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We propose here a fully backaction-evading scheme for the measurement of the entanglement between two
nanomechanical resonators. The system, which consists of two mechanical oscillators, coupled to a single
mode of an electromagnetic resonant cavity through a radiation-pressure interaction term, is driven by two
pump tones and four detection tones. As previously discussed in the literature, the former induce entanglement
between the two mechanical oscillators, while we show here that a specific choice of phase and amplitude
of the detection tones allows for direct pairwise reconstruction of the collective quadrature fluctuations of the
mechanical oscillators belonging to quantum-mechanics-free subspaces, thereby providing direct evidence of the
entanglement properties of the two mechanical resonators.
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I. INTRODUCTION

The study of the properties of mechanical systems at the
nanoscale represents an extremely active field of research,
both at the fundamental and the applied level [1–5]. While
the quantum harmonic oscillator is arguably one of the first
examples encountered in the study of quantum systems, the
experimental realization of a quantum state for a typical “mass
+ spring” mechanical system has been achieved only recently
[6–9]. In the preparation and detection of quantum states
for mechanical devices, the physics of cavity optomechanical
systems has played a prominent role [10]. These systems
allow for the manipulation of mechanical degrees of free-
dom through a radiation-pressure coupling acting between a
mechanical resonator and an electromagnetic field within a
resonant cavity. Experiments in this sense have led to the
preparation of different quantum mechanical states such as the
quantum ground state of a nanodrum coupled to a microwave
cavity [7], and quantum-squeezed [11–13] and entangled
states for nanomechanical resonators [8,9].

One of the crucial aspects concerning the manipulation
of quantum mechanical degrees of freedom—-in particular
for optomechanical systems—is represented by the strategies
aimed at certifying, through measurement, that the desired
mechanical state has indeed been prepared. Within the theo-
retical framework of quantum measurement [14] and, more
in general, of the physics of open quantum systems [15],
different strategies have been proposed to control and probe
the state of the optomechanical systems [7,16–22]. Of par-
ticular relevance to our analysis are the so-called backaction
evading (BAE) measurement setups [23,24], which aim at
circumventing the effect of the disturbance induced by the
measurement apparatus on the system (backaction), poten-
tially compromising the preparation of a given quantum state
(see, e.g., Refs. [9,25] for recent examples in this sense).

*francesco.p.massel@jyu.fi

In this paper, we propose a four-tone BAE measure-
ment setup aimed at the characterization of the entanglement
properties of two mechanical resonators. In particular, the
experimental setting we discuss here is constituted by two
mechanical resonators and an electromechanical cavity, either
in the optical or in the microwave regime.

Among the possible measures allowing the quantification
of entanglement, the most suitable for our setting is repre-
sented by the violation of the Duan bound [26]. According
to this criterion, to quantify whether such system is entangled,
it is necessary to establish whether the collective quadratures
X� = X1 + X2, Y� = Y1 − Y2 of the mechanical modes violate
an inequality of the form

〈
�X 2

�

〉 + 〈
�Y 2

�

〉
� 1, (1)

where 〈�X 2
�〉 = ∫

dω
2π

〈{X�,ω, X�,−ω}〉 /2 and analogously for
〈�Y 2

�〉. The operators X1,2 and Y1,2 represent the quadrature
operators for each of the two mechanical resonators and fulfill
the canonical commutation relations [Xn,Ym] = iδn,m (n, m =
1, 2). Quadrature operators are proportional to the position
Q = √

h̄/(mω0)X and momentum P = √
h̄mω0Y operators

associated with the dynamics of a mechanical oscillator of
mass m and resonant frequency ω0. The goal of our paper is to
suggest a measurement setup allowing for the BAE detection
of 〈�X 2

�〉 and 〈�Y 2
�〉.

The setting discussed here represents, on the one hand, an
improvement over the detection setup utilized in the experi-
mental verification of the entanglement between mechanical
modes introduced in Ref. [9], in which 〈�X 2

�〉 could be mea-
sured directly, through a BAE measurement, whereas 〈�Y 2

�〉
was inferred from the response of the system in the absence
of detection probes. On the other hand, the measurement
setup introduced here is an extension of the proposal of
Ref. [27], in which the four-probe setup, while directly mea-
suring 〈�X 2

�〉 and 〈�Y 2
�〉, did not fulfill the BAE condition,

therefore introducing extra backaction noise in the dynamics
of the mechanical resonators, potentially compromising the
mechanical entanglement between the oscillators.
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The paper is organized as follows: after introducing the
equations of motion for the system, we propose a hierarchical
solution strategy analogous to the one introduced in [27] for
the fluctuation operators. Subsequently, we show how a spe-
cific choice for the probing tones provides a BAE framework
for the detection of mechanical entanglement through the
direct measurement of the output cavity noise spectrum.

