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Pulsed optomechanical measurements enable squeezing, nonclassical state creation, and backaction-free
sensing. We demonstrate pulsed measurement of a cryogenic nanomechanical resonator with record
precision close to the quantum regime. We use these to prepare thermally squeezed and purified conditional
mechanical states, and to perform full state tomography. These demonstrations exploit large vacuum
optomechanical coupling in a nanophotonic cavity to reach a single-pulse imprecision of 9 times the
mechanical zero-point amplitude xzpf . We study the effect of other mechanical modes that limit the
conditional state width to 58xzpf , and show how decoherence causes the state to grow in time.
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Measurement and control of mechanical motion at the
quantum level is of wide interest because of the quantum
technologies it would enable and because of the possibility
to probe decoherence in massive systems. Cavity opto-
mechanical demonstrations [1] of quantum control over
mechanical resonators have included ground state cooling
[2–4], quantum squeezing [5–7], entanglement [8–10], and
coupling between mechanical oscillators and qubits [2,11].
Measurement and control are intimately linked. At a

basic level, any measurement process is a competition
between information gain (measurement rate), decoherence
processes, and noise added to the system by the measure-
ment (backaction). If the measurement rate can overcome
those detrimental effects, control over the system can be
achieved, allowing for example feedback cooling to the
ground state [12–14] and the preparation of pure quantum
states, conditioned on measurement results [15,16]. A
continuous measurement of mechanical resonator displace-
ment is subject to the standard quantum limit (SQL). The
SQL is a manifestation of Heisenberg’s uncertainty prin-
ciple as the measurement simultaneously observes the two
noncommuting motional quadratures, giving a lower limit,
equal to the zero-point fluctuation amplitude xzpf , to the
noise added by the measurement [17,18]. Evading this
backaction limit by moving away from continuous dis-
placement measurements was demonstrated in various
quantum systems [19–24], including sideband-resolved
opto- or electromechanical cavities probed by two-tone
fields [25–27], where the measurement probes only one
motional quadrature.
Another method for backaction-evading measurements

that has been suggested is that of pulsed measurements
[28,29]. A single “snapshot” measurement of a harmonic
oscillator’s position measures one quadrature with poten-
tially unlimited precision, as all backaction is introduced to

the orthogonal quadrature with no effect to the future
evolution of the measured quadrature. With sufficient
precision the mechanical oscillator is then prepared to a
squeezed state, conditioned on the measurement.
Importantly, the ability to probe all quadratures precisely
allows full quantum state tomography [29,30]. Combined
with nonlinear measurement or non-Gaussian states of light,
pulsed interactions can also induce other nonclassical states
[31,32]. Moreover, proposals suggested exploiting pulsed
measurement for swap operations between mechanics and
light [33] and creation of macroscopic superpositions [32].
Despite these extensive theoretical proposals, so far only

a single proof-of-principle experimental demonstration of
pulsed optomechanical measurements has been reported
[34], at elevated temperature and without cavity enhance-
ment. To reach quantum-level accuracy with a single pulsed
measurement one needs to fulfill the challenging require-
ment 8η

ffiffiffiffiffiffiffi
NP

p
g0=κ ≳ 1, where g0 is the cavity frequency

shift for a displacement xzpf (the vacuum optomechanical
coupling rate), η the coupling efficiency of light to the
cavity, and NP the number of photons in the pulse [29]. At
the same time the cavity linewidth κ should far exceed the
mechanical angular frequency ωm to accommodate pulse
durations much shorter than the mechanical period [35].
In this work, we address these challenges using a cavity

optomechanical system based on a sliced photonic crystal
nanobeam, allowing large optomechanical coupling rates
[36,37]. We demonstrate pulsed optomechanical measure-
ments close to the quantum regime, achieving a record-low
shot-noise limited single-pulse measurement imprecision
of 9xzpf , constrained by optical detection efficiency. We
prepare both thermally squeezed and purified (cooled)
conditional mechanical states, and perform full state
tomography on these. We study how additional mechanical
modes affect the conditional state, limiting its width to
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58xzpf . We demonstrate how mechanical decoherence and
rethermalization can be tracked by recording the state
evolution at longer timescales. In addition, we show how
postselection allows maximizing sensitivity even though
the large optomechanical interaction strength pushes our
system deep into the regime of nonlinear optomechanics
where sensitivity is reduced [37,38].
Figure 1(a) shows a diagram of the sliced silicon nano-

