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Abstract

Paakkinen, Petja
New constraints for nuclear parton distribution functions from hadron–nucleus
collision processes
Jyväskylä: University of Jyväskylä, 2019
(JYU Dissertations
ISSN 2489-9003, 115)
ISBN 978-951-39-7828-0

This work studies collinearly factorizable nuclear parton distribution functions
(nPDFs) in perturbative Quantum Chromodynamics (QCD) at next-to-leading
order in the light of hadron–nucleus collision data which have not been included
in nPDF analyses previously. The aim is at setting new constraints on the nuclear
modifications of the gluon distribution and on the flavour separation of quark
nuclear modifications. The introductory part provides an outline of the theoretical
framework of QCD collinear factorization and the used statistical methods and
relates the work presented here to other similar contemporary analyses.

As a result, a new set of nPDFs, EPPS16, is presented, including for the first
time electroweak-boson and dijet production data from CERN-LHC proton–lead
collisions and allowing a full flavour separation in the fit. The flavour separation
is constrained with Drell–Yan dilepton-production data from fixed target pion–
nucleus experiments and neutrino–nucleus deep-inelastic scattering data, which
are shown to give evidence for the similarity of the u and d valence-quark nuclear
modifications. For studying the gluon degrees of freedom, collider data are
essential and in the EPPS16 analysis new constraints are derived from the dijet
production at the LHC.

Possible further constraints for the gluons are investigated in terms of the LHC
data on nuclear modification ratios of dijet and D-meson production. Using a non-
quadratically improved Hessian reweighting method, these measurements are
found to put stringent constraints on the gluon modifications in the lead nucleus,
reaching smaller values of the nucleon momentum fraction than previously
accessible. A study on the future prospects of constraining nPDFs within a
multi-observable approach with the BNL-RHIC is also given.
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Chapter 1

Introduction

The Standard Model of particle physics describes our present-day best knowl-
edge of the fundamental particles of Nature and their electromagnetic, weak
and strong interactions. It is a renormalizable quantum field theory with a local
U(1)× SU(2)× SU(3) gauge symmetry. The U(1)× SU(2) symmetry, sponta-
neously broken through the Higgs mechanism, gives rise to the electroweak
interactions, while the unbroken SU(3) symmetry dictates, in a theory called
Quantum Chromodynamics (QCD), the strong interaction between particles car-
rying an SU(3) colour charge. What makes the strong interaction different from
electroweak phenomena is the property of confinement: the strong force binds
coloured particles, quarks and gluons, into colourless hadrons. We thus never
observe freely propagating quarks and gluons, only the hadrons they constitute.

This poses a difficulty in the theoretical description of the QCD phenomena,
as the asymptotic states are not the fundamental degrees of freedom of the
theory. Fortunately, scattering processes involving a large momentum transfer
factorize [1], i.e. the cross sections of these hard processes can be obtained by
convoluting the scattering probabilities of the fundamental particles with long-
distance functions describing their distributions in the involved hadrons. This
makes it possible to study the distributions of partons, particles inside hadrons,
by measurements of hard-process cross sections. These long-distance functions
are called parton distribution functions (PDFs).

The PDFs are universal, independent of the scattering process, and hence
distributions extracted from one process can be used to make predictions of
another. It is not, however, possible to determine the PDFs of all different parton
flavours independently from a single observable and instead large sets of data
from different measurements are needed for their reliable extraction. This has
led to the development of the field of PDF global analyses with ever-increasing
precision in the obtained PDFs [2].

This thesis deals with PDFs of a particular kind, the nuclear PDFs (nPDFs),
describing the partonic content of nucleons bound in nuclei. Even 20 years
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after the pioneering works [3–6], the nPDFs carry large uncertainties. Until very
recently, the possible asymmetry in nuclear modifications of different valence
and sea-quark flavours has not been considered in the nPDF global analyses.
Also the nuclear modifications of gluons, for which direct constraints have been
scarce, have remained poorly known. These open problems are addressed in this
thesis. In particular, we will discuss the impact of new constraints from hadron–
nucleus collision processes which have not been used in nPDF global analyses
previously. These include CERN-LHC proton–lead measurements of electroweak
bosons, dijets and inclusive D0-production, but also older pion–nucleus Drell–
Yan measurements. Further, by considering prospects at present and upcoming
experiments, we will try to pave the way towards a better understanding of the
PDF nuclear modifications in the future. The work presented in this thesis is
performed at the level of next-to-leading order perturbative QCD.

The introductory part is organized as follows. Chapter 2 introduces the theo-
retical framework of the thesis, the collinear factorization of QCD. The discussion
here is rather minimal, with the aim at presenting the relevant concepts, but
avoiding any unnecessary calculational details. In Chapter 3, the used statistical
methods are presented. Emphasis is given to the treatment of correlated uncer-
tainties, which will become increasingly important in the nPDF fits with precision
data from the LHC becoming available. The novel physics results are discussed
and compared to the results of earlier analyses in Chapter 4 and summarized in
Chapter 5.
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Chapter 2

Parton distributions in collinear
factorization

Quantum Chromodynamics, the theory of strong interactions within the Standard
Model, is characterized by its Lagrangian, defined in terms of the quark and
gluon fields ψi and Aa

µ as [7, 8]

L = ∑
i

ψ̄i(i /D−mi)ψi −
1
4

Fa
µνFa,µν, (2.1)

where the sum goes over the quark flavours with masses mi and

Dµ = ∂µ − igsAa
µta, (2.2)

Fa
µν = ∂µ Aa

ν − ∂ν Aa
µ + gs f abc Ab

µ Ac
ν (2.3)

are the covariant derivative and the gluon field strength tensor, respectively. Here,
ta are the SU(3) generators in the fundamental representation and f abc the struc-
ture constants. The Lagrangian is invariant in local SU(3) gauge transformations,
which in the case of an infinitesimal shift θ can be written as

ψ→ ψ + iθataψ, Aa
µ→ Aa

µ +
1
gs

∂µθa + f abc Ab
µθc, (2.4)

leading to conservation of the SU(3) colour charge.
The strength of the QCD interactions is set by the coupling gs. In renormal-

izing the theory, this bare coupling must be traded with the running coupling,
usually expressed in terms of αs(Q2) = g2

s(Q2)/4π, which depends on the inter-
action scale Q2 as

Q2 ∂αs

∂Q2 = β(αs), (2.5)

with a negative beta function, β < 0. At low energies the coupling is large,
permitting colour confinement, but towards higher scales the coupling gets
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weaker, asymptotically approaching zero. This phenomenon is called asymptotic
freedom [9, 10] and it allows one to use perturbation theory to calculate high-
momentum-transfer cross sections in QCD.

2.1 Deep inelastic scattering in parton model

The easiest way to study experimentally the inner workings of hadrons is by deep
inelastic scattering (DIS). In this process, illustrated in Figure 2.1, a lepton l with
high energy E scatters off a hadron h, which then breaks apart into an inclusive
final state X with a large invariant mass W� M, where M is the hadron mass. In
the target rest frame (TRF), the square of the four-momentum transfer from the
lepton to the hadron q TRF= (E− E′,k− k′), where k, k′ are the three-momenta of
the initial and final state leptons, is given in terms of the energy E′ and scattering
angle θ of the final state lepton l′ by

Q2B−q2 TRF= 2EE′(1− cosθ). (2.6)

The other relevant kinematical quantities for this process, the Bjorken x and the
inelasticity y, are defined as

xB
Q2

2P · q
TRF=

Q2

2M(E− E′)
, yB

P · q
P · k

TRF= 1− E′

E
, (2.7)

where P TRF= (M,0,0,0) is the four momentum of the hadron. In these Lorentz
invariant variables, the unpolarized double-differential cross section can be ex-
pressed as

dσ

dQ2dx
=

4πα2
em

Q4
y2

2Q2 Lµν(k,k′)Wµν(P,q), (2.8)

where αem = e2/4π is the electromagnetic fine-structure constant and Lµν, Wµν

refer to the leptonic and hadronic tensors, respectively.

P

k k′

q

h

l

X

l′

Figure 2.1. Deep inelastic lepton–hadron scattering.
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In a neutral-current electromagnetic scattering mediated by a virtual photon,
the leptonic tensor is simply

Lµν(k,k′) = 2 (kµk′ν + k′µkν − k · k′gµν). (2.9)

and, by conservation of current and the leptonic tensor being real and symmetric,
the hadronic tensor can be expressed as [11]

Wµν(P,q) =−
(

gµν − qµqν

q2

)
F1(x, Q2)

+
1

P · q

(
Pµ − P · q

q2 qµ

)(
Pν − P · q

q2 qν

)
F2(x, Q2),

(2.10)

where the structure functions F1,2 encode our ignorance of the hadron structure.
In these terms, the cross section reads

dσ

dQ2dx
=

4πα2
em

Q4
1
x

{
xy2F1(x, Q2) +

(
1− y− x2y2 M2

Q2

)
F2(x, Q2)

}
. (2.11)

Parton model

Now, let us consider the DIS in a frame where the hadron is moving very fast,
e.g. the Breit frame, where assuming Q2� M2, we can take

P Breit= (Q/2x,0,0, Q/2x), q Breit= (0,0,0,−Q), Q =
√

Q2. (2.12)

In such a frame the hadron is Lorentz contracted and the interaction times of
its constituents are strongly dilated. During the short phase when the collision
with the lepton takes place the hadron is thus “frozen” and the lepton can scatter
incoherently from the individual partons. This description is the basis of the
“naive” parton model [12, 13] giving the leading behaviour of the DIS cross section.
In this picture, the partons move collinearly with the parent hadron and we can
define

fi(ξ) = the probability density of finding a parton i within the hadron carrying
a fraction ξ of the hadrons momentum.

In more formal terms the PDFs can be defined as operator expectation values, see
Refs. [11, 14].

The photon couples only to electrically charged particles and hence at the
leading order the hadronic tensor takes the form

Wµν(P,q) = ∑
i=q,q̄

∫ dξ

ξ
fi(ξ)Ŵµν

i (p,q) +O
(

1
Q2

)
, (2.13)
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p′

p

P

q

fq

Figure 2.2. Parton-model picture of the hadronic tensor. Labels refer to the four-momenta
of the particles.

where p = ξP Breit= (ξQ/2x,0,0,ξQ/2x) and Ŵµν
i denotes a so-called partonic

tensor. This can be pictorically represented as a “handbag” diagram, given in Fig-
ure 2.2, where the left-hand side of the cut represents the scattering amplitude and
the right-hand side its complex conjugate. The antiquark contribution is obtained
simply by changing the direction of the fermion line. At low scales, additional
“higher-twist” contributions, essentially originating from multi-parton interac-
tions, to the simple parton model picture, denoted by O

(
1/Q2) in Eq. (2.13) can

become important. At the clearly perturbative scales Q2� M2 these should be
negligible and we do not discuss them further here. In this leading order (LO), or
“Born”, approximation the quark-initiated partonic tensor is

Ŵµν
q,Born(p,q) =

x
2Q2

e2
q

2
Tr[/pγν/nγµ]δ(ξ − x), (2.14)

where
n = q + xP Breit= (Q/2,0,0,−Q/2), n2 = 0, (2.15)

and e2
q is the square of quark fractional charge. The delta function in Eq. (2.14)

arises from integrating over the final state quark momentum p′ and shows us that,
to leading order perturbative accuracy, the Bjorken x measures the momentum
fraction of the parton.

Now, using Eqs. (2.13) and (2.14), the differential cross section takes the form

(
dσ

dQ2dx

)

LO
= ∑

q
e2

q fq(x)
(

dσ̂

dQ2dx

)

Born
, (2.16)

where the sum is understood to be over both quarks and antiquarks and

(
dσ̂

dQ2dx

)

Born
=

4πα2
em

Q4

{
y2

2
+

(
1− y− x2y2 M2

Q2

)}
, (2.17)
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p′

k
p

q
p′

k
p

q

Figure 2.3. Ladder diagrams at order αs. Left: Real-gluon emission from the initial-state
quark. Right: Initial-state gluon splitting into a quark–antiquark pair.

or equivalently, if expressed in terms of the structure functions, Eq. (2.11), we
have

2xF1(x) = F2(x) = x∑
q

e2
q fq(x). (2.18)

That is, in the naive parton model, the structure functions depend only on x and
not on the scale Q2. This phenomenon, called Bjorken scaling, is however broken
by radiative corrections, as we will discuss next.

2.2 DGLAP evolution

The leading-order DIS cross section found in the previous section is subject to
various radiative and virtual corrections at higher orders in perturbation theory.
For massless partons, these corrections include collinear and soft divergences.
The soft and final-state collinear divergences cancel at the level of summing over
different contributions, but for the initial-state collinear divergences this cancella-
tion is not complete. One can, however, resum these initial state divergences into
the definitions of the PDFs, leading to the Dokshitzer–Gribov–Lipatov–Altarelli–
Parisi (DGLAP) evolution of the parton densities [15–18]. In the following, we
present the general idea of how this is done. For more thorough discussions and
calculational details the reader is directed to Refs. [19–23].

For the problem at hand, it is convenient to use the light-cone gauge [24,
25], where a gauge-fixing term Lgauge-fixing = − 1

2λ (n
µ Aa

µ)
2, with the limit λ→ 0

understood, is added to the Lagrangian in Eq. (2.1) and the gauge vector n is
set to be that in Eq. (2.15). In this gauge, the only non-cancelling divergent
contributions come from the “ladder”-type diagrams shown in Figure 2.3 (here
as well, also the contributions obtained by reversing the fermion line need to
be summed). These diagrams contain fermion propagators with denominators
(p− k)2, which diverge at the limit where k is collinear to p. Decomposing the
momentum k à la Sudakov [26],

kµ = (1− z)pµ +
k2
⊥

1− z
nµ

2p · n + kµ
⊥, (2.19)

7



where k⊥
Breit= (0,k⊥,0) is the component of momentum k transverse to p and n,

we find that the contribution from the ladder diagram in Figure 2.3 (left) to the
quark tensor is

Ŵµν
q,Ladder =

x
2Q2

e2
q

2
Tr[/pγν/nγµ]

αs

2π

∫ 1

x

dz
z

CF

(
1 + z2

1− z

)
δ
(

ξ − x
z

) ∫ Q2

0

dk2
⊥

k2
⊥

+ . . . ,

(2.20)
with a colour factor CF = 4/3 and where “. . . ” refers to terms that do not contain
a collinear divergence. The divergence thus appears as a logarithmic k⊥-integral,
which we here regulate with a simple cut-off k2

⊥ ≥ m2, whereby the integral
becomes ∫ Q2

m2

dk2
⊥

k2
⊥

= log
(

Q2

m2

)
. (2.21)

Eq. (2.20) still contains a soft divergence at the limit z → 1, but this cancels
when we take into account the quark self-energy (SE) correction to the quark
field-strength renormalization.

Combining the real and virtual corrections, we find the total divergent O (αs)
contribution to the hadronic tensor to be

Wµν
quark,Ladder+SE

LL=
x

4Q2 Tr[/Pγν/nγµ]∑
q

e2
q

αs

2π
log
(

Q2

m2

) ∫ 1

x

dz
z

Pqq(z) fq

(x
z

)
,

(2.22)
where

Pqq(z) = CF

[
1 + z2

(1− z)+
+

3
2

δ(1− z)
]

(2.23)

is the leading-order Altarelli–Parisi splitting function for the quark-to-quark transi-
tion [18], with the plus distribution defined in terms of an integral equation

∫ 1

0
dz

f (z)
(1− z)+

=
∫ 1

0
dz

f (z)− f (1)
(1− z)

(2.24)

Similarly, the divergent contribution from initial-state gluons given by the ladder
diagram in Figure 2.3 (right) can be expressed as

Wµν
gluon,Ladder

LL=
x

4Q2 Tr[/Pγν/nγµ]∑
q

e2
q

αs

2π
log
(

Q2

m2

) ∫ 1

x

dz
z

Pqg(z) fg

(x
z

)
, (2.25)

where we have the leading-order gluon-to-quark splitting function

Pqg(z) = TF

(
(1− z)2 + z2

)
, TF =

1
2

. (2.26)

In the above equations, we have denoted by “LL” that we are only considering
the leading logarithmic contributions to the hadronic tensor. There are also further
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contributions at order αs (see e.g. Ref. [27]), but as these are of non-divergent
nature, they are not important for the present discussion. Now, summing all the
O (αs) leading logarithmic terms with the leading order expression, we have

(
dσ

dQ2dx

)

NLO

LL= ∑
q

e2
q

{[
1 +

αs

2π
log
(

Q2

m2

)
Pqq

]
⊗ fq (x) (2.27)

+
αs

2π
log
(

Q2

m2

)
Pqg ⊗ fg (x)

}(
dσ̂

dQ2dx

)

Born
,

where the symbol ⊗ above denotes a multiplicative convolution, defined as

h⊗ f (x) =
∫ 1

x

dz
z

h(z) f
(x

z

)
, 1⊗ f (x) =

∫ 1

x

dz
z

δ(1− z) f
(x

z

)
= f (x).

(2.28)
We notice that the result in Eq. (2.27) is nothing but the parton-model cross section
in Eq. (2.16) with the parton distribution fq(x) replaced with the term in curly
braces. The collinear divergences thus factorize from the partonic process.

At this point, as we have seen that the collinear divergences occur when an
internal quark gets on-shell and is thus allowed to propagate a long distance
before the scattering with the virtual photon, it appears natural to redefine the
PDFs as to include these long-distance effects. But before we do so, we have to
note that similar collinear divergences can appear at all orders of perturbation
theory, thus potentially spoiling this simple picture. The crucial thing here is
that these divergent contributions exponentiate, and the DIS cross section can be
written, in the leading-logarithm accuracy, as

dσ

dQ2dx
LL= ∑

q
e2

q
(
1 0

)
exp

[
αs

2π
log
(

Q2

m2

)(
Pqq Pqg
Pgq Pgg

)]
⊗
(

fq
fg

)
(x)
(

dσ̂

dQ2dx

)

Born
,

(2.29)
where the exponential convolution should be understood as

exp[P ]⊗ f (x) = ∑
n

1
n!
P ⊗ · · · ⊗ P︸           ︷︷           ︸

n times

⊗ f (x) (2.30)

and where we now also have the leading-order quark-to-gluon and gluon-to-
gluon splitting functions

Pgq(z) = CF

(
1 + (1− z)2

z

)
, (2.31)

Pgg(z) = 2CA

(
1− z

z
+

z
(1− z)+

+ z(1− z)
)
+

(
11
6

CA −
2
3

n f TF

)
δ(1− z),
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where CA = 3 and n f is the number of active quark flavours. Hence it makes
sense to define scale-dependent parton distribution functions as

(
fq(x, Q2)
fg(x, Q2)

)
B exp

[
αs

2π
log
(

Q2

m2

)(
Pqq Pqg
Pgq Pgg

)]
⊗
(

fq
fg

)
(x) , (2.32)

from where, by taking the Q2 derivative, we find the Dokshitzer–Gribov–Lipatov–
Altarelli–Parisi (DGLAP) evolution equations [15–18],

Q2 ∂

∂Q2

(
fq(x, Q2)
fg(x, Q2)

)
LL=

αs

2π

(
Pqq Pqg
Pgq Pgg

)
⊗
(

fq(Q2)
fg(Q2)

)
(x) . (2.33)

Now, substituting the definition in Eq. (2.32) back to Eq. (2.29), the physical
predictions become independent of the collinear regulator and in this QCD-
improved parton model, the full, finite, leading-order + leading-logarithm DIS
cross section reads

(
dσ

dQ2dx

)

LO+LL
= ∑

q
e2

q fq(x, Q2)

(
dσ̂

dQ2dx

)

Born
, (2.34)

with the PDF scale evolution governed by Eq. (2.33).

2.3 Factorization schemes and scales

In the discussion above, we have only considered the leading logarithmic con-
tributions. At higher orders, αn+1

s logn(Q2/m2), etc., both the partonic cross
sections after the extraction of divergences (or coefficient functions) and the split-
ting functions get perturbative corrections [27–29]. Moreover, the definition given
in Eq. (2.32) is not unique, leading to scheme dependence of the PDFs and of the
splitting and coefficient functions [30]. Any physical predictions are still indepen-
dent of the scheme to the perturbative order to which they have been calculated.
To elaborate this more, let us write here the full NLO expression of the structure
function F2 as

FNLO
2 = x∑

q
e2

q

{[
1 +

αs

2π
log
(

Q2

m2

)
Pqq + Rq

]
⊗ fq (x)

+

[
αs

2π
log
(

Q2

m2

)
Pqg + Rg

]
⊗ fg (x)

} (2.35)

where Rq,g denote the remainder parts including all the non-divergent O (αs)
terms which we neglected in the discussion leading to Eq. (2.27). While we must
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include the large logarithms to the redefinitions of the PDFs, nothing prevents us
from including also some of the finite parts. Defining now

fi(x, Q2)B∑
j

[
δij +

αs

2π
log
(

Q2

m2

)
Pij + f scheme

ij

]
⊗ f j (x) +O

(
α2

s

)
, (2.36)

we can write

FNLO
2 = x∑

q
e2

q
{[

1 + Rq − f scheme
qq

]
︸                    ︷︷                    ︸

CCscheme
q

⊗ fq(Q2) (x) +
[
Rg − f scheme

qg
]

︸               ︷︷               ︸
CCscheme

g

⊗ fg(Q2) (x)
}

,

(2.37)
where Cscheme

q,g are now the NLO coefficient functions in the chosen scheme.
In a similar fashion, one can also choose to define the PDFs at some factorization

scale Q f different from Q, including the remaining log(Q2/Q2
f ) terms in the

coefficient functions,

FNLO
2 = x∑

q
e2

q

{
CCscheme

q (Q2/Q2
f )︷                                                ︸︸                                                ︷[

1 +
αs

2π
log
(

Q2

Q2
f

)
Pqq + Rq − f scheme

qq

]
⊗ fq(Q2

f ) (x)

+

[
αs

2π
log
(

Q2

Q2
f

)
Pqg + Rg − f scheme

qg

]

︸                                           ︷︷                                           ︸
CCscheme

g (Q2/Q2
f )

⊗ fg(Q2
f ) (x)

}
.

(2.38)

Again the different scale choices are formally equivalent up to corrections of one
order of αs higher. For this property, it is possible to estimate the uncertainties
arising from the termination of the perturbative expansion by calculating so-
called scale uncertainties through variations of the indefinite scales of the process.

While for the purpose of demonstrating the appearance of collinear diver-
gences and their resummation in the discussion above it was useful to work in
four spacetime dimensions and use cut-off regulators, it is more common in prac-
tical calculations to use dimensional regularization [31], which does not break
any symmetries of the theory. In the dimensional regularization the spacetime
is continued to 4− 2ε dimensions and the collinear divergences now appear as
poles at ε = 0. The NLO F2 structure function takes in this case the form

FNLO
2 = x∑

q
e2

q

{[
1 +

αs

2π

(
−1

ε̂
+ log

(
Q2

µ2

))
Pqq + Rq

]
⊗ fq (x)

+

[
αs

2π

(
−1

ε̂
+ log

(
Q2

µ2

))
Pqg + Rg

]
⊗ fg (x)

}
,

(2.39)
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where µ2 is an arbitrary scale needed in the dimensional regularization in order
to keep the coupling dimensionless, and 1/ε̂ = 1/ε− γE + log(4π) with γE being
the Euler–Mascheroni constant. This suggests the use of

fi(x, Q2
f )B∑

j

[
δij +

αs

2π

(
−1

ε̂
+ log

(
Q2

f

µ2

))
Pij

]
⊗ f j (x) +O

(
α2

s

)
, (2.40)

defining the modified minimal subtraction MS scheme [32, 33], which is also the
scheme employed in this thesis. The structure function can be expressed as

FNLO
2 = x∑

q
e2

q

{
CMS

q (Q2/Q2
f )⊗ fq(Q2

f ) (x) + CMS
g (Q2/Q2

f )⊗ fg(Q2
f ) (x)

}
,

(2.41)
with the MS coefficient functions CMS

q,g available e.g. in Ref. [33]. To be exact,
in the global PDF analysis presented in this thesis, we take the DIS and other
partonic cross sections to NLO accuracy, and evolve the PDFs according to
DGLAP equations using NLO splitting functions [28, 29].

2.4 Heavy-quark PDFs

So far we have treated all partons as massless, but for heavy quarks, particularly
charm and bottom, with their masses in the GeV range, this is not always justifi-
able [34]. When the energy of the process is not high enough to produce heavy
quarks, they should simply not contribute to the cross section. Above the mass
threshold, the heavy-quark production becomes possible, in DIS through the
partonic processes like the one shown in Figure 2.3 (right). Here, the heavy-quark
mass mH regulates the k⊥-integrals and thus the cross section remains finite. At
very high scales Q� mH, however, the resulting logarithms log(Q2/m2

H) become
very large and their resummation into heavy-quark PDFs becomes necessary.
How to interpolate between the extremes of high (Q� mH) and low (Q ∼ mH)
scales is, again, scheme dependent.

In the simplest zero-mass variable flavour number scheme (ZM-VFNS), one treats
the heavy quark above the threshold as a massless active parton, using the same
massless coefficient functions as for the n f light quarks with now n f + 1 flavours
participating in the DGLAP evolution. This, however, ignores the mass effects
important at scales Q ∼ mH. To take account of the mass effects, the simplest way
is that of a fixed flavour number scheme (FFNS), where one keeps the number of
flavours in the evolution fixed to n f and uses massive coefficient functions for
the heavy quark, but this approach loses its validity at the high scales Q� mH.
Combining the above two approaches with validity extended to all scales, in a
general-mass variable flavour number scheme (GM-VFNS), one switches to the n f + 1
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evolution and uses the massive coefficient functions subtracted with terms that
prevent double counting. These subtraction terms depend on which mass terms
one chooses to include in the heavy-quark coefficient functions and thus there is
not one, but many different GM-VFN schemes.

The scheme utilized in the articles of this thesis is that of the simplified
Aivazis–Collins–Olness–Tung (SACOT) [35, 36]. In this scheme, one uses the MS
coefficient functions together with the heavy-quark PDFs, CqH = CMS

q . Below a
transition scale Qt ∼ mH a fixed-flavour prescription is used, with the F2 structure
function expressible as

FNLO
2

Q2<Q2
t= x∑

q`
e2

q`

{
CMS

q (Q2/Q2
f )⊗ fq`(Q

2
f ) (x) + CMS

g (Q2/Q2
f )⊗ fg(Q2

f ) (x)
}

+x∑
qH

e2
qH

CFFNS
g→qH

(m2
H/Q2)⊗ fg(Q2

f ) (χ) , (2.42)

where χ = x(1+ 4m2
H/Q2) is the rescaling variable which accounts for the energy

needed in heavy-quark pair production, and n f flavours are taken in the evolution.
The fixed-flavour coefficient function CFFNS

g→qH
can be found in Ref. [37]. Above the

transition scale, the structure function can be writen as [38]

FNLO
2

Q2>Q2
t= x∑

q`
e2

q`

{
CMS

q (Q2/Q2
f )⊗ fq`(Q

2
f ) (x) + CMS

g (Q2/Q2
f )⊗ fg(Q2

f ) (x)
}

+x∑
qH

e2
qH

{[
CFFNS

g→qH
(m2

H/Q2)− αs

2π
log(Q2

f /m2
H)Pqg

]
⊗ fg(Q2

f ) (χ)

+ CMS
q (Q2/Q2

f )⊗ fqH(Q
2
f ) (χ)

}
, (2.43)

with now n f + 1 flavours in the scale evolution. In the above expressions, the
sums should again be understood to go over both quarks and antiquarks, in the
first sum for the light (massless) flavours and in the second for the heavy-quark
flavour.

2.5 Sum rules and symmetry relations

Due to the conservation of flavour in QCD interactions, we have the following
sum rules for the proton PDFs

∫ 1

0
dx up

V(x, Q2) = 2,
∫ 1

0
dx dp

V(x, Q2) = 1, (2.44)

where the valence distributions are defined as qV = q− q̄ and where we have
introduced the shorthand q(x, Q2) = fq(x, Q2), g(x, Q2) = fg(x, Q2). Similarly,
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the conservation of momentum requires the sum rule

∫ 1

0
dx x∑

i
fi(x, Q2) = 1. (2.45)

Due to the degeneracy in the u and d quark masses, QCD has an approxima-
tive symmetry called isospin. This symmetry relates the PDFs of the proton and
neutron with

up IS= dn, dp IS= un, ūp IS= d̄n, d̄p IS= ūn (2.46)

and f p
i

IS= f n
i for i , u,d. One can also use charge conjugation (CC), which is an

exact symmetry of QCD, to relate the PDFs of proton and antiproton,

qp CC= q̄ p̄, q̄p CC= q p̄, gp CC= g p̄, (2.47)

or, using both symmetries, the PDFs of charged pions,

uπ+ IS= dπ− CC= d̄π+ IS= ūπ− , dπ+ IS= uπ− CC= ūπ+ IS= d̄π− ,

qπ+ IS= qπ− CC= q̄π+ IS= q̄π− for q , u,d, gπ− CC= gπ+
.

(2.48)

The isospin symmetry relations for nucleons, Eq. (2.46), are essential for the
discussion in Chapter 4, assumed by practically all nPDF analyses. We also need
to employ the charged pion relations, Eq. (2.48), when discussing the results of
the article [I] in Section 4.2.1.

2.6 Factorization in hadron–hadron collisions

The same perturbative approach which we have discussed in previous sections
in the case of DIS also applies to hadron–hadron collision processes. This is
stated formally in the factorization theorem which says that, order by order in
perturbation theory, the collinear logarithms arising in hard-process calculations
can be resummed into scale dependent long-distance functions in such a way that
the full cross section becomes finite [1]. Importantly, the structure of collinear di-
vergences is the same in DIS and hadron–hadron processes, leading to universality
of the PDFs.

The relevant processes for this thesis are illustrated in Figure 2.4. In the
work presented in this thesis, various publicly available codes have been used
in calculating them at the NLO level. In first of these processes, Drell–Yan (DY)
dilepton production, h + h′ → l−l+ + X, the leading-order process happens
through an annihilation of a quark and antiquark originating from the colliding
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Figure 2.4. Drell–Yan dilepton pair (upper left), dijet (upper right) and inclusive hadron
(bottom) production in hadron–hadron collision at leading order of perturbation theory.

hadrons h and h′, as shown in Figure 2.4 (upper left). In more general terms, the
cross section factorizes, schematically

σh+h′
DY = ∑

i,j=q,q̄,g
f h
i ⊗ f h′

j ⊗ σ̂ij→l−l++X, (2.49)

where there are now two PDFs, f h
i and f h′

j , convoluted with the perturbatively
calculable pieces. The production of massive electroweak (EW) gauge bosons
proceeds in a similar way. For practical applications, the MCFM program [39]
was used in calculating the NLO pion–nucleus DY cross sections in the articles [I]
and [II], and for the EW-boson cross sections in the article [II].

It is also possible to consider the production of various hadronic final states,
such as production of a dijet system, h + h′ → jet + jet + X. In this process
at leading order, initial-state partons i, j undergo a scattering into final-state
partons `,k, which are observed as high-pT hadronic jets in the detector, as
shown in Figure 2.4 (upper right). At higher orders, this simple parton-to-jet
correspondence is lost, and the jets are defined in terms of jet algorithms. Formally
still, the perturbative part of the cross section can be expressed in terms of a
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measurement function Fdijet that defines the dijet,

σh+h′
dijet = ∑

i,j=q,q̄,g
f h
i ⊗ f h′

j ⊗ σ̂ij[Fdijet]. (2.50)

For the calculation of dijet cross sections, the article [III] utilized the NLOJet++
code [40], while the MEKS program [41] was used in the jet calculations of the
articles [II] and [IV].

Instead of measuring jets, one can alternatively consider final states inclusive
in a hadron species h′′,

σh+h′→h′′+X = ∑
i,j,k=q,q̄,g

f h
i ⊗ f h′

j ⊗ σ̂ij→k+X ⊗ Dh′′
k , (2.51)

illustrated in Figure 2.4 (bottom). In such processes also the final state collinear
logarithms need to be resummed, this time into fragmentation functions Dh′′

k (z, Q2),
which give the probability for finding a final state hadron h, which has frag-
mented off from a hard parton i, carrying a fraction z of the partons momentum.
The inclusive pion-production cross sections considered in the article [II] were
calculated with the INCNLO code [42]. The calculations for heavy-flavoured
mesons are much more involved [43] with various mass schemes again applica-
ble, similarly to what was discussed in Section 2.4. In the article [V], a recently
developed variant of the SACOT scheme [44] was used with the zero-mass con-
tributions obtained from the INCNLO [42] and the massive contributions from
the MNR [45] codes.
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Chapter 3

Global analysis and uncertainty
estimation

As discussed in the previous chapter, the PDFs describe long-range physics and
cannot be calculated perturbatively from first principles. The common approach
for obtaining them is then to use the means of statistical inference: By performing
a “global analysis” on multiple observables sensitive to the PDFs, one aims to
deduce the partonic structure from the measured hard-process data. This is in
principle an infinite-dimensional optimization problem, as there is no a priori
knowledge of the functional form. However, we do not have an infinite amount
of perfectly precise data from which the PDFs could be obtained by inversion.
For this reason, the PDFs need to be parametrized in a way or another, be it some
suitably chosen functional form or a neural network [46].

Once the parametrization form is decided upon, one then needs to find the
range of parameter values the data would support. For this, one defines a
goodness-of-fit function χ2, the minimum of which corresponds to the best-fit
values of the parameters. The various steps needed in the χ2 minimization
are illustrated in Figure 3.1. One begins by setting a suitable first guess for
the parameter values, which give the PDFs at a chosen parametrization scale
Q2

0. Using the DGLAP equations, these PDFs are then evolved to higher scales
and convoluted with the coefficient functions to obtain theoretical predictions.
To reduce the time required by the fitting, fast methods for performing these
convolutions are needed [47–49], such as the use of look-up tables as explained in
the Section 3.3 of the article [II]. Comparing these predictions with the measured
values, one calculates the χ2 figure-of-merit value for the chosen parameters.
This procedure is then repeated for different sets of parameter values, until the
minimum of χ2 is reached.

In addition to the functional form, the obtained result depends on various
other inputs. The most obvious of these is which data one chooses to use. In
principle, one would like to include as much data as possible to have the best
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Figure 3.1. Flow of the χ2 minimization in a PDF global analysis. Figure from Ref. [50].

constraining power, but care must be taken to only include measurements where
one can trust the theoretical description of the process to avoid possible biases. For
example, one should only include processes which are clearly in the perturbative
regime to be able to neglect power corrections, but the exact value of minimum
Q2 to allow is somewhat arbitrary and different cuts are used by different groups,
see Table 4.1 for conventions in nPDF fits.

