.

• We denote the boundary of M by ∂M and by ν(x) the inward
pointing unit normal of ∂M at x ∈ ∂M .

• We say that M has a strictly convex boundary if the second
fundamental form of ∂M is positive definite or, equivalently,
principal curvatures of ∂M are positive.

• We denote the covariant derivative by ∇ and the Riemannian
curvature tensor by R.

• We denote the sectional curvature of a two-plane Π ⊂ TxM by
Kx(Π) and K(x) = sup{ |Kx(Π)| ; Π ⊂ TxM is a two-plane }.

• We write K ≤ 0 if Kx(Π) ≤ 0 for any x ∈ M and any two-
plane Π ⊂ TxM . In this case, we say that M has non-positive
(sectional) curvature.

2.1. Definitions related compact Riemannian manifolds with
boundary. Let (M, g) be a compact Riemannian manifold with a
strictly convex boundary. We define some useful geometric terminology
in this sections. In the following sections, we give results on geodesic
ray transforms using these different geometric definitions.

We say that M is simple if the exponential map expp : TpM → M
is a diffeomorphism from its maximal domain for any p ∈ M . This, in
particular, implies that there are no conjugate points, any two points
are connected by a unique geodesic, and M is diffeomorphic to the Eu-
clidean ball of dimension dim(M) [70]. We say that M is nontrapping
if γx,v(t) meets ∂M in finite time for any (x, v) ∈ SM . In particular,
simple manifolds are nontrapping.

We say that f : M → R is a strictly convex function if f ∈ C∞(M)
so that Hessx(f) is positive definite for any x ∈ M or, equivalently,
(f ◦ γ)′′(t) > 0 for every geodesic γ ∈ Γ. A manifold M satisfies the
foliation condition if there exists a strictly convex function [81, 68].

Remark 2.1. The level sets of a strictly convex function are strictly
convex hypersurfaces besides the special case of the minimum whose
level set is a single point [68]. The corresponding level sets form layers
that foliate the whole manifold. The tangential geodesics of a strictly
convex hypersurface do not locally travel inside the hypersurface. Us-
ing the foliation condition, this type of behavior can be made global.
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In turn, this allows one to use a layer stripping argument for prov-
ing injectivity of the geodesic ray transform if local injectivity can be
shown [81].

The trapped set of M , denoted by K ⊂ SM , consists of points
(x, v) ∈ SM such that γx,v(t) does not meet the boundary ∂M for
any t ∈ R. In particular, if M is nontrapping (in the sense of above),
then K = ∅. The trapped set is said to be hyperbolic if there is a
certain orthogonal splitting to geodesic, stable and unstable parts of
T(x,v)(SM) for any (x, v) ∈ K. For exact definitions, see [61, 23].

Let β ≥ 0. We say that J is β-Jacobi field along γ ∈ Γ if it satisfies

D2
t J(t) + βR(J(t), γ̇(t))γ̇(t) = 0. (3)

We say that two distinct points along γ are β-conjugate if there ex-
ists a non-trivial β-Jacobi field which vanishes at the points. The
β-terminator value βTer is the supremum of the numbers β so that M
is free of β-conjugate points. In particularly βTer = ∞ if and only if
K ≤ 0, and M has no conjugate points if and only if βTer ≥ 1. For
more details see [67].

Remark 2.2. We do not study manifolds that have trapped geodesics
in this thesis, but this condition is included as we will give references to
other works on the geodesic ray transform where a hyperbolic trapped
set is a part of the geometrical assumptions. Our reason for introducing
β-Jacobi fields here is similar and they are not applied in this thesis.

2.2. Cartan-Hadamard manifolds. We say that a Riemannian man-
ifold (M, g) without boundary is a Cartan-Hadamard manifold if (M, g)
is complete, simply connected and K ≤ 0. The classical Cartan-
Hadamard theorem states that expp : TpM → M is a diffeomorphism
for any p ∈ M (see e.g. [70, Chapter 6] or [49, Chapter 11]). In par-
ticular, M with dim(M) = n is diffeomorphic to Euclidean space Rn.
This implies that Cartan-Hadamard manifolds are noncompact.

The model spaces of Cartan-Hadamard manifolds are the hyperbolic
space Hn (K ≡ −1) and Euclidean space Rn (K ≡ 0). Many other
examples can be constructed using warped products with radial metrics
[9, 44, 22, 70]. A discussion on such constructions, related to the
theorems of the article (A), is given in [(A), Section 2].

3. Geodesic tomography problems

3.1. Geodesic tensor tomography. We denote by C1(TmM) the
set of C1-smooth covariant m-tensor fields of M and by C1(SmM) ⊂
C1(TmM) the set of symmetric covariant m-tensor fields. Each f ∈
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C1(TmM) can be written in local coordinates as

f = fj1···jm(x)dx
j1 ⊗ · · · ⊗ dxjm (4)

using the Einstein summation convention. Let ΠM denote the permu-
tation group of {1, . . . ,m}. Tensors in f ∈ C1(SmM) are symmetric
in the sense that

f = fjσ(1)···jσ(m)
(x)dxj1 ⊗ · · · ⊗ dxjm (5)

for any σ ∈ Πm.
If every maximal geodesic of M has finite length, then one defines

the geodesic ray transform of symmetric m-tensor fields by the formula

Imf(γ) =

ˆ
γ

λmf(γ(t), γ̇(t))dt (6)

where γ ∈ Γ and λmf(x, v) = fj1···jm(x)v
j1 · · · vjm is a mapping SM →

R. In fact, λm maps C1(SmM) → C1(SM) so that the spherical
harmonics decomposition with respect to v of λmf is of degree m. A
more detailed exposition of symmetric tensors and λm are given in
[76, 14]. There is also a brief discussion in [(A), Section 3.3].

In general, the geodesic ray transform I can be straightforwardly
defined for every f ∈ C(SM) if every maximal geodesic of M has
finite length. However, this transform always has a non-trivial kernel
on manifolds with boundary, even in the case of symmetric m-tensor
fields with m ≥ 1, as we will explain later. This motivates to study
functions of C(SM) that have a special form.

In the article (A), we study the kernel of the geodesic X-ray trans-
form on Cartan-Hadamard manifolds for functions that arise from sym-
metric tensors. In this case, any maximal geodesic of M has infinite
length. Therefore, the integrals (6) are finite only if the tensors decay
sufficiently fast along every geodesic.

3.1.1. On the kernel of Im and solenoidal injectivity. We define the
symmetrization of a tensor σm : TmM → SmM by

σm(f) =
1

m!

∑
σ∈Πm

fjσ(1)···jσ(m)
(x)dxj1 ⊗ · · · ⊗ dxjm . (7)

Let ϕt(x, v) = (γx,v(t), γ̇x,v(t)) be the geodesic flow on SM . One
defines the geodesic vector field X for functions in C1(SM) as

Xf(x, v) :=
d

dt
f(ϕt(x, v))|t=0. (8)

Suppose now that M is a nontrapping Riemannian manifold. One
can show that IXf = 0 for any f ∈ C1(SM) with f |∂M = 0 by the
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fundamental theorem of calculus. Another calculation shows that

X(λmf) = λm(σm∇f) (9)

for any f ∈ C1(SmM). Therefore, if m ≥ 1, the kernel of Im contains
all symmetric m-tensors of the form σm∇f where f ∈ C1(Sm−1M) and
f |∂M = 0. We say that f is a potential of the tensor σm∇f .
We identify the space C1(S−1M) as the space of the zero function.

We say that Im is s-injective if the kernel of Im contains only ten-
sors that arise from a potential described above. This implies that the
solenoidal part of a symmetric tensor can be uniquely determined from
its geodesic ray transform (see [76] for details about the Helmholtz de-
composition of symmetric tensors). We list next some known injectiv-
ity results for smooth tensor fields on compact Riemannian manifolds
with a strictly convex boundary:

• If M is a simple manifold, then Im is s-injective for m = 0, 1
[58, 4].

• If M is a simple manifold whose metric is from a generic class
(including real analytic metrics), then I2 is s-injective [77].

• If M is a simple manifold of dim(M) = 2, then Im is s-injective
for every m ≥ 0 [64].

• If M is a nontrapping manifold of dim(M) = 2, Im is s-injective
for m = 0, 1 and the adjoint of I0 is surjective, then Im is s-
injective for every m ≥ 0 [64].

• If M is a simple manifold with n = dim(M) ≥ 2 and βTer ≥
m(m+n−1)
2m+n−2

, then Im is s-injective [67].
• If M is a nontrapping manifold of dim(M) ≥ 3 with a strictly
convex foliation, then Im is s-injective for m = 0, 1, 2, 4 [81, 78,
15].

• If M is a compact Riemannian manifold with no conjugate
points and hyperbolic trapped set, then Im is s-injective for
m = 0, 1. If moreover K ≤ 0, then Im is s-injective for every
m ≥ 0 [23].

• If M is a compact Riemannian manifold of dim(M) = 2 with
no conjugate points and hyperbolic trapped set, then Im is s-
injective for every m ≥ 0 [50].

• IfM is a simple manifold with real analytic metric, then Im,m ∈
N, admit a certain local support theorem [47, 1]. (These results
are partly contained in the results of [81, 78, 15].)

We state some of the related open problems in section 3.4.

3.2. Geodesic ray transform with matrix weights. Suppose that
W : SM → Cm×m is continuous and W (x, v) : Cm → Cm is injective
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for any (x, v) ∈ SM . Let f : SM → Cm be a continuous function.
One can then define the geodesic ray transform with the weight W as

IWf(x, v) :=

ˆ bx,v

ax,v

W (γx,v(t), γ̇x,v(t))f(γx,v(t), γ̇x,v(t))dt (10)

where [ax,v, bx,v] is the maximal domain of γx,v ∈ Γ (possibly infinite).
The corresponding uniqueness problem asks if the knowledge of IWf

and W determine f uniquely. There exist counterexamples and posi-
tive results to the uniqueness problem. Clearly, if W does not depend
on the coordinate v, then injectivity of IW is equivalent to injectivity
of I without a weight (i.e. W ≡ 1).

An important special case of the geodesic ray transforms with weights
is the attenuated geodesic ray transform. The attenuated geodesic ray
transforms is studied very recently for example in [74, 63, 6, 30, 56,
55, 8]. In the simplest model for the attenuated ray transform (with
m = 1), the weight has a special form

wa(x, v) = exp

(ˆ 0

tx,v

a(γx,v(s))ds

)
, a ∈ C(M), (11)

where tx,v is the maximal backward time for the geodesic γx,v (possibly
infinite). The attenuated ray transform is the mathematical basis for
the medical imaging method SPECT [16, 60, 17]. Other applications
of matrix weighted ray transforms are described in the introduction of
the article (B). More details and references can be found from [38].

We list some positive injectivity results next:

• If (M, g) is a compact Riemannian manifold of dim(M) ≥ 3
with a strictly convex boundary and admits a smooth strictly
convex function, and W ∈ C∞(SM ;GL(k,C)), then IW is in-
jective for smooth functions [68].

• Let (M, g) be a simple manifold of dim(M) = 2. Let a ∈
C∞(M) be a complex function and Ia = Iwa the attenuated
ray transform with the weight wa. Suppose that F (x, v) =
f(x)+α(x, v) is the sum of a function f ∈ C∞(M) and a 1-form
α ∈ C∞(T 1M). If IaF = 0, then F (x, v) = ap(x)+∇p(x, v) for
some p ∈ C∞(M) with p|∂M = 0 [74]. The result generalizes to
the matrix weighted case where the matrix weight is the sum
of a smooth unitary connection and a smooth skew-Hermitian
matrix function [63], and to higher dimensions ifK ≤ 0 [24, 62].

• If M has a strictly convex boundary and w ∈ C(SM), then Iwf
determines the boundary jet of a smooth function [31]. Hence,
Iw is injective for analytic functions. This result is based on
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a local argument and generalizes to the matrix weighted case
straightforwardly even though it is not stated in [31].

• Many positive results are known in Euclidean spaces. If n ≥ 2,
w is smooth, and has a rotation invariance [71] or w is real
analytic [11], then Iw is injective. If n ≥ 3 and the weight
is regular enough (C1,α is sufficient for example), then Iw is
injective [52, 16, 33].

There are two important counterexamples for uniqueness in Eu-
clidean spaces [10, 20]. The counterexample in [10] gives a construction
of a smooth weight so that the kernel of Iw is nontrivial on the unit
disk of the plane. The counterexample in [20] gives a construction of a
α-Hölder continuous rotation invariant weight (in the sense of [71]) in
Rn, n ≥ 2, for some small α > 0, so that the kernel of Iw is nontrivial.
This also gives a counterexample to the result of [71] if the weight is
not regular enough.

In the article (B), we restrict our study to the class of piecewise
constant functions. We show that under this assumption continuity of
a matrix weight is sufficient for showing that IWf = 0 implies f = 0.
This result is valid for manifolds of dim(M) ≥ 2 that admit a strictly
convex function.

3.3. Geodesic ray transform on closed manifolds. Suppose that
(M, g) is a closed Riemannian manifold with dim(M) ≥ 2. Let Γc ⊂ Γ
be the set of closed unit speed geodesics. Let τγ be the smallest period
of γ ∈ Γc. The geodesic ray transform on a closed manifold is defined
by

If(γ) =

ˆ τγ

0

f(γ(t))dt. (12)

This definition can be generalized to the functions on SM as well.
There is again a vast literature on the geodesic ray transforms of

this type in general. A lot is known for flat tori, Lie groups and other
symmetric spaces [32, 34, 28, 29]. More generally, the geodesic ray
transform has been studied on Anosov surfaces and manifolds of neg-
ative curvature [67, 24, 65]. It has applications to the spectral rigidity
problem which asks if the spectrum of the Laplace-Beltrami operator
determines the metric up to a natural gauge [25, 26].

A historically interesting fact is that the geodesic ray transform of
S2, called the Funk transform, was studied for the first time by Her-
mann Minkowski in the early 1900s [54] and by Paul Funk a few years
later [18, 19], about a decade before the first studies of Radon on R2.
The injectivity result on S2 states that a symmetric function can be
uniquely determined from its line integrals over great circles [19].
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In the article (C), we study the ray transform of closed geodesics in
the special case of the flat torus (T2, gE). Our arguments in (C) are
specialized to the case of the flat tori and based on rather simple anal-
ysis of Fourier series. The work (C) has applications in computational
reconstructions from practical X-ray data since the geometry is flat.
These results are further generalized to the periodic d-plane Radon
transforms on (Tn, gE) in the article (D). These generalizations require
suitable weighted Sobolev spaces on the image side, and give another
view of the theorems in (C) in terms of weighted Sobolev spaces.

3.4. Related open problems. We list here some important open
problems in integral geometry [66, 38]:

i) Is Im s-injective for m ≥ 2 if (M, g) is a simple manifold and
dim(M) ≥ 3?

ii) Is Im s-injective for m ≥ 0 if (M, g) is a nontrapping manifold
and dim(M) ≥ 2?

iii) If (M, g) is a simple or a nontrapping manifold and dim(M) ≥
3, does there exists a strictly convex function?

iv) Is Im s-injective form ≥ 0 if (M, g) has a strictly convex bound-
ary and a strictly convex function, and dim(M) = 2?

v) Is the attenuated geodesic ray transform Ia injective if (M, g)
is a simple manifold and dim(M) ≥ 3?

vi) Is the attenuated geodesic ray transform Ia injective if (M, g)
is a nontrapping manifold and dim(M) ≥ 2?

vii) Is the class of simple metrics of M with dim(M) ≥ 3 boundary
distance rigid : Suppose that g and h are simple metrics on
M . Does dg|∂M×∂M = dh|∂M×∂M imply that g = ϕ∗h for some
diffeomorphism ϕ : M → M with ϕ|∂M = Id?

If one can solve one of the corresponding problems for nontrapping
manifolds with a positive answer, then this would solve the correspond-
ing problem for simple manifolds. Vice versa, counterexamples for sim-
ple manifolds would serve as counterexamples for nontrapping mani-
folds. The positive answer to the question ii) was conjectured in [64]
when dim(M) = 2, and the problem iv) is equivalent to ii) in this case
[68]. A positive answer to iii) in the case of simple manifolds would
imply a positive answer to the boundary rigidity problem vii) [81, 78]
and the injectivity problem v) [68]. The positive answer to the prob-
lem vii) was conjectured by Michel in 1981 [53], and was proved when
dim(M) = 2 by Pestov and Uhlmann in 2005 [69]. As far as the author
knows, there do not exist positive theorems or counterexamples to the
precise statements of the problems in this list.

Injectivity of the geodesic ray transform with a smooth weight is
also open on simple manifolds of dim(M) ≥ 3. In dim(M) = 2, a
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positive answer cannot be obtained due to the smooth counterexample
of Boman [10] on Euclidean plane. Minimal regularity assumptions of
the weights for which injectivity of Iw holds is also an open question
in Rn, n ≥ 3 [20, 33]. For example, is Iw injective on smooth functions
of the closed unit ball of Rn, n ≥ 3, if w is Lipschitz continuous?
If a Riemannian manifold M is assumed to be noncompact, then

there are many results in symmetric geometries, but several questions
of integral geometry are yet unstudied in more general geometries. The
article (A) and the work [21] contain the only s-injectivity results, that
the author is aware of, when special symmetries such as a constant
curvature is not assumed. A further discussion on the geodesic ray
transform on noncompact manifolds is given in section 4.1 of the thesis.

4. Main results

4.1. S-injectivity of the geodesic ray transform on Cartan-
Hadamard manifolds, (A). We begin by introducing some nota-
tions and definitions. We then state our main results in the article (A)
and discuss earlier works in tensor tomography on noncompact mani-
folds. We finish this section by giving an outline of the used methods
and arguments.

Let (M, g) be a Cartan-Hadamard manifold. Fix a point o ∈ M . If
η > 0 and f ∈ C(M), we say that f decays exponentially and denote
that f ∈ Eη(M) if

|f(x)| ≤ Ce−ηd(x,o) for some C > 0, (13)

and f decays polynomially and denote that f ∈ Pη(M) if

|f(x)| ≤ C(1 + d(x, o))−η for some C > 0. (14)

Let f ∈ C1(M). We denote f ∈ E1
η(M) if |f(x)| + |∇f(x)| ∈ Eη(M),

and f ∈ P 1
η (M) if |f(x)| ∈ Pη(M) and |∇f(x)| ∈ Pη+1(M).

Let f, h ∈ C1(TmM). We define the standard inner product for
m-tensors on TxM by

gx(f, h) := gj1k1(x) · · · gjmkm(x)fj1···jm(x)hk1···km(x). (15)

The norm is defined by |f |g :=
√
g(f, f) and defines a mapping M →

R. If f ∈ C1(SmM), then we write f ∈ Eη(M) if |f |g ∈ Eη(M),

and f ∈ E1
η(M) if |f |g ∈ Eη(M) and |∇f |g ∈ Eη(M). We define

analogously the sets Pη(M) and P 1
η (M) for tensors.

In [(A), Lemma 4.1], we show that Imf is well defined if f ∈ Pη for
some η > 1. Since M is noncompact and every geodesic has infinite
length, this must be shown. It is also straightforward to argue that the
kernel of Im contains symmetric tensors of the form σm(∇f) such that
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f ∈ C(Sm−1M) and f has suitable decay at infinity. We are ready
to state our main results on s-injectivity of Im on Cartan-Hadamard
manifolds.

Theorem 4.1 ((A), Theorem 1.1). Let (M, g) be a Cartan-Hadamard
manifold of dimension n ≥ 2 with −K0 ≤ K ≤ 0 for some K0 > 0.
Let f ∈ E1

η(M) be a symmetric m-tensor field for some η > n+1
2

√
K0.

If Imf = 0, then f = σm(∇h) for some symmetric (m− 1)-tensor field
h such that h ∈ Eη−ε(M) for any ε > 0. (If m = 0, then f ≡ 0.)

Theorem 4.2 ((A), Theorem 1.2). Let (M, g) be a Cartan-Hadamard
manifold of dimension n ≥ 2 and assume that K ∈ Pκ(M) for some
κ > 2. Let f ∈ P 1

η (M) be a symmetric m-tensor field for some η > n+2
2
.

If Imf = 0, then f = σm(∇h) for some symmetric (m− 1)-tensor field
h such that h ∈ Pη−1(M). (If m = 0, then f ≡ 0.)

These theorems extend the earlier results in [51] where the same
problem was studied in the case of functions (m = 0) and n = 2. We
remark that the proof of [51, Lemma 4.6] is incomplete, and hence, the
theorems cannot be used as stated in [51]. Theorems 4.1 and 4.2 here
are proved by a different method and thus the corresponding lemma
is not required. However, there might be a possibility to find better
lower bounds for η in theorems 4.1 and 4.2 by combining arguments of
[51] and (A) carefully.

The geodesic ray transform for functions on noncompact manifolds
has been studied before in Euclidean and hyperbolic spaces [27, 28, 40],
and for vector fields in [7]. In these works, the regularity and decay
conditions are sharper than those in theorems 4.1 and 4.2. Differentia-
bility is not needed but similar decay conditions for the function itself
is required with slightly better lower bounds for η. There exist coun-
terexamples if one does not assume a decay condition [82, 5]. Theorem
4.1 resembles the hyperbolic results and theorem 4.2 the Euclidean.
Our differentiability assumption comes from the method of proof that
is based on the Pestov identity.

There are also works in noncompact spaces of constant curvature and
noncompact homogeneous spaces [28, 29]. Theorems 4.1 and 4.2 are
the first results on the geodesic ray transform of noncompact manifolds
without special symmetries, which the author is aware of.

There is a recent related work [21] where s-injectivity for Im for
m = 0, 1 was shown in the case of asymptotically hyperbolic manifolds
without conjugate points and with hyperbolic trapped set. It was also
shown there that if additionally K ≤ 0, then Im is s-injective for any
m ≥ 0. The results in (A) are not included in [21], and vice versa. Of
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course, there are geometries which satisfy the assumptions of the both
works.

Outline of the proof of theorems 4.1 and 4.2. Let f ∈ Pη(M) be a sym-
metric m-tensor field. One defines the function

uf (x, v) :=

ˆ ∞

0

λmf(γx,v(t), γ̇x,v(t))dt. (16)

A simple calculation shows that

uf (x, v) + (−1)muf (x,−v) = Imf(x, v) < ∞. (17)

We write here f = λmf to keep notation shorter. It can be calculated
that Xuf = −f where X is the geodesic vector field. Now one needs
to understand the system Xu = −f when f is a symmetric m-tensor
such that Imf = 0 and f satisfies the assumptions of theorem 4.1 or
theorem 4.2.

We list the main ideas next:

i) The goal is to show that f = −Xuf = λm(σm∇U) for some
U ∈ C(Sm−1M) with right decay properties.

ii) If M is a compact manifold with boundary and K ≤ 0, then
the Pestov identity can be used to show i). This follows from
a contraction property of the Beurling transform on manifolds
of nonpositive sectional curvature [67].

iii) The energy estimates of the step ii) in compact manifolds that
involve only terms up to the first order derivatives can be ex-
tended toH1(SM) whenM is a complete manifold withK ≤ 0.
These H1(SM) extensions of the energy estimates and the final
argument to show i) are done in [(A), Section 5].

iv) Hence, we need to show that uf ∈ H1(SM) under the assump-
tions of theorems 4.1 and 4.2. The core part of this is done
in [(A), Section 4] by estimating growths of Jacobi fields on
Cartan-Hadamard manifolds.

We next explain some of the details. Showing that uf ∈ H1(SM)
is a bit tricky and our argument uses geometric estimates for growths
of Jacobi fields and the decay assumptions of f . The idea could be
summarized as follows: the faster the geodesics spread the faster the
functions (and derivatives) should decay to make L2 estimates work
because of the growth rate of volumes of balls (cf. [(A), Lemmas 4.8
and 5.4]).

One can orthogonally split the gradient of SM as

∇SMu = (Xu)X +
h

∇u+
v

∇u (18)
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where X and
h

∇ represents horizontal derivatives with respect to x and
v

∇ vertical derivatives with respect to v. These and other geometric
preliminaries are given in [(A), Section 3]. The most technical part is
the proof of [(A), Lemma 4.7]. In that lemma, we first show that uf is
locally Lipschitz and then estimate the components (18) of the gradient
∇SMuf for a.e. (x, v) ∈ SM based on our Jacobi field estimates. This
implies that uf ∈ H1(SM) [(A), Lemma 5.4].
The rest of the argument uses estimates and methods developed in

[67]. Details of the spherical harmonics decomposition of L2(SM) are
given in [26, 14]. Let Hk(SM) be the eigenspace for the eigenvalue
k(k + n − 2) of the spherical Laplacian. One can split the geodesic
vector field X = X++X− into two parts so that X+ : Ωk → Hk+1(SM)
and X− : Ωk → Hk−1(SM) where Ωk = Hk(SM) ∩H1(SM). We can
show this by proving the estimate

‖X+u‖2 + ‖X−u‖2 ≤ ‖Xu‖2 + ‖
h

∇u‖2 (19)

for u ∈ H1(SM) [(A), Lemma 5.1]. This part of the proof requires the
Pestov identity and estimates based on the contraction property of the
Beurling transformation from [67]. If u ∈ H1(SM), it follows that the
spherical harmonics decomposition has the form

u =
∞∑
k=0

uk, uk ∈ Ωk, (20)

where the series converges in L2(SM). We can now conclude that if
u ∈ H1(SM), then ‖X+uk‖ → 0 as k → ∞ [(A), Corollary 5.2].
Since symmetric m-tensors have only terms up to degree m in their

spherical harmonic decomposition, we get

−
m∑
k=0

fk = −f = Xuf = X+u
f +X−uf . (21)

The rest of the proof follows from the formula (21) and [(A), Corollary
5.2 and Lemma 5.3] by following arguments from [64, 67]. The final
step is to straightforwardly estimate decay of the elements of the kernel.
These details are given in [(A), Proof of theorems 1.1 and 1.2.]. �
4.2. On the geodesic ray transform with matrix weights for
piecewise constant functions, (B). The geodesic ray transform
for piecewise constant functions was studied on the manifolds that
admit a strictly convex function in [37]. The work [37] was motivated
by the fact that injectivity of the geodesic ray transform is an open
problem for nontrapping manifolds. If n = 2, then a manifold with
strictly convex boundary is nontrapping if and only if it has a strictly
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convex function (see [68, Section 2] for details and references). The
main result of [37] was to show that If = 0 implies f ≡ 0 if f is
a piecewise constant function on M . Reconstruction of a piecewise
constant function from If was studied recently in [48].
Piecewise constant functions are defined according to the definition

of [37]. We recall this definition next. A regular tiling of a manifold
is a collection of regular n-simplices which cover the manifold, whose
interiors are disjoint, and whose boundaries intersect nicely [37, Section
2.1]. A function f : M → Ck is called piecewise constant if there exists
a regular tiling {Δ1, . . . ,ΔN} such that f |Int(Δi) is constant for any
i ∈ {1, . . . , N} and f ≡ 0 elsewhere.
The main result of the article (B) generalizes the main result of [37]

to the matrix weighted case, analogous to the problem studied in [68]
for smooth functions and weights in dimensions n ≥ 3. We denote by
Mon(Ck,Cm) the space of injective linear maps Ck → Cm.

Theorem 4.3 ((B), Theorem 1.1). Let (M, g) be a compact nontrap-
ping Riemannian manifold with strictly convex smooth boundary and
W ∈ C(SM ;Mon(Ck,Cm)). Let either

(a) dim(M) = 2, or
(b) dim(M) ≥ 3 and (M, g) admits a smooth strictly convex func-

tion.

If f : M → Ck is a piecewise constant vector-valued function and
IWf = 0, then f ≡ 0.

Remark 4.4. Piecewise constant functions do not form a vector space
under the definition used in the study [37, Remark 2.7]. Hence, injec-
tivity follows only if the tiling of the piecewise constant function are
known beforehand. It is an open problem how to determine the tiling
of a piecewise constant function from the data If .

The proof of theorem 4.3 is strongly based on the method developed
in [37]. We show that locally the matrix weighted geodesic ray trans-
form data can be reduced to the data of the geodesic ray transform
without weight [(B), Lemma 2.4 and Lemma 2.5]. We remark that this
reduction does not work for general functions but it works for piecewise
constant functions. Local injectivity of the geodesic ray transform for
piecewise constant functions was shown in [37]. The layer stripping
argument of [37], using a strictly convex function, allows one to go
from the local uniqueness result to the global uniqueness result [(B),
Theorem 2.6].

4.3. Theory of Tikhonov regularized reconstructions from the
X-ray transform data on the flat 2-torus, (C). The geodesic
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ray transform on the flat torus T2 := R2/Z2 is defined for the closed
geodesics. A geodesic is closed on T2 if and only if its directional vector
is a multiple of an integer vector. Instead of unit-speed parametrization
of geodesics, we parametrize geodesics so that each closed geodesic has
the period 1. This is convenient since the 1-periodic geodesics are of
the form

γx,v(t) = π(x+ tv), x ∈ R2, v ∈ Z2 \ 0, t ∈ [0, 1] (22)

where π : R2 → T2 is the quotient mapping. Clearly, if π(x) = π(y),
then γx,v = γy,v for any v ∈ Z2 \ 0.
Hence, the (geodesic) X-ray transform on T2 can be defined by

If(x, v) =

ˆ 1

0

f(γx,v(t))dt (23)

for continuous functions. We remark that this definition actually scales
the data (12) by the factor |v|−1. However, there is one-to-one corre-
spondence between the both definitions of I on T2. This definition
extends to the dual space of smooth functions, called distributions and
denoted by T ′, since If(·, v) is formally L2(T2) self-adjoint for every
fixed v ∈ Z2 \ 0. For further details see [32, 35] or [(C), Section 2.1].

Injectivity of I on tori is well understood and it has been studied
earlier in [79, 3, 2, 32]. The main contributions of (C) are related
to reconstruction, better understanding of functional properties, and
numerical simulations that demonstrate applicability of the method in
CT imaging. It is described in [(C), Section 2.3] and [35, Chapter 3]
how practical X-ray data of a compactly supported object on R2 can
be mapped into X-ray data on T2.
One has the Fourier series decomposition

f(x) =
∑
k∈Z2

f̂(k)e2πik·x, f̂(k) := f(e−2πik·x), k ∈ Z2, (24)

for any f ∈ T ′. It was shown in [32, Eq. (9)] that for any f ∈ T ′ the
identity

Îf(k, v) =

{
f̂(k) k · v = 0

0 k · v �= 0
(25)

holds. This gives a reconstruction formula for f from the data If and
shows injectivity. In the work (C), we have studied consequences of
this formula further and implemented a reconstruction algorithm based
on our new findings.

We state and describe our main theorems in (C) next. Our first
theorem simplifies the reconstruction formula (25) for integrable func-
tions. This simplification results better computational efficiency since
the dimension of the integrals (25) are reduced by one.
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Theorem 4.5 ((C), Theorem 1). Suppose that f ∈ L1(T2). Let k ∈ Z2.
If k, v �= 0 and v⊥k, then

f̂(k) =

{´ 1
0
Ivf(0, y) exp(−2πik2y)dy, k2 �= 0´ 1

0
Ivf(x, 0) exp(−2πik1x)dx, k1 �= 0.

(26)

If k = 0, then

f̂(k) =

ˆ 1

0

I(1,0)f(0, y)dy =

ˆ 1

0

I(0,1)f(x, 0)dx. (27)

This theorem can be proved by a change of coordinates and Fubini’s
theorem. We gave two proofs in [(C), Section 2.2]. The first proof
gives a new proof of injectivity of I on T2. The second proof uses the
formula (25) directly. A slightly more general statement is actually
proved in [(C), Theorem 8].

Our next two theorems are about regularization. We need to first
introduce a suitable Sobolev space structure on the image side. Let
Q ⊂ Z2 be such that every nonzero v ∈ Z2 is an integer multiple of
a unique element in Q. This set can be naturally identified with the
rational projective space P1. The X-ray transform takes a function
on T2 to a function on T2 ×Q.

