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Abstract
The time domain-random walk method was developed further for simulating mass transfer in fracture flows together with
matrix diffusion in surrounding porous media. Specifically, a time domain-random walk scheme was developed for numeri-
cally approximating solutions of the advection-diffusion equation when the diffusion coefficient exhibits significant spatial
variation or even discontinuities. The proposed scheme relies on second-order accurate, central-difference approximations
of the advective and diffusive fluxes. The scheme was verified by comparing simulated results against analytical solutions
in flow configurations involving a rectangular channel connected on one side with a porous matrix. Simulations with several
flow rates, diffusion coefficients, and matrix porosities indicate good agreement between the numerical approximations and
analytical solutions.

Keywords Matrix diffusion · Advection · Porous media · Solute transport · Breakthrough curve · Simulation

1 Introduction

Intracellular motion of biomolecules, propagation of con-
taminants, plant nutrients in soils, and migration of radionu-
clides within a geosphere are some examples of phenomena
involving particle transport due to advection and diffusion.
The related modeling tasks vary in difficulty from nearly
trivial to particularly challenging. When the transport occurs
in simple domains and involves constant transport parame-
ters, strictly analytical modeling is possible. However, only
a handful of more complex cases allow purely analytical
treatment; beyond these cases, computational modeling is
necessary.
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Here, we focus on the computational modeling of
mass transfer in fracture flows complemented with matrix
diffusion [3, 12, 27]. The overall transport can be illustrated
as follows: (1) solute (pulse) is released into the fracture
where it is transported by advection and diffusion; (2)
during propagation along the fracture, a (small) portion of
the solute enters the porous media making it effectively
a solute reservoir; (3) solute is (slowly) transported by
diffusion within the porous media; and (4) solute returns
gradually from the porous media back into the fracture,
thus completing the cycle (a secondary release occurs). An
arbitrary solute particle can undergo steps 2 to 4 multiple
times. Thus, when compared with pure fracture flow, the
matrix diffusion introduces a retardation effect on the solute
transport. Specifically, the solute breakthrough curves now
exhibit longer tails. The effect is even more pronounced
with sorption onto mineral surfaces inside the porous media
or at the fracture perimeters [41]. To provide a specific
example, the safety of the final repository for spent nuclear
fuel in Finland [33] has driven the development of modeling
capabilities for the phenomena described above.

Modeling mass transfer in fracture flows together with
matrix diffusion is challenging because of the multiple
temporal and spatial scales inherently present in the phe-
nomena. Specifically, these include fast transport in frac-
tures alongside slow transport inside the porous media,
in this case rock. Alternatively, fractures with a relatively
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large diameter, possibly constituting a complex network-
type flow system, are in contact with much smaller pores
thus forming highly tortuous transport pathways through
the rock. The challenge remains even with the common
simplification where the flow field responsible for advec-
tion is assumed to be independent of the solute con-
centration and, moreover, fully developed prior to the
initial release. Although modeling can be aided by sim-
plified laboratory and in situ experiments [20, 50, 51],
which on occasion can be treated analytically [17, 18,
43, 48], in reality the fractures or flow channels are
complex and the surrounding rock is typically heteroge-
neous. While these more realistic systems call for compu-
tational modeling, such modeling also entails significant
challenges.

The multiple spatial scales involved generally inflict
a large burden even for contemporary computational
resources. The standard remedy is to treat the rock as a het-
erogeneous bulk material with spatially varying transport
coefficients, for example, the effective diffusion coefficient
or permeability; here, the ab initio approach of modeling
rock at the pore scale is abandoned. The usually low rock
porosity implies small values for the transport coefficients
when compared with the corresponding values in the frac-
ture. Such values may even be several orders of magnitude
smaller. The values of the transport coefficients usually have
a discontinuity at the interface between the fracture and
the surrounding rock. Furthermore, within the rock, there
may be significant spatial variation, or even discontinuities,
in the transport coefficients due to distinct minerals with
sharp interfaces and changes in rock composition or type.
Highly heterogeneous transport coefficients with discon-
tinuous can defeat computational methods; in these cases
enforcing stable simulations, while accurately tracking the
fast dynamics, require refined time resolution, which then
implies extremely laborious time evolution for capturing
the essential slow dynamics.

In recent studies, several alternative means have been
developed to overcome the computational challenges
discussed above. McDermott et al. [25] proposed a hybrid
analytical-numerical modeling method, where the transport
in fractures is resolved by numerical means and the
matrix diffusion is approximated analytically, thus avoiding
the excessively lengthy simulations otherwise necessary.
However, resorting to analytical treatment unavoidably
introduces further assumptions and simplifications, which
limit the scope of the approach. Toivanen et al. [45]
adopted the classical random walk method for a purely
computational modeling of transport, also with sorption
[46]. Here, the solute transport is modeled by tracking
tracer particles obeying stochastic dynamics. As the random
walk method does not suffer from stability issues in the
usual sense, there seems to be more freedom in choosing

a convenient time resolution. However, to properly enforce
the prescribed stochastic particle dynamics, a rather fine
time resolution is still necessary and places a heavy strain
on the computational resources.

The time domain-random walk (TDRW) method was
originally developed for diffusive mass transfer in hetero-
geneous media with locally known transport coefficients
[6, 7, 24]. In the TDRW method, tracer particles obeying
stochastic dynamics are tracked. Specifically, the particles
jump between sites of a regular grid, or a lattice, and both
the direction and duration of a jump are random variables.
Moreover, a local probability is assigned for each jump
direction in such a manner that, for example, a jump into
a neighboring, low porosity site is less likely than a jump
into a higher porosity site. The constant transition time char-
acterizing the standard random walk method is effectively
replaced with a variable transition time facilitating, in prin-
ciple, computationally efficient simulations. One possible
difficulty is that to gather sufficient statistics also from the
low porosity regions, tracking a relatively larger number of
tracer particles may be necessary. This is an aspect highly
dependent on the system configuration. It is noteworthy that
modern computational hardware relies increasingly on par-
allel processing; pushing the computational burden into the
number of particles thus appears advantageous.

