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Abstract—Non-orthogonal multiple access (NOMA) is consid-
ered to be one of the best candidates for future networks due to
its ability to serve multiple users using the same resource block.
Although early studies have focused on transmission reliability
and energy efficiency, recent works are considering cooperation
among the nodes. The cooperative NOMA techniques allow the
user with a better channel (near user) to act as a relay between
the source and the user experiencing poor channel (far user).
This paper considers the link security aspect of energy harvesting
cooperative NOMA users. In particular, the near user applies the
decode-and-forward (DF) protocol for relaying the message of the
source node to the far user in the presence of an eavesdropper.
Moreover, we consider that all the devices use power-splitting
architecture for energy harvesting and information decoding.
We derive the analytical expression of intercept probability.
Next, we employ deep learning based optimization to find the
optimal power allocation factor. The results show the robustness
and superiority of deep learning optimization over conventional
iterative search algorithm.

Index Terms—Decode-and-forward (DF), Deep learning, Non-
orthogonal multiple access (NOMA), Power-splitting

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) has received

much hype due to its promise to effectively utilize the wireless

spectrum. NOMA works by allowing users to share the same

temporal/ spatial resources while the receiving side carries out

successive interference cancellation (SIC) [1], [2]. On the other

hand, cooperative communications can help by improving the

system capacity, extend the coverage area and achieve a higher

degree of freedom with single antenna nodes. Thus, the idea

of user cooperation in NOMA has attracted much interest due

to its applications in 5G and has given birth to an important

research topic called the cooperative NOMA. It was first

proposed in [3] wherein, a user with the stronger channel

decodes the message and then assist by relaying the message

to the far NOMA user.

Despite substantial improvements in terms of spectral ef-

ficiency, the research work on energy efficient cooperative

NOMA schemes is still at infancy stage. To that end, si-

multaneous wireless information and power transfer (SWIPT)

has drawn much research interest due to the ability of RF

signals to transfer information and energy at the receiver [4].

Thus, applications of SWIPT in NOMA have been studied

from the perspective of outage performance, cooperation,

and energy harvesting (EH) efficiency [5]. However, owing

to the dual function of RF signal and broadcast nature of

NOMA, the transmission from source to destination can be

eavesdropped by a malicious user. More specifically, the EH

receivers can intercept the confidential information being ex-

changed between legitimate users. In order to provide security

to the low-powered devices, physical layer security (PLS)

has been introduced as an alternative to computation heavy

cryptographic techniques [6]. PLS techniques can improve the

secrecy performance of wireless networks by means of coop-

erative relaying, jamming and multiple-antenna beamforming.

In [7], the authors proposed energy and spectral efficient

protocol by combining NOMA with SWIPT. They showed

that the proposed scheme does not jeopardize the diversity

gain of the edge users while enabling the cell-center users to

self-power themselves. In [4], Diamantoulakis et al. consider

downlink and uplink multiple access protocols for SWIPT

systems. In particular, they investigate the performance in

the downlink for NOMA and time division multiple access

(TDMA), while for uplink conditions they consider NOMA

with time sharing. These works were extended for multiple-

input-single-output (MISO) NOMA for hybrid time switching

and power-splitting SWIPT architecture in [8]. They also

derived tight closed-form expressions of the outage probabil-

ity and demonstrated the superiority of cooperative NOMA

over conventional NOMA and OMA systems. Besides these

developments, few investigations have been conducted for

improving the secrecy performance of NOMA using SWIPT.

The authors of [9] maximized the secrecy sum rate by opti-

mizing the allocated power. Closed-form expression of optimal

power-splitting ratio was derived and it was shown that the

proposed method outperforms the uniform power allocation

methodology. In [10], Zhou et al. proposed a cooperative jam-

ming technique for energy harvesting multiple-input-single-

output (MISO)-NOMA cognitive radio systems. The authors

claimed that the proposed scheme for NOMA outperforms

the conventional orthogonal multiple access (OMA) scheme

in terms of power efficiency.