In particular, we will show how the current choice of de-
tection tones allows for the simultaneous BAE measurement
of pairs of collective quadratures belonging to “quantum-
mechanics-free” (qm-free) subspaces [28–30] (i.e., X�,Y� or
Y�, X�). In other terms, we will show that a BAE measure-
ment of either X� or Y� (Y� or X�) will not add any noise to
either quadratures X� or Y� (Y� or X�), allowing therefore for
a fully BAE detection of the Duan bound.

II. THE SYSTEM

The system we are considering consists of a resonant
electromagnetic cavity coupled to two mechanical resonators
through a radiation-pressure term. In the presence of an exter-
nal coherent field E (t )—denoting with a, b1, and b2 the low-
ering operators associated with the cavity and the mechanical
modes, respectively—the Hamiltonian for the system can be
written as (h̄ = 1 throughout)

H = ωaa†a+
∑

i=1,2

ωib
†
i bi + g

(
bi + b†

i

)
a†a

+ i[E (t )a† − E∗(t )a], (2)

where ω1, ω2, and ωa are the resonant frequencies of the two
mechanical oscillators and the cavity, respectively, and g is
the single-photon radiation pressure coupling strength. Fur-
thermore, we assume that the external field is constituted by a
(strong) driving field and a detection tone E (t ) = Edrive(t ) +
Edetect (t ) where

Edrive(t ) = α+e−iω+t + α−e−iω−t , (3a)

Edetect (t ) = (αp+eiδt + αq+e−iδt )e−iω+t

+ (αp−eiδt + αq−e−iδt )e−iω−t . (3b)

As depicted in Fig. 1(b), the external field is thus com-
posed of six tones. Anticipating the results that we will
derive below, two of them (α+ and α− at frequencies ω+
and ω−, respectively) drive the mechanical resonators into an
entangled state, while the amplitude and phase of the other
four (αp+, αq+, αp−, αq−) are chosen in such a way as to
guarantee the BAE measurement of the collective quadratures
(X�,Y�, X�,Y� for symmetric and antisymmetric modes) of
the mechanical resonators. The choice of which quadrature
is being measured, and therefore which quantum-mechanics-
free subspace is being accessed (either X�,Y� or Y�, X�),
depends on the choice of the relative phase between the
detection tones (αp+, αq+, αp−, αq−), modified here.

In order to account for the effect of the environmental noise
on the system, we introduce a description in terms of quantum
Langevin equations (QLEs) [31]. Denoting with κE, κI, γ1, and
γ2 the dissipation rates for internal and external losses of the

(a)

(b)

FIG. 1. (a) Sketch of the proposed entanglement detection
scheme. The pump tones are depicted as blue (solid dark) arrows,
while the detection tones are depicted as wiggly dashed lines. In
addition, we have indicated the three sources of noise (ain

I , ain
E , bin)

as short wiggly arrows. (b) Pictorial representation of the cavity
spectrum corresponding to the choice ω+ = ω1, ω− = ω2, ω� =
(ω1 + ω2)/2, δ = (ω1 − ω2)/2 (frequency in the rotating frame; see
text). The cavity mode is driven with two pumps (blue) and generates
two sidebands at ±δ. In addition to the strong driving tone, we
consider four probing tones (gray) which generate sidebands at ±2δ

and 0. In our analysis we focus on the peak generated at 0, which, as
we will show, contains all the required information to ascertain the
violation of the Duan bound.

cavity and the two mechanical resonators, respectively, we can
write the QLEs in the interaction frame as

ȧ = −(κ/2 − iδ)a − ig[(b1 + b2)e−iω� t + (b†
1 + b†

2)eiω�t ]a

+ E (t )ei(ωa+δ)t + √
κEain

E + √
κIa

in
I , (4a)

ḃ1 = −(γ1/2 + iδ)b1 − iga†aeiω� t + √
γ1bin

1 , (4b)

ḃ2 = −(γ2/2 − iδ)b2 − iga†aeiω� t + √
γ2bin

2 , (4c)

where ain
E , ain

I , bin
1 , and bin

2 are the input noise operators
associated with the coupling of the cavity to the measurement
apparatus (ain