The results of minimization also depend on the level or perturbative accuracy
in the used splitting and coefficient functions. It is hard to quantify the size
of these theoretical uncertainties and they are usually neglected in reporting
PDF errors, although work towards taking these uncertainties into account in
global analyses is ongoing [51–53]. Therefore, one usually only propagates the
experimental uncertainties into the uncertainties of the PDFs and the subsequent
predictions. Section 3.3 discusses how this is done in the Hessian formalism [54]
applied in this thesis work.

3.1 Statistical basis of global analysis

In this and the following section, we show how the χ2-function minimization
arises as a maximum-likelihood estimator of the parameters. The viewpoint
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taken here is that of frequentist probability theory, for a Bayesian equivalent we
refer the reader to Ref. [14].

Due to experimental uncertainties, each measured value Di of any observable
differs from its true value Ti by some error δi,

Di = Ti + δi. (3.1)

Let us first assume that these errors are uncorrelated between the measurements,
δi = δuncorr.

i with 〈(δuncorr.
i − 〈δuncorr.

i 〉)(δuncorr.
j − 〈δuncorr.

j 〉)〉 = 0 for i , j, and fol-
low a Gaussian distribution with a zero mean, 〈δuncorr.

i 〉 = 0, and a variance
〈(δuncorr.

i − 〈δuncorr.
i 〉)2〉 = (σuncorr.

i )2. The probability density for each δuncorr.
i thus

reads
P(δuncorr.

i ) =
1√

2πσuncorr.
i

e−(δ
uncorr.
i )2/2(σuncorr.

i )2
. (3.2)

Since the errors are independent, the joint probability of a set of errors {δuncorr.
i }

is simply
P({δuncorr.

i }) = ∏
i

P(δuncorr.
i ). (3.3)

By changing variables to Di according to Eq. (3.1), we can construct the joint
probability for obtaining a set of Ndata mutually independent measurements {Di}
for given {Ti},

P({Di}|{Ti}) = ∏
i

∫
dδuncorr.

i δ(Di − Ti − δuncorr.
i )P(δuncorr.

i )

=
1

(2π)Ndata/2 ∏i σuncorr.
i

e−
1
2 ∑i(Di−Ti)

2/(σuncorr.
i )2

.
(3.4)

In PDF fits the true values {Ti} are of course not known, but neglecting the
theoretical uncertainties, one can trade these with the pQCD predictions with
PDFs given by a set of parameters {a}, Ti = Ti({a}). The likelihood for a certain
set of values of {a} is then related to the probability of obtaining {Di} for given
{a} as

L({a})B P({Di}|{a}) =
1

(2π)Ndata/2 ∏i σuncorr.
i

e−
1
2 ∑i(Di−Ti({a}))2/(σuncorr.

i )2
. (3.5)

In the global fit, we wish to find the parameter values which maximize this
likelihood function.

The parameter values {a} which give the maximal likelihood also minimize
the χ2 function

χ2({a})B−2log L({a}) + const. = ∑
i

(
Di − Ti({a})

σuncorr.
i

)2

, (3.6)
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which just shows that in the case of Gaussian errors, the maximum-likelihood
and least-squares estimators are the same [55]. Note that the χ2 function defined
above essentially compares observed data fluctuations Di − Ti to expected ones
σuncorr.

i and in the limit of perfect theoretical description of the data we should
obtain χ2 ≈ Nd.o.f. = Ndata− Npar., the number of degrees of freedom, where Npar.
is the number of free parameters. Thus, on one hand, a value much higher than
this would then tell that the fit does not describe the data well and, on the other
hand, a significantly smaller value would be a signal of possible overfitting. In
this sense, the χ2 is a goodness-of-fit function. A similar interpretation cannot be
given for the value of the likelihood function at its maximum due to the way it is
normalized.

In deriving Eq. (3.6) we have assumed that the errors have a Gaussian distri-
bution. This is an assumption that we often make in lack of better knowledge.
In fact, the measured quantities are often cross sections, which should not go
negative, but with the Gaussian distribution, we are assuming a nonvanishing
probability for the measured value to be less than zero. However, when uncertain-
ties are small, any corrections to Eq. (3.6) should be small and its usage perfectly
valid.

3.2 Fitting to data with correlated uncertainties

Let us now discuss the treatment of data with correlated uncertainties. We take
these to be additive, leaving the treatment of multiplicative uncertainties to
Section 3.2.3. The total measurement error can then be decomposed as

δi = δuncorr.
i + δcorr.

i , (3.7)

where δuncorr.
i is the uncorrelated error distributed according to Eq. (3.2) and

δcorr.
i = ∑k βk

i λk sums the errors from independent systematical sources λk. Sec-
tions 3.2.1 and 3.2.2 discuss two ways of treating the λk in formulating the χ2

function, “marginalization” and “profiling”. In the case of additive Gaussian
uncertanties these methods give identical results [56].

3.2.1 Covariance matrix from marginalization

We take here the λk to be Gaussian distributed random variables with zero mean
and normalized such that

P(λk) =
1√
2π

e−λ2
k/2. (3.8)

This way, βk
i can be interpreted as the response of the ith data point on a one

standard deviation shift in the kth experimental systematic source of error. While
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the δcorr.
i defined this way are correlated amongst themselves, the λk are taken to

be independent and hence

P({δuncorr.
i },{λk}) = ∏

i
P(δuncorr.

i )∏
k

P(λk). (3.9)

Again, we can trade the δuncorr.
i with Di using Eqs. (3.1) and (3.7) to obtain

P({Di},{λk}|{a}) (3.10)

=
1

(2π)Ndata/2 ∏i σuncorr.
i (2π)Nsyst./2 e−

1
2 ∑i(Di−Ti({a})−∑k βk

i λk)
2/(σuncorr.

i )2− 1
2 ∑k λ2

k ,

where Nsyst. is the number of systematical sources. We can integrate over the
{λk} in Eq. (3.10) to get the marginal probability distribution for the data points,

P({Di}|{a}) =
∫

∏
k

dλkP({Di},{λk}|{a})

=
1

(2π)Ndata/2 ∏i σuncorr.
i

e−
1
2 ∑i(Di−Ti)

2/(σuncorr.
i )2

(3.11)

× 1
(2π)Nsyst./2

∫
∏

k
dλke

− 1
2 ∑k,` λk

CAk`︷                ︸︸                ︷(
∑i

βk
i β`i

(σuncorr.
i )2

+δk`
)

λ`+∑k ∑i(Di−Ti)
βk

i
(σuncorr.

i )2
λk

,

where we dropped the explicit {a} dependence of Ti for simplicity. The matrix A,
with components defined above, is symmetric and positive definite, whereby the
Gaussian integral in Eq. (3.11) can be performed. This yields

P({Di}|{a}) =
1

(2π)Ndata/2 ∏i σuncorr.
i

e−
1
2 ∑i(Di−Ti)

2/(σuncorr.
i )2

× 1√
det A

e
− 1

2 ∑i,j(Di−Ti)

[
∑k,`

βk
i

(σuncorr.
i )2

(A−1)k`
β`j

(σuncorr.
j )2

]
(Dj−Tj)

(3.12)

The likelihood function is then defined similarly as with the uncorrelated
uncertainties in Section 3.1,

L({a})B P({Di}|{a}) =
1

(2π)Ndata/2 ∏i σuncorr.
i

1√
det A

e−
1
2 χ2({a}), (3.13)

where now

χ2({a}) = ∑
i,j
(Di − Ti)

[
δij

(σuncorr.
i )2 −∑

k,h

βk
i

(σuncorr.
i )2 (A−1)kh

βh
j

(σuncorr.
j )2

︸                                                        ︷︷                                                        ︸
CC−1

ij

]
(Dj − Tj)

= [D− T]TC−1[D− T]. (3.14)
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The matrix C−1 defined above is simply the inverse of the covariance matrix of
the data, which is given by

Cij = 〈(Di − 〈Di〉)(Dj − 〈Dj〉)〉 = (σuncorr.
i )2δij + ∑

k
βk

i βk
j , (3.15)

as can be easily shown by taking the matrix product

∑
n

CinC−1
nj =δij +∑

k

βk
i βk

j

(σuncorr.
i )2 −∑

h,`

[
βh

i + ∑
n,k

βk
i βk

nβh
n

(σuncorr.
i )2

︸                    ︷︷                    ︸
=∑k βk

i Akh

]
(A−1)h`

β`
j

(σuncorr.
j )2 =δij.

(3.16)
Eq. (3.14) is the standard covariance-matrix formulation of the χ2 function. It
reduces to the uncorrelated form Eq. (3.6) in the limit where βk

i → 0 for all i,k.

3.2.2 Nuisance parameter profiling
Another way to treat the correlated uncertainties is to take the systematic shifts
λk to be free parameters of our statistical model. As these are not parameters
of primary interest, they are called “nuisance parameters”. Since parameters
are not allowed to have probabilities in the frequentist approach that we have
adopted, Eq. (3.8) does not apply directly here. Rather, we should understand
each of the nuisance parameters to be constrained by some systematical statistic
λ̂k distributed by

P(λ̂k|λk) =
1√
2π

e−(λ̂k−λk)
2/2, (3.17)

and having an experimental value λ̂k = 0. The likelihood function for the full set
of parameters then reads

L({a},{λk})B P({Di},{λ̂k = 0}|{a},{λk})
=

1

(2π)(Ndata+Nsyst.)/2 ∏i σuncorr.
i

e−
1
2 χ2({a},{λk}),

(3.18)

where the χ2 function in this case is defined as

χ2({a},{λk}) = ∑
i

(Di − Ti({a})−∑k βk
i λk)

2

(σuncorr.
i )2 + ∑

k
λ2

k. (3.19)

As Eq. (3.19) is quadratic in λk we can find the minimum analytically. Setting the
first derivatives to zero,

∂χ2

∂λk

∣∣∣∣
{λ`}={λmin

` }
= −2βk

i ∑
i

Di − Ti −∑` β`
i λmin

`

(σuncorr.
i )2 + 2λmin

k = 0 for all k, (3.20)
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we find

∑
`

(
∑

i

βk
i β`

i
(σuncorr.

i )2 + δk`

︸                    ︷︷                    ︸
=Ak`

)
λmin
` = ∑

i
(Di − Ti)

βk
i

(σuncorr.
i )2 , (3.21)

where the matrix A is the same which we encountered in Eq. (3.11). Performing a
matrix multiplication with its inverse to Eq. (3.21) gives

λmin
h = ∑

k
(A−1)hk ∑

`

Ak`λmin
` = ∑

i
(Di − Ti)∑

k
(A−1)hk βk

i
(σuncorr.

i )2 . (3.22)

The obtained values can be substituted back to Eq. (3.18), giving us a profile
likelihood, which is a function of {a} only. At the minimum of Eq. (3.19) we have

∑
i

(Di − Ti −∑k βk
i λmin

k )2

(σuncorr.
i )2 (3.23)

= ∑
i,j
(Di − Ti)

[
δij

(σuncorr.
i )2 − 2

CB(1)
ij︷                                      ︸︸                                      ︷

∑
k,h

βk
i

(σuncorr.
i )2 (A−1)kh

βh
j

(σuncorr.
j )2

+ ∑
k,`,m,h

βk
i

(σuncorr.
i )2 (A−1)k`∑

n

β`
nβm

n
(σuncorr.

n )2 (A−1)mh
βh

j

(σuncorr.
j )2

︸                                                                        ︷︷                                                                        ︸
CB(2)

ij

]
(Dj − Tj)

and

∑
k
(λmin

k )2 = ∑
i,j
(Di − Ti)

[
∑

k,`,h

βk
i

(σuncorr.
i )2 (A−1)k`(A−1)`h

βh
j

(σuncorr.
j )2

︸                                                  ︷︷                                                  ︸
CB(3)

ij

]
(Dj − Tj).

(3.24)
Here we notice that

B(2)
ij + B(3)

ij = ∑
k,`,m,h

βk
i

(σuncorr.
i )2 (A−1)k`

(
∑
n

β`
nβm

n
(σuncorr.

n )2 + δ`m

︸                     ︷︷                     ︸
=A`m

)
(A−1)mh

βh
j

(σuncorr.
j )2

= ∑
k,h

βk
i

(σuncorr.
i )2 (A−1)kh

βh
j

(σuncorr.
j )2 = B(1)

ij (3.25)
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and hence

min
{λk}

χ2 = ∑
i,j
(Di − Ti)

[
δij

(σuncorr.
i )2 −∑

k,h

βk
i

(σuncorr.
i )2 (A−1)kh

βh
j

(σuncorr.
j )2

︸                                                        ︷︷                                                        ︸
=C−1

ij

]
(Dj − Tj)

= [D− T]TC−1[D− T]. (3.26)

This shows that the covariance-matrix and nuisance-parameter formulations of
the χ2 function are equivalent and either one can be used to treat the correlated
uncertainties.

The nuisance-parameter approach facilitates an easy way for a graphical
data-to-theory comparison in situations where simply adding quadratically the
correlated and uncorrelated uncertainties would exaggerate the uncertainties. By
defining

Dshifted
i B Di −∑

k
βk

i λmin
k , (3.27)

we may write

min
{λk}

χ2 = ∑
i

(Dshifted
i − Ti)

2

(σuncorr.
i )2 + ∑

k
(λmin

k )2. (3.28)

That is, if we shift the data according to Eq. (3.27), the remaining differences
between data and theory should be from the uncorrelated uncertainties, point by
point. This method was used for example in the article [III] for presenting the
inclusive jet data.

3.2.3 Normalization uncertainties

Until now we have taken the considered uncertainties to be of additive nature,
i.e. each of the errors simply adds on the difference between the measured and
true value, irrespective of what these values are. However, some uncertainties
are known to be multiplicative in the sense that their magnitudes depend on
the measured (or true) value. Luminosity uncertainties are good examples of
such: the errors they pose on the measured cross sections are proportional to
the (expected) number of events. Experiments often give these uncertainties in
terms of normalization uncertainties, where each measured data point is subject
to a mutual, fully correlated, percentual uncertainty, but also more complicated
situations are possible. These uncertainties need to be treated correctly to avoid
possible biases, as we will discuss next.
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d’Agostini bias

Since the normalization uncertainty is a property of the data, it might appear
natural to take it into account in the χ2 by introducing a normalization factor fN
multiplying the data points and assuming a Gaussian uncertainty σnorm. for it,
and therefore write

χ2({a}, fN) = ∑
i

(
fNDi − Ti({a})

σuncorr.
i

)2

+

(
fN − 1
σnorm.

)2

, (3.29)

as was done e.g. in Ref. [56] and also in the article [II] of this thesis. However, it
can be shown that this formulation is subjective to so-called d’Agostini bias [57].

Following the example given in Ref. [57], let us assume that we have taken
Ndata measurements {Di} of a single observable quantity and that these data
points share a common normalization uncertainty σnorm.. We would then like
to find the best estimate for the true value T from which the measured values
derive. For simplicity, let us also assume that the data points all have identical
uncorrelated statistical uncertainties with variances (σuncorr.)2. The χ2 function
of Eq. (3.29) then becomes

χ2(T, fN) =
1

(σuncorr.)2 ∑
i
( fNDi − T)2 +

(
fN − 1
σnorm.

)2

. (3.30)

This is easily minimized with respect to both T and fN. We find

Tmin = f min
N D̂, f min

N =
1

1 + Ndata
(σnorm.)2

(σuncorr.)2 σ2
D

, (3.31)

where

D̂ =
1

Ndata
∑

i
Di, σ2

D =
1

Ndata
∑

i
D2

i −
(

1
Ndata

∑
i

Di

)2

(3.32)

are the sample mean and the sample variance of the data, respectively. Now, as
we have not introduced a statistical model, but taken the χ2 function as given, it
is not clear how σ2

D is related to the uncorrelated error. However, if we assume
the true normalization to be simply unity, one can then show that

〈σ2
D〉 =

Ndata − 1
Ndata

(σuncorr.)2 (3.33)

and hence the expected value for the optimal normalization following from
Eq. (3.30) is

〈 f min
N 〉 = 1

1 + (Ndata − 1)(σnorm.)2 . (3.34)
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This is clearly biased, as it tends towards zero as we increase the number of
measurements. One can see why this happens also in a more general case by
looking at Eq. (3.29). By making both fN and {Ti} smaller, also the difference
in the numerator of the first term in Eq. (3.29) diminishes. As there is no sim-
ilar compensation in the denominator, such a decrease in the normalization is
favoured in the fit, whether that be truly statistically motivated or not. This can
cause a significant bias in the found {Ti} and thus also in the fitted parameters.

In real world PDF fits, such as in the article [II], the bias is typically not as
severe as in the above simple case. Here we assumed that the quantity of interest
T was completely free in the fit, but in a typical global fit the parameters are
constrained by multiple independent data sets and limited also by the sum rules.
Still, in article [IV] of this thesis we encountered a case where this bias had an
effect on the results and an unbiased method was called for.

Unbiased fitting

Let us assume, in a general setting, that each of the measured values Di deviates
from the true value Ti by a common normalization factor fN plus an individual,
uncorrelated error δuncorr.

i such that

Di = fNTi + δuncorr.
i (3.35)

and, treating fN as a nuisance parameter, the measured normalization deviates
from the true one by f̂N = fN + δnorm.. Taking all uncertainties to be Gaussian
distributed and independent, with Eq. (3.2) and

P(δnorm.) =
1√

2πσnorm.
e−(δ

norm.)2/2(σnorm.)2
, (3.36)

and taking the experimental value f̂N = 1, we have

P({Di}, f̂N = 1|{Ti}, fN) (3.37)

=
1

(2π)(Ndata+1)/2σnorm. ∏i σuncorr.
i

e−
1
2 ∑i(Di− fN Ti)

2/(σuncorr.
i )2− 1

2 ( fN−1)2/(σnorm.)2
.

In this case, the likelihood function takes the form

L({a}, fN) =
1

(2π)(Ndata+1)/2σnorm. ∏i σuncorr.
i

e−
1
2 χ2({a}, fN), (3.38)

maximized at the minimum of

χ2({a}, fN) = ∑
i

(
Di − fNTi({a})

σuncorr.
i

)2

+

(
fN − 1
σnorm.

)2

, (3.39)
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which only differs from Eq. (3.29) in so that fN multiplies the theory values, not
the data. Note, on the contrary, that minimization of Eq. (3.29) does not follow
directly as a maximum-likelihood estimator from assuming fNDi = Ti + δuncorr.

i
as in this case the likelihood function would have fN in its normalization. Now,
in the simple scenario discussed previously, one finds

Tmin = D̂, f min
N = 1, (3.40)

as should be the case when the data cannot provide additional information on the
normalization. Eq. (3.39) is thus free from the d’Agostini bias. We note that there
is also another way to treat the multiplicative uncertainties, called t0 method,
which is free also from a “non-decoupling bias”, see Ref. [58].

3.3 Uncertainty estimation in Hessian method

In a global analysis, one aims at finding the best estimate for the PDFs based
on available data and, importantly, determining the uncertainties in the results
and communicating these in a way that allows to propagate the uncertainties
into predictions made with the obtained PDFs. A common way to do this is the
Hessian method [54]. Having found the values {amin

i } which minimize the χ2,
we can approximate the behaviour around the minimum by

χ2({ai}) ≈ χ2
0 + ∑

i,j
(ai − amin

i )Hij (aj − amin
j ), (3.41)

where χ2
0 = χ2({amin

i }) is the value at the minimum and Hij =
1
2 ∂2χ2/∂ai∂aj|{amin

i }
are the elements of the Hessian matrix, which is symmetric and must be positive
definite, for otherwise we would not be at the minimum. Due to these properties,
the Hessian matrix has a complete set of orthonormal eigenvectors ~v(k) with
positive eigenvalues εk,

∑
j

Hij v(k)j = εk v(k)i , (3.42)

∑
i

v(k)i v(`)i = δk`, ∑
k

v(k)i v(k)j = δij. (3.43)

By defining new parameters

zk = ∑
i

√
εk v(k)i (ai − amin

i ) (3.44)

the Hessian matrix can be diagonalized and the Equation (3.41) written as

χ2 ≈ χ2
0 + ∑

k
z2

k. (3.45)
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This facilitates an easy way to propagate the uncertainties. Let us assume that
we associate each of the new parameters zk with an uncertainty ∆zk. Since the
parameters in this basis are uncorrelated up to non-quardratic corrections, the
related uncertainty in any quantity yi can be written in this approximation by the
standard law of error propagation as

(∆yi)
2 = ∑

k

(
∂yi

∂zk
∆zk

)2

. (3.46)

It then becomes a question of how large variations ∆zk one should allow. These
can be related in the quadratic approximation to a global tolerance ∆χ2 in the
growth of the χ2 from its minimum simply as ∆zk =

√
∆χ2. In presence of ideal

Gaussian statistics one could further derive values of ∆χ2 corresponding to exact
confidence regions in the parameters [55]. However, for non-quadratic χ2 func-
tions using such pre-determined ∆χ2 values can give only approximate coverage
of the true parameter values [59]. Using a ∆χ2 larger than some idealized value
has also been motivated by conflicts between data sets [54] and parametriza-
tion uncertainties [60]. In fact, it has become more common to obtain the error
tolerances by requiring that all the data sets remain in agreement within some
confidence criterion under variations in each of the parameter directions, either
separately [61], or on average as in the article [II]. This method is described in
detail in the article [II] and thus will not be discussed further here.

Figure 3.2 shows the shape of the χ2 function around the minimum in the
EPPS16 analysis [II]. The quadratic approximation is typically very good, with
only few eigendirections showing clear cubic or quartic components. To take
into account such deviations from the ideal behaviour, one defines ∆zk = (δz+k −
δz−k )/2, where δz±k are the values of zk where χ2 has grown from its minimum by
∆χ2. To simplify the expressions, it is useful to define PDF error sets S±i obtained
with parameter values

zk[S±i ] = δki δz±i . (3.47)

The derivative in Eq. (3.46) can then be approximated with

∂yi

∂zk
=

yi[S+
k ]− yi[S−k ]

2∆zk
, (3.48)

whereby the errors in PDFs or related observables can be calculated simply by
using

(∆yi)
2 =

1
4 ∑

k

(
yi[S+

k ]− yi[S−k ]
)2 . (3.49)

It is also possible to extend this expression into an asymmetric error prescrip-
tion [62]

(δy±i )
2 = ∑

k

[max
min
{

yi[S+
k ]− yi[S0],yi[S−k ]− yi[S0],0

}]2 , (3.50)
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Figure 3.2. Growth of the χ2 function in each of the eigendirections of the EPPS16
analysis. Black lines show the true dependence, whereas yellow lines represent the ideal
quadratic behaviour. Figure from article [II].

where S0 is the central set with zk[S0] = 0 for all k.

3.4 Hessian PDF reweighting

Using the Hessian uncertainty estimation, it is also possible to estimate the impact
of a new data set on the PDFs [63–65, III]. Assume that

χ2
old({zk}) ≈ χ2

0 + ∑
k

z2
k (3.51)

is the χ2 function of a PDF global analysis. To add a new data set {Dnew
i } to the

analysis, we can simply write

χ2
new = χ2

old + χ2
new data, (3.52)

where

χ2
new data({zk}) = ∑

i,j
(Tnew

i ({zk})− Dnew
i )C−1

ij (Tnew
j ({zk})− Dnew

j ). (3.53)

By using Eq. (3.48), where we take ∆zk =
√

∆χ2 in accordance with the quad-
ratic approximation in Eq. (3.51), we can estimate the parameter dependence of

29



any PDF-dependent quantity with a linear function

yi({zk}) ≈ yi[S0] + ∑
k

∂yi

∂zk
zk,

∂yi

∂zk
=

yi[S+
k ]− yi[S−k ]

2
√

∆χ2
. (3.54)

Applying this approximation to {Tnew
i }, we find that χ2

new is a quadratic function
of {zk} and can be minimized analytically. The new minimum is found at [64]

zmin
k = ∑

`

h−1
k`

[
∑
i,j

∂Tnew
i

∂z`
C−1

ij (Dnew
j − Tnew

j [S0])

]
, (3.55)

where
∂Tnew

i
∂zk

=
Tnew

i [S+
k ]− Tnew

i [S−k ]

2
√

∆χ2
(3.56)

and

hk` = δk` + ∑
i,j

∂Tnew
i

∂zk
C−1

ij

∂Tnew
j

∂z`
(3.57)

is the new Hessian matrix in

χ2
new({zk}) ≈ χ2

new({zmin}) + ∑
k`
(zk − zmin

k )hk` (z` − zmin
` ). (3.58)

Now, updated central predictions for related quantities can be obtained simply
by substituting the found zmin

k to the linear approximation in Eq. (3.54). For
example, the new best-fit PDFs are a simple weighted sum of the original ones

fi[Snew
0 ] ≈ fi[S0] + ∑

k

zmin
k

2
√

∆χ2
( fi[S+

k ]− fi[S−k ]), (3.59)

that is, the PDFs are reweighted in the process. Similarly, one can diagonalize
the new Hessian matrix in Eq. (3.57) and find in these new eigendirections
the parameter values corresponding to the tolerance ∆χ2 to obtain the new
error sets and then use Eq. (3.54) to propagate the updated uncertainties into
the observables. It should be emphasized that the obtained results are only
approximative of those of a full global fit, limited by the approximations made
and also restricted by all the assumptions that were made in the original analysis,
such as the functional forms assumed.

Including higher-order terms

As discussed at length in the article [III], the Hessian reweighting with the
quadratic approximation of χ2

old and a linear approximation in the predictions
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Figure 3.3. Different approximations of the χ2 function (left) and the PDF-dependent
quantities (right) in the reweighting. Figure from article [III].

yi, shown as dashed red lines in Figure 3.3, can be extended to include also
higher-order terms. Simply by using only the PDF central and error sets, one can
extend Eq. (3.54) to include also quadratic terms, shown with blue dashed lines
in Figure 3.3, as derived in Ref. [64]. However, if additional information on the
original fit is provided, one can also include cubic terms in the approximation of
the original χ2 function,

χ2
old ≈ χ2

0 + ∑
k
(akz2

k + bkz3
k), (3.60)

with

ak =
∆χ2

δz+k − δz−k

(
δz+k

(δz−k )
2
− δz−k

(δz+k )
2

)
, bk =

∆χ2

δz+k − δz−k

(
1

(δz+k )
2
− 1

(δz−k )
2

)
.

(3.61)
where δz±k are the parameter values determining the error sets in Eq. (3.47). Then,
approximating the PDF-dependent quantities with a quadratic function,

yi ≈ yi[S0] + ∑
k
(dikzk + eikz2

k), (3.62)

the coefficients then read

dik =
1

δz+k − δz−k

[
− δz−k

δz+k

(
yi[S+

k ]− yi[S0]
)
+

δz+k
δz−k

(
yi[S−k ]− yi[S0]

)]
,

eik =
1

δz+k − δz−k

[
1

δz+k

(
yi[S+

k ]− yi[S0]
)
− 1

δz−k

(
yi[S−k ]− yi[S0]

)]
.

(3.63)

This approximation is shown as solid black lines in Figure 3.3. These additions
can help improve the accuracy of the method, especially in situations when
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uncertainties are large. On a downside, in including these terms the simple
quadratic form of χ2

new is lost and the minimization needs to be done numeri-
cally.

32



Chapter 4

Nuclear modifications of partonic
structure

As a first approximation, one could think of a nucleus as a loosely bound ensemble
of nucleons. There is, however, ample experimental evidence that this simple
picture is too crude to explain hard-scattering phenomena and that the partonic
structure of the nucleons in nuclei is modified in a nontrivial way. Already
from early DIS measurements on deuteron targets it was known that the Fermi
motion of the bound nucleons increases the probability of finding a parton with
a large momentum fraction xN with respect to the average nucleon momentum.
What came as a surprise in DIS experiments with heavy nuclei was that the quark
distributions in bound nucleons are suppressed compared to those of a free proton
for 0.3 . xN . 0.8. This phenomenon carries the name EMC effect due to its first
observation by the European Muon Collaboration (EMC) [66]. Later experiments
also revealed an enhancement in the parton content at 0.03 . xN . 0.3 and a
suppression again at xN . 0.03, nowadays known as antishadowing and shadowing,
respectively.

Over the years, a plethora of models to explain the nuclear effects have ap-
peared, see Refs. [67–71] for reviews. The approach taken in nPDF analyses is,
however, rather different. By parametrizing the nPDFs with suitably flexible func-
tions and determining their parameters through a global analysis as described
in Chapter 3, one aims to get rid of any model dependence and to obtain a fully
data-driven estimate of the nuclear modifications of parton distributions. From
these, one can then make model-independent predictions for, e.g., production
rates of hard probes of the Quark Gluon Plasma in ultrarelativistic heavy-ion
collisions [72] or for ultra-high energy scattering cross sections in neutrino tele-
scopes [73] and importantly also quantify the bias in free-proton PDFs caused by
using nuclear data in their fits [74].

The PDFs of different nuclei are, in principle, independent quantities and
should be determined from the data nucleus by nucleus, but the present data
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are far from sufficient to do so reliably for any single nucleus other than perhaps
lead. Therefore, the mass-number dependence is parametrized in the nPDF fits.
It is conventional to decompose the PDFs of an average nucleon f A

i in a nucleus
with a mass number A and an atomic number Z as

f A
i (xN, Q2) =

Z
A

f p/A
i (xN, Q2) +

A− Z
A

f n/A
i (xN, Q2), (4.1)

where f p/A
i is the PDF of a proton bound in a nucleus and f n/A

i the PDF of
a bound neutron, with the latter obtained from the first by the approximative
isospin symmetry according to Eq. (2.46). With this, one disentangles the isospin
effects from other nuclear modifications.

4.1 Nuclear PDF parametrizations

By far the most common way to parametrize the nPDFs is through nuclear
modification functions RA

i , such that at the parametrization scale Q2
0 the PDFs of

a proton bound in a nucleus are defined as

f p/A
i (xN, Q2

0) = RA
i (xN, Q2

0) f p
i (xN, Q2

0), (4.2)

where f p
i are the PDFs of the free proton. This approach has been adopted by e.g.

the EPS09 [75], DSSZ [76], KA15 [77] and EPPS16 [II] analyses. An illustration
of the RA

i parametrization of the EPPS16 analysis is given in Figure 4.1. The
functional form follows the pattern anticipated by the nuclear effects discussed
in the beginning of the chapter, with free parameters controlling the amount of
shadowing, antishadowing and EMC-effect and the location of the extremum of
the latter two.

The nCTEQ15 [78] and nNNPDF1.0 [79] analyses have taken a different ap-
proach and parameterized the bound nucleon PDFs f p/A

i directly, in the case of
nCTEQ15 by making the PDF fit function parameters an A-dependent and in
nNNPDF1.0 by using a common neural network to parametrize all the nuclei
with A as an input to the network. Yet another approach was taken in the nDS
analysis [80], where the nPDFs were defined as a convolution

f p/A
i (xN, Q2

0) =
∫ A

xN

dy
y

WA
i (y) f p

i (xN/y, Q2
0) (4.3)

with suitably parametrized weight functions WA
i (y). Note that the integration

range goes up to A allowing xN > 1. This is perfectly valid, as in the nuclear
environment individual partons can borrow momentum from different nucleons.
The parton distributions in this region are, however, expected to be very small
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Figure 4.1. The functional form of the PDF nuclear modifications used in the EPPS16
analysis. Figure from article [II].

and therefore, and in lack of constraining data, most of the analyses have simply
assumed f p/A

i (xN > 1) = 0. With this assumption, f p/A
i follow the same sum

rules and evolution equations as the free-proton PDFs and the different nPDF
parametrization approaches are practically equivalent.

Table 4.1 summarizes the most recent nPDF global analyses. We list here
the perturbative order of the analysis, the included data types, the minimum
scale at which data is included and the total number of data points. Further
indicated are the number of free parameters, the approach in error analysis, the
used free-proton PDFs and heavy-quark mass scheme and the amount of detail
in flavour separation. We will discuss the similarities and differences of these
analyses further in the following sections.

4.2 Resolving flavour asymmetry

The bulk of the data used in the nPDF global analyses consists of electromagnetic
neutral-current DIS measurements. At large xN, where contributions from sea
quarks can be neglected, the per-nucleon structure function FA

2 at leading order
reads

FA
2 ≈

5
18

xN

[(
up/A

V + dp/A
V

)
+

3
5

(
2Z
A
− 1
)(

up/A
V − dp/A

V

)]
. (4.4)

For isoscalar nuclei the 2Z
A − 1 prefactoring the valence PDF difference is exactly

zero and even for neutron-rich isotopes such as 208Pb it is approximately only
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Table 4.1. nPDF releases from the past ten years. Table adapted from Ref. [81].

EPS09 DSSZ KA15 nCTEQ15 EPPS16 nNNPDF1.0
Order in αs LO & NLO NLO NNLO NLO NLO NNLO

lA/ld NC DIS X X X X X X
pA/pd DY X X X X X

RHIC dAu/pp π X X X X
νA DIS X X
πA DY X

LHC pPb W, Z X
LHC pPb jets X

Q cut in DIS 1.3 GeV 1 GeV 1 GeV 2 GeV 1.3 GeV 1.87 GeV
Data points 929 1579 1479 708 1811 451

Free parameters 15 25 16 16 20 ∼183
Error analysis Hessian Hessian Hessian Hessian Hessian Monte Carlo

Error tolerance ∆χ2 50 30 not given 35 52 not applicable
Free proton PDFs CTEQ6.1 MSTW2008 JR09 CTEQ6M-like CT14 NNPDF3.1

HQ treatment ZM-VFNS GM-VFNS ZM-VFNS GM-VFNS GM-VFNS GM-VFNS
Flavour separation no no no valence full no

Reference [75] [76] [77] [78] [II] [79]
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−0.2. Hence FA
2 at large xN is always predominantly sensitive to the sum of the

valence quarks making it difficult to constrain the flavour separation. The same
happens for the sea quarks at small xN.

Moreover, the published structure functions are often isoscalarized, i.e. reported
in terms of Fisoscalar-A

2 = βFA
2 , where the factor

β =
A
2

(
1 +

Fn
2

Fp
2

)/(
Z + (A− Z)

Fn
2

Fp
2

)
, (4.5)

with the ratio of neutron and proton structure functions Fn
2 /Fp

2 suitably paramet-
rized, is applied to facilitate an easy comparison with the deuteron structure
function, such that Fisoscalar-A

2 /FD
2 would be unity if there were no nuclear mod-

ifications beyond isospin effects. Unfortunately, this “correction” makes the
extraction of flavour separation even more challenging. For the above reasons,
most of the nPDF analyses (cf. Table 4.1) have made simplifying assumptions
to fix the flavour dependence of the valence quarks, and separately for the sea
quarks. The first exception from this rule was the nCTEQ15 analysis, where the
valence quarks were parametrized independently. However, in lack of constrain-
ing data, the uncertainties on the flavour separation remained large.