Of late, deep learning has emerged as a key technique

for improving the performance of wireless networks. Deep

learning is a part of machine learning consisting of multiple

hidden layers [11]. More specifically, in contrast to shallow

machine learning methods, deep learning has multiple inter-

mediate layers of neurons between input and output layers. At

each hidden layer, the weighted sum of the previous layers

are updated and an activation function is applied [12]. The

authors of [13] first proposed the idea that deep learning

is an important and powerful tool for handling non-linear
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and complex problems. Some other works considered deep

learning for the physical layer, multiple-input-multiple-output

(MIMO) systems, and channel coding [14], [15]. This positive

trend also attracted much-needed attention to multiple access

schemes. Thus, the authors of [16] optimized the sparse code

multiple access (SCMA) scheme using deep learning. To do

so, they developed a strategy for selecting the codebook which

minimizes the bit error rate (BER) while using the minimum

amount of computation time. Another important study that

integrates orthogonal frequency division multiplexing (OFDM)

and deep learning was conducted by the authors of [17]. It

was shown that the deep learning approach performs best for

signal detection and channel estimation. More recently, the

authors of [18] used long short-term memory (a branch of

supervised deep learning) for data detection in uplink NOMA.

They showed that the deep learning based NOMA scheme

is more reliable as compared to conventional hard-decision

optimization solutions.

So far, it has become evident that the work on secrecy

performance of energy harvesting cooperative NOMA sys-

tems is very limited. Moreover, the work on deep learning

approaches for physical layer security of NOMA is non-

existent. Therefore, in order to advance this promising field

of wireless communications, we consider a scenario where

energy harvesting cooperative NOMA users communicate in

the presence of an energy harvesting eavesdropper. We derive

the analytical expression of intercept probability of DF energy

harvesting cooperative NOMA system which, according to the

authors’ best knowledge, has not been derived in the literature.

We also optimize the secrecy performance of the system by

using deep learning for finding the optimal value of the power

allocation factor. The results of deep learning approaches are

then compared with benchmark iterative search algorithms. It

has been shown that the deep learning based NOMA scheme

is robust and computationally lightweight.

The remainder of the paper is organized as follows. Section

II provides details of the system model. In Section III, the

analytical results for intercept probability are provided. In

Section IV, deep learning based neural network model is

discussed. Section V provides numerical results and their

relevant discussion. In Section VI, some concluding remarks

are provided.

II. SYSTEM MODEL

Let us consider a cooperative relaying system consisting of a

source (S), and two destinations (UN and UF ) in the presence

of an eavesdropper (E) as shown in Figure 1. The nodes UN ,

UF and E are able to decode information and harvest energy

from the received RF signal. It is assumed that UN , UF and E

have the channel state information (CSI) of their corresponding

links, whereas, S being the source has the CSI of all the nodes.

The channel gains from S → UN , S → UF , S → E and UN →
E are assumed to be Rayleigh distributed and given as hSUN

,

hSUF
, hSE , hUNE , respectively.

The transmission takes place in two time slots. In the first

phase, S transmits the superimposed message
√
αNPsN +
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Fig. 1. System model.

√
αFPsF to UN and UF , where si and αi are the data

symbol and power allocation coefficient of i-th destination

and P denotes the total transmit power. It is assumed that

hSUN
> hSUF

, hence the power allocation factor should

satisfy αN < αF , where αN+αF = 1. The nodes UN , UF and

E are assumed to use the power-splitting receiver architecture

for ID and EH. According to power-splitting architecture, the

received power is split into two power streams by a power-

splitting factor ρ for EH and (1−ρ) for ID, where 0 < ρ < 1.