Remark 4.6. There is a connection between X-ray tomography with
partial data and Schanuel’s theorem [75] on heights of projective spaces
[(C), Section 2.6.2]. In particular, the number of directions v ∈ Z2 \ 0
needed in the reconstruction of the Fourier coefficients of f in B�∞(0, R)
from Ivf can be estimated using Schanuel’s theorem.

We use the standard Sobolev scale of spaces Hs(T2) with the norms

‖f‖2Hs(T2) =
∑
k∈Z2

〈k〉2s
∣∣∣f̂(k)∣∣∣2 , (28)

where 〈k〉 = (1 + |k|2)1/2 as usual. On T2 × Q, we define the spaces
Hs(T2 ×Q) to be the set of functions g : T2 ×Q → C for which

(i) g(·, v) ∈ Hs(T2) for every v ∈ Q,
(ii) the average of every g(·, v) over T2 is the same, and
(iii) the norm

‖g‖2Hs(T2×Q) = |ĝ(0, 0)|2 +
∑

k∈Z2\0

∑
v∈Q

〈k〉2s |ĝ(k, v)|2 (29)

is finite. We set v = 0 for the Fourier term k = 0 to emphasize
that it is the same for every v ∈ Q. We remind the reader that
0 /∈ Q.
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Now, we can consider a Tikhonov minimization problem: given some
data g ∈ Hr(T2 ×Q), find

argmin
f∈Hr(T2)

(
‖If − g‖2Hr(T2×Q) + α ‖f‖2Hs(T2)

)
. (30)

Let us define the post-processing operator P s
α to be the Fourier mul-

tiplier (1 + α 〈k〉2s)−1 and denote by I∗ the adjoint of I. Formu-
las that define the adjoint and normal operators are proved in [(C),
Proposition 11]. In fact, the X-ray transform is unitary as a mapping
Hs(T2) → Hs(T2 ×Q) for any s ∈ R.

Theorem 4.7 ((C), Theorem 2). Let r ∈ R, s ≥ r, and α > 0.
Suppose g ∈ Hr(T2 × Q). The unique minimizer f of the minimiza-
tion problem (30) corresponding to Tikhonov regularization is f =
P s−r
α I∗g ∈ H2s−r(T2) ⊂ Hs(T2).

Theorem 4.8 ((C), Theorem 3). Suppose r, t, s, δ ∈ R are such that
2s + t ≥ r, δ ≥ 0, and s > 0. We assume that f ∈ Hr+δ(T2) and
g ∈ H t(T2 ×Q).
Then our regularized reconstruction operator P s

αI
∗ gives a regular-

ization strategy in the sense that

lim
ε→0

sup
‖g‖Ht(T2×Q)≤ε

∥∥P s
α(ε)I

∗(If + g)− f
∥∥
Hr(T2)

= 0, (31)

where α(ε) =
√
ε.

Moreover, if ‖g‖Ht(T2×Q) ≤ ε, 0 < δ < 2s and 0 < α ≤ 2s/δ − 1, we
have

‖P s
αI

∗(If + g)− f‖Hr(T2) ≤ αδ/2sC(δ/2s) ‖f‖Hr+δ(T2) +
ε

α
, (32)

where C(x) = x(x−1 − 1)1−x.

A simple calculation shows that the optimal rate of convergence is
obtained if the regularization parameter is chosen so that α = ελ where
λ = (1 + δ/2s)−1.
The proofs of the theorems are based on quite straightforward com-

putations on the Fourier side and the formula (25). It seems that
the key theoretical finding in (C) was the right structure on the image
side. It is quite easy to see that I is non-surjective between the Sobolev
spaces Hs(T2) and Hs(T2×Q). Hence, the choices made for the image
side Sobolev norms do not fully trivialize the problem and, instead of
that, those choices describe the behavior of I|Hs(T2).

Numerical implementation, simulations and conclusions are described
in [(C), Sections 3–5]. A short discussion of typical numerical methods
in CT imaging is given in [(C), Section 1.2]. We do not repeat the
details or discussions here. We did not perform tests with measured
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X-ray laboratory data. This would be the next step towards practical
CT imaging based on the reconstruction method on the flat torus.

4.4. Fourier analysis of periodic Radon transforms, (D). The
article (D) studies the periodic d-plane Radon transforms on Tn :=
Rn/Zn when 1 ≤ d ≤ n − 1 and n ≥ 2. If n = 2 and d = 1, then
the d-plane Radon transform is the X-ray transform studied in the ar-
ticle (C). The periodic Radon transforms have been applied in other
mathematical tomography problems earlier: the broken ray transform
on boxes [32], the geodesic ray transform on Lie groups [34], tensor to-
mography on periodic slabs [39], and the ray transforms on Minkowski
tori [36].

We generalize the main theorems in (C) into higher dimensions [(D),
Theorems 1.4 and 1.5, Proposition 3.1]. We do not restate these state-
ments here. We state here results on the adjoint and normal operators
and the stability estimates. We also introduce a new inversion formula
which might be of a practical interest due to its simplicity.

We begin by introducing necessary mathematical preliminaries. Sup-
pose that f ∈ T := C∞(Tn), then we define the d-plane Radon trans-
form of f by

Rdf(x,A) :=

ˆ
[0,1]d

f(x+ t1v1 + · · ·+ tdvd)dt1 . . . dtd (33)

where A = {v1, . . . , vd} is a set of d linearly independent integer vectors
vi ∈ Zn.

It can be shown that A spans a periodic d-plane on Tn. On the
other hand, if A and B span the same periodic d-plane on Tn, then
Rdf(x,A) = Rdf(x,B) for any x ∈ Tn. Let Gr(d, n) denote the
collection of d-dimensional subspaces of Qn. These spaces are called
Grassmannians. For any element in Gr(d, n) there exists a basis of
integer vectors. Hence, we may define Rdf : Gr(d, n) → T using bases
of integer vectors as representatives of elements in Gr(d, n). The defi-
nition of Rd extends to the periodic distributions T ′ using the duality
and the fact that Rd(·, A) : T → T is formally L2 self-adjoint for any
fixed A ∈ Gr(d, n). Let us denote Rd,Af = Rdf(·, A) for any f ∈ T ′.

Next, we define suitable structures for the data spaces such that the
images of the Bessel potential spaces Lp

s(T
n) under Rd are contained

into the data spaces. Let p, l ∈ [1,∞] and s ∈ R. We define the Bessel
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potential norms as

‖f‖Lp
s(Tn) = ‖

∑
k∈Zn

〈k〉s f̂(k)e2πik·x‖Lp(Tn),

‖f‖Hs(Tn) =

√∑
k∈Zk

〈k〉2s
∣∣∣f̂(k)∣∣∣2 (34)

where 〈k〉 = (1 + |k|2)1/2 as usual. The space Lp
s(T

n) ⊂ T ′ consists of
all f ∈ T ′ with ‖f‖Lp

s(Tn) < ∞. If p = 2, then Hs(Tn) = Lp
s(T

n). One

has equivalently that f ∈ Lp
s(T

n) if and only if (1 −Δ)s/2f ∈ Lp(Tn)
and f ∈ T ′.
Let us denote Xd,n := Tn × Gr(d, n) to keep our notation shorter.

Let w : Zn×Gr(d, n) → (0,∞) be a weight function such that w(·, A)
is at most of polynomial decay for any fixed A ∈ Gr(d, n) (see [(D),
Section 2.2] for the definition). We say that a function g : Xd,n → C
belongs to Lp,l

s (Xd,n;w) with 1 ≤ l < ∞ if the norm

‖g‖l
Lp,l
s (Xd,n;w)

:=
∑

A∈Gr(d,n)

‖g(·, A)‖lLp
s(Tn;w(·,A)) (35)

is finite and g(·, A) ∈ T ′ when A ∈ Gr(d, n). Similarly, if l = ∞, we
define

‖g‖Lp,∞
s (Xd,n;w) := sup

A∈Gr(d,n)

‖g(·, A)‖Lp
s(Tn;w(·,A)) (36)

If p, l = 2, then the norm is generated by the corresponding inner
product. The spaces Lp,l

s (Xd,n;w) are Banach spaces [(D), Lemma
2.1].

We have introduced weighted structures since most of the theorems
in (D) would have been unreachable without such structures when
d < n−1. If d = n−1, then the analysis of (C) using slightly different
data spaces generalizes nicely without weights. It is explained in the
article (D) how the results in (C) can be obtained from the results in
(D). We construct weights that satisfy the assumptions of our theorems
in [(D), Section 2.3].

We state some of the main results in (D) next.

Theorem 4.9 ((D), Theorem 1.1). Let s ∈ R and suppose that there
exists Cw > 0 such that∑

A∈Ωk

w(k,A)2 ≤ C2
w, Ωk := {A ∈ Gr(d, n) ; k⊥A } (37)

for any k ∈ Zn. Then the adjoint of Rd : Hs(Tn) → L2,2
s (Xd,n;w) is

given by

R̂∗
dg(k) =

∑
A∈Ωk

w(k,A)2ĝ(k,A) (38)
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and the normal operator R∗
dRd : H

s(Tn) → Hs(Tn) is the Fourier mul-
tiplier Wk :=

∑
A∈Ωk

w(k,A)2. In particular, the mapping FW−1
k
R∗

d :

Rd(T ′) → T ′ is the inverse of Rd.

Theorem 4.9 generalizes [(C), Proposition 11] into higher dimensions
and implies the following results on stability.

Corollary 4.10 ((D), Corollary 1.2). Suppose that the assumptions of
theorem 4.9 hold, and that there exists cw > 0 such that Wk ≥ c2w for
any k ∈ Zn.

(i) Then FW−1
k
R∗

d : L
2,2
s (Xd,n;w) → Hs(Tn) is 1/cw-Lipschitz.

(ii) Let f ∈ T ′. Then

‖f‖Hs(Tn) ≤
1

cw
‖Rdf‖L2,2

s (Xd,n;w). (39)

(iii) Let w̃(k,A) = w(k,A)√
Wk

and p ∈ [1,∞]. Then R∗,w̃
d Rdf = f and

‖f‖Lp
s(Tn) = ‖R∗,w̃

d Rdf‖Lp
s(Tn) for any f ∈ T ′.

Other stability estimates on Lp
s(T

n) are given in terms of Rdf in [(D),
Proposition 4.3]. Those stability estimates follow from corollary 4.10
and the Sobolev inequality on Tn. This method requires additional
smoothness of Rdf in order to control the norm of f due to the use of
the Sobolev inequality. The stability estimates in (D) are new in any
dimension, and different than the stability estimates in [32].

Theorem 4.11 ((D), Theorem 1.3). Suppose that f ∈ T ′. Let w :
Zn ×Gr(d, n) → R be a weight so that∑

A∈Ωk

w(k,A) = 1, Ωk := {A ∈ Gr(d, n) ; k⊥A } (40)

and the series is absolutely converging for any k ∈ Zn (the weight does
not have to generate a norm or have at most of polynomial decay).
Then

(f, h) =
∑

A∈Gr(d,n)

(Fw(·,A)Rd,Af, h), ∀h ∈ T . (41)

Moreover, if f has zero average and d = n− 1, then

f =
∑

A∈Gr(d,n)

Rd,Af. (42)

Theorem 4.11 gives a new reconstructive formula for the inverse of
Rd. The case d = n − 1 is especially interesting since it does not
involve any filtering, and averages are simple to reconstruct and filter
out from Rdf . The proof of theorem 4.11 follows easily from the higher
dimensional version of the formula (25) proved in [32].
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Abstract

We study the geodesic x-ray transform on Cartan–Hadamard manifolds, 
generalizing the x-ray transforms on Euclidean and hyperbolic spaces that 
arise in medical and seismic imaging. We prove solenoidal injectivity of this 
transform acting on functions and tensor fields of any order. The functions are 
assumed to be exponentially decaying if the sectional curvature is bounded, 
and polynomially decaying if the sectional curvature decays at infinity. This 
work extends the results of Lehtonen (2016 arXiv:1612.04800) to dimensions 
n � 3 and to the case of tensor fields of any order.

Keywords: differential geometry, tensor tomography, Cartan–Hadamard 
manifolds, x-ray transform

1. Introduction

1.1. Motivation

This article considers the geodesic x-ray transform on noncompact Riemannian manifolds. 
This transform encodes the integrals of a function f, where f satisfies suitable decay conditions 
at infinity, over all geodesics. In the case of Euclidean space the geodesic x-ray transform is 
just the usual x-ray transform involving integrals over all lines, and in two dimensions it coin-
cides with the Radon transform introduced in the seminal work of Radon in 1917 [Rad17].

X-ray and Radon type transforms in Euclidean space are widely used as mathematical 
models for medical and industrial imaging methods, such as CT, PET, SPECT and MRI (see 
[Nat01]). In these applications one is interested in reconstructing unknown coefficients in a 
bounded region. However, it is often convenient to model the problems in terms of compactly 
supported functions in the noncompact space Rn, which makes it possible to use Fourier trans-
form based methods for instance.

Another important class of imaging problems arises in geophysics, when determining 
inter ior properties of the Earth from acoustic scattering or earthquake measurements. In these 
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problems one encounters x-ray transforms over general families of curves, which often cor-
respond to geodesic curves of a sound speed profile within the Earth. Moreover, if the sound 
speed is anisotropic (depends on direction), then one needs to consider geodesic x-ray trans-
forms of tensor fields [Sha94]. A typical feature is that rays originating near the Earth surface 
eventually curve back to the surface. A simple mathematical model, which has been used as 
a first approximation for this behaviour, is to think of the domain as embedded in hyperbolic 
space Hn and to consider the geodesic x-ray transform in Hn [Bal05]. The hyperbolic geodesic 
x-ray transform also appears in Electrical Impedance Tomography in connection with the 
method of Barber and Brown [BCT96] and in partial data problems [KS14].

Another setting where x-ray transforms on noncompact manifolds appear is inverse scat-
tering theory (for instance in quantum mechanics, acoustics, or electromagnetics). The con-
nection between scattering theory and Radon type transforms goes back at least to Lax and 
Phillips [LP89], and the x-ray transform of a scattering potential can be determined from 
measurements of the full scattering amplitude at high frequencies (see e.g. [Wed14]). The 
x-ray transforms that appear in these contexts are often Euclidean. However, in inverse scat-
tering applications related to general relativity and black holes one encounters more general 
manifolds that resemble asymptotically hyperbolic ones [JSB00], and in recent results on 
phaseless inverse scattering problems more general geodesic x-ray transforms also arise (see 
[Kli17] and references therein). We remark that both in quantum mechanics and general rela-
tivity, the functions that one would like to reconstruct are often not compactly supported and 
thus it is important to deal with noncompact manifolds.

In this article we will study the invertibility of geodesic x-ray transforms on noncompact 
Riemannian manifolds. Our results will include Euclidean and hyperbolic space as special 
cases, but will apply to more general manifolds with nonpositive curvature (Cartan–Hadamard 
manifolds). This work also follows the long tradition of integral geometry problems as dis-
cussed for instance in [GGG03, Hel99, Hel13]. Here one of the main points is that our results 
apply to manifolds that do not need to have special symmetries (see the recent preprint 
[GGSU17] for related results).

1.2. Results

For Euclidean or hyperbolic space in dimensions n � 2, one has the following basic theorems 
on the injectivity of this transform (see [Hel94, Hel99, Jen04]):

Theorem A. If f is a continuous function in Rn satisfying | f (x)| � C(1 + |x|)−η for some 
η > 1, and if f integrates to zero over all lines in Rn, then f ≡ 0.

Theorem B. If f is a continuous function in the hyperbolic space Hn satisfying 
| f (x)| � Ce−d(x,o), where o ∈ Hn is some fixed point, and if f integrates to zero over all geo-
desics in Hn, then f ≡ 0.

We remark that some decay conditions for the function f are required, since there are 
 examples of nontrivial functions in R2 which decay like |x|−2 on every line and whose x-ray 
transform vanishes [Arm94, Zal82]. Related results on the invertibility of Radon type trans-
forms on constant curvature spaces or noncompact homogeneous spaces may be found in 
[Hel99, Hel13].

The purpose of this article is to give analogues of the above theorems on more general, not 
necessarily symmetric Riemannian manifolds. We will work in the setting of  Cartan–Hadamard 
manifolds, i.e. complete simply connected Riemannian manifolds with nonpositive sectional 
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curvature. Euclidean and hyperbolic spaces are special cases of Cartan–Hadamard mani-
folds, and further explicit examples are recalled in section  2. It is well known that any  
Cartan–Hadamard manifold is diffeomorphic to Rn, the exponential map at any point is a dif-
feomorphism, and the map x �→ d(x, p)2 is strictly convex for any p ∈ M (see e.g. [Pet06]).

Definition. Let (M, g) be a Cartan–Hadamard manifold, and fix a point o ∈ M. If η > 0, 
define the spaces of exponentially and polynomially decaying continuous functions by

Eη(M) = { f ∈ C(M); | f (x)| � Ce−ηd(x,o) for some C > 0},

Pη(M) = { f ∈ C(M); | f (x)| � C(1 + d(x, o))−η for some C > 0}.

Also define the spaces

E1
η(M) = { f ∈ C1(M); | f (x)|+ |∇f (x)| � Ce−ηd(x,o) for some C > 0},

P1
η(M) = { f ∈ C1(M); | f (x)| � C(1 + d(x, o))−η and

|∇f (x)| � C(1 + d(x, o))−η−1 for some C > 0}.

Here ∇ = ∇g is the total covariant derivative in (M, g) and | · | = | · |g is the g-norm on  
tensors.

It follows from lemma 4.1 that if f ∈ Pη(M) for some η > 1, then the integral of f over 
any maximal geodesic in M is finite. For such functions f we may define the geodesic x-ray 
transform I0  f of f by

I0 f (γ) =
∫ ∞

−∞
f (γ(t)) dt, γ is a geodesic.

The inverse problem for the geodesic x-ray transform is to determine f from the knowledge of 
I0  f. By linearity, uniqueness for this inverse problem reduces to showing that I0  f  =  0 implies 
f  =  0.

More generally, suppose that f is a C1-smooth symmetric covariant m-tensor field on M, 
written in local coordinates (using the Einstein summation convention) as

f = fj1...jm(x) dx j1 ⊗ · · · ⊗ dx jm .

We say that f ∈ Pη(M) if | f |g ∈ Pη(M), and f ∈ P1
η(M) if | f |g ∈ Pη(M) and |∇f |g ∈ Pη+1(M), 

etc. We recall that, in terms of local coordinates,∣∣f (x)∣∣g =
(

g j1k1(x) · · · g jmkm(x) fj1...jm(x) fk1...km(x)
)1/2

where (gjk) is the inverse matrix of (gjk).
Now if f ∈ Pη(M) for some η > 1, then the geodesic x-ray transform Imf of f is well defined 

by the formula

Im f (γ) =
∫ ∞

−∞
fγ(t)(γ̇(t), . . . , γ̇(t)) dt, γ is a geodesic.

This transform always has a kernel when m � 1: if h is a symmetric (m − 1)-tensor field sat-
isfying h ∈ P1

η(M) for some η > 0, then Im(σ∇h) = 0 where σ denotes symmetrization of a 
tensor field (see section 3.3). We say that Im is solenoidal injective if Im f  =  0 implies f = σ∇h 
for some (m − 1)-tensor field h.
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Our first theorem proves solenoidal injectivity of Im for any m � 0 on Cartan–Hadamard 
manifolds with bounded sectional curvature, assuming exponential decay of the tensor field 
and its first derivatives. We will denote the sectional curvature of a two-plane Π ⊂ TxM  by 
Kx(Π), and we write −K0 � K � 0 if −K0 � Kx(Π) � 0 for all x ∈ M  and for all two-planes 
Π ⊂ TxM .

Theorem 1.1. Let (M, g) be a Cartan–Hadamard manifold of dimension n � 2, and assume 
that

−K0 � K � 0, for some K0 > 0.

If f is a symmetric m-tensor field in E1
η(M) for some η > n+1

2

√
K0 , and if Im  f  =  0, then 

f = σ∇h for some symmetric (m − 1)-tensor field h such that h ∈ Eη−ε(M) for any ε > 0. 
(If m  =  0, then f ≡ 0.)

The second theorem considers the case where the sectional curvature decays polynomi-
ally at infinity, and proves solenoidal injectivity if the tensor field and its first derivatives also 
decay polynomially.

Theorem 1.2. Let (M, g) be a Cartan–Hadamard manifold of dimension n � 2, and as-
sume that the function

K(x) = sup {|Kx(Π)|; Π ⊂ TxM is a two-plane}

satisfies K ∈ Pκ(M) for some κ > 2. If f is a symmetric m-tensor field in P1
η(M) for some 

η > n+2
2 , and if Imf  =  0, then f = σ∇h for some symmetric (m − 1)-tensor field h ∈ Pη−1(M). 

(If m  =  0, then f ≡ 0.)

The second theorem is mostly of interest in two dimensions because of the following rigid-
ity phenomenon: any manifold of dimension � 3 that satisfies the conditions of the theorem is 
isometric to Euclidean space [GW82]. See section 2 for a discussion. We will give the proof 
in any dimension since this may be useful in subsequent work.

We remark that theorems 1.1 and 1.2 correspond to theorems A and B above, but the mani-
folds considered in theorems 1.1 and 1.2 can be much more general and include many exam-
ples with nonconstant curvature (see section 2). The results will be proved by using energy 
methods based on Pestov identities, which have been studied extensively in the case of com-
pact manifolds with strictly convex boundary. We refer to [Kni02, Muk77, PS88, PSU14, 
Sha94] for some earlier results. In fact, theorems 1.1 and 1.2 can be viewed as an extension 
of the tensor tomography results in [PS88] from the case of compact nonpositively curved 
manifolds with boundary to the case of certain noncompact manifolds. We remark that one 
of the main points in our theorems is that the functions and tensor fields are not compactly 
supported (indeed, the compactly supported case would reduce to known results on compact 
manifolds with boundary).

More recently, the work [PSU13] gave a particularly simple derivation of the basic Pestov 
identity for x-ray transforms and proved solenoidal injectivity of Im on simple 2D manifolds. 
Some of these methods were extended to all dimensions in [PSU15] and to the case of attenu-
ated x-ray transforms in [GPSU16]. Following some ideas in [PSU13], the work [Leh16] 
proved versions of theorems 1.1 and 1.2 for the case of 2D Cartan–Hadamard manifolds.

In this paper we combine the main ideas in [Leh16] with the methods of [PSU15] and 
prove solenoidal injectivity results on Cartan–Hadamard manifolds in any dimension n � 2. 
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However, instead of using the Pestov identity in its standard form (which requires two deriva-
tives of the functions involved), we will use a different argument from [PSU15] related to the 
L2 contraction property of a Beurling transform on nonpositively curved manifolds. This argu-
ment dates back to [GK80a, GK80b], it only involves first order derivatives and immediately 
applies to tensor fields of arbitrary order. The C1 assumption in theorems 1.1 and 1.2 is due to 
this method of proof, and the decay assumptions are related to the growth of Jacobi fields. We 
mention that theorems 1.1 and 1.2 also extend the 2D results of [Leh16] by assuming slightly 
weaker conditions.

This article is organized as follows. Section 1 is the introduction, and section 2 contains 
examples of Cartan–Hadamard manifolds. In section  3 we review basic facts related to 
geodesics on Cartan–Hadamard manifolds, geometry of the sphere bundle and symmetric 
covariant tensors fields, following [DS10, Leh16, PSU15]. Section 4 collects some estimates 
concerning the growth of Jacobi fields and related decay properties for solutions of transport 
equations. Finally, section 5 includes the proofs of the main theorems based on L2 inequalities 
for Fourier coefficients.

2. Examples of Cartan–Hadamard manifolds

In this section we recall some facts and examples related to Cartan–Hadamard manifolds. 
Most of the details can be found in [BO69, GW79, GW82, KW74, Pet06]. We first dis-
cuss the case of 2D manifolds, which is quite different compared to manifolds of higher 
dimensions.

2.1. Dimension two

Let K ∈ C∞(R2). A theorem of Kazdan and Warner [KW74] states that a necessary and suffi-
cient condition for existence of a complete Riemannian metric on R2 with Gaussian curvature 
K is

lim
r→∞ inf

|x|�r
K(x) � 0. 

(2.1)

This provides a wide class of Riemannian metrics satisfying the assumptions of theorem 1.1 
in dimension two. However, this does not directly give an example of a manifold satisfying 
the assumptions of theorem 1.2 since the condition (2.1) is given with respect to the Euclidean 
metric of R2.

Examples of manifolds satisfying the assumptions of theorem 1.2 can be constructed using 
warped products. Let (r, θ) be the polar coordinates in R2 and consider a warped product

ds2 = dr2 + f 2(r)dθ2, (2.2)

where f is a smooth function that is positive for r  >  0 and satisfies f (0) = 0  and f ′(0) = 1. 
This is a Riemannian metric on R2 having Gaussian curvature

K(x) = − f ′′(|x|)
f (|x|) ,

 

(2.3)

which depends only on the Euclidean distance |x| := r(x) to the origin. We remark that dis-
tances to the origin in the Euclidean metric and in the warped metric coincide. It is shown 
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in [GW79, proposition 4.2] that for every k ∈ C∞([0,∞)) with k � 0 there exists a unique 
warped metric of the form (2.2) such that k(|x|) = K(x). Hence warped products provide 
many examples of 2D manifolds for which K(x) � C(1 + |x|)−κ with κ > 0, i.e. K ∈ Pκ(M).

2.2. Higher dimensions

Warped products can also be used to construct examples of higher dimensional Cartan–
Hadamard manifolds satisfying the assumptions of theorem 1.1, see e.g. [BO69].

In the case of theorem 1.2 it turns out that the decay condition for curvature is very restric-
tive in higher dimensions: the only possible geometry is the Euclidean one. This follows 
directly from a theorem by Greene and Wu in [GW82]. If M is a Cartan–Hadamard manifold 
with n = dim(M) � 3, k(s) = sup{K(x) ; x ∈ M, d(x, o) = s}, where o is a fixed point, and 
one of the following holds:

 (1) n is odd and lim infs→∞ s2k(s) → 0 or
 (2) n is even and 

∫∞
0 sk(s) ds is finite,

then M is isometric to Rn.

3. Geometric facts

Throughout this work we will assume (M, g) to be an n-dimensional Cartan–Hadamard 
manifold with n � 2 unless otherwise stated. We also assume unit speed parametrization for 
geodesics.

In this section we collect some preliminary facts on geodesics on Cartan–Hadamard mani-
folds, derivatives on the unit tangent bundle and related Jacobi fields, and tensor fields. These 
facts will be used in the subsequent sections.

3.1. Behaviour of geodesics

By the Cartan–Hadamard theorem the exponential map expx is defined on all of TxM and is a 
diffeomorphism for every x ∈ M . Hence every pair of points can be joined by a unique geo-
desic. Let SM = {(x, v) ∈ TM ; |v| = 1} be the unit sphere bundle, and if (x, v) ∈ SM denote 

by γx,v  the unique geodesic with γ(0) = x  and γ̇(0) = v. The triangle inequality implies that

dg(γx,v(t), o) � |t| − dg(x, o) (3.1)

for all t ∈ R, o ∈ M .
We say that a geodesic γ is escaping with respect to the point o if the function t �→ dg(γ(t), o) 

is strictly increasing on the interval [0,∞). The set of all such geodesics is denoted by Eo. For 
γx,v ∈ Eo the triangle inequality gives

dg(γx,v(t), o) �
{

dg(x, o), if 0 � t � 2dg(x, o),
t − dg(x, o), if 2dg(x, o) < t. (3.2)

However, since (M, g) is a Cartan–Hadamard manifold, Jacobi field estimates give a stronger 
bound. For γx,v ∈ Eo one has (see [Jos08, corollary 4.8.5] or [Pet06, section 6.3])

dg(γx,v(t), o) �
√

dg(x, o)2 + t2, t � 0. (3.3)
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The following lemma is proved in [Leh16] in two dimensions. The proof in higher dimen-
sions is identical, but we include a short argument for completeness.

Lemma 3.1. Suppose o ∈ M. At least one of the geodesics γx,v  and γx,−v is in Eo.

Proof. Since (M, g) is a Cartan–Hadamard manifold, the function h(t) = dg(γx,v(t), o)2 is 
strictly convex, h′′ > 0, on R . If h′(0) � 0 then γx,v  is escaping, and if h′(0) � 0 then γx,−v is 
escaping. □ 

3.2. On the geometry of the unit tangent bundle

We first briefly explain the splitting of the tangent bundle of SM into horizontal and vertical 
bundles. Then we give a short discussion on geodesics of SM. Finally, we include a proof that 
SM is complete when M is.

3.2.1. The structure of the tangent bundle. The following discussion is based on [Pat99, 
PSU15], where these topics are considered in more detail. We denote by π : TM → M the 
usual base point map π(x, v) = x. The connection map K∇ : T(TM) → TM  of the Levi-Civita 
connection ∇ of M is defined as follows. Let ξ ∈ Tx,vTM  and c : (−ε, ε) → TM  be a curve 
such that ċ(0) = ξ. Write c(t) = (γ(t), Z(t)), where Z(t) is a vector field along the curve γ, 
and define

K∇(ξ) := DtZ(0) ∈ TxM.

The maps K∇ and dπ yield a splitting

Tx,vTM = H̃(x, v)⊕ Ṽ(x, v) (3.4)

where H̃(x, v) = kerK∇ is the horizontal bundle and Ṽ(x, v) = ker dx,vπ  is the vertical  bundle. 
Both are n-dimensional subspaces of Tx,vTM.

On TM we define the Sasaki metric gs by

〈v, w〉gs = 〈K∇(v), K∇(w)〉g + 〈dπ(v), dπ(w)〉g,

which makes (TM, gs) a Riemannian manifold of dimension 2n. The maps K∇ : Ṽ(x, v) → TxM  
and dπ : H̃(x, v) → TxM are linear isomorphisms. Furthermore, the splitting (3.4) is orthogo-
nal with respect to gs. Using the maps K∇ and dπ, we will identify vectors in the horizontal 
and vertical bundles with corresponding vectors on TxM.

The unit sphere bundle SM was defined as

SM :=
⋃

x∈M

SxM, SxM := {(x, v) ∈ TxM ; |v|g = 1}.

We will equip SM with the metric induced by the Sasaki metric on TM. The geodesic flow 
φt(x, v) : R× SM → SM is defined as

φt(x, v) := (γx,v(t), γ̇x,v(t)).

The associated vector field is called the geodesic vector field and denoted by X.
For SM we obtain an orthogonal splitting

Tx,vSM = RX(x, v)⊕H(x, v)⊕ V(x, v) (3.5)
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where RX ⊕H(x, v) = H̃(x, v) and V(x, v) = ker dx,v(π|SM). Both H(x, v) and V(x, v) have 
dimension n  −  1 and can be canonically identified with elements in the codimension one sub-

space {v}⊥ ⊂ TxM  via dπ and K∇, respectively. We will freely use this identification.
Following [PSU15], if u ∈ C1(SM), then the gradient ∇SMu has the decomposition

∇SMu = (Xu)X +
h

∇ u +
v

∇ u,

according to (3.5). The quantities 
h

∇ u and 
v

∇ u are called the horizontal and the vertical gradi-
ents, respectively. It holds that 〈

v

∇ u(x, v), v〉g = 0 and 〈
h

∇ u(x, v), v〉g = 0 for all (x, v) ∈ SM.
As discussed in [PSU15], on 2D manifolds the horizontal and vertical gradients reduce to 

the horizontal and vertical vector fields X⊥ and V via

h

∇ u(x, v) = −(X⊥u(x, v))v⊥ and
v

∇ u(x, v) = (Vu(x, v))v⊥

where v⊥ is such that {v, v⊥} is a positive orthonormal basis of TxM. In Leh16 the flows 
associated with X⊥ and V were used to derive estimates for X⊥u and Vu. We will proceed in a 
similar manner in the higher dimensional case.

