
This is a self-archived version of an original article. This version 
may differ from the original in pagination and typographic details. 

Author(s): 

Title: 

Year: 

Version:

Copyright:

Rights:

Rights url: 

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

Removable sets for intrinsic metric and for holomorphic functions

© 2019 Springer

Accepted version (Final draft)

Kalmykov, Sergei; Kovalev, Leonid V.; Rajala, Tapio

Kalmykov, S., Kovalev, L. V., & Rajala, T. (2019). Removable sets for intrinsic metric and for
holomorphic functions. Journal d'Analyse Mathématique, 139(2), 751-772.
https://doi.org/10.1007/s11854-024-0076-2

2019



 
 

 
 

 
v2

 

REMOVABLE SETS FOR INTRINSIC METRIC AND FOR

HOLOMORPHIC FUNCTIONS

SERGEI KALMYKOV, LEONID V. KOVALEV, AND TAPIO RAJALA

Abstract. We study the subsets of metric spaces that are negligible for
the infimal length of connecting curves; such sets are called metrically
removable. In particular, we show that every totally disconnected set
with finite Hausdorff measure of codimension 1 is metrically removable,
which answers a question raised by Hakobyan and Herron. The metri-
cally removable sets are shown to be related to other classes of “thin”
sets that appeared in the literature. They are also related to the remov-
ability problems for classes of holomorphic functions with restrictions
on the derivative.

1. Introduction

The studies of removable sets have a long history in complex analysis

and geometric function theory [15]. Removability may be defined in terms

of either a function class (e.g., bounded holomorphic functions) or of some

geometric quantity (e.g., extremal distance as in [1]). Our starting point is a

purely geometric concept of removability, which makes sense in an abstract

metric space.

Definition 1.1. Let (X, d) be a metric space. A set E ⊂ X is metrically

removable if for any ǫ > 0, any two points a, b ∈ X can be connected by a

curve that is disjoint from E \ {a, b} and has length at most d(a, b) + ǫ.

Thus, the complement of a metrically removable set is C-quasiconvex

for every C > 1 (see Definition 2.2). Hakobyan and Herron [8] posed the

following question:
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Question 1.2. Suppose E ⊂ Rn is a totally disconnected compact set with

Hn−1(E) < ∞. Does it follow that its complement is quasiconvex?

Question 1.2 turns out to be equivalent to asking whether E is metrically

removable (Proposition 3.3). We answer it affirmatively:

Theorem 1.3. If E ⊂ Rn is closed, totally disconnected, and Hn−1(E) <

∞, then E is metrically removable.

Quantitative control on the length and shape of connecting curves is im-

portant for recovering the properties of a holomorphic function f from its

derivative f ′. This is the subject of sections 5 and 8, which concern the

removability of sets for holomorphic functions with restrictions on either

the modulus or the argument of f ′. This line of investigation involves the

comparison of different thinness conditions in §6, such as intervally thin sets

introduced by Tabor and Tabor [12] in the context of convex analysis. Along

the way we prove an extension theorem for δ-monotone maps (Theorem 7.3)

which is of independent interest. The paper concludes with remarks and

questions in section 9.

2. Notation and definitions

For a, b ∈ Rn, |a| is the Euclidean norm, 〈a, b〉 is the inner product, and

[a, b] is the line segment {(1− t)a+ tb : 0 ≤ t ≤ 1}. We write B(a, r) for the

open ball of radius r with center a, and B(a, r) for the corresponding closed

ball. The complement of a set E is denoted Ec.

A curve in a metric space X is a continuous map γ : [α, β] → X. Its

length ℓ(γ) is the supremum of the sums
∑ |γ(tj) − γ(tj−1)| over all finite

partitions {tj} of the interval [α, β]. We also write γ for γ([α, β]) when

parameterization is not important.

Definition 2.1. The intrinsic metric on a set A ⊂ X, written ρA(a, b), is

the infimum of the length of curves that connect a to b within A. This is

indeed a metric when A is connected by rectifiable curves; otherwise ρA may

take on the value ∞ although the other axioms of a metric still hold.

When a set E is metrically removable, ρEc(a, b) = d(a, b) for all a, b ∈ Ec.

The converse is also true when E has empty interior; see Proposition 3.1.



REMOVABLE SETS FOR INTRINSIC METRIC 3

The property ρEc(a, b) = d(a, b) can be expressed by saying that Ec is a

length space [4, p. 28]. It is also related to the concept of quasiconvexity.

Definition 2.2. A set A ⊂ X is quasiconvex if there exists a constant C

such that any two points a, b ∈ A can be joined by a curve that lies in A

and has length at most CdX(a, b).

We write Hs for the s-dimensional Hausdorff measure [10, p. 55-56], that

is

Hs(A) = lim
δ↓0

Hs
δ(A),

where

Hs
δ(A) = inf

{

∞
∑

i=1

diam(Ei)
s : A ⊂

∞
⋃

i=1

Ei, diam(Ei) ≤ δ

}

.

3. Basic properties of metrically removable sets

Lemma 3.1. A subset E of a metric space X is metrically removable if and

only if it has empty interior and ρEc(a, b) = d(a, b) for all a, b ∈ Ec.

Proof. If E is metrically removable, then any two points a, b ∈ X are con-

nected by a curve that is contained in Ec, except possibly for its endpoints.

Therefore, Ec is dense inX, which means E has empty interior. The equality

ρEc = d is immediate.

Conversely, suppose E has empty interior and ρEc = d. Given a, b ∈ X

and ǫ > 0, pick two sequences {ak} and {bk} in Ec such that d(ak, a) < ǫ/2k

and d(bk, b) < ǫ/2k for all k ∈ N. Note that

(3.1) d(a1, b1) < d(a, b) + ǫ, d(ak, ak+1) <
ǫ

2k−1
, d(bk, bk+1) <

ǫ

2k−1
.

Let γ0 ⊂ Ec be a curve from a1 to b1 such that ℓ(γ0) ≤ (1 + ǫ)d(a1, b1).

For every k, there is a path γk ⊂ Ec from ak to ak+1 with ℓ(γk) ≤ (1 +

ǫ)d(ak, ak+1). Similarly, there is a path γ′k ⊂ Ec from bk to bk+1 with

ℓ(γ′k) ≤ (1 + ǫ)d(bk, bk+1).