beam. The device, presented in Ref. [37], hosts a photonic
crystal nanocavity whose resonance frequency (204 THz)
depends very sensitively on the flexural movement of the
two beam halves. These move roughly independent of
each other with two mechanical mode frequencies
around ωm=ð2πÞ ≈ 3 MHz, separated by ∼120 kHz, and
g0=ð2πÞ ≈ 25 MHz approximately equal for both. The
optical cavity linewidth κ=ð2πÞ ≈ 20.4 GHz enables practi-
cally instantaneous measurements of mechanical position
while still achieving g0=κ > 10−3. All measurements are
performed on the same sample at a temperature of 3.2 K.
The exact mechanical frequencies and damping rates drift
with time for reasons not fully understood [39].
The sample is incorporated in a homodyne interferometer

[Fig. 1(b)]. An electro-optic amplitude modulator produces
optical pulses using light from a continuous-wave tunable

narrow-band diode laser, which are sent into both interfer-
ometer arms. Light is focused on the sample through an
NA ≈ 0.55 lens, coupling to the nanocavity with efficiency
η ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

ηinηout
p ≈ 0.01 [37]. Here ηin;out are the efficiencies

with which light is coupled from the incident laser beam to
the cavity and from the cavity to the detectors, respectively.
Each incident pulse carries ∼2 × 106 photons in a duration
τP ¼ 20 ns, such that the estimate maximum number of
simultaneous intracavity photons is ∼60. The same lens
collects emitted cavity radiation, whose phase quadrature is
measured by recording the output of a balanced detector after
interference with the local oscillator pulse. The resultant
detector voltage thus reflects mechanical displacement x.
Figure 1(c) shows example recorded pulse traces.

Between traces we wait for 30 ms, longer than the
mechanical damping time 2π=Γ. One can directly recog-
nize that the recorded pulse heights are correlated when
they are separated by a full oscillation period (two last
pulses) whereas the pulses separated by half a period (e.g.,
the third and fourth pulse) are anticorrelated (around a
nonzero offset voltage). Figure 1(d) depicts histograms of
the difference of the recorded pulses (integrating the
voltage over the pulse duration), demonstrating this corre-
lation and anticorrelation behavior. This directly indicates
that the thermal nanobeam motion is imprinted on the
detected pulses.
To understand the histogram shapes, we need to consider

the nonlinearity of the transduction between the mechanical
position and optical phase. At the phase-sensitive operation
point of the homodyne interferometer and on cavity
resonance the balanced detector output is [39]

H ¼ 4jainjjalojη
βxn

β2x2n þ 1
; ð1Þ

with β ¼ 2g0=κ, xn ¼ x=xzpf the normalized displacement
and ain and alo the optical field amplitudes towards the
sample and in the local oscillator, respectively. This
homodyne signal [Fig. 2(a)] depends linearly on displace-
ment only when βxn ≪ 1. Outside this regime, the relation-
ship between signal and displacement is nonlinear and even
multivalued. Therefore, our value of β ≈ 2.5 × 10−3 causes
the thermal Gaussian displacement due to both modes with
width (square-root of variance) σth ≈ 290xzpf to be distorted
into a double-peaked probability histogram [Fig. 1(d)]. To
calibrate the homodyne signal we fit this thermal histogram
to an analytical model using the known sample temperature
[39]. The fit allows converting the measurement signal to
normalized homodyne signal Hnorm ¼ H=4jasjjalojη.
The pulsing sequence in Fig. 1(c) is used for conditional