Let (x, v) ∈ SM and w ∈ SxM, w ⊥ v. We define φh
w,t : R → SM  by φh

w,t(x, v) =  
(γx,w(t), V(t)), where V(t) is the parallel transport of v along γx,w. It holds that

K∇

(
d
dt
φh

w,t(x, v)
∣∣∣
t=0

)
= 0 and dπ

(
d
dt
φh

w,t(x, v)
∣∣∣
t=0

)
= w. (3.6)

We define φv
w,t : R → SM  by φv

w,t(x, v) = (x, (cos t)v + (sin t)w). It holds that

K∇

(
d
dt
φv

w,t(x, v)
∣∣∣
t=0

)
= w and dπ

(
d
dt
φv

w,t(x, v)
∣∣∣
t=0

)
= 0. (3.7)

The following lemma states the relation between φh
w,t and φv

w,t and the horizontal and the verti-
cal gradients of a function.

Lemma 3.2. Suppose u is differentiable at (x, v) ∈ SM. Fix w ∈ SxM, w ⊥ v. Then it holds 
that

〈
h

∇ u(x, v), w〉g =
d
dt

u(φh
w,t(x, v))

∣∣∣
t=0

and

〈
v

∇ u(x, v), w〉g =
d
dt

u(φv
w,t(x, v))

∣∣∣
t=0

.

Proof. Using the chain rule and the equations (3.6) we get

d
dt

u(φh
w,t(x, v))

∣∣∣
t=0

= 〈∇SMu(φh
w,t(x, v)),

d
dt
φh

w,t(x, v)〉gs

∣∣∣
t=0

= 〈
h

∇ u(x, v), w〉g.

For 
v

∇ we use the equations (3.7) in a similar fashion. □ 

The maps φh
w,t and φv

w,t are related to normal Jacobi fields along geodesics. We can define

Jhw(t) :=
d
ds

π
(
φt(φ

h
w,s(x, v))

) ∣∣∣
s=0

= dφt(x,v)π

(
d
ds

φt(φ
h
w,s(x, v))

∣∣∣
s=0

)
.
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Since Γ(s, t) = π
(
φt(φ

h
w,s(x, v))

)
 is a variation of γx,v  along geodesics, Jhw(t) is a Jacobi field 

along γx,v . It has the initial conditions Jhw(0) = w and DtJhw(0) = 0 by the symmetry lemma 
(see e.g. [Lee97]).

Replacing φh
w,s with φv

w,s gives a Jacobi field Jvw(t) with the initial conditions Jvw(t)(0) = 0 
and DtJvw(t)(0) = w. In the both cases the Jacobi field is normal because 〈v, w〉g = 0.

By the symmetry lemma

K∇

(
d
ds

φt(φ
h
w,s(x, v))

∣∣∣
s=0

)
= Ds∂tγφh

w,s(x,v)(t)
∣∣∣
s=0

= Dt∂sγφh
w,s(x,v)(t)

∣∣∣
s=0

= DtJhw(t).

From the definition of the Sasaki metric we then see that〈
∇SMu(φt(x, v)),

d
ds

φt(φ
h
w,s(x, v))

∣∣∣
s=0

〉
gs
=
〈 h

∇ u(φt(x, v)), Jhw(t)
〉

g +
〈 v

∇ u(φt(x, v)), DtJhw(t)
〉

g.

and〈
∇SMu(φt(x, v)),

d
ds

φt(φ
v
w,s(x, v))

∣∣∣
s=0

〉
gs
=
〈 h

∇ u(φt(x, v)), Jvw(t)
〉

g +
〈 v

∇ u(φt(x, v)), DtJvw(t)
〉

g.

Remark 1. The constructions in this subsection remain valid at a.e. (x, v) ∈ SM if one as-
sumes that u is in the space W1,∞

loc (SM). Functions in W1,∞
loc (SM) are characterized as locally 

Lipschitz functions, and further by Rademacher’s theorem, differentiable almost everywhere 
and weak gradients equal to gradients almost everywhere (see e.g. [Eva98, chapters 5.8.2 and 
5.8.3]).

3.2.2. Geodesics on the unit tangent bundle. Next we describe some facts related to geode-
sics on SM (see e.g. [BBNV03] and references therein). Let R(U, V) denote the Riemannian 
curvature tensor. A curve Γ(t) = (x(t), V(t)) on SM is a geodesic if and only if{ ∇ẋẋ = −R(V ,∇ẋV)ẋ

∇ẋ∇ẋV = −|∇ẋV|2gV , |∇ẋV|2g is a constant along x(t)
 (3.8)

holds for every t in the domain of Γ (see [Sas62, equations (5.2)]). Given (x, v) ∈ SM, the 
horizontal lift of w ∈ TxM is denoted by wh, i.e. the unique vector wh ∈ Tx,v(SM) such that 
d(π|SM)(wh) = w and K∇(wh) = 0, and the vertical lift wv is defined similarly. Initial condi-
tions for x, ẋ, V  and ∇ẋV  at t  =  0 with g(V(0),∇ẋ(0)V(0)) = 0 and |V(0)|g = 1 determine a 
unique geodesic Γ = (x, V), by (3.8), which satisfies the initial conditions Γ(0) = (x(0), V(0)) 
and Γ̇(0) = ẋ(0)h + (∇ẋ(0)V(0))v where the lifts are done with respect to (x(0), V(0)) ∈ SM . 
The geodesics of SM are of the following three types:

 (1) If ∇ẋ(0)V(0) = 0, then Γ is a parallel transport of V(0) along the geodesic x on M (hori-
zontal geodesics).

 (2) If ẋ(0) = 0, then Γ is a great circle on the fibre π−1(x(0)) and x(t) = x(0) (vertical 
geodesics, in this case one interprets the system (3.8) via ∇ẋ = Dt).

 (3) All the rest, i.e. solutions of (3.8) with initial conditions ẋ(0) �= 0 and ∇ẋ(0)V(0) �= 0 
(oblique geodesics).

We state the following lemma for the sake of clarity.
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Lemma 3.3. Fix (x, v) ∈ SM and w ∈ SxM , w⊥ v. Then φt(x, v) and φh
w,t(x, v) are horizon-

tal unit speed geodesics and φv
w,t(x, v) is a vertical unit speed geodesic with respect to t.

Proof. The fact that φt(x, v) and φh
w,t(x, v) are horizontal geodesics and φv

w,t(x, v) is a vertical 
geodesic follows immediately from their definitions and the above discussion based on the 
system of differential equations (3.8). The fact that φt(x, v), φh

w,t(x, v) and φv
w,t(x, v) are unit 

speed follows from the equations (3.6) and (3.7) and the definition of the Sasaki metric. □ 

Lemma 3.3 allows us to derive the following formulas which are used in the proof of 
lemma 4.7.

Corollary 3.4. Let (x, v) ∈ SM. Assume that Y ∈ Tx,v(SM) has the decomposition

Y = aX(x, v) + H + V , H ∈ H(x, v), V ∈ V(x, v), a ∈ R.

Then

(Dφt)x,v(aX(x, v)) = aX(φt(x, v)),

(Dφt)x,v(H) = |H|gs
[
(Jhwh

(t))h + (DtJhwh
(t))v

]
,

(Dφt)x,v(V) = |V|gs
[
(Jvwv

(t))h + (DtJvwv
(t))v

]
,

where Dφt  is the differential of φt , wh = dπ(H)/|dπ(H)|g and wv = K∇(V)/|K∇(V)|g. More-

over, (Dφt)x,v(X(x, v)) is orthogonal to (Dφt)x,v(H) and (Dφt)x,v(V).

Proof. Lemma 3.3 gives that φs(x, v), φh
wh,s(x, v) and φv

wv,s(x, v) are unit speed geodesics on 
SM. If Γ(s) = φs(x, v), then Γ(s) is a unit speed geodesic on SM, Γ̇(0) = X(x, v), and

(Dφt)x,v(X(x, v)) = Dφt(Γ̇(0)) = (φt ◦ Γ)′(0) = X(φt(x, v)).

Moreover, using the unit speed geodesic Γ(s) = φh
wh,s(x, v) on SM, and using the formulas 

after lemma 3.2, gives

(Dφt)x,v(H) = Dφt(|H|gs Γ̇(0)) = |H|gs(φt ◦ Γ)′(0)

= |H|gs
[
(Jhwh

(t))h + (DtJhwh
(t))v

]
which is orthogonal to X(φt(x, v)). Finally, the unit speed geodesic Γ(s) = φv

wv,s(x, v) on SM 
gives

(Dφt)x,v(V) = Dφt(|V|gs Γ̇(0)) = |V|gs(φt ◦ Γ)′(0)

= |V|gs
[
(Jvwv

(t))h + (DtJvwv
(t))v

]
which is also orthogonal to X(φt(x, v)). □ 
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3.2.3. Completeness of the unit tangent bundle. We will need the fact that SM is complete 
when M is complete. This need arises from theory of Sobolev spaces on manifolds (see sec-
tion 5). We could not find a reference so a proof is included.

Lemma 3.5. Let M be a complete Riemannian manifold with or without boundary. Then 
SM is complete.

Proof. Let (y( j )) be a Cauchy sequence in (SM, dgs). We show that it converges in the topol-
ogy induced by gs. The definition of the Sasaki metric implies that

Lgs(Γ) �
∫ τ

0

∣∣∣∣dπΓ(t)(Γ̇(t))
∣∣∣∣
g

dt = Lg(π ◦ Γ) � dg(π(Γ(0)),π(Γ(τ)))

where Γ : [0, τ ] → SM is any piecewise C1-smooth curve. Hence

dgs(a, b) � dg(π(a),π(b)) (3.9)

for all a, b ∈ SM. The above inequality implies that (π(y( j))) is a Cauchy sequence in (M, g) 
and converges, say to p ∈ M, by completeness of M.

Consider a coordinate neighborhood U of p in M, so that π−1(U) is diffeomorphic to 
U × Sn−1. Choose an open set V and a compact set K so that p ∈ V ⊂ K ⊂ U . Now π−1(K) 
is homeomorphic to K × Sn−1 which is compact as a product of two compact sets. Since 
π(y( j)) → p, there exists N such that π(y( j)) ∈ V  for all j � N , and this implies y( j) ∈ π−1(K) 
for all j � N . Hence (y( j )) has a limit in (π−1(K), dgs |π−1(K)) since it is a Cauchy sequence, 
and thus (y( j )) converges also in (SM, dgs). □ 

3.3. Symmetric covariant tensor fields

We denote by Sm(M) the set of C1-smooth symmetric covariant m-tensor fields and by Sm
x (M) 

the symmetric covariant m-tensors at point x. Following [DS10] (where more details are also 
given), we define the map λx : Sm

x (M) → C∞(SxM),

λx( f )(v) = fx(v, . . . , v)

which is given in local coordinates by

λx( fi1...im dxi1 ⊗ · · · ⊗ dxim)(v) = fi1...im(x)v
i1 . . . vim .

The map λ smoothly depends on x and hence we get an embedding λ : Sm(M) → C1(SM). 
The map λ identifies symmetric trace-free covariant m-tensor fields with spherical harmonics 
(with respect to v) of degree m on SM. More precisely, if Sm

x (M) and C∞(SxM) are endowed 
with their usual L2-inner products, then λx is an isomorphism, and even an isometry up to a 
factor, from the set of trace-free symmetric m-tensors at x onto the set of spherical harmonics 
(with respect to v) of degree m on SxM (see [DS10, lemma 2.4 and subsequent remarks]). We 
will use this identification and do not always write λ explicitly.

The symmetrization of a tensor is defined by

σ(ω1 ⊗ · · · ⊗ ωm) =
1
m!

∑
π∈Πm

ωπ(1) ⊗ · · · ⊗ ωπ(m),
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where Πm is the permutation group of {1, . . . , m}. From the above expression we see that 
if a covariant m-tensor field f is in E1

η(M) or P1
η(M) for some η > 0, then so is σf  too. 

Furthermore, for f ∈ Sm(M) one has

λ(σ∇f ) = Xλ( f ). (3.10)

It follows from the last identity and the fundamental theorem of calculus that if f ∈ P1
η(M) for 

some η > 0, then Im(σ∇f ) = 0. This shows that Im always has a nontrivial kernel for m � 1, 
as described in the introduction.

The next lemma states how the decay properties of a tensor field carry over to functions 
on SM.

Lemma 3.6. Suppose f ∈ Sm(M) and η > 0.

 (a) If f ∈ E1
η(M), then

sup
v∈SxM

∣∣Xf (x, v)
∣∣
g ∈ Eη(M), sup

v∈SxM

∣∣ h∇ f (x, v)
∣∣
g ∈ Eη(M) and sup

v∈SxM

∣∣ v∇ f (x, v)
∣∣
g ∈ Eη(M).

 (b) If f ∈ P1
η(M), then

sup
v∈SxM

∣∣Xf (x, v)
∣∣
g ∈ Pη+1(M), sup

v∈SxM

∣∣ h∇ f (x, v)
∣∣
g ∈ Pη+1(M) and sup

v∈SxM

∣∣ v∇ f (x, v)
∣∣
g ∈ Pη(M).

Proof. (a) The result for Xf follows from (3.10). To prove the other statements we take 
x ∈ M  and use local normal coordinates (x1, . . . , xn) centered at x and the associated co-
ordinates (v1, . . . , vn) for TxM. In these coordinates f (x) = fi1...im(x) dxi1 ⊗ · · · ⊗ dxim and 
∇f (x) = ∂xj fi1...im(x) dx j ⊗ dxi1 ⊗ · · · ⊗ dxim. We see that

∣∣f (x)∣∣g =

( ∑
i1,...,im

∣∣∣∣ fi1...im(x)
∣∣∣∣2
)1/2

and
∣∣∇f (x)

∣∣
g =

⎛⎝ ∑
j,i1,...,im

∣∣∣∣∂xj fi1...im(x)
∣∣∣∣2
⎞⎠1/2

.

For Xf ,
h

∇ f  and 
v

∇ f  at x we have coordinate representations (see [PSU15, appendix A])

Xf (x, v) = v j∂xj f ,
h

∇ f (x, v) =
(
∂ xj f − (vk∂xk f )v j) ∂xj ,

v

∇ f (x, v) = ∂vj f∂xj .

We get that

Xf (x, v)X(x, v) +
h

∇ f (x, v) = ∂ xj f∂xj = ∂ xj fi1...im(x)v
i1 . . . vim∂xj

and, using the orthogonality of Xf (x, v)X(x, v) and 
h

∇ f (x, v) and the Cauchy–Schwarz inequal-

ity,

sup
v∈SxM

∣∣ h∇ f (x, v)
∣∣
g �

⎛⎝ ∑
j,i1,...,im

∣∣∣∣∂xj fi1...im(x)
∣∣∣∣2
⎞⎠1/2

=
∣∣∇f (x)

∣∣
g.
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This implies that supv∈SxM

∣∣ h∇ f (x, v)
∣∣
g ∈ Eη(M).

For 
v

∇ f , the identity ∂vj v
k = δk

j − vjvk (see [PSU15]) implies that

v

∇ f (x, v) =
n∑

j=1

( fji2...im vi2 . . . vim − f (x, v)vj)∂xj + . . .+
n∑

j=1

( fi1...im−1jvi1 . . . vim−1 − f (x, v)vj)∂xj

= m
n∑

j=1

( fji2...im vi2 . . . vim − f (x, v)vj)∂xj

Thus orthogonality and expanding the squares gives∣∣ v∇ f (x, v)
∣∣2
g = m2

n∑
j=1

| fji2...im(x)v
i2 . . . vim |2 � m2

∑
i1,...,im

| fi1...im(x)
2
= m|2| f (x)|2g

which in turn implies that supv∈SxM

∣∣ v∇ f (x, v)
∣∣
g ∈ Eη(M). The proof for (b) is the same. □ 

4. Growth estimates

Throughout this section we assume that f is a symmetric covariant m-tensor field in Pη(M) for 
some η > 1. The main results in this section are lemmas 4.3 and 4.7. They state that if f is such 
a tensor field, possibly with some additional decay at infinity, then the corresponding solution 
uf of the transport equation will have decay at infinity.

We begin by observing that the geodesic x-ray transform is well defined for such f.

Lemma 4.1. Let f ∈ Pη(M) for some η > 1. For any (x, v) ∈ SM one has∫ ∞

−∞

∣∣ fγx,v(t)(γ̇x,v(t), . . . , γ̇x,v(t))
∣∣ dt < ∞.

Proof. The assumption implies that 
∣∣ fγx,v(t)(γ̇x,v(t), . . . , γ̇x,v(t))

∣∣ � C(1 + d(γx,v(t), o))−η. 
One can then change variables so that t  =  0 corresponds to the point on the geodesic that 
is closest to o, split the integral over t � 0 and t � 0, and use the fact that the integrands are 
� C(1 + |t|)−η by the estimate (3.3). □ 

If f ∈ Pη(M) for some η > 1, we may now define

u f (x, v) :=
∫ ∞

0
fγx,v(t)(γ̇x,v(t), . . . , γ̇x,v(t)) dt.

It is straigthforward to see that

u f (x, v) + (−1)mu f (x,−v) = Im f (x, v)

for all (x, v) ∈ SM.
We have the usual reduction to the transport equation.

Lemma 4.2. Let f ∈ Pη(M) for some η > 1. Then Xu  f  =  −f.

J Lehtonen et alInverse Problems 34 (2018) 044004



14

Proof. By definition

Xu f (x, v) = lim
s→0

−1
s

∫ s

0
fγx,v(t)(γ̇x,v(t), . . . , γ̇x,v(t)) dt = −fx(v, . . . , v).

 
□ 

Next we derive decay estimates for u f under the assumption that Im f  =  0.

Lemma 4.3. Suppose that Im f  =  0.

 (a) If f ∈ Eη(M) for η > 0, then

|u f (x, v)| � C(1 + dg(x, o))e−ηdg(x,o)

  for all (x, v) ∈ SM.
 (b) If f ∈ Pη(M) for η > 1, then

|u f (x, v)| � C

(1 + dg(x, o))η−1

  for all (x, v) ∈ SM.

Proof. Since Im  f  =  0, one has |u f (x, v)| = |u f (x,−v)|. By lemma 3.1, possibly after replac-

ing (x, v) by (x,−v), we may assume that γx,v  is escaping. We have

|u f (x, v)| =
∣∣∫ ∞

0
f (γx,v(t))(γ̇x,v(t), . . . , γ̇x,v(t)) dt

∣∣ � ∫ ∞

0

∣∣f (γx,v(t))
∣∣
g dt.

The rest of the proof is as in [Leh16, lemma 3.2]. □ 

Lemma 4.4. Let f ∈ Pη(M) for some η > 1. If Im f  =  0 and uf is differentiable at (x, v) ∈ SM, 
then

h

∇ u f (x,−v) = (−1)m−1 h

∇ u f (x, v) and
v

∇ u f (x,−v) = (−1)m v

∇ u f (x, v).

Proof. From Im f  =  0 it follows that

u f (x, v) + (−1)mu f (x,−v) = 0.

Fix w ∈ SxM, w ⊥ v. We note that

u f (φh
w,s(x,−v)) + (−1)mu f (φh

−w,−s(x, v)) = 0

and hence

d
ds

u f (φh
w,s(x,−v))

∣∣∣
s=0

= −(−1)m d
ds

(u f (φh
−w,−s(x, v)))

∣∣∣
s=0

= (−1)m d
ds

(u f (φh
−w,s(x, v)))

∣∣∣
s=0

.

By lemma 3.2

〈
h

∇ u f (x,−v), w〉 = (−1)m〈
h

∇ u f (x, v),−w〉 = −(−1)m〈
h

∇ u f (x, v), w〉.
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For 
v

∇ u f  we use that

u f (φv
w,s(x,−v)) + (−1)mu f (φv

−w,s(x, v)) = 0

and by lemma 3.2 we get that

〈
v

∇ u f (x,−v), w〉 = (−1)m−1〈
v

∇ u f (x, v),−w〉 = (−1)m〈
v

∇ u f (x, v), w〉. □ 

We move on to prove growth estimates for Jacobi fields. These estimates will be used to 

derive estimates for 
h

∇ u f  and 
v

∇ u f .

Lemma 4.5. Suppose J(t) is a normal Jacobi field along a geodesic γ.

 (a) If all sectional curvatures along γ([0, τ ]) are � −K0 for some constant K0  >  0, and if 
J(0) = 0 or DtJ(0)  =  0, then∣∣J(t)∣∣g �

∣∣J(0)∣∣g cosh(
√

K0t) +
∣∣DtJ(0)

∣∣
g

sinh(
√

K0t)√
K0

  for t ∈ [0, τ ].
 (b) If t0 ∈ (0, τ), then

∣∣DtJ(t)
∣∣
g +

∣∣J(t)
t

− DtJ(t)
∣∣
g �

[∣∣DtJ(t0)
∣∣
g +

∣∣∣∣J(t0)t0
− DtJ(t0)

∣∣∣∣
g

]
e2

∫ t
t0

sK(γ(s)) ds

  for t ∈ [t0, τ ], where K is as defined in theorem 1.2.

Proof. (a) follows from the Rauch comparison theorem [Jos08, theorem 4.5.2]. For (b), we 
follow the argument in [Leh16]. Consider an orthonormal frame {γ̇(t), E1(t), . . . , En−1(t)} ob-
tained by parallel transporting an orthonormal basis of Tγ(0)M  along γ. Write J(t) = u j(t)Ej(t), 
so that the Jacobi equation becomes

ü(t) + R(t)u(t) = 0 (4.1)

where u(t) = (u1(t), . . . , un−1(t)) and Rjk = R(Ej, γ̇, γ̇, Ek). We wish to estimate v(t) = u(t)
t , 

and we do this by writing v(t) = A(t) + B(t)
t  where

A(t) = u̇(t), B(t) = u(t)− tu̇(t).

By using the equation (4.1), we see that

A(t)− A(t0) = −
∫ t

t0
sR(s)v(s) ds,

B(t)− B(t0) =
∫ t

t0
s2R(s)v(s) ds.

Write g(t) = |A(t)|+
∣∣∣∣B(t)

t

∣∣∣∣. If t � t0 one has

g(t) =
∣∣∣∣A(t0)− ∫ t

t0
sR(s)v(s) ds

∣∣∣∣+ 1
t

∣∣∣∣B(t0) + ∫ t

t0
s2R(s)v(s) ds

∣∣∣∣ � g(t0) + 2
∫ t

t0
s
∥∥R(s)

∥∥g(s) ds.
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The Gronwall inequality implies that

g(t) � g(t0)e
2
∫ t

t0
s
∥∥R(s)

∥∥ ds.

The result follows from this, since 
∥∥R(s)

∥∥ = sup|ξ|=1 R(s)ξ · ξ = supγ̇(s)∈Π K(Π) �  
K(γ(s)). □ 

Corollary 4.6. Suppose that (M, g) is a Cartan–Hadamard manifold. Let γ be a geo-

desic and J a normal Jacobi field along it, satisfying either J(0) = 0 and |DtJ(0)| � 1 or  

|J(0)| � 1 and Dt  J(0)  =  0.

 (a) If −K0 � K � 0 and K0  >  0, then∣∣J(t)∣∣g � Ce
√

K0t and
∣∣DtJ(t)

∣∣
g � Ce

√
K0t

  for t � 0 where the constants do not depend on the geodesic γ.
 (b) If K ∈ Pκ(M) for some κ > 2, then∣∣J(t)∣∣g � C(t + 1) and

∣∣DtJ(t)
∣∣
g � C

  for t � 0. If in addition γ ∈ Eo, then the constants do not depend on the geodesic γ.

Proof. 

 (a) The estimate for 
∣∣J(t)∣∣g follows directly from lemma 4.5. Using the same notations as in 

the proof of that lemma we have 
∣∣DtJ(t)

∣∣
g = |u̇(t)| and by integrating (4.1) from 0 to t we 

get

|u̇(t)| � |u̇(0)|+
∫ t

0

∥∥R(s)
∥∥|u(s)| ds

� |DtJ(0)|+
∫ t

0
K0|J(s)| ds

� Ce
√

K0t.

 (b) For a fixed geodesic, the estimates follow from lemma 4.5. If K ∈ Pκ(M) for κ > 2, then

A := sup
γ∈Eo

∫ ∞

0
sK(γ(s)) ds � C sup

γ∈Eo

∫ ∞

0
s(1 + dg(γ(s), o))−κ ds < ∞

  by using (3.3). Let us fix t0  =  1 and suppose that J is a Jacobi field along a geodesic in Eo 
whose initial values satisfy the given assumptions. From lemma 4.5 and (a) we then get 
that ∣∣J(t)∣∣g � e2A

(
2
∣∣DtJ(1)

∣∣
g +

∣∣J(1)∣∣g) t

� e2ACe
√

K0 t
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  for t � 1, where K0 = supx∈M K(x).

  For t ∈ [0, 1] we can estimate 
∣∣J(t)∣∣g � Ce

√
K0 . By combining these two estimates we get∣∣J(t)∣∣g � C(1 + e2At) � Ce2A(1 + t)

  for t � 0, and the constants do not depend on γ ∈ Eo.

  For 
∣∣DtJ(t)

∣∣
g, lemma 4.5 gives the estimate∣∣DtJ(t)

∣∣
g � e2A

(
2
∣∣DtJ(1)

∣∣
g +

∣∣J(1)∣∣g)
  for t � 1, and for t ∈ [0, 1] we get a bound from (a). Neither of these bounds depends on 

γ ∈ Eo. □ 

Lemma 4.7. Suppose that Im f  =  0.

 (a) If −K0 � K � 0, K0  >  0 and f ∈ E1
η(M) for some η >

√
K0 , then u f is differentiable 

along every geodesic on SM, u f ∈ W1,∞(SM) and∣∣∣∣ h∇ u f (x, v)
∣∣∣∣
g
� Ce−(η−√

K0)dg(x,o)

  for a.e. (x, v) ∈ SM.

 (b) If K ∈ Pκ(M) for some κ > 2 and f ∈ P1
η(M) for some η > 1, then u f is differentiable 

along every geodesic on SM, u f ∈ W1,∞(SM) and∣∣∣∣ h∇ u f (x, v)
∣∣∣∣
g
� C

(1 + dg(x, o))η−1

  for a.e. (x, v) ∈ SM.

The same estimates hold for 
v

∇ u f  with the same assumptions.

Proof of u f ∈ W1,∞
loc (SM). We show that u f is locally Lipschitz continuous. Fix 

(x0, v0) ∈ SM , and suppose that Γ(s) is a unit speed geodesic on SM through (x0, v0). We have 
for any r  >  0

u f (Γ(r))− u f (Γ(0))
r

=

∫ ∞

0

f (φt(Γ(r)))− f (φt(Γ(0)))
r

dt

=

∫ ∞

0

1
r

∫ r

0

∂

∂s
[ f (φt(Γ(s)))] ds dt

=

∫ ∞

0

1
r

∫ r

0
〈∇SMf (φt(Γ(s))), Dφt(Γ(s))Γ̇(s)〉gs ds dt.

 

(4.2)

We write

Γ̇(s) = 〈Γ̇(s), X(Γ(s))〉gsX(Γ(s)) + HΓ̇(s) + VΓ̇(s)

where HΓ̇(s) ∈ H(Γ(s)) and VΓ̇(s) ∈ V(Γ(s)). When we apply corollary 3.4 to the right hand 
side of (4.2) (and omit the identifications), we find that
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u f (Γ(r))− u f (Γ(0))
r

=

∫ ∞

0

1
r

∫ r

0

[
Xf (φt(Γ(s)))〈Γ̇(s), X(Γ(s))〉gs

+ 〈
h

∇ f (φt(Γ(s))),
∣∣HΓ̇(s)

∣∣
gs

Jhwh(s)(t) +
∣∣VΓ̇(s)

∣∣
gs

Jvwv(s)(t)〉g

+ 〈
v

∇ f (φt(Γ(s))),
∣∣HΓ̇(s)

∣∣
gs

DtJhwh(s)(t) +
∣∣VΓ̇(s)

∣∣
gs

DtJvwv(s)(t)〉g

]
ds dt

 

(4.3)

where wh(s) = HΓ̇(s)/
∣∣HΓ̇(s)

∣∣
gs

 and wv(s) = VΓ̇(s)/
∣∣VΓ̇(s)

∣∣
gs

. Here the Jacobi fields are 
along the geodesic γΓ(s)(t) := π(φt(Γ(s))). By definition their initial values fulfil the assump-
tions of corollary 4.6.

From this point on we will work under assumptions of (b). The proof under assumptions of 
(a) is similar but simpler. We fix a small ε > 0. We show that the integral (4.3) has a uniform 
upper bound for every r ∈ (0, 1] and every geodesic Γ through a point in B(x0,v0)(ε) ⊂ SM . 
For (x, v) ∈ SM we denote by G(x, v) the set of unit speed geodesics on SM through (x, v), and 
define

J(x0, v0, ε) := {Γ ∈ G(x, v) ; (x, v) ∈ B(x0,v0)(ε)}.

For all Γ ∈ J(x0, v0, ε),Γ(0) = (x, v), and s ∈ (0, r] the estimate (3.9) gives that dg(x, x0) � ε 
and

dg(γΓ(s)(0), x) = dg(π(Γ(s)), x) � dgs(Γ(s), (x, v)) � s.

The estimate (3.1) implies that

dg(π(φt(Γ(s))), o) = dg(γΓ(s)(t), o) � t − dg(γΓ(s)(0), x0)

� t − sup
s∈(0,r]

dg(γΓ(s)(0), o) � t − dg(x, o)− r

� t − dg(x0, o)− ε− r

 

(4.4)

for all t � t0 where t0 := dg(x0, o) + r + ε. We can use a trivial estimate dg(π(φt(Γ(s))), o) � 0 
on the interval [0, t0]. Further, the estimate (4.4) gives

K(γΓ(s)(t)) �
C

(1 + dg(γΓ(s)(t), o))η
� C

(1 + t − dg(x0, o)− ε− r)η (4.5)

for all t � t0 where the constant C does not depend on s ∈ (0, r] or the geodesic Γ ∈ J(x0, v0, ε), 
and hence

sup
Γ∈J(x0,v0,ε),

s∈(0,r]

∫ ∞

0
tK(γΓ(s)(t)) dt < ∞.

 (4.6)

Using the proof of corollary 4.6 together with (4.6), we can find a constant C which does 
not depend on s ∈ (0, r] so that one has∣∣Jhwh(s)(t)

∣∣
g � Ct,

∣∣DtJhwh(s)(t)
∣∣
g � C
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for all t � 0 and Γ ∈ J(x0, v0, ε). Similar estimates hold also uniformly for Jvwv(s)(t) and 
DtJvwv(s)(t).

Recall that 
∣∣HΓ̇(s)

∣∣
gs

,
∣∣VΓ̇(s)

∣∣
gs
�
∣∣Γ̇(s)∣∣gs = 1, and that wh(s), wv(s) depend on Γ. By 

combining the above estimates for Jacobi fields with estimate (4.4) and lemma 3.6 we get for 
the integrand in (4.3) that∣∣Xf (φt(Γ(s)))〈Γ̇(s), X(Γ(s))〉gs

+ 〈
h

∇ f (φt(Γ(s))),
∣∣HΓ̇(s)

∣∣
gs

Jhwh(s)(t) +
∣∣VΓ̇(s)

∣∣
gs

Jvwv(s)(t)〉g

+ 〈
v

∇ f (φt(Γ(s))),
∣∣HΓ̇(s)

∣∣
gs

DtJhwh(s)(t) +
∣∣VΓ̇(s)

∣∣
gs

DtJvwv(s)(t)〉g
∣∣

�
∣∣Xf (γΓ(s)(t))

∣∣
g +

∣∣ h∇ f (γΓ(s)(t))
∣∣
g

∣∣∣∣HΓ̇(s)
∣∣
gs

Jhwh(s)(t) +
∣∣VΓ̇(s)

∣∣
gs

Jvwv(s)(t)
∣∣
g

+
∣∣ v∇ f (γΓ(s)(t))

∣∣
g

∣∣∣∣HΓ̇(s)
∣∣
gs

DtJhwh(s)(t) +
∣∣VΓ̇(s)

∣∣
gs

DtJvwv(s)(t)
∣∣
g

�
∣∣Xf (γΓ(s)(t))

∣∣
g +

∣∣ h∇ f (γΓ(s)(t))
∣∣
g

(∣∣Jhwh(s)(t)
∣∣
g +

∣∣Jvwv(s)(t)
∣∣
g

)
+
∣∣ v∇ f (γΓ(s)(t))

∣∣
g

(∣∣DtJhwh(s)(t)
∣∣
g +

∣∣DtJvwv(s)(t)
∣∣
g

)
� Ct

(1 + t − dg(x0, o)− ε− r)η+1 +
C

(1 + t − dg(x0, o)− ε− r)η
 

(4.7)

for all t ∈ [t0,∞), s ∈ (0, r] and Γ ∈ J(x0, v0, ε). On the interval [0,t0] we also get a uniform 
upper bound since f, its covariant derivative and sectional curvatures are all bounded.