E , external noise), to the internal losses of the cav-
ity ain

I , and to the thermal baths coupled to the two mechanical
resonators (bin

1 and bin
2 ) (see Fig. 1). The equations of motion

(4a)–(4c) have been written in a rotating frame defined with
respect to H0 = ω� (b†

1b1 + b†
2b2) + (ωa + δ)a†a with ω� =

(ω1 + ω2)/2, δ = (ω1 − ω2)/2, assuming that ω± = ω1,2.
The noise operators associated with the cavity exter-

nal and internal losses ain
i (i = I, E ) obey the relation

〈ain
i (t ) ain

i
†(t ′)〉 = (ni + 1)δ(t − t ′), while bin

j describes ther-
mal noise for the mechanical resonator and is characterized
by the correlation function 〈bin

j (t ) bin†
j (t ′)〉 = (nj + 1)δ(t − t ′)

023824-2
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( j = 1, 2), where nI,E and n1,2 are the thermal occupation
numbers for the “internal” and “external” cavity baths, and
each mechanical resonator, respectively.

Following a standard approach, assuming that |α±| �
|αp±|, |αq±|, Eqs. (4a)–(4c) can be linearized around the
zeroth-order solution tones imposed by the driving fields as

a(t ) → α(t ) + a(t ), (5a)

b1,2(t ) → β1,2(t ) + b1,2(t ). (5b)

The corresponding QLEs for the fluctuations around α(t )
and β1,2(t ) become

ȧ = −(κ/2 − iδ)a + √
κEain

E + √
κIa

in
I

− ig[(b1 + b2)e−iω� t + (b†
1 + b†

2)eiω�t ]α, (6a)

ḃ1 = −(γ1/2 + iδ)b1 − ig
(
αa† + α∗a

)
eiω� t + √

γ1bin
1 , (6b)

ḃ2 = −(γ2/2 − iδ)b2 − ig
(
αa† + α∗a

)
eiω�t + √

γ2bin
2 , (6c)

where we have assumed that δ � gβ1,2. In this case α(t ) can
be written as

α(t ) =(
α+ + αp+eiδt + αq+e−iδt

)
e−iω� t

+ (
α− + αp−eiδt + αq−e−iδt

)
eiω�t . (7)

Assuming that the sideband-resolved condition (ω� � κ)
holds, neglecting terms oscillating at ±2ω� , we can write
Eqs. (6a)–(6c) as

ȧ = −(κ/2 − iδ)a + √
κEain

E + √
κIa

in
I

− i[(G− + Gp−eiδt + Gq−e−iδt )(b1 + b2).

+.(G+ + Gp+eiδt + Gq+e−iδt )(b†
1 + b†

2)], (8a)

ḃ1 = −(γ1/2 + iδ)b1 + √
γ1bin

1

− i[(G∗
− + G∗

p−e−iδt + G∗
q−eiδt )a

+(G+ + Gp+eiδt + Gq+e−iδt )a†], (8b)

ḃ2 = −(γ2/2 − iδ)b2 + √
γ2bin

2

− i[(G∗
− + G∗

p−e−iδt + G∗
q−eiδt )a

+(G+ + Gp+eiδt + Gq+e−iδt )a†], (8c)

where G± = gα± (Gq± = gαq±, Gp± = gαp±) are the lin-
earized optomechanical coupling rates associated with the
drive and detection tones, respectively. Equations (8a)–(8c)
encode the possibility of generating an entangled (two-mode
squeezed) state for the two mechanical modes by means of
the coupling rates G± [24,27]. The addition of the detection
tones Gq,p± allows for a full reconstruction of the collective
mechanical quadratures [27]. Most importantly, in contrast
to the analysis carried out in Ref. [27], αp± and αq± can be
chosen in such a way as to enforce the BAE condition on
either the (X� , Y�) or the (Y� , X�) qm-free subspace. To show
this, we introduce a Bogolyubov unitary transformation for
the mechanical operators

β1 = ub1 + vb†
2, β2 = ub2 + vb†

1, (9)

where u = G−/G and v = G+/G with G =
√

G2
− − G2

+ .
Without loss of generality, we can assume equal mechanical

damping rates (γ1 = γ2 = γ ). In this case, the linearized QLE
equations (8a)–(8c) can be written in terms of the Bogolyubov

modes in the Fourier domain (with the convention at
FT−→ aω,

a†
t

FT−→ a†
ω) as

χ a−1

ω+δ aω = −iG[β1,ω + β2,ω] + √
κEain

E,ω + √
κIa

in
I,ω

− i[G�1{β1,ω−δ + β2,ω−δ}
+G�3{β†

1,ω−δ + β
†
2,ω−δ}]