4.2.1 Pion–nucleus Drell–Yan as a novel probe
It was suggested in Ref. [82] that by studying pion-induced fixed-target DY data,
one would get additional information on the flavour separation in the EMC
region. In particular, the cross section ratios

R−A1/A2
(x2) =

1
A1

dσπ−+A1
DY /dx2

1
A2

dσπ−+A2
DY /dx2

, R+/−
A (x2) =

dσπ++A
DY /dx2

dσπ−+A
DY /dx2

(4.6)

were advocated. These are differential in x2 = M√
se−y, where

√
s is the pion–

nucleon center-of-mass energy, M is the invariant mass of the lepton pair and y
its rapidity in the center-of-mass frame, probing at leading order the momentum
fraction of the parton from the nucleus, x2 ≈ xN. Employing the isospin and
charge-conjugation relations of Eq. (2.48) and assuming that we are in a kinematic
region where the pion sea quarks can be neglected, the leading order expressions
for these ratios can be written as

R−A1/A2
(x2) ≈

4uA1(x2) + d̄A1(x2)

4uA2(x2) + d̄A2(x2)
, R+/−

A (x2) ≈
4ūA(x2) + dA(x2)

4uA(x2) + d̄A(x2)
. (4.7)

This shows that the remaining pion valence PDFs, which are not well known,
cancel in these ratios, making them potential probes of the PDF nuclear modifica-
tions. Due to having valence anti-quarks in the pions, these ratios probe different
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flavour combinations than the DIS structure functions. In particular in the region
x2 & 0.1, we have

R−A/D ≈
up/A

V + dp/A
V

up
V + dp

V
+

(
2Z
A
− 1
)

up/A
V − dp/A

V

up
V + dp

V
, (4.8)

where we notice a factor 5/3 increase in the sensitivity to the flavour separation
compared to that in the FA

2 in Eq. (4.4).
Article [I] discusses in detail the applicability and prospects of using the

existing measurements of these observables in the nPDF global analysis. An
important check was to make sure that the cancellation of pion degrees of freedom
in the ratios would work also beyond leading order. This is shown in Figure 4.2,
where NLO calculations performed with the public MCFM code [39] using pion
PDFs from GRV [83] and SMRS [84] analyses are compared with measurements
from the NA3 [85], NA10 [86] and E615 [87] experiments. The NA10 data have
been published with a similar isospin correction applied to them as discussed
above and this had to be taken into account in the calculations. As can be seen
from the figure, the cancellation of the pion PDFs is extremely good, and hence
these ratios are insensitive to the rather poorly known pion structure.

Figure 4.3 compares these data with NLO calculations using the nCTEQ15
and EPS09 nuclear PDFs. The NA10 data have a large normalization uncertainty,
which was treated by normalizing predictions from each PDF set according to
the optimal normalization found with Eq. (3.29) (with the PDF parameters kept
fixed, there is no danger of d’Agostini bias in this case). The overall agreement
between data and theory is rather good, which shows that these data can be used
in a nPDF global fit.

Since valence flavour separation was allowed in the nCTEQ15 analysis, the
related uncertainty bands in Figure 4.3 are larger than those in EPS09. To study
this in more detail, we show also the results with the nCTEQ15 error sets 25 and
26, which have the largest and smallest flavour asymmetry, respectively. The
error set 25 of nCTEQ15 shows a flatter x2 dependence than that in the NA3 and
NA10 data, while predictions with nCTEQ15 error set 26 and EPS09 central set
are in perfect agreement with the measurements. This hints towards similarity of
valence-quark nuclear modifications, but as the experimental uncertainties are
large, more stringent constraints are clearly needed.

4.2.2 Global analysis with full flavour separation

In article [II], we provided the first nPDF global analysis with full flavour sep-
aration, EPPS16, using the above-mentioned pion–nucleus DY data and other
observables to constrain the valence and sea quark asymmetries. A very good fit
to the pion DY data was found, shown as an example for NA10 data in Figure 4.4,
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but due to large data uncertainties the impact in the fit was somewhat limited.
Also new in this analysis, by using published isoscalar-correction factors β of
the charged-lepton DIS data, the non-isoscalarized ratios FA

2 /FD
2 were obtained

from the “corrected” ones, gaining enhanced sensitivity to the flavour separation
compared to a case where the fit would be simply considered to be done on
isoscalar targets.

The EPPS16 analysis was the first to use data from LHC proton–lead collisions,
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including W and Z production data from CMS and ATLAS experiments [88–90].
In principle, these observables are sensitive to different flavour combinations
than the neutral-current DIS and DY data and could help constrain the flavour
separation. However, as at the time no proton–proton baseline measurements
were available, these data were added in the analysis as forward-to-backwards
ratios, where the differential cross sections at forward rapidities dσ(y) are divided
with those at backward rapidities dσ(−y) to reduce the uncertainties arising from
the applied free-proton PDFs. Figure 4.5 shows these observables for the Z and
W− production with a comparison of the CMS data and EPPS16 fit results. As
can be seen from the figure, the agreement is very good and supports nuclear
modifications of the PDFs, namely shadowing, in the region x . 0.1 probed by the
data. However, because of low statistics, the data did not give strong constraints.
Moreover, as these data probe the PDFs at high Q2, any small differences at the
parametrization scale are likely to be hidden under a large flavour-symmetric sea
component generated through g→ qq̄ splittings in the scale evolution, hindering
the potential constraints for flavour separation. This, and also direct contribution
from quark–gluon scattering at NLO make these data sensitive to also gluon
nuclear modifications, discussed in more detail in the context of the EPPS16
analysis in Section 4.3.

More stringent constraints were obtained from CHORUS neutrino and an-
tineutrino DIS data [91]. These data were included already in the DSSZ analy-
sis [76], but as no flavour separation was allowed in the fit, their constraining
potential was not fully utilized. In EPPS16, these data were self-normalized at
each beam-energy bin according to a procedure introduced in Ref. [63] to deal
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with data normalization uncertainty, propagating the data correlations, given in
terms of the systematic shifts discussed in Section 3.2, consistently to the normal-
ized cross sections. Figure 4.6 shows the normalized neutrino-beam data, again
in comparison with the EPPS16 results, divided with predictions with no nuclear
effects in the PDFs to ease the interpretation. These data had a large impact in
the fit, giving the u and d valence quark modifications a similar shape.

Figure 4.7 compares the quark nuclear modifications of the two analyses
which allow flavour separation in the fits. The uppermost two panels show the
average valence and light sea quark modifications in lead,

RPb
uV+dV

=
up/Pb

V + dp/Pb
V

up
V + dp

V
, RPb

ū+d̄+s̄ =
ūp/Pb + d̄p/Pb + s̄p/Pb

ūp + d̄p + s̄p , (4.9)

at the scale Q2 = 10 GeV2. As should be expected, the EPPS16 and nCTEQ15
analyses are well constrained and agree nicely in the region x & 10−2 where data
from fixed target DIS and DY are available. Within the uncertainties, we can
clearly state that the valence quarks exhibit antishadowing and EMC effect and
that shadowing for both valence and sea quarks seems to be preferred.

When we compare the modifications for individual valence quarks on the
second row of Figure 4.7, we find a large difference in the results. For EPPS16
the uV and dV are very similar, driven by the CHORUS data and also consistently
with the pion–nucleus DY and CERN EW boson data, while for nCTEQ15, where
no valence-quark constraints beyond neutral-current DIS and DY were included,
the fit shows a large flavour asymmetry. For both EPPS16 and nCTEQ15 we
find a narrow throat in the uncertainties, which is likely a fit-function artefact
as in EPPS16 this happens at x ≈ 0.03 where there are no data constraints from
CHORUS. Even with the new constraints included, the EPPS16 uncertainties
remain much larger for the individual flavours than for the average modification,
simply reflecting the fact that the approximate isoscalarity of most nuclei makes
it difficult to constrain the asymmetry. The same applies to the sea quarks, shown
in the next three panels, where the nuclear modifications for all flavours are
qualitatively similar and the EPPS16 and nCTEQ15 fits are in agreement. As
flavour separation was allowed in EPPS16, the uncertainties of the individual
flavours are larger than for the average sea-quark combination and also larger
than in nCTEQ15 where the sea quarks are related to each other in a fixed way.

While the nNNPDF1.0 analysis uses only neutral-current DIS in the fit and is
thus not yet in a fully global footing, the used methodology is somewhat different
compared to other analyses, and hence it is interesting to compare EPPS16 and
nCTEQ15 also with the results from this analysis. The nNNPDF1.0 analysis uses
Monte Carlo sampling of PDFs [92, 93], which allows for a more reliable uncer-
tainty estimation than the Hessian method in regions poorly constrained by the
data. Since in lack of DY data no discrimination between valence and sea quarks
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was possible in the nNNPDF1.0 fit, the only meaningfully constrained quark
combination in their analysis, also bearing to the approximate isoscalarity of the
targets, is, with the evolution basis variables Σ = up/A + ūp/A + dp/A + d̄p/A +
sp/A + s̄p/A and T8 = up/A + ūp/A + dp/A + d̄p/A − 2(sp/A + s̄p/A) according to
the nomenclature in Ref. [79],

Σ +
1
4

T8 =
5
4
(up/A

V + dp/A
V ) +

5
2
(ūp/A + d̄p/A) +

1
2
(sp/A + s̄p/A). (4.10)

Hence, we compare nNNPDF1.0 with EPPS16 and nCTEQ15 only in this com-
bination, shown in the bottom-right panel of Figure 4.7 for the lead nucleus.
The three analyses agree nicely in the region constrained by the DIS data, but
at small x the nNNPDF1.0 uncertainties are vastly larger than those of EPPS16
and nCTEQ15. The EPPS16 and nCTEQ15 small-x uncertainty bands should
be understood as an extrapolation of those at higher x, through the assumed
form of the fit functions motivated by low-Q2 nuclear DIS data [94] as well as
requiring consistent A-systematics of nuclear effects. Studies with more flexible
parametrizations within the EPPS16 framework, leading to similar inflation in
small-x uncertainties as seen with the nNNPDF1.0, can be found in Ref. [95].

4.2.3 New observable for future pion–nucleus experiments

Even though the pion–nucleus DY data were not able to give stringent constraints
in the EPPS16 fit, the increased sensitivity to the flavour separation makes these
processes a potential probe in future experiments. To this end, we have proposed
in Ref. [96] a new observable

R∆
A1/A2

(x2) =
1

A1
(dσπ−+A1

DY /dx2 − dσπ++A1
DY /dx2)

1
A2
(dσπ−+A2

DY /dx2 − dσπ++A2
DY /dx2)

. (4.11)

To leading-order accuracy, the contributions involving pion sea quarks cancel in
the differences and we have

R∆
A1/D ≈

up/A
V + dp/A

V

up
V + dp

V
+

5
3

(
2Z
A
− 1
)

up/A
V − dp/A

V

up
V + dp

V
(4.12)

at all x2. Note that there is yet another factor 5/3 increase in the sensitivity to
the flavour separation compared to R−A/D in Eq. (4.8). Figure 4.8 shows this ratio
for Pb/D and W/H computed in NLO. The errors calculated with EPS09, where
no flavour separation was allowed, are rather small, whereas the EPPS16 and
nCTEQ15 predictions have large uncertainties and somewhat different shape,
showing that this observable could discern the differences in the nPDFs. There
exist now plans to measure this ratio for W/C in a future experiment at the CERN
M2 beam line [97], with projections showing possible discriminating power over
the nPDFs in the region x & 0.2.
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4.3 New constraints for gluon nuclear modifications

Prior to EPPS16, direct gluon constraints were obtained only from RHIC inclusive
pion-production data [98, 99] and indirect constraints mainly through the Q2-
dependence of DIS structure functions. The interpretation of the RHIC data is,
however, not completely unambiguous. While the EPS08 [100], where these data
were used for the first time, and the later EPS09 and nCTEQ15 analyses used
these data under the assumption that the observed nuclear effects would only
come from the nuclear modifications of the PDFs, the DSSZ analysis employed
nuclear modified fragmentation functions. As a result, the DSSZ analysis finds
very small gluon PDF nuclear modifications compared to the other analyses.
New data were therefore needed to settle the issue.

In the EPPS16 analysis, described in the article [II] of this thesis, dijet data
from CMS measurement at 5.02 TeV proton–lead collisions [101] were utilized for
the first time. The EPPS16 fit results are compared with the data and predictions
from nCTEQ15 and DSSZ in the left-hand-side panel of Figure 4.9. As is evident
from the figure, the dijet data disagrees with DSSZ, whereas EPPS16 with nuclear
modifications in the gluon PDF and no modifications on the fragmentation
functions (with the KKP fragmentation functions [102] used in the analysis) finds
a good agreement with both the dijet data and the PHENIX pion data shown in
the right-hand-side panel.

Figure 4.10 shows again the EPPS16, nCTEQ15 and nNNPDF1.0 nuclear
modifications, now for comparison of the gluon PDFs. For the nNNPDF1.0 fit,
where no direct gluon constraints were included, the uncertainties are large at
all x values. This emphasizes the importance of collider data in constraining
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the gluons. With the RHIC pion data included, the nCTEQ15 analysis was able
to establish an antishadowing pattern, but the gluon modifications remained
otherwise largely unconstrained, which also leads to the large uncertainties seen
in Figure 4.9. In the EPPS16 analysis gluons are much better constrained due to
the inclusion of the CMS dijet data. In particular, these data have a preference for
an EMC-type slope for the gluon modification in lead. It should be also noted
that the EW-boson data discussed in Section 4.2.2 are, to some extent, sensitive
to the gluon PDF and seem to be consistent with the onsetting of small-x gluon
shadowing. At very small x, however, the EPPS16 uncertainties should again
be understood as an extrapolation, fixed by the momentum sum rule and the
assumed fit function form.

4.3.1 Nuclear modification ratio of dijet spectra

In lack of a corresponding proton–proton baseline, the CMS dijet data were
included in EPPS16 again as forward-to-backward ratios to reduce the sensitivity
to the free-proton PDFs. Thus, again some information were lost and the full
potential of a dijet measurement in proton–lead was not fully unleashed. The
subsequent 5.02 TeV proton–proton data taking, allowing CMS to provide a
measurement of the nuclear modification factor of dijet spectra [103], was thus
very fortunate for nPDF analyses. The new CMS dijet data are provided as ratios
of self-normalized rapidity distributions differential in ηdijet in bins of average
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transverse momentum pave
T of the jet pair,

Rnorm.
pPb =

1
dσp+Pb/dpave

T
d2σp+Pb/dpave

T dηdijet

1
dσp+p/dpave

T
d2σp+p/dpave

T dηdijet
. (4.13)

This is advantageous due to the cancellation of the normalization uncertainty
arising from imprecisions in the luminosity determination and also for the can-
cellation of hadronization effects, separately for proton–proton and proton–lead.

The expected impact of these data on the EPPS16 nPDFs were studied in arti-
cle [III] with the Hessian PDF reweighting outlined in Section 3.4 including the
higher order terms. The original NLO predictions for this observable, produced
using the NLOJet++ [40] code, are shown in comparison with the data in the
upper panels of Figure 4.11. Compared to EPPS16, the data has much smaller
uncertainties and strong additional constraints can be expected from including
these data in a nPDF global analysis. Further, as shown in the figure, the scale
and proton-PDF uncertainties cancel very effectively in the ratio, making this
observable an efficient probe of the PDF nuclear modifications. This is fortunate
since, as studied extensively in article [III], the proton–lead spectra before taking
the ratio with proton–proton baseline have large uncertainties from the proton
PDFs, preventing a clean extraction of nPDFs directly from the spectra.

The data are very precise and the uncertainties are systematics dominated, but
unfortunately the correlations have not been published, and hence the statistical
and systematical uncertainties had to be simply added in quadrature in the
reweighting. The impact on the predictions is quantified in lower panels of
Figure 4.11, where the results with EPPS16 before and after the reweighting are
shown. There is a substantial reduction in the uncertainties, showing that these
data can place tight constraints on nPDFs. At forward rapidities, ηdijet & 2, where
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the data points lie systematically below the original EPPS16 central prediction, a
downward pull is observed, indicating a preference for deeper gluon shadowing.

The reweighting has a drastic effect on the EPPS16 gluon uncertainties, which
shrink by a large factor throughout the probed x range, as shown in Figure 4.12.
The most stringent constraints are put on the mid-x region, where the resulting
uncertainty is reduced to less than half of its original size. With the reweighted
modifications exceeding unity in this region, we seem to be able to confirm the
existence of gluon antishadowing. Similarly, at small x the uncertainty band lies
below one, supporting gluon shadowing.

Even with an enhanced shadowing in the central set compared to the original
EPPS16, the fit has trouble in reproducing the most forward data points. Such a
steep decrease as seen in the data in going from the second-to-most-forward data
points to the most forward ones can be expected to be hard to come by in any
global fit as the gluon modifications probed in this high-Q2 region are smoothed
by the scale evolution, as can be seen in Figure 4.12. It is thus essential to have
also other forward data to tell whether the drop in the data is a real physics effect,
or perhaps caused by the systematic uncertainties. Further constraints are also
needed in the high-x region, where the uncertainties are are reduced compared
to EPPS16 before reweighting, but still large enough such that we cannot yet
confirm EMC effect for gluons. While we have here studied only the constraints
on EPPS16, the impact on nCTEQ15 and nNNPDF1.0, with larger uncertainties
to begin with, would be even more dramatic.

4.3.2 Small-x constraints with D-meson production

While the normalized dijet nuclear modification factor discussed in the previous
section proved to be an efficient probe of the gluon nuclear modifications, the
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Figure 4.13. Data-to-theory comparison of inclusive D0-meson production at forward
rapidity (left) and the effect of reweighting on EPPS16 predictions in this bin (right).
Figures from article [V].

x-reach of the CMS measurement goes only down to about 2 · 10−3 in the lowest
pave

T bin, leaving the region of very small x still unconstrained. To study the low-x
region, the use of inclusive forward production of D mesons has been proposed
e.g. in Ref. [104]. This process and its measurement at the LHCb experiment [105]
are discussed in the light of nPDFs in article [V]. While these data have been
studied previously [106, 107], either a direct evaluation of the impact on nPDFs
has not been given, or if done, then using a less rigorous theoretical framework.
Thus, article [V] provides the first fully QCD-based estimate of the impact of
the LHCb D0 data on nPDFs. More precisely, the analysis is performed in the
SACOT-mT [44] scheme of GM-VFNS with KKKS08 fragmentation functions [108]
and using the Hessian PDF reweighting method.

The LHCb measurements are given in terms of nuclear modification factors,

RD0

pPb(PT,Y) =
1

208dσp+Pb→D0+X/dPTdY

dσp+p→D0+X/dPTdY
, (4.14)

where PT is the transverse momentum of the measured D0 and Y its rapidity. The
left-hand-side panel of Figure 4.13 shows this ratio in a bin of forward rapidity,
3.0 < Y < 3.5. Again, the scale uncertainties are found to cancel to a large extent
in the ratio. Still, at PT < 3 GeV these uncertainties begin to grow and, due
to the minimum scale Q = 1.3 GeV in the EPPS16 PDFs, are potentially even
underestimated in this region. To avoid possible bias, it is therefore safest not to
include the PT < 3 GeV data in a nPDF fit.

Even with this cut in place, the LHCb data are able to constrain nPDFs down
to x ≈ 10−5. To study the possible impact on nPDFs in detail, we have performed
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Figure 4.14. Impact of LHCb inclusive D0-meson data on EPPS16 and nCTEQ15 nPDFs
in Hessian reweighting. Figures from article [V].

a similar reweighting analysis as was done with the dijet data, here for both
EPPS16 and nCTEQ15. The right-hand-side panel of Figure 4.13 shows the
resulting change in the EPPS16 predictions in the 3.0 < Y < 3.5 bin, where a
large reduction in the EPPS16 uncertainties are found. At backward rapidities the
reduction is not as large, but still significant. Interestingly, throughout the data
range, also the data below the 3 GeV cut agree with the reweighted predictions,
supporting the validity of collinear factorization down to PT = 0 GeV in this
process. No need for including nuclear modifications of fragmentation functions
is found here either.

Figure 4.14 shows the impact on the EPPS16 and nCTEQ15 gluon nuclear mod-
ifications. The similarity with the results obtained in reweighting EPPS16 with
the dijet data is striking (see Figure 4.12), lending further support for the process
independence of nuclear PDFs. We also find that the assumed parametrization in
EPPS16 is not too restrictive and can describe both data simultaneously. While
the mid-x constraints from D0-meson data are somewhat less restrictive than
those from dijets, at small x significant further constraints are obtained, not only
because the resulting uncertainty bands are smaller, but also more importantly
since the data constraints extend to significantly lower x. The next generation
nPDFs with both of these data included in the analysis can thus be expected to
have the gluon modifications constrained with previously inaccessible precision.

4.3.3 Multi-observable approach with RHIC

While the BNL-RHIC provided the first direct constraints for the nuclear gluon
PDFs, no further measurements have found their way to nPDF fits yet, even
though the potential of the collider with its flexible beam line to provide nPDF
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constraints is indisputable. In article [IV], we have provided a systematic study
on the prospects of a simultaneous analysis on multiple observables to constrain
the nPDFs, revolving around the potential of the proposed forward upgrades of
the STAR and sPHENIX experiments [109, 110].

The left-hand-side panels of Figure 4.15 show the pseudodata for DY nuclear
modification factor generated with expected luminosities and efficiencies at the
sPHENIX forward-arm upgrade. The data points at low dilepton invariant
masses have smaller projected statistical uncertainties, shown as error bars, than
the uncertainties from predictions with the EPPS16 nPDFs, which would promise
new constraints on the nPDFs. However, on top of the statistical uncertainties,
we are expecting a normalization uncertainty of the order of 4 percent, stemming
from uncertanties in the luminosity determination. A reweighting performed
with these pseudodata, “EPPS16+DY” in Figure 4.15, thus finds barely any impact
on the PDFs.

It is worth to note that this is also a situation where the d’Agostini bias can
become potentially dangerous. As the EPPS16 nPDFs and the pseudodata gener-
ated from them have a rather flat x dependence, any alteration in the predictions
could be compensated by a respective change in the data normalization. Then,
if the χ2 function from Eq. (3.29) were used, there would be a bias favoring
smaller normalization (and thus enhanced shadowing). For this reason, we have
used instead the unbiased χ2 function in Eq. (3.39). The flatness of the data also
prevents using a similar self-normalization trick as was used in Section 4.3.1 to
treat the normalization of dijets.

Now, the idea of the multi-observable approach is that the luminosity un-
certainty is correlated over all measurements using the same proton–gold and
proton–proton run statistics. Thus, if one includes in the fit data from a better
constrained region, say, dijets at central rapidity, this would constrain the normal-
ization also in the less-constrained small-x region. This is illustrated in the right-
hand-side panels of Figure 4.15, where now the combined “EPPS16+DY+dijet” fit,
with normalization uncertainty correlated between the DY and dijet pseudodata,
achieves a much larger impact at small x.

To further study the constraining potential in the multi-observable framework,
we have performed reweighting analyses using combined sets of DY, dijet and
photon–jet pseudodata. Figure 4.16 shows the total expected impact on gluon
modifications in gold in the central-barrel only (CB) and including forward
instrumentation (CB+FI) scenarios. The constraints found in the CB scenario
are rather modest, especially when acknowledging the fact that the small-x
constraints in this case are mostly due to momentum-conservation induced
correlations. The inclusion of forward instrumentation significantly increases the
constraining power, particularly in the small-x region. We have found that these
additional small-x constraints are driven at the present setup by the forward
DY data. To leading order, the DY process happens through quark–antiquark
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nuclear modification ratios on EPPS16 in the central-barrel only (CB) and including
forward instrumentation (CB+FI) scenarios. Figure from article [IV].

annihilation, but since at small x the level of sea quark distributions is set by the
evolution from gluons and also the direct NLO contribution from quark–gluon
scattering becomes increasingly important, the main impact at the scale shown in
Figure 4.16 is on the gluon modifications.

While the constraints appear to be smaller than what was observed with
dijet and D0 production data from the LHC, the proton–gold measurements at
RHIC are important in checking that the results obtained for lead are still valid
at slightly smaller nucleus and to guide our assumptions on how the nuclear
effects will evolve towards smaller nuclei. In fact, while the LHC will keep on
providing constraints mostly for the lead nucleus, the flexibility of the RHIC
beam line would allow performing a proper A-scan to put constraints also on the
mass-number dependence of the gluon modifications.

54



Chapter 5

Conclusions

In this thesis, we have discussed the extraction of nuclear parton distribution
functions (nPDFs), particularly in the light of new constraints derivable from
various hadron–nucleus collision data which have not been previously included
in nPDF global analyses. As a highlight, the article [II] of this thesis, with the
EPPS16 nPDF set as output, presents the first nPDF global analysis including LHC
data on electroweak gauge boson and dijet production. Summarizing further the
main results of this thesis:

We have shown in the article [I] that in certain ratios of pion–nucleus Drell–
Yan cross sections the pion PDFs and thus also the uncertainties they come
with efficiently cancel at the level of NLO cross sections. Due to contributions
involving valence antiquarks of the pions, these observables show an enhanced
sensitivity to the flavour separation of quark nuclear modifications, which, as
discussed in Section 4.2, is hard to constrain. The existing data have somewhat
large uncertainties and thus do not yield very strong constraints, but nonetheless
indicate that valence quark modifications should not be too asymmetrical. As
recognized also by the experimental community, there are interesting prospects
in performing such measurements in future experiments.

The tensionless fit found in the article [II] gives evidence for the universality
of nPDFs across a wide variety of different processes in the kinematical range
Q ≥ 1.3 GeV studied. In this analysis, we have found the most decisive new data
to be those from the CHORUS neutrino–nucleus DIS and CMS proton–nucleus
measurements, putting new constraints on the flavour separation and gluon
nuclear modifications, respectively. This analysis is also the first one to allow for
a full flavour separation in the quark nuclear modifications, thus significantly
reducing the bias in predictions sensitive to such differences.

Using Hessian PDF reweighting tools, we have quantified in articles [III] and
[V] the potential constraints on nPDFs from CMS dijet and LHCb D0-production
data. The impact on nPDFs is found to be dramatic, with the dijets putting
stringent constraints on gluon modifications especially in mid-x region and D0

55



mesons respectively for gluons at small x. When used together in a global fit,
these data can be expected to constrain the gluon modifications in lead to an
unprecedented accuracy.

The field of nPDF analyses is currently evolving quickly, driven mainly by
the constantly increasing amount of data constraints from the LHC proton–lead
collisions. In addition to the data discussed above, newly-finalized measurements
of ATLAS dijet conditional yields at 5.02 TeV [111] and CMS W bosons at 8.16
TeV [112] can shed additional light on the nuclear modifications in lead. In the
coming years, with the LHC turning into a high-luminosity mode, the precision
of especially electroweak observables is expected to improve significantly [113].
On a further note, additional observables, such as direct photons [114] or photo-
production of dijets [115], can also place new constraints on the gluons and test
the universality of nPDFs.

All this makes the constraints for lighter nuclei to lag behind. While a fixed-
target programme at the LHC [116] can help the situation significantly, the data
from such measurements are bound to give constraints only in the large-x region.
The RHIC collider, with a history of successful studies in a wide class of different
collision systems and forward upgrades in its experiments coming up, thus offers
a unique opportunity to constrain the mass-number dependence of the nuclear
modifications. Article [IV] discusses the prospects of constraining the gluon
nuclear modifications with RHIC. There, we found that a simultaneous analysis
on multiple observables can help in reducing luminosity-related normalization
uncertainties and thus improve the impact of forward DY measurements. Ulti-
mately still, an electron–ion collider would be needed to truly pin down the PDF
nuclear modifications [95, 117–119].
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Despite the success of modern nuclear parton distribution functions (nPDFs) in describing nuclear hard-
process data, they still suffer from large uncertainties. One of the poorly constrained features is the
possible asymmetry in nuclear modifications of valence u and d quarks. We study the possibility of
using pion–nucleus Drell–Yan dilepton data as a new constraint in the global analysis of nPDFs. We find
that the nuclear cross-section ratios from the NA3, NA10 and E615 experiments can be used without

imposing significant new theoretical uncertainties and, in particular, that these datasets may have some

constraining power on the u/d-asymmetry in nuclei.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Since the discovery of the EMC effect in 1983 [1] the nu-
clear effects in bound-hadron partonic structure have been un-
der active study [2,3]. For collinearly factorizable hard processes 
this phenomenon can be described by nuclear modifications of 
parton distribution functions (PDFs), the latest global extractions 
being EPS09 [4], DSSZ [5] and nCTEQ15 [6], see Refs. [7,8] for 
reviews. Despite the success of nPDFs in describing also nuclear 
hard-process data from the LHC [9], they still suffer from large 
uncertainties. One of the shortcomings is the lack of data which 
would constrain the nuclear effects of all parton flavors simul-

taneously without any a priori assumptions. For example, it has 
been customary to assume that nuclear modifications for both va-
lence quarks u and d are the same. While this assumption has 
been consistent e.g. with the available LHC data [9] and neutrino–
nucleus deep inelastic scattering [10], the two are not expected to 
be exactly the same [11]. It is only recently that an attempt to fit 
these separately has been carried out [6] but due to the lack of 
constraining data inconclusive results are obtained. Among other 
possibilities [12,13] it has been also suggested [14] that Drell–Yan 
dilepton data from pion–nucleus collision experiments could be 

* Corresponding author.
E-mail addresses: petja.paakkinen@jyu.fi (P. Paakkinen), kari.eskola@jyu.fi

(K.J. Eskola), hannu.paukkunen@jyu.fi (H. Paukkunen).

used in nPDF global analyses to constrain the u/d-asymmetry. In 
this Letter, we provide a detailed study of this possibility in terms 
of the available data and next-to-leading order (NLO) cross-section 
computations with the EPS09 and nCTEQ15 nPDFs.

2. Dependence on pion PDFs

The NA3 [15], NA10 [16] and E615 [17] experiments provide
pion–nucleus (π± + A) Drell–Yan dilepton (l−l+) production data 
in the following per-nucleon cross-section ratios:

R+/−
A (x2) ≡ dσ(π+ + A → l−l+ + X)/dx2

dσ(π− + A → l−l+ + X)/dx2
, (1)

R−
A1/A2

(x2) ≡
1
A1

dσ(π− + A1 → l−l+ + X)/dx2
1
A2

dσ(π− + A2 → l−l+ + X)/dx2
. (2)

Here, x2 ≡ M√
s
e−y , where M and y are the invariant mass and ra-

pidity of the lepton pair. The pion–nucleon center-of-mass energy 
is denoted by 

√
s. At leading order (LO), the Drell–Yan cross sec-

tion reads
dσ(π± + A → l−l+ + X)

dx2
(3)

LO=
∫

�M

dM
8πα2

9sx2M

∑
q

e2q[qπ±(x1)q̄A(x2) + q̄π±(x1)qA(x2)],

http://dx.doi.org/10.1016/j.physletb.2017.02.009

0370-2693/© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.
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where α is the fine-structure constant, x1 ≡ M√
s
ey = M2

sx2
, and the 

sum goes over the quark flavors q with eq being the quark charge. 
The quark/antiquark distributions in a pion (nucleus) at factoriza-
tion scale Q ∼ M are denoted by qπ±(A)/q̄π±(A) .

The range of the mass integral (�M) as well as 
√
s depend 

on the experiment and are 4.1 GeV < M < 8.5 GeV and 
√
s =

16.8 GeV for NA3. The NA10 experiment provides data at two 
different beam energies, 286 GeV (

√
s = 23.2 GeV) and 140 GeV

(
√
s = 16.2 GeV), with a mass range 4.2 GeV < M < 15 GeV for 

the higher and 4.35 GeV < M < 15 GeV for the lower energy, but 
in both cases excluding the ϒ peak region 8.5 GeV < M < 11 GeV.1

In the E615 data the mass range is 4.05 GeV < M < 8.55 GeV at √
s = 21.7 GeV, but with an additional kinematical cut x1 > 0.36, 

which was imposed by the experiment to reduce contributions 
from the pion sea quarks.

Assuming the isospin and charge conjugation symmetry we 
have uπ+ = dπ− = d̄π+ = ūπ− and dπ+ = uπ− = ūπ+ = d̄π− . 
Hence, in the limit where the pion sea quarks can be neglected 
and assuming that the mass integration range is narrow enough so 
that the scale evolution of the PDFs does not play a role, the LO 
approximation gives

R+/−
A (x2) ≈ 4ū A(x2) + dA(x2)

4uA(x2) + d̄A(x2)
, (4)

R−
A1/A2

(x2) ≈ 4uA1
(x2) + d̄A1

(x2)

4uA2
(x2) + d̄A2

(x2)
, (5)

where uA and dA are the per-nucleon distributions of u and d
quarks in a nucleus A with Z protons,

uA ≡ Z

A
up/A + A − Z

A
dp/A, (6)

dA ≡ Z

A
dp/A + A − Z

A
up/A . (7)

Here, up/A , dp/A are the parton distribution functions of a bound 
proton and we have again used the isospin symmetry to write 
un/A = dp/A , dn/A = up/A . As the dependence on the pion PDFs es-
sentially cancels in R−

A1/A2
and R+/−

A , these quantities promise to
be good candidates for global nPDF analyses, where the objective 
is to probe the nuclear modifications without being significantly 
sensitive to (possibly poorly known) pion structure. By comparing 
Equations (4) and (5) we see that while R−

A1/A2
probes dominantly

the valence quarks, R+/−
A carries more sensitivity to sea quarks 

as well.

The above approximative cancellation of the pion PDFs in cross-
section ratios has to be tested explicitly in a NLO calculation to 
avoid including any biased constraints to nPDF analysis. In Fig. 1, 
we plot the NA3, NA10 and E615 data along with our NLO re-
sults using the GRV [18] and SMRS [19] pion PDFs together with 
EPS09 nuclear modifications and CT14 [20] free-proton PDFs.2 For 
hydrogen and deuterium we use the unmodified CT14 PDFs. In the 
upper-left panel we have taken into account the kinematical cut 
x1 > 0.36 and in the right-hand-side panels an isospin correction 
as described in the next section has been applied. The NLO calcu-
lations were done using MCFM 7.0.1 [21]. For the data points only 
statistical errors are available, but these are in any case expected 
to be dominant in comparison to the systematical errors (except 
the normalization error of the NA10 data discussed in the next 
section).

1 Dutta et al. [14] used the NA10 data combined from the two different beam
energies. We take these as separate datasets.
2 The NA3 data is originally given as R−

H/Pt which we have inverted as it is cus-
tomary to take the ratio with respect to the lighter nucleus.