The TDRW method has been used to study the effect
of centimeter-scale structural heterogeneities on diffusion
in various cases [36, 37, 40, 49]. The TDRW method
has also been used to model transport in fractured media
[28, 29] and has been shown to be a powerful tool for
analyzing results of in situ and laboratory experiments,
especially when initial or boundary conditions are complex
[1, 15, 16, 49]. Previously, Dentz et al. [9] modified
the TDRW method to include sorption by using specific
functions for trapping frequency and number of trapping
events. Voutilainen et al. [52] developed this idea further
so that the parameter typically measured for rate of
sorption (distribution coefficient) can be utilized. Only
very recently, the TDRW method was extended to also
include advection [13, 38]; a first-order accurate upwind
(finite-difference) approximation of the advective mass-
flux was proposed. Although this particular approximation
provides unconditionally positive jump probabilities (cf.
unconditional stability), it is known in the context of
finite-difference and finite-volume methods that first-order
upwind schemes introduce severe numerical diffusion,
especially when simulating configurations involving large
concentration gradients. Therefore, simulation of fracture
flows together with, for example, tracer pulses would be
problematic.

As a related matter, the TDRW method can be viewed as
a reincarnation of the lattice kinetic Monte Carlo (LKMC)
method. There does not appear to be a definite point of
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origin for LKMC, but early formulations can be found from
Refs. [26] and [4]. Only recently has Flamm et al. [11]
extended the LKMC method to include advection; their
proposal is essentially the same as that proposed in Refs.
[13, 38]. Lee and Sinno [22] very recently revisited this
scheme and proposed an improvement constructed starting
from a microscopic premise. Here, the flux terms are
computed using an approximation known as the exponential
scheme in the finite-volume context. Based on the literature,
the difference between the TDRW and LKMC methods, if
any, is that the LKMC method advocates the microscopic
perspective, both in development and application of the
method, while TDRW similarly favors the macroscopic
perspective.

Regarding the currently considered transport modeling,
similar problems in a larger scale have previously been
studied using methods such as discrete fracture network
(DFN) modeling [5, 10, 53], continuous time random walks
[2, 8, 30], and multi-rate mass transfer modeling [14, 44]. In
general, the large-scale models rely on various mathematical
functions with case-dependent parameters that depict the
transport in the fractures and interaction of solutes in
the fracture and porous matrix. In addition to the TDRW
approach, systems with small-scale heterogeneities have
also recently been studied with a micro-continuum approach
[47] and micro-DFN modeling [42]. In small-scale systems,
it is possible to model the interaction of solutes in the
fracture and porous matrix explicitly and thus the effects
arising from, for example, heterogeneity can be directly
observed. Typically, it is challenging to up-scale the results
of small-scale approaches to field scale. However, it is
possible to validate the mathematical expressions of large-
scale methods by applying the results from small-scale
approaches.

A systematic derivation of TDRW schemes is presented,
starting from the macroscopic mass-balance equations
(a top-down derivation). The advection-diffusion model
considered is first established in Section 2. Then, in
Section 3, a corresponding, second-order accurate TDRW
scheme is derived and proposed. This advance to state-
of-the-art is relevant for two reasons. Firstly, the accuracy
of the advective and diffusive flux approximations is now
of the same order and, secondly, the adopted central-
difference approximation of the advective flux is not prone
to numerical diffusion. These advantages are balanced with
a disadvantage. Due to utilization of the central-difference
approximation, a local condition for the grid Péclect number
is introduced to ensure strictly positive jump probabilities.
Specifically, a restriction on the simulation parameters is
imposed (analogous to a stability condition). When this
condition is fulfilled, the proposed TDRW scheme provides
accurate solutions for advection-diffusion problems as
demonstrated in Section 4, where comparisons between

numerical and analytical solutions for several benchmark
cases are presented. Furthermore, when the condition
is fulfilled, the central-difference scheme produces more
reliable results than the first-order accurate upwind scheme.
Conclusions are presented at the end of this article.

2 Advection-diffusionmodel

The focus in this work is on modeling mass transfer in
fracture flows involving matrix-diffusion. To this end, a
porous material saturated by a fluid (or solvent) which,
in turn, carries tracer (or solute) particles, is considered.
The general mass-balance equation serves as the starting
point; the (volumetric) solute concentration field c evolves
according to

∂t c + ∇ · jp = 0,

where jp is the mass-flux of the solute within the pore
system. This total mass-flux is then decomposed into
contributions due to advection and diffusion. The diffusive
part is modeled using

jp,d = −εDp∇cp,

where cp = c/ε is the concentration in the solvent and ε

is the local porosity of the medium (between 0 and 1). In
other words, Fick’s first law is applied in porous media and
all the remaining complications related to the description of
diffusive transport in a confined pore space are incorporated
in the diffusion coefficient Dp [34].

Many models have been presented for Dp, perhaps the
simplest being

Dp = δD

τ 2
D0,

where D0 is the intrinsic diffusion coefficient for the solute
in a pure solvent, the tortuosity τ ≥ 1 includes the effect
of complex transport pathways in the pore system while
the constrictivity δD < 1 considers variation in pore cross-
sections along those pathways. Together, the tortuosity and
constrictivity define a geometric factor, (δD/τ 2) < 1, which
presents a decrease in diffusivity due to the complex pore
geometry. However, appropriate models for Dp are still
material dependent; that is, a general description for Dp

remains to be found and Dp is thus used below without
committing to a specific model.