− i[G�2{β1,ω+δ + β2,ω+δ}
+G�4{β†

1,ω+δ + β
†
2,ω+δ}], (10a)

χ−1
ω−δ β1,ω = −iGaω + √

γ β in
1,ω

− i[G∗
�1

aω+δ + G�3 a†
ω−δ]

− i[G∗
�2

aω−δ + G�4 a†
ω−δ], (10b)

χ−1
ω+δ β2,ω = −iGaω + √

γ β in
2,ω

− i[G∗
�1

aω+δ + G�3 a†
ω−δ]

− i[G∗
�2

aω−δ + G�4 a†
ω+δ], (10c)

where χ a
ω = (κ/2 − iω)−1 and χω = (γ /2 − iω)−1, G�1,2 =

(uGp,q− − vGp,q+) and G�3,4 = (uGp,q+ − vGp,q−). More-
over, β in

1 = ubin
1 + vbin†

2 and β in
2 = ubin

2 + vbin†

1 are two corre-
lated thermal noise operators whose only nonzero correlation
functions are

〈
β in

1,ω β
in†
1,ω′

〉 = 〈
β in

2,ω β
in†
2,ω′

〉 = [(n + 1)u2 + nv2 + 1]δω+ω′ ,

(11)

〈
β

in†
1,ω β in

1,ω′
〉 = 〈

β
in†
2,ω β in

2,ω′
〉 = [(n + 1)v2 + nu2]δω+ω′ , (12)

〈
β in

1,ω β in
2,ω′

〉 = 〈
β

in†
1,ω β

in†
2,ω′

〉 = [(2n + 1)uv]δω+ω′ , (13)

where we have assumed the same thermal population for the
mechanical resonators (n = n1 = n2). We now suppose that
the probe tones are given by

Gp,q± = Gp,q exp[±iφp,q] (14)

with Gp,q real and positive. In this case, we have that

G�1 = Gp exp [−iφ1], (15a)

G�3 = Gp exp [iφ1], (15b)

G�2 = Gq exp [−iφ2], (15c)

G�4 = Gq exp [iφ2], (15d)

where Gp,q = |ue−iφp,q − veiφp,q |Gp,q and φ1,2 =
arctan[ u+v

u−v
tan (φp,q )]. With these assumptions, Eqs. (10a)–

(10c) can be solved treating the probes as perturbations with
respect to the pump tones

G�1 = λGp exp [−iφ1], G�2 = λGq exp [−iφ2], (16a)

G�3 = λGp exp [iφ1], G�4 = λGq exp [iφ2], (16b)

where we have introduced the formal perturbative parameter
λ (λ = 1 in the end of the calculation). The solutions for a,
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β1, and β2 can be expressed in powers of the perturbative
parameter λ as

aω = a(0)
ω + λa(1)

ω + λa(2)
ω + O(λ3), (17a)

β1,ω = β
(0)
1,ω + λβ

(1)
1,ω + λβ

(2)
1,ω + O(λ3), (17b)

β2,ω = β
(0)
2,ω + λβ

(1)
2,ω + λβ

(2)
2,ω + O(λ3). (17c)

Substituting the perturbative expression given in
Eqs. (17a)–(17c) into Eqs. (10a)–(10c) we get that each

term in the perturbative expansion can be written as

(
χ a

ω+δ

)−1
a(n)

ω = −iG
[
β

(n)
1,ω + β

(n)
2,ω

] + A(n)
in , (18a)

(
χm

ω−δ

)−1
β

(n)
1,ω = −iGa(n)

ω + B(n)
1,in, (18b)

(
χm

ω+δ

)−1
β

(n)
2,ω = −iGa(n)

ω + B(n)
2,in (18c)

with

A(n+1)
in = −iλGp

[
e−iφ1

{
β

(n)
1,ω−δ + β

(n)
2,ω−δ

} + eiφ1
{
β

(n)†
1,ω−δ + β

(n)†
2,ω−δ

}]

− iλGq
[
e−iφ2

{
β

(n)
1,ω+δ + β

(n)
2,ω+δ

} + eiφ2
{
β

(n)†
1,ω+δ + β

(n)†
2,ω+δ

}]
, (19a)