Fig. 1. Comparison of NLO predictions with the E615, NA10 and NA3 data. In all
panels, we use the GRV (blue) and SMRS (red) PDFs for the pion, and the EPS09
nuclear modifications with the CT14 proton PDFs for the nuclei. In the upper-left
panel we have taken into account the kinematical cut x1 > 0.36 and in the right-
hand-side panels an isospin correction as described in Section 3 has been applied
to the theory predictions. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

The SMRS pion PDFs provide three different sets to account for 
the uncertainty in the fraction of pion momentum carried by the 
sea quarks. We find that the NLO predictions are largely insensi-
tive to the choice of pion PDFs. Especially the SMRS 15% sea set 
which is to be considered as their central prediction is almost in-
distinguishable from the GRV results. A slight separation between 
the different SMRS sets is observed towards large x2 in R+/−

W , but
in comparison to the data uncertainties this is insignificant.

3. Isospin correction and normalization of NA10 datasets

The NA10 collaboration has corrected their data for the isospin
effects. The exact form of correction was obtained from a LO Monte 
Carlo simulation but is not quoted point by point along with the 
data [16].3 To mimic these corrections and compare with the data 
the best we can, we apply an isospin correction by computing the 
theory predictions as

(R−
W/D

)NLOisospin corrected

= (R−
isoscalar-W/W

)LOno nPDFs × (R−
W/D

)NLO,
(8)

where “isoscalar-W” is the isospin-symmetrized W nucleus (Z =
A/2) and where the LO correction factor (R−

isoscalar-W/W
)LOno nPDFs is 

evaluated with the central set of CT14 without nuclear modifica-

tions in PDFs. This correction has been applied on the right-hand-
side panels of Fig. 1 and the effect can be seen in Fig. 2, where 
we plot both the corrected and uncorrected predictions using GRV 
pion PDFs. In Fig. 2, we also show the error bands from the CT14 
proton PDFs (using the asymmetric prescription [22] to combine 
the uncertainties from the error sets) which are typically rather 
small in comparison to the data uncertainties except, perhaps, the 
E615 data at smallest values of x2. To some extent, the isospin cor-
rected NA10 data also contain input from the proton PDFs used by 
the experiment in their Monte Carlo code, but we do not study 
such a source of uncertainty here further.

3 We thank P. Bordalo for discussion on this matter.
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Fig. 2. As Fig. 1, but showing the error estimates from the CT14 PDFs as shaded blue
bands for the results obtained with EPS09 and GRV pion PDFs. In the right-hand-
side panels we show both the isospin corrected (solid) and uncorrected (dashed)
NLO results. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Table 1
Normalization factors for the NA10 data sets.
nPDF N data

286 GeV data 140 GeV data

EPS09 1.044 1.125

nCTEQ15 1.058 1.141

We observe that our isospin corrected theory prediction over-
shoots especially the low-energy NA10 data. This can be accounted 
for by the systematic overall normalization uncertainty of the data, 
quoted in [16] to be σN data = 6%. To compare the predictions from 
different nPDFs with the NA10 data in shape and not in overall 
normalization, we normalize the results as follows: We fix the 
optimal normalization factor N data for each data set and theory 
prediction separately by minimizing

χ2(N data) =
∑
i

(N dataRdata
i − Rtheory

i )2

(σ data
i )2

+ (N data − 1)2

(σN data)2
(9)

with respect to data normalization N data [23]. In the above equa-
tion Rdata

i and Rtheory
i are the experimental and theoretical values 

for ith bin in a data set, and σ data
i is the data uncertainty (here 

statistical). We then obtain the theory predictions normalized to 
data as

(Rtheory
i )normalized = Rtheory

i

N data
. (10)

The values for N data are given in Table 1 and the normalized re-
sults as well as the unnormalized ones are presented in Fig. 3

for the EPS09 and nCTEQ15 nuclear PDFs.4 For predictions with 
nCTEQ15 PDFs we use their own free proton set for hydrogen and 
deuterium (and CT14 for EPS09). When calculating the nPDF errors, 
we have also normalized each error set separately. We observe 

4 Since nCTEQ15 grids for platinum have not been available for us, we have
used their grids for gold instead in R−

Pt/H
. Since the mass numbers are very close, 

APt = 195 and AAu = 197, this should be an excellent approximation.

Fig. 3. A comparison of the uncertainty bands obtained using the EPS09 (blue lines
and bands) and nCTEQ15 (green lines and bands) nuclear PDFs. In the right-hand-
side panels we show both the unnormalized (dashed) and results normalized to the
data (solid). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

that the optimal normalization for the NA10 286 GeV dataset is 
within the given 6% overall normalization uncertainty, but for the 
140 GeV dataset it is more than twice the suggested uncertainty 
limit. Such a large normalization issue is not unheard of: For ex-
ample, while the carbon-to-deuteron and lead-to-deuteron nuclear 
ratios in deep inelastic scattering measured by the E665 collabora-
tion [24] are individually largely apart from other measurements, 
the lead-to-carbon ratio formed from these two agrees well with 
other experiments [25]. A similar normalization issue may be in 
question here as well.

4. Compatibility with nuclear PDFs

Comparing the results obtained with the EPS09 and nCTEQ15
nuclear PDFs in Fig. 3 we find that both these sets are in a fairly 
good agreement with the data, but display a large difference in 
their uncertainty estimates. To understand this, let us study the 
R−
W/D

ratio measured by NA10. For large x2, only the valence 
quarks in nuclei contribute and in the LO approximation we have

R−
W/D

x2→1≈ RW
V-isoscalar + RW

V-nonisoscalar, (11)

where

RA
V-isoscalar ≡ uV

p/A + dVp/A

uV
p + dVp

(12)

is the nuclear modification factor for an average valence quark in 
an isoscalar nucleus and

RA
V-nonisoscalar ≡

(
2Z

A
− 1

) uV
p/A − dVp/A

uV
p + dVp

(13)

the corresponding non-isoscalarity correction. For neutron-rich nu-
clei this correction is negative and typically small in comparison to 
the isoscalar contribution.

In Fig. 4, we plot these two components for tungsten along with 
the nuclear modification factors

RW
uV

≡ uV
p/W

uV
p

, RW
dV

≡ dVp/W

dVp
(14)
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Fig. 4. The different LO valence-quark contributions to R−
W/D

(upper panels) and the
valence quark nuclear modification factors (lower panels) at factorization scale Q =
5 GeV. Solid lines correspond to the EPS09 (blue) and nCTEQ15 (green) central sets
and dotted lines indicate the error sets 25 and 26 of the nCTEQ15. The uncertainty
bands are shown as green (nCTEQ15) and blue (EPS09) bands. (For interpretation
of the references to color in this figure legend, the reader is referred to the web

version of this article.)

at factorization scale Q = 5 GeV. We find that EPS09 and nCTEQ15 
agree on RW

V-isoscalar
, which is well constrained in both analyses, 

but there is a slight disagreement on RW
V-nonisoscalar

. In addition, we

see that nCTEQ15 has significantly larger error bands in both of
these components. To study this difference in more detail, we plot
in Fig. 4 also the nCTEQ15 error sets 25 and 26, which give the
largest deviations from the central-set predictions. We can make

two observations: First, from the lower panels in Fig. 4, we see
that these two error sets are related to the nuclear modifications

of u and d valence quarks with set 25 giving the most extreme dif-
ference, and set 26 being closer to uniform modifications. Second,
from the upper panels in Fig. 4, we find that the deviations from
the central prediction are in the same direction for both RW

V-isoscalar

and RW
V-nonisoscalar

(upwards for set 25, downwards for set 26), and
combine additively in Equation (11) thereby explaining the larger
error bands seen in Fig. 3.

It is now evident that the studied observables are sensitive to 
the mutual differences between u and d valence quark nuclear 
modifications. On one hand, the EPS09 error sets underestimate 
the true uncertainty because flavor dependence of valence quark 
nuclear modifications was not allowed in that particular analysis. 
On the other hand, the nCTEQ15 error bands are large since the 
flavor dependence was allowed, but not well constrained in their 
analysis. The size of nCTEQ15 error bands suggest that the pion–
nucleus Drell–Yan data can have some constraining power on the 
difference of valence modifications. Indeed, in Fig. 5 we plot the 
predictions using the nCTEQ15 error sets 25 and 26, and observe 
that the most extreme deviation from identical nuclear modifica-

tions of u and d quarks given by set 25 is disfavored by NA3 and 
NA10 data.

In addition to the NA3, NA10 and E615 data we have stud-
ied also the results from the Omega experiment [26]. The data 
at 

√
s = 8.7 GeV as a function of the lepton pair invariant mass 

are shown in Fig. 6 for xF ≡ 2p∗
L√
s

> 0, where p∗
L is the longitudinal

momentum of the lepton pair along the beam line in the center-of-
mass frame. We find that the data disagree with theory predictions 
in bins around the J/ψ peak. Furthermore, at low invariant masses 

Fig. 5. As Fig. 3, but with only normalized results shown and the nCTEQ15 error
sets 25 and 26 (dotted lines) plotted.

Fig. 6. Comparison of the Omega data with predictions using the GRV (blue) and
SMRS (red) pion parton distributions together with the EPS09 nuclear modifications

combined to the CT14 proton PDFs and also from using the nCTEQ15 (green) nuclear
PDFs with the GRV pion PDFs. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

the choice of pion PDFs becomes significant and that especially to-
wards larger invariant masses the data are not precise enough to 
discriminate between the nuclear PDFs. Hence it is not reasonable 
to include this dataset into a global nPDF analysis.

5. Conclusions

We have studied the prospects of including NA3, NA10, E615 
and Omega pion–nucleus Drell–Yan data to global analyses of nu-
clear parton distribution functions. The NA3, NA10 and E615 data 
are compatible (modulo NA10 normalization at lower beam ener-
gies) with modern nPDFs and can thus be used in a global analysis 
without causing significant tension. The Omega data is not com-

patible with the NLO theory predictions and not precise enough to 
be useful in the nPDF analysis. The cross-section ratios used in the 
experiments are largely independent of pion parton distributions 
and hence the inclusion of these data will not impose significant 
new theoretical uncertainties to the analysis. Some sensitivity to 
baseline proton PDFs however still persists. When implementing 
these data to a global analysis, one needs to take into account 
the isospin correction and normalization uncertainty in the NA10 
datasets. This can be done as described above. Motivated by this 
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study, these pion–nucleus Drell–Yan data have recently been in-
cluded in the successor of the EPS09 analysis [27].

The considered nuclear ratios are sensitive to the possible 
u/d-asymmetry of nuclear modification factors but the data are 
not precise enough to pin down this difference completely. Regard-
ing this matter we seem to reach a somewhat different conclusion 
than Dutta et al. [14] who claimed that NA3 data would favor 
flavor-dependent nuclear PDFs. We, in our analysis, find a very 
good agreement between the data and u/d-symmetric (EPS09) nu-
clear modifications. Moreover, our analysis suggests that the most 
extreme differences in u and d quark nuclear modifications as 
given by particular nCTEQ15 error sets are disfavored by the NA3 
and NA10 datasets.
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Abstract We introduce a global analysis of collinearly fac-
torized nuclear parton distribution functions (PDFs) includ-
ing, for the first time, data constraints from LHC proton–lead
collisions. In comparison to our previous analysis, EPS09,
where data only from charged-lepton–nucleus deep inelas-
tic scattering (DIS), Drell–Yan (DY) dilepton production in
proton–nucleus collisions and inclusive pion production in
deuteron–nucleus collisions were the input, we now increase
the variety of data constraints to cover also neutrino–nucleus
DIS and low-mass DY production in pion–nucleus collisions.
The new LHC data significantly extend the kinematic reach
of the data constraints. We now allow much more freedom
for the flavor dependence of nuclear effects than in other cur-
rently available analyses. As a result, especially the uncer-
tainty estimates are more objective flavor by flavor. The neu-
trino DIS plays a pivotal role in obtaining a mutually consis-
tent behavior for both up and down valence quarks, and the
LHC dijet data clearly constrain gluons at large momentum
fraction. Mainly for insufficient statistics, the pion–nucleus
DY and heavy-gauge-boson production in proton–lead col-
lisions impose less visible constraints. The outcome – a new
set of next-to-leading order nuclear PDFs called EPPS16 – is
made available for applications in high-energy nuclear colli-
sions.

1 Introduction

Proton–lead (pPb) and lead–lead (PbPb) collisions at the
Large Hadron Collider (LHC) have brought heavy-ion
physics to the high-energy realm [1–4]. A more than ten-
fold increase in the center-of-mass energy with respect to the

a e-mail: kari.eskola@jyu.fi
b e-mail: petja.paakkinen@jyu.fi
c e-mail: hannu.paukkunen@jyu.fi
d e-mail: carlos.salgado@usc.es

deuteron–gold (DAu) collisions at the Relativistic Heavy-
Ion Collider (RHIC) has made it possible to study novel
hard-process observables in a heavy-ion environment. For
example, production cross sections of heavy-gauge bosons
(Z and W±) and jets have been measured. Because of the
new experimental information from the LHC it is now also
timely to update the pre-LHC global analyses of collinearly
factorized nuclear parton distribution functions (PDFs) – for
reviews, see e.g. Refs. [5,6].

The original idea of having nuclear effects in PDFs was
data-driven as the early deep inelastic scattering (DIS) experi-
ments unexpectedly revealed significant nuclear effects in the
cross sections [7,8]. It was then demonstrated [9,10] that such
effects in DIS and fixed nuclear-target Drell–Yan (DY) cross
sections can be consistently described by modifying the free
nucleon PDFs at low Q2 and letting the Dokshitzer–Gribov–
Lipatov–Altarelli–Parisi (DGLAP) evolution [11–17] take
care of the Q2 dependence. In other words, the data were
in line with a concept that the measured nuclear effects are
of non-perturbative origin but at sufficiently high Q2 there is
no fundamental difference in the scattering off a nucleon or
off a nucleus. These ideas eventually led to the first global fit
and the EKS98 set of leading-order nuclear PDFs [18,19].
Since then, several parametrizations based on the DIS and DY
data have been released at leading order (EKPS [20], HKM
[21], HKN04 [22]), next-to-leading order (nDS [23], HKN07
[24], nCTEQ [25], AT12 [26]), and next-to-next-to-leading
order (KA15 [27]) perturbative QCD.1 For the rather limited
kinematic coverage of the fixed-target data and the fact that
only two types of data were used in these fits, significant sim-
plifying assumptions had to be made e.g. with respect to the
flavor dependence of the nuclear effects. The constraints on
the gluon distribution are also weak in these analyses, and it
is only along with the RHIC pion data [31] that an observable
carrying direct information on the nuclear gluons has been

1 For studies addressing origins of the nuclear effects, see e.g. Refs. [28–
30].
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added to the global fits – first in EPS08 [32] and EPS09 [33],
later in DSSZ [34] and nCTEQ15 [35]. The interpretation
of the RHIC pion production data is not, however, entirely
unambiguous as the parton-to-pion fragmentation functions
(FFs) may as well undergo a nuclear modification [36]. This
approach was adopted in the DSSZ fit, and consequently their
gluons show clearly weaker nuclear effects than in EPS09
(and nCTEQ15) where the FFs were considered to be free
from nuclear modifications. To break the tie, more data and
new observables were called for. To this end, the recent LHC
dijet measurements [37] from pPb collisions have been most
essential as a consistent description of these data is obtained
with EPS09 and nCTEQ15 but not with DSSZ [38,39].

Another observable that has caused some controversy and
debate during the past years is the neutrino–nucleus DIS. It
has been claimed [40] (see also Ref. [41]) that the nuclear
PDFs required to correctly describe neutrino data are differ-
ent from those optimal for the charged-lepton induced DIS
measurements. However, it has been demonstrated [42,43]
that problems appear only in the case of one single data set
and, furthermore, that it seems to be largely a normalization
issue (which could e.g. be related to the incident neutrino
flux which is model-dependent). The neutrino data were also
used in the DSSZ fit without visible difficulties.

New data from the LHC 2013 p-Pb run have gradually
become available and their impact on the nuclear PDFs has
been studied [39,44] in the context of PDF reweighting [45].
Apart from the aforementioned dijet data [37] which will
e.g. require a complete renovation of the DSSZ approach,
the available W [46,47] and Z [48,49] data were found to
have only a rather mild effect mainly for the limited statisti-
cal precision of the data. However, the analysis of Ref. [39]
used only nuclear PDFs (EPS09, DSSZ) in which flavor-
independent valence and light sea-quark distributions were
assumed at the parametrization scale. Thus, it could not reveal
the possible constraints that these electroweak observables
could have for a particular quark flavor. On the other hand,
the analysis of Ref. [44] involves some flavor dependence but
the usage of absolute cross sections which are sensitive to the
free-proton baseline PDFs complicates the interpretation of
the results.

In the present paper, we update the EPS09 analysis by
adding a wealth of new data from neutrino DIS [50], pion–
nucleus DY process [51–53], and especially LHC pPb dijet
[37], Z [48,49] and W [46] production. Thus, we take the
global nuclear PDF fits onto a completely new level in the
variety of data types. In addition, in comparison to EPS09,
a large part of the whole framework is upgraded: we switch
to a general-mass formalism for the heavy quarks, relax the
assumption of the flavor independent nuclear modifications
for quarks at the parametrization scale, undo the isospin cor-
rections that some experiments had applied on their data, and
also importantly, we now assign no extra weights to any of
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Fig. 1 Illustration of the EPPS16 fit function R A
i (x, Q2
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the data sets. In this updated analysis, we find no significant
tension between the data sets considered, which lends sup-
port to the assumption of process-independent nuclear PDFs
in the studied kinematical region. The result of the analy-
sis presented in this paper is also published as a new set of
next-to-leading order (NLO) nuclear PDFs, which we call
EPPS16 and which supersedes our earlier set EPS09. The
new EPPS16 set will be available at [54].

2 Parametrization of nuclear PDFs

Similarly to our earlier work, the bound proton PDF
f p/A
i (x, Q2) for mass number A and parton species i is

defined relative to the free-proton PDF f p
i (x, Q2) as

f p/A
i (x, Q2) = R A

i (x, Q2) f p
i (x, Q2), (1)

where R A
i (x, Q2) is the scale-dependent nuclear modifica-

tion. Our free-proton baseline is CT14NLO [55]. Consis-
tently with this choice, our analysis here uses the SACOT
(simplified Aivazis–Collins–Olness–Tung) general-mass
variable flavor number scheme [56–58] for the DIS cross
sections. The fit function for the nuclear modifications
R A

i (x, Q2
0) at the parametrization scale Q2

0, illustrated in
Fig. 1, is also largely inherited from our earlier analyses
[18,20,32,33],

R A
i (x, Q2

0) =
⎧⎨
⎩

a0 + a1(x − xa)2 x ≤ xa
b0 + b1xα + b2x2α + b3x3α xa ≤ x ≤ xe
c0 + (c1 − c2x) (1 − x)−β xe ≤ x ≤ 1,

(2)

where α = 10xa and the i and A dependencies of the
parameters on the r.h.s. are left implicit.2 The purpose of

2 See Ref. [59] for a study experimenting with a more flexible fit func-
tion at small x .
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the exponent α is to avoid the “plateau” that would other-
wise (that is, if α = 1) develop if xa < 0.1. The coeffi-
cients ai , bi , ci are fully determined by the asymptotic small-
x limit y0 = R A

i (x → 0, Q2
0), the antishadowing maximum

ya = R A
i (xa, Q2

0) and the EMC minimum ye = R A
i (xe, Q2

0),
as well as requiring continuity and vanishing first derivatives
at the matching points xa and xe. The A dependencies of y0,
ya , ye are parametrized as

yi (A) = yi (Aref)

(
A

Aref

)γi [yi (Aref )−1]

, (3)

where γi ≥ 0 and Aref = 12. By construction, the nuclear
effects (deviations from unity) are now larger for heavier
nuclei. Without the factor yi (Aref) − 1 in the exponent one
can more easily fall into a peculiar situation in which e.g.
yi (Aref) < 1, but yi (A � Aref) > 1, which seems physi-
cally unlikely. For the valence quarks and gluons the values
of y0 are determined by requiring the sum rules

∫ 1

0
dx f p/A

uV (x, Q2
0) = 2, (4)

∫ 1

0
dx f p/A

dV
(x, Q2

0) = 1, (5)

∫ 1

0
dxx

∑
i

f p/A
i (x, Q2

0) = 1, (6)

separately for each nucleus and thus the A dependence of
these y0 is not parametrized. All other parameters than y0, ya ,
ye are A-independent. In our present framework we consider
the deuteron (A = 2) to be free from nuclear effects though
few-percent effects at high x are found e.g. in Ref. [60].
The bound neutron PDFs f n/A

i (x, Q2) are obtained from the
bound proton PDFs by assuming isospin symmetry,

f n/A
u,u (x, Q2) = f p/A

d,d
(x, Q2), (7)

f n/A
d,d

(x, Q2) = f p/A
u,u (x, Q2), (8)

f n/A
i (x, Q2) = f p/A

i (x, Q2) for other flavors. (9)

Above the parametrization scale Q2 > Q2
0 the nuclear

PDFs are obtained by solving the DGLAP evolution equa-
tions with two-loop splitting functions [61,62]. We use our
own DGLAP evolution code which is based on the solution
method described in Ref. [63] and also explained and bench-
marked in Ref. [64]. Our parametrization scale Q2

0 is fixed
to the charm pole mass Q2

0 = m2
c where mc = 1.3 GeV. The

bottom quark mass is mb = 4.75 GeV and the value of the
strong coupling constant is set by αs(MZ) = 0.118, where
MZ is the mass of the Z boson.

As is well known, at NLO and beyond the PDFs do not
need to be positive definite and we do not impose such a

restriction either. In fact, doing so would be artificial since the
parametrization scale is, in principle, arbitrary, and positive
definite PDFs, say, at Q2

0 = m2
c may easily correspond to

negative small-x PDFs at a scale just slightly below Q2
0. As

we could have equally well parametrized the PDFs at such
a lower value of Q2

0, we see that restricting the PDFs to be
always positive would be an unphysical requirement.

3 Experimental data

All the �− A DIS, pA DY and RHIC DAu pion data sets we
use in the present analysis are the same as in the EPS09 fit.
The only modification on this part is that we now remove the
isoscalar corrections of the EMC, NMC and SLAC data (see
the next subsection), which is important as we have freed
the flavor dependence of the quark nuclear modifications.
The �− A DIS data (cross sections or structure functions F2)
are always normalized by the �−D measurements and, as in
EPS09, the only kinematic cut on these data is Q2 > m2

c .
This is somewhat lower than in typical free-proton fits and
the implicit assumption is (also in not setting a cut in the
mass of the hadronic final state) that the possible higher-
twist effects will cancel in ratios of structure functions/cross
sections. While potential signs of 1/Q2 effects have been
seen in the HERA data [65] already around Q2 = 10 GeV2,
these effects occur at significantly smaller x than what is the
reach of the �− A DIS data.

From the older measurements, also pion–nucleus DY data
from the NA3 [51], NA10 [52], and E615 [53] collaborations
are now included. These data have been shown [66,67] to
carry some sensitivity to the flavor-dependent EMC effect.
However, more stringent flavor-dependence constraints at
large x are provided by the CHORUS (anti)neutrino–Pb DIS
data [50], whose treatment in the fit is detailedly explained
in Sect. 3.2.

The present analysis is the first one to directly include
LHC data. To this end, we use the currently published pPb
data for heavy-gauge boson [46,48,49] and dijet produc-
tion [37]. These observables have already been discussed in
the literature [39,44,68–71] in the context of nuclear PDFs.
Importantly, we include the LHC pPb data always as forward-
to-backward ratios in which the cross sections at positive
(pseudo)rapidities η > 0 are divided by the ones at nega-
tive rapidities η < 0. This is to reduce the sensitivity to the
chosen free-proton baseline PDFs as well as to cancel the
experimental luminosity uncertainty. However, upon taking
the ratio part of the information is also lost as, for example,
the points near η = 0 are, by construction, always close to
unity and carry essentially no information. In addition, since
the correlations on the systematic errors are not available,
all the experimental uncertainties are added in quadrature
when forming these ratios (except for the CMS W measure-
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Fig. 2 The approximate regions in the (x, Q2) plane at which different
data in the EPPS16 fit probe the nuclear PDFs

ment [46] which is taken directly from the publication) which
partly undermines the constraining power of these data. The
baseline pp measurements performed at the same

√
s as the

pPb runs may, in the future, also facilitate a direct usage of
the nuclear modification factors dσ pPb/dσ pp. The technical-
ities of how the LHC data are included in our analysis are
discussed in Sect. 3.3.

In Fig. 2 we illustrate the predominant x and Q2 regions
probed by the data. Clearly, the LHC data probe the nuclear
PDFs at much higher in Q2 than the earlier DIS and DY data.
For the wide rapidity coverage of the LHC detectors the new
measurements also reach lower values of x than the old data,
but for the limited statistical precision the constraints for the
small-x end still remain rather weak. All the exploited data
sets including the number of data points, their χ2 contribu-
tion and references are listed in Table 1. We note that approx-
imately half of the data are now for the 208Pb nucleus while
in the EPS09 analysis only 15 Pb data points (NMC 96) were
included. Most of this change is caused by the inclusion of
the CHORUS neutrino data.

3.1 Isoscalar corrections

Part of the charged-lepton DIS data that have been used in the
earlier global nPDF fits had been “corrected”, in the original
publications, for the isospin effects. That is, the experimen-
tal collaborations had tried to eliminate the effects emerg-
ing from the unequal number of protons and neutrons when
making the comparison with the deuteron data. In this way
the ratios F A

2 /FD
2 could be directly interpreted in terms of

nuclear effects in the PDFs. However, this is clearly an unnec-
essary operation from the viewpoint of global fits, which
has previously caused some confusion regarding the nuclear
valence-quark modifications: the particularly mild effects

found in the nDS [23] and DSSZ [34] analyses (see Fig. 27)
most likely originate from neglecting such a correction.

The structure function of a nucleus A with Z protons and
N neutrons can be written as

F A
2 = Z

A
Fp,A

2 + N

A
Fn,A

2 , (10)

where Fp,A
2 and Fn,A

2 are the structure functions of the bound
protons and neutrons. The corresponding isoscalar structure
function is defined as the one containing an equal number of
protons and neutrons,

F̂ A
2 = 1

2
Fp,A

2 + 1

2
Fn,A

2 . (11)

Using Eq. (10), the isoscalar structure function reads

F̂ A
2 = βF A

2 , (12)

where

β = A

2

(
1 + Fn,A

2

Fp,A
2

)
/

(
Z + N

Fn,A
2

Fp,A
2

)
. (13)

Usually, it has been assumed that the ratio Fn,A
2 /Fp,A

2 is free
from nuclear effects,

Fn,A
2

Fp,A
2

= Fn
2

Fp
2

, (14)

and parametrized according to the DIS data from proton and
deuteron targets. Different experiments have used different
versions:

– EMC parametrization [78]:

Fn
2

Fp
2

= 0.92 − 0.86x,

– SLAC parametrization [72]:

Fn
2

Fp
2

= 1 − 0.8x,

– NMC parametrization [80]:

Fn
2

F
p
2

= A(x)

(
Q2

20

)B(x) (
1 + x2

Q2

)

A(x) = 0.979 − 1.692x + 2.797x2 − 4.313x3 + 3.075x4

B(x) = −0.171x2 + 0.244x3.

123



Eur. Phys. J. C (2017) 77 :163 Page 5 of 28 163

Table 1 The data sets used in the EPPS16 analysis, listed in the order
of growing nuclear mass number. The number of data points and their
contribution to χ2 counts only those data points that fall within the

kinematic cuts explained in the text. The new data with respect to the
EPS09 analysis are marked with a superscript a

Experiment Observable Collisions Data points χ2 References

SLAC E139 DIS e−He(4), e−D 21 12.2 [72]

CERN NMC 95, re DIS μ−He(4), μ−D 16 18.0 [73]

CERN NMC 95 DIS μ−Li(6), μ−D 15 18.4 [74]

CERN NMC 95, Q2 dep DIS μ−Li(6), μ−D 153 161.2 [74]

SLAC E139 DIS e−Be(9), e−D 20 12.9 [72]

CERN NMC 96 DIS μ−Be(9), μ−C 15 4.4 [75]

SLAC E139 DIS e−C(12), e−D 7 6.4 [72]

CERN NMC 95 DIS μ−C(12), μ−D 15 9.0 [74]

CERN NMC 95, Q2 dep DIS μ−C(12), μ−D 165 133.6 [74]

CERN NMC 95, re DIS μ−C(12), μ−D 16 16.7 [73]

CERN NMC 95, re DIS μ−C(12), μ−Li(6) 20 27.9 [73]

FNAL E772 DY pC(12), pD 9 11.3 [76]

SLAC E139 DIS e−Al(27), e−D 20 13.7 [72]

CERN NMC 96 DIS μ−Al(27), μ−C(12) 15 5.6 [75]

SLAC E139 DIS e−Ca(40), e−D 7 4.8 [72]

FNAL E772 DY pCa(40), pD 9 3.33 [76]

CERN NMC 95, re DIS μ−Ca(40), μ−D 15 27.6 [73]

CERN NMC 95, re DIS μ−Ca(40), μ−Li(6) 20 19.5 [73]

CERN NMC 96 DIS μ−Ca(40), μ−C(12) 15 6.4 [75]

SLAC E139 DIS e−Fe(56), e−D 26 22.6 [72]

FNAL E772 DY e−Fe(56), e−D 9 3.0 [76]

CERN NMC 96 DIS μ−Fe(56), μ−C(12) 15 10.8 [75]

FNAL E866 DY pFe(56), pBe(9) 28 20.1 [77]

CERN EMC DIS μ−Cu(64), μ−D 19 15.4 [78]

SLAC E139 DIS e−Ag(108), e−D 7 8.0 [72]

CERN NMC 96 DIS μ−Sn(117), μ−C(12) 15 12.5 [75]

CERN NMC 96, Q2 dep DIS μ−Sn(117), μ−C(12) 144 87.6 [79]

FNAL E772 DY pW(184), pD 9 7.2 [76]

FNAL E866 DY pW(184), pBe(9) 28 26.1 [77]

CERN NA10a DY π−W(184), π−D 10 11.6 [52]

FNAL E615a DY π+W(184), π−W(184) 11 10.2 [53]

CERN NA3a DY π−Pt(195), π−H 7 4.6 [51]

SLAC E139 DIS e−Au(197), e−D 21 8.4 [72]

RHIC PHENIX π0 dAu(197), pp 20 6.9 [31]

CERN NMC 96 DIS μ−Pb(207), μ−C(12) 15 4.1 [75]

CERN CMSa W± pPb(208) 10 8.8 [46]

CERN CMSa Z pPb(208) 6 5.8 [48]

CERN ATLASa Z pPb(208) 7 9.6 [49]

CERN CMSa dijet pPb(208) 7 5.5 [37]

CERN CHORUSa DIS νPb(208), νPb(208) 824 998.6 [50]

Total 1811 1789

Using these functions we calculate the correction factors β

thereby obtaining the ratios F A
2 /FD

2 , to be used in the fit, from
the isoscalar versions F̂ A

2 /FD
2 reported by the experiments.

As discussed in Ref. [67], also the π− A DY data from the
NA10 collaboration [52] have been balanced for the neutron
excess. The correction was done by utilizing the leading-
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order DY cross section. Here, we account for this with the
isospin correction factor given in Eq. (8) of Ref. [67].

3.2 Treatment of neutrino DIS data

In the present work we make use of the CHORUS neu-
trino and antineutrino DIS data [50]. Similar measurements
are available also from the CDHSW [81] and NuTeV [82]
collaborations, but only for the CHORUS data the correla-
tions of the systematic uncertainties are directly available
in the form we need.3 Moreover, the 208Pb target has a
larger neutron excess than the iron targets of CDHSW and
NuTeV, thereby carrying more information on the flavor sep-
aration. The data are reported as double differential cross
sections dσ

ν,ν
i,exp/dxdy in the standard DIS variables and,

guided by our free-proton baseline fit CT14NLO [55], the
kinematic cuts we set on these data are Q2 > 4 GeV2 and
W 2 > 12.25 GeV2.4 In the computation of these NLO neu-
trino DIS cross sections, we apply the dominant electroweak
[83] and target-mass [84] corrections as in Refs. [42,43],
together with the SACOT quark-mass scheme.

In order to suppress the theoretical uncertainties related
to the free-proton PDFs, as well as experimental systematic
uncertainties, we treat the data following the normalization
prescription laid out in Ref. [43]. For each (anti)neutrino
beam energy E , we compute the total cross section as

σν,ν
exp (E) =

∑
i

dσ
ν,ν
i,exp

dxdy
�

xy
i δE, Ei , (15)

where Ei is the beam energy corresponding to the i th data
point. By �

xy
i we mean the size of the (x, y) bin (rectangles)

to which the i th data point belongs. The original data are then
normalized by the estimated total cross sections of Eq. (15)
as

dσ̃
ν,ν
i,exp

dxdy
≡ dσ

ν,ν
i,exp

dxdy

/
σν,ν

exp (E = Ei ). (16)

As discussed e.g. in [45,85], the χ2 contribution of data with
correlated uncertainties is obtained in terms of the covariance
matrix C as

χ2 =
∑
i, j

(
dσ̃

ν,ν
i,exp

dxdy
− dσ̃

ν,ν
i,th

dxdy

)
C−1

i j

(
dσ̃

ν,ν
j,exp

dxdy
− dσ̃

ν,ν
j,th

dxdy

)
,

(17)

3 http://choruswww.cern.ch/Publications/DIS-data/.
4 The cuts are more stringent here than for other DIS data as only
absolute cross sections are available (instead of those relative to a lighter
nucleus).

where now the theory values dσ̃
ν,ν
j,th/dxdy are the computed

differential cross sections normalized by the corresponding
integrated cross section (similarly to Eq. (16)). The elements
of the covariance matrix are in our case defined as

Ci j ≡ (δ̃stat
i )2δi j +

∑
k

β̃k
i β̃k

j , (18)

where the statistical uncertainty δ̃stat
i on dσ̃

ν,ν
i,exp/dxdy is com-

puted from the original statistical uncertainties δstat
i by

δ̃stat
i ≡ δstat

i /σ ν,ν
exp (Ei ). (19)

Here we neglect the statistical uncertainty of σν,ν(E) as for
this integrated quantity it is always clearly smaller than that
of the individual data points. The point-to-point correlated
systematic uncertainties β̃k

i for the normalized data points
we form as

β̃k
i ≡

(
dσ

ν,ν
i,exp

dxdy
+ βk

i

)/
σ

ν,ν
k (Ei ) − dσ̃

ν,ν
i,exp

dxdy
, (20)

where

σ
ν,ν
k (E) =

∑
i

(
dσ

ν,ν
i,exp

dxdy
+ βk

i

)
�

xy
i δE, Ei . (21)

Above, the index k labels the parameters controlling the
experimental systematic uncertainties and βk

i are the cross-
section shifts corresponding to a one standard deviation
change in the kth parameter. We note that β̃k

i in Eq. (20) for
the relative cross sections in Eq. (16) are constructed such that
if the βk

i correspond only to the same relative normalization
shift for all points, then β̃k

i are just zero. We also note that in

Eq. (18) we have assumed that the response of dσ̃
ν,ν
i,exp/dxdy

to the systematic uncertainty parameters is linear.
As shown in e.g. Ref. [42], the Q2 dependence of nuclear

effects in neutrino DIS data is weak. Hence, for a concise
graphical presentation of the data as a function of x , we inte-
grate over the y variable by

dσ̃
ν,ν
exp

dx
(E) =

∑
j

dσ̃
ν,ν
j,exp

dxdy
�

y
j δx,x j δE, E j , (22)

where �
y
j is the size of the y bin to which the j th data point

belongs, and x j the corresponding value of the x variable. The
overall statistical uncertainty to the relative cross section in
Eq. (22) is computed as

δstat(E, x) =
√√√√∑

j

(
δ̃stat

j �
y
j

)2
δx,x j δE,E j , (23)
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and the total systematic uncertainty is given by

δsys(E, x) =
√∑

k

[
δ

sys
k (E, x)

]2
, (24)

where

δ
sys
k (E, x) =

∑
j

β̃k
j �

y
j δx,x j δE, E j . (25)

In the plots for dσ̃
ν,ν
exp /dx presented in Sect. 5 (Figs. 20, 21),

the statistical and total systematic uncertainties have been
added in quadrature. We also divide by the theory values
obtained by using the CT14NLO free-proton PDFs (but still
with the correct amount of protons and neutrons). We stress
that Eqs. (22)–(25) are used only for a simple graphical pre-
sentation of the data but not for the actual fit.