The advective part of the mass-flux is modeled using
jp,a = (

εv
)
cp, where

(
εv

)
represents the Darcy velocity

expressed in terms of the solvent flow velocity v. Putting all
of the above together, one arrives at [21, 35]

∂t c = ∇ · (
De∇cp − vc

)
, (1)

where De = εDp is the effective diffusion coefficient. Note
that here the diffusion coefficients are all treated as scalars
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simply for ease of notation; in the general formulation,
diffusion coefficients are tensors.

A dimensionless form of the model can be written by
scaling the related variables using a reference concentration
in the solvent c0, characteristic length L, characteristic
velocity V , and the intrinsic diffusion coefficient D0:

∂∗
t c∗ = ∇∗ · (

D∗
e ∇∗c∗

p − Pe vc∗). (2)

Dynamic similarity is governed by the Péclect number,
Pe = Td/Ta , i.e., the ratio between characteristic time scale
for diffusion, Td = L2/D0, and advection, Ta = L/V ;
Eq. 2 is obtained with the diffusive scaling t∗ = t/Td .
Typically in the fracture, where the flow takes place, Ta �
Td (Pe � 1). At the same time in the matrix, where the
flow is negligible, Td � Ta (Pe ∼ 0). In other words, a
particular computational challenge related to Eq. 2, when
considering fracture flows involving matrix-diffusion, is the
accommodation of discrepancy in Pe between fracture and
matrix. Secondly, in heterogeneous materials, the transport
parameters, such as De, may vary significantly or may even
be discontinuous. This is a fundamental problem for any
computational method; the task of finding an acceptable
balance between accuracy and lengthy computation times,
while avoiding stability issues, can be difficult.

3 Time domain-randomwalkmethod

Over the years, many approaches have been proposed
for the computational modeling of advection-diffusion
phenomena. Finite-difference and finite-volume methods
can be characterized as the classical approaches. Several
alternative methods based on statistical mechanics have
also been proposed. For example, a basic random walk
method tracks propagation of tracer particles that migrate
by jumping at regular intervals: both the length and the
direction of a jump are random, but the length depends on
the local diffusion coefficient and on the prescribed, regular
interval between jumps (aka a constant time step). Tracking
the movement of a large collection of these particles reveals
their statistical behavior which, when properly simulated,
provides an approximate solution for a diffusion equation.
That is, the random walk method simulates solute transport
by relying on a large number of representative particles each
carrying a portion of the solute mass. Advection can be
incorporated by including a drift for the jumps.

On the other hand, in the TDRW method, an interesting
variant for the treatment of space and time variables is
adopted; the particles now jump between sites of a regular
grid, or a lattice, and the transition time for a jump is a
random variable. That is, here the jump length is fixed by
the grid spacing, and the random transition time depends

instead on the local diffusion coefficients. A transition
probability is assigned for each jump between neighboring
lattice sites and these probabilities again depend on the
local diffusion coefficients. Advection is considered by
introducing a bias on the jump probabilities.

Derivation of the basic random walk method can be
achieved using a bottom-up procedure starting from the
Langevin equation. This stochastic differential equation
is then integrated in time using the Itô-Taylor scheme
that provides the usual evolution equation for the random
walker [39]. A correspondence between the Fokker-Planck
equation (with a modified drift velocity) is next established
to finally connect the method with the advection-diffusion
equation. At the same time, a top-down procedure can
be used to derive the TDRW method. That is, starting
from a given macroscopic balance equation, particular
TDRW schemes can be constructed in a reverse-engineering
fashion.

3.1 Preparation: semi-discrete finite-volume
formulation

Here, a TDRW scheme is derived from the advection-
diffusion equation in a systematic manner. To account
for heterogeneity, or even discontinuity in the transport
coefficients involved, it is convenient to start from an
integral formulation of the advection-diffusion equation.
Namely, following the finite-volume formalism, a volume-
averaged version of Eq. 1 is first written:

∂tC = 1

V

∫

�

∇·(De∇cp −vc
)

dV = 1

V

∫

�

n·(De∇cp −vc
)

dA, (3)

where C is the volume-averaged concentration and the
divergence or Gauss’s theorem is applied in the last
step. This standard transformation of model equation
from differential to integral form relies, ultimately, on
the Reynolds transport theorem; the reference or control
volumes are here assumed constant with respect to time
(i.e., a Eulerian frame of reference is employed). The right-
hand side accounts for the mass-flux over the surface �

that encloses the reference volume � and n denotes the unit
normal vector (pointing in the outward direction).

Let us assume a complete representation of the spatial
domain by a set of non-overlapping volume elements �i .
Accordingly, Eq. 3 can be expressed in the form

∂tCi = 1

Vi

∑

j

∫

�ij

n · (De∇cp − vc
)

dA = − 1

Vi

∑

j

Aij

(
JD

ij + JA
ij

)
,

where the summation is over the neighboring volume
elements �j sharing an interface �ij with �i while
JD

ij and JA
ij denote surface-averaged mass-flux terms

due to diffusion and advection, respectively (Aij is the
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area covered by �ij ). To proceed from here, specific
approximations for JD

ij and JA
ij must be adopted. Namely,

this is the point of departure for distinct finite-volume
schemes and, consequently, for distinct TDRW schemes.