Concatenating all the curves γk and γ′k, and adding a, b as the endpoints,

we obtain a continuous curve that connects a to b and is disjoint from

E \ {a, b}. Its length is bounded from above by

(1 + ǫ)

(

d(a1, b1) +

∞
∑

n=1

(d(ak, ak+1) + d(bk, bk+1))

)



4 SERGEI KALMYKOV, LEONID V. KOVALEV, AND TAPIO RAJALA

which according to (3.1) is at most (1 + ǫ)(d(a, b) + 5ǫ), proving that E is

metrically removable. �

Metrically removable sets can be seen as “thin” in several ways.

Lemma 3.2. A metrically removable set E ⊂ R2 is totally disconnected.

Proof. Pick any point a ∈ E, without loss of generality a = 0. Since E

has empty interior by Lemma 3.1, there exist four points b1, . . . , b4 ∈ Ec,

such that each bk lies in the kth open quadrant of the plane and |bk| < ǫ.

Connecting these points by line segments [b1, b2], . . . , [b4, b1] we get a closed

polygonal curve γ with 0 in its interior domain. Let d = dist(0, γ) and

replace each segment of γ by a curve that is contained in Ec and is short

enough to stay in the (d/2)-neighborhood of the segment. The resulting

closed curve separates 0 from the circle |z| = 2ǫ. Since ǫ was arbitrarily

small, the lemma is proved. �

Since a line in Rn is metrically removable for n ≥ 3, the statement of

Lemma 3.2 does not extend to higher dimensions.

Any metrically removable set has quasiconvex complement, while the con-

verse is false: for example, a ball in Rn, n ≥ 2, has quasiconvex complement

but is not metrically removable. However, for closed sets of zero area these

notions coincide.

Proposition 3.3. Suppose that E ⊂ Rn is a closed set such that Hn(E) = 0

and Ec is quasiconvex. Then E is metrically removable.

Proof. Fix distinct points a, b ∈ Ec and pick ǫ > 0 small enough so that

B(a, ǫ) and B(b, ǫ) are disjoint from E. By Fubini’s theorem, almost every

line parallel to [a, b] intersects E along a set of zero length. Thus we can

choose a′, b′ ∈ Ec such that |a− a′| < ǫ, |b− b′| < ǫ, and H1(E ∩ [a′, b′]) = 0.

Since E ∩ [a′, b′] is a compact set of zero length, it can be covered by

finitely many disjoint open intervals (pk, qk) of total length less than ǫ. For

each k there is a curve γk ⊂ Ec that joins pk to qk and has length at most

C|pk − qk|, where C is the constant of quasiconvexity of Ec. Removing

[pk, qk] from [a′, b′] and inserting γk instead, we obtain a curve γ that joins

a′ to b′ and has length less than |a′ − b′| + Cǫ. Then [a, a′] ∪ γ ∪ [b′, b] is a
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curve of length at most

|a′ − b′|+ (C + 2)ǫ ≤ |a− b|+ (C + 4)ǫ

which shows ρEc(a, b) = |a − b|. Since E has empty interior, Lemma 3.1

implies it is metrically removable. �

Corollary 3.4. If A ⊂ R is a closed set and H1(A) = 0, then An is metri-

cally removable in Rn for all n ≥ 2.

Proof. By Theorem A [8], the set Rn \ An is quasiconvex whenever A is a

closed subset of R with empty interior, and n ≥ 2. It remains to apply

Proposition 3.3. �

For example, the product of two standard middle-third Cantor sets C

is metrically removable in R2 by Corollary 3.4. This shows that metric

removability cannot be characterized in terms of Hausdorff dimension: we

have dim(C × C) = log 4/ log 3 > 1, while a line segment is not metrically

removable in R2. An even more extreme example is given below.

Proposition 3.5. For n ≥ 2 there exist metrically removable compact sets

E ⊂ Rn with Hn(E) > 0.

Proof. Let A ⊂ Rn be the union of all line segments with endpoints in Qn.

Since Hn(A) = 0, the complement Ac contains a compact set E of positive

Hn measure.

To show that E is metrically removable, fix distinct points a, b ∈ Ec and

ǫ > 0 where ǫ < dist(E, {a, b}). There are points a′ ∈ Qn ∩ B(a, ǫ) and

b′ ∈ Qn ∩B(b, ǫ). The polygonal curve [a, a′]∪ [a′, b′]∪ [b′, b] is disjoint from

E and has length less than |a−b|+4ǫ. By Lemma 3.1, the set E is metrically

removable. �

Hakobyan and Herron [8] constructed totally disconnected compact sets in

Rn with non-quasiconvex complement. Their sets have a prescribed Haus-

dorff dimension in [n − 1, n]. As a consequence, there is a rich supply of

totally disconnected compact sets which are not metrically removable in

Rn.

In Proposition 3.3, the assumption that the set has zero measure is essen-

tial. The following proposition provides examples of sets with quasiconvex
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complement which are not metrically removable, even though some of them

are totally disconnected.

Proposition 3.6. If A ⊂ R is a set of positive Lebesgue measure, then the

product A×A is not metrically removable in R2.

Proof. Since A contains a compact subset of positive measure, we may as-

sume A itself is compact. By the Lebesgue density theorem, there exists an

interval I such that H1(A ∩ I) > 0.9H1(I). We may assume I = (0, 1) and

A ⊂ I without loss of generality.

Let γ be a curve that connects (0, 0) to (1, 1) and is disjoint from A×A.

Since the distance from A × A to γ is positive, we may and do replace A

by a larger subset of (0, 1) that consists of finitely many closed intervals, so

that γ is still disjoint from A×A.

Let m = H1(A). Define the function f : R → R by f(x) = 0 for x ≤ 0 and

f(x) = H1([0, x] ∩ A) for x > 0. This is a 1-Lipschitz function that maps

R onto [0,m]. Therefore, the map F (x, y) = (f(x), f(y)) is also 1-Lipschitz

and its range is the square Q = [0,m]× [0,m].