3.3 Look-up tables for LHC observables and others

In order to efficiently include the LHC observables in our
fit at the NLO level, a fast method to evaluate the cross sec-
tions is essential. We have adopted the following pragmatic
approach: For a given observable, a hard-process cross sec-
tion σ pPb in pPb collisions, we set up a grid in the x variable
of the Pb nucleus, x0, . . . , xN = 1, and evaluate, for each x
bin k and parton flavor j

σ
pPb
j,k =

∑
i

f p
i ⊗ σ̂i j ⊗ f Pb

j,k, (26)

where σ̂i j are the coefficient functions appropriate for a given
process and f Pb

j,k involve only proton PDFs with no nuclear
modifications,

f Pb
j,k(x) ≡

∑
�

[
Z f p,Pb

� (x) + N f n,Pb
� (x)

] ∣∣∣∣
RPb

j =1,RPb
i 	= j =0

× θ (x − xk−1) θ (xk − x) . (27)

Thus, the functions f Pb
j,k pick up the partonic weight of the

nuclear modification RPb
j in a given interval xk−1 < x < xk .

Since the nuclear modification factors R A
i are relatively

slowly varying functions in x (e.g. in comparison to the abso-
lute PDFs), the observable σ pPb can be computed as a sum
of σ

pPb
j,k weighted by the appropriate nuclear modification,

σ pPb =
∑
j,k

σ
pPb
j,k RPb

j (xk−1 < x < xk). (28)

As an illustration, in Fig. 3, we show the histograms of σ
pPb
j,k

corresponding to W+ production measured by CMS in the
bin 1 < ηlab < 1.5. For the electroweak LHC observables

σpPb
uV ,k

σpPb
dV ,k

σpPb
u,k

σpPb
d,k

σpPb
s,k

σpPb
c,k

σpPb
g,k

x

σ
pP

b
j,

k
[fb

],
C

M
S

W
+

,1
<

η
<

1.
5

Fig. 3 An example of the σ
pPb
j,k histograms used in evaluating the LHC

pPb cross sections in Eq. (28). The cross section σ pPb is computed as
a sum of all the bins weighted by the appropriate nuclear modification
factors. The sum of all the bins gives the cross section with no nuclear
modifications (RPb

i = 1)

we have used the MCFM code [86] to compute the grids, and
for dijet production the modified EKS code [87–89].

We set up similar grids also for inclusive pion production
in DAu collisions at RHIC using the INCNLO [90] code
with KKP FFs [91], and for the DY process in π A collisions
using MCFM with the GRV pion PDFs [92]. In all cases,
we have checked that the grids reproduce a direct evaluation
of the observables within 1% accuracy in the case of EPS09
nuclear PDFs.

4 Analysis procedure

The standard statistical procedure for comparing experimen-
tal data to theory is to inspect the behavior of the overall χ2

function, defined as

χ2 (a) ≡
∑

k

χ2
k (a) , (29)

where a is a set of theory parameters and χ2
k (a) denotes the

contribution of each independent data set k,

χ2
k (a) ≡

∑
i, j

[Ti (a) − Di ] C−1
i j

[
Tj (a) − D j

]
. (30)

Here, Ti (a) denote the theoretical values of the observ-
ables in the data set k, Di are the corresponding experi-
mental values, and Ci j is the covariance matrix. In most
cases, only the total uncertainty is known, and in this case
Ci j = (δuncorr.

i )2δi j , where δuncorr.
i is the point-to-point

uncorrelated data uncertainty. In the case that the only corre-
lated uncertainty is the overall normalization δnorm., we can
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also write

χ2
k (a) =

(
1 − fN

δnorm.

)2

+
∑

i

[
Ti (a) − fN Di

δuncorr.
i

]2

, (31)

which is to be minimized with respect to fN . All the uncer-
tainties are considered additive (e.g. the possible D’Agostini
bias [93] or equivalent is neglected). The central fit is then
defined to correspond to the minimum value of the global χ2

obtainable with a given set of free parameters,

χ2
(

a0
)

≡ min[χ2 (a)]. (32)

In practice, we minimize the χ2 function using the Leven-
berg–Marquardt method [94–96].

In our previous EPS09 analysis, additional weight fac-
tors were included in Eq. (29) to increase the importance
of some hand-picked data sets. We emphasize that in the
present EPPS16 study we have abandoned this practice due
to the subjectiveness it entails. In the EPS09 analysis the use
of such data weights was also partially related to technical
difficulties in finding a stable minimum of χ2 (a) when using
the MINUIT [97] library. In the EPS09 analysis an additional
penalty term was also introduced to the χ2 (a) function to
avoid unphysical A dependence at small x (i.e. to have larger
nuclear effects for larger nuclei). Here, such a term is not
required because of the improved functional form discussed
in Sect. 2.

As the nuclear PDFs are here allowed to go negative it is
also possible to drift to a situation in which the longitudinal
structure function F A

L becomes negative. To avoid this, we
include penalty terms in χ2 (a) at small x that grow quickly
if F A

L < 0. We observe, however, that the final results in
EPPS16 are not sensitive to such a positiveness requirement.

4.1 Uncertainty analysis

As in our earlier analysis EPS09, we use the Hessian-matrix-
based approach to estimate the PDF uncertainties [98]. The
dominant behavior of the global χ2 about the fitted minimum
can be written as

χ2(a) ≈ χ2
0 +

∑
i j

δai Hi jδa j , (33)

where δa j ≡ a j − a0
j are differences from the best-fit values

and χ2
0 ≡ χ2(a0) is the lowest attainable χ2 of Eq. (32). The

Hessian matrix Hi j can be diagonalized by defining a new
set of parameters by

zk ≡
∑

j

Dk jδa j , (34)

with

Dkj ≡ √
εkv

(k)
j , (35)

where εk are the eigenvalues and v
(k)
j are the components of

the corresponding orthonormal eigenvectors of the Hessian
matrix,

Hi jv
(k)
j = εkv

(k)
i , (36)∑

i

v
(k)
i v

(�)
i =

∑
i

v
(i)
k v

(i)
� = δk�. (37)

In these new coordinates,

χ2(z) ≈ χ2
0 +

∑
i

z2
i . (38)

In comparison to Eq. (33), here in Eq. (38) all the cor-
relations among the original parameters ai are hidden in the
definition Eq. (34), which facilitates a very simple error prop-
agation [98]. Indeed, since the directions zi are uncorrelated,
the upward/downward-symmetric uncertainty for any PDF-
dependent quantity O can be written as

�O =
√√√√∑

i

(�zi )
2
(

∂O
∂zi

)2

, (39)

with an uncertainty interval �zi = (t+i + t−i )/2 where t±i
are zi -interval limits which depend on the chosen tolerance
criterion. The partial derivatives in Eq. (39) are evaluated
with the aid of PDF error sets S±

i defined in the space of zi

coordinates in terms of t±i as

z(S±
1 ) = ±t±1 (1, 0, . . . , 0) ,

... (40)

z(S±
N ) = ±t±N (0, 0, . . . , 1) ,

where N is the number of the original parameters ai . It then
follows that

�O = 1

2

√∑
i

[O (
S+

i

) − O (
S−

i

)]2
. (41)

Although simple on paper, in practice it is a non-trivial task
to obtain a sufficiently accurate Hessian matrix in a multivari-
ate fit such that Eq. (38) would be accurate. One possibility,
used e.g. in Ref. [99], is to use the linearized Hessian matrix
obtained from Eq. (30)

H linearized
i j ≡

∑
k,�

∂Tk

∂ai
C−1

k�

∂T�

∂a j
, (42)

123



Eur. Phys. J. C (2017) 77 :163 Page 9 of 28 163

where the partial derivatives are evaluated by finite differ-
ences. The advantage is that by this definition, the Hessian
matrix is always positive definite and thereby has automat-
ically positive eigenvalues and e.g. Eq. (34) is always well
defined.

Another possibility, which is the option chosen in the
present study, is to scan the neighborhood of the minimum
χ2 and fit it with an ansatz

χ2(a) = χ2
0 +

∑
i, j

δai hi jδa j , (43)

whose parameters hi j then correspond to the components
of the Hessian matrix. While this gives more accurate
results than the linearized method (where some informa-
tion is thrown away), the eigenvalues of the Hessian become
easily negative for the presence of third- and higher-order
components in the true χ2 profile. Hence, to arrive at
positive-definite eigenvalues, some manual labour is typi-
cally required e.g. in tuning the parameter intervals used
when scanning the global χ2. Yet, the resulting uncertainties
always depend somewhat on the chosen parameter intervals,
especially when the uncertainties are large. To improve the
precision, we have adopted an iterative procedure similar to
the one in Ref. [100]: After having obtained the first estimate
for the Hessian matrix and the z coordinates, we recompute
the Hessian matrix in the z space by re-scanning the vicinity
of z = 0 and fitting it with a polynomial

χ2(z) = χ2
0 +

∑
i, j

zi ĥi j z j , (44)

where ĥi j is an estimate for the Hessian matrix in the z space.
We then re-define the z coordinates by

zk →
∑

�

D̂k�δa�, (45)

where

D̂k� ≡
∑

j

√
ε̂k v̂

(k)
j D j�, (46)

and ε̂k and v̂(k) are now the eigenvalues and eigenvectors of
the matrix ĥi j . Then we repeat the iteration a few times, using
the D̂i j of the previous round as Di j in Eq. (46). Ideally, one
should find that the eigenvalues ε̂k converge to unity during
the iteration but in practice, some deviations will always per-
sist for the presence of non-quadratic components in the true
χ2 profile. We have also noticed that, despite the iteration,
the resulting uncertainty bands still depend somewhat on the
finite step sizes and grids used in the χ2-profile scanning
especially in the regions where the uncertainties are large. In
such regions the Hessian method starts to be unreliable and

the uncertainties found represent only the lower limits for the
true uncertainties.

The global χ2 profiles as a function of the final eigen-
vector directions, which we arrive at in the present EPPS16
analysis, are shown in Fig. 4. In obtaining these, during the
iteration, the finite step sizes (zi in Eq. (44)) along each pro-
visional eigenvector direction were adjusted such that the
total χ2 increased by 5 units from the minimum. As seen in
the figure, in most cases, the quadratic approximation gives a
very good description of the true behavior of χ2, but in some
cases higher-order (e.g. cubic and quartic) components are
evidently present. The effects of higher-order components
can be partly compensated by using larger step sizes dur-
ing the iteration such that the quadratic polynomial approx-
imates the true χ2 better up to larger deviations from the
minimum (but is less accurate near the minimum). However,
we have noticed that with increasing step sizes the resulting
PDF uncertainties get eventually smaller, which indicates
that some corners of the parameter space are not covered as
completely as with the now considered 5-unit increase in χ2.

The basic idea in the determination of the PDF uncertainty
sets in the present work is similar to that in the EPS09 analy-
sis. As in EPS09, for each data set k with Nk data points we
determine a 90% confidence limit χ2

k,max by solving

∫ Mk

0

dχ2

2�(Nk/2)

(
χ2

2

)Nk/2−1

exp
(
−χ2/2

)
= 0.90, (47)

where

Mk = χ2
k,max × Nk − 2

χ2
k,0

, (48)

and in which χ2
k,0 is the value of χ2 for kth data set at the

global minimum. The integrand in Eq. (47) is the usual χ2

distribution – the probability density to obtain a given value of
χ2 when the data are distributed in a Gaussian way around
the known truth. The effect of Eq. (48) is, as sketched in
Fig. 5, to scale the χ2 distribution such that its maximum
occurs at the central value of the fit χ2

0,k , against which the
confidence limit is defined. In other words, we assume that if
the experiment would be repeated several times the outcome
would follow the scaled distribution (the blue curve in Fig. 5)
and not the ideal one (the green curve in Fig. 5). This proce-
dure allows one to define confidence limits also for data sets
which happen to give very large χ2

k /Nk for e.g. underesti-
mated uncertainties or particularly large fluctuations [101].

For each eigenvector direction zi and data set k we find
the interval [zk

i,min, zk
i,max] for which χ2

k < χ2
k,max. Looping

over all the data sets k we then find the intersection of the
intervals [zk

i,min, zk
i,max] for each i . In other words, we require

all the individual data sets to remain within the defined 90%
limit,
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Fig. 5 Determination of 90% confidence limit for an individual data
set with Nk = 50 data points and for which the global minimum corre-
sponds to χ2

k,0 = 80

zi,min ≡ max{zk
i,min},

zi,max ≡ min{zk
i,max}. (49)

The outcome of this process is shown in Figs. 6 and 7
for all eigendirections. The individual limits [zk

i,min, zk
i,max]

are shown as solid lines (with bars or arrows) and the
intersection [zi,min, zi,max] as a gray band. This proce-
dure is repeated for all eigendirections i . We note that
we have here grouped together all the data (summing the
χ2 contributions) from a given experiment and thus, in
Figs. 6 and 7 there are less labels than individual con-
tributions in Table 1. Motivation for such a grouping is
that even if an experiment gives data for various nuclei
(e.g. SLAC E139) these are not unrelated e.g. for the
baseline measurement and detector systematics. Further-
more, it may also happen (e.g. direction 8, lower limit; in
Fig. 6) that none of the individual experiments (with grouped
data) places stringent uncertainty limits, i.e. the intervals
[zi,min, zi,max] become rather wide and the total χ2grows
substantially above χ2

0 . In such a case, the data from var-
ious experiments together may provide a better constraint
than an individual experiment. To take this into account,
we treat the aggregate of all the data as a single addi-
tional “experiment” (the first rows in the panels of Figs. 6
and 7.

We study two options to define the PDF uncertainty sets
S±

i . In the first one, we set t+i = zi,max and t−i = −zi,min in
Eq. (40), i.e.,
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Fig. 6 Determination of the confidence limits for the eigendirections
1 to 12. The bars show the limits zk

i,min, zk
i,max for each individual (or

grouped) data set k and the marker in between indicates where the min-
imum χ2

k,0 of that data set is reached. The set “all” refers to all data

combined. An arrow signifies that the confidence limit has not yet been
reached in the scanned interval. The gray bands are the intersection
intervals

[
zi,min, zi,max

]
explained in the text
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Fig. 7 As Fig. 6 but for eigendirections 13 to 20

z(S+
1 [dyn]) = z1,max (1, 0, . . . , 0)

z(S−
1 [dyn]) = z1,min (1, 0, . . . , 0)

... (50)

z(S+
N [dyn]) = zN ,max (0, 0, . . . , 1)

z(S−
N [dyn]) = zN ,min (0, 0, ..., 1) ,

where the numbers zi,min/max are obtained as described
above. This is sometimes referred to as dynamic tolerance
determination [99]. For the second option, we specify an
average tolerance �χ2 as

�χ2 ≡ 1

N

∑
i

χ2
(
S−

i [dyn])+χ2
(
S+

i [dyn])−2χ2
0

2
, (51)

where χ2(S±
i [dyn]) are the values of χ2 that correspond to

the error sets S±
i

[
dyn

]
defined above. For the present fit with

all the data, we find �χ2 ≈ 52. This averaging process is

illustrated in Fig. 8 which shows the individual differences
χ2(S−

i [dyn]) − χ2
0 and χ2(S+

i [dyn]) − χ2
0 as bars together

with the found average. In this case the PDF uncertainty sets
S±

i

[
�χ2

]
are defined by imposing a fixed global tolerance

�χ2 = 52,

z(S±
1 [�χ2]) = δz±

1 (1, 0, . . . , 0)

... (52)

z(S±
N [�χ2]) = δz±

N (0, 0, ..., 1)

where the numbers δz±
i are the deviations in positive and

negative direction chosen such that the χ2 grows by 52. The
obtained values for δz±

i are listed in Table 2.
As expected, Fig. 8 shows rather significant variations

in χ2(S±
i [dyn]) − χ2

0 depending on which eigendirection
one looks at. However, the corresponding variations in
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Fig. 8 The individual values of χ2(S±
k ) − χ2

0 compared with the average �χ2 = 52

Table 2 The parameter
deviations δz±

i defining the
EPPS16 error sets in Eq. (52)

δz−
i Value δz+

i Value

δz−
1 −5.620 δz+

1 5.121

δz−
2 −5.489 δz+

2 5.395

δz−
3 −5.496 δz+

3 5.344

δz−
4 −6.705 δz+

4 6.412

δz−
5 −5.631 δz+

5 6.194

δz−
6 −7.013 δz+

6 7.148

δz−
7 −7.021 δz+

7 7.219

δz−
8 −7.092 δz+

8 7.268

δz−
9 −6.532 δz+

9 7.935

δz−
10 −7.231 δz+

10 7.133

δz−
11 −7.396 δz+

11 6.968

δz−
12 −7.674 δz+

12 6.814

δz−
13 −7.343 δz+

13 7.065

δz−
14 −6.863 δz+

14 7.749

δz−
15 −6.810 δz+

15 7.080

δz−
16 −5.847 δz+

16 6.327

δz−
17 −5.669 δz+

17 7.238

δz−
18 −7.531 δz+

18 6.510

δz−
19 −6.240 δz+

19 7.576

δz−
20 −4.485 δz+

20 10.53

zi,min/max ∼
√

χ2(S±
i [dyn]) − χ2

0 which determine the error
sets are much milder. Hence, it can be expected that the two
error-set options, S±

i [dyn] and S±
i [�χ2], will eventually lead

to rather similar uncertainty estimates. In the following (see
Fig. 11), we will verify that this indeed is the case. Hence, and
also to enable PDF reweighting [45], we choose the S±

i [�χ2]
with the single global tolerance �χ2 as the final EPPS16
error sets.

As in EPS09, the propagation of PDF uncertainties into
an observable O will be here computed separately for the
upward and downward directions,

(
δO±)2 = (53)∑
i

[max
min{O(S+

i ) − O(S0),O(S−
i ) − O(S0), 0}]2

,

where O (S0) denotes the prediction with the central set and
O (

S±
i

)
are the values computed with the error sets [102].

5 Results

5.1 Parametrization and its uncertainties

The parameter values that define the fit functions, the nuclear
modifications R A

i in Eq. (2) at the initial scale Q2
0 are listed

in Table 3 where we also indicate the parameters that were
fixed to those of other parton species or assumed to have
some particular value. The fixed value of β = 1.3 for all
flavors as well as setting γya = 0 for sea quarks are motivated

Table 3 List of parameters defining the central set of EPPS16 at the
initial scale Q2

0 = 1.69 GeV2. The numbers in bold indicate the 20
parameters that were free in the fit

Parameter uV dV u

y0(Aref ) Sum Rule Sum rule 0.844

γy0 Sum Rule Sum rule 0.731

xa 0.0717 As uV 0.104

xe 0.693 As uV As uV

ya(Aref ) 1.06 1.05 1.03

γya 0.278 As uV 0, fixed

ye(Aref ) 0.908 0.943 0.725

γye 0.288 As uV As uV

β 1.3, fixed 1.3, fixed 1.3, fixed

Parameter d s g

y0(Aref ) 0.889 0.723 Sum rule

γy0 as u as u Sum rule

xa As u As u 0.0820

xe As uV As uV As uV

ya(Aref ) 0.919 1.24 1.12

γya 0, fixed 0, fixed As uV

ye(Aref ) As u As u 0.874

γye As uV As uV As uV

β 1.3, fixed 1.3, fixed 1.3, fixed
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Fig. 9 The EPPS16 nuclear modifications for carbon (leftmost
columns) and lead (rightmost columns) at the parametrization scale
Q2 = 1.69 GeV2 and at Q2 = 10 GeV2. The thick black curves corre-

spond to the central fit S0 and the dotted curves to the individual error
sets S±

i

[
�χ2

]
of Eq. (52). The total uncertainties are shown as blue

bands

123



Eur. Phys. J. C (2017) 77 :163 Page 15 of 28 163

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10
-4

10
-3

10
-2

10
-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10
-4

10
-3

10
-2

10
-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10
-4

10
-3

10
-2

10
-1

1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10
-4

10
-3

10
-2

10
-1

1

EPPS16
set S−

1

set S+
1

EPPS16
set S−

1

set S+
1

EPPS16
set S−

16

set S+
16

set S−
10

set S+
10

EPPS16
set S−

16

set S+
16

set S−
10

set S+
10

x

x

x

x

R
P

b
u

V
(x

,Q
2

=
1.

69
G

eV
2 )

R
P

b
d
V
(x

,Q
2

=
1.

69
G

eV
2 )

R
P

b
u

(x
,Q

2
=

1.
69

G
eV

2 )
R

P
b

d
(x

,Q
2

=
1.

69
G

eV
2 )

Fig. 10 The EPPS16 nuclear modifications for valence and sea u &
d quarks for lead at the parametrization scale Q2 = 1.69 GeV2. The
solid black curves correspond to the central result and the dotted/dashed
curves to the specific error sets as indicated. The total uncertainties are
shown as blue bands

by the EPS09 analysis. Freeing the latter easily leads to an
unphysical case (γya < 0) and thus we have decided to keep
it fixed at this stage.

The R A
i functions themselves with error sets of Eq. (52)

and uncertainty bands of Eq. (53) are plotted in Fig. 9 for
carbon and lead nuclei at Q2 = Q2

0 and Q2 = 10 GeV2.
Regarding these results, we make the following observations:

First, the obtained valence modifications R A
uV

and R A
dV

are
very similar in the central set S0, and strongly anticorrelated:
as the average valence modification is fairly well constrained
(see Fig. 27) an error set whose, say, R A

uV
is clearly below

the central value has to have an Rd A
V

which is correspond-
ingly above the central value, and vice versa. This is further
demonstrated in Fig. 10 where only the errors sets S±

1 are
shown for valence. The large error bands for R A

uV
and R A

dV
at small x in Fig. 9 reflect the fact that the flavor separation
is not stringently constrained in the antishadowing region:
the finite uncertainties there induce (via the sum rules) larger
uncertainties in the shadowing region; see Fig. 10.

Second, interestingly also the u and d sea-quark modifica-
tions are very similar in the central set S0, and anticorrelated
(except in the large-x region where they were assumed to be
the same at Q2

0), though not as strongly as the valence quarks
because also the strange-quark distribution plays some role.
An example is shown in Fig. 10 where the errors sets S±

10
and S±

16 have been plotted. In contrast to the valence quarks,
individual sets are not always anticorrelated throughout all

the x values, but sets that are anticorrelated e.g. near xa can
be very similar toward x → 0.

Third, the central value of the strange-quark nuclear mod-
ification indicates stronger nuclear effects than for the other
light sea quarks. On the other hand, the uncertainty is also
significant and even a large enhancement at small x appears
possible. While such an effect is theoretically unlikely (we
would expect shadowing), it is consistent with the utilized
data whose uncertainties our uncertainty bands represent.
It should also be borne in mind that the determination of
the strange quark in CT14 (our baseline PDF) may suffer
from uncertainties (e.g. related to treatment of dimuon pro-
cess in neutrino–nucleus DIS) and can, to some extent, affect
the nuclear modifications we obtain. Thus, building a “hard
wall” e.g. prohibiting an enhancement at small x is not jus-
tified either. Nevertheless, the found central values of the
strange-quark nuclear modifications are clearly in a sensible
ballpark.

Fourth, for gluon distributions the uncertainties are large
at small x at Q2

0 but quickly diminish as the scale is increased.
The gluon distributions in some error sets also go negative
at small x at low Q2 but since FL remains positive, this is
allowed.

Fifth, on average, the nuclear effects of lead tend to be
stronger than those of carbon and also the uncertainties on
lead are larger than those on carbon. Given that most of
the data are for heavier nuclei than carbon, especially the
smaller errors for carbon may appear a bit puzzling. The rea-
son is in the new way of parametrizing the A dependence of
the nuclear effects, see Eq. (3), that favours larger nuclei to
exhibit larger nuclear effects.

Sixth, the parametrization bias that our fit function entails
is particularly well visible in the valence-quark panels where
a narrow “throat” at x ≈ 0.02 can be seen. This is an artifact
of not allowing for more freedom at small x while requiring
the sum rules in Eq. (4) and Eq. (5): to satisfy the sum rule,
an enhancement around x = 0.1 must be accompanied by a
depletion at small x (or vice versa), and since xa for valence
is fairly well determined the fit function always crosses unity
near x ≈ 0.02.

In Sect. 4.1 we mentioned that the two error-determination
options, the dynamical tolerance and fixed global tolerance,
lead to similar uncertainty estimates. To demonstrate this,
we plot in Fig. 11 the error bands of the nuclear effects RPb

i
at Q2 = 10 GeV2 obtained correspondingly from the error
sets S±

i [dyn] and S±
i [�χ2]. Indeed, we find no significant

differences between the two options.

5.2 Comparison with data

Figures 12, 13, 14, 15, 16, 17, 18, 19, 20 and 21 present
a comparison of the EPPS16 fit with the experimental data
of Table 1, computing the PDF error propagation accord-
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Fig. 11 The error bands of nuclear modifications at Q2 = 10 GeV2 from the global tolerance �χ2 = 52 used in the final EPPS16 fit (black
central line and light-blue bands) compared to the error bands from the dynamical tolerance determination (hatching) explained in Sect. 4.1
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Fig. 12 The Q2 dependence of structure-function ratios as measured by the NMC collaboration [74], compared with the EPPS16 fit. Solid lines
show our central set results, and error bands are computed from Eq. (53)
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Fig. 13 Ratios of structure functions for various nuclei as measured
by the NMC [73,74] and EMC [78] collaborations, compared with the
EPPS16 fit. In the rightmost panel the labels “addendum” and “chariot”

refer to the two different experimental setups in Ref. [78]. For a better
visibility, some data sets have been offset by a factor of 0.92 as indicated

ing to Eq. (53). The error bars shown on the experimental
data correspond to the statistical and systematic errors added
in quadrature. The charged-lepton DIS data are shown in
Figs. 12, 13, 14 and 15. We note that, for undoing the isoscalar
corrections as explained in Sect. 3.1, the data appear some-
what different from those e.g. in the EPS09 paper. On aver-
age, the data are well reproduced by the fit. In some cases the
uncertainty bands are rather asymmetric (see e.g. the NMC
data panel in Fig. 15) which was the case in the EPS09 fit as
well. This is likely to come from the fact that the A depen-
dence is parametrized only at few values of x (small-x limit,
xa , xe) and in between these points the A dependence appears
to be somewhat lopsided in some cases. The Q2 dependence
of the data visible in Figs. 12 and 14 is also nicely consistent
with EPPS16.

The pA vs. pD Drell–Yan data are shown in Figs. 16 and
17. In the calculation of the corresponding differential NLO
cross sections dσDY/dxdM we define x1,2 ≡ (M/

√
s)e±y

where M is the invariant mass and y the rapidity of the dilep-
ton. The scale choice in the PDFs is Q = M . While these data
are well reproduced, the scatter of the data from one nucleus
to another is the main reason we are unable to pin down any
systematic A dependence for the sea quarks at xa (some A
dependence develops via DGLAP evolution, however). For
example, as is well visible in Fig. 17, it is not clear from the
data whether there is a suppression or an enhancement for
x � 0.1.

The pion–A DY data are presented in Fig. 18. As is evi-
dent from the figure, these data set into the EPPS16 fit without
causing a significant tension. Overall, however, the statisti-
cal weight of these data is not enough to set stringent addi-
tional constraints to nuclear PDFs. Similarly to the findings
of Ref. [67], the optimal data normalization of the lower-

energy NA10 data (the lower right panel) is rather large
( fN = 1.121), but the x2 dependence of the data is well
in line with the fit.

The collider data, i.e. new LHC pPb data as well as the
PHENIX DAu data, are shown in Fig. 19. To ease the inter-
pretation of the LHC data (forward-to-backward ratios), the
baseline with no nuclear effects in PDFs is always indicated
as well. The baseline deviates from unity for isospin effects
(unequal amount of protons and neutrons in Pb) as well as
for experimental acceptances. For the electroweak observ-
ables, the nuclear effects cause suppression in the computed
forward-to-backward ratios (with respect to the baseline with
no nuclear effects) as one is predominantly probing the region
below x ∼ 0.1 where the net nuclear effect of sea quarks has
a downward slope toward small x . Very roughly, the probed
nuclear x-regions can be estimated by x ≈ (MW,Z/

√
s)e−y

and thus, toward more forward rapidities (y > 0) one probes
smaller x than in the backward direction (y < 0). The sup-
pression comes about as smaller-x quark distributions are
divided by larger-x (less-shadowed or antishadowed) quarks.
In the case of dijets, the nuclear PDFs are sampled at higher
x and, in contrast to the electroweak bosons, an enhancement
is observed. In our calculations, this follows essentially from
antishadowed gluons becoming divided by EMC-suppressed
gluon distributions; see Ref. [70] for more detailed discus-
sions. The PHENIX pion data [31] is also well consistent
with EPPS16, though, for the more precise CMS dijet data,
its role is no longer as essential as in the EPS09 analysis.

Finally, comparisons with the CHORUS neutrino and
antineutrino data are shown in Figs. 20 and 21. The data
exhibit a rather typical pattern of antishadowing followed by
an EMC effect at large x . The incident beam energies are not
high enough to reach the small-x region where a shadowing
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Fig. 14 The Q2 dependence of the ratio FSn
2 /FC

2 for various values of x as measured by NMC [79], compared with EPPS16

effect would be expected. Toward small x , however, the data
do appear to show a slight downward bend, a possible onset
of shadowing.

5.3 Comparison with baseline

To appreciate the effects induced by the new data (pion–A
DY, neutrino DIS and LHC data) in the EPPS16 fit, we have
performed another fit excluding these data sets but still cor-
recting the DIS data for the isospin effects. This fit is referred
to as “baseline” in the following. The resulting nuclear mod-
ifications for Pb at Q2 = 10 GeV2 with a comparison to
the EPPS16 results are shown in Fig. 22. For the baseline
fit here, the global tolerance is �χ2

baseline = 35. As seen
in the figure, it is not always the case that the uncertain-
ties of EPPS16 would be smaller than those of the baseline.
This originates from the mutually different global tolerances
of the two fits and from the differences of the χ2 behav-
ior around the minima. In any case, the uncertainty bands
always overlap and both of these enclose the central values
both from the baseline fit and the full analysis. Thus, the two
are consistent. Qualitatively, the most notable changes are
that, in comparison to the baseline, the EPPS16 central val-
ues of both valence-quark flavors as well as that of gluons
exhibit a very similar antishadowing effect followed by an

EMC pit. We have observed that this difference is mostly
caused by the addition of neutrino DIS data (valence quarks)
and the CMS dijet data (gluons). This is also illustrated in
Fig. 23 where the left-hand panel shows the χ2 contribu-
tion of the CHORUS data as a function of yuV

a − ydV
a (the

antishadowing peak heights for Aref as in Table 3) and the
right-hand panel the χ2 contribution of the CMS dijet data
as a function of yg

a − yg
e . The individual points correspond to

the EPPS16 and baseline-fit error sets. From these panels we
learn that in order to optimally reproduce the CHORUS data
we need yuV

a ∼ ydV
a , and agreement with the CMS dijet data

requires yg
a > yg

e (EMC effect). The other new data (pion–A
DY, LHC electroweak data) do not generate such a strong
pull away from the central set of the baseline fit. Also the
PHENIX data prefers a solution with a gluon EMC effect,
but the contribution of these data in the total χ2 budget is
so small that such a tendency is practically lost in the noise
(in the EPS09 analysis this was compensated by giving these
data an additional weight). The inclusion of the dijet data has
also decreased the gluon uncertainties at large x , excluding
the solutions with no antishadowing. In the case of u and d
sea quarks there are no significant differences between the
baseline fit and EPPS16. It appears that the s-quark uncer-
tainty at small x has somewhat reduced by the inclusion of
the new data, but the uncertainty is in any case large.

123



Eur. Phys. J. C (2017) 77 :163 Page 19 of 28 163

x x

dσ
�A D

IS
(x

,Q
2 )

/d
σ

�D D
IS

(x
,Q

2 )

F
A 2
(x

,Q
2 )

/F
C 2
(x

,Q
2 )

Fig. 15 The SLAC [72] and NMC [75] data for DIS cross-section and
structure-function ratios compared with the EPPS16 fit. For a better
visibility, the SLAC data have been multiplied by 1.2, 1.1, 1.0, 0.9 for

Q2 = 2 GeV2, Q2 = 5 GeV2, Q2 = 10 GeV2, Q2 = 15 GeV2, and
the largest-x set by 0.8

Fig. 16 Ratios of Drell–Yan dilepton cross sections dσ pA/dσ pBe as a function of x1 at various values of fixed M as measured by E866 [77],
compared with EPPS16
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Fig. 17 Ratios of Drell–Yan cross sections measured by E772 as a function of x2 at fixed values of M , compared with the EPPS16 fit

Fig. 18 The π±–A Drell–Yan
data from E615 [53], NA3 [51]
and NA10 [52], compared with
the EPPS16 fit. The NA10 data
have been multiplied by the
optimized normalization factor
fN from Eq. (31)

Eπ± = 250 GeV

xπ± > 0.36

4.05 GeV < M�+�− < 8.55 GeV

EPPS16 NA10 data
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The values of χ2/Ndata for individual data sets are shown
in Fig. 24. For the CMS dijet data the baseline fit gives a very
large value but this disagreement disappears when these data
are included in the fit. However, upon including the new data
no obvious conflicts with the other data sets show up and
thus the new data appear consistent with the old. While it is
true that on average χ2/Ndata for the old data grows when
including the new data (and this is mathematically inevitable)
no disagreement (χ2/Ndata � 1) occurs. For the NMC Ca/D
data χ2/Ndata is somewhat large but, as can be clearly seen
from Fig. 13, there appears to be large fluctuations in the
data (see the two data points below the EPPS16 error band).
While the improvement in χ2/Ndata for the CHORUS data

looks smallish in Fig. 24, for the large amount of data points
(824) the absolute decrease in χ2 amounts to 106 units and
is therefore significant.