Here, only cubic grid (or lattice) representations of the
spatial domain are considered. Let �r denote the grid
spacing which implies Vi ≡ �r3 and Aij ≡ �r2.
In addition, all variables related to volumes and surfaces
are associated with the centers of cubic cells and square
faces, respectively. With these choices, a second-order
approximation for the diffusive mass-flux is adopted, that is

JD
ij = −De,ij

�r

(
Cj

εj

− Ci

εi

)
+ O(�r2), (4)

where De,ij is an appropriately defined effective diffusion
coefficient at the center of the face �ij . For example, when
the diffusion coefficient is discontinuous exactly at �ij , the
harmonic mean De,ij = 2De,iDe,j /(De,i + De,j ) provides
a second-order approximation. Note that JD

ji = −JD
ij which

ensures mass conservation.
A second-order, central approximation is also adopted for

the advective mass-flux term:

JA
ij = (

n · v)
ij

Ci + Cj

2
+ O(�r2).

Clearly JA
ji = −JA

ij . It is well-known that the above second-
order, central-difference approximations here adopted for
the diffusive and advective mass-flux terms lead to a
stability condition. However, as is later discussed in
Section 3.3 and then clearly demonstrated with experiments
in Section 4, the emerging second-order accurate TDRW
scheme is computationally efficient when considering
numerical simulation of fracture flows involving matrix-
diffusion despite the stability condition.

In summary, the above mass-flux expressions lead to the
differential equations

dtCi = −BiCi +
∑

j

BjiCj , (5)

where

Bi =
∑

j

Bij , Bij = Dp,ij

�r2
+

(
n · v)

ij

2�r
= D0

�r2

[
D∗

p,ij +Pe�

(
n · v∗)

ij

2

]
,

(6)

together with Dp,ij := De,ij /εi , and the grid Péclect
number, Pe� := Pe/N , is defined utilizing the spatial
resolution parameter N = L/�r .

As an additional observation, note that with square and
cubic lattices (at the center of cell i),

∑

j

(
n · v)

ij

�r
= (∇ · v)

i
+ O(�r2).

Therefore, when considering incompressible fluid flows,
where the divergence of the velocity field vanishes,
expression for Bi simplifies into

Bi = 1

�r2

∑

j

Dp,ij . (7)

In any case, the semi-discrete differential equations,
Eq. 5 together with Eq. 6, provide the final step for the
systematic derivation of a TDRW scheme.

3.2 Single-particle dynamics

The ultimate goal is to obtain expressions that describe
migration of a random walker, specifically the stochastic
dynamics of a single particle. Accordingly, let us consider
a configuration with the following point source: the solute
mass is concentrated at the center of cell �i and, moreover,
Cj ≡ 0. Then, the solution Ci of Eq. 5 is thus given
in terms of an exponential function. Namely, for such a
configuration, (5) describes exponential decay in the local
solute concentration.

The exponential decay can be modeled as a Poisson
process, where the interval between successive departure
events is an independent identically distributed exponential
random variable having a mean τi = 1/Bi (the variance
is τ 2

i ). Here, the intervals are identified as transition
times during which a random walker advances from site
i to a neighboring site j . Since the transition times are
exponentially distributed, appropriate random numbers can
be generated using the inverse transform sampling method:

ti→j = −τi ln u, (8)

where u is a random number from the standard uniform
distribution. Note that the transition times are sampled
without any consideration to which of the neighbors the
random walker will advance next. Based on Eq. 7, when
considering incompressible fluid flows, the mean transition
time, τi = 1/Bi , does not depend on advective transport.

The probability of a random walk transition to a
particular neighbor is now considered. Note first that the
right-hand side of Eq. 5 denotes the net flux of mass over
the faces of cell �i . This net flux is the difference between
the mass-fluxes out of and into the cell �i . In more detail,
Ji→j = �rBijCi represents the flux of mass from the cell
�i into the cell �j per unit area and per unit time (the mass-
flux in the reverse direction is similarly given by �rBjiCj ).
From this perspective, it is quite natural to associate the
probability of a random walk transition from the site i to a
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neighboring site j with the corresponding relative mass-flux
out of the cell �i . Specifically,

pi→j = Ji→j∑
j Ji→j

= τiBij . (9)

To summarize, the migration of a tracer particle in the
derived TDRW scheme is described by Eqs. 6, 8, and 9. In
detail, the transport of tracer particles can be modeled using
the following algorithm.

1. Construct the transition probability matrix accord-
ing to Eq. 9. Size of the matrix for a cubic grid is
sx × sy × sz × sw (here, the number of jump directions
per grid site, sw, is assumed constant across the grid).

2. Determine the total number of particles Ntot to be
simulated. For each particle, follow the next steps.

3. Randomly select the initial location of a particle
from the set of grid sites configured as allowed initial
locations.

4. Determine the direction of a jump according to a
random number and the transition probability matrix
constructed at step 1. Here, sampling of a single
random number from the standard uniform distribution
is required to determine the jumping direction among
the possible directions.

5. Determine the transition time ti→j for the jump
according to Eq. 8. Here, sampling of a single random
number from the standard uniform distribution is
required.

6. Check if the particle has reached the configured
target area. If no, return to step 4. If yes, record the
total time elapsed ttot = ∑

ti→j .
7. Check if the simulation has been performed for the

required number of particles. If no, return to step 3.

3.3 Numerical properties

Positive transition probabilities are guaranteed when Bij ≥
0. Based on Eqs. 6 and 9, this means that locally and in each
direction, the condition

Pe� ≤ 2D∗
p,ij

|n · v∗| ij

(10)

must be fulfilled. This condition emerges from the
second-order, central-difference approximation adopted for
the advective mass-flux term; it is well-known that
a similar restriction in central-difference-based finite-
volume schemes is required for guaranteeing stability of a
simulation. If Eq. 10 is not respected, the behavior of the
TDRW scheme is ill-defined and consequently nothing can
be expected from the computed results. Thus, to further
emphasize this critical aspect, in case (10) is violated, the
behavior of the scheme is arbitrary or rather depends on the
specific implementation choices; therefore, the computed

solutions are not guaranteed to have any relation to the
corresponding theoretical solutions of the original modeling
equation.