We can conclude that integral on the right hand side of (4.3) converges absolutely with 
some uniform bound C < ∞ over r ∈ (0, 1] and the set J(x0, v0, ε). This shows that uf is lo-
cally Lipschitz, i.e. u f ∈ W1,∞

loc (SM) (see remark 1). Moreover, the uniform estimate together 
with the dominated convergence theorem guarantees that the limit r → 0 of (4.2) exists for all 
geodesics Γ on SM. This finishes the first part of the proof. □ 

Proof of the gradient estimates. By Rademacher’s theorem uf is differentiable almost 
everywhere, and thus we can assume that uf is differentiable at (x, v) ∈ SM. By lemmas 3.1 and 

4.4 we can assume that (x, v) satisfies γ = γx,v ∈ Eo. We may also assume that 
h

∇ u f (x, v) �= 0. 

Since 〈
h

∇ u f (x, v), v〉g = 0, we can take w =
h

∇ u f (x, v)/
∣∣ h∇ u f (x, v)

∣∣
g in lemma 3.2 and get 

that ∣∣ h∇ u f (x, v)
∣∣
g =

d
ds

u f (φh
w,s(x, v))

∣∣∣
s=0

=

∫ ∞

0
〈
h

∇ f (φt(x, v)), Jh(t)〉g + 〈
v

∇ f (φt(x, v)), DtJh(t)〉g dt
 

(4.8)

where Jh is again a Jacobi field along γ fulfilling the assumptions of corollary 4.6. Under the 
conditions in part (a), the estimate (3.3) implies∣∣ h∇ u f (x, v)

∣∣
g � C

∫ ∞

0
e−ηdg(γ(t),o)e

√
K0 t dt �

∫ ∞

0
e−η

√
dg(x,o)2+t2

e
√

K0 t dt.

Writing r  =  dg(x,o) and splitting the integral over [0, r) and [r,∞) gives
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∣∣ h∇ u f (x, v)
∣∣
g � C

[∫ r

0
e−ηre

√
K0 t dt +

∫ ∞

r
e−ηte

√
K0 t dt

]
� Ce−(η−√

K0)dg(x,o).

The above estimate also shows that 
∣∣ h∇ u f

∣∣
g is bounded. Similarly, under the conditions in part 

(b), lemma 3.6, corollary 4.6 and (3.3) imply∣∣ h∇ u f (x, v)
∣∣
g � C

∫ ∞

0

1 + t
(1 + dg(γ(t), o))η+1 dt + C

∫ ∞

0

C
(1 + dg(γ(t), o))η

dt

� C
[∫ r

0

1 + t
(1 + r)η+1 dt +

∫ ∞

r

1 + t
(1 + t)η+1 dt

]
� C(1 + r)−(η−1)

where r  =  dg(x,o). The same arguments apply to 
v

∇ u f . Hence u f ∈ W1,∞(SM) in the both 
cases, (a) and (b). □ 

Lemma 4.8. 

 (a) If −K0 � K � 0 and K0  >  0, then

Vol So(r) � Ce(n−1)
√

K0r

  for all r � 0.
 (b) If K ∈ Pκ(M) for κ > 2, then

Vol So(r) � Crn−1

  for all r � 0.

Proof. We define the mapping f : SoM → So(r),

f (v) = (π ◦ φr)(o, v) = expo(rv).

We denote by dΣ the volume form on So(r) and have that

Vol So(r) =
∫

So(r)
dΣ =

∫
SoM

f ∗(dΣ) =
∫

SoM
μ dS,

where dS  denotes the volume form on SoM (induced by Sasaki metric) and μ : SoM → R.
Let v ∈ SoM  and {wi}n−1

i=1  be an orthonormal basis for TvSoM with respect to Sasaki metric. 
By the Gauss lemma {dvf (wi)}n−1

i=1  is an orthonormal basis for Tf (v)So(r) and

f ∗(dΣ)v(w1, . . . , wn−1) = dΣf (v)(dvf (w1), . . . , dvf (wn−1)).

It holds that dvf (wi) = Ji(r) where Ji is a Jacobi field along the geodesic γo,v with initial values 
Ji(0) = dvπ(wi) and DtJi(0) = K∇(wi). We get that

|μ(v)| �
n−1∏
i=1

∣∣dvf (wi)
∣∣
g =

n−1∏
i=1

∣∣Ji(r)
∣∣
g.

Since the tangent vectors wi lie in V(o, v) we have 
∣∣Ji(0)

∣∣
g = 0 and 

∣∣DtJi(0)
∣∣
g =

∣∣wi
∣∣
gs
= 1, 

and the estimates for the volume of So(r) then follow from corollary 4.6. □ 
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5. Proof of the main theorems

In this section  we will combine the facts above to prove theorems 1.1 and 1.2. We begin 
by introducing some useful notation related to operators on the sphere bundle and spherical 
harmonics. One can find more details in [DS10, GK80b] and [PSU15]. We prove the main 
theorems of this work in the end of this section.

The norm 
∥∥ · ∥∥ in this section will always be the L2(SM)-norm. We define the Sobolev space 

H1(SM) as the set of all u ∈ L2(SM) for which 
∥∥u
∥∥

H1(SM)
< ∞, where∥∥u

∥∥
H1(SM)

=
(∥∥u

∥∥2
+
∥∥∇SMu

∥∥2
)1/2

=

(∥∥u
∥∥2

+
∥∥Xu

∥∥2
+
∥∥ h

∇ u
∥∥2

+
∥∥ v

∇ u
∥∥2
)1/2

.

Let C∞
c (SM) denote the smooth compactly supported functions on SM. It is well known that if 

N is complete Riemannian manifold, then C∞
c (N) is dense in H1(N) (see [Eic88, satz 2.3]). By 

lemma 3.5 SM is complete when M is complete. Hence C∞
c (SM) is dense in H1(SM).

For the following facts see [PSU15]. The vertical Laplacian Δ : C∞(SM) → C∞(SM) is 
defined as the operator

Δ := −
v

div
v

∇ .

Here 
v

div denotes the vertical divergence which is the adjoint of −
v

∇ (see [PSU15, appendix 
A]). The Laplacian Δ has eigenvalues λk = k(k + n − 2) for k = 0, 1, 2, . . ., and its eigenfunc-
tions are homogeneous polynomials in v. One has an orthogonal eigenspace decomposition

L2(SM) =
⊕
k�0

Hk(SM),

where Hk(SM) := { f ∈ L2(SM) ;Δf = λk f}. We define Ωk = Hk(SM) ∩ H1(SM). In par-
ticular, by lemma 5.1 below any u ∈ H1(SM) can be written as

u =

∞∑
k=0

uk, uk ∈ Ωk,

where the series converges in L2(SM).
One can split the geodesic vector field in two parts, X = X+ + X−, so that (by lemma 5.1) 

X+ : Ωk → Hk+1(SM) and X− : Ωk → Hk−1(SM). The next lemma gives an estimate for X±u 

in terms of Xu and 
h

∇ u.

Lemma 5.1. Suppose u ∈ H1(SM). Then X±u ∈ L2(SM) and∥∥X+u
∥∥2

+
∥∥X−u

∥∥2 �
∥∥Xu

∥∥2
+
∥∥ h

∇ u
∥∥2

.

Moreover, for each k � 0 one has uk ∈ H1(SM), and there is a sequence 

(u( j)
k )∞j=1 ⊂ C∞

c (SM) ∩ Hk(SM) with u( j)
k → uk in H1(SM) as j → ∞.

Proof. Let u ∈ C∞
c (SM). By [PSU15, lemma 4.4] one has the decomposition

h

∇ u =
v

∇
[ ∞∑

l=1

(
1
l

X+ul−1 −
1

l + n − 2
X−ul+1

)]
+ Z(u)
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where Z(u) is such that 
v

div Z(u) = 0. Hence∥∥ h

∇ u
∥∥2

=

∞∑
l=1

(
l(l + n − 2)

∥∥1
l

X+ul−1 −
1

l + n − 2
X−ul+1

∥∥2
)
+
∥∥Z(u)

∥∥2

=

∞∑
l=1

(
l + n − 2

l

∥∥X+ul−1
∥∥2 − 2〈X+ul−1, X−ul+1〉+

l
l + n − 2

∥∥X−ul+1
∥∥2
)
+
∥∥Z(u)

∥∥2
.

We also have∥∥Xu
∥∥2

=
∥∥X−u1

∥∥2
+

∞∑
l=1

(∥∥X+ul−1 + X−ul+1
∥∥2
)

=
∥∥X−u1

∥∥2
+

∞∑
l=1

(∥∥X+ul−1
∥∥2

+ 2〈X+ul−1, X−ul+1〉+
∥∥X−ul+1

∥∥2
)

by the definition of X+ and X−. Adding up these estimates gives that∥∥Xu
∥∥2

+
∥∥ h

∇ u
∥∥2

=
∥∥Z(u)

∥∥2
+
∥∥X−u1

∥∥2
+

∞∑
l=1

(
A(n, l)

∥∥X+ul−1
∥∥2

+ B(n, l)
∥∥X−ul+1

∥∥2
)

where A(n, l) = 2 + n−2
l  and B(n, l) = 1 + l

l+n−2. Since A(n, l) � 1 and B(n, l) � 1 for all 

l = 1, 2, . . . and n � 2, the estimate for 
∥∥X+u

∥∥2
+
∥∥X−u

∥∥2
 follows when u ∈ C∞

c (SM), and it 
extends to H1(SM) by density and completeness.

Moreover, if u ∈ C∞
c (SM) and if k � 0, then the triangle inequality ∥∥Xuk

∥∥ �
∥∥X+uk

∥∥+
∥∥X−uk

∥∥ and orthogonality imply that∥∥uk
∥∥+

∥∥Xuk
∥∥+

∥∥ v

∇ uk
∥∥ �

∥∥u
∥∥+

∥∥X+u
∥∥+

∥∥X−u
∥∥+

∥∥ v

∇ u
∥∥.

We may also estimate 
h

∇ uk  by [PSU15, proposition 3.4] and orthogonality to obtain∥∥ h

∇ uk
∥∥2 � (2k + n − 1)

∥∥X+uk
∥∥2

+ (sup
M

K)
∥∥ v

∇ uk
∥∥2 � Ck(

∥∥X+u
∥∥2

+
∥∥ v

∇ u
∥∥2
).

It follows from the first part of this lemma that∥∥uk
∥∥

H1(SM)
� Ck

∥∥u
∥∥

H1(SM)
, u ∈ C∞

c (SM).

This extends to u ∈ H1(SM) by density and completeness. Finally, if u ∈ H1(SM) and the 
sequence (u( j)) ⊂ C∞

c (SM) satisfies u( j) → u in H1(SM), then also u( j)
k → uk in H1(SM) by 

the above inequality. □ 

Corollary 5.2. Suppose u ∈ H1(SM). Then

lim
k→∞

∥∥X+uk
∥∥

L2(SM)
= 0.

Proof. By lemma 5.1 one has∥∥X+u
∥∥2

=

∞∑
k=0

∥∥X+uk
∥∥2

< ∞

which implies the claim. □ 
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Lemma 5.3. Let u ∈ H1(SM) and k � 1. Then one has that∥∥X−uk
∥∥ � Dn(k)

∥∥X+uk
∥∥

where

D2(k) =
{√

2, k = 1
1, k � 2,

D3(k) =

[
1 +

1

(k + 1)2
(2k − 1)

]1/2

Dn(k) � 1 for n � 4.

Proof. This result was shown for smooth compactly supported functions in [PSU15, lemma 
5.1]. The result follows for u ∈ H1(SM) by an approximation argument using lemma 5.1. □ 

The estimates from section 4 allow us to prove the following result:

Lemma 5.4. Suppose that f is a symmetric m-tensor field and either of the following holds:

 (a) −K0 � K � 0, K0  >  0 and f ∈ E1
η(M) for η > (n+1)

√
K0

2
 (b) K ∈ Pκ(M) for κ > 2 and f ∈ P1

η(M) for η > n+2
2 .

Then u f ∈ H1(SM).

Proof. We prove only (a), the proof for (b) is similar. By lemma 4.7 we have that 
u f ∈ W1,∞(SM). Lemma 4.3 gives that

|u f (x, v)| � C(1 + dg(x, o))e−ηdg(x,o)

on SM. By using the coarea formula with lemma 4.8 we get∫
SM

|u f (x, v)|2 dVgs � C
∫

M
(1 + dg(x, o))2e−2ηdg(x,o) dVg

= C
∫ ∞

0
(1 + r)2e−2ηr

(∫
So(r)

dS

)
dr

� C
∫ ∞

0
(1 + r)2e−2ηre(n−1)

√
K0rdr.

The last integral above is finite and hence u f ∈ L2(SM). Similar calculations using lemmas 

4.2 and 4.7 show that Xu f ,
h

∇ u f  and 
v

∇ u f  all have finite L2-norms under the assumption 
η > (n+1)

√
K0

2 , and therefore the H1-norm of u f is finite. □ 

We are ready to prove our main theorems.

Proof of theorems 1.1 and 1.2. Suppose that the m-tensor field f and the sectional cur-
vature K satisfy the assumptions of theorem 1.1 or 1.2. Recall that we identify f with a func-
tion on SM as described in section 3.3. Then u  =  u f is in H1(SM) by lemma 5.4, and lemma 
4.2 states that Xu  =  −f on SM. Note also that f ∈ H1(SM), which follows as in the proof of 
lemma 5.4.

Since f is of degree m it has a decomposition
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f =
m∑

k=0

fk, fk ∈ Ωk,

and u has a decomposition

u =

∞∑
k=0

uk, uk ∈ Ωk.

We first show that uk  =  0 for k � m. From Xu  =  −f it follows that for k � m we have

X+uk + X−uk+2 = 0.

This implies that∥∥X+uk
∥∥ �

∥∥X−uk+2
∥∥, k � m. (5.1)

Fix k � m. We apply lemma 5.3 and the inequality (5.1) iteratively to get∥∥X−uk
∥∥ � Dn(k)

∥∥X+uk
∥∥

� Dn(k)
∥∥X−uk+2

∥∥
� Dn(k)Dn(k + 2)

∥∥X+uk+2
∥∥

�
[

N∏
l=0

Dn(k + 2l)

]∥∥X+uk+2N
∥∥.

By corollary 5.2

lim
l→∞

∥∥X+uk+2l
∥∥ = 0.

Moreover, as stated in [PSU15, theorem 1.1], one has
∞∏

l=0

Dn(k + 2l) < ∞.

Thus we obtain that∥∥X−uk
∥∥ =

∥∥X+uk
∥∥ = 0.

This gives Xuk  =  0, which implies that t �→ uk(φt(x, v)) is a constant function on R  for any 
(x, v) ∈ SM. Since u decays to zero along any geodesic we must have uk  =  0, and this holds 
for all k � m.

It remains to verify that the equation Xu  =  −f on SM together with the fact u =
∑m−1

k=0 uk 
imply the conclusions of theorems 1.1 and 1.2. This is done as in [PSU13, end of section 2]. 
Suppose that m is odd (the case where m is even is similar). The function f is a homogeneous 
polynomial of order m in v and hence its Fourier decomposition has only odd terms, i.e.

f = fm + fm−2 + · · ·+ f1.

It follows that the decomposition of u has only even terms,

u = um−1 + um−3 + · · ·+ u0.

By taking tensor products with the metric g and symmetrizing it is possible to raise the 
degree of a symmetric tensor: if F ∈ Sm(M), then αF := σ(F ⊗ g) ∈ Sm+2(M). Functions 
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λ(αF) and λ(F) have the same restriction to SM, since λ(g) has a constant value 1 on SM.
We define h ∈ Sm−1(M) by

h := −
(m−1)/2∑

j=0

α j(Um−1−2j),

where Um−1−2j(x) is the unique symmetric trace-free (m − 1 − 2j)-tensor field which satisfies 
λx(Um−1−2j(x)) = um−1−2j(x, · ), see section 3.3.

Then λ(h) = −u on SM. Equation (3.10) gives λ(σ∇h) = X(λh) = −Xu = λ( f ) on SM. 
Since both f and σ∇h are symmetric we get f = σ∇h. To show the decay condition for h, we 
assume the conditions of theorem 1.1 and observe that lemma 4.3 implies that for any fixed 
ε > 0,

|u(x, v)| � C(1 + dg(x, o))e−ηdg(x,o) � Cεe−(η−ε)dg(x,o). 
(5.2)

We next observe that |σF| � |F| for any tensor F (this can be seen by using an orthonormal basis 
{εi1 ⊗ . . .⊗ εim} for m-tensors, Cauchy–Schwarz and the definitions), and |F ⊗ g| = n1/2|F| 
(which also follows from the definitions). Thus |αF| � n1/2|F|. Consequently, using that the 
map λx in section 3.3 is an isometry up to a factor depending on n and m,

|h(x)|2 � Cn,m

(m−1)/2∑
j=0

|Um−1−2j(x)|2 � Cn,m

(m−1)/2∑
j=0

‖um−1−2j(x, · )‖2
L2(SxM).

The orthogonality of spherical harmonics and the estimate (5.2) imply that

|h(x)|2 � Cn,m

∫
SxM

|u(x, v)|2 dS � Cε,n,me−2(η−ε)dg(x,o).

This shows that h ∈ Eη−ε(M) as required. The proof in the case of theorem 1.2 follows simi-
larly by replacing (5.2) with the estimate in lemma 4.3(b). □ 
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GEODESIC RAY TRANSFORM WITH MATRIX
WEIGHTS FOR PIECEWISE CONSTANT FUNCTIONS

JOONAS ILMAVIRTA AND JESSE RAILO

Abstract. We show injectivity of the geodesic X-ray transform
on piecewise constant functions when the transform is weighted by
a continuous matrix weight. The manifold is assumed to be com-
pact and nontrapping of any dimension, and in dimension three
and higher we assume a foliation condition. We make no assump-
tion regarding conjugate points or differentiability of the weight.
This extends recent results for unweighted transforms.

1. Introduction

This article studies the weighted geodesic X-ray transform with injec-
tive matrix weights on nontrapping Riemannian manifolds with strictly
convex boundary. This operator arises in many applications, and one
of the basic questions is if the weighted line integrals over all maximal
geodesics determine an unknown function. We show an injectivity re-
sult for a class of piecewise constant functions under the assumptions
that the manifold admits a strictly convex function and the weight de-
pends continuously on its coordinates on the unit sphere bundle. In two
dimensions, the result follows for nontrapping manifolds with strictly
convex boundary.
Let (M, g) be a compact nontrapping Riemannian manifold with

strictly convex boundary. We say that the boundary ∂M is strictly
convex if its second fundamental form is positive definite at any x ∈
∂M . A smooth function f : M → R is said to be strictly convex if its
Hessian ∇2

xf : TxM × TxM → R is positive definite at any x ∈ M . We
denote by SM the unit sphere bundle and by Γ the set of maximal unit
speed geodesics. We say that M is nontrapping if every geodesic in Γ
has finite length, and we make this assumption. We denote the unique
unit speed geodesic through (x, v) ∈ SM by γx,v, that is, γx,v(0) = x
and γ̇x,v(0) = v.
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2 JOONAS ILMAVIRTA AND JESSE RAILO

The geodesic X-ray transform with matrix weights is defined as fol-
lows. Fix some integers m, k ≥ 1 and denote the set of linear injec-
tions (monomorphisms) Ck → Cm by Mon(Ck,Cm), which is a sub-
set of the space Lin(Ck,Cm) of all linear maps. If k = m, we have
Mon(Ck,Cm) = GL(C, k), and for m < k we have Mon(Ck,Cm) = ∅.
The geodesic X-ray transform with weight W ∈ C(SM,Lin(Ck,Cm))
is defined so that it maps a function f : M → Ck to IWf : Γ → Cm

defined by

(1.1) IWf(γ) =

∫ τ

0

W (γ(t), γ̇(t))f(γ(t))dt

for any maximal geodesic γ : [0, τ ] → M whenever the integral is de-
fined.
Injectivity of IW for smooth functions was established by Paternain,

Salo, Uhlmann, and Zhou [PSUZ19] if dim(M) ≥ 3, (M, g) admits a
smooth strictly convex function, and W ∈ C∞(SM ;GL(k,C)). The
result in [PSUZ19] is based on the methods developed in the work of
Uhlmann and Vasy [UV16]. In this paper we consider a special case of
the matrix weighted X-ray transform for the piecewise constant vector-
valued functions. We gain more flexibility on geometrical assumptions
and the proof is considerably simpler, but at the expense of only having
the result for a restricted class of functions. Injectivity was shown
recently in the case of piecewise constant functions without weights by
Ilmavirta, Lehtonen, and Salo [ILS18], and reconstruction was studied
in [Leb19]. Our main theorem is the following.

Theorem 1.1. Let (M, g) be a compact nontrapping Riemannian man-
ifold with strictly convex smooth boundary and W ∈ C(SM ;Mon(Ck,Cm)).
Suppose that either

(a) dim(M) = 2, or
(b) dim(M) ≥ 3 and (M, g) admits a smooth strictly convex function.

If f : M → Ck is a piecewise constant function and IWf = 0, then
f ≡ 0.

There is also a local version of theorem 1.1; see theorem 2.6.

Remark 1.2. The result can be generalized by replacing Ck and Cm

with two Banach spaces and letting W be an invertible linear map
depending continuously on the coordinates on the sphere bundle SM .

Remark 1.3. The functions f : M → Ck are vector-valued in the sense
that they are sections of the trivial bundle M × Ck. We do not study
geodesic X-ray tomography of vector fields or higher order tensor fields.

Theorem 1.1 generalizes results of [ILS18] for the matrix weighted
X-ray transform similar to the one studied in [PSUZ19]. Our the-
orem holds if dim(M) ≥ 2, W ∈ C(SM ;GL(k,C)), and functions
are piecewise constant in comparison to [PSUZ19] where it is assumed
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that dim(M) ≥ 3, W ∈ C∞(SM ;GL(k,C)) and functions are smooth.
In the Euclidean space Rn with n ≥ 3 injectivity is known for C1,α

weights [Ilm16] but there is an example of non-injectivity for W ∈ Cα

by Goncharov and Novikov [GN17]. Boman constructed an example
of a smooth nonvanishing weight on the plane for which the weighted
X-ray transform for smooth functions is non-injective [Bom93]. The-
orem 1.1 shows that there are no such counterexamples for piecewise
constant functions. The known results — including the new ones ob-
tained here — are summarized on Table 1.
We will prove Theorem 1.1 in Section 2. We remark that Theo-

rem 1.1 is based on an generalization of [ILS18, Lemma 4.2] whereas
the rest of the proof is almost identical to the one in [ILS18]. The
method in [ILS18] relies on existence of a strictly convex foliation as
in the works of Stefanov, Uhlmann, and Vasy [UV16, SUV17], but the
method of proof is far simpler. For a further discussion on the foliation
condition see [PSUZ19] and references therein. We say that M satis-
fies the foliation condition if M admits a strictly convex function. We
define the precise meaning of a strictly convex foliation in Section 2.3.
The matrix weighted X-ray transform is related to recovering matrix

valued connection from its parallel transport [FU01, Nov02a, PSU12,
GPSU16, PSUZ19]. It has also applications in polarization tomography
[Sha94, NS07, Hol13] and quantum state tomography [Ilm16].
One source of weights is pseudolinearization, a procedure where a

nonlinear problem is reduced to a linear problem with weights depend-
ing on the unknown. For a more detailed description of the idea, first
appearing in [SU98, SUV16], see e.g. [IM19, Section 8]. Pseudolin-
earization also leads to an iterative inversion algorithm [Ilm16, SU98,
SUV16].
A boundary reconstruction of the normal derivatives of a function

from the broken ray transform reduces to a certain weighted geodesic
ray transform on the boundary [Ilm14]. Some weights can be realized as
attenuation, but we make no such assumptions on W . The attenuated
X-ray transform (see e.g. [ABK97, Nov02b, SU11, AMU18]) is a well-
known special case of the matrix weighted X-ray transform and it is
the mathematical basis for the medical imaging method SPECT (see
e.g. the survey [Fin03]).

Acknowledgements. J.I. was supported by the Academy of Finland
(decision 295853). J.R. was supported by the Academy of Finland
(Centre of Excellence in Inverse Problems Research at the University
of Jyväskylä in 2017, Centre of Excellence in Inverse Modelling and
Imaging at the University of Helsinki in 2018). The authors are grateful
to Jere Lehtonen and Mikko Salo for helpful discussions related to this
work.
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Regularity Dimension W = Id W ∈ C∞ W ∈ C
PWC = 2 Yes. [ILS18] Yes! Yes!
L2 or C∞ = 2 Unknown. No. [Bom93] No. [Bom93]
PWC ≥ 3 Yes. [UV16] Yes. [PSUZ19] Yes!
L2 or C∞ ≥ 3 Yes. [UV16] Yes. [PSUZ19] No. [GN17]

Table 1. Is the X-ray transform injective on manifolds
that admit a strictly convex function? The answers
in various different cases are summarized below. Here
“PWC” stands for piecewise constant. A “Yes!” with an
exclamation mark is a new result proven here. In two
dimensions injectivity is known on simple manifolds, but
the foliation condition does not imply simplicity.

2. Proof

2.1. Definitions. We follow the notation of [ILS18], and any details
omitted here can be found there. We review the main concepts here in
a somewhat informal manner.
The standard m-dimensional simplex is the convex hull of the stan-

dard base of Rm+1. A regular m-simplex on a manifold M is a C1-
smoothly embedded standard m-dimensional simplex. The boundary
of a regular m-simplex is a union of m+ 1 regular (m− 1)-simplices.

We define the depth of a point x in a regular m-simplex as follows.
We say that x has depth 0 if x belongs to the interior of the simplex.
We say that x has depth 1 if x belongs to the interior of a boundary
simplex of the simplex. Other depths are defined similarly up to depth
m at the m+ 1 corner points of the original simplex.

If Δ1 and Δ2 are two regular m-simplices, we say that their bound-
aries align nicely if x ∈ Δ1 ∩Δ2 implies that x has the same depth in
both, Δ1 and Δ2.
We denote n = dim(M). A regular tiling of a manifold is a collection

of regular n-simplices which cover the manifold, whose interiors are
disjoint, and whose boundaries align nicely. An example is given in
Figure 1. A piecewise constant function is such that the values are
constant in the interior of every simplex and zero on their boundaries.
The geometry of corners of simplices is important for our argument,
and we review the crucial definitions in more depth.

Definition 2.1 (Tangent cone). Let Δ be a regular m-simplex in M
with 0 ≤ m ≤ n = dim(M), and let x ∈ Δ. Let Γ = Γ(x,Δ) be the
set of all C1-curves starting at x and staying in Δ. The tangent cone
of Δ at x is the set

(2.1) CxΔ := { γ̇(0) | γ ∈ Γ }.
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Figure 1. An example of a regular tiling and the tan-
gent space at the point x. The simplices touching x have
their corresponding tangent cones on TxM . See Defini-
tion 2.1.

Definition 2.2 (Tangent function). Let f : M → Ck be a piecewise
constant function and x ∈ M with respect to a regular tiling. Let
Δ1, . . . ,ΔN be the simplices of the regular tiling that contain x. Denote
by v1, . . . , vN ∈ Ck the constant values of f in the interior of these
simplices. The tangent function Txf : TxM → Ck of f at x is defined
so that for each i ∈ {1, . . . , N} the function Txf takes the constant
value vi in the interior of the tangent cone CxΔi. The tangent function
takes the value zero in TxM \⋃N

i=1 Int(CxΔi).

We stress that the tangent function is not a derivative, as a piecewise
constant function is typically not differentiable at the points of interest.
Instead of linearizing the function, we linearize the geometry of the
simplices and keep the constant values of the function.

2.2. Lemmas. In this subsection we recall a key lemma proved in [ILS18,
Section 4] and use it to prove a new lemma.
Let M be a C2-smooth Riemannian surface with C2-boundary. Sup-

pose the boundary ∂M is strictly convex at x ∈ ∂M . Let γi, i = 1, 2,
be two unit speed C1-curves in M starting nontangentially at x so that
|〈γ̇1(0), γ̇2(0)〉| < 1.
Let the radius r > 0 be small enough such that the geodesic ball

B(x, r) ⊂ M is split by the curves γi, i = 1, 2, into three parts. Let A
be the middle one. Let σi, i = 1, 2, be the curves on TxM with constant
speed γ̇i(0) respectively. Let S be the sector in TxM laying between σ1

and σ2.
If h > 0 and if v ∈ TxM is an inward pointing unit vector, let the

geodesic γh
v be constructed as follows: Take a unit vector w normal
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to v at x — which is unique up to sign — and let w(h) be the parallel
transport (with respect to the Levi–Civita connection) of w along the
geodesic γx,v by distance h. Let γh

v be the maximal geodesic in the
direction of w(h) at γx,v(h). One could denote γh

v = γγx,v(h),w(h) to be
more precise, but we have chosen to keep the notation lighter.
We denote by σh

v the corresponding line hv + wR in TxM . The
correspondence is not by the exponential map expx as typically γh

v �=
expx(σ

h
v ), but in the sense of lemma 2.3 below. We denote by ν ∈

∂(SM) the inward pointing unit vector of ∂M at x.
We restate a lemma from [ILS18] for convenience.

Lemma 2.3 ([ILS18, Lemma 4.1]). Let M be a C2-smooth Riemannian
surface with C2-boundary, which is strictly convex at x ∈ ∂M . There
exists an open neighborhood U of ν such that for every v ∈ U we have

(2.2) lim
h→0

1

h

∫
γh
v∩A

ds =

∫
σ1
v∩S

ds.

We prove the global result of Theorem 1.1 by way of proving a local
version near a boundary point. The relevant local version is given
below in Lemma 2.5. A crucial step in its proof is Lemma 2.3, which
allows conversion of the local problem on the manifold into a problem
on the tangent space. However, Lemma 2.3 as stated is not sufficient in
the weighted situation, but is used to prove the weighted analogue in
Lemma 2.4 below. Lemma 2.4 can be seen as a generalization of [ILS18,
Lemma 4.2] for the class of piecewise constant vector-valued functions
with matrix weighted integrals.

Lemma 2.4. Let M be a C2-smooth Riemannian surface with C2

boundary, which is strictly convex at x ∈ ∂M . Let M̃ be such an
extension of M that x ∈ Int(M̃). Let Δ ⊂ M be a regular 2-simplex so
that CxΔ∩Tx∂M = {0}. Let W ∈ C(M̃ ; Lin(Ck,Cm)) and f : M̃ → Ck

be a piecewise constant function supported in Δ. Then there exists an
open neighborhood U of ν such that for every v ∈ U we have
(2.3)

lim
h→0

1

h

∫
γh
v

W (γh
v (s), γ̇

h
v (s))f(γ

h
v (s))ds = W (x, v⊥)

∫
σ1
v

Txf(σ
1
v(s))ds.

Proof. By linearity we can assume that f is constant in Δ. A piecewise
constant function is a linear combination of characteristic functions of
interiors of simplices.