5.4 Comparison with other nuclear PDFs

In Fig. 25 we compare our EPPS16 results at the scale
Q2 = 10 GeV2 with those of the nCTEQ15 analysis [35].
The nCTEQ15 uncertainties are defined by a fixed tolerance
�χ2 = 35, which is similar to our average value �χ2 = 52
and in this sense one would expect uncertainty bands of com-
parable size. The quark PDFs were allowed to be partly fla-
vor dependent in the nCTEQ15 analysis (although to a much
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Fig. 19 The LHC pPb data from CMS [37,46,48] and ATLAS [49]
for Z (upper panels) W± (middle panels), and dijet production (lower
left panel) compared with the EPPS16 fit. The dashed lines indicate the
results with no nuclear modifications in the PDFs. The PHENIX DAu

data [31] for inclusive pion production (lower right panel) are shown
as well and have been multiplied by the optimal normalization factor
fN = 1.03 computed by Eq. (31)
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Fig. 20 The neutrino–nucleus DIS data based on CHORUS [50] measurements, compared with the EPPS16 fit. The data as well as the theory
curves have been obtained as described in Sect. 3.2

Eν =25 GeV Eν =35 GeV Eν =45 GeV Eν =55 GeV Eν =70 GeV

Eν =90 GeV Eν =110 GeV Eν =130 GeV Eν =170 GeV

Fig. 21 As Fig. 20 but for antineutrino beam

lesser extent than in EPPS16), hence we show the compari-
son for all parametrized parton species. The two fits (as well
as nCTEQ15 and our baseline fit in Fig. 22) can be consid-
ered compatible since the uncertainty bands always overlap.
For all the sea quarks the nCTEQ15 uncertainties appear
clearly smaller than those of EPPS16 though less data was
used in nCTEQ15. This follows from the more restrictive
assumptions made in the nCTEQ15 analysis regarding the
sea-quark fit functions: nCTEQ15 has only 2 free parame-
ters for all sea quarks together, while EPSS16 has 9. Specif-
ically, the nCTEQ15 analysis constrains only the sum of
nuclear ū+d̄ with an assumption that the nuclear s quarks are
obtained from ū + d̄ in a fixed way. In contrast, EPPS16 has
freedom for all sea-quark flavors separately, and hence also
larger, but less biased, error bars. For the valence quarks,

the nCTEQ15 uncertainties are somewhat larger than the
EPPS16 errors around the x-region of the EMC effect which
is most likely related to the extra constraints the EPPS16 anal-
ysis has obtained from the neutrino DIS data. Especially the
central value for dV is rather different from that of EPPS16.
The very small nCTEQ15 uncertainty at x ∼ 0.1 is pre-
sumably a similar fit-function artifact as what we have for
EPPS16 at slightly smaller x . Such a small uncertainty is
supposedly also the reason why nCTEQ15 arrives at smaller
uncertainties in the shadowing region than EPPS16. For the
gluons the nCTEQ15 uncertainties are clearly larger than
those of EPPS16, except in the small-x region. While, in
part, the larger uncertainties are related to the LHC dijet data
that are included in EPPS16 but not in nCTEQ15, this is not
the complete explanation as around x ∼ 0.1 the nCTEQ15
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Fig. 22 The nuclear modifications at Q2 = 10 GeV2 from the EPPS16 fit (black central line and light-blue bands) compared with the baseline fit
(green curves with hatching) which uses only the data included in the EPS09 fit
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uncertainties also largely exceed the uncertainties from our
baseline fit (see Fig. 22). Since the data constraints for glu-
ons in both analyses are essentially the same, the reason must
lie in the more stringent Q2 cut (Q2 > 4 GeV2) used in the
nCTEQ15 analysis, which cuts out low-Q2 data points where
the indirect effects of gluon distributions via parton evolu-
tion are the strongest. The inclusion of the dijet data into the
nCTEQ15 analysis would clearly have a dramatic impact.
This can be understood from Fig. 26 where we compare the
CMS dijet data also with the nCTEQ15 prediction (here, we

have formed the nCTEQ15 nuclear modifications from their
absolute distributions and used the same dijet grid as in the
EPPS16 analysis).

A comparison of EPPS16 with EPS09 [33] and DSSZ [34]
is presented in Fig. 27. In the EPS09 and DSSZ analyses the
nuclear modifications of valence and sea quarks were flavor
independent at the parametrization scale and, to make a fair
comparison we plot, in addition to the gluons, the average
nuclear modifications for the valence quarks and light sea
quarks,
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Fig. 25 Comparison of the EPPS16 nuclear modifications (black central curve with shaded uncertainty bands) with those from the nCTEC15
analysis [35] (red curves with hatching) at Q2 = 10 GeV2

RPb
V ≡ up/Pb

V + dp/Pb
V

up
V + dp

V

, (54)

RPb
S ≡ up/Pb + d

p/Pb + sp/Pb

up + d
p + sp

, (55)

instead of individual flavors. For the valence sector, all
parametrizations give very similar results except DSSZ in
the EMC-effect region. As noted earlier in Sect. 3.1 and in
Ref. [6] this is likely to originate from ignoring the isospin
corrections in the DSSZ fit. The sea-quark modifications look
also mutually rather alike, the EPPS16 uncertainties being
somewhat larger than the others as, being flavor dependent,
the sea quarks in EPPS16 have more degrees of freedom. As
has been understood already some while ago [5,6], the DSSZ

parametrization has almost no nuclear effects in gluons as
nuclear effects were included in the FFs [36] when computing
inclusive pion production at RHIC. As a result, DSSZ does
not reproduce the new CMS dijet measurements as shown
here in Fig. 26. Between EPS09 and EPPS16, the gluon
uncertainties are larger in EPPS16. While EPPS16 includes
more constraints for the gluons (especially the CMS dijet
data), in EPS09 the PHENIX data was assigned an additional
weight factor of 20. This in effect increased the importance
of these data, making the uncertainties smaller than what
they would have been without such a weight (the baseline-fit
gluons in Fig. 22 serve as a representative of an unweighted
case). In addition, in EPPS16 one more gluon parameter is
left free (xa) which also increases the uncertainties in com-
parison to EPS09.
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6 Application: W charge asymmetry

The W charge-asymmetry measurement by CMS in pPb col-
lisions [46] revealed some deviations from the NLO calcu-
lations in the backward direction and it was suggested that
this difference could be due to flavor-dependent PDF nuclear
modifications. While it was shown in Ref. [103] that such a
difference does not appear in the ATLAS PbPb data [104]
at the same probed values of x , the situation still remains
unclear. To see how large variations the new EPPS16 can
accommodate, we compare in Fig. 28 the CMS data with the
EPPS16 and EPS09 predictions using the CT14NLO proton
PDFs. As discussed in the original EPS09 paper [33], the
total uncertainty should be computed by adding in quadra-
ture the uncertainties stemming separately from EPPS16 and
from the free-proton baseline PDFs,

(δOtotal)
2 = (δOEPPS16)

2 + (δObaseline)
2, (56)

where δOEPPS16 is evaluated by Eq. (53) using the uncertainty
sets of EPPS16 with the central set of free-proton PDFs, and
δObaseline by the same equation but using the free-proton error
sets with the central set of EPPS16. The same has been done
in the case of EPS09 results. While the differences between
the central predictions of EPPS16 and EPS09 are tiny, it can
be seen that the uncertainty bands of EPPS16 are clearly
wider and, within the uncertainties, the data and EPPS16 are
in a fair agreement. As this observable is mostly sensitive to
the free-proton baseline (to first approximation the nuclear
effects in PDFs cancel) we do not use these asymmetry data
as a constraint in the actual fit in which we aim to expose the
nuclear effects in PDFs.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

10
-4

10
-3

10
-2

10
-1

1

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

10
-4

10
-3

10
-2

10
-1

1

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

10
-4

10
-3

10
-2

10
-1

1

R
P

b
g

(x
,Q

2
=

10
G

eV
2 )

x

EPPS16
EPS09
DSSZ

R
P

b
S

(x
,Q

2
=

10
G

eV
2 )

x

EPPS16
EPS09
DSSZ

R
P

b
V

(x
,Q

2
=

10
G

eV
2 )

x

EPPS16
EPS09
DSSZ

Fig. 27 Comparison of the EPPS16 nuclear modifications (black cen-
tral curve with light-blue uncertainty bands) to those from the EPS09
analysis (purple curves with hatching) and DSSZ [34] (gray bands) at
Q2 = 10 GeV2. The upper panels correspond to the average valence
and sea-quark modifications of Eqs. (54) and (55), the bottom panel is
for gluons

7 Summary and outlook

We have introduced a significantly updated global analysis
of NLO nuclear PDFs – EPPS16 – with less biased, flavor-
dependent fit functions and a larger variety of data constraints
than in other concurrent analyses. In particular, new LHC
data from the 2013 pPb run are for the first time directly
included. Another important addition here is the neutrino–
nucleus DIS data. Also the older pion–nucleus DY data are
now for the first time part of the analysis. From the new data,
the most significant role is played by the neutrino DIS data
and the LHC dijet measurements whose addition leads to a
consistent picture of qualitatively similar nuclear modifica-
tions for all partonic species. Remarkably, the addition of

123



163 Page 26 of 28 Eur. Phys. J. C (2017) 77 :163

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

-0.08

-0.04

0.0

0.04

0.08

-2.0 -1.0 0.0 1.0 2.0

EPPS16×CT14

pT(�±) > 25 GeV

CMS data

EPPS16×CT14
EPS09×CT14

lepton rapidity (lab frame)

d
σ
(y

�+
)−

d
σ
(y

�−
)

d
σ
(y

�+
)+

d
σ
(y

�−
)

D
iff

er
en

ce
to

E
P

P
S1

6

W charge asymmetry, pPb,
√

s = 5.02 TeV

Fig. 28 The CMS W charge-asymmetry measurement [46] com-
pared with the predictions using EPPS16 nuclear modifications and
CT14NLO proton PDFs. In both panels the blue bands correspond to
the combined EPPS16+CT14 uncertainty and in the lower panel the
green band to the combined EPS09+CT14 uncertainty

new data types into the global fit does not generate notable
tensions with the previously considered data sets. This lends
support to the validity of collinear factorization and process-
independent nuclear PDFs in the kinematical x, Q2 region
we have considered.

However, the uncertainties are still significant for all com-
ponents and, clearly, more data is therefore required. In
this respect, the prospects for rapid developments of nuclear
PDFs are very good: It can be expected that new data from
the LHC will be available soon. For example, from the 2013
pPb data taking, a more differential dijet analysis by the
CMS collaboration [105] as well as W data by ATLAS [106]
are still being prepared. In November–December 2016, the
LHC has recorded pPb collisions at the highest energy ever,√

s = 8.16 TeV, with more than six times more statistics
than that from the 2013 pPb run at

√
s = 5.02 TeV.5 The

new data from this run will provide further constraints to
the nuclear PDFs in the near future. As in the case of free-
proton PDFs [107,108] heavy-flavor production at forward
direction [109] may offer novel small-x input. An interest-
ing opportunity is also the possibility of the LHCb experi-

5 https://lpc.web.cern.ch/lumiplots_2016_PbPb.htm.

ment to operate in a fixed-target mode and measure e.g. pNe
(and other noble gases) collisions [110]. From other experi-
ments, new fixed-target proton-induced Drell–Yan data from
the Fermilab E-906/SeaQuest experiment [115] should also
provide better constraints e.g. for the A dependence of the
sea-quark nuclear modifications.

Further in the future, the planned Electron–Ion Collider
[111] (and LHeC [112] if materialized) will provide high-
precision DIS constraints for all nuclear parton flavors. In
addition, the possible realization of a new forward calorime-
ter (FOCAL) at the ALICE experiment [113] would, in turn,
give a possibility to measure isolated photons in the region
sensitive to low x gluons [114].

On the theoretical side, there is ample room for improve-
ments as well. For example, similarly to the free-proton fits,
an upgrade to next-to-NLO or inclusion of photon distribu-
tions and mixed QCD–QED parton evolution are obvious
further developments. In a longer run, to avoid biases due
to specific baseline proton PDFs, especially regarding the s
quark sector, fitting the proton PDFs and nuclear PDFs in
one single analysis is ultimately needed.

Acknowledgements This research was supported by the Academy of
Finland, Project 297058 of K.J.E.; by the European Research Coun-
cil Grant HotLHC ERC-2011-StG-279579; by Ministerio de Ciencia
e Innovación of Spain under project FPA2014-58293-C2-1-P; and by
Xunta de Galicia (Conselleria de Educacion) – H.P. and C.A.S. are part
of the Strategic Unit AGRUP2015/11. P.P. acknowledges the financial
support from the Magnus Ehrnrooth Foundation. Part of the computing
has been done in T. Lappi’s project at CSC, the IT Center for Science
in Espoo, Finland.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

References

1. C.A. Salgado et al., J. Phys. G 39, 015010 (2012). doi:10.1088/
0954-3899/39/1/015010. arXiv:1105.3919 [hep-ph]

2. C.A. Salgado, J.P. Wessels, Ann. Rev. Nucl. Part. Sci. 66, 449
(2016)

3. N. Armesto, E. Scomparin, Eur. Phys. J. Plus 131(3), 52 (2016).
doi:10.1140/epjp/i2016-16052-4. arXiv:1511.02151 [nucl-ex]

4. P. Foka, M.A. Janik, Rev. Phys. 1, 172 (2016). doi:10.1016/j.revip.
2016.11.001

5. K.J. Eskola, Nucl. Phys. A 910–911, 163 (2013). doi:10.1016/j.
nuclphysa.2012.12.029. arXiv:1209.1546 [hep-ph]

6. H. Paukkunen, Nucl. Phys. A 926, 24 (2014). doi:10.1016/j.
nuclphysa.2014.04.001. arXiv:1401.2345 [hep-ph]

7. J.J. Aubert et al., European Muon Collaboration. Phys. Lett. B
123, 275 (1983). doi:10.1016/0370-2693(83)90437-9

8. M. Arneodo, Phys. Rep. 240, 301 (1994). doi:10.1016/
0370-1573(94)90048-5

123



Eur. Phys. J. C (2017) 77 :163 Page 27 of 28 163

9. L.L. Frankfurt, M.I. Strikman, S. Liuti, Phys. Rev. Lett. 65, 1725
(1990). doi:10.1103/PhysRevLett.65.1725

10. K.J. Eskola, Nucl. Phys. B 400, 240 (1993). doi:10.1016/
0550-3213(93)90406-F

11. Y.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)
12. Y.L. Dokshitzer, Zh. Eksp. Teor. Fiz. 73, 1216 (1977)
13. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)
14. V.N. Gribov, L.N. Lipatov, Yad. Fiz. 15, 781 (1972)
15. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 675 (1972)
16. V.N. Gribov, L.N. Lipatov, Yad. Fiz. 15, 1218 (1972)
17. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977). doi:10.

1016/0550-3213(77)90384-4
18. K.J. Eskola, V.J. Kolhinen, P.V. Ruuskanen, Nucl. Phys.

B 535, 351 (1998). doi:10.1016/S0550-3213(98)00589-6.
arXiv:hep-ph/9802350

19. K.J. Eskola, V.J. Kolhinen, C.A. Salgado, Eur. Phys. J. C 9, 61
(1999). doi:10.1007/s100520050513, 10.1007/s100529900005.
arXiv:hep-ph/9807297

20. K.J. Eskola, V.J. Kolhinen, H. Paukkunen, C.A. Salgado,
JHEP 0705, 002 (2007). doi:10.1088/1126-6708/2007/05/002.
arXiv:hep-ph/0703104

21. M. Hirai, S. Kumano, M. Miyama, Phys. Rev. D
64, 034003 (2001). doi:10.1103/PhysRevD.64.034003.
arXiv:hep-ph/0103208

22. M. Hirai, S. Kumano, T.-H. Nagai, Phys. Rev. C
70, 044905 (2004). doi:10.1103/PhysRevC.70.044905.
arXiv:hep-ph/0404093

23. D. de Florian, R. Sassot, Phys. Rev. D 69, 074028 (2004). doi:10.
1103/PhysRevD.69.074028. arXiv:hep-ph/0311227

24. M. Hirai, S. Kumano, T.-H. Nagai, Phys. Rev. C 76, 065207
(2007). doi:10.1103/PhysRevC.76.065207. arXiv:0709.3038
[hep-ph]

25. I. Schienbein, J.Y. Yu, K. Kovarik, C. Keppel, J.G. Morfin, F.
Olness, J.F. Owens, Phys. Rev. D 80, 094004 (2009). doi:10.1103/
PhysRevD.80.094004. arXiv:0907.2357 [hep-ph]

26. S. Atashbar, Tehrani. Phys. Rev. C 86, 064301 (2012). doi:10.
1103/PhysRevC.86.064301

27. H. Khanpour, S. Atashbar Tehrani, Phys. Rev. D 93(1), 014026
(2016). doi:10.1103/PhysRevD.93.014026. arXiv:1601.00939
[hep-ph]

28. L. Frankfurt, V. Guzey, M. Strikman, Phys. Rep. 512, 255 (2012).
doi:10.1016/j.physrep.2011.12.002. arXiv:1106.2091 [hep-ph]

29. N. Armesto, J. Phys. G 32, R367 (2006). doi:10.1088/0954-3899/
32/11/R01. arXiv:hep-ph/0604108

30. S.A. Kulagin, R. Petti, Nucl. Phys. A 765, 126 (2006). doi:10.
1016/j.nuclphysa.2005.10.011. arXiv:hep-ph/0412425

31. S.S. Adler et al., PHENIX Collaboration, Phys. Rev.
Lett. 98, 172302 (2007). doi:10.1103/PhysRevLett.98.172302.
arXiv:nucl-ex/0610036

32. K.J. Eskola, H. Paukkunen, C.A. Salgado, JHEP 0807, 102 (2008).
doi:10.1088/1126-6708/2008/07/102. arXiv:0802.0139 [hep-ph]

33. K.J. Eskola, H. Paukkunen, C.A. Salgado, JHEP 0904, 065 (2009).
doi:10.1088/1126-6708/2009/04/065. arXiv:0902.4154 [hep-ph]

34. D. de Florian, R. Sassot, P. Zurita, M. Stratmann, Phys.
Rev. D 85, 074028 (2012). doi:10.1103/PhysRevD.85.074028.
arXiv:1112.6324 [hep-ph]

35. K. Kovarik et al., Phys. Rev. D 93(8), 085037 (2016). doi:10.1103/
PhysRevD.93.085037. arXiv:1509.00792 [hep-ph]

36. R. Sassot, M. Stratmann, P. Zurita, Phys. Rev. D 81, 054001
(2010). doi:10.1103/PhysRevD.81.054001. arXiv:0912.1311
[hep-ph]

37. S. Chatrchyan et al. [CMS Collaboration], Eur. Phys. J.
C 74(7), 2951 (2014). doi:10.1140/epjc/s10052-014-2951-y.
arXiv:1401.4433 [nucl-ex]

38. H. Paukkunen, K.J. Eskola, C. Salgado, Nucl. Phys. A 931, 331
(2014). doi:10.1016/j.nuclphysa.2014.07.012. arXiv:1408.4563
[hep-ph]

39. N. Armesto, H. Paukkunen, J.M. Penín, C.A. Salgado,
P. Zurita, Eur. Phys. J. C 76(4), 218 (2016). doi:10.1140/epjc/
s10052-016-4078-9. arXiv:1512.01528 [hep-ph]

40. K. Kovarik, I. Schienbein, F.I. Olness, J.Y. Yu, C. Keppel, J.G.
Morfin, J.F. Owens, T. Stavreva, Phys. Rev. Lett. 106, 122301
(2011). doi:10.1103/PhysRevLett.106.122301. arXiv:1012.0286
[hep-ph]

41. M. Hirai, arXiv:1603.07854 [hep-ph]
42. H. Paukkunen, C.A. Salgado, JHEP 1007, 032 (2010). doi:10.

1007/JHEP07(2010)032. arXiv:1004.3140 [hep-ph]
43. H. Paukkunen, C.A. Salgado, Phys. Rev. Lett. 110(21), 212301

(2013). doi:10.1103/PhysRevLett.110.212301. arXiv:1302.2001
[hep-ph]

44. A. Kusina et al., arXiv:1610.02925 [nucl-th]
45. H. Paukkunen, P. Zurita, JHEP 1412, 100 (2014). doi:10.1007/

JHEP12(2014)100. arXiv:1402.6623 [hep-ph]
46. V. Khachatryan et al., CMS Collaboration, Phys. Lett. B 750, 565

(2015). doi:10.1016/j.physletb.2015.09.057. arXiv:1503.05825
[nucl-ex]

47. J. Adam et al. [ALICE Collaboration], arXiv:1611.03002 [nucl-
ex]

48. V. Khachatryan et al., CMS Collaboration, Phys. Lett. B 759, 36
(2016). doi:10.1016/j.physletb.2016.05.044. arXiv:1512.06461
[hep-ex]

49. G. Aad et al. [ATLAS Collaboration], Phys. Rev. C 92(4), 044915
(2015). doi:10.1103/PhysRevC.92.044915. arXiv:1507.06232
[hep-ex]

50. G. Onengut et al., CHORUS Collaboration, Phys. Lett. B 632, 65
(2006). doi:10.1016/j.physletb.2005.10.062

51. J. Badier et al., NA3 Collaboration, Phys. Lett. B 104, 335 (1981).
doi:10.1016/0370-2693(81)90137-4

52. P. Bordalo et al., NA10 Collaboration, Phys. Lett. B 193, 368
(1987). doi:10.1016/0370-2693(87)91253-6

53. J.G. Heinrich et al., Phys. Rev. Lett. 63, 356 (1989). doi:10.1103/
PhysRevLett.63.356

54. https://www.jyu.fi/fysiikka/en/research/highenergy/urhic/nPDFs
55. S. Dulat et al., Phys. Rev. D 93(3), 033006 (2016). doi:10.1103/

PhysRevD.93.033006. arXiv:1506.07443 [hep-ph]
56. M. Kramer, F.I. Olness, D.E. Soper, Phys. Rev. D

62, 096007 (2000). doi:10.1103/PhysRevD.62.096007.
arXiv:hep-ph/0003035

57. J.C. Collins, Phys. Rev. D 58, 094002 (1998). doi:10.1103/
PhysRevD.58.094002. arXiv:hep-ph/9806259

58. R.S. Thorne, W.K. Tung, arXiv:0809.0714 [hep-ph]
59. I. Helenius, H. Paukkunen, N. Armesto, arXiv:1606.09003 [hep-

ph]
60. A.D. Martin, A.J.T.M. Mathijssen, W.J. Stirling, R.S. Thorne,

B.J.A. Watt, G. Watt, Eur. Phys. J. C 73(2), 2318 (2013). doi:10.
1140/epjc/s10052-013-2318-9. arXiv:1211.1215 [hep-ph]

61. W. Furmanski, R. Petronzio, Phys. Lett. B 97, 437 (1980). doi:10.
1016/0370-2693(80)90636-X

62. G. Curci, W. Furmanski, R. Petronzio, Nucl. Phys. B 175, 27
(1980). doi:10.1016/0550-3213(80)90003-6

63. P. Santorelli, E. Scrimieri, Phys. Lett. B 459, 599 (1999). doi:10.
1016/S0370-2693(99)00698-X. arXiv:hep-ph/9807572

64. P. Santorelli, E. Scrimieri, Phys. Lett. B 459, 599 (1999). doi:10.
1016/S0370-2693(99)00698-X. arXiv:hep-ph/9807572

65. I. Abt, A.M. Cooper-Sarkar, B. Foster, V. Myronenko, K. Wich-
mann, M. Wing, arXiv:1604.02299 [hep-ph]

66. D. Dutta, J.C. Peng, I.C. Cloet, D. Gaskell, Phys. Rev.
C 83, 042201 (2011). doi:10.1103/PhysRevC.83.042201.
arXiv:1007.3916 [nucl-ex]

123



163 Page 28 of 28 Eur. Phys. J. C (2017) 77 :163

67. P. Paakkinen, K.J. Eskola, H. Paukkunen, Phys.Lett. B 768, 7–11
(2017). doi:10.1016/j.physletb.2017.02.009

68. H. Paukkunen, C.A. Salgado, JHEP 1103, 071 (2011). doi:10.
1007/JHEP03(2011)071. arXiv:1010.5392 [hep-ph]

69. P. Ru, B.W. Zhang, L. Cheng, E. Wang, W.N. Zhang, J. Phys.
G 42(8), 085104 (2015). doi:10.1088/0954-3899/42/8/085104.
arXiv:1412.2930 [nucl-th]

70. K.J. Eskola, H. Paukkunen, C. A. Salgado, JHEP 1310, 213
(2013). doi:10.1007/JHEP10(2013)213. arXiv:1308.6733 [hep-
ph]

71. P. Ru, S.A. Kulagin, R. Petti, B.W. Zhang, arXiv:1608.06835
[nucl-th]

72. J. Gomez et al., Phys. Rev. D 49, 4348 (1994)
73. P. Amaudruz et al., New Muon Collaboration, Nucl. Phys.

B 441, 3 (1995). doi:10.1016/0550-3213(94)00023-9.
arXiv:hep-ph/9503291

74. M. Arneodo et al., New Muon Collaboration, Nucl. Phys.
B 441, 12 (1995). doi:10.1016/0550-3213(95)00023-2.
arXiv:hep-ex/9504002

75. M. Arneodo et al., New Muon Collaboration, Nucl. Phys. B 481,
3 (1996). doi:10.1016/S0550-3213(96)90117-0

76. D.M. Alde et al., Phys. Rev. Lett. 64, 2479 (1990). doi:10.1103/
PhysRevLett.64.2479

77. M.A. Vasilev et al., NuSea Collaboration. Phys. Rev.
Lett. 83, 2304 (1999). doi:10.1103/PhysRevLett.83.2304.
arXiv:hep-ex/9906010

78. J. Ashman et al., European Muon Collaboration, Z. Phys. C 57,
211 (1993)

79. M. Arneodo et al., New Muon Collaboration, Nucl. Phys. B 481,
23 (1996). doi:10.1016/S0550-3213(96)90119-4

80. P. Amaudruz et al., New Muon Collaboration, Nucl. Phys. B 371,
3 (1992)

81. J.P. Berge et al., Z. Phys. C 49, 187 (1991). doi:10.1007/
BF01555493

82. M. Tzanov et al., NuTeV Collaboration, Phys. Rev. D
74, 012008 (2006). doi:10.1103/PhysRevD.74.012008,
arXiv:hep-ex/0509010

83. A.B. Arbuzov, D.Y. Bardin, L.V. Kalinovskaya, JHEP
0506, 078 (2005). doi:10.1088/1126-6708/2005/06/078,
arXiv:hep-ph/0407203

84. A. Accardi, J.W. Qiu, JHEP 0807, 090 (2008). doi:10.1088/
1126-6708/2008/07/090. arXiv:0805.1496 [hep-ph]

85. J. Gao et al., Phys. Rev. D 89(3), 033009 (2014). doi:10.1103/
PhysRevD.89.033009. arXiv:1302.6246 [hep-ph]

86. J.M. Campbell, R.K. Ellis, W.T. Giele, Eur. Phys. J.
C 75(6), 246 (2015). doi:10.1140/epjc/s10052-015-3461-2.
arXiv:1503.06182 [physics.comp-ph]

87. J. Gao, Z. Liang, D.E. Soper, H.L. Lai, P.M. Nadolsky, C.-P. Yuan,
Comput. Phys. Commun. 184, 1626 (2013). doi:10.1016/j.cpc.
2013.01.022. arXiv:1207.0513 [hep-ph]

88. Z. Kunszt, D.E. Soper, Phys. Rev. D 46, 192 (1992). doi:10.1103/
PhysRevD.46.192

89. S.D. Ellis, Z. Kunszt, D.E. Soper, Phys. Rev. Lett. 69, 1496 (1992).
doi:10.1103/PhysRevLett.69.1496

90. F. Aversa, P. Chiappetta, M. Greco, J.P. Guillet, Nucl. Phys. B
327, 105 (1989). doi:10.1016/0550-3213(89)90288-5

91. B.A. Kniehl, G. Kramer, B. Potter, Nucl. Phys. B 582, 514 (2000).
doi:10.1016/S0550-3213(00)00303-5. arXiv:hep-ph/0010289

92. M. Gluck, E. Reya, A. Vogt, Z. Phys. C 53, 651 (1992). doi:10.
1007/BF01559743

93. G. D’Agostini, Nucl. Instrum. Methods A 346, 306 (1994). doi:10.
1016/0168-9002(94)90719-6

94. K. Levenberg, Q. Appl. Math. 2, 164 (1944)
95. D.W. Marquardt, J. Soc. Ind. Appl. Math. 11(2), 431 (1963)
96. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery,

Numerical Recipes in FORTRAN: The Art of Scientific Computing
(ISBN-9780521430647)

97. F. James, CERN-D-506, CERN-D506
98. J. Pumplin, D. Stump, R. Brock, D. Casey, J. Huston, J. Kalk,

H.L. Lai, W.K. Tung, Phys. Rev. D 65, 014013 (2001). doi:10.
1103/PhysRevD.65.014013. arXiv:hep-ph/0101032

99. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys.
J. C 63, 189 (2009). doi:10.1140/epjc/s10052-009-1072-5.
arXiv:0901.0002 [hep-ph]

100. J. Pumplin, D.R. Stump, W.K. Tung, Phys. Rev. D
65, 014011 (2001). doi:10.1103/PhysRevD.65.014011.
arXiv:hep-ph/0008191

101. J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky,
W.K. Tung, JHEP 0207, 012 (2002). doi:10.1088/1126-6708/
2002/07/012. arXiv:hep-ph/0201195

102. P.M. Nadolsky, Z. Sullivan, eConf C 010630, P510 (2001).
arXiv:hep-ph/0110378

103. F. Arleo, E. Chapon, H. Paukkunen, Eur. Phys. J. C
76(4), 214 (2016). doi:10.1140/epjc/s10052-016-4049-1.
arXiv:1509.03993 [hep-ph]

104. G. Aad et al. [ATLAS Collaboration], Eur. Phys. J. C 75(1), 23
(2015). doi:10.1140/epjc/s10052-014-3231-6. arXiv:1408.4674
[hep-ex]

105. CMS Collaboration [CMS Collaboration], CMS-PAS-HIN-16-
003

106. The ATLAS collaboration, ATLAS-CONF-2015-056
107. O. Zenaiev et al. [PROSA Collaboration], Eur. Phys. J.

C 75(8), 396 (2015). doi:10.1140/epjc/s10052-015-3618-z.
arXiv:1503.04581 [hep-ph]

108. R. Gauld, J. Rojo, arXiv:1610.09373 [hep-ph]
109. The LHCb Collaboration [LHCb Collaboration], LHCb-CONF-

2016-003, CERN-LHCb-CONF-2016-003
110. Y. Zhang [LHCb Collaboration], arXiv:1605.07509 [hep-ex]
111. A. Accardi et al., Eur. Phys. J. A 52(9), 268 (2016). doi:10.1140/

epja/i2016-16268-9. arXiv:1212.1701 [nucl-ex]
112. J.L. Abelleira Fernandez et al., LHeC Study Group Collabora-

tion, J. Phys. G 39, 075001 (2012). doi:10.1088/0954-3899/39/
7/075001. arXiv:1206.2913 [physics.acc-ph]

113. T. Peitzmann [ALICE FoCal Collaboration], PoS DIS 2016, 273
(2016). arXiv:1607.01673 [hep-ex]

114. I. Helenius, K.J. Eskola, H. Paukkunen, JHEP 1409, 138 (2014).
doi:10.1007/JHEP09(2014)138. arXiv:1406.1689 [hep-ph]

115. B.P. Dannowitz, FERMILAB-THESIS-2016-13

123



III  

NON-QUADRATIC IMPROVED HESSIAN PDF 
REWEIGHTING AND APPLICATION TO CMS DIJET 

MEASUREMENTS AT 5.02 TEV 

by 

Eskola, K. J., Paakkinen, P. & Paukkunen, H., 2019 

Eur. Phys. J. C79, no.6 (2019) 511 

arXiv: 1903.09832 [hep‐ph] 

Reproduced with kind permission by Springer. 

This publication is licensed under CC BY 4.0.





Eur. Phys. J. C          (2019) 79:511 
https://doi.org/10.1140/epjc/s10052-019-6982-2

Regular Article - Theoretical Physics

Non-quadratic improved Hessian PDF reweighting and
application to CMS dijet measurements at 5.02 TeV

Kari J. Eskola1,2,a , Petja Paakkinen1,2,b , Hannu Paukkunen1,2,c

1 Department of Physics, University of Jyvaskyla, P.O. Box 35, Fl-40014 Jyvaskyla, Finland
2 Helsinki Institute of Physics, University of Helsinki, P.O. Box 64, Fl-00014 Helsinki, Finland

Received: 27 March 2019 / Accepted: 23 May 2019
© The Author(s) 2019

Abstract Hessian PDF reweighting, or “profiling”, has
become a widely used way to study the impact of a new
data set on parton distribution functions (PDFs) with Hessian
error sets. The available implementations of this method have
resorted to a perfectly quadratic approximation of the initial
χ2 function before inclusion of the new data. We demon-
strate how one can take into account the first non-quadratic
components of the original fit in the reweighting, provided
that the necessary information is available. We then apply
this method to the CMS measurement of dijet pseudorapid-
ity spectra in proton–proton (pp) and proton–lead (pPb) col-
lisions at 5.02 TeV. The measured pp dijet spectra disagree
with next-to-leading order (NLO) theory calculations using
the CT14 NLO PDFs, but upon reweighting the CT14 PDFs,
these can be brought to a much better agreement. We show
that the needed proton-PDF modifications also have a sig-
nificant impact on the predictions for the pPb dijet distribu-
tions. Taking the ratio of the individual spectra, the proton-
PDF uncertainties effectively cancel, giving a clean probe
of the PDF nuclear modifications. We show that these data
can be used to further constrain the EPPS16 nuclear PDFs
and strongly support gluon nuclear shadowing at small x and
antishadowing at around x ≈ 0.1.