The condition in Eq. 10 excludes simulations of mass
transfer in pure advection cases. However, as these cases do
not belong to the current problem statement, this restriction
is here dismissed. Furthermore, the condition is always
fulfilled in pure diffusion regions (a typical scenario, for
example, in the porous media surrounding the fracture).
Therefore, here the condition matters in the fracture, or flow
channels, and must be respected by tuning the simulation
parameters appropriately. Often, the fracture presents a
totally open flow domain (that is ε = 1, implying D∗

p,ij =
1). If one further assumes that the flow field (in reduced
units) is set up such that |n ·v∗| ij ≤ 1 holds everywhere, the
condition for guaranteeing positive transition probabilities
is simply Pe� ≤ 2.

Recently, a simulation of advection-diffusion phenomena
with the TDRW method was proposed based on an upwind
finite-difference approximation of the advective mass-flux
[13, 31, 38]; this was essentially the same approximation
proposed by Flamm et al. [11] as an extension to the LKMC
method. With the current notation, the corresponding
upwind finite-volume approximation leads to

Bij = Dp,ij

�r2
+ 1

�r
max

[(
n · v)

ij
, 0

]
.

Clearly, this expression would provide unconditionally pos-
itive probabilities. However, it is known that the first-order
accurate upwind schemes introduce severe numerical dif-
fusion especially when simulating configurations involving
large concentration gradients. Therefore, simulation of mass
transfer in fracture flows together with, for example, release
of tracer pulses into complex flow channels would be prob-
lematic. In fact, this presents the main motivation for the
second-order, central-difference-based TDRW scheme pro-
posed here. Very recently and for the same reasons, Lee
and Sinno [22] suggested an improved treatment of advec-
tive fluxes in the LKMC method. Specifically, they chose
to employ an approximation, known as the exponential
scheme in the finite-volume context, which suffers less from
the numerical diffusion but is not guaranteed to provide
second-order accuracy in general.

It is also important to note that in the TDRW method,
there is no independent control of the time resolution.
Namely, there is no discrete time step degree of freedom
contrary to many other computational methods. To clarify,
let us consider the incompressible fluid flow case. The local
mean transition time defined by Eq. 7 implies

τi ∼ �r2/D0 = Td/N2.

That is, the mean transition time, an analogue to a
discrete time step, is controlled by the intrinsic diffusion
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coefficient and the grid spacing, evidently representing a
diffusive scaling of the time resolution. In the case of
pure diffusion, the value of D0 automatically adjusts the
mean transition time but does not affect the transition
probabilities. Hence, the number of particle jumps required
to travel a given distance remains constant (assuming
a given lattice, namely �r is not altered). Accordingly,
in this simplistic setup, simulations with different D0

are computationally equally demanding, thus reflecting
the constant jump length determined by a fixed �r .
It is then instructive to compare the situation with the
standard random walk method where maintaining a constant
jump length requires explicitly tuning the discrete time
step simulation parameter. When the diffusion coefficient
exhibits significant spatial variation, this difference can be
of considerable relevance.

Furthermore, let us consider a problem scenario where
Pe is fixed, alongside L and geometrical features in general,
but V and D0 remain free for tuning a computationally
favorable simulation. Based on Eqs. 6 and 9 and since
the ratio V/D0 is now fixed, the bias in local transition
probabilities towards the flow direction can be controlled
only via the grid spacing (the bias is directly proportional
to �r , or 1/N). A smaller bias means that the propagation
of a tracer particle is more erratic; it is thus likely that
more particle jumps are needed to travel a given distance
along a flow path. Therefore, to summarize the above, the
computational resources needed to execute a simulation
with the TDRW method are heavily dependent on the spatial
resolution or grid spacing.

Finally, just increasing the number of tracer particles
per simulation cannot be used to achieve an arbitrary
accuracy in computed solutions with a fixed grid spacing.
That is, the limitations set by a given grid spacing
cannot be avoided, and the particle count is primarily
used for controlling fluctuations in the simulated results;
projection and filtering techniques can also be used for
suppressing fluctuations (see for example Ref. [39] and
references therein). Fortunately, due to the statistical nature
of the method, raising the particle count is a task ideally
suited for parallel processing increasingly relied upon by
modern computational resources. Moreover, the number
of tracer particles can be increased on demand, that is,
a proper particle count does not need to be known a
priori to successfully execute a simulation. This feature
facilitates a frugal usage of computational resources. This
also further distinguishes the TDRW method from classical
computational methods (such as the FD and FV methods),
for which an analogous control option is not available.

The power of the presented top-down derivation of
TDRW schemes, in contrast to a bottom-up derivation
(relying on a microscopic particle perspective), is that
the whole numerical machinery already developed, for

example, for the corresponding finite-volume schemes, are
directly available for exploitation. For example, the current
grid Péclect number limitation could perhaps be relieved
by developing a TDRW scheme based on an appropriate
total variation diminishing scheme, a topic left for further
investigation.