The set F (Ec) consists of the boundary of Q and finitely many horizontal

and vertical segments connecting the opposite sides of Q. The set F (γ)

connects opposite corners of Q and is contained in F (Ec). Therefore, the

length of F (γ) is at least twice the sidelength of Q. Recalling that F is

1-Lipschitz, we conclude that

ℓ(γ) ≥ H1(F (γ)) ≥ 2H1(A) > 1.8.

Since the distance between the endpoints of γ is
√
2 < 1.8, the set A×A is

not metrically removable. �

The property of having quasiconvex complement is not inherited by sub-

sets: for example, a disk in R2 has quasiconvex complement but a line

segment does not. On the other hand, Definition 1.1 makes it clear that any

subset of a metrically removable set is metrically removable.

Lemma 3.7. If Ω is a domain in Rn and E ⊂ Rn is a metrically removable

set, then ρΩ\E agrees with ρΩ on Ω \ E.
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Proof. Given a, b ∈ Ω \ E and ǫ > 0, let γ be a polygonal curve which

connects a to b within Ω and has length less than |a − b| + ǫ/2. We may

assume that the vertices of γ are in Ec, since E has empty interior.

Let L1, . . . , LN be the line segments of the polygonal curve γ. Also let

d = dist(γ,Ωc). For k = 1, . . . , N replace Lk by a curve Γk that connects the

endpoints of Lk within Ec and satisfies ℓ(Γk) < ℓ(Lk)+ δ where δ < ǫ/(2N)

and is small enough to ensure that Γk stays in the open d-neighborhood of

Lk. The concatenation of Γk is a curve of total length less than |a− b|+ ǫ

which connects a to b within Ω \ E. �

Lemma 3.8. The countable union of metrically removable closed sets in Rn

is metrically removable.

Proof. Suppose E =
⋃∞

k=1Ek where each Ek is closed and metrically remov-

able in Rn. Since each Ek has empty interior, their union E is a set of first

category and therefore also has empty interior. By virtue of Lemma 3.1, it

remains to show that ρEc(a, b) = |a− b| for a, b ∈ Ec.

Fix ǫ > 0. There is a polygonal curve γ1 of length less than |a− b|+ ǫ/2

which connects a to b in Ec
1. We may assume that the vertices of γ1 lie in

Ec since they can be moved slightly to avoid E.

Once a curve γk has been constructed, we construct γk+1 as follows. Let

Nk be the number of segments in γk, and let dk = dist(γk,
⋃

j≤k Ej). Also

define δk = 2−k−1minj≤k dj. Since Ek+1 is metrically removable, we can

replace each line segment L of γk with a polygonal curve that has vertices

in Ec, is disjoint from Ek+1, has length less than ℓ(L) < 2−k−1ǫ/N , and

is contained in the δk-neighborhood of L (the latter is made possible by

Lemma 3.7).

The resulting curve γk+1 has length less than |a − b| + ǫ. Consider its

constant-speed parameterization with [0, 1] as the domain. By the equicon-

tinuity of these parameterizations, the sequence γk has a subsequence that

converges uniformly to some curve γ of length at most |a− b|+ ǫ.

It remains to check that γ is disjoint from E. To this end it suffices to

show that dist(γ,Ek) > 0 for all k. By construction, for m ≥ k the curve

γm+1 is contained in the δm-neighborhood of γm, where δm ≤ dk/2
m+1.

Therefore, γ is contained in the (dk/2)-neighborhood of γk. This implies

dist(γ,Ek) ≥ dk/2 > 0, completing the proof. �
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In Lemma 3.8 it is essential that the sets are assumed closed (although

their union need not be). For example, both [0, 1] ∩ Q and [0, 1] \ Q are

metrically removable in C, but their union is not.

4. Estimates for the intrinsic metric

The main tool for proving Theorem 1.3 is the following lemma of inde-

pendent interest.

Lemma 4.1. For any domain Ω ⊂ C we have

(4.1) ρΩ(a, b) ≤ |a− b|+ π

2
H1(∂Ω)

for all a, b ∈ Ω.

The proof of Lemma 4.1 involves the concept of Painlevé length from [7,

p. 48].

Definition 4.2. The Painlevé length of a compact set K ⊂ C, denoted

κ(K), is the infimum of numbers ℓ with the following property: for every

open set U containing K there exists an open set V such that K ⊂ V ⊂ U

and ∂V is a finite union of disjoint analytic Jordan curves of total length at

most ℓ.

Instead of analytic curves, one could use smooth or merely rectifiable

curves in Definition 4.2 without changing the value of κ(K). Indeed, if γ

is a rectifiable Jordan curve, let Φ be a conformal map of the exterior of

the unit disk onto the exterior domain bounded by γ. The images of circles

|z| = r under Φ are analytic Jordan curves, and their length converges to

the length of γ as r → 1+.

Proposition 4.3. [6, p. 25] The inequality κ(K) ≤ πH1(K) holds for every

compact set K ⊂ C.

Proof of Lemma 4.1. Let L = |a− b|+ π
2
H1(∂Ω) and K = ∂Ω∩B(a, L). It

suffices to work with Kc instead of Ω, because a path from a to b of length

sufficiently close to L cannot exit B(a, L). Note also that H1(K) ≤ H1(∂Ω).

Fix ǫ > 0. Since Kc contains Ω, there is a curve Γ connecting a and

b in Kc. Pick an open set U such that K ⊂ U and dist(U,Γ) > 0. By

Proposition 4.3 there exists an open set V such that K ⊂ V ⊂ U and ∂V
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is a finite disjoint union of analytic Jordan curves σj, j = 1, . . . , N , of total

length at most πH1(K) + ǫ. By construction, each σj is disjoint from K.

Also, a and b are in the same connected component of V
c
, being connected

by the curve Γ.

Let γ0(t) = (1 − t)a + tb be the line segment [a, b] parameterized by

t ∈ [0, 1]. If γ0 does not meet ∂V , then it is contained in Kc and we are

done. Otherwise, let t1 = min{t : γ0(t) ∈ ∂V }. The point γ0(t1) belongs to

some Jordan curve σj . If σj has no other intersection point with γ0, then it

separates a from b, which is impossible. Let t2 = max{t : γ0(t) ∈ σj}. The

line segment γ0([t1, t2]) can be replaced by the shorter of two subarcs of the

Jordan curve σj determined by the points γ0(t1) and γ0(t2). This adds at

most ℓ(σj)/2 to the length.