The received signal at UN , UF and E during the first time slot

can be written as

y
(1)
SUN

=
√

(1− ρN,1)(
√

αNPsN +
√

αFPsF )hSUN
+ nSUN

,

(1)

y
(1)
SUF

=
√

(1− ρF,1)(
√

αNPsN +
√

αFPsF )hSUF
+ nSUF

,

(2)

y
(1)
SE =

√

(1− ρE,1)(
√

αNPsN +
√

αFPsF )hSE + nSE,

(3)

where ρN,1, ρF,1, ρE,1 denote power-splitting factor at UN ,

UF and E during first phase. Also, nSUN
, nSUF

, nSE represent

the additive white Gaussian noise (AWGN) with zero mean

and N0 variance. The node UN first decodes its own symbol

sN by treating sF as interference. After obtaining sN , UN

cancels its own signal by using successive interference can-

cellation (SIC) to get sF . The received signal to interference

and noise ratio (SINR) and signal-to-noise ratio (SNR) for

symbols sN and sF can be, respectively, given as

γ
(1)
SUN

=
(1− ρN,1)|hSUN

|2αFP

(1− ρN,1)|hSUN
|2αNP +N0

, (4)

γ
(2)
SUN

=
(1− ρN,1)|hSUN

|2αNP

N0
. (5)

The far user, UF , treats the sN as interference. Then the

received SINR at UF can be written as

γ
(1)
SUF

=
(1 − ρF,1)|hSUF

|2αFP

(1− ρF,1)|hSUF
|2αNP +N0

. (6)



It is assumed that the link between the source and near user

is secure and the eavesdropper tries to decode the information

signal of the far user. In order to decode sF , the eavesdropper

treats sN as noise. Hence, the SINR at E can be expressed as

γ
(1)
SE =

(1− ρE,1)|hSE |2αFP

(1− ρE,1)|hSE |2αNP +N0
. (7)

In the second phase, UN transmits the decoded symbol sF
to UF with power P . Assuming that UN can perfectly decode

sF and use all harvested energy EN

T
= ρN,1ηP |hSUN

|2 during

first phase to transmit sF to UF , the received SNR at UF can

be given as

γ
(2)
UNUF

=
(1− ρF,2)ρN,1η|hSUN

|2|hUNUF
|2P

N0
. (8)

Similarly, the received SNR at E during the second phase

can be given as

γ
(2)
UNE =

(1− ρE,2)ρN,1η|hSUN
|2|hUNE |2P

N0
. (9)

III. INTERCEPT PROBABILITY

In this section, we derive the analytical expression of

intercept probability for the considered case. An intercept

event occurs when the achievable secrecy rate Csec falls below

0 [6]. The achievable secrecy rate is the difference between

the rates of the main and wiretap links i.e. Csec = [Cs−Ce]
+.

Since we consider DF protocol at UN , therefore, the SNR

will be determined by the bottleneck link between S and UF

and UN to UF is given as γDF
S = min(γ

(1)
SUF

, γ
(2)
UNUF

) while

the achievable rate for the link S → UN → UF is given

as CDF
s = 1

2 log2(1 + γDF
S ). The eavesdropper is assumed to

select the best messages received during first and second phase

given as γDF
E = max(γ

(1)
SE , γ

(2)
UNE). Therefore, the achievable

rate for wiretap links can be given as Ce =
1
2 log2(1 + γDF

E ).
Now the intercept probability can be given as

PDF
int = Pr

{

1

2
log2

(

1 + min(γ
(1)
SUF

, γ
(2)
UNUF

)

1 + max(γ
(1)
SE , γ

(2)
UNE)

)

< 0

}

.

(10)

Assuming X = min(γ
(1)
SUF

, γ
(2)
UNUF

) and

Y = max(γ
(1)
SE , γ

(2)
UNE), we can re-write 10 as

PDF
int = Pr[X < Y ]

=

∫ ∞

0

FX(y)fY (y)dy. (11)

The Cumulative Distribution Function (CDF) can be found

as

FX(x) = 1− (1− F
γ
(1)
SUF

(x))(1 − F
γ
(2)
UNUF

(x)). (12)

In the above equation, we obtain

F
γ
(1)
SUF

(x) = Pr

(
(1− ρF,1)|hSUF

|2αFP

(1 − ρF,1)|hSUF
|2αNP +N0

< x

)