state preparation and tomography. The pulses are separated
by an angle θ≡ ωmt, where we are considering only one of
the mechanical modes. (We address the impact of multiple
modes below.) The mechanical resonator motion can be
written as xðθÞ ¼ X cosðθÞ þ Y sinðθÞ, using quadrature
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FIG. 1. (a) (bottom) Electron micrograph of the free-standing
sliced silicon nanobeam (scale bar 2 μm). (Middle) Simulated
displacement of flexural vibrations of the two beam halves. (Top)
Simulated transverse electric field of the optical cavity mode.
(b) Schematic diagram of the balanced homodyne interferometer
setup. Pulses are created by an electro-optical modulator (EOM)
controlled by an arbritrary waveform generator (AWG). Quarter-
wave-plate (QWP), half-wave-plate (HWP), neutral density filter
(NDF), and the polarizing beam splitter (PBS) are shown.
(c) Example measurement traces, and schematic of the pulsing
sequence (separations ωmt indicated). Traces are offset for clarity.
(d) Extracted histograms: thermal state [random sampling, mean
subtracted] (gray), difference of two pulses a half-period apart
(blue), and difference of two pulses a full period apart (orange).
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amplitudes X, Y, which vary slowly within pulse trains
but are randomized between pulse trains with zero
mean and variance VarðXÞ ¼ VarðYÞ ¼ 2nthx2zpf , where
nth ¼ kBT=ðℏωmÞ is the number of phonons in thermal
equilibrium. The first four pulses of the sequence measure
the instantaneous value of the two quadrature amplitudes
(state preparation) and the last pulse quantifies the differ-
ence between the expected and actual mechanical position
(tomography). By varying the waiting time between state
preparation and tomography, we can map this difference in
all quadrature angles and perform full tomography of the
conditional state. We measure both −X and X to cancel
measurement offsets caused by low-frequency drifts [39].
To maximize sensitivity and allow single-valued esti-

mation, we postselect the data so that the measured value
for the quadrature of interest falls in the linear transduction
regime [dotted lines in Fig. 2(a) show the chosen thresh-
old]. Figure 2(b) shows the effect of postselection on the
histogram of the difference of two pulses separated by
θ ¼ 2π. The original histogram had non-Gaussian shape
with variance dominated by photon shot noise due to large
contributions from parts of the transduction function with
reduced sensitivity at jβxnj ≈ 1. The postselected histogram
has a Gaussian shape with larger variance. Hence, the
postselection protocol allowed recovering the linear oper-
ating regime.
To understand the principles of state preparation, con-

sider an ideal classical measurement at t ¼ 0, measuring X.
With just this measurement, the best possible prediction for
the oscillator’s position at later times is cosðθÞX, differing
from the actual position by xðθÞ − cosðθÞX ¼ sinðθÞY
[with variance sin2ðθÞVarðYÞ ¼ 2nthx2zpfsin

2ðθÞ]. This van-
ishes at θ ¼ fπ; 2πg, as knowing one quadrature allows
predicting the mechanical position exactly every half-
period. In a phase space defined by the two quadratures
this is a squeezed state. Combining two ideal (classical)
measurements (a quarter period apart) would then allow
measuring both quadratures and preparing a (conditional)

pure state with no classical uncertainty in x. This state then
decays towards thermal equilibrium with time constant
2π=Γ.
In the above idealized case, the pulsed measurements are

assumed to be infinitely accurate and backaction-free. In
practice, finite measurement imprecision leads to a
Gaussian probability distribution for the measured quad-
rature amplitude. In addition, unavoidably, any measure-
ment disturbs the other quadrature. These intuitions are
formalized with a measurement operator given by Caves
and Milburn for a free particle [40] and Vanner et al. for
harmonic motion [29]

M̂ ¼ 1ffiffiffi
π4

p exp
�
iΩX̂ −

ðX̂ −MÞ2
2=χ2

�
; ð2Þ

where M ¼ xmeas
n =

ffiffiffi
2

p
with xmeas

n the dimensionless meas-
urement result (normalized by xzpf), X̂ ¼ ðb̂† þ b̂Þ= ffiffiffi

2
p ¼

x̂=ð ffiffiffi
2

p
xzpfÞ is the quadrature operator with b̂ the phonon

annihilation operator, and Ω ∝ NP is the normalized
(mean) change of the unmeasured quadrature due to
the mean radiation pressure. The parameter χ ¼
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηinηoutNP

p
g0=κ [29,32] characterizes the pulsed meas-

urement strength and hence the conditional state variance.
As mentioned in the introduction, the challenging aim is to
achieve χ > 1. Physical insight into χ is provided by noting
that a displacement of size xzpf could be resolved with unity
signal-to-noise ratio when comparing two measurements of
strength χ ¼ 1.
At the limit where nth ≫ 1, performing a measurement