The remaining part γ0([t2, 1]) no longer meets σj . Therefore, repeating

the above process will result, in finitely many steps, in a curve γ connecting

a to b within Kc. This curve consists of parts of the segment [a, b] and arcs

of the curves σj , and satisfies

ℓ(γ) ≤ |a− b|+
N
∑

j=1

ℓ(σj)

2
≤ |a− b|+ π

2
H1(K) +

ǫ

2
.

This proves (4.1). �

Proof of Theorem 1.3. We consider the case n = 2 first. Let E ⊂ C be a

closed totally disconnected set with H1(E) = L < ∞. Fix distinct points

a, b ∈ Ec and pick ǫ > 0 small enough so that B(a, ǫ) and B(b, ǫ) are disjoint

from E. Since the length of E is finite, almost every line parallel to [a, b]

has finite intersection with E [10, Theorem 10.10]. Choose a′, b′ ∈ Ec such

that |a− a′| < ǫ, |b− b′| < ǫ, and E ∩ [a′, b′] = {z1, . . . , zN} is finite.

Choose r > 0 small enough so that

• r < ǫ/N ;

• |zk − zj| > 2r whenever k 6= j;

• H1(E ∩B(zk, r)) < ǫ/N for each k = 1, . . . , N .

By Lemma 4.1 for each k there exists a curve γk ⊂ B(zk, r) \E which joins

two points of [a′, b′] ∩B(zk, r) separated by zk and has length at most

2r +
π

2
H1(∂(B(zk, r) \ E)) ≤ 2r + π2r +

πǫ

2N
.
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Using each γk as a detour around zk, we obtain a curve that joins a′ to b′

and has length at most

|a′ − b′|+ 2rN + π2rN +
πǫ

2
< |a− b|+ (4 + π2 + π/2)ǫ

which proves the theorem since [a, a′] and [b, b′] are disjoint from E.

Now suppose n ≥ 3. Given a, b ∈ Ec and ǫ > 0, fix a two-dimensional

plane P containing a and b. By [10, Theorem 10.10], the intersection E ∩
(P + v) has finite length for almost every vector v orthogonal to P . Since E

is closed, we can choose such v with |v| < min(ǫ,dist({a, b}, E)). Applying

the two-dimensional case to E ∩ (P + v), we obtain a curve γ that joins

a+ v to b+ v within (P + v) \ E and has length less than |a − b| + ǫ. The

concatenation of γ with the segments [a, a+ v] and [b, b+ v] joins a to b in

Ec and has length less than |a− b|+ 3ǫ. �

Unlike Theorem 1.3, Lemma 4.1 does not extend to higher dimensions:

when n ≥ 3, there is no universal constant C such that every domain Ω ⊂ Rn

satisfies

ρΩ(a, b) ≤ C(|a− b|+Hn−1(∂Ω)) for all a, b ∈ Ω.

Indeed, we can connect two points a, b ∈ Rn by a very long circular arc and

let Ω be a small tubular neighborhood of that arc; then Hn−1(∂Ω) is small.

5. Removable sets for functions with bounded derivative

Carleson [5] proved that sets of zero area are removable for Lipschitz func-

tions, and the converse was proved later by Uy [13]. A Lipschitz-continuous

holomorphic function has bounded derivative; however, the converse is in

general false. The following proposition shows that the class of removable

sets for functions with bounded derivative is much smaller than for Lipschitz

functions.

Proposition 5.1. A connected compact set with more than one point is not

removable for holomorphic functions with bounded derivative.

Proof. Let K be such a set. There is a conformal map f : C \K → D such

that f(∞) = 0. The square of f is O(1/|z|2) as z → ∞ and therefore has

zero residue at infinity. This makes its antiderivative F (z) =
∫ z

f(ζ)2 dζ a

holomorphic function in Kc. Clearly, |F ′| = |f2| < 1 in Kc. If F could be
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extended to an entire function, F ′ would be a bounded entire function and

therefore constant. This is impossible since F ′(z) → 0 as z → ∞. �

However, in a quasiconvex domain the boundedness of derivative implies

Lipschitz continuity, since one can integrate the derivative along paths of

controlled length. Therefore, every compact set of zero area with quasicon-

vex complement is removable for functions with bounded derivative. This

leads to the following corollary of Theorem 1.3.

Corollary 5.2. If K ⊂ C is a totally disconnected compact set and H1(K) <

∞, then K is removable for holomorphic functions with bounded derivative.

It is clear that a set of zero analytic capacity is removable for functions

with bounded derivative, since its complement does not support any noncon-

stant bounded holomorphic functions. However, Corollary 5.2 also applies

to some sets of positive capacity, such as a totally disconnected compact

subset of R with positive length.

6. Comparison of thinness conditions

Tabor and Tabor [12] introduced the concept of “intervally thin” sets,

which is related to removability of sets for convex functions [11, 12].

Definition 6.1. [12] A set E ⊂ Rn is intervally thin if for all a, b ∈ Rn and

ǫ > 0 there exist points a′, b′ such that |a− a′| < ǫ, |b− b′| < ǫ, and the line

segment [a′, b′] is disjoint from E.

This concept is closely related to metric removability: the reader may

wish to observe that the set constructed in Proposition 3.5 is intervally

thin. Definition 6.1 can be rephrased as: any two open balls in Rn can be

connected by a line segment disjoint from E. The latter statement is made

more precise by the following result.

Lemma 6.2. Suppose E ⊂ Rn is intervally thin. Let P and Q be distinct

(n − 1)-dimensional hyperplanes in Rn. Then for any two points p ∈ P ,

q ∈ Q and any r > 0 the sets A = P ∩ B(p, r) and B = Q ∩ B(q, r) can be

connected by a line segment disjoint from E.

Proof. Since both A and B are (n − 1)-dimensional disks not contained in

the same hyperplane, the difference set A − B = {a − b : a ∈ A, b ∈ B} is



12 SERGEI KALMYKOV, LEONID V. KOVALEV, AND TAPIO RAJALA

n-dimensional. Therefore, there exist a ∈ A and b ∈ B such that the vector

a − b is not parallel to either P or Q. Let L be the line through a and b.