B(n+1)
1,in = −iλGp

[
a(n)

ω+δ + a(n)†
ω−δ

]
eiφ1 − iλGq

[
a(n)

ω−δ + a(n)†
ω+δ

]
eiφ2 , (19b)

B(n+1)
2,in = −iλGp

[
a(n−1)

ω+δ + a(n−1)†
ω−δ

]
eiφ1 − iλGq

[
a(n)

ω−δ + a(n)†
ω+δ

]
eiφ2 (19c)

for n � 0 and

A(0)
in = √

κEain
E,ω + √

κIa
in
I,ω, (20a)

B(0)
1,in = √

γ β in
1,ω, (20b)

B(0)
2,in = √

γ β in
2,ω. (20c)

Equations (18a)–(18c) can be solved to give

a(n)
ω = χ a

ω+δ

�

{
A(n)

in − iG
[
χm

ω−δB(n)
1,in + χm

ω+δB(n)
2,in

]}
, (21a)

β
(n)
1,ω = χm

ω−δ

�

{
η1B(n)

1,in − iG
[
χ a

ωA(n)
in − iGχm

ω+δB(n)
2,in

]}
, (21b)

β
(n)
2,ω = χm

ω+δ

�

{
η2B(n)

2,in − iG
[
χ a

ωA(n)
in − iGχm

ω−δB(n)
1,in

]}
, (21c)

where

� = 1 + G2χ a
ω+δ

(
χm

ω−δ + χm
ω+δ

)
, (22a)

η1,2 = 1 + G2χ a
ω+δχ

m
ω∓δ. (22b)

For n = 0 we have (Gp = Gq = 0).

a(0)
ω = χ a

ω+δ

�

{[√
κEain

E,ω + √
κIa

in
I,ω

]

− iG
[
χm

ω−δ

√
γ β in

2,ω + χm
ω+δ

√
γβ in

2,ω

]}
, (23a)

β
(0)
1,ω = χm

ω−δ

�

{
η1

√
γ β in

1,ω − iG
[
χ a

ω

{√
κEain

E,ω + √
κIa

in
I,ω

}

− iGχm
ω+δ

√
γ β in

2,ω

]}
, (23b)

β
(0)
2,ω = χm

ω+δ

�

{
η2

√
γβ in

2,ω − iG
[
χ a

ω

{√
κEain

E,ω + √
κIa

in
I,ω

}

− iGχm
ω−δ

√
γ β in

1,ω

]}
. (23c)

From these expressions it is possible to see that, if γ 
 δ,
β

(0)
1 and β

(0)
2 are peaked around ω � δ and ω � −δ, respec-

tively, while a(0) exhibits a double peak structure for ω � ±δ.
Furthermore, as expected, the solution of Eqs. (23a)–(23c)
allows us to establish that the original mechanical modes
b1 and b2 are entangled, since the cooling of modes β1

and β2 corresponds to two-mode squeezing for b1 and b2.

Furthermore, we can write the n = 1 contributions around
ω � 0 (in the rotating frame) as

a(1)
ω = −i

χ a
ω+δ

�

[
Gp

{
e−iφ1β

(0)
2,ω−δ + eiφ1β

(0)†
1,ω−δ

}

+Gq
{
e−iφ2β

(0)
2,ω+δ + eiφ2β

(0)†
2,ω+δ

}]
, (24a)

β
(1)
1,ω = 0, (24b)

β
(1)
2,ω = 0. (24c)

Equation (24a) demonstrates how the dynamics of the
mechanical modes β

(0)
1 and β

(0)
2 can be inferred from the

dynamics of the first-order approximation to the cavity field,
and that the measurement is realized through the presence of
the detection tones.

Even though the Bogolyubov operators β1,ω and β2,ω

encode all relevant information about the dynamics of the
mechanical resonators, since we are interested in the poten-
tial violation of the Duan bound (1), it is more informative
to express Eqs. (24a)–(24c) in terms of frequency-shifted
quadrature operators for the collective mechanical degrees of
freedom X̄ �

ω , X̄ �
ω , Ȳ �

ω , and Ȳ �
ω , defined as

X̄ �
ω = X̄1,ω + X̄2,ω, (25a)

X̄ �
ω = X̄1,ω − X̄2,ω, (25b)

with X̄1,ω = (b1,ω+δ + b†
1,ω−δ )/

√
2 and X̄2,ω = (b2,ω−δ +

b†
2,ω+δ )/

√
2 where analogous definitions hold for Ȳ �

ω and Ȳ �
ω .