(transforming the state with ρf ¼ M̂ρiM̂
†, omitting nor-

malization) transforms one quadrature of an arbitrary initial
state (ρi) into a Gaussian with width σm ¼ xzpf=χ and mean
given by the random measurement result (following sta-
tistics determined by ρi), while addingΩ

ffiffiffi
2

p
xzpf to the other

quadrature. That quadrature will also gain uncertainty
σba ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηin=ηout

p
χxzpf , hence forcing for a state prepared

by two sequential measurements a quarter-period apartffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σmðσm þ σbaÞ

p
≥ xzpf . In Fig. 2(b) we show a histogram

measured away from optical resonance to determine the
measurement’s noise floor. From this we extract a single-
pulse measurement imprecision of σm ≈ 9xzpf [39], corre-
sponding to χ ≈ 0.11, 3 orders of magnitude higher than
the previous state of the art [34]. This value is consistent
with measured sample parameters including ηin ≈ 1.3%
and for ηout ≈ 0.35ηin, close to our previous independent
estimation [37].
Figure 3 presents experimental results of conditional

state preparation and tomography. Figure 3(a) shows X and
Y obtained from the state preparation. The non-Gaussian
distribution shape, as in Fig. 1(d), is related to the non-
linearity; only the blue instances are postselected to be
considered for tomography. Scanning the delay between
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FIG. 2. (a) Full transduction function [Eq. (1), solid line], linear
approximation (dashed line), and postselection threshold (dotted
lines). Gray area depicts a Gaussian with variance β2σ2th. (b) The
histogram of the difference of two pulses a full period apart [as in
Fig. 1(d)], before and after postselection (solid lines). After
postselection we recover a Gaussian shape (dashed line shows
fit). Dotted line is a reference measurement away from optical
resonance, from which the measurement noise floor is extracted.
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preparation pulses and the tomography pulse (i.e., varying
θ) allows mapping the mechanical marginals and recon-
structing the phase-space probability density of the condi-
tional state via an inverse Radon transform from the
histograms [29,41]. As we subtract the measured (random)
values for the quadrature amplitudes, the plots depict the
conditional state shifted to origin. Figure 3(b) shows this
Radon transform for only the tomography pulse, depicting
a small central part of the thermal Gaussian distribution,
determined by the postselection. Figure 3(c) shows the
thermally squeezed state prepared with single-quadrature
conditionalization. The state is extracted with P − cosðθÞX,
with P the result of the tomography pulse and X the
measured quadrature amplitude from the previous pulses.
Finally, in Fig. 3(d) we plot the phase-space probability
density for the state conditionalized in both quadratures
P − cosðθÞX − sinðθÞY, which would have the ground state
area if the measurements would be ideal. In our case the
state has an average width that corresponds to a one-mode
thermal state at a temperature of 380 mK, purified from the
original temperature of 3.2 K.
The width of this conditional state is plotted in Fig. 3(e)

as a function of the tomography angle. In the measured
data the minimum width reached is 58xzpf , significantly

exceeding the shot noise floor, and is maximized at
θ ¼ 3π=2. These features are explained through the
existence of a second mechanical mode. As in this device
the two mechanical modes couple equally strongly to the
cavity, the contribution of the second mechanical mode is
captured with xðθÞ¼X1cosðθÞþY1sinðθÞþX2cosðrθÞ þ
Y2sinðrθÞ, with r the ratio of the mechanical frequencies
and subscripts refer to the modes. The resulting uncer-
tainty caused by the second mode [39] as a function of θ is
plotted in Fig. 3(e), matching the data well. There are no
fitting parameters here, as both modes’ frequency and
temperature are known. The nonmonotonic shape is
caused by measuring the Y quadrature before the X
quadrature, causing it to have a larger variance as it
has more time to evolve out of sync with the mode of
interest [39]. Assuming r ≈ 1 and equal nth and xzpf for
both modes, the expected contribution to the conditional
state width from the second mode can be approximated asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4nth½1 − cosðrθÞ cosðθÞ − sinðrθÞ sinðθÞ�p

xzpf [39]. This
vanishes when cosðθÞ cosðrθÞ ¼ 1 and sinðθÞ sinðrθÞ ¼ 0,
or vice versa. Although this cannot be fulfilled exactly
unless r is a rational number, it is approximated when
θ ¼ 2nπ, where n ≈ ωm=ðrωm − ωmÞ. In Figs. 4(a)–4(b)
we compare the one-pulse conditional state width after
one mechanical period (θ ¼ 2π) and where this condition
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FIG. 4. (a)–(b) Common mode measurement, smaller condi-
tional state width is achieved at θ ¼ 54π; 56π than at θ ¼ 2π due
to minimization of the second mode contribution. Panel (b) shows
close-ups of (a). Blue line shows expected behavior with fitted
Γ=ð2πÞ ¼ 400 Hz, yellow dashed line in (b) without any
decoherence. Circles are measured data. (c)–(d) Thermal
decoherence measurement demonstrating the growing condi-
tional state width. Panel (d) shows close-ups of (c). Yellow line
in (c) is the envelope function