Fix v ∈ U given by Lemma 2.3. Let sh ∈ γh
v be any maximizer of

(2.4) s �→
∥∥W (γh

v (s), γ̇
h
v (s))−W (x, v⊥)

∥∥ ,
where — as throughout this proof — we use the operator norm of
matrices. We have

(2.5) sup
s∈γh

v

d((γh
v (s), γ̇

h
v (s)), (x, v

⊥)) → 0



GEODESIC RAY TRANSFORM WITH MATRIX WEIGHTS 7

as h → 0, and so (γh
v (sh), γ̇

h
v (sh)) → (x, v⊥) as h → 0. We have

limh→0
l(γh

v∩Δ)
h

= |σ1
v |, and in particular the fraction l(γh

v∩Δ)
h

is uniformly
bounded for all small h > 0.
We are ready to compare the weighted integral on the left-hand side

of (2.3) to the corresponding integral with the weight frozen to its limit
value W (x, v⊥) (as h → 0). Straightforward estimates give∥∥∥∥1h

∫
γh
v

(W (γh
v (s), γ̇

h
v (s))−W (x, v⊥)fds

∥∥∥∥
≤ l(γh

v ∩Δ)

|h| sup
s∈γh

v

‖f(s)‖ sup
s∈γh

v

∥∥W (γh
v (s), γ̇

h
v (s))−W (x, v⊥)

∥∥ .(2.6)

As f is bounded, the quotient l(γh
v∩Δ)
h

is bounded, and the matrix norm
tends to zero as h → 0, the left-hand side of (2.6) tends to zero as well.
We may thus conclude that the limit on the left-hand side of (2.3)

is the same as

(2.7) W (x, v⊥) lim
h→0

1

h

∫
γh
v

f(γh
v (s))ds.

That is, the weight can be frozen to its limiting value. The function
f is constant, so up to that constant the integral is just the length of
the geodesic segment in Δ. Lemma 2.3 shows that the characteristic
function of a simplex satisfies (2.3) in the absence of weight. This
concludes the proof. �

Suppose Σ is a hypersurface containing the point x ∈ Int(M) and Σ
is strictly convex in a neighbourhood of x. Let V be a small neighbour-
hood of x such that V \Σ consists of two open sets which are denoted
by V+ and V−. We choose V+ to be the one for which the boundary
section ∂V+ ∩ Σ is strictly convex. Next we state Lemma 2.5 that
allows one to build a layer stripping argument that is used to prove
Theorem 1.1.

Lemma 2.5. Let M be a C2-smooth Riemannian manifold, W ∈
C(M ;Mon(Ck,Cm)) and f : M → Ck be a piecewise constant func-
tion. Fix x ∈ Int(M) and let Σ be an (n− 1)-dimensional hypersurface
through x. Suppose that V is a neighbourhood of x so that

• V intersects only simplices containing x,
• Σ is strictly convex in V ,
• f |V− = 0, and
• IWf = 0 over every maximal geodesic in V having endpoints
on Σ.

Then f |V = 0.

Proof. The lemma follows from Lemma 2.4 using ideas developed in
[ILS18, Lemma 5.1 and Lemma 6.2]. We summarize the idea briefly;
details can be found in the cited paper.
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Consider two dimensions first. Take a unit vector v ∈ TxM pointing
towards V+ and h > 0. Define the geodesic γh

v as above. The weighted
integrals of f over these geodesics vanish by assumption. By Lemma 2.4
and injectivity of W everywhere on the sphere bundle, we find that Txf
integrates to zero over σ1

v .
This argument reduces the X-ray tomography problem on M to the

corresponding problem on TxM . We have the freedom to vary the
direction v, and any open set is sufficient. The Euclidean problem
is unweighted and can be solved by explicit calculation; see [ILS18,
Lemma 3.1]. The calculation is based on describing the direction v by
a parameter and computing derivatives of high orders with respect to
that parameter. That these derivatives determine the values of Txf in
the cones uniquely boils down to the invertibility of a Vandermonde
matrix.
In higher dimensions one can proceed as follows. Take a unit tangent

vector w tangential to Σ and an unit vector v pointing towards V+. As
above, we can define the geodesics γh

v,w(t), where we now keep the
dependence on w explicit. Near the point x the function (h, t) �→
γh
v,w(t) defines a smooth two-dimensional submanifold Sv,w ⊂ M . Now

the geodesics γh
v,w(t) are geodesics on both M and Sv,w although the

submanifold is not totally geodesic in general.
Now for almost all choices of v and w this submanifold Sv,w we are

in the setting of our two-dimensional result. Issues can arise when
boundaries of the simplices are tangent to Sv,w at x, but this is rare. In
such cases f has to vanish on Sv,w and therefore on all simplices that
meet this submanifold near x. For any simplex containing x there are
such w and v (see [ILS18]), and therefore the claim holds. We point
out that for different pairs (v, w) we get a different submanifold. �
2.3. Proof of Theorem 1.1. We are now ready to prove our main
theorem. We begin with a local version.

Following [PSUZ19], we say that a subset U ⊂ M has a strictly
convex foliation if there is a strictly convex function φ : U → R so that
the sets {x ∈ U ;φ(x) ≥ c} for all c > infU φ are compact.

Theorem 2.6. LetM be a C2-smooth Riemannian manifold with strictly
convex boundary and dim(M) ≥ 2. Suppose that a subset U ⊂ M has
a strictly convex foliation. Let W ∈ C(M ;GL(k,C)) and f : M → Ck

be a piecewise constant function. If IWf = 0 for all geodesics in U ,
then f |U = 0.

Proof. The proof is very similar to that of [ILS18, Theorem 5.3 and
Theorem 6.4], and we only give an outline.
The set U can be foliated by strictly convex hypersurfaces, and we

are interested at the times when the foliation meets a new simplex.
It suffices to prove local injectivity in the neighborhood of a strictly
convex boundary point — a point on the leaf of a foliation — whenever



GEODESIC RAY TRANSFORM WITH MATRIX WEIGHTS 9

a new simplex is met. If the point meets only one new simplex, then
one can use a sequence of short geodesics that pass the simplex and
argue as in Lemma 2.4 to see that f has to vanish in the simplex. If the
point meets more simplices, we are in the setting of Lemma 2.5, and
we can conclude that the function vanishes on each new simplex. �

Theorem 2.6 has also corollaries analogous to [ILS18, Corollaries
6.5–6.7] but we omit them here.

Proof of Theorem 1.1. Under the assumptions there is a global folia-
tion: we may choose U = M in Theorem 2.6. See [PSUZ19, Section 2]
for details. The proof is complete. �
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TORUS COMPUTED TOMOGRAPHY

JOONAS ILMAVIRTA, OLLI KOSKELA, AND JESSE RAILO

Abstract. We present a new computed tomography (CT) method for inverting the Radon
transform in 2D. The idea relies on the geometry of the flat torus, hence we call the new method
Torus CT. We prove new inversion formulas for integrable functions, solve a minimization
problem associated to Tikhonov regularization in Sobolev spaces and prove that the solution
operator provides an admissible regularization strategy with a quantitative stability estimate.
This regularization is a simple post-processing low-pass filter for the Fourier series of a phantom.
We also study the adjoint and the normal operator of the X-ray transform on the flat torus.
The X-ray transform is unitary on the flat torus. We have implemented the Torus CT method
using Matlab and tested it with simulated data with promising results. The inversion method
is meshless in the sense that it gives out a closed form function that can be evaluated at any
point of interest.

1. Introduction

We present a new computed tomography (CT) method for X-ray tomography in 2D. The
method reconstructs the Fourier series of a phantom via the projection of X-ray data into X-ray
data on the flat torus which has a remarkably simple inverse X-ray transform. Therefore we call
the new method Torus CT. We have developed new mathematical theory and computational
implementations. The numerical implementation was used to demonstrate the potential of Torus
CT method in various simulations and tests, including data simulation in torus geometry and
traditional experimental projections. Torus CT provided an efficient basis for inverse solution
and its efficacy is shown in this work.

The article is organized as follows. In section 1.1 we give an overview of computed tomography
and regularization, in section 1.2 we discuss works related to X-ray tomography on torus, and in
section 1.3 we state the main theoretical results in this paper. Section 2 includes mathematical
preliminaries, proofs of theorems and numerical analysis for Torus CT method. Section 3
contains mathematical formulation of computational forward and inverse models. Section 4
presents numerical experiments and their analysis. Conclusions are given in section 5. We have
included a short note on supplementary material in the end of the article.

1.1. Overview of computed tomography and regularization methods. We give here
an overview of X-ray tomography. Practical CT imaging was first introduced by Cormack and
Hounsfield in 1970s based on the theoretical work of Cormark [3, 4] in 1960s. The mathematical
theory itself was in fact earlier studied by Radon [26] in 1917. We give here only a narrow sample
of topics and references in X-ray computed tomography. More references can be found in the
cited works.

CT has many applications in medical imaging and engineering utilizing computerized axial
tomography (CAT), positron-emission tomography (PET) and single-photon emission computed
tomography (SPECT) [21]. Possible applications include imaging of patients in medicine and
nondestructive testing in engineering. The most common inversion method for CT imaging is
based on the filtered back-projection (FBP) algorithms [23, 14].

The FBP algorithms work well if there is sufficiently dense set of measurements, and otherwise
regularization is often required. Another reason for regularization comes from the need of
controlling errors in reconstructions cased by a measurement noise. See for example [22, 21].

Date: June 13, 2019.
Key words and phrases. X-ray tomography, Fourier series, regularization.
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Usually a regularization method is applied for a discretized X-ray tomography model as in
the examples listed next. The most common regularization methods include Tikhonov regu-
larization and truncated singular value decomposition (TSVD) which promote smoothness of
reconstructions [22]. Other common regularization approaches include total variation (TV) reg-
ularization which promotes sparsity of reconstructions [31, 8, 24, 7]. Another approach is to
encode a priori information as a probability distribution and think the reconstruction problem
as an Bayesian inverse problem for finding a posterior distribution [31, 17, 13, 8, 7].

The main difference of our proposed Tikhonov regularization approach, stated in theorem 2,
compared to the usual regularization methods is that we do not discretize a phantom and
regularization takes a form of a simple low-pass filter on the Fourier side. This also reflects
the fact that Torus CT method is meshless (or meshfree) method. Theorem 3 states that the
proposed regularization method is an admissible regularization strategy. Details are given in
the subsequent sections.

1.2. The X-ray transform on torus, the Radon transform and the geodesic X-ray
transform. In this paper we consider application of the X-ray transform on the flat torus
Tn = Rn/Zn to the usual CT in the case when n = 2. In this section we give an account of
theoretical works on the X-ray transforms on tori. As expected, the d-plane Radon transform
of a function f on Tn encodes the integrals of f over all periodic d-planes. The X-ray transform
corresponds to the case when d = 1 and is in fact the geodesic X-ray transform on Tn over
closed geodesics. It is described in section 2.3 how the usual CT reconstruction on R2 can be
reduced to a reconstruction on T2.

Injectivity, reconstruction and certain stability estimates of the d-plane Radon transform
on Tn were proved for distributions by Ilmavirta in [10]. The first injectivity result for the
geodesic X-ray transform on T2 was obtained by Strichartz in [32], and generalized to Tn by
Abouelaz and Rouvière in [2] if the Fourier transform is �1(Zn). Abouelaz proved uniqueness
under the same assumption for the d-plane Radon transform in [1]. A more general view and
references on the Radon transform and the geodesic X-ray transform are given in [30, 9, 25, 12].

1.3. Inversion formulas and Tikhonov regularization. We state here our main theorems
regarding the X-ray transform on T2. We write the X-ray transform on T2 as I and denote
If(x, v) = Ivf(x). In our proofs, we subsequently apply the fundamental (but simple) property
of the X-ray transform on T2, stated in the formula (9), that was found in [10]. The exact
definitions are given in section 2.

Our first theorem gives new inversion formulas for the X-ray transform. We give two proofs
of theorem 1 in section 2.2. The first one does not rely to the inversion formula of [10] whereas
the second simpler proof does.

Theorem 1. Suppose that f ∈ L1(T2). Let k ∈ Z2. If k, v �= 0 and v⊥k, then

(1) f̂(k) =

{´ 1
0 Ivf(0, y) exp(−2πik2y)dy, k2 �= 0´ 1
0 Ivf(x, 0) exp(−2πik1x)dx, k1 �= 0.

If k = 0, then

(2) f̂(k) =

ˆ 1

0
I(1,0)f(0, y)dy =

ˆ 1

0
I(0,1)f(x, 0)dx.

The function f can be reconstructed by the Fourier series (8) and the formulas (1) and (2).

Let Q denote the set of all integer directions; a more detailed description will be given later.
We consider a Tikhonov minimization problem: given some data g ∈ Hr(T2 ×Q), find

(3) argmin
f∈Hr(T2)

(
‖If − g‖2Hr(T2×Q) + α ‖f‖2Hs(T2)

)
.
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Let us define the post-processing operator P s
α to be the Fourier multiplier (1 + α 〈k〉2s)−1 and

denote by I∗ the adjoint of I. We have the following theorems on regularization. The proofs
are given in sections 2.4 and 2.5 respectively.

Theorem 2. Let r ∈ R, s ≥ r, and α > 0. Suppose g ∈ Hr(T2 ×Q). The unique minimizer f
of the minimization problem (3) corresponding to Tikhonov regularization is f = P s−r

α I∗g ∈
H2s−r(T2) ⊂ Hr(T2).

Theorem 3. Suppose r, t, s, δ ∈ R are such that 2s+ t ≥ r, δ ≥ 0, and s > 0. We assume that
f ∈ Hr+δ(T2) and g ∈ Ht(T2 ×Q).

Then our regularized reconstruction operator P s
αI∗ gives a regularization strategy in the sense

that

(4) lim
ε→0

sup
‖g‖Ht(T2×Q)≤ε

∥∥∥P s
α(ε)I∗(If + g)− f

∥∥∥
Hr(T2)

= 0,

where α(ε) =
√
ε.

Moreover, if ‖g‖Ht(T2×Q) ≤ ε, 0 < δ < 2s and 0 < α ≤ 2s/δ − 1, we have

(5) ‖P s
αI∗(If + g)− f‖Hr(T2) ≤ αδ/2sC(δ/2s) ‖f‖Hr+δ(T2) +

ε

α
,

where C(x) = x(x−1 − 1)1−x.

Remark 4. If we choose the regularization parameter as α = εγ , the optimal asymptotic rate
of convergence is obtained when γ = (1 + δ/2s)−1. Then the terms αδ/2s and ε/α are of equal
order.

We have also studied mapping properties, the adjoint and the normal operator of I in propo-
sitions 10 and 11; these results are stated in section 2. For example, it turns out that I|Hs(T2)

is unitary to its range for any s ∈ R (see proposition 11).

Acknowledgements. J.I. was supported by the Academy of Finland (decision 295853). O.K.
was supported by Jane and Aatos Erkko Foundation, and Jenny and Antti Wihuri Foundation.
J.R. was supported by the Academy of Finland (CoE in Inverse Problems Research in 2017
& CoE in Inverse Modelling and Imaging in 2018–2019). The authors are grateful to Sampsa
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helpful discussions, and Martin Bright for a helpful MathOverflow discussion related to propo-
sition 16. O.K. wishes to thank Jari Hyttinen for providing a good working environment for
completing this research. J.R. wishes to thank Matti Lassas and Samuli Siltanen for providing
a good working environment at the University of Helsinki during his one-year visit in 2018.

2. Torus CT method

In this section we will lay out the theory of the Torus CT method. The reconstruction method
is based on the Fourier series and properties of the geodesic X-ray transform on T2. There is a
natural projection operator from the X-ray transform data of a compactly supported function
on the plane to the X-ray transform data on T2. This so called torus-projection operator plays
the role of the back-projection operator. For more details on the geodesic X-ray transform on
tori see [10] and [11, Chapter 3].

2.1. The geodesic X-ray transform on T2. We define the flat torus as the quotient T2 :=
R2/Z2 and denote the quotient mapping [·] : R2 → T2. A function f : T2 → C can be equivalently
thought as a periodic function on R2 via the quotient mapping [·]. We may thus consider a
function f : T2 → C as a periodic function on the whole R2.

On closed Riemannian manifolds one defines the geodesic X-ray transform as a collection of
line integrals of a function over periodic geodesics. The all geodesics of T2 are given by the
parametrizations γx,v(t) := [x + tv], (x, v) ∈ [0, 1]2 × R2 \ 0. The geodesic γx,v is periodic with
the period 1 (with respect to the parameter t) if and only if (x, v) ∈ [0, 1]2 × (Z2 \ 0) (see e.g.
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[11, Exercise 23]). In general, a geodesic is periodic on T2 if and only if its direction vector is a
multiple of a rational vector.

We denote the space of test functions by T := C∞(T2) and the set of all mappings X → Y

by Y X . We define the (geodesic) X-ray transform on T2 as an operator I : T → RT2×(Z2\0) by

(6) If(x, v) :=
ˆ 1

0
f(γx,v(t))dt, f ∈ T , x ∈ [0, 1]2 v ∈ Z2 \ 0.

A simple calculation shows that that f �→ If(·, v) is a formally self-adjoint operator on T
for any fixed v ∈ Z2 \ 0. We denote the dual space of T by T ′, i.e. the space of distributions.
By formal self-adjointness of I, we may define the X-ray transform on distributions f ∈ T ′ by

(7) [If(·, v)](η) := (f, Iη(·, v)), η ∈ T
where (·, ·) is the duality pairing.

If f ∈ T ′, then we denote the Fourier coefficients of f as f̂(k) := f(e−2πik·x), k ∈ Z2, and the
Fourier series

(8) f(x) =
∑
k∈Z2

f̂(k)e2πik·x

converges in the sense of distributions. We are now ready to recall the inversion formula in [10]:

Theorem 5 (Eq. (9) in [10]). If f ∈ T ′, then

(9) Îf(k, v) =
{
f̂(k) k · v = 0

0 k · v �= 0.

Theorem 5 gives a constructive formula (9) for the inverse of the X-ray transform on T2.

2.2. Inversion formula for integrable functions. In this section we simplify the formula (9)

for functions in L1(T2). It turns out that the dimension of the integral defining Îf(k, v) can
decreased by one using a change of coordinates, which enables a computationally faster imple-
mentation.

Recall that f ∈ T ′ is in L1(T2) if there exists a function f̃ ∈ L1(T2) such that

(10) (f, ϕ) =

ˆ
T2

f̃ϕdm, ∀ϕ ∈ C∞(T2).

It holds that L1(T2) ⊂ T ′. If If(·, v) ∈ L1(T2) for some f ∈ T ′, then we simply denote that
Ivf = If(·, v).

We define a family of coordinates which will be used repeatedly in this subsection. Suppose
that v ∈ Z2 \ 0 and v1, v2 �= 0. Let wm := m

|v1|v,m ∈ Z, and define the coordinates ϕv,m on T2

as

(11) ϕv,m(a, b) �→ a
v

|v2|
+ (0, b) + wm, a ∈ [0,

∣∣∣∣v2v1
∣∣∣∣), b ∈ [0, 1).

Notice that a v
|v2|+(0, b) = (a v1

|v2| ,
v2
|v2|(a+b)) and wm = m( v1

|v1| ,
v2
|v1|) in the Cartesian coordinates.

It easily follows that the Lebesgue measure on T2 transforms as dm =
∣∣∣v1v2 ∣∣∣ d(a, b) where d(a, b)

denotes the Lebesgue measure on X := [0,
∣∣∣v2v1 ∣∣∣)× [0, 1).

Remark 6. The coordinates ϕv,m parametrize T2 as parallelograms which are located on R2.
Moreover, the parallelograms associated with ϕv,m,m ∈ Z are disjoint for a fixed v ∈ Z2 \ 0
when looked on R2. An example is given on Figure 1.

The next lemma states that the geodesic X-ray transform of L1(T2) function can be defined
geodesic-wise for almost every closed geodesic. Furthermore, the X-ray data for any fixed
direction is also L1(T2), and this definition agrees with the distributional definition.
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Figure 1. Parallelograms associated to the coordinates ϕv,m when v = (2, 2)
and m = 0, 1.

Lemma 7. Suppose that v ∈ Z2 \ 0. Then the X-ray transform Iv : L1(T2) → L1(T2) can be
defined by the formula

(12) Ivf(p) :=
ˆ 1

0
f(p+ tv)dt for a.e. p ∈ T2.

Moreover, we have:

(1) This definition coincides with the distributional definition; for every f ∈ L1(T2) and
g ∈ L∞(T2) it holds that (Ivf, g) = (f, Ivg).

(2) Iv : L1(T2) → L1(T2) is Lipschitz continuous with Lipschitz constant 1.
(3) For almost every p ∈ T2 and every v ∈ Z2\0 and t ∈ R it holds that Ivf(p) = Ivf(p+tv).

Proof. This follows from the Fubini’s theorem and straightforward calculations using the coor-
dinates ϕv,m. We omit the details. �

We will give two proofs for theorem 1. The first proof is based on the assumption that
f ∈ L1(T2) and straightforward computation of the Fourier coefficients. The first proof proves
the injectivity of the X-ray transform on T2 for L1(T2) functions independently of [10]. The
second proof is based on the formula (9) and the assumption that If(·, v) ∈ L1(T2). Both of
the proofs involve the coordinates ϕv,k.

First proof of theorem 1. Recall that

(13) f̂(k) =

ˆ 1

0

ˆ 1

0
f(x, y) exp(−2πik · (x, y))dxdy.

If k1 = 0 or k2 = 0, then the formulas (1) and (2) follow trivially from (13).
The case k1, k2 �= 0. We can use the coordinates ϕv,m,m ∈ Z, defined by the formula (11).

Using these coordinates we can calculate

(14) f̂(k) =

ˆ 1

0

ˆ |v2/v1|

0
f(ϕv,m(a, b)) exp

(
−2πik ·

(
a

|v2|
v + (0, b) + wm

)) ∣∣∣∣v1v2
∣∣∣∣ dadb.

Notice that k ·
(

a
|v2|v + (0, b) + wm

)
= k2b since v · k = wm · k = 0.

Hence, we have

(15) f̂(k) =

∣∣∣∣v1v2
∣∣∣∣ ˆ 1

0

ˆ |v2/v1|

0
f

(
a

v

|v2|
+ (0, b) + wm

)
da exp(−2πik2b)db.

We sum the formula (15) for values m = 0, . . . , |v1| − 1, which gives

(16) |v1| f̂(k) = |v1|
ˆ 1

0
Ivf(0, y) exp(−2πik2y)dy.

This completes the proof. �
We will next prove a more general version of theorem 1.
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Theorem 8. Suppose that f ∈ T ′ and If(·, v) ∈ L1(T2) for any v ∈ Z2 \ 0. Then the
formulas (1) and (2) are true.

Proof. We only show how to argue if k1, k2 �= 0 since the other special cases are trivial. Recall

that the inversion formula (9) states that Îvf(k) = f̂(k) for any v ∈ Z2 \ 0 such that k⊥v. We
apply the coordinates ϕv,0.

Using the Fubini’s theorem and calculations similar to the first proof of theorem 1, we get

(17) Îvf(k) =
∣∣∣∣v1v2

∣∣∣∣ ˆ 1

0

ˆ |v2/v1|

0
Ivf(ϕv,0(a, b))da exp(−2πik2b)db.

Now, the formula (1) follows from the property (3) of lemma 7. This completes the proof. �

Second proof of theorem 1. Lemma 7 implies that Ivf ∈ L1(T2) if f ∈ L1(T2). Hence, theorem 8
implies the inversion formulas. �

2.3. The torus-projection operator. We denote the X-ray transform of f : R2 → C by
Rvf(p) for any (p, v) ∈ R2 × S1. We parametrize the lines of the plane so that

(18) Rvf(p) =

ˆ
R
f(p+ tv)dt.

Suppose that f is a compactly supported function on R2. We may then consider f as a function
defined on T2 after rescaling and periodizing. Let us denote the periodic extension of f into T2

by the same symbol f .
Suppose further that f ∈ C(T2). As described in [11, Lemma 3.1], for any p ∈ T2 and

v ∈ Z2 \ 0 one can write Ivf(p) as a finite sum of terms Rv/|v|f(pi), i = 1, . . . ,m. One simply

has to write any periodic geodesic γ of T2 as a finite disjoint union of line segments that are
supported in [0, 1) × [0, 1) and travel from the boundary to the boundary in the fundamental
domain of T2. However, such unions are tedious to write down rigorously. This procedure
defines the torus-projection operator Rf �→ If for compactly supported continuous functions
f : R2 → C. For further details, see [11, Chapter 3]. Using duality, this operator extends to
distributions. See also the description of our numerical implementation in section 3.1.2.

2.4. Sobolev spaces, adjoint, normal operator and regularization. Let Q ⊂ Z2 be such
that every nonzero v ∈ Z2 is an integer multiple of a unique element in Q. We can simply
take Q to be the set of those vectors (a, b) for which a and b are coprime with a > 0 and b �= 0
and the vectors (0, 1) and (1, 0). The set Q is the set of all periodic directions on the torus, with
all multiple counts removed. This set can be naturally identified with the projective space P1

defined later.
The X-ray transform we study takes a function on T2 to a function on T2 ×Q. To set things

up properly, we need to define function spaces and norms on both sides. On T2, we use the
standard Sobolev scale of spaces Hs(T2) with the norms

(19) ‖f‖2Hs(T2) =
∑
k∈Z2

〈k〉2s
∣∣∣f̂(k)∣∣∣2 ,

where 〈k〉 = (1 + |k|2)1/2 as usual. On T2 ×Q, we define the spaces Hs(T2 ×Q) to be the set
of functions g : T2 ×Q → C for which

(i) g(·, v) ∈ Hs(T2) for every v ∈ Q;
(ii) the average of every g(·, v) is the same; and
(iii) the norm

(20) ‖g‖2Hs(T2×Q) = |ĝ(0, 0)|2 +
∑

k∈Z2\0

∑
v∈Q

〈k〉2s |ĝ(k, v)|2

is finite. We set v = 0 for the Fourier term k = 0 to emphasize that it is the same for
every v ∈ Q. We remind the reader that 0 /∈ Q.
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We emphasize that the regularity parameter s can be any real number in the theory presented
in this section. By setting s = 0 one obtains a theory in H0 = L2. We point out that the spaces
considered here are different from [10].

Remark 9. The norm of g ∈ Hs(T2 × Q) is essentially an �2(Q) norm of the Hs(T2) norms of
the functions g(·, v). This �2 can be replaced with any �p without much effect to the theory, as
the different functions in the family indexed by Q have disjointly supported Fourier series apart
from the origin. The case p = ∞ is particularly convenient because then special considerations
are not needed at k = 0. We choose p = 2 to stay in a Hilbert space setting.

We denote v⊥ = (−v2, v1) for any v = (v1, v2) ∈ Z2. For v ∈ Z2 \ 0, we denote by v̂ the
unique point in Q that is parallel to v. We can define 0̂ to be any point in Q; this choice will

not matter. To keep notation neater, we will write v̂⊥ instead of v̂⊥.
Proposition 10. The X-ray transform is continuous Hs(T2) → Hs(T2 ×Q) for any s ∈ R.

Proof. For any v ∈ Q, the Fourier transform of function If(·, v) is supported on the line v⊥Z by

theorem 5. In fact, it is the restriction of f̂ to this line. It then follows easily from the definition
of the Sobolev norm on the Fourier side that If(·, v) ∈ Hs(T2) whenever f ∈ Hs(T2).

It follows from the same theorem that Îf(0, v) = f̂(0) for all v ∈ Q, and so all the averages
agree as required.

Since Z2 is a disjoint union of the origin and the punctured lines vZ \ 0 with v ∈ Q, one can
easily verify that ‖If‖H2(T2×Q) = ‖f‖Hs(T2). �
Proposition 11. Fix any s ∈ R. The adjoint of I : Hs(T2) → Hs(T2×Q) is I∗ : Hs(T2×Q) →
Hs(T2) given by

(21) Î∗g(k) = ĝ(k, k̂⊥).

The normal operator I∗I : Hs(T2) → Hs(T2) is the identity, so that I is unitary to its range.

Remark 12. We emphasize that there is a striking difference to the usual Euclidean X-ray
transform, where the normal operator is a convolution. In our setup the X-ray transform is
directly inverted by its normal operator without any filtering or post-processing.

Proof of proposition 11. Let us take any two functions f ∈ Hs(T2) and g ∈ Hs(T2 × Q). We

denote the complex conjugate of z ∈ C as z∗. Theorem 5 shows that Îf(k, v) = f̂(k)δ0,k·v, and
so the Hs inner products satisfy

(If, g) = Îf(0, 0)∗ĝ(0, 0) +
∑

k∈Z2\0

∑
v∈Q

〈k〉2s Îf(k, v)∗ĝ(k, v)

=
∑
k∈Z2

〈k〉2s f̂(k)∗ĝ(k, k̂⊥)

= (f, I∗g) .

(22)

Therefore, the operator I∗ defined above is the adjoint of I.
It follows directly from the formula of theorem 5 that I∗ is a left inverse of I. �

Remark 13. The X-ray transform or its normal operator have no effect on regularity. In the usual
formulation, the normal operator does increase the smoothness index s, but when everything is
set up on T2 the operators leave the regularity level intact.

We now turn to regularized inversion, and solve the Tikhonov minimization problem (3). We

will make use of the post-processing operator P s
α, which is the Fourier multiplier (1+α 〈k〉2s)−1.

It is evident that P s
α maps continuously Hr(T2) → Hr+2s(T2) for any s, r ∈ R.

Proof of theorem 2. We begin with expanding the norms along lines given by Q on the Fourier
side. We have

(23) ‖f‖2Hs(T2) =
∣∣∣f̂(0)∣∣∣2 +∑

v∈Q

∑
p∈Z\0

〈pv〉2s
∣∣∣f̂(pv⊥)∣∣∣2
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and

(24) ‖If − g‖2Hr(T2×Q) =
∣∣∣Îf(0, 0)− ĝ(0, 0)

∣∣∣2 +∑
v∈Q

Av,

where

Av =
∑
p∈Z\0

〈pv〉2r
∣∣∣Îf(pv⊥, v)− ĝ(pv⊥, v)

∣∣∣2
+

∑
w∈Z2\vZ

〈w〉2r
∣∣∣Îf(w, v)− ĝ(w, v)

∣∣∣2 .(25)

Each Îf(w, v) vanishes in the last sum by theorem 5. Therefore, the second sum of Av is

independent of f and can be left out of the minimization problem. Furthermore, Îf(pv⊥, v) =
f̂(pv⊥).

Thus, we are left with minimizing∣∣∣Îf(0, 0)− ĝ(0, 0)
∣∣∣2 + α

∣∣∣f̂(0)∣∣∣2
+
∑
v∈Q

∑
p∈Z\0

(
〈pv〉2r

∣∣∣f̂(pv⊥)− ĝ(pv⊥, v)
∣∣∣2 + α 〈pv〉2s

∣∣∣f̂(pv⊥)∣∣∣2) .
(26)

The notation introduced above allows us to rewrite the minimized quantity as

(27)
∑
k∈Z2

〈k〉2r
(∣∣∣f̂(k)− ĝ(k, k̂⊥)

∣∣∣2 + α 〈k〉2(s−r)
∣∣∣f̂(k)∣∣∣2) ,

and this can be minimized explicitly.
It suffices to choose each f̂(k) so that the term in the parentheses of (27) is minimized. A

straightforward computation shows that the minimal f̂(k) is

(28) f̂(k) = (1 + α 〈k〉2(s−r))−1ĝ(k, k̂⊥).

That is, the minimizer we sought is f = P s−r
α I∗g. Finally, by the mapping properties of P s−r

α

and I∗ we have f ∈ H2s−r(T2). This implies that f is in the correct space Hr(T2) since we
assumed s ≥ r. �

Remark 14. Choosing r = 0 and s = 1, we reconstruct a function in L2 with anH1 penalty term.
If we want the penalty to be the L2 norm of the gradient without the L2 norm of the function,
the Fourier multiplier in the penalty term is changed from 〈k〉2 to |k|2. This corresponds to
changing the Sobolev norm to a homogeneous Sobolev norm. Such changes lead to similar
results but with slightly different postprocessing operator.

2.5. Regularization strategy. We define the concept of a regularization strategy according
to [6, 15]. Let X and Y be subsets of Banach spaces and F : X → Y a continuous mapping.
A family of continuous maps Rα : Y → X with α ∈ (0, α0] is called a regularization strategy
if limα→0Rα(F (x)) = x for every x ∈ X. A choice of regularization parameter α(ε) with
limε→0 α(ε) = 0 is called admissible if

(29) lim
ε→0

sup
y∈Y

{
‖Rα(ε)y − x‖X ; ‖y − F (x)‖Y ≤ ε

}
= 0

holds for every x ∈ X. Regularization strategies have been found for other inverse problems
including, for example, electrical impedance tomography (EIT) [16] and inverse problem for the
1 + 1 dimensional wave equation [18, 19].