Pick two points a1, b1 ∈ L such that both a and b lie strictly between a1 and

b1.

For sufficiently small ǫ > 0 any line segment connectingB(a1, ǫ) toB(b1, ǫ)

intersects both A and B. Since E is intervally thin, some of such line

segments are disjoint from E, proving the claim. �

In order to obtain a sufficient removability condition for holomorphic func-

tions with restricted argument of derivative (Theorem 8.1), we need the

concept of a Lipschitz-thin set, which is developed in the remainder of this

section.

Definition 6.3. Let ǫ > 0. A curve γ : [α, β] → Rn is an ǫ-Lipschitz graph

if for every α ≤ t < s ≤ β the angle between the vectors γ(s) − γ(t) and

γ(β)− γ(α) is less than ǫ.

Definition 6.4. A set E ⊂ Rn is Lipschitz-thin if for any ǫ > 0, any two

points a, b ∈ Rn can be connected by an ǫ-Lipschitz graph that is disjoint

from E \ {a, b}.

The following result is a counterpart of Lemma 3.1 for Lipschitz-thin sets.

Lemma 6.5. A set E ⊂ Rn is Lipschitz-thin if and only if it has empty

interior and any two points a, b ∈ Ec can be connected by an ǫ-Lipschitz

graph within Ec.

The proof of Lemma 6.5 relies on a geometric fact which we isolate into

a lemma.

Lemma 6.6. For any distinct points a, b ∈ Rn and any ǫ > 0 there exists

a double-infinite sequence {xk : k ∈ Z} ⊂ [a, b] and positive numbers rk > 0

such that

(a) xk → a as k → −∞ and xk → b as k → ∞
(b) For any choice of points yk ∈ Bk := B(xk, rk), the angle between the

vectors yk − yk−1 and b− a is less than ǫ.
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Proof. Without loss of generality we may assume a = 0 and |b| = 1. Let

δ > 0 be a small number to be chosen later. Define

xk =

{

δ−kb, k < 0;

(1− δk+1)b, k ≥ 0,
and rk =

{

δ−2k, k < 0;

δ2k+2, k ≥ 0.

Observe that

(6.1) |xk − xk−1| =
{

δ|k| − δ|k|+1, k 6= 0;

1− 2δ, k = 0.

For any choice of points yk ∈ Bk we have

|yk − yk−1| ≤ |xk − xk−1|+ rk + rk−1.

On the other hand, writing P for the orthogonal projection onto the line

along b, we have

|P (yk)− P (yk−1)| ≥ |xk − xk−1| − rk − rk−1.

Comparing (6.1) with the definition of rk, we find that (rk + rk−1)/|xk −
xk−1| ≤ Cδ with C independent of k or δ. By choosing δ sufficiently small,

we can make the ratio

|P (yk)− P (yk−1)|
|yk − yk−1|

≥ |xk − xk−1| − rk − rk−1

|xk − xk−1|+ rk + rk−1

≥ 1− Cδ

1 + Cδ

arbitrarily close to 1, which implies the conclusion of the lemma. �

Proof of Lemma 6.5. The necessity part is clear. To prove sufficiency, fix

a, b ∈ Rn and ǫ > 0, and let Bk be as in Lemma 6.6. For each k ∈ Z pick

yk ∈ Bk \E which is possible because E has empty interior.

Connect each yk to yk−1 by an ǫ-Lipschitz graph γk ⊂ Ec. The concate-

nation of these curves is a curve from a to b that lies in Ec except possibly

its endpoints. By construction, this curve is a (2ǫ)-Lipschitz graph. �

As another application of Lemma 6.6, we relate the notions of “intervally

thin” and “Lipschitz-thin” on the plane.

Proposition 6.7. Any intervally thin set E ⊂ R2 is Lipschitz thin.

Proof. An intervally thin set has empty interior by definition. Fix ǫ > 0 and

distinct points a, b ∈ Ec. We may assume a = 0 and b = 1, identifying R2

with C. Let Bk, k ∈ Z, be the disks provided by Lemma 6.6.

Since E is intervally thin, there exists a line segment L1 ⊂ Ec connecting

B0 to B1. By Lemma 6.2, there is a line segment L2 connecting L1 ∩ B1
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to B2. Continuing in this way, let Lk+1 ⊂ Ec be a line segment connecting

Lk ∩ Bk to Bk+1. After erasing extraneous parts of segments Lk (namely,

the part of Lk∩Bk extending beyond the point Lk∩Lk+1) we obtain a curve

that begins with L1 and ends at 1.

Similarly, let L0 ⊂ Ec be a line segment connecting L1 ∩ B0 to B−1 and

erase the part of L1∩B0 extending beyond L1∩L0, etc. This process results

in the curve

γ = {0, 1} ∪
⋃

k∈Z

Lk

which is the desired ǫ-Lipschitz graph connecting 0 to 1 within Ec. �

The proof of Proposition 6.7 breaks down in dimensions n > 2, where

Lemma 6.2 provides a way to connect (n − 1)-dimensional disks instead of

1-dimensional line segments. However, we still have such a result for closed

sets.

Proposition 6.8. If a closed set E ⊂ Rn is intervally thin, then it is

Lipschitz-thin.

Proof. Given distinct points a, b ∈ Ec and δ ∈ (0, 1), pick r > 0 be such

that both B(a, r) and B(b, r) are disjoint from E and r < δ|a − b|. Let

u = (b− a)/|b − a| and define

a1 = a+ (1− δ)ru, and b1 = b− (1− δ)ru.

The balls B(a1, rδ) andB(b1, rδ) are connected by some line segment [a′, b′] ⊂
Ec. The piecewise linear curve aa′b′b is disjoint from E, and all three of its

segments are nearly parallel to vector u when δ is small enough. Thus, aa′b′b

is the desired ǫ-Lipschitz graph with small ǫ. �

The converse of Proposition 6.7 is false: a Lipschitz-thin set need not be

intervally thin, as the following two examples show.

Example 6.9. In R2, let E = I1 ∪ I2 ∪ I3 where

I1 = {(x, 1): x ∈ [−1, 1] \Q};
I2 = {(x, 0): x ∈ [−1, 1] ∩Q};
I3 = {(x,−1): x ∈ [−1, 1] \Q}.