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½1 − expð−tΓ=2Þ�8nth
p

xzpf , and
blue line the full expected curve, both with fitted
Γ=ð2πÞ ¼ 400 Hz, yellow dashed line in (d) without
decoherence. Each pulse sequence here has two tomography
pulses, one at θ ¼ 2π (shown as squares) and other at variable
distance (circles). Also shown is data at �10 ns around θ ¼ 2nπ
points. All datasets contained 1000 samples before postselection.

FIG. 3. (a) Values of X and Y from state preparation pulses,
post-selected measurements as blue data points. (b)–(d) Recon-
structed phase-space probability densities, for unconditional data
(b), one-quadrature conditional data (c) and two-quadrature
conditional data (d). A single normalization is applied on panels
(b)–(d). White dashed lines show the calculated full-width-half-
maximum (FWHM) of the thermal state at 3.2 K, and green
dashed line the measured FWHM of the conditional state.
Reconstructions use nine different angles θ each combining
2000 acquired traces. (e) Width of mechanical marginals for
the two-quadrature conditional data. Dash-dotted line shows the
measurement noise floor, dashed line the expected second
mechanical mode contribution, and solid line their squared
sum. The noise floor differs slightly from the single-
pulse imprecision (dotted line) as the measurement uses multiple
pulses and shot noise of the tomography pulse is not
subtracted [39].
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is fulfilled (n ≈ 54, 56). A slightly lower conditional state
width is measured at θ ¼ 54π; 56π than at θ ¼ 2π.
The state widths at θ ¼ 54π; 56π differ strongly from

expectation based on the formula above. This is because we
neglected thermal decoherence, which will cause the
minimum conditional state width to increase in time asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8nth½1 − exp ð−tΓ=2Þ�p

xzpf for two mechanical modes,
assuming the modes have identical nth, xzpf , and Γ [39].
Figures 4(c)–4(d) show measurements around the times
where the second mode contribution should vanish on a
longer timescale, tracking the loss of coherence due to
thermalization quantitatively in time domain.
These results show that nano-optomechanical systems

can bring quantum-level mechanical measurements with
single nanosecond pulses within reach. Notably, achieving
η≳ 8% without changing any other parameters would
bring the uncertainty in one quadrature below xzpf, allowing
squeezed state preparation and observing quantum back-
action [18]. Preparing a pure state of a single resonator
would require reducing the second mode contribution,
through (opto)mechanical design (coupling the two beam
halves more strongly creating a single optically bright
mode), or by further cooling (cryogenic or feedback).
Alternatively, one could exploit the fact that with quan-
tum-level precision, a single pulse entangles the quadra-
tures of the two mechanical modes, providing a new path to
explore many-mode quantum optomechanics in the time
domain.
Indeed, our experiments demonstrate how pulsed mea-

surements yield interesting possibilities for measurement
and control of mechanical motion, complementing the
conventional frequency domain analyses. This “time-
domain optomechanics” could allow new protocols for
quantum sensing that exploit fast backaction-free determi-
nation of a mechanical quadrature, as well as new para-
digms to create quantum states of motion and mechanical
entanglement.

The authors thank Hugo Doeleman for critical reading of
the manuscript. This work is part of the research pro-
gramme of the Netherlands Organisation for Scientific
Research (NWO), and supported by the European
Union’s Horizon 2020 research and innovation programme
under Grant Agreement No. 732894 (FET Proactive HOT).
E. V. gratefully acknowledges an NWO-Vidi grant for
financial support. J. T. M. thankfully acknowledges fund-
ing from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie
Grant Agreement No. 707364.

*juha.t.muhonen@jyu.fi
†verhagen@amolf.nl

[1] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev.
Mod. Phys. 86, 1391 (2014).

[2] A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C.
Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank,
H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N.
Cleland, Nature (London) 464, 697 (2010).

[3] J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A.
Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter,
Nature (London) 478, 89 (2011).

[4] J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman,
K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and
R.W. Simmonds, Nature (London) 475, 359 (2011).

[5] E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A.
Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab,
Science 349, 952 (2015).