We will next prove that the regularized inversion operator P s
αI∗ obtained in theorem 2 actu-

ally provides an admissible regularization strategy with a quantitative stability estimate.
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Proof of theorem 3. Using proposition 11, we write

(30) P s
αI∗(If + g)− f = (P s

α − id)f + P s
αI∗g

and aim to estimate these two terms. In this proof, we denote the norm of Hr(T2) simply
by ‖·‖r.

Since ‖g‖Ht(T2×Q) ≤ ε and ‖I∗‖ = ‖I‖ = 1, we have ‖I∗g‖t ≤ ε. Applying the definitions of

the norms and the operator P s
α, we find

(31) ‖P s
αI∗g‖2r ≤ ε2 sup

k∈Z2

(1 + α 〈k〉2s)−2 〈k〉2r−2t .

Estimating 1 + α 〈k〉2s ≥ α 〈k〉2s and using −4s + 2r − 2t ≤ 0 shows that the supremum is at
most α−2. Therefore

(32) ‖P s
αI∗g‖r ≤ α−1ε,

which converges to zero as ε → 0 with α =
√
ε.

A calculation shows that P s
α − id = − α〈k〉2s

1+α〈k〉2s as a Fourier multiplier. Unfortunately, this

implies that

(33) ‖P s
α − id‖Hr(T2)→Hr(T2) = sup

k∈Z2

α 〈k〉2s

1 + α 〈k〉2s
= 1

whenever s > 0 and α > 0. Therefore, a uniform estimate is impossible when δ = 0, but
it follows from the dominated convergence theorem that ‖(P s

α − id)f‖2r → 0 as α → 0 when
f ∈ Hr(T2). The first claim of the theorem follows.

If δ > 0, the additional regularity of f can be used to our advantage. It follows from the
definitions of the norms that

(34) ‖(P s
α − id)f‖2r ≤

⎛⎝ sup
k∈Z2

(
α 〈k〉2s

1 + α 〈k〉2s

)2

〈k〉−2δ

⎞⎠ ‖f‖2r+δ,

and thus

(35) ‖P s
α − id‖Hr+δ(T2)→Hr(T2) = sup

k∈Z2

α 〈k〉2s−δ

1 + α 〈k〉2s
.

Estimating this norm is crucial for the proof.
The supremum of (35) can be studied using the function F : (0,∞) → (0,∞) given by

(36) F (x) =
αx2s−δ

1 + αx2s
.

Simple calculus shows that if 2s > δ, then the maximum is attained at x2s = α−1(2s/δ−1) and
the maximal value on (0,∞) is

(37) αδ/2s δ

2s

(
2s

δ
− 1

)1−δ/2s

.

We are interested in the maximum of F on [1,∞). If 2s/δ − 1 < α, then the maximum is
reached at x ∈ (0, 1), and so the maximum on the relevant interval is F (1) = α/(1 + α). (One
can also verify that the two maxima coincide when 2s/δ− 1 = α, as they should.) We assumed
that 2s/δ > 1, so α ∈ (0, 2s/δ − 1] for small enough α.

For α ≤ 2s/δ − 1, the maximum value of F is

(38) αδ/2s δ

2s

(
2s

δ
− 1

)1−δ/2s

= αδ/2sC(δ/2s).

We conclude that

(39) ‖P s
α − id‖Hr+δ(T2)→Hr(T2) ≤ αδ/2sC(δ/2s),

9



and so

(40) ‖(P s
α − id)f‖r ≤ αδ/2sC(δ/2s) ‖f‖r+δ .

The estimate (5) now follows easily from the estimates (32) and (40). �

If α is bigger than assumed in the proof, then we may use the simpler estimate F (x) ≤
α/(1 + α) ≤ α for all x ≥ 1, which would lead to replacing αδ/2sC(δ/2s) in estimate (5) by
simply α. However, we are only interested in the limit of small α.

We point out that C(δ/2s) → 1 and αδ/2s → 1 when δ → 0, matching the norm in the
limiting case of (33).

The noise g in theorem 3 can be in any function space so that I∗g, the reconstruction from
pure noise, is in a suitable Sobolev space.

2.6. Numerical and asymptotic analysis for discretized problem. In this section, we
consider questions arising from discrete practice. We analyze errors caused by a discretization
of data in section 2.6.1. In section 2.6.2, we study how to choose a minimal set of X-ray
directions in order to reconstruct all Fourier coefficients of a phantom in a given box.

Another source of errors in practice comes from the fact that we can only calculate finitely
many coefficients of the Fourier series. The error caused by the cutoff of the Fourier series
can be estimated with knowledge of asymptotic behavior of the Fourier coefficients. We do
not consider this matter here further since it is a general question about convergence rates of
Fourier series.

2.6.1. On convergence rates for discretization. Let f ∈ CN be written as f = (f0, . . . , fN−1). We
define the discrete Fourier transform (DFT) of f by

(41) DFT(f)k :=
1

N

N−1∑
l=0

fl exp(−2πikl/N), k = 0, . . . , N − 1.

The following corollary of theorem 8 discretizes the inverse problem and reduces it to calculations
of 1-dimensional DFTs. It is elementary and included here for completeness.

Corollary 15. Let f ∈ T ′, Ivf ∈ L1(T2), k ∈ Z2 \ 0. Denote gv(y) := Ivf(0, y) and hv(x) :=
Ivf(x, 0).

(1) If v⊥k, then f̂(0, 0) = ĝ(1,0)(0) = ĥ(0,1)(0) and

f̂(k1, k2) =

{
ĝv(k2), k2 �= 0

ĥv(k1), k1 �= 0.

(2) (Left-point rule and DFT) Let N ∈ Z+. We denote gl = gv(l/N) and hl = hv(l/N) for
l = 0, . . . , N − 1. If Ivf is Riemann integrable along vertical and horizontal lines, then

DFT(g)k2 → ĝv(k2) as N → ∞.

Moreover, if Ivf ∈ C1(T2), then |ĝv(k2)−DFT(g)k2 | ≤ Cf,k2/N where Cf,k2 > 0 does
not depend on N . Similar statements hold for hv as well.

(3) (Mid-point rule and DFT) Let N ∈ Z+. We denote gl = gv(l/N + 1/2N) and hl =
hv(l/N + 1/2N) for l = 0, . . . , N − 1. If Ivf is Riemann integrable along vertical and
horizontal lines, then

exp(−πik2/N)DFT(g)k2 → ĝv(k2) as N → ∞.

Moreover, if Ivf ∈ C2(T2), then |ĝv(k2)− exp(−πik2/N)DFT(g)k2 | ≤ Cf,k2/N
2 where

Cf,k2 > 0 does not depend on N . Similar statements hold for hv as well.
10



Proof. The statement (1) is a rephrased version of theorem 8. We only prove the statement
(3). The proof of the statement (2) is similar and thus omited. Let N ∈ Z+ be fixed. By the
definition of the DFT

exp(−πik2/N)DFT(g)k2

=
1

N

N−1∑
l=0

gl exp(−πik2/N) exp(−2πik2l/N)

=
1

N

N−1∑
l=0

gv(l/N + 1/2N) exp(−2πik2(l/N + 1/2N)).

(42)

The statement follows since this the mid-point approximation of ĝv(k2). The convergence rate
is just a standard result on the mid-point rule (see e.g. [5]). �

2.6.2. Choosing directions for X-ray data. Let us define the set

(43) AN := {v ∈ Z2 \ 0 ; v ∈ k⊥ for some k ∈ ZN}
where ZN = [−N,N ]2 ∩ Z2. It is known that the data (If(·, v))v∈AN

determines (f̂(k))k∈ZN
.

Thus, we define

(44) ϕ(N) := min{|B| ; B ⊂ AN , (If(·, v))v∈B determines (f̂(k))k∈ZN
}.

Define the set VN := X+ ∪X− ∪ {(1, 0), (0, 1)} where

X+ = { (v1, v2) ∈ ZN \ 0 ; gcd(v1, v2) = 1, v1, v2 ≥ 1 },
X− = { (−v1, v2) ; v ∈ X+ }.(45)

Now, it is an elementary observation that the data (If(·, v))v∈VN
determines (f̂(k))k∈ZN

and
|VN | = ϕ(N).

We then turn to studying the asymptotic behavior of ϕ(N). We denote by P1 := P1(Q) the
collection of equivalence classes (a : b), (a, b) ∈ Z2 \ 0, such that (x, y) ∈ (a : b) if and only
if c(x, y) = (a, b) for some c �= 0 and (x, y) ∈ Z2 \ 0. The height is defined as H(a : b) :=
max{|a| , |b|} using the unique representative (up to a sign) of (a : b) with gcd(a, b) = 1. One of
the simplest special cases of the Schanuel’s theorem [27, Theorem 1] states that

(46)
∣∣{ (a : b) ∈ P1 ; H(a : b) ≤ N }

∣∣ = 2

ζ(2)
N2 +O(N logN)

as N → ∞. More detailed exposition is given in the book of Serre [28, Chapter 2.5].
We conclude with the following proposition.

Proposition 16. It holds that ϕ(N) = 2
ζ(2)N

2 +O(N logN).

Proof. If we want to reconstruct f̂(k), then we need at least one v ∈ k⊥ by theorem 5 and, on
the other hand, just one v ∈ k⊥ is enough. It follows from the definition of height that

(47) ϕ(N) =
∣∣{ (a : b) ∈ P1 ; H(a : b) ≤ N }

∣∣ .
The estimate follows now from the Schanuel’s theorem. �
Remark 17. The trivial estimate for directions needed in reconstruction of the Fourier coeffi-
cients (f̂(k))k∈ZN

would be ϕ(N) ≤ (2N + 1)2. In comparison, proposition 16 implies that one
needs to use asymptotically about 3/π2 ≈ 30 % of the data (If(·, v))v∈ZN

.

3. Computational forward and inverse models

We have implemented two forward models for the X-ray transform on T2. The first forward
model is based on direct integration over periodic geodesics on T2 (two different numerical inte-
gration schemes are implemented), and the second forward model on the usual Radon transform
and the torus-projection operator. The regularized inverse model is based on theorems 1 and 2.
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3.1. Computational forward models.

3.1.1. Forward models on the torus. We have two different numerical integration schemes for
the forward integration. The first one is analytical integration of a phantom which is discretized
into square pixels of equal size. In this case, the forward operator, denoted by A1, is

(48) A1f(x, v) :=
1

|v|

N∑
i=1

difi ≈
ˆ 1

0
f(x+ tv)dt = If(x, v)

where di is the length of the geodesic γx,v and fi is the value of the discretized phantom in the
i’th pixel, and N is the size of the grid. The lengths di are calculated by solving the intersection
points of the line {x+ tv ; t ∈ [0, 1] } and the edges of the pixels when the pixels are periodically
extended to R2.

In the second one, the integral is based on the use of global adaptive quadature [29] which
is implemented into the Matlab’s integral function. In this case, a phantom is given in an
analytical form. We denote this forward model by A2.

3.1.2. Forward model using the torus-projection and Radon data. This forward model corre-
sponds to converting conventional X-ray data sets on R2 into X-ray data sets on T2. The
forward model has two steps. The first step is to calculate Radon transform data using the
Matlab’s radon function. The second step is to calculate the torus-projection (see Section 2.3)
of the Radon data. The directions for the Radon transform are chosen so that they contain all
directions generated by integer vectors (see Section 2.6.2).

The X-ray beams on the radon function are parametrized by the distance between the line
of a X-ray beam and the center of a domain O, and the angle of a X-ray beam measured from
the y-axis into the counterclockwise direction. We denote simply that Rf(v) = radon(f, αv,M)
where αv is the angle defined above and M is the number of X-rays taken into direction v. We
index the rays as k = 1, . . . ,M . Further, denote the distances of rays to O by ck,v and the
projection values with the respective rays by Rf(v)k.

We split each geodesic γx,v into segments in which it travels from the boundary to the
boundary when looked at the fundamental domain [0, 1]× [0, 1] of T2. Let dx,v,i be the distance
of the i’th segment of the geodesic γx,v and O, and N the number of distinct segments. Finally,
we can define the forward model AT2 as

(49) AT2f(x, v) =
1

|v|

N∑
i=1

(
w1,iRf(v)k1,i + w2,iRf(v)k2,i

)
where

k1,i = argmin
k∈{1,...,M}

|ck,v − dx,v,i|, k2,i = argmin
k∈{1,...,M}\{k1,i}

|ck,v − dx,v,i|,

w1,i =

∣∣∣∣ ck2,i,v − dx,v,i

ck1,i,v − ck2,i,v

∣∣∣∣, w2,i =

∣∣∣∣ ck1,i,v − dx,v,i

ck1,i,v − ck2,i,v

∣∣∣∣ ,
if
∣∣ck1,i,v − dx,v,i

∣∣+ ∣∣ck2,i,v − dx,v,i
∣∣ < ∣∣ck1,i,v − ck2,i,v

∣∣, and w1,i = w2,i = 0 otherwise.
The last condition ensures that the rays, corresponding to the data in interpolation, are on

the different sides of the geodesic segment. Vise versa, if the condition does not hold, the
geodesic segment is outside the projection width. In other words, this condition is the zero
extension of the data near boundaries of the domain. In short, AT2 is the sum of weighted
averages of two closest projection values with respect to their distances to the corresponding
geodesic segments.

3.2. Computational inverse model. In the inverse model, we calculate the Fourier series co-
efficients of a phantom and reconstruct its Fourier series up to a finite radius r > 0. The Fourier
coefficients are calculated using the inversion formulas (1) and (2) of theorem 1. Furthermore,
we Tikhonov regularize reconstructions using the filter P s

α on the Fourier side according to
theorems 2 and 3.
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Let us write Br = B(0, r) ∩ Z2. The inverse model is

fα,s
rec (x) =

∑
k∈Br

P s
αf̂rec(k) exp(2πik · x)

=
∑
k∈Br

(1 + α 〈k〉2s)−1f̂rec(k) exp(2πik · x)
(50)

where f̂rec(k) is calculated from data using the left-point rule and the DFT according to (1)
and (2) of corollary 15. We remark that the inverse model is meshless, its output is a trigono-
metric polynomial, and thus, completely avoids the so called inverse crime.

4. Numerical experiments

4.1. Phantoms, convergence rates of Fourier series and discretization.

4.1.1. Phantoms. We have used two phantoms in the numerical experiments, the Shepp–Logan
phantom based on the Matlab’s function phantom and the Flag phantom which is a piece-wise
constant function representing a Nordic flag. The Flag phantom fF : [0, 1] × [0, 1] → R was
defined as

(51) fF (x, y) =

{
gF (x, y), x ∈ (0.14, 0.86) and y ∈ (0.28, 0.72)

0, otherwise

where

(52) gF (x, y) =

{
0.3, x ∈ (0.34, 0.46) or y ∈ (0.44, 0.56)

0.9, otherwise.

That is, fF describes the outer boundaries of the flag, and gF returns the background unless x
or y is on the horizontal or vertical stripe, respectively.

4.1.2. Cutoff errors of Fourier series of phantoms. We analyzed the cutoff errors of Fourier
series of the phantoms in order to determine a good, practical value of r > 0 for the reconstruc-
tions. The squared cutoff error of Fourier series can be calculated via the formula

(53) εr = ‖f‖2L2(T2) −
∑
k∈Br

f̂(k)2

using the Parseval’s identity.
We computed εr for the Shepp–Logan phantom, the Flag phantom and the Flag phantom

with a 45◦ rotation. All the three phantoms were studied without noise and with salt-and-
pepper (S&P) type noise applied to the phantoms using the Matlab’s imnoise function with
0.02 noise density. The phantoms were discretized into 4000× 4000 pixel grid and the Fourier
coefficients f̂(k) were computed using the Matlab’s fft2 and fftshift functions.

The squared cutoff errors εr are shown in Figure 2. The squared cutoff errors saturate at
around r = 50, though some improvement might be gained up to r = 200. In our forward and
inverse simulations, we have mainly used r = 50 as it practically seems to be a sufficiently good
choice.

4.1.3. Discretizations of phantoms and geodesics. The starting points of the used geodesics were
chosen to be the equispaced points {(0, 0), (1/nd, 0), (2/nd, 0), . . . , (1−1/nd, 0)} on the x-axis, ex-
cept for geodesics in direction v = (1, 0) where the sampling was {(0, 0), (0, 1/nd), (0, 2/nd), . . . , (0, 1−
1/nd)} on the y-axis. In our experiments, we set nd = 128 when the cutoff radius of the Fourier
series was r ∈ {50, 100}, and nd = r when r ∈ {150, 200}.

The phantoms were discretized with 512× 512 pixel grid when used for forward simulations
with the forward models A1 and AT2 . When we used the forward model A2, the Flag phantom
was not discretized. The values of reconstructions were evaluated at equispaced points in
256× 256 pixel grid, and when compared to the ground truth, the Shepp–Logan and the Flag
phantoms were discretized for the same grid.
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Figure 2. The graphs (r, εr) in a logarithmic scale for the different phantoms.
Vertical, dashed line marks r = 50 where εr saturates.

4.2. Numerical analysis of forward models A1, A2 and AT2.

4.2.1. Forward models A1 and A2 on the torus. We tested Torus CT using the Shepp–Logan
phantom with simulated data

(54) y = A1f + E , E ∼ N (0, σ2), σ =
2

100
.

We made reconstructions with cutoff radii r ∈ {50, 100, 150, 200} of the Fourier series.
In the case of r = 50, we experimented with Tikhonov regularization. The reconstruction

errors with different regularization parameters are shown in Figure 3. We have calculated the
(relative) reconstruction errors using the formula

(55) εα,sp =
‖f − fα,s

rec ‖Lp(T2)

‖f‖Lp(T2)
.

The optimal regularization parameter values yielding the smallest error are given in Table 1.
The plotted errors Figure 3 share some similarities in shape and the resulting regularization
parameter values are close to each other.

Table 1. The regularization parameters (α, s) that give the best reconstructions

with respect to the Lp-norms with p = 1, 2,∞; respective error εα,sp ; and error ε0,0p

of non-regularized reconstruction.

norm Shepp–Logan Flag

p α s εα,sp ε0,0p α s εα,sp ε0,0p

1 0.050 0.69 62% 112% 0.025 0.71 41% 69%
2 0.025 0.61 48% 70% 0.025 0.68 29% 45%
∞ 0.025 0.56 75% 112% 0.025 0.78 73% 106%

The Shepp–Logan phantom is shown in Figure 4a and its non-regularized solution in Fig-
ure 4b. The regularized solutions with p = 2 and p = ∞ based regularization parameter values
(Figures 4d and 4e) are similar, and p = 1 based values yield slightly smoother reconstruction
(Figure 4c).

We tested the effect of increasing the Fourier coefficient by computing the forward data
required for reconstruction of the Fourier coefficients up to radii r = 100, r = 150 and r = 200,
and reconstructions are shown in Figures 4f, 4g, and 4h respectively. The constant regions in
the phantom become a bit more smoother, but overall dynamical range is increased and the
impact of noise in reconstructions remains relatively high.

Similar analysis was also performed with the Flag phantom. We simulated noisy data using
the model y = A2f + E with the noise model of (54). The case r = 50 was used to test
regularization. The reconstruction errors εα,sp are shown in Figure 5 and the regularization
values yielding the minimum error are given in Table 1. The regions close to the minimum
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Figure 3. Error surfaces from Shepp–Logan phantom data using (A) L1-norm,
(B) L2-norm and (C) L∞-norm. The values of the regularization parameters are
α ∈ {0, 0.025, 0.050, . . . , 0.600} and s ∈ {0, 0.01, 0.02, . . . , 0.75}.

of εα,sp are more distinct than in the case of the Shepp–Logan phantom, but similar shape is
seen.

The Flag phantom is shown in Figure 6a and the non-regularized reconstruction in Figure 6b.
The regularized reconstructions with the optimal regularization parameters yielding the mini-
mum errors with p = 1, p = 2 and p = ∞ are shown in Figures 6c, 6d and 6e, respectively. The
regularization parameter values yielding the minimum were close to each other, and with the
Flag phantom, no significant difference is seen in the regularized reconstructions.

Increasing the radius of the Fourier coefficients again increases the dynamical range, plotted
in Figures 6f, 6g and 6h for r ∈ {100, 150, 200}, respectively. However, unlike with the Shepp–
Logan phantom, the details become more distinct, especially the details of the corners in the
Flag phantom.

4.2.2. Forward model AT2 using the torus-projection and Radon data. To test how a Torus CT
algorithm would work with experimental data acquisition, we computed Radon transform of the
phantoms and projected it to T2 using the model AT2 with noise on each data point on Rf(v)k.
More precisely, we simulated data according to the formula (49) where each Rf(v)k was replaced
by noisy data Rf(v)k + E where E ∼ N (0, σ2) with σ = 0.02. This setup modeled experimental
X-ray tomography as the starting point was Radon transform data with additive noise.

The projection directions for Radon transform were computed such that they determined
the Fourier coefficients up to radius r = 50. An illustration of how the projection directions
in (0, 90)◦ are distributed is shown in Figure 7, and the remaining projection directions are
reflections of the projection directions in (0, 90)◦ about the y-axis. In total, with r = 50, there
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Figure 4. (A) Shepp–Logan phantom, (B) non-regularized reconstruction and
(C-E) regularized reconstructions respectively with L1-, L2- and L∞-norm based
choice of reconstruction values. (F-H) Non-regularized reconstruction with in-
creased cutoff radii of the Fourier series, r = 100, 150, 200, respectively.

are 3097 unique projection directions. Two major concentrations of the directions are close
to 45◦, both above and below, but also smaller concentrations are found elsewhere, e.g., close
to 22.5◦.

The reconstructions from data computed with AT2 are shown in Figure 8. Shepp–Logan
(Figures 8a and 8d) and 30◦ rotated Flag (Figures 8c and 8f) are reconstructed well even with
the noisy data but, surprisingly, the non-rotated Flag phantom (Figures 8b and 8e) is rather
poor. Especially with the Shepp–Logan phantom, the features are clearly detected in the noise-
free case (Figure 8a) indicating potential in the technique. Regularized solutions are shown in
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Figure 5. Error surfaces from Flag phantom data using (A) L1-norm, (B)
L2-norm and (C) L∞-norm. Regularization parameters values are α ∈
{0, 0.025, 0.050, . . . , 0.600} and s ∈ {0, 0.01, 0.02, . . . , 1.0}.

Figures 8g), 8h and 8i from the Shepp–Logan, the non-rotated and the rotated Flag phantoms,
repectively. The regularization smoothed the reconstructions, decreased their dynamic range
and no additional features were revealed from the noise. The regularization parameter values
were α = 0.75 and s = 0.5, chosen with manual experimentation.

Table 2. Errors in reconstructions computed with AT2 and the FBP.

Shepp–Logan Flag Rotated Flag Shepp–Logan Flag Rotated Flag
AT2 with noiseless data (E = 0) AT2 with noisy data (E ∼ N (0, σ2))

ε0,01 313% 298% 302% 310% 300% 301%

ε0,02 161% 171% 168% 162% 172% 167%

ε0,0∞ 75% 108% 121% 79% 125% 125%
Regularized reconstruction from noisy data

εα,s1 331% 305% 303%
εα,s2 170% 174% 173%
εα,s∞ 53% 99% 100%

FBP with torus optimized angles FBP with evenly distributed angles
ε1 73% 59% 67% 64% 55% 56%
ε2 59% 41% 51% 54% 45% 45%
ε∞ 155% 87% 127% 129% 93% 120%

For comparison, we computed the respective FBP reconstructions (shown in Figure 9) with
Matlab’s iradon function using default settings. The projection data Rradonf(v)k+E was down
sampled by factor of 2 with imresize to match reconstruction resolution 256× 256. It seems,
that the uneven distribution of projection angles creates errors in reconstruction, since similar
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Figure 6. (A) Flag phantom, (B) non-regularized reconstruction and (C-E)
regularized reconstructions respectively with L1-, L2- and L∞-norm based choice
of reconstruction values. (F-H) Non-regularized reconstruction with increased
cutoff radii of the Fourier series, r = 100, 150, 200, respectively.

artefacts in horizontal, vertical and diagonal directions are seen also in the FBP reconstruction
as in the ones computed with the Torus CT method in Figure 8. From the FBP this was
expected as it is prone to streaking. In general, the FBP reconstructions are of good quality,
since there is a lot of data available. With the same number of projections, 3097, but evenly
distributed as they normally are, the FBP reconstruction are better quality than any other
presented in this paper.

The error εp = ‖f − fFBP
rec ‖Lp(R2)/‖f‖Lp(R2) between the FBP reconstruction fFBP

rec and the
phantom f is tabulated in Table 2. When compared with A1 and A2 and Shepp–Logan and
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(a) (b) (c)

Figure 7. Visualization of the Radon projection angles from 0◦ to 90◦ that
are required in the reconstruction of the Fourier series coefficients up to radii
r = 10, 20, 30, respectively. Each line represents a projection direction.

Table 3. Reconstruction errors ε0,0p of (non-regularized) reconstructions from
rotational data sets.

Shepp–Logan ΘSL
1 ΘSL

2 ΘSL
3 ΘSL

4 ΘSL
5 ΘSL

6 ΘSL
7 ΘSL

8 ΘSL
9

p = 1 113% 82% 69% 61% 56% 52% 49% 46% 44%
p = 2 72% 54% 46% 42% 40% 38% 36% 34% 33%
p = ∞ 97% 89% 84% 77% 77% 73% 70% 69% 68%

Flag ΘF
1 ΘF

2 ΘF
3 ΘF

4 ΘF
5 ΘF

6

p = 1 22% 18% 16% 14% 12% 12%
p = 2 25% 21% 18% 16% 15% 14%
p = ∞ 96% 86% 79% 66% 68% 69%

Flag phantoms, with all values of p, the errors εp are higher than errors of regularized Torus
CT reconstructions εα,sp shown in Table 1. When compared with the errors of non-regularized

reconstructions ε0,01 and ε0,02 , the FBP and Torus CT are relatively close, but the error ε0,0∞ of
Torus CT is lower with the Shepp–Logan phantom and higher with the Flag phantom.

For use with practical data acquisition, Torus CT requires more work to handle the increased
additive noise in AT2 , since the reconstructions have more noise outside of the support of the
phantom than in the FBP reconstructions as seen in the Figure 8. The respective errors εα,s1
and εα,s2 are higher than those of the FBP, presented in Table 2. Nevertheless, in terms of
reconstructing the correct dynamical range of the objects, measured with εα,s∞ and ε∞, the
Torus CT method is equivalent or better than with the FBP.

4.3. Rotating phantom on torus. The theoretical formulation allows to place a phantom
inside T2 in many different positions. Such choice of an orientation of a phantom leads to
different choice of projection directions, and thus results different reconstructions when only
finitely many Fourier coefficients are recovered. This motivated to test, whether the recon-
structions improve when data is acquired from several rotated phantoms. We verified this by
computing the data of the Shepp–Logan phantom from nine different rotational orientations
with 20◦ interval and the Flag phantom with six different rotational orientations with 30◦ in-
terval with Fourier coefficient radius r = 50. Denote the angles of rotational data sets of the
Shepp–Logan phantom with ΘSL

i = {(k − 1) · 20◦ ; k ∈ {1, . . . , i}} and of the Flag phantom with
ΘF

i = {(k − 1) · 30◦ ; k ∈ {1, . . . , i}} , i ∈ N. The forward solutions were simulated as described
in subsection 4.2 by taking count to the rotations ΘSL

i and ΘF
i . For the Shepp–Logan phantom,

the rotation was computed using Matlab’s imrotate with crop option for the Shepp–Logan
phantom. For the Flag phantom, rotation about the point (0.5, 0.5) was made by changing the
coordinates in equations (51) and (52).
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Figure 8. Reconstruction from (A)-(C) noise-less and (D)-(F) noisy Radon
data mapped to torus of Shepp–Logan, Flag and Flag rotated 30◦. (G)-(I)
regularized reconstructions from respective noisy data.

We reconstructed the phantoms by calculating the independent reconstructions for each ro-
tation in ΘSL

i and ΘF
i , and then by taking the average of the reconstructions 1, . . . , i to be the

final reconstruction. The reconstructions from the rotational data sets are shown in Figure 10
for the Shepp–Logan phantom and in Figure 11 for the Flag phantom. The reconstruction
errors ε0,0p (eq. 55) are tabulated in Table 3 for both phantoms. With the Flag phantom, the re-
construction errors is computed only on the support of the flag phantom and the errors are ruled
out at the points where the Flag phantom vanish. With the Shepp–Logan, ε0,0p was computed
on the whole grid. The reconstructions were evaluated in a grid of 256× 256 pixels.

20



0 0.5 1 1.5

(a)

0 0.5 1

(b)

0 0.5 1 1.5

(c)

0 0.5 1 1.5

(d)

0 0.5 1

(e)

0 0.5 1

(f)

Figure 9. (A)-(C) Filtered backprojection reconstructions from Radon data
with torus optimized angles. (D)-(F) Filtered backprojection reconstruction from
equispaced projection angles with same amount of projections as in (A)-(C).

With the Shepp–Logan phantom there is clear visual improvement with the increase of rota-
tionally acquired data and also decreasing trend in the errors. With the simpler Flag phantom,
reconstruction quality seems to saturate as the decrease of error norms is not as clear as with
the Shepp–Logan phantom. Nevertheless, the smallest error norm is given with the highest
number of rotational data (shown in Table 3) and the visual evaluations support this.

The rotation of the phantom does contribute to the improvement of reconstructions. In other
words, the improvement is not merely due to averaging out the zero mean noise. We simulated
data from the same rotational orientation of the Shepp–Logan phantom nine times, and the
errors were as follows: ε0,01 = 52%, ε0,02 = 37% and ε0,0∞ = 66%. For the Flag phantom with six

times from same rotational orientation, the errors were: ε0,01 = 43%, ε0,02 = 28% and ε0,0∞ = 76%.
In both cases the errors were higher than what was gained with different rotational orientations,
except for ε0,0∞ with Shepp–Logan phantom where the error was almost equal. It should also be
noted that the use imrotate induces some blurring during the rotation of reconstructions and
the Shepp–Logan phantom and nonetheless rotational reconstructions performed better.

4.4. Computing times. The computing time of the forward system, i.e., data, depends mainly
on the cutoff radius r of the Fourier series and on the number used geodesics in each direction
(see discretization of x in 4.1.3). In terms of this paper, the radius r was more of the in-
terest. Discretization relates to the numerical accuracy and the data acquisition accuracy of
experimental setup. Example computing times tr for data on Lenovo P51 laptop with Intel
i7-7820HQ CPU and 32 GB of RAM having MATLAB R2017a (The MathWorks, Inc.) with
the Shepp–Logan phantom and A1 are t50 = 5.5 min and t100 = 51 min; and with the Flag
phantom and A2, t50 = 100 min and t100 = 62 min. On Lenovo P910 high-end workstation with
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Figure 10. Reconstructions based on data sets of Shepp–Logan phantom ro-
tated with respective angles.

two Intel Xeon E5-2697 processors and 256 GB RAM having MATLAB version R2016b 64-bit
(The MathWorks, Inc.), the computation times were of order t50 = 2.2 min, t100 = 15 min,
t150 = 60 min and t200 = 188 min with the Shepp–Logan phantom and A1; and t50 = 1.6 min,
t100 = 21 min, t150 = 79 min and t200 = 242 min with the Flag phantom A2. The analytical inte-
gration applied when using the Shepp–Logan phantom with A1 explains its faster computations
times.

The projection of Radon transform sinogram to the torus AT2 and its reconstruction lasted
approximately eight minutes on Lenovo P51. However, the current implementation was not op-
timized at all and included, among other, three nested for-loops. Hence, here the computational
efficiency will increase during further development.
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Figure 11. Reconstructions based on data sets of the Flag phantom rotated
with respective angles.

5. Conclusions

We have developed a theory for the X-ray transform on the flat torus for the purpose of
implementation. Our theoretical results were strongly motivated by practical requirements,
including new and computationally fast reconstruction formulas from X-ray data in theorem 1,
and rigorous mathematical theory for Tikhonov regularized reconstructions from X-ray data on
the flat torus in theorems 2 and 3. We further derived mathematical formulations of discretized
forward and inverse models in section 3, and considered numerical analysis in section 2.6. We
implemented a numerical Torus CT algorithm and performed simulation tests in Matlab which
verified that the new theory could be applied in practice in section 4.