1 Introduction

The proton structure at high momentum-transfer, as encoded
in the collinearly factorized parton distribution functions
(PDFs), is not only an interesting subject in its own right, but
plays a pivotal role in many applications, such as precision
electroweak and Higgs physics, searches for new physics, etc.
[1]. Likewise, their counterparts for nucleons bound in nuclei,

a e-mail: kari.eskola@jyu.fi
b e-mail: petja.paakkinen@jyu.fi
c e-mail: hannu.paukkunen@jyu.fi

the nuclear PDFs (nPDFs), are essential in e.g. studying the
production of hard probes of the Quark Gluon Plasma [2]. In
practice, despite the ongoing effort in lattice methods [3], the
PDFs are obtained by the well-established means of global
analysis using hard-process data. As such, the PDFs have
uncertainties which derive from those in the available data
and also from the lack of data constraints in certain phase-
space regions. It is then often the case that when new data
are published or a future experiment is being planned, one
would like to study the impact that the measurement could
have on the PDFs. A good example of such a case is the recent
CMS measurement of dijet pseudorapidity spectra in proton–
proton (pp) and proton–lead (pPb) collisions at 5.02 TeV [4],
where, on one hand, the measured pp spectra seem to be in a
disagreement with next-to-leading order (NLO) perturbative
QCD (pQCD) calculations using CT14 [5] and MMHT14 [6]
PDFs (see the Supplemental Material of Ref. [4]), while, on
the other hand, the nuclear-modification ratio of the pPb and
pp spectra appear to have much smaller uncertainties than
predictions with various nPDFs. One should therefore study
the impact these data could have on both the free-proton PDFs
and their nuclear modifications.

As producing a full global fit remains rather involved, even
with publicly available tools like the xFitter [7] (built upon
the former HERAFitter [8]) coming available, it is in most
cases impractical for a general user to try to learn about the
constraining power of a data set in this way. For this pur-
pose, approximative methods have been developed, first in
the formalism of Bayesian reweighting of Monte Carlo PDF
ensembles [9–13] and later in a framework using Hessian
error sets [14–16]. These methods have their limitations, as
the new PDFs rely on all the theoretical assumptions of the
original PDF analysis, such as the parametrization form, the
value of αs and the used heavy-quark scheme. There are also
limitations related to how well the methods approximate the
true parameter likelihood in the region constrained by the new
data. In particular, the applications of Hessian PDF reweight-
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ing have resorted to a perfectly quadratic approximation of
the χ2 goodness-of-fit function before inclusion of the new
data and to linear or up to quadratic terms for responses in
the new observables. This applies to the implementation in
the xFitter package, where the method is referred to as “Hes-
sian profiling”, as well as to the new software package which
has appeared under the name ePump [16]. It is not, however,
uncommon that non-quadratic terms in the χ2 function are
large (see e.g. Figure 6 of Ref. [17]), and thus it would be
beneficial to have a way to take these into account.

The purpose of this article is twofold: first, in Sect. 2, we
describe how one can include into Hessian PDF reweight-
ing the first non-quadratic terms in the χ2 function consis-
tently with the original fit, provided that the needed informa-
tion is available. Second, in Sect. 3, we apply the Hessian
PDF reweighting to the aforementioned CMS dijet mea-
surements at 5.02 TeV [4]. We show that the strong dis-
agreement between the pp measurement and next-to-leading
order (NLO) calculations using CT14 NLO PDFs [5] can be
brought to a much better agreement upon reweighting the
CT14 PDFs, but that this requires rather strong modifica-
tions for high-x gluons. We demonstrate that such changes
in the proton PDFs have also an important impact on predic-
tions for dijet production in pPb. Finally, we then reweight the
EPPS16 nPDFs [18] with the nuclear modification ratio of the
measured pPb and pp dijet spectra using the non-quadratic
approximation developed in Sect. 2 and present a discus-
sion on the importance of these higher-order terms in the
reweighting. Preliminary work on this topic can be found in
Refs. [19,20].

2 PDF uncertainties and reweighting in Hessian method

In this section, we first recapitulate the uncertainty determi-
nation in the Hessian approach [21], assuming the use of a
global tolerance criterion. We then describe how one can per-
form a reweighting upon such determined error sets, taking
into account the first non-quadratic terms in the χ2 function.
We end the section with a discussion on the applicability of
this method in the case of non-global tolerances.

2.1 Hessian uncertainties with global tolerance criterion

In PDF global analyses, the goodness-of-fit of a parameter
vector a is dictated by the χ2 function

χ2(a) =
∑

i j

(yi (a) − ydata
i ) C−1

i j (y j (a) − ydata
j ), (1)

where yi (a) are theory predictions for the observables
included in the analysis, ydata

i the corresponding measured
values and C−1

i j the elements of the inverse covariance matrix

for these data. In the Hessian method for uncertainty estima-
tion, one takes the parameter values amin which minimize
Eq. (1), χ2(amin) ≡ min χ2(a) ≡ χ2

0 , as the central, best-fit
values and studies the behaviour of the χ2 function around
this minimum to determine the uncertainty in these parame-
ters.

The leading deviations from the minimum value χ2
0 are

given by the quadratic approximation

χ2 ≈ χ2
0 +

∑
i j

(ai − amin
i ) Hi j (a j − amin

j ), (2)

where Hi j = 1
2∂2χ2/∂ai∂a j |a=amin are the elements of

the Hessian matrix. In practice, these elements need to be
obtained numerically. Since the Hessian matrix is symmet-
ric, it has a complete set of orthonormal eigenvectors v(k)

such that∑
j

Hi j v
(k)
j = εk v

(k)
i , (3)

∑
i

v
(k)
i v

(�)
i = δk�,

∑
k

v
(k)
i v

(k)
j = δi j , (4)

where εk are the eigenvalues of the Hessian matrix. With this
eigendecomposition we can define new parameters

zk =
∑

i

√
εk v

(k)
i (ai − amin

i ) (5)

such that Eq. (2) becomes

χ2 ≈ χ2
0 +

∑
k

z2
k . (6)

Since the new parameters zk are uncorrelated in the quad-
ratic approximation, one can use the standard law of error
propagation to translate the uncertainties in the parameters
zk to the uncertainty of any PDF-dependent quantity X as
[21]

ΔX =
√√√√∑

k

(
∂ X

∂zk
Δzk

)2

. (7)

Given a well justified global tolerance Δχ2 for the allowed
growth of χ2 from its minimum, one can determine the
allowed parameter variations Δzk .1 If the χ2 function were
perfectly quadratic, the uncertainty of the parameter zk cor-
responding to the tolerance Δχ2 would be simply Δzk =√

Δχ2. As this is generally not true, one instead finds δz±
k ,

the positive and negative values of zk corresponding to the

1 The intricacies of choosing an appropriate value for Δχ2 are outside
the scope of this article, see Refs. [17,21,22] for discussion.
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Δχ2 increase, and assigns Δzk = (δz+
k − δz−

k )/2. It is con-
venient to define error sets S±

i corresponding to parameter
values

zk[S±
i ] = δz±

i , k = i

0, k �= i
, (8)

along with the central set S0, where zk[S0] = 0 for all k.
Estimating

∂ X

∂zk
= X [S+

k ] − X [S−
k ]

2 Δzk
, (9)

where X [S±
k ] stands for the quantity X calculated with the

parameter set of Eq. (8), yields then a simple form

ΔX = 1

2

∑
k

(
X [S+

k ] − X [S−
k ] 2

. (10)

As the response in X to the upward and downward param-
eter shifts can be uneven, one can alternatively specify an
upward–downward asymmetric error prescription e.g. with
[23]

δX± =
∑

k

[max
min

{
X [S+

k ] − X [S0], X [S−
k ] − X [S0], 0

}]2
.

(11)

2.2 Non-quadratic reweighting

In the presence of a new data set, the total χ2 can be written
as

χ2
new(z) = χ2

old(z)+
∑

i j

(yi (z)− ydata
i ) C−1

i j (y j (z)− ydata
j ),

(12)

where yi (ydata
i ) now correspond to the new theoretical (mea-

sured) values and χ2
old incorporates our knowledge of the

original global analysis. Now, as we do not wish to produce
a full global analysis with χ2

new, we need to make suitable
approximations. The simplest choice is to use the quadratic
approximation in Eq. (6), according to the method introduced
in Ref. [15], but if the parameter variations δz±

k and the
global tolerance Δχ2 of this fit are known (as is the case
with EPPS16 nPDFs, see Table 2 in Ref. [18]), then χ2

old can
be approximated with a third order polynomial in each of the
eigendirections,

χ2
old ≈ χ2

0 +
∑

k

(ak z2
k + bk z3

k), (13)

where the coefficients are obtained with

ak = Δχ2

δz+
k − δz−

k

(
δz+

k

(δz−
k )2

− δz−
k

(δz+
k )2

)
, (14)

bk = Δχ2

δz+
k − δz−

k

(
1

(δz+
k )2

− 1

(δz−
k )2

)
. (15)

This is illustrated in Fig. 1 (upper diagram), where we show
an example of a situation where the χ2 grows asymmetri-
cally with respect to zk . The quadratic approximation fails to
acknowledge this fact and a third order polynomial is needed
to reproduce the Δχ2 growth at δz−

k and δz+
k . Similarly, as

illustrated in Fig. 1 (lower diagram), the yi can be expanded
in terms of zk as

yi (z) ≈ yi [S0] +
∑

k

(dik zk + eik z2
k), (16)

Fig. 1 An illustration for the response of χ2 (top) and yi (bottom)
with respect to a change of parameter zk in quadratic–linear (red, long
dashed), quadratic–quadratic (blue, short dashed) and cubic–quadratic
(black, solid) approximations
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where

dik = 1

δz+
k − δz−

k

[
− δz−

k

δz+
k

(
yi [S+

k ] − yi [S0]
)

+δz+
k

δz−
k

(
yi [S−

k ] − yi [S0]
) ]

, (17)

eik = 1

δz+
k − δz−

k

[
1

δz+
k

(
yi [S+

k ] − yi [S0]
)

− 1

δz−
k

(
yi [S−

k ] − yi [S0]
) ]

. (18)

One should note that the above approximations do not yield a
full Taylor expansion to cubic and quadratic order in χ2

old and
yi (z), respectively, as we have neglected off-diagonal terms
proportional to zl z2

k and zl zk for l �= k. Even so, we will
refer to reweighting with these approximations as a cubic–
quadratic one.

Changing variables to wk = 2zk/(δz+
k −δz−

k ) and defining
rk = −δz+

k /δz−
k , we may alternatively write

χ2
new(w) − χ2

0 ≈
∑

k

(Akw
2
k + Bkw

3
k )

+
∑

i j

(yi (w) − ydata
i ) C−1

i j (y j (w) − ydata
j ),

(19)

where

Ak = Δχ2

4

(
1

r2
k

+ 1

rk
+ rk + r2

k

)
, (20)

Bk = Δχ2

8

(
1

r2
k

+ 2

rk
− 2 rk − r2

k

)
, (21)

and

yi (w) ≈ yi [S0] +
∑

k

(Dikwk + Eikw
2
k ), (22)

Dik = 1

2

[
1

rk

(
yi [S+

k ] − yi [S0]
)

−rk
(
yi [S−

k ] − yi [S0]
) ]

, (23)

Eik = 1

4

[ (
1 + 1

rk

) (
yi [S+

k ] − yi [S0]
)

+(1 + rk)
(
yi [S−

k ] − yi [S0]
) ]

. (24)

Now, it is a simple numerical task to minimize Eq. (19)
with respect to w. We use MINUIT [24] for the practical
applications in the following sections. The found minimum
should correspond to that of a full global fit, provided that
the approximations (19) and (22) are good enough. This is
not trivially true, but we should expect the approximations

work better the closer we are to the original minimum. Thus
it makes sense to define a “penalty term”

P =
∑

k

(Ak(w
min
k )2 + Bk(w

min
k )3) ≈ χ2

old(w
min) − χ2

0 ,

(25)

which essentially counts how much χ2
old has grown from its

minimum value, wmin
k being the values of wk at the minimum

of χ2
new(w). If P � Δχ2, the approximations (19) and (22)

should work well and the reweighted results can be viewed
as a proxy for those of a full global fit. Once P grows close
to or above Δχ2, the results of reweighting become more
sensitive on the made assumptions and one should be cautious
on the interpretations. Moreover, a large P signals a tension
between the original fit and the new data, which might be due
to incompatibilities of some data sets, but can also be caused
by an inflexible PDF parametrization, or other limitations of
theory description, such as missing higher-order corrections.

The beauty of the reweighting method lies in the fact that
the reweighted result for any quantity can be obtained sim-
ply by using Eq. (22). For example, the new, reweighted,
PDFs are obtained by replacing yi with fi . One should
note that while this expression is quadratic in wk , the new
PDFs retain a linear dependence on the old ones and thus
satisfy the PDF sum rules and DGLAP evolution equa-
tions.2 This applies also to the new error sets, which can
be obtained essentially by following the same procedure as
in Sect. 2.1, with the exception that the new Hessian matrix
Ĥkl = 1

2∂2χ2
new/∂wk∂wl |w=wmin in

χ2
new(w) ≈ χ2

new(wmin) +
∑

kl

(wk − wmin
k ) Ĥkl (wl − wmin

l )

(26)

can be put to an explicit form

Ĥkl = (Ak + 3Bkw
min
k )δkl

+
∑

i j

(Dik + 2Eikw
min
k )C−1

i j (D jl + 2E jlw
min
l )

+
∑

i j

(2Eikδkl)C
−1
i j (y j (wmin) − ydata

j ),

(27)

by taking second derivatives of Eq. (19). Diagonalizing Ĥ
and finding the deviations in the new eigenvector directions
corresponding to Δχ2 growth from χ2

new(wmin), one obtains
the parameter values for the new error sets, using which the

2 The fact that the new PDFs are linear combinations of the original
ones, with a certain weight factor applied to each of them, also justifies
the usage of term “reweighting” in this context.
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uncertainties of any quantity can again be obtained according
to Eq. (22).

The cubic–quadratic approximation considered above is
not applicable to all cases, as it requires the knowledge of
the δz±

k . Lower-order approximations, initially introduced in
Ref. [15], can be obtained from the above results by taking
appropriate limits. Taking rk → 1 one finds Ak = Δχ2,
Bk = 0, thus recovering the quadratic approximation for
χ2

old. In this limit also the definition of the penalty term in
Eq. (25) reduces to that of Ref. [15]. As yi retains its quadratic
parameter dependence in this limit, we call this a quadratic–
quadratic approximation. In many cases this is the best option
one can resort to, as it only requires access to the PDF error
sets and the value of Δχ2. Even simpler, quadratic–linear,
approximation can be achieved by taking also Eik → 0. This
version is very easy to implement, as finding the new central
and error sets in this approximation involves only solving a
system of linear equations [15].

2.3 Comment on non-global tolerances

The reweighting method can also be extended to non-global
tolerances [17], simply by setting

Ak = 1

4

(
(T +

k )2

(
1

r2
k

+ 1

rk

)
+ (T −

k )2 (
rk + r2

k

)
, (28)

Bk = 1

8

(
(T +

k )2

(
1

r2
k

+ 2

rk
+ 1

)
− (T −

k )2 (
1 + 2 rk + r2

k

)
,

(29)

where (T ±
k )2 = χ2

old(δz±
k ) − χ2

0 are the tolerances of the
individual error sets, determined by requiring acceptable val-
ues of χ2 for each individual data set in the original anal-
ysis [17]. While the new, reweighted central PDF set can
be obtained uniquely in this way, the determination of the
new error sets involves additional arbitrariness. As the new
eigenvector directions obtained by diagonalizing the Hessian
matrix in Eq. (27) are not parallel to the original ones, it is
not directly obvious how large tolerances should be allowed
in each of these new parameter directions. It was argued in
Ref. [16] that if the new eigendirections are not significantly
rotated away from the original ones, it would be sufficient
to use the original tolerances (T ±

k )2 also for obtaining the
new error sets. While this can work in some cases, it would
be advisable to have a measure on the amount of parameter
rotations in the reweighting to test whether the limits of this
assumption are met. Another possibility would be to use a
global tolerance for the reweighted PDFs, e.g. by taking the
average over the (T ±

k )2, but this also would lead to changing
the error definition from the original one, thus reducing the
comparability of the new and old uncertainties. In general,

setting the new non-global tolerances reliably would require
a complete refit.

3 CMS 5.02 TeV dijets and their impact on PDFs

The CMS dijet data [4] consist of distributions of dijet pseu-
dorapidity

ηdijet = 1

2
(ηleading + ηsubleading) (30)

in bins of average transverse momentum of the jet pair

pave
T = 1

2
(pleading

T + psubleading
T ). (31)

Here, η(sub)leading and p(sub)leading
T refer to the pseudorapidity

and transverse momentum of the jet with (second to) largest
transverse momentum of the event. Jets are defined with the
anti-kT algorithm [25] using a distance parameter R = 0.3.
The events used in the analysis are required to have a lead-
ing jet with transverse momentum pleading

T > 30 GeV and a

subleading jet with psubleading
T > 20 GeV and the two jets are

required to have an azimuthal angle separation Δφ > 2π/3.
In pPb collisions the two jets are required to be in a rapid-
ity interval −3 < ηlab

jet < 3 in the laboratory frame. Due to

unequal beam energies, Ep = 4 TeV and EPb = 82
208 Ep, the

nucleon–nucleon center-of-mass system is boosted in this
frame. To attain corresponding coverages in the center-of-
mass frames, CMS measured the pp spectra in the interval
−3.465 < ηlab

jet < 2.535. Here, as in the CMS publica-
tion, the pp data are shifted in pseudorapidity by +0.465,
so that the measured dijets cover a pseudorapidity range
−3 < ηdijet < 3 in both pp and pPb.

The CMS data are self-normalized in each bin of pave
T , i.e.

given in the form

1

dσ/d pave
T

d2σ/d pave
T dηdijet. (32)

This is advantageous due to a partial cancellation of corre-
lated experimental (including luminosity-) uncertainties and
theoretical hadronization corrections.3 Accordingly, we do
not apply nonperturbative corrections to our predictions. We
work at NLO as the NNLO calculations of Ref. [27] are not
publicly available at this moment. Our theory calculations
are performed with NLOJet++ [28] using the anti-kT algo-
rithm through FastJet package [29]. We fix the factorization
and renormalization scales to be the same, μF = μR = μ,

3 For a demonstration of cancellation of the hadronization effects in
the normalization, see Ref. [26]. With the relatively small R = 0.3, the
contribution from underlying event should be small in the first place.
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and use μ = pave
T as our central scale choice to keep con-

sistency with the CT14 and EPPS16 fits, but study also vari-
ations around this central scale choice to approximate the
magnitude of missing higher-order uncertainties (MHOUs).4

In all figures, PDF uncertainties are presented with the asym-
metric prescription of Eq. (11). As the data correlations are
not available, we simply add the statistical and systematical
uncertainties in quadrature.

3.1 Proton–proton dijet spectra and CT14 reweighting

The self-normalized pp dijet spectra measured by CMS are
shown in Fig. 2 along with theory calculations using the CT14
NLO PDFs. While the predictions describe well the pave

T sys-
tematics of the data, we see that the predicted pseudorapidity
spectra are systematically wider than the measured distribu-
tions, with the discrepancy between the data and CT14 central
prediction being much larger than the experimental uncer-
tainties, yielding a very poor figure of merit, χ2/Ndata = 7.5.
To study the possible source of this discrepancy, we show in
Fig. 2 both the uncertainties from CT14 PDFs, as well as
factor of two scale variations around the central scale choice
μ = pave

T and results from a leading order (LO) calculation
at the central scale.

We see that in most bins, especially towards high pave
T ,

the discrepancy between the data and theory is larger than
the associated scale uncertainty. As the factor of two scale
variations often underestimate the true size of higher order
corrections (see e.g. Ref. [27]), not much can be learned
from this fact alone. However, as the LO-to-NLO corrections
shown in Fig. 2 (lower panels) are of the same size as the scale
uncertainties, we should not expect the NLO-to-NNLO cor-
rections to be any larger than these. Hence the discrepancy
is unlikely to be just due to missing NNLO terms, which
in turn points into the direction that the CT14 PDFs need
to be modified for a better description of the data. Towards
smaller pave

T the scale variation effects become more impor-
tant, leaving room for improvement with NNLO corrections.
Another possible scale choice would be the invariant mass
of the dijet, μ = Mdijet, a choice which was found in Ref.
[27] to yield a better perturbative convergence up to leading-
color NNLO precision. We have tested this option, shown
also in Fig. 2 (lower panels), and report that here at the NLO
level it tends to give smaller scale-uncertainty bands espe-
cially at low pave

T and that the results do not differ much from
the central μ = pave

T predictions. This points again towards
smallness of the NNLO corrections. With even slightly wider
predictions, μ = Mdijet gives a worse data description than

4 The CT14 analysis uses the individual-jet pT as the scale for the
inclusive-jet cross sections. To LO, pleading

T = psubleading
T , and thus using

μ = pave
T for dijets recovers the CT14 scale definition in the 2 → 2

limit.

the μ = pave
T scale choice, and thus we work with the latter

in what follows.
To see the modifications on the CT14 PDFs the CMS dijet

data would indicate, we have performed a reweighting study
with these data. As most of the data points lie outside the
CT14 uncertainties, we could expect the needed modifica-
tions to be rather strong. Nominally, the CT14 uncertainties
correspond to a global tolerance Δχ2 = 100, but to enforce
a 90% confidence level agreement individually with each
data set used in the analysis, CT14 uses in addition so called
“Tier-2 penalties”. Hence, the parameter variations δz±

k in
CT14 do not exactly match with ±√

100, but can be some-
what smaller. As no detailed information is available on how
large these deviations are, the best we can do is to assume
χ2 to be perfectly quadratic and use Δχ2 = 100. For this
reason, we perform the CT14 reweighting in the quadratic–
quadratic approximation, noting that the reweighted uncer-
tainties might not be directly comparable with the original
ones, and that the new central set underestimates the true
impact on CT14, as the use of Δχ2 = 100 overestimates the
growth of χ2

old in varying the PDF parameters.
The resulting reweighted PDFs are compared with the

original CT14 NLO PDFs in Fig. 3. For all quark flavours, the
found modifications are modest compared to the size of PDF
uncertainties. Only at very large x we can see a clear down-
ward bend in the central valence-quark PDFs, caused by the
fit trying to adapt to the data at large rapidities, where gluon–
valence-quark scattering dominates the cross sections. There
is a similar, but even more pronounced, large-x depletion for
the gluons. In addition, we find an enhancement for gluons at
x ∼ 0.1, compensating for the excess in data at midrapidity.
Such modifications to gluon PDF are not totally unexpected.
The MMHT14 gluon PDF [6], which closely resembles that
of CT14, acquires rather similar modifications when con-
fronted with the 7 TeV high-luminosity inclusive jet data
[30]. Also, attributed to including 8 TeV differential top-
quark data, the NNPDF3.1 fit has large-x gluons suppressed
compared to CT14 and MMHT14 [31]. In addition, a recent
reweighting study using multiple top-production data sets
found very similar CT14 modifications as we do here [32].
Thus, we have evidence that the CT14 gluon distribution is
simply too hard to be able to fully describe jet and top-quark
measurements.

Figure 4 shows the reweighted dijet spectra in compari-
son to data and original CT14 predictions. The reweighting
clearly improves compatibility with the data, especially in
the midrapidity region, where the data and theory are now
in agreement within the associated uncertainties. At ηdijet �
−1, the data still deviates from the reweighted results. This
is also reflected in the figure of merit, χ2/Ndata = 2.0,
which is still quite high, but vastly better than before the
reweighting. For a comparison, we have calculated the dijet
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Fig. 2 Upper panels: distributions of dijets in 5.02 TeV proton–proton
collisions against ηdijet and normalized to unity in each bin of pave

T . The
imposed kinematic cuts are discussed in text. Black markers show the
data from the CMS measurement [4] with vertical bars showing the sta-
tistical and systematical uncertainties added in quadrature. Solid orange
lines represent the results from the NLO pQCD calculation using the
central set of the CT14 NLO PDFs [5] with μ = pave

T scale choice,

light orange boxes the associated PDF uncertainties from the CT14
NLO error sets. Lower panels: difference to the central CT14 result.
Dashed hollow boxes show the dependence of NLO predictions on fac-
tor two upward and downward variations of the scale choice. Dotted
lines represent the results from the respective LO pQCD calculation.
The results with μ = Mdijet scale choice and its factor two variations
are indicated in green

Fig. 3 The impact of reweighting on CT14 NLO PDFs at Q2 =
104 GeV2. The original CT14 PDFs are shown in orange, with the solid
line representing the central set PDFs, the ratio to which is shown in

each panel. The corresponding PDFs obtained with quadratic–quadratic
reweighting using Δχ2 = 100 are shown in red and the central set of
the reweighting with Δχ2 = 10 is presented with a solid purple line

spectra also using the MMHT14 [6], NNPDF3.1 [31] and
5-flavour ABMP16 [33] NLO PDFs. These yield χ2/Ndata

goodness-of-fit values 4.7, 4.0 and 2.7, respectively, show-
ing that less than perfect agreement with the data is not only
a problem with CT14. However, the very strong disagree-
ment between data and CT14 before reweighting appears
to be a rather extreme case. In Fig. 5 the gluon PDFs of
MMHT14, NNPDF3.1 and ABMP16 are compared with
the CT14 before and after the reweighting. The reweight-

ing brings the CT14 gluon distribution to a closer agree-
ment with the other PDFs, particularly at small x to the
MMHT14 and NNPDF3.1 and, more importantly, at large x
to the NNPDF3.1 and ABMP16. Clearly a reduction in high-
x gluons compared to CT14 similar to those in the NNPDF3.1
and ABMP16 fits is preferred by the data.

The penalty term for the reweighted CT14 fit is rather
high, with P/Δχ2 = 1.17, clearly indicating that we are
reaching the limits of the applicability of the reweighting
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Fig. 4 Upper panels: the impact of reweighting on CT14 predic-
tions of pp dijet spectra. The original predictions are shown in orange
and the results obtained with quadratic–quadratic reweighting using
Δχ2 = 100 are shown in red. In both cases the solid lines corresponding

to the central set and the shaded boxes showing the PDF uncertainty. In
addition, resulting spectra from reweighting with Δχ2 = 10 are shown
as purple lines. Lower panels show again the difference to the original
central CT14 results

Fig. 5 Comparison of the NLO gluon PDFs of the original and
reweighted CT14 sets with those from the MMHT14, NNPDF3.1 and
5-flavour ABMP16 analyses. The uncertainty bands of the latter have

been scaled with a factor 1.64 to nominally match with the 90% confi-
dence level definition of the CT14 analysis

method. This can be interpreted either as a tension between
the dijet data and some datasets used in the CT14 analysis,
or as an inflexibility of the CT14 fit form in the high-x region
which is probed by the dijets at large rapidities, where the
data were not well reproduced and where the data would
support even stronger suppression in the PDFs. To test if
the CT14 parametrization could adapt to the dijet data, we
have performed a reweighting also with an artificially low
Δχ2 = 10. In a global fit, this would translate to putting
an additional tenfold weight on the new data. The results
for the new central PDF set are shown as purple lines in
Figs. 3 and 4. With stronger low- and high-x suppression
and mid-x enhancement for gluons, this fit achieves a much
more reasonable goodness-of-fit χ2/Ndata = 0.9 for these
data. For this, substantial help from valence quarks, which get
strong modifications in this case, is also needed. Still, the data
at ηdijet � −1 are not perfectly reproduced, which might be a
signal of a parametrization issue, as the relative contribution
from the original fit to the total χ2 is decreased with the

lowered Δχ2. With P/Δχ2 = 3.61, this fit is in a clear
tension with the original CT14 analysis. Of course, once the
correlations in the dijet data are made available, one should
study whether a shift in some of the systematic parameters
could improve the fit at ηdijet � −1. It is also conceivable that
the residual disagreement is due to the NNLO corrections.

A comprehensive study of possibly conflicting datasets
within CT14 is outside the scope of this article, but as a cross
check we have tested the compatibility of the reweighted
PDFs with the CMS 7 TeV inclusive jet measurements [34]
which are included in the CT14 analysis. For these calcu-
lations we use the pre-computed fastNLO grids [35], set-
ting the renormalization and factorization scales equal to the
transverse momentum pT of the individual jet as in the CT14
analysis. Figure 6 shows the data-to-theory ratio for the NLO
predictions with the CT14 PDFs reweighted with the dijet
data using Δχ2 = 100. Also the ratios of the original CT14
central predictions with the reweighted ones are indicated.
The data-to-theory agreement happens to be even slightly
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Fig. 6 Comparison of CMS 7 TeV inclusive jet measurements [34] and
NLO predictions obtained using the CT14 NLO PDFs [5] reweighted
with the 5.02 TeV dijet data [4]. The optimal systematic shifts in the cor-
related experimental uncertainties are applied to the data points (simi-
larly as in Ref. [15]) and only statistical uncertainties are shown. Dashed
red lines show the ratio of predictions with the original CT14 PDFs to
those with the reweighted PDFs

better for the reweighted PDFs, with χ2/Ndata = 1.2, than
for the original set, for which χ2/Ndata = 1.3. Thus we find
that, in the light of reweighting, the CMS measurements of
inclusive jets at 7 TeV and dijets at 5.02 TeV are mutually
compatible.

3.2 Significance of proton PDF uncertainties in
proton–lead dijet spectra

The pPb dijet spectra, shown in Fig. 7, have a rather similar
data-to-theory systematics as we had in the pp case. Here,

we use the EPPS16 nuclear modifications along with the
CT14 NLO proton PDFs in the predictions, i.e. the PDF of
a flavour i in a proton bound in lead at scale Q2 is obtained
with

f p/Pb
i (x, Q2) = RPb

i (x, Q2) f p
i (x, Q2), (33)

where RPb
i is the nuclear modification from the EPPS16 anal-

ysis and f p
i the corresponding CT14 PDF of the free proton.

The total PDF uncertainties in the cross sections are calcu-
lated with

δX±
total =

√(
δX±

EPPS16
2 + (

δX±
CT14

2
, (34)

where δX±
EPPS16 are the upward and downward uncertainties

obtained with Eq. (11) using the EPPS16 error sets and keep-
ing the CT14 central set fixed, and δX±

CT14, respectively, the
uncertainties from the CT14 error sets keeping the EPPS16
central set fixed.

Again, these predictions give wider distributions than seen
in the CMS data, resulting with χ2/Ndata = 6.9. While in this
case the data points are mostly within the combined nuclear
and free-proton PDF uncertainty bands, we can expect that
the modifications to the CT14 PDFs, which were found nec-
essary to improve the description of the pp data, play a role
also here. Indeed, in Fig. 8 we show results with the PDFs
obtained by reweighting CT14 with the pp data, observ-
ing a clear improvement in the data to theory agreement.
We obtain χ2/Ndata = 2.8 for the predictions with CT14
reweighted using Δχ2 = 100 and χ2/Ndata = 1.6 when
using Δχ2 = 10. These numbers are somewhat higher than
what we obtained in the pp case, reflecting the fact that also
the EPPS16 nuclear modifications need to be adjusted for
optimal description of the data. This can also be seen by
comparing the data-to-theory agreement in pPb at ηdijet � 2
to that in pp: while the CT14 predictions reweighted using
Δχ2 = 100 describe well the pp data in these rapidities,
the pPb data points lie systematically below the predictions,
which hints a preference for deeper nuclear shadowing – the
suppression in the gluon PDF, RPb

g < 1, at small x – than
that in the EPPS16 central set. We will verify this claim in
the next section.

An important thing to notice here is that most of the devia-
tions from central theory predictions actually originate from
the issues with the free-proton PDFs instead of the nuclear
modifications. This large free-proton PDF bias prevents a
clean extraction of the PDF nuclear modifications from the
pPb spectra. The dijet spectra are certainly not the only pPb
observable sensitive to such a free-proton PDF dependence,
but the refined proton PDFs found here could also have an
effect for example on the predictions for inclusive t t̄ pro-
duction at 8.16 TeV pPb collisions where calculations with
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Fig. 7 As Fig. 2, but now with pPb data and predictions with EPPS16 nuclear modifications imposed on the CT14 NLO proton PDFs and omitting
the results with μ = Mdijet for clarity. Light blue boxes show the combined uncertainty from the CT14 and EPPS16 PDFs

Fig. 8 As Fig. 4, but now with pPb data and with EPPS16 nuclear modifications imposed on the original and reweighted CT14 PDFs. Only
uncertainties from the free-proton PDFs are shown

CT14+EPPS16 overshoot, but are still compatible with the
data [36].

3.3 Nuclear modification ratio and EPPS16 reweighting

Let us now consider the nuclear modification ratio of the
normalized dijet spectra discussed above, defined as

Rnorm.
pPb =

1
dσ pPb/d pave

T
d2σ pPb/d pave

T dηdijet

1
dσ pp/d pave

T
d2σ pp/d pave

T dηdijet
. (35)

As we have seen that the dijet rapidity distributions in pp and
pPb have very similar dependence on the free proton PDFs,
we can expect this dependence to efficiently cancel in the
ratio. This statement is verified in Fig. 9, where we observe
the uncertainty band given by CT14 PDFs to be vanishingly

small. Also the scale uncertainties, while being larger than
the CT14 uncertainties, are small in this observable, implying
that MHOUs can be expected to be small as well. This leaves
the nuclear modifications as the dominant source of theory
uncertainty.

We observe that the CMS data and EPPS16 predictions
are in good agreement within the uncertainties. This does
not come as a surprise, as part of these data, namely the
high-pave

T part of the pPb cross section [37], were used in
the EPPS16 fit. Still, this agreement is not trivial as with
the new pp baseline and being a more differential measure-
ment, these Rnorm.

pPb data contain plenty of new information
compared to the 7 data points of forward-to-backward ratios
included in the EPPS16 analysis. As was anticipated above,
the data points at forward rapidities deviate from the cen-
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Fig. 9 The nuclear modification ratio of normalized pPb and pp dif-
ferential cross sections. Black markers show the data from CMS mea-
surement [4] with vertical bars showing the statistical and systematical

uncertainties added in quadrature. Solid orange lines represent the NLO
pQCD calculation with μ = pave

T scale choice using the central set of
the CT14 NLO PDFs [5] with EPPS16 [18] nuclear modifications

tral EPPS16 prediction, indicating a preference for a deeper
shadowing in the nPDFs.