The set E is Lipschitz-thin, because all three sets Ik are easily avoided by a

polygonal path that can be made arbitrarily close to straight. On the other
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hand, there is no line segment that connects a small neighborhood of (0, 2)

to a small neighborhood of (0,−2) while avoiding E. Indeed, such a line

segment L would contain two points (u, 1) and (v,−1) with u, v ∈ Q. Then

((u+ v)/2, 0) ∈ L ∩ E, proving the claim.

The set E in Example 6.9 is not closed. A compact set with the same

properties can be constructed with the following iterative process.

Example 6.10. Let δ = 2−5. Define for every n, k ∈ N and i ∈ {0, 1, 2} a

similitude mapping fn,i,k : R
2 → R2 by setting

fn,i,k(x) =

{

(1− 2δ)2−2nx+ (i · 2−n, (k + δ) · 2−2n), if i = 0, 1

(1− 2δ)2−2nx+ (i · 2−n, (k + 1
2
+ δ) · 2−2n), if i = 2.

Given a set F ⊂ R2, let

Sn(F ) =

2
⋃

i=0

22n−2
⋃

k=0

fn,i,k(F )

and define a sequence of compact sets E7 ⊃ E8 ⊃ · · · as

En = S7 ◦ S8 ◦ · · · ◦ Sn([0, 1]
2).

The final compact set is defined as

E =

∞
⋂

n=7

En.

Let us then show that the set E is Lipschitz-thin, but not intervally thin.

In order to see that E is not intervally thin we prove

Claim 1: any line passing through {0}× [2δ, 1− 2δ] making

an angle at most π/4 with the horizontal axis, must intersect

the set E.

Assuming Claim 1, any line segment connecting a point inB((−1/2, 1/2), 1/4)

to a point in B((3/2, 1/2), 1/4) intersects E and thus E is not intervally thin.

To prove that E satisfies Claim 1, it is enough to show that for any set

F ⊂ [0, 1]2 satisfying Claim 1 and for any n ≥ 7 also the set Sn(F ) satisfies

Claim 1. Indeed, assuming this is true, then since [0, 1]2 satisfies Claim 1,

so does each En, and the property carries over to the nested intersection E.

For showing that Sn(F ) satisfies Claim 1, let L be a line passing through

{0}× [2δ, 1− 2δ] and making an angle at most π/4 with the horizontal axis.

Suppose towards a contradiction that Sn(F )∩L = ∅. Denote for i ∈ {0, 1, 2}
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by yi ∈ [δ, 1 − δ] the y-coordinate of the intersection of L with the vertical

line {i ·2−n}×R. By the facts that n ≥ 7, L passes through {0}× [2δ, 1−2δ]

and makes an angle of at most π/4 with the horizontal axis, we have that L

intersects {2−n}× [δ, 1− δ] and {2−n+1} × [δ, 1− δ]. This together with the

assumption Sn(F ) ∩ L = ∅ and the definition of Sn implies that there exist

k0, k1, k2 ∈ N such that

(6.2) |yi − ki2
−2n| ≤ 3δ · 2−2n, for i = 0, 1

and

(6.3)

∣

∣

∣

∣

y2 −
(

k2 +
1

2

)

2−2n

∣

∣

∣

∣

≤ 3δ · 2−2n.

Since L is a line, y2 = 2y1−y0. Combining this with (6.2) gives the estimate

|y2 − (2k1 − k0)2
−2n| = |2y1 − y0 − (2k1 − k0)2

−2n|
≤ 2|y0 − k02

−2n|+ |y1 − k12
−2n|

≤ 9δ · 2−2n.

Since δ = 2−5, this contradicts (6.3). Thus Sn(F ) ∩ L 6= ∅ and Claim 1

holds.

It remains to show that E is Lipschitz-thin. Fix ǫ > 0. Observe that

Sn([0, 1]
2) ⊂ [0, 2−n+2]× [0, 1]

which implies that Sn−1 ◦ Sn([0, 1]
2) is contained in vertical strips of width

2−3n+4 separated by horizontal distances at least 2−n. Furthermore, each

vertical strip has holes of height at least δ·2−2n+2 placed uniformly at vertical

distance less than 2−2n+2 from one another. These holes allow curves to pass

through the vertical strips with only a slight change of direction. Therefore,

there exists n ∈ N such that any two points x, y ∈ R2 with distance at least

ǫ from Sn−1 ◦ Sn([0, 1]
2) can be connected by an ǫ-Lipschitz graph avoiding

Sn−1 ◦ Sn([0, 1]
2).

Subsequent application of Sn−2, . . . , S7 only replicates the above at smaller

scales, since the property of being an ǫ-Lipschitz graph is preserved under

similitudes. Therefore, any two points x, y ∈ R2 with distance at least ǫ from

En can be connected by an ǫ-Lipschitz graph avoiding En. Consequently, E

is Lipschitz-thin. �
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It is immediate that a Lipschitz-thin set is metrically negligible. The con-

verse is not true, as the following example, called “Holey Devil’s Staircase”

in [11], shows.

Example 6.11. Let C ⊂ [0, 1] be the standard middle-third Cantor set,

and let f : [0, 1] → [0, 1] be the associated “staircase” function, i.e., the

continuous function that is constant on each component of [0, 1] \ C, where

it is equal to the midpoint of the component. Let E = {(x, f(x)) : x ∈ C}
be the part of the graph of f that lies over C. This is a compact totally

disconnected set which is metrically removable but not Lipschitz-thin.

Proof. Since E is a subset of the graph of an increasing function, its H1

measure is finite. By Theorem 1.3 E is metrically removable.

Suppose that g : [0, 1] → [0, 1] is a strictly increasing function such that

g(0) > 0 and g(1) < 1. We claim that the graph of g meets E. Indeed, let

x0 = inf{x : g(x) = f(x)}; this infimum is defined because g(0) > f(0) and

g(1) < f(1). If x0 /∈ C then consider x1 < x0 such that f(x1) = f(x0). Since

g(x1) < g(x0) = f(x0) = f(x1), the intermediate value theorem implies that

g = f at some point of (0, x1), contradicting the choice of x0.