The numerical implementation demonstrated the efficacy of Torus CT. Torus CT is com-
putationally relatively efficient compared with iterative techniques, though still slower than
current implementations of the FBP. An interesting feature of Torus CT is its meshless nature:
Once the Fourier coefficients are computed, the reconstruction can be evaluated in any desired
grid points. Currently, theory and the implementation are established in 2 dimensions, which is
suitable for slice-wise reconstructions of 3-dimensional structures. One future research direction
could be the development of algorithms and theory in higher dimensional settings.

Data simulation was also computed with the traditional Radon transform corresponding to
experimental image acquisition with projection angles preferred by the Torus CT. Here, re-
construction quality was promising. Some initial work has been conducted with conventional,
evenly distributed projection angles, in which case there are various ways to interpolate projec-
tion data to directions preferred by Torus CT. It seems that rotations of a phantom could result
sharp reconstructions and might allow reduction in the number of projection directions. This
question should be studied more and with experimental X-ray data. We admit that at this stage
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the method cannot compete with the existing methods in visual accuracy and sharpness, though
Torus CT reconstructs better than the FBP with respect to Lp norms. This improvement is
due to a choice of optimal regularization parameters. In the future, one should study efficient
rules of choosing regularization parameters from data without knowing a phantom a priori.

Supplementary material

Matlab code. We provide Creative Commons 4.0 licensed Matlab code files that implement
forward model A1 (section 3.1.1) and inverse solutions on torus (section 3.2). The code package
comprises of three files: TorusCTrun.m is the main script, DFT.m implements discrete Fourier
transform (section 2.6), and LineIntegralOnGrid.m computes the exact line integral (48) over
periodically extended, pixelized phantom. Files are available at [20].
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land

BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University,

FI-33014 Tampere University, Finland

E-mail address: olli.koskela@tuni.fi

25



(D)

Fourier analysis of periodic Radon transforms

Jesse Railo

Preprint (2019)



FOURIER ANALYSIS OF PERIODIC RADON

TRANSFORMS

JESSE RAILO

Abstract. We study reconstruction of an unknown function from its
d-plane Radon transform on the flat torus Tn = Rn/Zn when 1 ≤ d ≤
n− 1. We prove new reconstruction formulas and stability results with
respect to weighted Bessel potential norms. We solve the associated
Tikhonov minimization problem on Hs Sobolev spaces using the prop-
erties of the adjoint and normal operators. One of the inversion formulas
implies that a compactly supported distribution on the plane with zero
average is a weighted sum of its X-ray data.

1. Introduction

We study reconstruction of an unknown function from its d-plane Radon
transform on the flat torus Tn = Rn/Zn when 1 ≤ d ≤ n − 1. The d-
plane Radon transform of a function f on Tn encodes the integrals of f
over all periodic d-planes. The usual d-plane Radon transform of compactly
supported objects on Rn can be reduced into the periodic d-plane Radon
transform, but not vice versa. This was demonstrated for the geodesic X-
ray transform in the recent work of Ilmavirta, Koskela and Railo [10]. As
general references on the Radon transforms, we point to [5, 15, 6, 14].

Reconstruction formulas for integrable functions and a family of regu-
larization strategies considered in this article were derived in [10] for the
geodesic X-ray transform (d = 1) on T2. We extend these methods to the
d-plane Radon transforms of higher dimensions, study new types of recon-
struction formulas for distributions, and prove new stability estimates on
the Bessel potential spaces. This article considers only the mathematical
theory of Radon transforms on Tn, whereas numerical algorithms (Torus
CT) were implemented in [10, 13].

Injectivity, a reconstruction method and certain stability estimates of the
d-plane Radon transform on Tn were proved for distributions by Ilmavirta
in [7]. Our reconstruction formulas and stability estimates in this article are
different than the ones in [7]. The first injectivity result for the geodesic
X-ray transform on T2 was obtained by Strichartz in [19], and generalized
to Tn by Abouelaz and Rouvière in [2] if the Fourier transform is �1(Zn).
Abouelaz proved uniqueness under the same assumption for the d-plane
Radon transform in [1].

Date: November 11, 2019.
2010 Mathematics Subject Classification. 44A12, 42B05, 46F12, 45Q05.
Key words and phrases. Radon transform, Fourier analysis, periodic distributions,

regularization.
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FOURIER ANALYSIS OF PERIODIC RADON TRANSFORMS 2

The X-ray transform and tensor tomography on Tn has been applied to
other integral geometry problems. These examples include the broken ray
transform on boxes [7], the geodesic ray transform on Lie groups [8], tensor
tomography on periodic slabs [11], and the ray transforms on Minkowski tori
[9]. We expect that the d-plane Radon transform on Tn has applications in
similar and generalized geometric problems as well, but have not studied
this possibility any further.

This article is organized as follows. The main results are stated in section
1.1. We recall preliminaries and prove some basic properties in section 2. We
prove new inversion formulas in section 3. We prove our stability estimates
and theorems on Tikhonov regularization in section 4.

1.1. Results. We describe our results next. Here we only briefly introduce
the used notation, and more details are given in subsequent sections. One
can also find more details in [7, 10]. Let n, d ∈ Z be such that n ≥ 2 and
1 ≤ d ≤ n− 1. We define the d-plane Radon transform of f ∈ C∞(Tn) as

(1) Rdf(x,A) :=

ˆ
[0,1]d

f(x+ t1v1 + · · ·+ tdvd)dt1 · · · dtd

where A = {v1, . . . , vd} is any set of linearly independent integer vectors
vi ∈ Zn.

It can be shown that A spans a periodic d-plane on Tn, and on the other
hand, any periodic d-plane on Tn has a basis of integer vectors. We can iden-
tify all periodic d-planes on Tn by the elements in the Grassmannian space
Gr(d, n) which is the collection of all d-dimensional subspaces of Qn. We
redefine the d-plane Radon transform on Tn as Rdf : Gr(d, n) → C∞(Tn)
without a loss of data. The definition of Rd extends to the periodic dis-
tributions f ∈ T ′ such that Rdf(·, A) ∈ T ′ for any A ∈ Gr(d, n). We use
the shorter notations Rd,Af = Rdf(·, A) and Xd,n = Tn × Gr(d, n). More
details are given in section 2.1.

Let w : Zn × Gr(d, n) → (0,∞) be a weight function such that w(·, A)
is at most of polynomial decay (17) for any fixed A ∈ Gr(d, n). If not
said otherwise, then a weight w is always assumed to be of this form. The
associated Fourier multipliers on distributions are denoted by Fw. We denote

the weighted Bessel potential space on the image side by Lp,l
s (Xd,n;w) where

s ∈ R, p, l ∈ [1,∞]. The usual Bessel potential spaces on Tn are denoted
by Lp

s(Tn), and Hs(Tn) = L2
s(T

n) is the fractional L2 Sobolev space. The

Lp,l
s (Xd,n;w) norms are �l norms over Gr(d, n) of the w-weighted Bessel

potential norms of Lp
s(Tn;w(·, A)) with A ∈ Gr(d, n). More details are

given in section 2.2.

We show that Lp,l
s (Xd,n;w) are Banach spaces in lemma 2.1. Many of our

results consider the Hilbert spaces with p = l = 2. Most of the theorems in
this article would have been unreachable for Rd when d < n−1 if we do not
include weights in the data spaces. We construct weights which satisfy the
assumptions of our theorems in section 2.3.

Remark 1.1. If d = n − 1, then weights are not that important for the
analysis of Rd as demonstrated in the case of n = 2, d = 1 in [10], or for
example in the special case of theorem 1.3.
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Our first theorem considers the adjoint and the normal operators of Rd :
Hs(Tn) → L2,2

s (Xd,n;w). This generalizes [10, Proposition 11] into higher
dimensions. Theorem 1.1 and corollary 1.2 are proved in section 2.4.3.

Theorem 1.1 (Adjoint and normal operators). Let s ∈ R and suppose that
there exists Cw > 0 such that

(2)
∑
A∈Ωk

w(k,A)2 ≤ C2
w, Ωk := {A ∈ Gr(d, n) ; k⊥A }

for any k ∈ Zn. Then the adjoint of Rd : Hs(Tn) → L2,2
s (Xd,n;w) is given

by

(3) R̂∗
dg(k) =

∑
A∈Ωk

w(k,A)2ĝ(k,A)

and the normal operator R∗
dRd : Hs(Tn) → Hs(Tn) is the Fourier multiplier

Wk :=
∑

A∈Ωk
w(k,A)2. In particular, the mapping FW−1

k
R∗

d : Rd(T ′) → T ′

is the inverse of Rd.

Theorem 1.1 gives a new inversion formula in terms of the adjoint and a
Fourier multiplier. Its corollary 1.2 gives new stability estimates on Hs(Tn).
The stability estimates of R1 on Hs(T2) were not explicitly written down in
[10] but they can be found between the lines. We denote by R∗,w

d the adjoint
of Rd associated to the weight w when the weight needs to be specified.

Corollary 1.2 (Stability estimates). Suppose that the assumptions of the-
orem 1.1 hold, and that there exists cw > 0 such that Wk ≥ c2w for any
k ∈ Zn.

(i) Then FW−1
k

R∗
d : L2,2

s (Xd,n;w) → Hs(Tn) is 1/cw-Lipschitz.

(ii) Let f ∈ T ′. Then

(4) ‖f‖Hs(Tn) ≤
1

cw
‖Rdf‖L2,2

s (Xd,n;w)
.

(iii) Let w̃(k,A) = w(k,A)√
Wk

and p ∈ [1,∞]. Then R∗,w̃
d Rdf = f and

‖f‖Lp
s(Tn) = ‖R∗,w̃

d Rdf‖Lp
s(Tn) for any f ∈ T ′.

In order to prove Lp
s � Lp

s type stability (iii) for more general weights
in terms of the normal operator, one would have to show that FW−1

k
is a

bounded Lp multiplier. Other stability estimates on Lp
s(Tn) are given in

terms of Rdf in proposition 4.3. These stability estimates follow from corol-
lary 1.2 and the Sobolev inequality on Tn. This method requires additional
smoothness of Rdf in order to control the norm of f due to the use of the
Sobolev inequality.

We have proved three other new inversion formulas for Rd as well. The
first two inversion formulas are given in proposition 3.1 and its corollary 3.3.
Proposition 3.1 generalizes the inversion formula [10, Theorem 1] into higher
dimensions. Its corollary 3.3 generalizes the formula for all periodic distri-
butions using the structure theorem. We state the third inversion formula
here since we find it to be the most interesting one.
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Theorem 1.3 (The third inversion formula). Suppose that f ∈ T ′. Let
w : Zn ×Gr(d, n) → R be a weight so that

(5)
∑
A∈Ωk

w(k,A) = 1, Ωk := {A ∈ Gr(d, n) ; k⊥A }

and the series is absolutely converging for any k ∈ Zn. (The weight does not
have to generate a norm or have at most of polynomial decay.) Then

(6) (f, h) =
∑

A∈Gr(d,n)

(Fw(·,A)Rd,Af, h), ∀h ∈ C∞(Tn).

Moreover, if f has zero average and d = n− 1, then

(7) f =
∑

A∈Gr(d,n)

Rd,Af.

Remark 1.2. The author is not aware of a similar formula for the inverse
Radon transform in earlier literature. We emphasize that this new result
implies that a clever sum of the (n − 1)-plane Radon transform data is
the target function. If n = 2, this holds true for the X-ray transform of
compactly supported functions on the plane R2. We further remark that it
is easy to recover the average of a function and filter it out from Rn−1f .

Finally, we state our results on regularization. These results generalize

[10, Theorems 2 and 3] into higher dimensions. Let g ∈ L2,l
r (Xd,n;w). We

consider the Tikhonov minimization problem

(8) argmin
f∈Ht(Tn)

(
‖Rdf − g‖l

L2,l
r (Xd,n;w)

+ α‖f‖2Hs(Tn)

)
.

for any n ≥ 2, 1 ≤ d ≤ n − 1, α > 0, l = 2, and r, s, t ∈ R. We do not fix
the regularity of f a priori but the space Ht(Tn) will be found after solving
the minimization problem for distributions in general.

Let us define

(9) Pα
w,z :=

1

Wk + α 〈k〉2z

as a Fourier multiplier associated to a weight w, z ∈ R, and α > 0.

Theorem 1.4 (Tikhonov minimization problem). Let w be a weight such
that c2w ≤ Wk ≤ C2

w for some uniform constants cw, Cw > 0. Suppose that
α > 0, and s ≥ r. Then the unique minimizer of the Tikhonov minimization
problem (8) with g ∈ L2,2

r (Xd,n;w) is given by f = Pα
w,s−rR

∗
dg ∈ H2s−r(Tn).

The last theorem we state in the introduction generalizes the result [10,
Theorem 3] on regularization strategies to higher dimensions.

Theorem 1.5 (Regularization strategy). Let w be a weight such that c2w ≤
Wk ≤ C2

w for some uniform constants cw, Cw > 0. Suppose r, t, s, δ ∈ R are

constants such that 2s+ t ≥ r, δ ≥ 0, and s > 0. Let g ∈ L2,2
t (Xd,n;w) and

f ∈ Hr+δ(Tn).
Then the Tikhonov regularized reconstruction operator Pα

w,sR
∗
d is a regu-

larization strategy in the sense that

(10) lim
ε→0

sup
‖g‖

L
2,2
t (Xd,n;w)

≤ε
‖Pα(ε)

w,s R∗
d(Rdf + g)− f‖Hr(Tn) = 0
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where α(ε) =
√
ε is an admissible choice of the regularization parameter.

Moreover, if ‖g‖
L2,2
t (Xd,n;w)

≤ ε, 0 < δ < 2s, and 0 < α ≤ c2w(2s/δ − 1),

we have a quantitative convergence rate

‖Pα
w,sR

∗
d(Rdf + g)− f‖Hr(Tn)

≤ αδ/2sc−δ/s
w C(δ/2s)‖f‖Hr+δ(Tn) + C3

wc
−2
w

ε

α

(11)

where C(x) = x(x−1 − 1)1−x.

Remark 1.3. The optimal rate of convergence with respect to ε > 0 can be
found by choosing the regularization parameter α(ε) so that the terms on
the right hand side of (11) are of the same order.
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2. Preliminaries

2.1. Periodic Radon transforms and Grassmannians. We denote by
T the set C∞(Tn) and T ′ its dual space, i.e. the space of periodic distri-
butions. Denote by Gn

d the set of linearly independent unordered d-tuples
in Zn \ 0. We may write any element A ∈ Gn

d as A = {v1, . . . , vd}. The
elements in the set Gn

d span all periodic d-planes on Tn.
Suppose that f ∈ T . We define the d-plane Radon transform of f as

(12) Rdf(x,A) :=

ˆ
[0,1]d

f(x+ t1v1 + · · ·+ tdvd)dt1 · · · dtd.

We remark that Rd : T → T Gn
d , Rdf : Tn×Gn

d → C and Rdf(·, A) : Tn → C.
Denote the duality pairing between T ′ and T by (·, ·). If f, g ∈ T , it

follows easily from Fubini’s theorem that

(13) (f,Rdg(·, A)) = (Rdf(·, A), g).
We define the d-plane Radon transform for any f ∈ T ′ and A ∈ Gn

d simply
as

(14) (Rdf(·, A))(g) = (f,Rdg(·, A)) ∀g ∈ T .

This is the unique continuous extension of Rd(·, A) to the periodic distribu-
tions. The Fourier series coefficients of Rdf(·, A) are defined as usual.

We denote theGrassmannian of d-dimensional subspaces ofQn byGr(d, n).
If A,B ∈ Gn

d span the same subspace of Qn, then A and B represent the
same element in Gr(d, n) and Rdf(·, A) = Rdf(·, B) for any f ∈ T ′. On the

other hand, for every A ∈ Gr(d, n) there exists Ã ∈ Gn
d that spans A. This

allows one to define the Radon transform as Rdf : Gr(d, n) → T ′ without
data redundancy by setting Rdf(·, A) := Rdf(·, Ã) where Ã ∈ Gn

d spans
A ∈ Gr(d, n). This connection to the Grassmannians was mentioned earlier
in [7] but was not directly used.
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Remark 2.1. Let us denote the projective space Pn−1 := Gr(1, n). The height
of P ∈ Pn−1 is defined by H(P ) = gcd(p)−1 |p|�∞ using any representative p
of P . The projective space P1 and the height were used in [10] to analyze the
number of projection directions required to reconstruct the Fourier series
coefficients of a phantom up to a fixed radius. This question reduces to
Schanuel’s theorem [17] in algebraic number theory. This analysis in [10]
extends to higher dimensions when d = n− 1.

2.2. Bessel potential spaces and data spaces. We define the Bessel
potential norms for any p ∈ [1,∞] and s ∈ R by

‖f‖Lp
s(Tn) = ‖

∑
k∈Zn

〈k〉s f̂(k)e2πik·x‖Lp(Tn),

‖f‖Hs(Tn) =

√∑
k∈Zk

〈k〉2s
∣∣∣f̂(k)∣∣∣2(15)

where 〈k〉 = (1 + |k|2)1/2 as usual (see e.g. [3]). The space Lp
s(Tn) ⊂ T ′

consists of all f ∈ T ′ with ‖f‖Lp
s(Tn) < ∞. If p = 2, then Hs(Tn) = Lp

s(Tn)

is the fractional L2 Sobolev space. One has equivalently that f ∈ Lp
s(Tn) if

and only if (1 −Δ)s/2f ∈ Lp(Tn) and f ∈ T ′. The Bessel potential spaces
are used as domains of Rd in this work, which extends studies of the case
p = 2 in [7, 10].

If ω : Zn → (0,∞) and f ∈ T ′, then we define the ω-weighted norms by

(16) ‖f‖Lp
s(Tn;ω) := ‖Fωf‖Lp

s(Tn)

where Fω is the Fourier multiplier of ω. We say that a weight ω : Zn →
(0,∞) is at most of polynomial decay if there exists C,N > 0 such that

(17) ω(k) ≥ C 〈k〉−N ∀k ∈ Zn.

We next define suitable data spaces that contain ranges of Rd when its
domains are restricted to the Bessel potential spaces. Let us denote Xd,n :=
Tn × Gr(d, n) to keep our notation shorter. We generalize the data space
given in [10] to all n ≥ 2, 1 ≤ d ≤ n − 1, and p ∈ [1,∞], using the
Grassmannians, the Bessel potential spaces and weights.

Let 1 ≤ d ≤ n − 1 and w : Zn ×Gr(d, n) → (0,∞) be a weight function
such that w(·, A) is at most of polynomial decay for any fixed A ∈ Gr(d, n).
We always assume in this work that the weight is at most of polynomial
decay. We say that a (generalized) function g : Xd,n → C belongs to

Lp,l
s (Xd,n;w) with 1 ≤ l < ∞ if the norm

(18) ‖g‖l
Lp,l
s (Xd,n;w)

:=
∑

A∈Gr(d,n)

‖g(·, A)‖lLp
s(Tn;w(·,A))

is finite and g(·, A) ∈ T ′ for any fixed A ∈ Gr(d, n). Similarly, if l = ∞, we
define

(19) ‖g‖Lp,∞
s (Xd,n;w) := sup

A∈Gr(d,n)
‖g(·, A)‖Lp

s(Tn;w(·,A))

In the above definition, one can replace Gr(d, n) by any countable set Y (cf.
lemma 2.1).
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If p, l = 2, then the norm is generated by the inner product

(20) (h, g)
L2,2
s (Xd,n;w)

:=
∑

A∈Gr(d,n)

(Fw(·,A)h, Fw(·,A)g)Hs(Tn)

which makes L2,2
s (Xd,n;w) a Hilbert space. We prove that the spaces Lp,l

s (Xd,n;w)
are Banach spaces in lemma 2.1. We emphasize that a weight does not have
to have uniform coefficients for its at most of polynomial decay with respect
to Gr(d, n).

There is a connection to the norms used in [10]. Let w be any weight such
that

∑
A∈Gr(1,2)w(0, A)

2 = 1, and w(k,A) ≡ 1 if k �= 0. Now the results

in [10] follow from the results of this article using the norm L2,2
s (X1,2;w) as

the image side spaces in [10] are contained in L2,2
s (X1,2;w).

Yet another norm was used for the stability estimates in [7]. In the cases
d = n− 1 and l = ∞, our analysis of Rd would not require weights, and can
be performed similarly to [7, 10]. The analysis of Rd|Lp

s(Tn) has not been
done before if p �= 2. The Bessel potential norms on the domain side are
used to understand better the mapping properties of Rd.

We state and prove the following lemma for the sake of completeness. We
remark that without the decay condition on weights these weighted spaces
would not be complete.

Lemma 2.1. Let Y be a countable set. Let w : Zn × Y → (0,∞) be a
weight that is at most of polynomial decay for any fixed y ∈ Y . Suppose that

s ∈ R, p, l ∈ [1,∞], and n ≥ 1. Then Lp,l
s (Tn × Y ;w) is a Banach space. In

particular, L2,2
s (Tn × Y ;w) is a Hilbert space.

Proof. Suppose that 1 ≤ l < ∞. (If l = ∞, the proof is similar.) We

first show that Lp,l
s (Tn × Y ;w) is a vector space. Let c ∈ C and f, g ∈

Lp,l
s (Tn × Y ;w). We have trivially that

(21) ‖cf‖l
Lp,l
s (Tn×Y ;w)

= |c|l
∑
y∈Y

‖f(·, y)‖lLp
s(Tn;w).

The Minkowski and triangle inequalities imply

‖f + g‖
Lp,l
s (Tn×Y ;w)

=

⎛⎝∑
y∈Y

‖Fw(·,y)f(·, y) + Fw(·,y)g(·, y)‖lLp
s(Tn)

⎞⎠1/l

≤ ‖f‖
Lp,l
s (Tn×Y ;w)

+ ‖g‖
Lp,l
s (Tn×Y ;w)

.

(22)

This shows that Lp,l
s (Tn × Y ;w) is a vector subspace of all collections of

distributions {f(·, y)}y∈Y with f(·, y) ∈ T ′.
We show next that Lp,l

s (Tn×Y ;w) is a complete space. Let fi ∈ Lp,l
s (Tn×

Y ;w) be a Cauchy sequence. It follows from the definition of the norm

in Lp,l
s (Tn × Y ;w) that fi(·, y) ∈ Lp

s(Tn;w(·, y)) is a Cauchy sequence for
any y ∈ Y . Suppose that each Lp

s(Tn;w(·, y)) is complete. It follows that
fi(·, y) → fy ∈ Lp

s(Tn;w(·, y)) as i → ∞. This implies that there exists a

limit of fi in Lp,l
s (Tn × Y ;w) by standard arguments.
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Let us prove that Lp
s(Tn;w(·, y)) is complete for any y ∈ Y . Take a

Cauchy sequence fi ∈ Lp
s(Tn;w(·, y)). Now it follows that the functions

(23) gi(x) =
∑
k∈Zn

〈k〉sw(k, y)f̂i(k)e2πik·x

are in Lp(Tn) and form a Cauchy sequence. Therefore limi→∞ gi =: g ex-

ists. We claim that the distribution defined on the Fourier side as f̂(k) :=
ĝ(k)

〈k〉sw(k,y)
is the limit of fi in Lp

s(Tn;w(·, y)).
We need to show two things, that f ∈ T ′ and ‖fi − f‖Lp

s(Tn;w(·,y)) → 0 as
i → ∞. We have that

‖fi − f‖Lp
s(Tn;w(·,y)) = ‖

∑
k∈Zn

〈k〉sw(k, y) ̂(fi − f)(k)e2πik·x‖Lp(Tn)

= ‖
∑
k∈Zn

[〈k〉sw(k, y)f̂i(k)− ĝ(k)]e2πik·x‖Lp(Tn)

(24)

for any i ∈ N. Therefore, ‖fi − f‖Lp
s(Tn;w(·,x)) → 0 as i → ∞.

It is enough that the Fourier coefficients of f have polynomial growth by
the structure theorem of periodic distributions [18, Chapter 3.2.3]. We have
|ĝ(k)| ≤ C1 〈k〉α for some α,C1 > 0 since g ∈ Lp(Tn) ⊂ T ′. On the other

hand, we assumed that w(k, y) ≥ C2 〈k〉−N for some C2, N > 0. Hence, we
obtain that

(25)
∣∣∣f̂(k)∣∣∣ = ∣∣∣∣ ĝ(k)

〈k〉sw(k, y)

∣∣∣∣ ≤ (C1/C2) 〈k〉α+N−s .

This shows that f ∈ T ′. �
Remark 2.2. One uses the fact that weights have at most of polynomial
decay only to show that the limits of Cauchy sequences are in T ′. One could
also allow more rapid decay for weights but in that case, the objects of the
completion would not be distributions but ultra-distributions [18]. In the
analysis of Rd, such generality seems to be unnecessary and our assumptions
avoid this.

2.3. On constructions of weights. In this section, we discuss how to
construct weights that satisfy the assumptions of our theorems. The weights
of this paper are of the form w : Zn ×Gr(d, n) → (0,∞) with the following
properties.

(i) For any A ∈ Gr(d, n) there exists C,N > 0 such that w(k,A) ≥
C 〈k〉−N for every k ∈ Zn.

(ii) There exists C > 0 such that Wk ≤ C for every k ∈ Zn where
Wk =

∑
A∈Ωk

w(k,A)2 and Ωk = {A ∈ Gr(d, n) ; k⊥A }.
(iii) There exists c > 0 such that c ≤ Wk for every k ∈ Zn.

The property (i) is assumed for any weight in this article to guarantee

that Lp,l
s (Xd,n;w) are Banach spaces. The property (ii) is assumed for most

of the weights to guarantee that Rd : Lp
s(Tn) → Lp,l

s (Xd,n;w) is continuous
(with some restrictions if p, l �= 2). The property (iii) is additionally assumed
to prove the stability estimates and the theorems on regularization.

First of all, it is very easy to construct weights that satisfy (i) alone. It is
not hard to construct weights that satisfy (i) and (ii). Since the set Gr(d, n)
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is countable, we may write it with an enumeration ϕ : Gr(d, n) → N. For ex-

ample, we construct a weight w(k,A) = 2−ϕ(A) 〈k〉−N with large enoughN >

0 chosen such that
∑

k∈Zn 〈k〉−2N < ∞. Then
∑

A∈Gr(d,n)

∑
k∈Zn w(k,A)2 <

C for some C > 0. This shows that both conditions (i) and (ii) hold.
We give next a nontrivial example of a weight satisfying (ii) and (iii)

but not (necessarily) (i). Let ϕk : Ωk → N be an enumeration. Let Q :=
{ (k,A) ∈ Zn×Gr(d, n) ; A ∈ Ωk }. For any (k,A) ∈ Q, we define the weight

w(k,A) := h(k)

ϕk(A)1/2+ε with some mapping h : Zn → (a, b) with 0 < a ≤ b <

∞ and ε > 0. If (k,A) /∈ Q, we set w(k,A) = 1. One has that |Ωk| = ∞ if
1 ≤ d < n− 1 or k = 0, and |Ωk| = 1 if d = n− 1 and k �= 0. Now

(26)
∑
A∈Ωk

w(k,A)2 = h2(k)

|Ωk|∑
i=1

i−1−2ε.

Hence, we get that a2 ≤ Wk ≤ Cb2 where C =
∑∞

i=1 i
−1−2ε.

The problem gets more difficult if the all three conditions must be satisfied
at the same time. We solve this problem now by combining ideas from the
both constructions above. We make a proposition about a concrete example,
and more general methods are summarized in remarks 2.3 and 2.4.

Proposition 2.2. Let ϕk : Ωk → N be an enumeration for any k ∈ Zn,
and let ϕ : Gr(d, n) → N be an enumeration. Let h : Zk → (a, b) with

0 < a ≤ b < ∞ and g(k) = 〈k〉−N for some N ≥ 0. Then the weight

(27) w(k,A) :=

{
h(k)
ϕk(A) +

g(k)
ϕ(A) (k,A) ∈ Q

1 (k,A) ∈ Qc

satisfies the properties (i), (ii) and (iii).

Proof. Using the definition (27) and positivity of the involved functions, we
have that

(28) Wk ≥ h2(k)
∑
A∈Ωk

ϕk(A)−2 = h2(k)

|Ωk|∑
i=1

i−2 ≥ a2.

This shows (iii).
Suppose that (k,A) ∈ Q. We use

(29)
1

2
w(k,A)2 ≤ h2(k)

ϕk(A)2
+

g2(k)

ϕ(A)2

to estimate Wk from above. The formula (29) gives

(30)
1

2
Wk ≤

∑
A∈Ωk

(
h2(k)

ϕk(A)2
+

g2(k)

ϕ(A)2

)
≤ h2(k)

|Ωk|∑
i=1

i−2 + 〈k〉−2N
|Ωk|∑
i=1

i−2.

Since 〈k〉−2N ≤ 1 and h(k) ≤ b for any k ∈ Zn, we obtain that Wk ≤
2C(1 + b2) where C =

∑∞
i=1 i

−2 < ∞. This shows (ii).
Using the definition (27) and positivity of the involved functions, we can

directly estimate that

(31) |w(k,A)| ≥ min{1, 1

ϕ(A)
〈k〉−N} =

1

ϕ(A)
〈k〉−N .
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This shows that w(·, A) is at most of polynomial decay (i). �
Remark 2.3. Proposition 2.2 generalizes for w(k,A)|Q = h(k)ψ(k,A) +
g(k)ω(A) with the conditions that h(k) is bounded from above and below,
g(k) has at most of polynomial decay and is bounded above, the sums of
ω(A)2 over Ωk are uniformly bounded from above, and the sums of ψ(k,A)2

over Ωk are uniformly bounded from below and above.

Remark 2.4. If a weight w satisfies the conditions (i) and (ii), then it can

be normalized as w̃(k,A) := w(k,A)√
Wk

. The normalized weight w̃ has the

property that W̃k = 1 for any k ∈ Zn. Moreover, since w(k,A) is at most
of polynomial decay and

√
Wk ≤ C for some C > 0, it follows that w̃ is at

most of polynomial decay.

We can construct weights that satisfty the assumptions of theorem 1.3 by
defining w(k,A) = 2−ϕk(A) for any (k,A) ∈ Q and w(k,A) = 1 if (k,A) /∈ Q.
If d < n − 1, then

∑
A∈Ωk

w(k,A) = 1 for any k ∈ Zn, and the series∑
A∈Ωk

w(k,A) are absolutely convergent.

2.4. Basic properties of periodic Radon transforms. In this section,
we state and prove some basic properties of Rd. Some of these properties
were used earlier in the special cases in [7, 10]. We have chosen to include
most of the proofs here for completeness.

2.4.1. Periodic Radon transforms for integrable functions. Let T = (t1, . . . , td) ∈
Rd and A = {v1, . . . , vd} ∈ Gn

d . We can define Rdf(·, A) for L1(Tn) functions
simply as

(32) Rd,Af(x) :=

ˆ
[0,1]d

f(x+ t1v1 + · · ·+ tdvd)dt1 · · · dtd

where the formula is defined for a.e. x ∈ Tn. We lighten our notation by
denoting the corresponding linear combinations by T ·A = t1v1 + · · ·+ tdvd
with respect to the enumeration of A. The following basic properties are
valid.

Lemma 2.3. Suppose that f ∈ L1(Tn) and A ∈ Gn
d . Then Rd,Af can be

defined by the formula (32) for a.e. x ∈ Tn. Moreover,

(i) this definition coincides with the distributional definition: for every
f ∈ L1(Tn) and g ∈ L∞(Tn) it holds that (Rd,Af, g) = (f,Rd,Ag);

(ii) Rd,A : Lp(Tn) → Lp(Tn) is 1-Lipschitz for any p ∈ [1,∞].
(iii) Suppose that f ∈ T ′, A ∈ Gn

d and Rdf(·, A) ∈ L1(Tn). Then

Rd,Af(x+ S ·A) = Rd,Af(x) for a.e. x ∈ Tn and every S ∈ Rd.