While for δ �= 0 original and shifted mechanical quadra-
tures do not coincide, it is possible to show [27] that the
uncertainties associated with the shifted mechanical quadra-
tures 〈�X̄ 2

�〉 and 〈�Ȳ 2
�〉 which can be obtained integrating

the mechanical noise spectra S�,0
ω and S�,π/2

ω (Figs. 2 and 3)
satisfy the following relation:

〈
�X̄ 2

�

〉 + 〈
�Ȳ 2

�

〉 = 〈
�X 2

�

〉 + 〈
�Y 2

�

〉
. (26)

We are thus allowed to express the Duan bound (1) in terms
of frequency-shifted mechanical quadratures as

〈
�X̄ 2

�

〉 + 〈
�Ȳ 2

�

〉
� 1. (27)
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From Eq. (24a) and the definiton of the shifted quadratures,
it is possible to express the first-order correction to the cavity
field as

a(1)
ω = −i

χ a
ω+δ√
2�

[{
A+

φp,φq
X̄ �

ω + B+
φp,φq

Ȳ �
ω

}

+ i
{
B−

φp,φq
X̄ �

ω − A−
φp,φq

Ȳ �
ω

}]
, (28)

where

A±
φp,φq

= Gp cos(φp) ± Gq cos(φq), (29a)

B±
φp,φq

= Gp sin(φp) ± Gq sin(φq). (29b)

To ascertain the BAE nature of the current measurement
setup in each qm-free subspace, we need to evaluate the
higher-order terms contributing to the cavity field around the
relevant frequency (ω � 0 in the rotating frame). To this end,
from Eqs. (19a)–(21c), we can write

a(n+2)
ω = −iλ

χ a
ω+δ

�

[
Gp

{
e−iφ1β

(n+1)
2,ω−δ + eiφ1β

(n+1)†
1,ω−δ

}

+ Gq
{
e−iφ2β

(n+1)
1,ω+δ + eiφ2β

(n+1)†
2,ω+δ

}]
, (30)

where, since γ 
 δ, we have neglected all nonresonant terms
in the mechanical response χ a

ω. The terms appearing on the
left-hand side of Eq. (30) can, in turn, be expressed as

β
(n+1)
1,ω+δ = −iλ

χm
ω

1 + G2χm
ω χ a

ω+2δ

[
Gp

(
a(n)

ω+2δ + a(n)†
ω

)
eiφ1

+ Gq
(
a(n)

ω + a(n)†
ω+2δ

)
eiφ2

]
, (31a)

β
(n+1)†
1,ω−δ = +iλ

χm
ω

1 + G2χm
ω χ a

ω−2δ

[
Gp

(
a(n)

ω + a(n)†
ω−2δ

)
e−iφ1

+ Gq
(
a(n)

ω−2δ + a(n)†
ω

)
e−iφ2

]
, (31b)

β
(n+1)
2,ω−δ = −iλ

χm
ω

1 + G2χm
ω χ a

ω

[
Gp

(
a(n)

ω + a(n)†
ω+2δ

)
eiφ1

+ Gq
(
a(n)

ω−2δ + a(n)†
ω

)
eiφ2

]
, (31c)

β
(n+1)†
2,ω+δ = +iλ

χm
ω

1 + G2χm
ω χ a

ω

[
Gp

(
a(n)

ω+2δ + a(n)†
ω

)
e−iφ1

+ Gq
(
a(n)

ω + a(n)†
ω+2δ

)
e−iφ2

]
. (31d)

Substituting Eqs. (31a)–(31d) into Eq. (30), we obtain

a(n+2)
ω = λ2 χm

ω χ a
ω+δ

�
GpGq{ei(φ1−φ2 ) − ei(φ2−φ1 )}

× (
a(n)

ω−2δ − a(n)
ω+2δ

)
, (32)

implying that, for φ1 − φ2 = 0, π , all terms a(n+2)
ω (n > 0) are

zero for δ 
 κ . This condition, combined with the expression
for a(1)

ω given in Eq. (28), allows us to conclude that a choice of
the detection tone phases, that fulfills the condition φ1 − φ2 =
0, π , leads to the faithful mapping onto the cavity field of the
shifted quadrature field selected by the relative phase of the
detection tones (Fig. 2).