It remains to observe that for ǫ < tan−1(1/3), any ǫ-Lipschitz graph

connecting the points (0, 1/3) and (1, 2/3) is the graph of a strictly increasing

function g to which the previous paragraph applies. �

7. Extension of delta-monotone maps

The extension theorem of this section will be applied to holomorphic

functions in §8.

Definition 7.1. [9] Let Ω ⊂ Rn, n ≥ 2, and δ > 0. A map f : Ω → Rn is

called δ-monotone if

(7.1) 〈f(x)− f(y), x− y〉 ≥ δ|f(x)− f(y)||x− y|

for all x, y ∈ Ω.

Examples of δ-monotone maps are easy to find when n = 2, by tak-

ing Ω to be a convex domain and f a holomorphic function such that

| arg f ′| ≤ cos−1 δ. For example [9, Example 15], the function f(z) = −1/z

is δ-monotone in the domain Ω = {z ∈ C : | arg z| < π/6}, with δ = 1/2.
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Observe that this function does not have a continuous extension to Ω, being

unbounded near 0. The following theorem shows this is the only obstruction

to continuous extension.

Definition 7.2. An open set Ω ⊂ Rn is locally connected on the boundary

if for every b ∈ ∂Ω and every r > 0 there exists an open set U such that

b ∈ U ⊂ B(b, r) and U ∩ Ω is connected.

Theorem 7.3. Suppose Ω ⊂ Rn, n ≥ 2, is open and locally connected on

the boundary. Let f : Ω → Rn be a δ-monotone map that is bounded on

bounded subsets of Ω. Then f has a continuous extension to Ω, which is

also δ-monotone.

We need additional notation for the proof. Given a point p ∈ Rn, a

nonzero vector v ∈ Rn, and an angle θ ∈ (0, π/2), let

C(p, v, θ) = {x ∈ Rn : 〈x− p, v〉 ≥ cos θ|x− p||v|}

be the closed cone with vertex p, the axis parallel to v, and opening angle θ.

Note that if f : Ω → Rn is a δ-monotone map and α := θ + cos−1 δ < π/2,

then

(7.2) f(C(p, v, θ) ∩ Ω) ⊂ C(f(p), v, α)

for any p ∈ Ω.

Let us say that p is a vertex of a set E ⊂ Rn if p ∈ E and there exist

v 6= 0 and θ ∈ (0, π/2) such that E ⊂ C(p, v, θ).

Lemma 7.4. For any set E ⊂ Rn the set of vertices of E is countable.

Proof. Suppose p ∈ E ⊂ C(p, v, θ). Then for every vector y in the interior

of the dual cone C(0, v, π/2 − θ) the linear function x 7→ 〈x, y〉 attains its

minimum on E at the point p and nowhere else. Therefore, the dual cones

associated with distinct vertices of E are disjoint. Since there can be only

countably many disjoint open subsets of Rn, the lemma is proved. �

Proof of Theorem 7.3. Fix b ∈ ∂Ω. For each k ∈ N let Uk be an open subset

of Rn such that b ∈ Uk ⊂ B(b, 1/k) and Uk ∩ Ω is connected. Define

E =
∞
⋂

k=1

Ek, where Ek = f(Uk ∩ Ω).
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Then each set Ek is nonempty, compact and connected. The intersection

of a nested sequence of such sets is nonempty, compact, and connected as

well [14, Theorem 28.2].

Choose α strictly between cos−1 δ and π/2. Fix y ∈ E and pick a sequence

xj → b such that f(xj) → y. Passing to a subsequence, we may assume

(7.3)
b− xj
|b− xj|

→ u as n → ∞,

where u is some unit vector. For a fixed j, we have

B(b, r) ⊂ C(xj, b− xj, α− cos−1 δ)

when r > 0 is small enough. By (7.2) this implies f(B(b, r)) ⊂ C(f(xj), b−
xj, α), hence E ⊂ C(f(xj), b− xj, α).

Passing to the limit j → ∞ and using (7.3), we obtain E ⊂ C(y, u, α).

Thus, every point of E is a vertex. By Lemma 7.4 the set E is countable.

Being also nonempty and connected, E must consist of precisely one point,

say E = {y}. This implies limx→b f(x) = y, which provides the desired

continuous extension of f to the boundary. Finally, the extended map is δ-

monotone because the inequality (7.1) is preserved under taking limits. �

Corollary 7.5. Suppose Ω ⊂ Rn, n ≥ 2, is open, dense in Rn, and locally

connected on the boundary. Then every δ-monotone map f : Ω → Rn has a

continuous δ-monotone extension to Rn.

Proof. In view of Theorem 7.3 we only need to prove that f(B(0, r) ∩Ω) is

bounded for every r > 0. Choose α strictly between cos−1 δ and π/2. When

R is sufficiently large, we have

B(0, r) ⊂ C(x,−x, α− cos−1 δ)

for all x ∈ Ω with |x| ≥ R. Since Ω is open and dense, there is x ∈ Ω such

that −x ∈ Ω and |x| ≥ R. From (7.2) it follows that

f(B(0, r) ∩Ω) ⊂ C(f(x),−x, α) ∩ C(f(−x), x, α)

where the set on the right is bounded, proving the claim. �

The relevance of the δ-monotonicity condition to the extension theo-

rem 7.3 is emphasized by the following example.
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Example 7.6. Let Ω = Rn \ {0} where n ≥ 2. Define f : Ω → Rn by

f(x) = x+x/|x|. An interested reader can check that 〈f(x)−f(y), x−y〉 > 0

for all pairs of distinct points x, y ∈ Ω. Yet, f does not have a continuous

extension to 0. It narrowly fails the δ-monotonicity condition (7.1).

Remark 7.7. Every quasiconvex domain Ω is locally connected on the bound-

ary. In particular, when E ⊂ Rn is closed and metrically removable, its

complement Ω = Ec satisfies the assumptions of Corollary 7.5.

Indeed, given b ∈ ∂Ω and r > 0, one can use quasiconvexity to find

sufficiently small ρ < r/2 so that any two points of B(b, ρ)∩Ω are connected

by a curve of length less than r/2. Such a curve must lie within B(b, r).