Moreover, when a TDRW scheme is derived based on a
finite-volume formalism, particles can jump to any of the
neighboring sites (i.e., to the centers of the neighboring
cells). To keep the treatment accessible, we derived above
a TDRW scheme for cubic grids where the particles always
jump along the Cartesian coordinate directions. In general,
however, each cell has a specific set of possible jump
directions and this set depends on the neighboring cell
configuration (i.e., on the spatial discretization of simulation
domain with finite volumes). Thus, an analysis focusing
on how the (cell-dependent) set of possible jump directions
influence numerical properties of a TDRW scheme becomes
a relevant research topic. As a related matter, utilizing
isotropic approximations of differential operators [23, 32]
in the derivation of TDRW schemes is another possible
future direction for development. Finally, Noetinger et al.
[31] attempted to connect the TDRW method with the
continuous time-random walk method. This connection,
its theoretical foundations, and the possible prospects it
introduces also deserve further investigation.

4 Numerical experiments

The constructed TDRW scheme was validated below by
comparing numerical results against analytical solutions.
The proposed second-order accurate, central-difference
scheme was also compared with the first-order accurate
upwind scheme in one simple flow configuration. The
benchmark systems considered involve a rectangular flow
channel connected with a porous matrix on one side of the
flow channel (in the simplest cases, porosity is zero). At
the beginning of the simulations, the particles were released
from a single plane in the flow channel and caught in
another plane at the end of the channel. The channel was
also extended backwards from the particle release plane to
allow unrestricted, diffusive spreading of the solute pulse.

Figure 1 shows a schematic of the benchmark system
used. In case of ε = 0 (that is without the porous matrix),
all simulations considered below are performed in a flow
channel of length (Lx) 1000 mm, height (a) 20 mm, width
(Lz) 100 mm, and using voxel size (�r) of 1 mm. In
the case of permeable porous matrix (that is ε > 0), the
simulation setups remain the same, except that the channel
width is halved (Lz = 50 mm) to save computer memory
and the porous matrix height (Ly) is 100 mm. On a HP Z840
workstation (256 GB of memory, 2 INTEL Core i7-6900K
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Fig. 1 A schematic of the geometry used for verification simula-
tions. The flow channel (advection velocity v, diffusion coefficient D0,
length Lx , height a, width Lz) is shown in light blue and the porous
matrix (porosity ε, effective diffusion coefficient De, height Ly ) is in

contact with one side of the flow channel. The particle release and
target areas are shown in red and green, respectively (arrows mark
direction of the flow)

processors with 32 threads in total), our naive, unoptimized
MATLAB implementation ran for 8.0×10−5 and 3.2×10−3

s per particle in a rectangular channel without porous matrix
and with flow velocities of 1×10−6 m/s and 5×10−8 m/s,
respectively. The porous matrix increased the calculation
time by approximately 10%.

4.1 Flow in a rectangular channel

The simplest simulations are first performed using a constant
uniform flow velocity in a rectangular channel with imperme-
able walls on all sides. The aim is to verify that diffusion
spreads the pulse correctly and that the mean breakthrough
time is correct. In this case, the analytical solution for the
breakthrough curve at the end of the flow channel is [18]

C(τt ) = 1

μ

√
πτ 3

t

exp
[

− 1

4μ2

(
τt + 1

τt

− 2
)]

, (11)

where τt = tQ/Vc, t is the time, Q is the flow rate
in the channel, Vc is the flow channel volume, μ =

√
D0/Lxv, D0 is the intrinsic diffusion coefficient in the

solvent, Lx is the length of the flow channel, and v is
the flow velocity in the channel. The simulations were
performed using 5 × 106 particles, and two values for the
intrinsic diffusion coefficient, 2 × 10−9 m2/s (∼ water)
and 2 × 10−8 m2/s; the flow velocities used ranged from
5 × 10−8 m/s to 1 × 10−6 m/s which is close to the upper
limit defined by Eq. 10, when D0 = 2 × 10−9 m2/s. The
resulting breakthrough curves, shown in Fig. 2, were in
close accordance with the curves produced by the analytical
solutions with the same parameters. The simulation results
are presented as time-dependent particle fluxes through
target area (fluxes normalized using the total number of
particles).

Continuing with the same flow configuration, the
proposed second-order accurate, central-difference scheme
was then compared with the first-order accurate upwind
scheme. To this end, breakthrough curves with D0 = 2 ×
10−9 m2/s, 5 × 106 particles, and flow velocities from
5×10−6 to 1×10−8 m/s are shown in Fig. 3. Furthermore,
the Euclidian norm (
2) of the relative error was determined

Fig. 2 Simulated results using
the proposed TDRW scheme in
a rectangular flow channel with
impermeable walls, four values
for the constant flow velocity
(v), and two values for the
intrinsic diffusion coefficient
(D0). Solid lines present the
corresponding analytical
solutions, Eq. 11. The results are
reported as particle flux through
target area and are normalized
using the total number of
particles
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Fig. 3 Comparison of breakthrough curves in a rectangular channel
with constant flow velocities and D0 = 2 × 10−9 m2/s: central-
difference (diamond) and upwind (circle) results and analytical solu-
tions (Eq. 11, solid line). The central-difference results are in a close

agreement with the analytical solutions when Pe� ≤ 2 (v ≤ 4 ×
10−6 m/s), whereas the upwind results reach a similar agreement only
when Pe� ≤ 0.05 (v ≤ 1 × 10−7 m/s) (see also Table 1)
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Table 1 Euclidian norm (
2) of
the relative errors for
central-difference and upwind
results in a rectangular channel
with constant flow velocities
(that is, various grid Péclect
numbers, Pe�) and
D0 = 2 × 10−9 m2/s; the
relative errors are computed
with respect to the analytical
solution, Eq. 11

Flow velocity, v
[ m

s

]
Pe� [−] Central-difference, 
2 [−] Upwind, 
2 [−]