= 1− exp

{

− x

ΩSUF
(1 − ρF,1)(αF − αNx)

}

= 1−
Γ
(

m,λ x
(1−ρF,1)(αF−αNx)

)

Γ(m)
, (13)

where λSUF
= m

ΩSUF

and ΩSUF
=

PE{|hSUF
|2}

N0
. The CDF of

γ
(2)
UNUF

depends on the event that near user has successfully

decoded the symbol of the far user. In this case, the CDF of

γ
(2)
UNUF

can be expressed as

F
γ
(2)
UNUF

(x) = Pr

(
(1− ρN,1)|hSUN

|2αFP

(1 − ρN,1)|hSUN
|2αNP +N0

> x

,
(1 − ρF,2)ρN,1η|hSUN

|2|hUNUF
|2P

N0
< x

)

. (14)

Assuming X1 = |hSUN
|2and X2 = |hUNUF

|2 we get

F
γ
(2)
UNUF

(x) =

∫ ∞

Θ

fX1(x1)dx1

︸ ︷︷ ︸

Ψ1

−
∫ ∞

Θ

F̄X2

(
N0x

(1 − ρF,2)ρN,1ηPx1

)

fX1(x1)dx1

︸ ︷︷ ︸

Ψ2

,

(15)

where F̄ (.) is the complementary CDF, Θ =
x

(1−ρN,1)(αF−αNx) , and Ψ1 = Γ(m,λΘ)
Γ(m) .

Ψ2 = λm
SUN

∫ ∞

Θ

m−1∑

s=0

1

s!Γ(m)

(
λUNUF

x

(1 − ρF,2)ρN,1η

)s
1

(x1)s+1−m

× exp

(

− (λSUN
(1− ρF,2)ρN,1η(x1)

2)

(1− ρN,1)αN (1 − ρF,2)ρN,1ηx1

− (λUNUF
x(1 − ρN,1)αN )

(1− ρN,1)αN (1− ρF,2)ρN,1ηx1

)

dx1 (16)

Ψ2 = (−1)s−m+1

{
λSUN

(1− ρF,2)ρN,1η

(1− ρN,1)αN (1− ρF,2)ρN,1η

}s−m

× Ei

(

− λSUN
(1 − ρF,2)x

(1− ρN,1)αN (1− ρF,2)(1− ρN,1)(αF − αNx)

)

× 1

(s−m)!
+

(
λSUN

(1− ρF,2)ρN,1η

(1− ρN,1)αN (1− ρF,2)ρN,1η

)k

×
(

x

(1− ρN,1)(αF − αNx)

)k exp
(

− λSUN
x

(1−ρN,1)αN

)

(
x

(1−ρN,1)(αF−αNx)

)s−m

×
s−m−1∑

k=0

(−1)k

(s−m)(s−m− 1) . . . (s−m− k)
. (17)
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Fig. 2. A typical deep neural network with input, output and multiple hidden
layers.

Now we find FY (y) = max(γ
(1)
SE , γ

(2)
UNE) which is given as

FY (y) = F
γ
(1)
SE

(y)F
γ
(2)
UNE

(y) (18)

where F
γ
(1)
SE

(y) = 1 − exp[− y
ΩSE(1−ρE,1)(αF−αNy) ] and

F
γ
(2)
UNE

(y) = 1− y
ΩSUN

ΩUNE(1−ρE,2)ρN,1η
. Now by differenti-

ating FY (y) we obtain

fY (y) = Φ1

[

−1 + exp

{

− y

ΩSE(1− ρE,1)(αF − αNy)

}]

+
αF (1− Φ1y) exp

{

− y
ΩSE(1−ρE,1)(αF−αNy)

}

ΩSE(1− ρE,1)(αF − αNy)2
,

(19)

where Φ1 = 1
ΩSUN

ΩUNE(1−ρE,2)ρN,1η
and Φ2 =

1
ΩSE(1−ρE,1)(αF−αNy) . By replacing (12) and (19) in (11), we

note that a closed-form solution for the integral is mathemat-

ically intractable. Still, the intercept probability can be easily

obtained by solving the single integral using any computational

software.