III. SPECTRUM OF THE OUTPUT FIELD

In the previous section, we have determined that it is possi-
ble to access the information about the collective dynamics of

(a)

(b)

10-2

100

102

104

10-2

100

102

104

FIG. 2. (a) Noise spectrum of the symmetrical mechanical
quadrature S�,θ

ω as a function of frequency ω for θ = 0 (red dotted
curve) and θ = π/2 (blue solid curve). (b) Spectrum of the anti-
symmetrical mechanical quadrature S�,θ

ω for θ = 0 (red dotted curve)
and θ = π/2 (blue solid curve). Parameters are γ = 10−5, δ = 0.1,
G− = 4.8 × 10−2, G+ = 4.0 × 10−2, and n1 = n2 = 10, nc = 0. All
frequencies are in units of κ , h̄ = 1 throughout the paper.

the mechanical resonators through the cavity field aω, which
does not represent a quantity that is directly accessible in
experiments. However, through the standard approach rep-
resented by the input-output formalism [31], we can relate
the cavity field to the output field aout

ω —a quantity that can
be measured in experiments—as aout

ω = √
κEaω − ain

E,ω. To
this end, we need to evaluate the expression for the output
quadrature field in terms of the perturbative expansion given
in Eq. (17a). Assuming that φ1 − φ2 = 0, π , we can write the
output field quadratures as

X out,θ (ω) =[(
a(0) out

ω + λ
√

kEa(1)
ω

)
e−iθ

+ (
a(0) out

ω

† + λ
√

kEa(1)
ω

†)
eiθ

]/√
2 (33)

and, since 〈a(0)(†)a(1)(†)〉 = 0, express the spectrum for the
output field Sout

ω = 1
2 〈{X out,θ (ω), X out,θ (−ω)}〉 as

Sout
ω = Sout(0)

ω + κES(1)
ω , (34)

where

Sout(0)
ω = 1

2 〈{X (0)out,θ (ω), X (0)out,θ (−ω)}〉
=∣∣κEχ a

ω − 1
∣∣2(

nc + 1
2

)
(35)
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(a)

(b)

100

101

100

101

FIG. 3. (a) Output spectrum Sout
ω |

θ̄=0 as a function of frequency
for φp = 0, φq = 0 (red dotted curve) and φp = 0, φq = 0 (blue
solid curve). (b) Output spectrum Sout

ω |
θ̄=π/2 as a function of fre-

quency for φp = 0, φq = π (red dotted curve) and φp = π/2, φq =
−π/2 (blue solid curve). κE = 0.9; all other parameters as in Fig. 2.
The quantity appearing in the Duan inequality given by Eq. (1) can
be inferred from the area under the red dotted curve in (a) and the
blue solid curve in (b).

represents the contribution to the output field noise spec-
trum in the absence of coupling to the mechanical motion
(G, Gp,q = 0) (Fig. 3).

More interestingly, S(1)(ω) is the contribution to the output
field noise spectrum due to the dynamics of the mechanical
oscillators and therefore represents the relevant term for the
determination of a potential violation of the Duan inequality.
From Eq. (28), we have

S(1)(ω) =
∣∣∣∣
χ a

ω+δ

�

∣∣∣∣
2

× {
cos2(θ )

[(
A+

φp,φq

)2
S̄�,0

ω + (
B+

φp,φq

)2
S̄�,π/2

ω

]

+ sin2(θ )
[(
B−

φp,φq

)2
S̄�,0

ω + (
A−

φp,φq

)2
S̄�,π/2

ω

]}
,

(36)

where S̄�,�,0
ω = 〈{X̄ �,�

−ω , X̄ �,�
ω }〉/2 and S̄�,�,π/2

ω =
〈{Ȳ �,�

−ω , Ȳ �,�
ω }〉/2 are the noise spectra of the frequency-

shifted collective mechanical quadratures, which, upon
integration, yield the quantities needed for the determination
of the violation of the Duan bound (see Fig. 4). From
Eq. (36), and the expressions of A±

φp,φq
and B±

φp,φq
given

FIG. 4. Plot of the Duan quantity in Eq. (1) as a function of ratio
G+/G−. The dashed line indicates the threshold below which the
Duan inequality is violated. All parameters except G+ as in Figs. 2
and 3. As discussed in the text, the value of the Duan quantity can be
extracted from the output spectrum as the sum of the integral under
the red dotted curve in Fig. 3(a) and the blue solid curve in Fig. 3(b).
See also Table I. The values of φp and φq chosen here imply in all
cases that φ1 − φ2 = 0, π , since φ1,2 = arctan[ u+v

u−v
tan (φp,q )].

in Eqs. (29a) and (29b), it is clear that the noise spectra
of the collective mechanical quadratures can be accessed
from the spectrum of the output field by changing the
phase of the homodyne detector θ and the phases of the
detection tones φp and φq (compatibly with the condition
φ1 − φ2 = 0, π ) (Fig. 4). In Table I we have summarized the
different combinations of (θ̄ , φp, φq) allowing us to access
the different frequency-shifted mechanical spectra, which,
upon integration, provide a measurement of the collective
mechanical quadratures needed to ascertain the violation of
the Duan bound.