5 × 10−6 2.50 — 1.6 × 106

4.5 × 10−6 2.25 — 3.5 × 105

4.0 × 10−6 2.00 2.0 2.1 × 105

3.5 × 10−6 1.75 1.8 3.1 × 104

3.0 × 10−6 1.50 1.5 6.6 × 103

2.0 × 10−6 1.00 1.0 418
1.0 × 10−6 0.50 1.4 51
9.0 × 10−7 0.45 0.7 29
8.0 × 10−7 0.40 0.7 20
7.0 × 10−7 0.35 1.3 18
6.0 × 10−7 0.30 0.9 18
5.0 × 10−7 0.25 0.9 11
4.0 × 10−7 0.20 0.9 6.7
3.0 × 10−7 0.15 1.1 6.2
2.0 × 10−7 0.10 0.5 4.7
1.0 × 10−7 0.05 0.9 1.6
5.0 × 10−8 0.025 1.3 1.4
1.0 × 10−8 0.005 1.9 2.4

A small value for 
2 means a small deviation between the numerical approximation and analytical solution

for each of the simulated breakthrough curves to quantify
deviations from the corresponding analytical solutions (see
Table 1). In this numerical analysis, time intervals with
less than five particles arriving at the target area were not
considered in order to decrease the effect of numerical
fluctuation caused by insufficient statistics.

The central-difference results are in a good agreement
with analytical solutions when Pe� ≤ 2 and, moreover,
the agreement seems to be practically independent of flow
velocity. On the other hand, velocities greater than 4 ×
10−6 m/s impose Pe� > 2 and the central-difference
scheme breaks down (as predicted by the condition ensuring
positive transition probabilities, Eq. 10). The upwind results
reach a similar agreement only when Pe� ≤ 0.05 (v ≤ 1 ×
10−7 m/s); Table 1 shows that with faster velocities, the error
grows rapidly. Based on Fig. 3, peaks of the breakthrough
curves are in the right position with the upwind scheme but
the shape of the curves is wider than the analytical solution
predicts. By reducing the voxel size, �r , the accuracy of the
upwind scheme with higher velocities can be improved, but
this is a computationally expensive option.

In the second benchmark system, a more realistic flow
field was introduced into the channel. Here, a parabolic flow
profile between two plates,

v(y) = 6 vave

(
1

4
− y2

a2

)
, (12)

was used, where vave is the average flow velocity and y is
the vertical distance from center of the channel (a is the
channel height). Now, in addition to diffusional spreading,
differences in local flow velocities cause extra spreading of

the pulse. Such spreading is called Taylor dispersion and
can be accounted for in the analytical solution, Eq. 11, by
replacing D0 appearing in μ with

D̂0 = D0

(

1 + 1

192

a2v2
ave

D2
0

)

. (13)

This setup was simulated using 5 × 106 particles, four
values for the average velocity (1 × 10−6, 5 × 10−7,
1 × 10−7, and 5 × 10−8 m/s) and two values for the
intrinsic diffusion coefficient, 2 × 10−9 m2/s (∼ water)
and 2 × 10−8 m2/s. These simulation parameters cover a
wide range of (grid) Péclect numbers while respecting the
condition in Eq. 10. The resulting breakthrough curves from
the simulations, together with the corresponding curves by
analytical solutions, are presented in Fig. 4. It can be seen
that when D0 is increased, the breakthrough curve is spread
and median arrival time is decreased as the transport by
diffusion becomes more dominant. With the smallest vave

used, the change in median arrival time becomes most
visible as the change in ratio of vave and particle speed by
diffusion is largest. In general, the simulated results are in a
good agreement with the analytical solutions.

4.2 Flow in a rectangular channel connected
with a porous matrix

A porous matrix is next included on one face of the
flow channel, as shown in Fig. 1. Now, the analytical
solution for the breakthrough curve at the end of the
channel becomes more complex. It can, however, be derived
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Fig. 4 Simulated results using
the proposed TDRW scheme in
a rectangular flow channel with
impermeable walls, parabolic
flow profiles specified by four
average velocities (vave), and
with two values for the intrinsic
diffusion coefficient (D0). Solid
lines represent the corresponding
analytical solutions, Eq. 11,
where the modified diffusion
coefficient, Eq. 13, is used in
place of D0 accounting for
Taylor dispersion. The results
are reported as particle flux
through target area and are
normalized using the total
number of particles
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using a dimensionless representation for partial differential
equations, Laplace conversion, and reordering the terms.
The analytical solution for the breakthrough curve in this
case and its derivation can be found in Ref. Kekäläinen et al.
[18]. The simulations were run with the same flow channel
dimensions as in the previous cases, except the channel
width (Lz) was decreased to 50 mm to reduce memory
usage. The height of the porous matrix (Ly) is 100 mm. The
range of constant velocities used was the same as before,
the matrix porosity was 1%, and the amount of particles was
5 × 107. In the channel, the intrinsic diffusion coefficient of
water was used (D0 = 2 × 10−9 m2/s). Furthermore, two
values for the effective diffusion coefficients in the matrix
were used. The values of the porosity and the effective
diffusion coefficients for the matrix were chosen according

to typical values in nature and in geological formations [19].
Note that there is no advection in the porous matrix.