We postpone the proof of lemma 2.3 for a while. We remark that lemma
2.3 is a simple generalization of [10, Lemma 7], which was stated in [10]
without a proof. We need to first introduce some useful notations.

Let q = n−d and V be the linear subspace of Rn spanned by A. Now there
exist distinct unit vectors e1A , . . . , eqA ∈ Rn along the positive coordinate
axes, {e1, . . . , en}, such that eiA /∈ V and EA := {v1, . . . , vd, e1A , . . . , eqA}
spans Rn. We define ϕA : [0, 1]n → Rn by the formula

(33) ϕA(t1, . . . , tq, s1, . . . , sd) = t1e1A + · · ·+ tqeqA + s1v1 + · · ·+ sdvd.
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We may write T = (t1, . . . , tq), S = (s1, . . . , sd) and dx = dSdT = dTdS to
shorten notation.

Remark 2.5. These coordinates are not unique, but we suppose that we
have fixed some e1A , . . . , eqA for every A ∈ Gn

d . The specific choice is not
important in our method.

Next we discuss some elementary properties of the coordinates ϕA. The
image of ϕA is an n-parallelepiped when interpreted in Rn. A simple calcula-

tion shows that |det(DϕA)| =
∣∣∣det(v1, . . . , vn, e1A , . . . , eeqA )∣∣∣ ∈ Z+, which is

also equal to the volume of the n-parallelepiped spanned by EA. The corners
of the parallelepiped, ϕA(T, S) with T ∈ {0, 1}q, S ∈ {0, 1}d, have integer co-
ordinates as well. It can be argued that the coordinates (33) wrap around the
torus |det(DϕA)| times when projected into Tn, i.e. |det(DϕA)| =

∣∣ϕ−1
A (x)

∣∣
for any x ∈ Tn.

Let us denote the Lebesgue measure on Tn by dm and on [0, 1]n by dx.
We thus have the change of coordinates formula for integrals of measurable
functions in the form ofˆ

Tn

fdm =
1

|det(DϕA)|

ˆ
[0,1]n

f ◦ ϕA |det(DϕA)| dx

=

ˆ
[0,1]n

f ◦ ϕAdx.

(34)

The formula (34), in a slightly different form, was used in the proofs given
in [10]. The connection to [10] is explained with more details in remark 2.6.

Remark 2.6. Let n = 2, d = 1, v = (v1, v2) ∈ Z2 \ {0} and A = {v}.
Suppose that v is not parallel to e1, which in turn implies that v2 �= 0. If we
choose EA = {e1}, then the formula |det(DϕA)| =

∣∣v2∣∣ holds and it is easy

to check that the coordinates wrap
∣∣v2∣∣ times around T2. If v is parallel

to e1, then one chooses EA = {e2} instead of e1. This is in-line with the
formulas derived in [10] but there the coordinates were scaled so that they
wrap around T2 exactly once.

Now we are ready to prove lemma 2.3.

Proof of lemma 2.3. The properties (i) and (iii) follow easily from the defi-
nitions, and the proofs are thus omitted.

We show first that the mapping Rd,A is well defined by the formula (32).

Let 0̃ = (0, . . . , 0) ∈ Rd. We get from Fubini’s theorem and the formula (34)
that

(35)

ˆ
Tn

fdm =

ˆ
[0,1]q

Rd,Af(ϕA(T, 0̃))dT

and Rd,Af(ϕA(T, 0̃)) ∈ L1([0, 1]q). It follows from the definition (32) of
Rd,Af that

(36) Rd,Af(ϕA(T, 0̃)) = Rd,Af(ϕA(T, S))

for all S ∈ Rd.
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We show that Rd,Af is a measurable function. Suppose for simplicity that
f is real valued. Let α > 0 and define the sets

(37) Xα = {T ∈ [0, 1]q ; Rd,Af(ϕA(T, 0̃)) > α }.
We have already proved that the set Xα is measurable for any α > 0. Now
we get from the formula (36) that

(38) { p ∈ [0, 1]n ; Rd,Af(ϕA(p)) > α } = Xα × [0, 1]d.

The set Xα × [0, 1]d is measurable as a product of measurable sets. Since
ϕA is a smooth change of coordinates, we first find that ϕA(Xα × [0, 1]d) is
measurable, and thus Rd,Af is measurable. If f is complex valued, then the
above argument can be done separately for the real and imaginary parts as
Rd,A is linear.

Now we are ready to prove the property (ii). Suppose that f ∈ Lp(Tn)
and p ∈ [1,∞). The formulas (34) and (36), and Hölder’s inequality giveˆ

Tn

|Rd,Af |p dm =

ˆ
[0,1]q

ˆ
[0,1]d

|Rd,Af ◦ ϕA|p dx

=

ˆ
[0,1]q

∣∣(Rd,Af)(ϕA(T, 0̃))
∣∣p dT

≤
ˆ
[0,1]q

(Rd,A |f |p)(ϕA(T, 0̃))dT

= ‖f‖pLp(Tn) < ∞.

(39)

Hence Tonelli’s theorem implies that Rd,Af ∈ Lp(Tn). If p = ∞, then
trivially ‖Rd,Af‖L∞(Tn) ≤ ‖f‖L∞(Tn). �

2.4.2. Mapping properties of periodic Radon transforms. We first recall the
inversion formula in [7].

Theorem 2.4 (Eq. (2) in [7]). Let f ∈ T ′, k ∈ Zn and A ∈ Gr(d, n). Then

R̂df(k,A) = f̂(k)δk⊥A, where

(40) δk⊥A =

{
1 if k⊥A

0 otherwise.

It is evident that for every k ∈ Zn there exists A ∈ Gr(d, n) such that
k⊥A, see [1, p. 11] and [7, Lemma 9]. This directly gives a reconstructive
inversion procedure for Rd. In section 3, we derive new inversion formulas
which might provide computational advantage in practice (cf. [10] when
n = 2 and d = 1).

Lemma 2.5. Let A ∈ Gr(d, n).

(i) If P : T ′ → T ′ acts as a Fourier multiplier (pk)k∈Zn, then [P,Rd,A] =
0.

(ii) Rd,A : Lp
s(Tn) → Lp

s(Tn) is 1-Lipschitz for any p ∈ [1,∞].

Proof. (i) This is a simple application of theorem 2.4. We calculate that

(41) R̂d(Pf)(k,A) = P̂ f(k)δk⊥A = pkf̂(k)δk⊥A = P̂ (Rdf)(k,A).
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(ii) Suppose that f ∈ Lp
s(Tn). Now h := (1 − Δ)s/2f ∈ Lp(Tn). Notice

that Rd,Ah ∈ Lp(Tn) by lemma 2.3. We have by the property (i) that (1−
Δ)s/2Rd,Af = Rd,Ah ∈ Lp(Tn). Hence Rd,Af ∈ Lp

s(Tn). We can conclude
that

(42) ‖Rd,Af‖Lp
s(Tn) = ‖Rd,Ah‖Lp(Tn) ≤ ‖h‖Lp(Tn) = ‖f‖Lp

s(Tn)

by lemma 2.3. �

The next lemma generalizes [10, Proposition 11] to many different direc-
tions.

Lemma 2.6. (i) Let l ∈ [1,∞). Suppose that for any A ∈ Gr(d, n)
there exists CA > 0 such that w(k,A) = CA for every k⊥A. More-
over, suppose that

(43) C l
w :=

∑
A∈Gr(d,n)

C l
A < ∞.

Then the Radon transform Rd : Lp
s(Tn) → Lp,l

s (Xd,n;w) is Cw-
Lipschitz.

(ii) Suppose that for any A ∈ Gr(d, n) there exists CA > 0 such that
w(k,A) = CA for every k⊥A. Moreover, suppose that

(44) Cw = sup
A∈Gr(d,n)

CA < ∞.

Then the Radon transform Rd : Lp
s(Tn) → Lp,∞

s (Xd,n;w) is Cw-
Lipschitz.

(iii) Suppose that there exists Cw > 0 such that

(45)
∑
A∈Ωk

w(k,A)2 ≤ C2
w, Ωk := {A ∈ Gr(d, n) ; k⊥A }

for any k ∈ Zn. Then the Radon transform Rd : Hs(Tn) → L2,2
s (Xd,n;w)

is Cw-Lipschitz.

Proof. (i) We have that

(46) ‖Rd,Af‖Lp
s(Tn) ≤ ‖f‖Lp

s(Tn)

for any A ∈ Gr(d, n) by lemma 2.5. Theorem 2.4 implies that

(47) Fw(·,A)Rd,Af(x) =
∑
k⊥A

w(k,A)f̂(k)e2πik·x.

Now it follows from the triangle inequality and (47) that

‖Rdf‖lLp,l
s (Xd,n;w)

=
∑

A∈Gr(d,n)

C l
A‖

∑
k⊥A

〈k〉s f̂(k)e2πik·x‖lLp(Tn)

≤ C l
w‖f‖lLp

s(Tn).

(48)

(ii) A calculation similar to the proof of (i) shows that

(49) ‖Rdf‖Lp,∞
s (Xd,n;w) ≤ ‖f‖Lp

s(Tn) sup
A∈Gr(d,n)

CA.
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(iii) We have that

‖Rdf‖2L2,2
s (Xd,n;w)

=
∑

A∈Gr(d,n)

‖
∑
k⊥A

w(k,A) 〈k〉s f̂(k)e2πik·x‖2L2(Tn)

=
∑

A∈Gr(d,n)

∑
k⊥A

w(k,A)2
∣∣∣〈k〉s f̂(k)∣∣∣2

=
∑
k∈Zn

∑
A∈Ωk

w(k,A)2 〈k〉2s
∣∣∣f̂(k)∣∣∣2

≤ C2
w‖f‖2L2

s(T
n)

(50)

where the order of summation can be interchanged by non-negativity of the
terms. �

Remark 2.7. If d = n− 1, then the only restriction on w in the case of (iii)
is
∑

A∈Gr(n−1,n)w(0, A)
2 < ∞. This follows since each A ∈ Gr(n − 1, n)

has a unique normal direction.

2.4.3. Adjoint and normal operators. Next, we study the adjoint and normal
operators of Rd when the image side is equipped with the Hilbert space
L2,2
s (Xd,n;w) satisfying the assumptions (iii) of lemma 2.6. This generalizes

the considerations in [10, Section 2.4] into higher dimensions and for any
1 ≤ d ≤ n− 1.

Proof of theorem 1.1. Let f ∈ Hs(Tn) and g ∈ L2,2
s (Xd,n;w). Using the

definition of the inner product (20), we get

(Rdf, g)L2,2
s (Xd,n;w)

=
∑

A∈Gr(d,n)

(Fw(·,A)Rdf, Fw(·,A)g)Hs(Tn)

=
∑

A∈Gr(d,n)

∑
k⊥A

w(k,A)2 〈k〉2s f̂(k)ĝ(k,A)∗

=
∑
k∈Zn

∑
A∈Ωk

w(k,A)2 〈k〉2s f̂(k)ĝ(k,A)∗

=
∑
k∈Zn

〈k〉2s f̂(k)

⎛⎝ ∑
A∈Ωk

w(k,A)2ĝ(k,A)

⎞⎠∗

=: (f,R∗
dg)Hs(Tn)

(51)

where we can interchange the order of the summation by the Cauchy–Schwarz
inequality as it implies that the series is absolutely convergent.

We have that

R̂∗
dRdf(k) =

∑
A∈Ωk

w(k,A)2R̂df(k,A)

=
∑
A∈Ωk

w(k,A)2f̂(k)δk⊥A

= f̂(k)
∑
A∈Ωk

w(k,A)2

(52)

by the formula for the adjoint and theorem 2.4. �



FOURIER ANALYSIS OF PERIODIC RADON TRANSFORMS 15

We prove corollary 1.2 on inversion formulas and stability estimates next.

Proof of corollary 1.2. (i) We first calculate that

(53) ‖FW−1
k

R∗
dg‖2Hs(Tn) =

∑
k∈Zn

〈k〉2s 1

W 2
k

∣∣∣∣∣∣
∑
A∈Ωk

w(k,A)2ĝ(k,A)

∣∣∣∣∣∣
2

for any g ∈ L2,2
s (Xd,n;w). The triangle inequality and Hölder’s inequality

for the sequences w(k,A) and w(k,A) |ĝ(k,A)| over A ∈ Ωk gives that

(54)

∣∣∣∣∣∣
∑
A∈Ωk

w(k,A)2ĝ(k,A)

∣∣∣∣∣∣
2

≤ Wk

⎛⎝ ∑
A∈Ωk

w(k,A)2 |ĝ(k,A)|2
⎞⎠ .

Recall that

(55) ‖g‖2
L2,2
s (Xd,n;w)

=
∑
k∈Zn

〈k〉2s
∑

A∈Gr(d,n)

w(k,A)2 |ĝ(k,A)|2

after a rearrangement of the series. We can conclude from the formulas (53),
(54) and (55) that ‖FW−1

k
R∗

dg‖Hs(Tn) ≤ 1
cw
‖g‖

L2,2
s (Xd,n;w)

.

(ii) This is a simple calculation using the formula for the normal operator:

(56) (Rdf,Rdf)L2,2
s (Xd,n;w)

= (f, FWk
f)Hs(Tn) ≥ inf

k∈Zn
Wk‖f‖2Hs(Tn)

if f ∈ Hs(Tn).
(iii) We have by remark 2.4 that w̃ is a weight that satisfies the assump-

tions of theorem 1.1 and W̃k = 1 for any k ∈ Zn. Therefore, the corre-

sponding adjoint R∗,w̃
d is well-defined, and R∗,w̃

d Rdf = f for any f ∈ T ′ by
theorem 1.1. �

3. Inversion formulas

We have already proved one new inversion formula in corollary 1.2 for
Hs(Tn) functions. In this section, we prove three other inversion formulas.
One of the formulas generalizes the inversion formula for R1 on L1(T2)
proved in [10, Theorem 1 and Theorem 8]. The second inversion formula
is a corollary of the first one and remains valid for any distribution. The
third inversion formula takes a slightly different approach and shows that
a distribution f ∈ T ′ is a weighted sum of the data Rd,Af over the set
Gr(d, n). These formulas might have practical value.

Proposition 3.1 (The first inversion formula). Let A ∈ Gr(d, n) and k ∈
Zn. Suppose that f ∈ T ′ and Rd,Af ∈ L1(T2). If k⊥A, then

(57) f̂(k) =

ˆ
[0,1]q

Rd,Af(ϕA(T, 0)) exp(−2πi(k1At1A + · · ·+ kqAtqA))dT.

Proof. Fubini’s theorem, theorem 2.4 and the formula (34) implies that

R̂d,Af(k)

=

ˆ
[0,1]q

ˆ
[0,1]d

Rd,Af(ϕA(T, S)) exp(−2πik · ϕA(T, S))dSdT.
(58)
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Since k⊥A, a simple calculation shows that

(59) k · ϕA(T, S) = k1At1A + · · ·+ kqAtqA ,

and lemma 2.3 implies that

(60) Rd,Af(ϕA(T, S)) = Rd,Af(ϕA(T, 0))

for a.e. T ∈ [0, 1]q.
Hence, using the formulas (59) and (60), we may simplify the formula

(58) into the form

R̂d,Af(k)

=

ˆ
[0,1]q

Rd,Af(ϕA(T, 0)) exp(−2πi(k1At1A + · · ·+ kqAtqA))dT.
(61)

�
Remark 3.1. The proof shows that instead of choosing S = 0, we may choose
any other values for the S-coordinates as well.

We immediately get the following corollary from proposition 3.1 and
lemma 2.3.

Corollary 3.2. Suppose that f ∈ L1(Tn). Then the inversion formula (57)
is valid.

Remark 3.2. One could prove corollary 3.2 directly without using lemma 2.3
and theorem 2.4 (or proposition 3.1). This proof is given for the geodesic
X-ray transform in [10] and it could be adapted to this setting as well.

Recall that the structure theorem of periodic distributions [16, Theorem
2.4.5] states that for any f ∈ T ′ there exist h ∈ C(Tn) and s ≥ 0 such that

(62) f = (1−Δ)sh.

We get another corollary of proposition 3.1 and lemma 2.5.

Corollary 3.3 (The second inversion formula). Let A ∈ Gr(d, n) and k ∈
Zn. Suppose that f ∈ T ′ and f = (1−Δ)sh, h ∈ C(Tn). If k⊥A, then

(63) f̂(k) = 〈k〉2s R̂d,Ah(k) = R̂d,Af(k)

where R̂d,Ah(k) can be calculated by the formula (57).

We now prove our third inversion formula stated in the introduction.

Proof of theorem 1.3. Using theorem 2.4, we calculate that

(64) F(Fw(·,A)Rd,Af)(k) = w(k,A)f̂(k)δk⊥A.

Hence, we get

F

⎛⎝ ∑
A∈Gr(d,n)

Fw(·,A)Rd,Af

⎞⎠ (k) =
∑

A∈Gr(d,n)

w(k,A)f̂(k)δk⊥A

= f̂(k)
∑
A∈Ωk

w(k,A)

= f̂(k)

(65)



FOURIER ANALYSIS OF PERIODIC RADON TRANSFORMS 17

Suppose now that d = n− 1 and f̂(0) = 0. Notice that |Ωk| = 1 if k �= 0
and Ω0 = Gr(n − 1, n). Hence, the formula (7) follows by choosing any
weight w such that

(66)
∑

A∈Gr(n−1,d)

w(0, A) = 1, w(0, A) ≥ 0,

and w(k,A) = 1 for any A ∈ Gr(n− 1, n) and k �= 0. �

4. Stability estimates and regularization methods

In this section, we look at stability estimates for functions in the Bessel
potential spaces when p �= ∞. We also generalize the Tikhonov regular-
ization methods developed in [10]. In the Tikhonov regularization part, we
restrict our study to the functions in Hs(Tn), as done in [10]. Our results on
regularization are new for any 1 ≤ d ≤ n− 1 when n ≥ 3, and the stability
estimates are new in any dimension.

4.1. Stability estimates and the Sobolev inequality. Recall that in
corollary 1.2 we obtained the estimate

(67) ‖f‖2Hs(Tn) ≤
1

c2w
‖Rdf‖2L2,2

s (Xd,n;w)

if the weight w is such that the normal operator R∗
dRd has a uniform lower

bound 1
c2w

as a Fourier multiplier. The condition on the weight w is that

c2w ≤ Wk =
∑

A∈Ωk
w(k,A)2 ≤ C2

w for some uniform cw, Cw > 0. This

implies stability on Lp
s(Tn) if p ≤ 2, as we will show later. We can reach

stability estimates for p > 2 using the Sobolev inequality on Tn.

Theorem 4.1 (Sobolev inequality [20]). Let f ∈ T ′. Suppose that s > 0
and 1 < q < p < ∞ satisfy s/n ≥ q−1 − p−1. Then

(68) ‖f‖Lp(Tn) ≤ C‖f‖Lq
s(Tn)

for some C > 0 that does not depend on f .

A proof of the Sobolev inequality on Tn is given in [3, Corollary 1.2].

Lemma 4.2. Let l ∈ [1,∞] and g : Gr(d, n) → T ′.
(i) If t ∈ R, s > 0, and 1 < q < p < ∞ satisfy s/n ≥ q−1 − p−1, then

(69) ‖g‖
Lp,l
t (Xd,n;w)

≤ C‖g‖
Lq,l
t+s(Xd,n;w)

for some C > 0 that does not depend on g.
(ii) If 1 ≤ p < q ≤ ∞, then for any s ∈ R holds

(70) ‖g‖
Lp,l
s (Xd,n;w)

≤ ‖g‖
Lq,l
s (Xd,n;w)

.

Proof. (i) We have

(71) ‖g(·, A)‖Lp(Tn;w(·,A)) ≤ C‖g(·, A)‖Lq
s(Tn;w(·,A))

for any A ∈ Gr(d, n) by the Sobolev inequality where C > 0 does not
depend on f , A and w. Now (69) with t = 0 follows from the definition of
the norms ‖ · ‖

Lq,l
s (Xd,n;w)

and the inequality (71).
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Fix any z ∈ R. Define then the function g̃ : Gr(d, n) → T ′ by the formula

g̃(·, A) = (1−Δ)z/2g(·, A). Now (69) with t = 0 implies
(72)

‖g‖
Lp,l
z (Xd,n;w)

= ‖g̃‖
Lp,l
0 (Xd,n;w)

≤ C‖g̃‖
Lq,l
s (Xd,n;w)

= C‖g‖
Lq,l
z+s(Xd,n;w)

.

(ii) The inequality (70) can be proved similarly. Now the Sobolev inequal-
ity is replaced by the inequality ‖f‖Lp

s(Tn) ≤ ‖f‖Lq
s(Tn), which holds since

m(Tn) = 1 and p ≤ q. �

Theorem 1.1 and lemma 4.2 imply the following, slightly more general,
shifted stability estimates.

Proposition 4.3 (Shifted stability estimates). Let w be a weight such that
c2w ≤ Wk ≤ C2

w for some uniform constants cw, Cw > 0. Let f ∈ T ′, s ∈ R,

and s(p, n) := n
∣∣∣p−2

2p

∣∣∣.
(i) If 1 < p ≤ 2, then

(73) ‖f‖Lp
s(Tn) ≤ C1‖Rdf‖L2,2

s (Xd,n;w)
≤ C2‖Rdf‖Lp,2

s+s(p,n)
(Xd,n;w)

,

where C1, C2 > 0 do not depend on f . If p = 1, then the first
inequality of (73) holds.

(ii) If 2 ≤ p < ∞, then

(74) ‖f‖Lp
s(Tn) ≤ C1‖Rdf‖L2,2

s+s(p,n)
(Xd,n;w)

≤ C2‖Rdf‖Lp,2
s+s(p,n)

(Xd,n;w)
,

where C1, C2 > 0 do not depend on f .

Proof. (i) Suppose that f ∈ T ′ and 1 ≤ p ≤ 2. Let h = (1 − Δ)s/2f . We
have that ‖h‖Lp(Tn) ≤ ‖h‖L2(Tn) since p ≤ 2 and m(Tn) = 1. This implies
that ‖f‖Lp

s(Tn) ≤ ‖f‖L2
s(T

n). Now the first inequality follows from corollary
1.2.

Suppose additionally that 1 < p < 2. Choose sp = n2−p
2p > 0 in the part

(i) of lemma 4.2. Now it holds that

(75) ‖Rdf‖L2,2
s (Xd,n;w)

≤ ‖Rdf‖Lp,2
s+sp

(Xd,n;w)

for any s ∈ R.
(ii) Suppose that f ∈ T ′ and p > 2. Choose in the Sobolev inequality (68)

that q = 2. Now we can calculate that the Sobolev inequality is valid if s ≥
np−2

2p . Let us define that sp = np−2
2p > 0. Hence, ‖f‖Lp(Tn) ≤ C‖f‖Hsp (Tn).

Let now s ∈ R and f ∈ Lp
s(Tn). We then have that

‖f‖Lp
s(Tn) = ‖(1−Δ)s/2f‖Lp(Tn)

≤ C‖(1−Δ)s/2f‖Hsp (Tn) = C‖f‖Hs+sp (Tn).
(76)

Now the first inequality follows from the part (i) of the theorem. The second
inequality follows from the part (ii) of lemma 4.2 since p > 2. �

Remark 4.1. For any f ∈ T ′ there exists s ≥ 0 such that f ∈ Lp
−s(T

n) for
any p ∈ [1,∞] by the structure theorem of periodic distributions.
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4.2. Tikhonov minimization problem. We will show that Pα
w,s−rR

∗
dg is

the unique minimizer of (8) when l = 2. We first analyze the regularity
properties of Pα

w,z and Pα
w,s−rR

∗
d. Then we understand which space the

regularized reconstruction Pα
w,s−rR

∗
dg lives in when g ∈ L2,2

r (Xd,n;w). First

of all, R∗
d : L2,2

r (Xd,n;w) → Hr(Tn). On the other hand, Pα
w,z : Hr(Tn) →

Hr+2z(Tn) for any r, z ∈ R since Wk is uniformly bounded from below. We

conclude that Pα
w,s−rR

∗
d : L2,2

r (Xd,n;w) → H2s−r(Tn).
We are not ready to prove theorem 1.4. The proof uses the same ideas as

the proof of [10, Theorem 2]. The proof presented here also explains some
missing details about the splitting of the minimization problem into the real
and imaginary parts in (81), (82) and (83). This is one of the crucial parts
of the proof of [10, Theorem 2] though it is not mentioned at all in [10].

Proof of theorem 1.4. We have that

‖Rdf − g‖2
L2,2
r (Xd,n;w)

=
∑

A∈Gr(d,n)

∑
k⊥A

〈k〉2r w(k,A)2
∣∣∣f̂(k)− ĝ(k,A)

∣∣∣2
+

∑
A∈Gr(d,n)

∑
k �⊥A

〈k〉2r w(k,A)2 |ĝ(k,A)|2 .

(77)

Since the second term of (77) is independent of f , it can be neglected in the
minimization problem (8). On the other hand,∑

A∈Gr(d,n)

∑
k⊥A

〈k〉2r w(k,A)2
∣∣∣f̂(k)− ĝ(k,A)

∣∣∣2
=

∑
k∈Zn

〈k〉2r
∑
A∈Ωk

w(k,A)2
∣∣∣f̂(k)− ĝ(k,A)

∣∣∣2 .(78)

We next expand the term

(79) α‖f‖2Hs(Tn) = α
∑
k∈Zn

〈k〉2s
∣∣∣f̂(k)∣∣∣2 .

We can conclude that a solution to the minimization problem (8) is a mini-
mizer of

(80)
∑
k∈Zn

〈k〉2r
⎛⎝α 〈k〉2s−2r

∣∣∣f̂(k)∣∣∣2 + ∑
A∈Ωk

w(k,A)2
∣∣∣f̂(k)− ĝ(k,A)

∣∣∣2
⎞⎠ .

Hence, a minimizer of (80) must minimize

(81) H(f) := α 〈k〉2s−2r
∣∣∣f̂(k)∣∣∣2 + ∑

A∈Ωk

w(k,A)2
∣∣∣f̂(k)− ĝ(k,A)

∣∣∣2
for each k ∈ Zn.

To proceed, we need to minimize the real part and the imaginary part of
(81) separately. Let us write the real and imaginary parts of the involved

terms simply as fr(k) := �(f̂(k)), fi(k) := �(f̂(k)), gr(k,A) := �(ĝ(k,A))
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and gi(k,A) := �(ĝ(k,A)) to keep our notation shorter. Now, we define the
operators

(82) R(f) := α 〈k〉2s−2r fr(k)
2 +

∑
A∈Ωk

w(k,A)2(fr(k)− gr(k,A))2

and

(83) I(f) := α 〈k〉2s−2r fi(k)
2 +

∑
A∈Ωk

w(k,A)2(fi(k)− gi(k,A))2.

These functions have the property that R(f) + I(f) = H(f). Moreover, if
H is minimized, then R and I are minimized, and vice versa.

We show how the minimization is done for the real part. As the mini-
mization for the imaginary part is similar, we do not repeat the calculations
twice. We expand the second term of (82), and get

∑
A∈Ωk

w(k,A)2(fr(k)− gr(k,A))2

= Wkfr(k)
2 − 2fr(k)

∑
A∈Ωk

w(k,A)2gr(k,A) +
∑
A∈Ωk

w(k,A)2gr(k,A)2.

(84)

The last term of (84) does not depend on f , so it can be neglected in the
minimization. Thus, we have arrived to the minimization problem

(85) − 2fr(k)
∑
A∈Ωk

w(k,A)2gr(k,A) + (Wk + α 〈k〉2s−2r)fr(k)
2.

Simple calculus shows that the minimizer of (85) is

(86) fr(k) =

∑
A∈Ωk

w(k,A)2gr(k,A)

Wk + α 〈k〉2s−2r = �(F(Pα
w,s−rR

∗
dg)(k)).

We can similarly calculate that the unique minimizer of the minimization
problem associated to the imaginary part (83) is fi(k) = �(F(Pα

w,s−rR
∗
dg)(k)).

This shows that the unique minimizer of (81) satisfies f̂(k) = F(Pα
w,s−rR

∗
dg)(k).

Hence, the unique minimizer of (8) is f = Pα
w,s−rR

∗
dg. The claimed regu-

larity of f follows from the discussion preceding the proof. �
Remark 4.2. If l �= 2, the analysis of the Tikhonov minimization problem
becomes more difficult but it might still be possible to adapt the method
also in that case (when p = 2).

4.3. Regularization strategies. LetX and Y be subsets of Banach spaces
and F : X → Y a continuous mapping. A family of continuous maps
Rα : Y → X with α ∈ (0, α0], α0 > 0, is called a regularization strategy if
limα→0Rα(F (x)) = x for any x ∈ X. A choice of regularization parameter
α(ε) with limε→0 α(ε) = 0 is called admissible if

(87) lim
ε→0

sup
y∈Y

{
‖Rα(ε)y − x‖X ; ‖y − F (x)‖Y ≤ ε

}
= 0

holds for any x ∈ X [4, 12].
We will show that the solution found in theorem 1.4 to the Tikhonov

minimization problem (8) is an admissible regularization strategy with a
quantitative stability estimate. Our proof follows that of [10, Theorem 3].
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Proof of theorem 1.5. Let α > 0. Theorem 1.1 implies that

(88) Pα
w,sR

∗
d(Rdf + g)− f = (Pα

w,sFWk
− Id)f + Pα

w,sR
∗
dg.

To estimate the first term on the right hand side of (88), we calculate that

(89) Pα
w,sFWk

− Id = − αW−1
k 〈k〉2s

1 + αW−1
k 〈k〉2s

as a Fourier multiplier. This shows that ‖Pα
w,sFWk

− Id‖Hr(Tn)→Hr(Tn) = 1
as Wk is bounded from below and above. It follows from the dominated
convergence theorem that ‖(Pα

w,sFWk
− Id)f‖2r → 0 as α → 0 if f ∈ Hr(Tn).

Suppose that ‖g‖
L2,2
t (Xd,n;w)

≤ ε. We have that ‖R∗
d‖ = ‖Rd‖ = Cw by

lemma 2.6. Hence ‖R∗
dg‖2Ht(Tn) ≤ C2

wε
2. This implies that

‖Pα
w,sR

∗
dg‖2Hr(Tn) ≤ C2

wε
2 sup
k∈Zn

(
W−1

k

1 + αW−1
k 〈k〉2s

)2

〈k〉2r−2t

≤ C2
wε

2c−4
w sup

k∈Zn

(
1

1 + αC−2
w 〈k〉2s

)2

〈k〉2r−2t

≤ C6
wc

−4
w α−2ε2

(90)

where the last inequality follows using −4s+ 2r − 2t ≤ 0. We can conclude
that

(91) ‖Pα
w,sR

∗
dg‖Hr(Tn) ≤ C3

wc
−2
w

ε

α
.

This shows that choosing α =
√
ε gives a regularization strategy.

Suppose now that δ > 0. The proof of the estimate (11) is similar to that
of [10]. Using the formula (89), we get that

(92) ‖Pα
w,sFWk

− Id‖Hr+δ(Tn)→Hr(Tn) = sup
k∈Zn

αW−1
k 〈k〉2s−δ

1 + αW−1
k 〈k〉2s

.

We can estimate the norm by defining the functions

(93) Fk(x) :=
αW−1

k x2s−δ

1 + αW−1
k x2s

.

The formula [10, Eq. (38)] implies that the maximum value of Fk is (W
−1
k α)δ/2sC(δ/2s)

if α ≤ Wk(2s/δ − 1). We see that α ≤ Wk(2s/δ − 1) holds as we assumed
that α ≤ c2w(2s/δ − 1).

We obtain that

‖(Pα
w,sFWk

− Id)‖Hr+δ(Tn)→Hr(Tn)

≤ sup
k∈Zn,x∈R

Fk(x) ≤ (c−2
w α)δ/2sC(δ/2s).(94)

Hence

(95) ‖(Pα
w,sFWk

− Id)f‖Hr(Tn) ≤ (c−2
w α)δ/2sC(δ/2s)‖f‖Hr+δ(Tn).

Now the formulas (91) and (95) imply the quantitative estimate (11). �
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