[6] J.-M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel, and
M. A. Sillanpää, Phys. Rev. Lett. 115, 243601 (2015).

[7] F. Lecocq, J. B. Clark, R. W. Simmonds, J. Aumentado, and
J. D. Teufel, Phys. Rev. X 5, 041037 (2015).

[8] K. C. Lee, M. R. Sprague, B. J. Sussman, J. Nunn, N. K.
Langford, X.-M. Jin, T. Champion, P. Michelberger, K. F.
Reim, D. England, D. Jaksch, and I. A. Walmsley, Science
334, 1253 (2011).

[9] R. Riedinger, A. Wallucks, I. Marinkovi, C. Löschnauer, M.
Aspelmeyer, S. Hong, and S. Gröblacher, Nature (London)
556, 473 (2018).

[10] C. F. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen,
M. Asjad, A. A. Clerk, F. Massel, M. J. Woolley, and M. A.
Sillanpää, Nature (London) 556, 478 (2018).

[11] Y. Chu, P. Kharel, W. H. Renninger, L. D. Burkhart, L.
Frunzio, P. T. Rakich, and R. J. Schoelkopf, Science 358,
199 (2017).

[12] P. F. Cohadon, A. Heidmann, and M. Pinard, Phys. Rev.
Lett. 83, 3174 (1999).

[13] D. J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi,
and T. J. Kippenberg, Nature (London) 524, 325 (2015).

[14] M. Rossi, D. Mason, J. Chen, Y. Tsaturyan, and A.
Schliesser, Nature (London) 563, 53 (2018).

[15] H. M. Wiseman and G. J. Milburn, Quantum Measurement
and Control (Cambridge University Press, Cambridge,
England, 2009).

[16] M. Rossi, D. Mason, J. Chen, and A. Schliesser, arXiv:
1812.00928.

[17] K.W. Murch, K. L. Moore, S. Gupta, and D. M. Stamper-
Kurn, Nat. Phys. 4, 561 (2008).

[18] T. P. Purdy, R. W. Peterson, and C. A. Regal, Science 339,
801 (2013).

[19] G. Vasilakis, H. Shen, K. Jensen, M. Balabas, D. Salart, B.
Chen, and E. S. Polzik, Nat. Phys. 11, 389 (2015).

[20] C. F. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen,
A. A. Clerk, M. J. Woolley, and M. A. Sillanpää, Phys. Rev.
Lett. 117, 140401 (2016).

[21] C. B. Møller, R. A. Thomas, G. Vasilakis, E. Zeuthen, Y.
Tsaturyan, M. Balabas, K. Jensen, A. Schliesser, K.
Hammerer, and E. S. Polzik, Nature (London) 547, 191
(2017).

[22] N. S. Kampel, R. W. Peterson, R. Fischer, P.-L. Yu, K.
Cicak, R. W. Simmonds, K. W. Lehnert, and C. A. Regal,
Phys. Rev. X 7, 021008 (2017).

[23] V. Sudhir, R. Schilling, S. A. Fedorov, H. Schütz, D. J.
Wilson, and T. J. Kippenberg, Phys. Rev. X 7, 031055
(2017).

PHYSICAL REVIEW LETTERS 123, 113601 (2019)

113601-5

https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1038/nature08967
https://doi.org/10.1038/nature10461
https://doi.org/10.1038/nature10261
https://doi.org/10.1126/science.aac5138
https://doi.org/10.1103/PhysRevLett.115.243601
https://doi.org/10.1103/PhysRevX.5.041037
https://doi.org/10.1126/science.1211914
https://doi.org/10.1126/science.1211914
https://doi.org/10.1038/s41586-018-0036-z
https://doi.org/10.1038/s41586-018-0036-z
https://doi.org/10.1038/s41586-018-0038-x
https://doi.org/10.1126/science.aao1511
https://doi.org/10.1126/science.aao1511
https://doi.org/10.1103/PhysRevLett.83.3174
https://doi.org/10.1103/PhysRevLett.83.3174
https://doi.org/10.1038/nature14672
https://doi.org/10.1038/s41586-018-0643-8
http://arXiv.org/abs/1812.00928
http://arXiv.org/abs/1812.00928
https://doi.org/10.1038/nphys965
https://doi.org/10.1126/science.1231282
https://doi.org/10.1126/science.1231282
https://doi.org/10.1038/nphys3280
https://doi.org/10.1103/PhysRevLett.117.140401
https://doi.org/10.1103/PhysRevLett.117.140401
https://doi.org/10.1038/nature22980
https://doi.org/10.1038/nature22980
https://doi.org/10.1103/PhysRevX.7.021008
https://doi.org/10.1103/PhysRevX.7.031055
https://doi.org/10.1103/PhysRevX.7.031055


[24] D. Mason, J. Chen, M. Rossi, Y. Tsaturyan, and A.
Schliesser, Nat. Phys. 15, 745 (2019).