The results of these simulations agree closely with the
analytical solutions and are shown in Fig. 5. The main peak
of a breakthrough curve forms as in the case without the
diffusive matrix since most of the particles travel through
the system without interacting with the matrix. The particles
that have entered the matrix arrive later on average, and
thus the effect of the matrix can be seen in the late part
of the breakthrough curve (tails of the curves). Comparison
of breakthrough curves from simulations using the same
v but different De shows the difference in interaction rate
of particles with the matrix and the effect of matrix finity.
As particles in the flow channel jump more likely into a
neighboring site with a high De than one with a low De, the

Fig. 5 Simulated results using
the proposed TDRW scheme in
a rectangular flow channel (here
Lz = 50 mm) connected with an
adjacent diffusive matrix
(ε = 1%) along with the
analytical solutions by
Kekäläinen et al. [18] (solid
lines). Four values for the
constant flow velocities (v) and
two values for the effective
diffusion coefficients (De) were
used together with the intrinsic
diffusion coefficient
D0 = 2 × 10−9 m2/s. The
simulation results are reported
as particle flux through target
area and are normalized using
total number of particles
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Fig. 6 Simulated results using
the proposed TDRW scheme in
a rectangular flow channel (here
Lz = 50 mm) connected with an
adjacent diffusive matrix
(ε = 1%) along with the
analytical solutions by
Kekäläinen et al. [18] (solid
lines). Four values for the
average velocity of the parabolic
flow profile (vave) and two
values for the effective diffusion
coefficient (De) were used
together with the intrinsic
diffusion coefficient
D0 = 2 × 10−9 m2/s. The
simulation results are reported
as particle flux through target
area and are normalized using
total number of particles
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tail of the breakthrough curve starts to develop earlier in the
case of a high De. The finity of the matrix can be seen in the
shape of the tail, as particles are reflected from the end of
the matrix. This effect causes the formation of a hump next
to the advection-dominated part. Moreover, the particle flux
approaches zero rapidly after the hump. When finity of the
matrix is not dominating in the late part of the breakthrough
curves, a slowly decreasing tail is formed. In the cases with
the slowest flow rates (1×10−7 and 5×10−8 m/s) and with
De of 2 × 10−11 m2/s, the hump has merged to the main
peak and matrix diffusion has deformed the shape of main
peak.

Finally, the parabolic flow profile, Eq. 12, was used
in simulations that include the diffusive matrix. Taylor
dispersion was again included in the analytical solution by
replacing D0 with D̂0 of Eq. 13. Four different average
velocities and two different effective diffusion coefficients
were used together with the intrinsic diffusion coefficient
D0 = 2 × 10−9 m2/s and 5 × 107 particles. The results,
shown in Fig. 6, agree very well with the analytical
solutions. The breakthrough curves show a similar shape
as in the case with constant v. However, since the
differences in local velocities create additional dispersion,
the advection-dominated mean peaks of the breakthrough
curves are wider in this case.

5 Conclusions

The aim of this study was to incorporate accurate
treatment of advective fluxes into the TDRW method
and to verify that the resulting scheme can correctly
model, firstly, the spreading of a tracer pulse by diffusion
and Taylor dispersion transported in simple fracture flow

and, secondly, systems involving fracture flows coupled
with matrix diffusion. Accordingly, a central-difference-
based TDRW scheme was derived in a reverse-engineering
fashion, starting from an appropriate advection-diffusion
equation and then following a systematic discretization
procedure to arrive at the equations governing a single-
particle random walk on a lattice. The adopted top-down
derivation of TDRW schemes is powerful in the sense that
the whole numerical machinery already developed for the
corresponding finite-difference or finite-volume schemes
are directly available for exploitation.

Several benchmark cases were then simulated to validate
the proposed scheme; by varying the simulation parameters,
a wide range of (grid) Péclect numbers were covered in each
case. The numerical results were then compared against
corresponding analytical solutions. While it is noteworthy
that analytical solutions are available even for the fracture
flows coupled with matrix diffusion, they do not come in
a simple, closed form such as the solutions for the more
elementary benchmark cases. Very good agreement between
the numerical and analytical solutions was observed in
general and we thus concluded that the constructed
scheme behaves according to the theoretical predictions.
Furthermore, it was shown that the second-order accurate
central-difference TDRW scheme considerably improves
the reliability of the TDRW scheme for modeling advective
flow in comparison with the previously constructed first-
order accurate upwind TDRW scheme. The difference
between these schemes with regard to the central-difference
scheme was found to be considerable when (grid) Péclect
was from 0.1 to 2.

With the TDRW method, many problems that affect
other numerical methods can be avoided, including stability
issues and particularly small discrete time steps. On the
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other hand, the TDRW method may require tracking a
relatively larger number of random walks to properly
capture statistics from the low-porosity regions as well.
However, modern computers rely increasingly on parallel
processing and hence pushing the computational burden
into the number of independent random walks seems
advantageous. Another limitation of the TDRW method
is that it does not allow independent control of the time
resolution; it relies instead on a diffusive scaling of the time
variable (the time resolution is fixed by the grid spacing and
the intrinsic diffusion coefficient). It is important to note
that a given regular grid or lattice determines the best spatial
accuracy achievable, and the number of particles is mainly
used for suppressing fluctuations in the computed solutions.

Nevertheless, the TDRW method is an attractive alterna-
tive for computational modeling of mass transfer in frac-
ture flows coupled with matrix diffusion, a problem that
intrinsically involves multiple relevant scales. Finally, there
remain several possible topics for future method develop-
ment, including utilization of total variation diminishing
schemes and isotropic approximations of differential oper-
ators in the TDRW framework. In principle, the method is
capable of modeling mass transfer in small-scale heteroge-
neous fracture networks. However, further studies for real
heterogeneous fractures and comparison with previously
developed methods are still necessary. The up-scaling of the
method to field scale will be challenging due to the restric-
tion given in Eq. 10. However, in the future, the TDRW
method could be used to verify the mathematical expres-
sions for the interaction of solutes in the fracture and porous
matrix used in field-scale models.
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51. Voutilainen, M., Kekäläinen, P., Poteri, A., Siitari-Kauppi, M.,
Helariutta, K., Andersson, P., Nilsson, K., Byegård, J., Skålberg,
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