Therefore, B(b, ρ) ∩ Ω belongs to one connected component of B(b, r) ∩ Ω,

which satisfies Definition 7.2.

8. Removable sets for functions with restricted argument of

derivative

Theorem 8.1. Let K ⊂ C be a closed Lipschitz-thin set with H2(K) = 0.

Suppose f : Kc → C is holomorphic and there exists α < π/2 such that

(8.1) | arg f ′(z)| ≤ α, z ∈ Kc

(in particular, f ′ 6= 0.) Then f extends to an entire function, which is in

fact linear.

The first step toward the proof of Theorem 8.1, presented as a lemma

below, does not rely on K having zero measure.

Lemma 8.2. Let K ⊂ C be a closed Lipschitz-thin set. Suppose f : Kc → C

is holomorphic and satisfies (8.1) with α < π/2. Then f is δ-monotone with

δ = cosα.

Proof. Fix distinct z, w ∈ Kc. Pick ǫ < π/2− α and let γ be an ǫ-Lipschitz

graph connecting w to z within Kc. When parameterized by its arclength,

γ satisfies
∣

∣

∣

∣

arg
γ′(t)

z − w

∣

∣

∣

∣

≤ ǫ
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for almost all t in its parameter interval. Using the inequality | arg f ′| < α

we obtain
∣

∣

∣

∣

arg
(f ◦ γ)′
z − w

∣

∣

∣

∣

< α+ ǫ.

Since f ◦ γ is absolutely continuous, integration yields
∣

∣

∣

∣

arg
f(z)− f(w)

z − w

∣

∣

∣

∣

< α+ ǫ

which implies (7.1) with δ = cos(α+ ǫ). Since ǫ can be arbitrarily small, the

lemma is proved. �

Proof of Theorem 8.1. By Lemma 8.2, the map f is δ-monotone with δ =

cosα. Corollary 7.5 with Remark 7.7 provide its δ-monotone extension F

to the entire complex plane.

A δ-monotone map F : C → C is quasiconformal [9, Theorem 6], which

means that F is locally in the Sobolev space W 1,2 and satisfies the Beltrami

equation
∂F

∂z̄
= µ(z)

∂F

∂z

almost everywhere in C, with µ being a measurable complex-valued function

such that ess sup |µ| < 1.

Since F is holomorphic on Kc, its Beltrami coefficient µ is zero a.e. The

uniqueness theorem for the Beltrami equation ([2, Theorem V.B.1] or [3,

Theorem 5.3.4]) implies that such F must be a linear function, as claimed.

�

9. Remarks and questions

A homeomorphism of R2 does not preserve metric removability of sets

in general. Indeed, there exists a homeomorphism g : R → R that maps

the standard Cantor set C onto a Cantor-type set C ′ of positive mea-

sure. Let E = C × C and f(x, y) = (g(x), g(y)). Then f : R2 → R2 is

a homeomorphism, the set E is metrically removable by Corollary 3.4 while

f(E) = C ′ × C ′ is not metrically removable by Proposition 3.6. Note that

the map f in this example is neither Lipschitz nor quasiconformal.

Question 9.1. Are metrically removable sets preserved by bi-Lipschitz

homeomorphisms f : Rn → Rn? Or even by quasiconformal maps?
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The property of having quasiconvex complement is obviously preserved by

bi-Lipschitz maps. So, the class of closed metrically removable sets E ⊂ Rn

with Hn(E) = 0 is indeed preserved by bi-Lipschitz homeomorphisms, by

virtue of Lemma 3.3.

Question 9.2. What is the best constant in (4.1)? It seems likely that π/2

can be improved. The example of Ω = C\ [−1, 1] with a, b = ±ǫi shows that

the constant should be at least 1. Is the inequality

(9.1) ρΩ(a, b) ≤ |a− b|+H1(∂Ω)

true?

As is observed in [6, p. 26], Proposition 4.3 holds in the stronger form

κ(K) ≤ πH1
∞(K), that is, with the Hausdorff measure H1 is replaced by

the Hausdorff content H1
∞. In the Hausdorff content version, the constant

π cannot be improved because for the unit disk D we have κ(D) = 2π and

H1
∞(D) = diamD = 2. However, we do not know of such an example for

Hausdorff measure.

Question 9.3. Can the constant π in Proposition 4.3 be improved? The

best constant cannot be less than 3 because a modification of Sierpinski

gasket described in [10, p. 75] has H1(K) = 1 and κ(K) = 3.

Question 9.4. Is every intervally thin set Lipschitz-thin? By the results of

§6 this is true in two dimensions, and for closed sets in all dimensions.
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12. Jacek Tabor and Józef Tabor, Extensions of convex and semiconvex functions and

intervally thin sets, J. Math. Anal. Appl. 365 (2010), no. 1, 43–49. MR 2585074
13. Nguyen Xuan Uy, Removable sets of analytic functions satisfying a Lipschitz condition,

Ark. Mat. 17 (1979), no. 1, 19–27. MR 543500
14. Stephen Willard, General topology, Dover Publications, Inc., Mineola, NY,

2004, Reprint of the 1970 original [Addison-Wesley, Reading, MA; MR0264581].
MR 2048350

15. Malik Younsi, On removable sets for holomorphic functions, EMS Surv. Math. Sci. 2
(2015), no. 2, 219–254. MR 3429163

School of mathematical sciences, Shanghai Jiao Tong University, 800 Dongchuan
RD, Shanghai 200240, China

E-mail address: sergeykalmykov@inbox.ru

215 Carnegie, Mathematics Department, Syracuse University, Syracuse, NY
13244, USA

E-mail address: lvkovale@syr.edu

Department of Mathematics and Statistics, University of Jyvaskyla, P.O.
Box 35 (MaD), FI-40014 University of Jyvaskyla, Finland

E-mail address: tapio.m.rajala@jyu.fi


	1. Introduction
	2. Notation and definitions
	3. Basic properties of metrically removable sets
	4. Estimates for the intrinsic metric
	5. Removable sets for functions with bounded derivative
	6. Comparison of thinness conditions
	7. Extension of delta-monotone maps
	8. Removable sets for functions with restricted argument of derivative
	9. Remarks and questions
	References