IV. DEEP LEARNING BASED OPTIMIZATION

In this section, we are going to present a deep learning

based resource allocation scheme for optimizing the achievable

secrecy rate of the far user. We employ neural networks

to learn the relationship between inputs and outputs and

predict the optimal power allocation factor that maximizes

the achievable secrecy rate. To do so, we carefully train

our multi-layer artificial neural network, whereby, each layer

consists of multiple neurons as illustrated in Figure 2. We

show in the numerical results section that the computational

efficiency of artificial neural networks is one of the highlights

of deep learning models. After the model has been trained

on a set of inputs, the testing (i.e., the real-time running

phase) involves only nonlinear transformations and vector

multiplications without compromising the performance.

A. Problem Formulation

We now try to optimize the secrecy performance of the far

user due to it being most vulnerable to eavesdropping attack.

Considering the worst-case scenario1, the legitimate receivers

have no option but to maximize their own achievable rate. By

this approach, maximizing the achievable rate would result in

maximizing the secrecy rate as well since the secrecy rate is

the difference between the rate of legitimate link and the rate

of wiretap link. Under this condition, the optimization problem

of the achievable rate becomes equivalent to

max
αF>0.5

Csec ≡ max
αF>0.5

1

2
log2

(

min(γ
(1)
SUF

, γ
(2)
UNUF

)
)

. (20)

However, the second term (i.e., γ
(2)
UNUF

) in (20) does not

contain power allocation factor αF . Thus, the optimization

problem can be re-formulated as maxαF>0.5 log2(1 + γ
(1)
SUF

).

B. Deep Learning Network Setup

Our neural network consists of multiple hidden layers and

a single input and output layer. The main reason for using

multiple hidden layers is to avoid under-fitting of test data

while maintaining a sufficient level of complexity. Moreover,

by utilizing multiple hidden layers, the complex interplay

of inputs and outputs can be understood by the network

during the learning phase. In our case, the inputs are the

channel realizations and the outputs are the power allocation

factors of the far user. For each channel realization, we take

samples from the Rayleigh distribution while fixing all the

other parameters. These values are generated for training and

validation datasets that are fed into the network during the

training phase.

At each hidden layer, we use rectified linear unit (ReLU)

activation function. Mathematically, the ReLU activation func-

tion is represented as

z = max(y, 0), (21)

where z denotes the output of the activation function and y is

the input of the function. We have used mean square error as

the cost function and apply the mini-batch algorithm on the

training data samples for calculating the gradients.

V. NUMERICAL RESULTS

This section provides numerical results and relevant discus-

sion. It is worth mentioning that the analytical and simulation

results have been generated using MATLAB, whereas, the

deep learning optimization is performed in Python 3.6.7.

Unless stated otherwise, the parameters used for generation

of plots are as follows: ρN,1 = ρN,2 = ρE,1 = ρE,2 = ρF,1 =
ρF,2 = ρ = 0.3, Ω = 5dB, decay rate = 0.9, training samples

= 30000, test samples= 6000, and epochs=100.

Figure 3 illustrates the intercept probability against different

values of transmit SNR. It can be seen that the intercept

1We consider that the CSI of the eavesdropper is not available at the source
due to which the achievable rate of eavesdropper cannot be calculated.
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Fig. 3. Intercept probability versus transmit SNR.

probability decreases with an increase in the values of Ω.

As anticipated, the values of η also have a prominent impact

on the intercept probability. Strictly speaking, the intercept

probability generally increases with a reduction in the values

of η. However, the separation between the curves of η grows

as the value of transmitting SNR increases. This shows that

a low energy harvesting efficiency is more harmful at higher

values of SNR, giving rise to a higher intercept probability.