[25] J. B. Hertzberg, T. Rocheleau, T. Ndukum, M. Savva,
A. A. Clerk, and K. C. Schwab, Nat. Phys. 6, 213
(2010).

[26] J. Suh, A. J. Weinstein, C. U. Lei, E. E. Wollman, S. K.
Steinke, P. Meystre, A. A. Clerk, and K. C. Schwab, Science
344, 1262 (2014).

[27] I. Shomroni, L. Qiu, D. Malz, A. Nunnenkamp, and T. J.
Kippenberg, Nat. Commun. 10, 2086 (2019).

[28] V. B. Braginsky, Y. I. Vorontsov, and F. Y. Khalili, JETP
Lett. 27, 276 (1978).

[29] M. R. Vanner, I. Pikovski, G. D. Cole, M. S. Kim,
Č. Brukner, K. Hammerer, G. J. Milburn, and M.
Aspelmeyer, Proc. Natl. Acad. Sci. U.S.A. 108, 16182
(2011).

[30] M. R. Vanner, I. Pikovski, and M. S. Kim, Ann. Phys.
(Amsterdam) 527, 15 (2015).

[31] M. R. Vanner, Phys. Rev. X 1, 021011 (2011).
[32] U. B. Hoff, J. Kollath-Bönig, J. S. Neergaard-Nielsen, and

U. L. Andersen, Phys. Rev. Lett. 117, 143601 (2016).

[33] J. S. Bennett, K. Khosla, L. S. Madsen, M. R. Vanner, H.
Rubinsztein-Dunlop, and P. Warwick, New J. Phys. 18,
053030 (2016).

[34] M. R. Vanner, J. Hofer, G. D. Cole, and M. Aspelmeyer,
Nat. Commun. 4, 2295 (2013).

[35] As NP is in practice limited due to nonlinear optical effects
such as two-photon absorption, this makes large magnitudes
of g0 beneficial.

[36] R. Leijssen and E. Verhagen, Sci. Rep. 5, 15974 (2015).
[37] R. Leijssen, G. R. La Gala, L. Freisem, J. T. Muhonen, and

E. Verhagen, Nat. Commun. 8, 16024 (2017).
[38] G. A. Brawley, M. R. Vanner, P. E. Larsen, S. Schmid, A.

Boisen, and W. P. Bowen, Nat. Commun. 7, 10988 (2016).
[39] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.123.113601 for further
experimental and theoretical details and supplemental
experimental results.

[40] C.M. Caves and G. J.Milburn, Phys. Rev. A 36, 5543 (1987).
[41] S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F.

Boulogne, J. D. Warner, N. Yager, E. Gouillart, T. Yu, and
(The Scikit-image contributors), PeerJ 2, e453 (2014).

PHYSICAL REVIEW LETTERS 123, 113601 (2019)

113601-6

https://doi.org/10.1038/s41567-019-0533-5
https://doi.org/10.1038/nphys1479
https://doi.org/10.1038/nphys1479
https://doi.org/10.1126/science.1253258
https://doi.org/10.1126/science.1253258
https://doi.org/10.1038/s41467-019-10024-3
https://doi.org/10.1073/pnas.1105098108
https://doi.org/10.1073/pnas.1105098108
https://doi.org/10.1002/andp.201400124
https://doi.org/10.1002/andp.201400124
https://doi.org/10.1103/PhysRevX.1.021011
https://doi.org/10.1103/PhysRevLett.117.143601
https://doi.org/10.1088/1367-2630/18/5/053030
https://doi.org/10.1088/1367-2630/18/5/053030
https://doi.org/10.1038/ncomms3295
https://doi.org/10.1038/srep15974
https://doi.org/10.1038/ncomms16024
https://doi.org/10.1038/ncomms10988
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.113601
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.113601
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.113601
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.113601
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.113601
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.113601
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.113601
https://doi.org/10.1103/PhysRevA.36.5543
https://doi.org/10.7717/peerj.453