Furthermore, the choice of φp, φq, in addition to setting the
mechanical quadrature to be measured, fixes the backaction
induced by the measurement tones on it—expressed here as
perturbative corrections—to be zero. This can be shown by

TABLE I. Relation between the output spectrum and the shifted
mechanical quadrature spectra for different values of detection and
probe phases.

θ̄ = 0

1 φp = 0 S(1)(ω) = | χa
δ

�
|2(Gp + Gq )2S̄�,0

ω

φq = 0

θ̄ = 0

2 φp = π/2 S(1)(ω) = | χa
δ

�
|2(Gp + Gq )2S̄�,π/2

ω

φq = π/2

θ̄ = π/2

3 φp = 0 S(1)(ω) = | χa
δ

�
|2(Gp + Gq )2S̄�,π/2

ω

φq = π

θ̄ = π/2

4 φp = π/2 S(1)(ω) = | χa
δ

�
|2(Gp + Gq )2S̄�,0

ω

φq = −π/2
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considering the nth-order perturbative term for the shifted
quadrature operators

X̄ �,(n)
ω = u − v√

2

(
β

(n)
1,ω+δ + β

(n)†
1,ω−δ + β

(n)
2,ω−δ + β

(n)†
2,ω+δ

)
, (37a)

X̄ �,(n)
ω = u + v√

2

(
β

(n)
1,ω+δ + β

(n)†
1,ω−δ − β

(n)
2,ω−δ − β

(n)†
2,ω+δ

)
, (37b)

Ȳ �,(n)
ω = −i

u + v√
2

(
β

(n)
1,ω+δ−β

(n)†
1,ω−δ+β

(n)
2,ω−δ−β

(n)†
2,ω+δ

)
, (37c)

Ȳ �,(n)
ω = i

u − v√
2

(
β

(n)
1,ω+δ + β

(n)†
1,ω−δ − β

(n)
2,ω−δ − β

(n)†
2,ω+δ

)
, (37d)

which, for n > 0, represent the backaction contribution to
the different quadrature operators. Setting φp, φq in order
to measure a given quadrature [Eq. (28)] sets the value of
the backaction contributions to the mechanical quadratures
[Eqs. (31a)–(31d)].

As an example one can choose φp = φq = 0. As can be
seen from Table I, this choice allows one to measure the
X �

ω quadrature. In turn, substituting the value of the me-
chanical Bogolyubov operators from Eqs. (31a)–(31d) with
φp = φq = 0 into Eq. (37a), one can show that X̄ �,(n+1)

ω = 0,
demonstrating that the measurement is backaction evading. At
the same time from Eqs. (37b)–(37d), the choice φp = φq = 0
also entails that Ȳ �,(n+1)

ω = 0, while X̄ �,(n+1)
ω , Ȳ �,(n+1)

ω �= 0.
Analogous relations hold for the different choices of φp, φq

giving access, depending on the value of the detection phases,

to the (X �,Y �) or the (X �,Y �) qm-free subspace in a fully
BAE way.

IV. CONCLUSION

In this work, we have introduced a four-probe setup
aimed at the measurement of the entanglement between
two mechanical resonators in an optomechanical system,
which is generated by two coherent fields driving the system
into a two-mode squeezed state. We have shown that, if the
probing tones are chosen correctly, within each collective
qm-free subspace, no measurement backaction is present.
Furthermore, selecting specific values of the probe phases,
the noise spectrum of each collective mechanical quadrature
can be directly mapped onto the output field noise spectrum.
We would like to stress that, while we focused here on the
detection of the entangled state of two mechanical resonators,
the double-BAE detection scheme proposed here is actually
independent of the preparation scheme of the mechanical
state, therefore hinting at the possibility of a general BAE
characterization of a mechanical systems dynamics within a
quantum-mechanics-free subspace.
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