In addition to this, we note that at higher values of αF ,

the intercept probability significantly increases. This is partly

because of the low power allocation to the near cooperative

user. At lower values of the power allocation factor, decoding

the message of the far user becomes difficult for the near

cooperating user. It can also be seen that the simulation results

closely follow the analytical result which validates the derived

expression.

To further highlight the impact of a power-splitting factor,

Figure 4 shows the intercept probability as a function of ρ.

It can be observed that the intercept probability generally

increases with an increase in the value of the power-splitting

factor. This trend can be attributed to the low amount of energy

reserved for information decoding which makes it difficult to

maintain cooperation among near and far users. Evidently,

the increasing values of η causes intercept probability to

decreases. However, the power allocation factors for near and

far users have shown different trends as the value of ρ changes.

Precisely, we note that at lower values of power-splitting

factors, the separation between the curves of αF = 0.9
and αF = 0.6 is quite large. But, as the values of the

power-splitting factor increase, the difference between the

curves becomes smaller. This shows that the impact of power

allocation factors of NOMA reduces at higher values of a

power-splitting factor.

In Figure 5, we have demonstrated the optimization results

for the deep learning approach. Here, “Optimal-Iterative”

refers to the optimal results achieved through iterative search

scheme, “DL” denotes the results for deep learning approach,

and “Random” represents the results for random power al-
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Fig. 4. Intercept probability against power-splitting factor.

location factor generated using uniform distribution. Figure

5(a) shows the results for achievable secrecy rate against the

increasing values of the power-splitting factor. As shown in

this plot, the larger values of the power-splitting factor reduce

the achievable secrecy capacity as more power is reserved

for energy harvesting. It can be seen that the deep learning

approach strictly follows the optimal results, while always

achieving the accuracy of more than 90%. By contrast, the

random power allocation achieves a very low secrecy capac-

ity. To further highlight the robustness of the deep learning

approach, Figure 5(b) plots the results for computation time

against different values of ρ. For this case, the deep learning

approach performs significantly better than that of iterative

search. This shows that once trained, the deep learning models

can provide a lightweight solution to achieve optimal results.

Figure 6 emphasizes the suitable number of layers for

the neural network but plotting achievable secrecy rate and

computation time for 05 hidden layers. It can be seen in

Figure 6(a) that the separation between deep learning and

iterative approach slightly increases. We attribute this increase

to over-fitting of data during the training phase. This results

in causing the neural network to memorize the training set.

However, when new testing data is presented, the network fails

to generalize the results. This increase in a number of hidden

layers also affects the computation time, as shown in Figure

6(b). Specifically, we observe that the computation time of

deep learning approach considerably increases as compared

to Figure 5(b). This increase in computation time is due to

the increase in the number of hidden layers and in the total

number of neurons in the neural network.

VI. CONCLUSION

This study provides secrecy analysis and deep learning

optimization of SWIPT-based cooperative NOMA systems. We

derive the analytical expression of the intercept probability

when near user act as a cooperative node in the presence of

an eavesdropper. We have shown that the impact of power

allocation factors of NOMA reduces at higher values of the

power-splitting factor. Moreover, we have shown that deep



ρ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ch
ie
va
b
le

S
ec
re
cy

R
a
te

(b
it
s/
se
c/
H
z)

0

0.2

0.4

0.6

0.8

1

1.2

Optimal - Iterative
DL
Random

(a)

ρ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
om

p
u
ta
ti
on

T
im

e
(s
ec
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Optimal - Iterative

DL

(b)

Fig. 5. Performance comparison (a) achievable secrecy rate versus ρ (b)
Computation time versus ρ. The neural network contain 02 hidden layers:
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Fig. 6. Performance comparison (a) achievable secrecy rate versus ρ (b)
Computation time versus ρ. The neural network contain 05 hidden layers:
Layer 1 = 200 neurons, Layer 2 = 100 neurons, Layer 3 = 50 neurons, Layer
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learning approach is more robust and computationally efficient

as compared to conventional iterative search approach. In the

future, we aim to use deep learning for optimizing the secrecy

performance of cooperative NOMA systems under colluding

eavesdroppers.
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