Compared to the data, the EPPS16 predictions have much
larger uncertainties, which promises a good constraining
power when fitting to these data. To study the impact these
data would have had in the EPPS16 fit, we have performed
a reweighting in the cubic–quadratic approximation intro-
duced in Sect. 2.2, using Δχ2 = 52 and taking the values
of δz±

k from Table 2 of Ref. [18]. The results for Rnorm.
pPb are

shown in Fig. 10. Most notably, there is a vast reduction
in the EPPS16 uncertainties. Also, at forward rapidities the
central prediction comes down a bit, as is expected from the
low-lying data points in this region. In the backward direc-
tion a slight enhancement in the central prediction can be
observed, but this is far less prominent than the suppression
in the forward bins. In total, we obtain an improvement in the
goodness of fit from χ2/Ndata = 1.7 to 1.4 with a penalty
P/Δχ2 = 0.14.

The corresponding effects on the EPPS16 nuclear modifi-
cations in lead at the parametrization scale Q2 = 1.69 GeV2

are presented in Fig. 11. There is a striking impact on gluon
modification uncertainties, which are reduced across all x .
In the best-constrained mid-x region, the uncertainties are
reduced to less than half of their original size. As the uncer-
tainty band lies clearly above unity in this region, we find
strong evidence for gluon antishadowing in lead. At small
x , the reweighted uncertainty band goes respectively below
unity, giving evidence for gluon shadowing. These findings
are in accordance with those of Ref. [38], where inclusive
heavy-flavour production data from measurements at the
LHC were used to study the gluon PDF modifications in
nuclei. As expected from inspecting the ratio of the dijet
spectra, the new central set seems to support stronger shad-
owing than in the original EPPS16 central fit.

Even with the increased gluon shadowing, the most for-
ward bins of Rnorm.

pPb are not well reproduced by the reweighted

results, which is also the reason why the χ2/Ndata remained
somewhat high even after the reweighting. To be consistent
with these forward data points, a very deep shadowing for
the gluons would be required. Moreover, the probed x region

Fig. 10 The impact of reweighting on EPPS16 predictions of the
nuclear modification ratio of the dijet spectra. The original predictions
are shown with solid blue lines and light blue boxes representing the

central predictions and the nPDF uncertainties, respectively. The corre-
sponding results after the reweighting are shown with solid black lines
and purple boxes
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Fig. 11 The impact of reweighting the EPPS16 nPDFs with the data
on the nuclear modification ratio of the dijet spectra. The original and
reweighted EPPS16 nuclear modifications for the lead nucleus are pre-

sented at the parametrization scale Q2 = 1.69 GeV2. For better visi-
bility, the s-quark modifications are presented with a different vertical
axis scaling

Fig. 12 The EPPS16 gluon
nuclear modifications in Pb at
the scales Q2 = 10 GeV2 and
Q2 = 104 GeV2 before and
after reweighting with the dijet
data

changes very little between the last and second-to-last ηdijet

data point, and thus such a steep drop as that suggested by
the data is difficult to attain. This is because the DGLAP
evolution efficiently smooths out even steep structures in the
gluon nuclear modification, as can be seen in Fig. 12 where
we show the gluon nuclear modifications evolved to higher
scales. We also note that the systematic uncertainty dom-
inates in the last ηdijet bins, and thus taking into account
the data correlations, once available, could improve the fit
quality. These findings should, in the future, be contrasted
also with the recent ATLAS conditional yield measurement,
where an order of 10–20% nuclear suppression for dijets was
found in the most forward configuration [39].

Also at large x , the reweighted gluon modifications are
better constrained than in the original EPPS16 analysis. The
new central set has RPb

g closer to unity at x around 0.7. This
is partly enforced by momentum sum rule in combination
with the stiffness of the EPPS16 fit function and the deep-
ened small-x shadowing. In any case, the uncertainty remains
large, and either an enhancement or a suppression for gluons
is possible in this region. On this basis, the conclusion made

in Ref. [4], that the dijet data would give evidence of large-x
gluon suppression, seems premature. This claim was based
on comparison of the data with EPS09 [40] and DSSZ [41]
nPDFs, where the former, with gluon suppression at large x ,
agreed well with the data at backward rapidities, but the lat-
ter, having the nuclear gluons unmodified, did not. However,
going towards backward rapidities, and thus larger x from the
Pb side, the contribution of nuclear quarks to the dijet cross
section grows rapidly. Hence the difference in predictions
with EPS09 and DSSZ in this region has a large contribution
from different valence quark modifications. As DSSZ has
much smaller large-x suppression for valence quarks than
EPS09 (see e.g. Ref. [42]), this also partly explains the dif-
ference in the dijet predictions of Ref. [4].

On these grounds, it might appear surprising that the dijet
data are not able to constrain the valence quark modifications
at all, as can be seen from the first two panels in Fig. 11. The
reason for this is that due to smallness of isospin correc-
tions [43], the backward dijet data mainly probe the average
valence modifications,
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Fig. 13 The impact on the average valence and sea quark and gluon modifications under different approximations in the reweighting

RPb
uV+dV

= up/Pb
V + dp/Pb

V

up
V + dp

V

, (36)

shown in Fig. 13. This combination is much better con-
strained than the individual flavours shown in Fig. 11 and
has vastly smaller uncertainties at large x than the gluon
modifications. Thus, while large-x valence quarks dominate
the dijet cross section at backward rapidities, the uncertainty
in the EPPS16 predictions in this region comes dominantly
from the less-constrained gluons, and hence it is the gluon
modifications which are constrained in the reweighting. Fig-
ure 13 shows also the average sea quark modification

RPb
u+d+s

= up/Pb + d
p/Pb + sp/Pb

up + d
p + sp

, (37)

which is the dominant quark combination constrained at for-
ward rapidities. We observe a modest reduction in the small-
x uncertainty, much smaller than that for the gluons. At the
level of individual flavours, shown in Fig. 11, these con-
straints affect mostly the s-quark modifications, which were
poorly constrained in EPPS16.

3.4 Importance of non-quadratic and non-linear terms in
reweighting

We may now ask whether the inclusion of higher-order (non-
quadratic and non-linear) components in the reweighting had
a sizable effect on our results. Figure 13 shows the impact
of the dijet data on the EPPS16 nuclear modifications in all
three approximations discussed in Sect. 2.2. While, for sim-
plicity of presentation, we show only the average valence
and light-sea-quark modifications in addition to those for
gluons, the conclusions below apply to individual flavours
as well. We find that the cubic–quadratic and quadratic–
quadratic approximations give almost identical results. This
is rather easy to understand: The new data are precise enough
to dominate the shape of the total χ2 function in the parame-
ter directions that it constrains (mainly those related to gluon
degrees of freedom), making the non-quadratic components
sub-dominant in the reweighting. Moreover, as the new cen-
tral set does not divert far from the original, we are working in

a region where the quadratic approximation for χ2
old is rather

good. Under different circumstances this might not be the
case and the cubic terms could alter the reweighting results
significantly.

Next, we consider the reweighting results in the quadratic–
linear approximation. Here, we use the linear approximation
for the cross sections, but decide to keep the quadratic depen-
dence in the PDFs for better comparability.5 Again, the differ-
ences to the results of the cubic–quadratic approximation are
rather modest, though for the high-x gluons the quadratic–
linear approximation seems to suggest slightly less stringent
constraints. The similarity of results in the different approx-
imations can also be seen as a reassuring fact: the results of
reweighting do not seem to depend on minute details of our
method and we seem to be able to make reliable conclusions
based on rather limited information about the original global
analysis, at least in this particular case. The obtained results
are thus not likely to change if even higher-order contribu-
tions are added.

4 Summary and conclusions

In this work, we have presented a non-quadratic extension
of the Hessian PDF reweighting introduced in Ref. [15] and
applied the method in the context of CMS dijet measure-
ments at 5.02 TeV. This improved method makes use of the
knowledge of parameter variations at which the error sets
of the original PDFs are defined, to solve for cubic compo-
nents of the χ2 function before inclusion of new data. Simi-
larly, quadratic components in the responses of observables
to parameter variations were taken into account. The addi-
tional information needed in this cubic–quadratic approxima-
tion prevented us from using it when reweighting the CT14
NLO PDFs with the pp dijet distributions, where we had to
resort to a simpler quadratic–quadratic approximation, but
we were able to apply it to reweight the EPPS16 nPDFs, for

5 Note that using a linear parameter dependence for the PDFs would
render the PDF uncertainties to be perfectly symmetric, so that the com-
parison with cubic–quadratic and quadratic–quadratic approximations
would be meaningful only under the symmetric prescription of Eq. (10).
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which the needed information is available, with the nuclear
modification ratio of the dijet spectra. While no large dif-
ferences were found in the results of reweighting EPPS16
in the cubic–quadratic or quadratic–quadratic approxima-
tion, this observation was limited to one specific case, and
under different circumstances the cubic terms could become
more important. We thus encourage PDF fitters to publish
the details of their analysis to a sufficient accuracy, such that
the reweighting including the higher-order terms becomes
possible. This can be done by publishing the numerical val-
ues of the δz±

k parameters as defined in Sect. 2 in addition
to the tolerance Δχ2. Care must be taken in communicating
which error set corresponds to each of these values, so that
there is no chance of misinterpretation e.g. in what is called
a “plus” and what a “minus” direction. A neat way to do this
with LHAPDF [44] would be to set in each PDF grid file
a custom flag such as “ParamVal” to hold the value δz±

k .
These parameter values could then be retrieved by using the
method info().get_entry("ParamVal") for each
of the PDF error sets.

Comparing the measured pp dijet pseudorapidity spectra
with theory calculations using the CT14 NLO PDFs revealed
a large discrepancy. We showed that at high pave

T this dif-
ference is larger than the associated scale uncertainties and
exceeds the size of the NLO corrections, thus being unlikely
due to missing NNLO terms alone. This suggested the need
for modifying the CT14 PDFs to reach a better agreement
with the data. In reweighting CT14 with the dijet data, the
gluon PDF acquired significant modifications, especially at
large x , where a substantial reduction was observed. We dis-
cussed also evidence from other studies pointing into the
same direction. After reweighting, a much more reasonable
χ2 value for the dijet data was found, but this came with a
price of a rather high penalty term, i.e. the new central set
had diverted quite far from the original minimum. The rea-
son for this apparent discrepancy between CT14 and the dijet
data remains elusive. We tested the reweighted PDFs against
CMS 7 TeV inclusive jet measurements finding good agree-
ment, and thus no conflict between the considered dijet and
inclusive jet data. By performing a reweighting with an arti-
ficially low Δχ2, we showed that the CT14 PDFs still had
trouble in reproducing the data at ηdijet � −1, signaling a
possible parametrization issue, although NNLO corrections
and correlated systematics can also play a role here. Solving
this issue is beyond the reach of the reweighting tools and
should be studied in the context of a global analysis.

Similar discrepancy as seen with the pp spectra is observed
also in the case of pPb. We showed that applying the same
CT14 modifications as found in the reweighting with pp data
substantially improves the data-to-theory agreement also in
pPb. As the pPb dijet distributions contain a substantial free-
proton PDF dependence, a clean extraction of their nuclear
modifications is not possible from these data directly. Taking

the ratio of the pPb and pp spectra, however, leads to a very
efficient cancellation of not only the free-proton uncertainties
but also of the scale uncertainties, thus giving an excellent
probe of the nPDFs. We showed that the measured nuclear-
modification ratio of dijet spectra is in a good agreement
with the NLO predictions using the EPPS16 nPDFs. Some
deviation from the EPPS16 central prediction was observed
at ηdijet � 2, supporting a stronger shadowing for gluons than
present in the EPPS16 central set. As a whole, these data give
compelling evidence of small-x gluon nuclear shadowing
and mid-x antishadowing, as was revealed in reweighting
the EPPS16 nPDFs. We obtained significant new constraints
on the EPPS16 gluon modifications in lead throughout the
probed range, reducing the uncertainties even to less than
half of their original size.
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We explore the possibility of measuring nuclear gluon distributions at the Relativistic Heavy-Ion
Collider (RHIC) with

ffiffiffi
s

p ¼ 200 GeV proton-nucleus collisions. In addition to measurements at central
rapidity, we consider also observables at forward rapidity, consistent with proposed upgrades to the
experimental capabilities of STAR and sPHENIX. The processes we consider consist of Drell-Yan
dilepton, dijet, and direct photon-jet production. The Drell-Yan process is found to be an efficient probe of
gluons at small momentum fractions. In order to fully utilize the potential of Drell-Yan measurements we
demonstrate how the overall normalization uncertainty present in the experimental data can be fixed using
other experimental observables. An asset of the RHIC collider is its flexibility to run with different ion
beams, and we outline how this ability could be taken advantage of to measure the A dependence of gluon
distributions for which the current constraints are scarce.

DOI: 10.1103/PhysRevD.100.014004

I. INTRODUCTION

Good control over the partonic structure of protons and
heavier nuclei has become an indispensable ingredient
in modern particle, heavy-ion, and astroparticle physics.
For processes involving a large momentum transfer,
Q ≫ ΛQCD ∼ 200 MeV, the nucleon’s relevant degrees
of freedom can be described by parton distribution func-
tions (PDFs). Despite the progress in theoretical first-
principle methods [1], the PDFs are still most reliably
determined through a statistical analysis of a global set of
experimental data. Along with the precise data from the
Large Hadron Collider (LHC), the list of data types that are
included in state-of-the-art PDF analyses has grown, now
ranging from traditional inclusive deeply inelastic scatter-
ing to jet, top-quark and heavy gauge-boson production
[2,3]. At this moment, global fits of proton PDFs do not
use any data from the Relativistic Heavy-Ion Collider
(RHIC), and nuclear-PDF fits [4,5] use only inclusive
pion data from RHIC [6,7]. The advantage of the lower

center-of-mass (c.m.) energies of RHIC,
ffiffiffi
s

p ¼ 200 and
500 GeV, is that the underlying event is not as large as it is
at the LHC, and thus e.g., jets can be better resolved at
lower transverse momenta (pT) [8,9]. These jet measure-
ments are compatible with next-to-leading-order (NLO)
perturbative QCD calculations [9–11] down to pT ∼
10 GeV (which is the minimum pT of the measurements),
so nothing really forbids using them in PDF analysis.
Similarly, low-mass Drell-Yan events can be better resolved
from the decays of heavy flavor. In pþ p collisions at the
higher c.m. energy of

ffiffiffi
s

p ¼ 500 GeV, measurements of
W� bosons also become feasible [12]. These measurements
provide complementary constraints on the fixed-target
measurements [13] of the ū=d̄ ratio.
The current status of the global determination of nuclear

PDFs has been recently reviewed e.g., in Refs. [4,5], and
the field is rapidly developing. This is mainly driven by the
pþ Pb measurements at the LHC, but is also motivated by
theoretical advances in upgrading global analyses to the
next-to-NLO (NNLO) QCD level. Currently, the most
recent global NLO fits are EPPS16 [14], nCTEQ15 [15]
and DSSZ12 [16]. Out of these, EPPS16 has the widest data
coverage and is currently the only one to use LHC
measurements. In the current NNLO-level fits [17,18],
the experimental input is restricted to fixed-target data only.
In this paper, we report our studies on the future prospects
for constraining nuclear PDFs at RHIC, particularly with
measurements at central and forward rapidities where
forward acceptance corresponds to that proposed for the
STAR [19] and sPHENIX experiments [20]. Projections of
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forward direct photon and Drell-Yan measurements at
RHIC on nuclear PDFs have been separately considered
e.g., in Refs. [19,21,22]. Here, we aim for a more
systematic approach by combining multiple observables
into a simultaneous analysis and more carefully assessing
the experimental normalization uncertainty. We will base
our study mainly on the EPPS16 analysis.

II. EXPERIMENTAL DATA PROJECTIONS

Several processes are expected to have an impact on
nuclear PDFs at RHIC c.m. energies. Here, we will focus
on such double differential measurements which, to leading
order, probe PDFs at fixed momentum fractions. In
particular, we construct pseudodata projections for the
Drell-Yan dilepton, dijet, and direct photon-jet processes,
differential in the invariant mass M and rapidity y of the
produced pair. While the Drell-Yan process (on fixed
target) has been used as a constraint for nuclear PDFs
already in the pioneering EKS98 analysis [23], the use of
dijets [24,25] has been realized only in the recent EPPS16
fit [14]. Currently, there are no available photon-jet data to
be included in the global analyses though the potential of
the process has been discussed [26,27]. In principle, these
processes individually constrain different quark-gluon
combinations of PDFs, and can also be used together to
limit the effect of normalization uncertainties as will be
described later.
To generate our projections, we first impose fiducial

acceptance requirements on a barrel detector with forward
instrumentation. Uncertainty projections were generated
for a barrel covering the full azimuth of 0 < ϕ < 2π and
pseudorapidity acceptance of jηj < 1, where the detector is
assumed to have full tracking as well as electromagnetic
and hadronic calorimetry such that jets can be robustly
measured. In conjunction with the barrel central rapidity
detector, a forward spectrometer, incorporating tracking
and electromagnetic and hadronic calorimetry with pseu-
dorapidity acceptance of 1.4 < η < 4 and full azimuthal
coverage, is also considered.
Projections were determined by taking the cross sections

as predicted in the PYTHIA 6 event generator [28,29] and
multiplying them by total integrated luminosity projections
at RHIC. Assumed luminosities were 197 pb−1 for pþ p
collisions and 0.33 pb−1 for pþ Au collisions, correspond-
ing to the anticipated sPHENIX run plan for the second and
third years of operation in the early 2020s. Estimates of
experimental efficiencies are also applied, as described
below for each process. The total expected yields were
converted to per event yields by dividing by the total pþ p
cross section times the expected luminosity. Thus, the ratio
of the pþ Au to pþ p yields is always unity and the
statistical uncertainties of the ratio are indicative of the
actual statistical uncertainties on a measurement of RpA,
where RpA is defined as

RpA ≡ 1

A

dσpA=dydM2

dσpp=dydM2
: ð1Þ

Since the detector has both central and forward instru-
mentation, there are a number of rapidity regions that each
observable can probe. Ideally measurements should be
made in each region, as different values of x will be probed
in both the proton and the nucleus when measuring at
central and/or forward rapidities. Thus, we consider several
combinations of observables, for which a summary table is
shown in Table I.
Drell-Yan data are generated in both the central barrel

and the forward arm independently from one another. In
each case, the Drell-Yan dilepton pair is measured in the
invariant mass range of 4.5 < Mlþl− < 9 GeV=c2.
Experimental efficiencies for the reconstruction of Drell-
Yan pairs were estimated from a full GEANT4 [30]
simulation of the sPHENIX detector (including forward
instrumentation). Tight cuts on the simulated data were
used to reduce backgrounds so that the simulated meas-
urement is dominated by Drell-Yan pairs and backgrounds
from decays, conversions, etc., were minimal. Overall pair
efficiencies vary between 10–15% over the invariant mass
range considered for both central and forward measure-
ments. The dijet data are considered in both regions to
probe a variety of x values. Jets were determined from final-
state PYTHIA particles with the anti-kT algorithm with R ¼
0.4 [31]. Two dijet pseudodata samples are constructed, one
in which both jets are measured in the central barrel and
another where one jet is measured at central rapidity and the
other is measured at forward rapidity. Since the pT reach of
jets becomes smaller at forward pseudorapidities, the
leading jet at central rapidity is required to have pT >
12 GeV=c and the subleading jet at forward rapidity is
required to have pT > 8 GeV=c. Experimental efficiencies
for the reconstruction of dijet pairs were estimated
in a similar fashion as the Drell-Yan data. Jets were
reconstructed with both hadronic and electromagnetic
calorimeter deposits and efficiencies were found to be
approximately 80%, where these efficiencies become
smaller towards the edge of the detector acceptance when
some fraction of the jet cone lies outside of the detector. At
forward pseudorapidity, the efficiencies were generally
smaller, varying between 40 and 70% depending on the
pseudorapidity of the jet. The direct photon-jet channel is

TABLE I. A summary table showing the different combinations
of pseudorapidity measurements for each channel generated in
this study.

Central-central Forward-central Forward-forward

Drell-Yan Drell-Yan
Dijets Dijets
Photon-jet
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expected to have a high impact on the gluon nuclear PDF at
small x when the process is measured in the forward
direction. However, the photon-jet channel is difficult to
measure at forward pseudorapidities due to large back-
grounds from π0 → γγ decays. Thus, we only generate
photon-jet pseudodata where both are measured in the
central barrel, where previous direct photon measurements
at RHIC have been made and where future RHIC exper-
imental upgrades are expected to be able to measure this
process. We note that if new forward instrumentation at
RHIC were available to separate direct photons from
backgrounds at forward pseudorapidities this would add
a powerful additional observable to constrain the nuclear
gluon PDF at low x, complementary to Drell-Yan [19]. The
photon-jet cross sections were generated with pγ

T >
10 GeV=c and pjet

T > 8 GeV=c. Photon-jet reconstruction
efficiencies were evaluated similarly to the dijet and Drell-
Yan data, where the efficiency was found to be approx-
imately 70% integrated across the central rapidity of the
barrel detector.

A. Generation of pseudodata

From the PYTHIA simulations for pþ p and pþ Au
collisions we keep the relative statistical error, but construct
the pseudodata points for the expected nuclear modification
RpA as

RpA ¼ REPPS16
pA × ½1þ rδuncorr�; ð2Þ

where δuncorr signifies the total uncorrelated data uncer-
tainty and r is a Gaussian random variable. To obtain
δuncorr, we add in quadrature the statistical uncertainty in the
anticipated yield in pþ p and pþ Au collisions. A 4%
normalization uncertainty is assumed to account for the
model dependence in determining hNcolli used in determin-
ing the RpA ratio. The overall scale of this uncertainty is
unimportant, however, assuming it is common to all
measurements, as we will detail later. In addition, for dijet
(photon-jet) measurement, another 5% (4%) uncorrelated
bin-to-bin systematic uncertainty is added, corresponding
to the residual experimental systematic error that does not
cancel in the ratio. For the Drell-Yan case the statistical
uncertainty dominates and no additional systematic uncer-
tainty is added. A systematic uncertainty of the order of 5%
is clearly smaller than what one can expect to be present in
measurements for the absolute cross sections. However, if
the pþ p and pþ Au runs are made soon after each other
(so that the detector configuration and calibration remains
unaltered), much of the systematic uncertainty can be
expected to cancel. We note that recent dijet measurements
by the CMS Collaboration [32] quote a systematic uncer-
tainty even less than 5%.
The central values for RpA in Eq. (2) were obtained by

NLO-level calculations using theCT14NLO[33] free-proton

PDFs and EPPS16 [14] nuclear modifications. For dijets we
usedMEKS (v1.0) [34],with the anti-kT algorithm, taking a jet
coneR ¼ 0.4, and fixing theQCDscales to the average of the
two highest-pT jets. The leading jet was required to have
pT > 12 GeV=c and the subleading jet pT > 8 GeV=c.
These unequal cuts are necessary to avoid sensitivity to
soft-gluon resummation. For photon-jet we used JETPHOX

(v1.3.1) [35,36] where the jet was defined by a kT algorithm
withR ¼ 0.4 and the QCD scales were fixed to thepT of the
photon. No isolation criteria for the photons were imposed.
The NLO Drell-Yan cross sections are standard, and were
calculated with a private code based on Ref. [37], fixing the
QCD scales to the invariantmass of the dilepton pair. Besides
the photon-jet process for which there are no data in the
EPPS16 analysis, the scale choices are the same as those
made in the EPPS16 fit.

III. IMPACT ON EPPS16

A. The Hessian reweighting technique in a nutshell

We estimate the impact of the projected data on the
EPPS16 nuclear PDFs by the PDF reweighting (also called
PDF profiling) method [25,38–41]. In this method, one
studies the function

χ2ðz⃗Þ ¼
X
i

ðaiz2i þ biz3i Þ þ χ2new dataðz⃗Þ; ð3Þ

where the first term describes the behavior of the original
global χ2 in the EPPS16 analysis, and the second term is the
contribution of the new data to the overall χ2 budget. The
central fit of EPPS16 corresponds to z⃗ ¼ 0⃗, and the error
sets S�i are defined in the z space by

S�1 ¼ ðδ�1 ; 0;…; 0Þ;
S�2 ¼ ð0; δ�2 ;…; 0Þ;

..

.

S�N ¼ ð0; 0;…; δ�NÞ; ð4Þ

and they are known to increase the original χ2 function by
T ¼ 52 units. The values for δ�i are given in the EPPS16
paper [14], from which the ai and bi coefficients in Eq. (3)
can be solved. The contribution from the “new” data is
defined as

χ2new dataðz⃗Þ ¼
X
i

�
Di − fNTiðz⃗Þ

Ei

�
2

þ
�
fN − 1

Enorm

�
2

; ð5Þ

where Di and Ei denote the ith data point and its error. The
overall normalization uncertainty is marked by Enorm. We
write the theoretical prediction Tiðz⃗Þ as
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Tiðz⃗Þ ¼ Tiðz⃗ ¼ 0⃗Þ þ
X
k

½βikzk þ γikz2k�; ð6Þ

where the coefficient for βik and γik can be obtained by
computing the predictions for Ti with all the PDF error sets.
As a result, the total χ2 in Eq. (3) becomes an analytic
function of z⃗ which we numerically minimize with respect
to z⃗ and fN . We note that to avoid D’Agostini bias [42], the
normalization factor in Eq. (5) fN multiplies the theoretical
prediction Ti, and not the data value Di. Since the
pseudodata are based on EPPS16, the new minimum is,
by construction, always very close to z⃗ ¼ 0⃗. After finding
the parameters z⃗min that correspond to the minimum of
Eq. (3), we expand

Δχ2ðz⃗Þ≡ χ2ðz⃗Þ − χ2ðz⃗minÞ ≈ ðz⃗ − z⃗minÞTHðz⃗ − z⃗minÞ; ð7Þ

where H is the second-derivative (Hessian) matrix. By
diagonalizing the matrix H this becomes

Δχ2ðz⃗Þ ¼ Δχ2ðv⃗Þ ≈ ðv⃗Þ2; ð8Þ

where v⃗ ¼ Pðz⃗ − z⃗minÞ, where P is the orthogonal matrix
that diagonalizesH, i.e., PTHP ¼ 1. The new error sets are
then defined as in Eq. (4) assuming that the original
tolerance is not altered, i.e., that each new error set Ŝ�i
still corresponds to Δχ2ðŜ�i Þ ¼ 52.

B. Correlating the overall normalization

The normalization uncertainty in Eq. (5) we discuss here
is that of the luminosity determination of the minimum-bias
data sample. At the LHC, the pþ A luminosities are
determined by Van der Meer scans [43]. Alternatively,
the measured per-event yields dNpA=Nevents are converted
to cross sections dσpA by

dσpA ¼ σinelasticpn

hNcolli
dNpA

Nevents
; ð9Þ

where the average number of binary nucleon-nucleon
collisions hNcolli is estimated from a Glauber-type model
[44]. This leads to a model-dependent normalization
uncertainty which is difficult to determine. Furthermore,
the inelastic proton-nucleon cross section σinelasticpn appearing
in Eq. (9) is very sensitive to the physics at low scales
Q2 ∼ Λ2

QCD, and it is presumably lower than the values
measured in proton-proton collisions due to shadowing/
saturation effects. The overall normalization is thus prob-
lematic in this approach. However, the normalization issue
can be overcome by simultaneously measuring several
observables from the same minimum-bias data sample. The
reason is that there is only one single normalization
uncertainty and in Eq. (5) the index i runs through all
data points, not just those belonging to one single

observable. Including data that probe PDFs in a relatively
better constrained region thus serves to “calibrate” the
overall normalization.
To demonstrate how this works we have performed a

PDF-profiling analysis first using only the forward Drell-
Yan data, and then supplementing these data with the
central-barrel dijet data. When only the Drell-Yan data are
used, the constraints appear very weak. This is shown in
Fig. 1 where the original EPPS16 uncertainties on
the predictions are barely affected by the reweighting.

FIG. 1. Effect of PDF reweighting when only the forward Drell-
Yan data (shown in the plot) are used in the analysis. The light-
blue bands denote the original EPPS16 uncertainties, and the red
lines indicate the new upper and lower uncertainty limits after
reweighting.
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The reason for the inability of these data to provide
constraints is that the nuclear modification is predicted
to be rather flat at small x and the variations in PDFs around
the original central value can be compensated by suitably
tuning the normalization fN . The flatness of the predicted
Drell-Yan nuclear modification originates, to some extent,
from the fit functions used in the EPPS16 analysis, but also
from the scale evolution of PDFs which tends to flatten out
the nuclear modifications in sea quarks. Here, we took the
normalization uncertainty to be 4%, but if a larger number
would have been used (e.g., 10%) even fewer constraints
would have been obtained.
The situation changes when the central-barrel dijet

projections are also included. These data probe the nuclear
PDFs at much higher x than the Drell-Yan data and carry
significant sensitivity also to the rather-well constrained
sum of valence quarks uAvalence þ dAvalence. The nuclear
modifications for the dijets are expected to exhibit some
excess (antishadowing) around ydijet ∼ 1 which turns into a
suppression (EMC effect) for ydijet ∼ −1. Such a pattern
cannot be mimicked by the overall normalization and
leaves thus less room for fN variation. Since the normali-
zation is now common for the dijet and Drell-Yan data, the
Drell-Yan data have a much larger impact. This is shown in
Fig. 2, which should be compared to Fig. 1. While the
uncertainties for the central-barrel dijet data are only
slightly reduced from their original EPPS16 values, the
inclusion of these data is crucial in fixing the overall
normalization. We have also observed that our results do
not significantly depend on the exact value we pick for the
normalization uncertainty.

C. Simultaneous analysis of Drell-Yan,
dijet and photon-jet pseudodata

Following the observation made in the previous sub-
section, our strategy is to simultaneously analyze several
observables that share the common normalization uncer-
tainty. To separate the effect of forward-arm measurements,
we first present the results using only the central-barrel
data, and then include the data simulated with the forward-
arm acceptance.
In Fig. 3 we summarize the Drell-Yan, dijet and photon-

jet pseudodata within the central-barrel acceptance
−1 < η < 1. The light-blue bands (“EPPS16”) show the
original EPPS16 predictions, and the darker bands
(“EPPS16+CB”) show the error bands obtained after the
reweighting analysis. We observe a modest improvement in
the uncertainty bands for dijet and γ-jet cases. The precision
of the Drell-Yan measurements is not expected to be high
enough to set constraints as the sea quarks at 10−2 < x <
10−1 are already rather well constrained by the fixed-target
DIS data. In Fig. 4, in turn, we show the combined

FIG. 2. Effect of PDF profiling using both the forward
Drell-Yan (upper panels) and central-barrel dijet data (lower
panels) with common normalization. The dark-blue lines indicate
the new upper and lower uncertainty limits after the PDF
profiling.
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pseudodata within the full central-barrel and forward-
instrumentation acceptance [45]. The light blue bands
are again the original EPPS16 predictions, and the
green bands (“EPPS16þ CBþ FI”) are the uncertainties
obtained in the reweighting exercise. The reduction in the
PDF uncertainties is now more significant than in the
central-barrel-only case shown in Fig. 3.
The impact of both “EPPS16þ CB” and “EPPS16þ

CBþ FI” analyses on EPPS16 is shown in Fig. 5 where we
plot the average sea-quark modification for Au,

RAu
ūþd̄þs̄

ðx;Q2Þ

≡ fp=Auū ðx;Q2Þ þ fp=Au
d̄

ðx;Q2Þ þ fp=Aus̄ ðx;Q2Þ
fpūðx;Q2Þ þ fp

d̄
ðx;Q2Þ þ fps̄ðx;Q2Þ ; ð10Þ

together with the gluon nuclear modification,

RAu
g ðx;Q2Þ≡ fp=Aug ðx;Q2Þ

fpgðx;Q2Þ : ð11Þ

Here, fp=Ai ðx;Q2Þ denotes the parton density in a bound
proton and fpi ðx;Q2Þ is the free-proton PDF. We omit here
the valence quarks as we found no effects there. The
improvement we find inRA

ūþd̄þs̄
is rather weak in both cases.

In the central-barrel analysis, there is a modest improvement
in the gluons across all values of x, though the small-x
improvement is merely a consequence of the better con-
strained antishadowing regime which is transmitted to small
x via momentum conservation and correlations in the
EPPS16 fit function. The improvement for RA

g ðx;Q2Þ in
the full analysis is clearly larger. Thanks to the wider
acceptance, the full pseudodata sample is able to provide
better direct constraints also at lower x. In particular,
the gluon distribution gets significantly better constrained,
the level of improvement being of the order of 50% in
places.
Here we have found that the most decisive factor for

constraining the small-x gluons is the forward-arm Drell-
Yan data sample. At leading order, the Drell-Yan produc-
tion occurs only via qq̄ annihilation, but at small x the
behavior of sea quarks is still strongly driven by the gluons.
At NLO and beyond there is, in addition, a direct gluon
contribution from the quark-gluon scattering. To further
illustrate the sensitivity of the Drell-Yan process to the
gluon PDF, Fig. 6 shows examples of the correlation cosine
[46] between the gluon PDF and the Drell-Yan cross
sections at fixed forward kinematics. Using the notation
of Sec. III A, the correlation cosine of two quantities X
and Y is defined as

FIG. 3. Effect of PDF profiling using simultaneously the
central-barrel Drell-Yan (upmost panels), dijet (middle panels),
and photon-jet (bottom panels) pseudodata.
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cos ðX; YÞ≡
P

kΔXkΔYk

ðPiΔX2
i Þð

P
kΔY2

kÞ
; ð12Þ

ΔXk ≡ XðSþk Þ − XðS−k Þ; ð13Þ

ΔYk ≡ YðSþk Þ − YðS−k Þ: ð14Þ

We take X ¼ fgðx;Q2Þ and Y ¼ dσpAu=dydM2. If
cos ðX; YÞ ∼ ð−Þ1, the two quantities X and Y are strongly

(anti)correlated whereas if cos ðX; YÞ ∼ 0, the two are
independent. In computing the correlation cosine, we have
kept the proton PDF fpi fixed to the CT14NLO central set,
and used the CT14NLO error sets to vary fAui . In other
words, we compute the cross sections using fpi ¼ fpi ðS0Þ
for the proton and fp=Aui ðS�k Þ ¼ fpi ðS�k ÞRAu;EPPS16

i ðS0Þ to
form Eq. (12). The point in using the CT14NLO error sets
is that the CT14NLO fit function is somewhat more flexible
at small x than the EPPS16 ansatz, so this should give a

FIG. 4. Profiling analysis using simultaneously the full dijet (upper left panels), photon-jet (lower left panels), and Drell-Yan
(rightmost panels) pseudodata. Central-barrel Drell-Yan pseudodata are omitted from the figure.
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better estimate of the true correlations. From Fig. 6 we see
that the gluon distribution at small x is anticorrelated with
the forward Drell-Yan cross sections and at larger x we see
a positive correlation. The main reason for the small-x
anticorrelation is the direct contribution from the quark-
gluon scattering, present at NLO and beyond, which is
negative and clearly non-negligible. In our case, this
amounts to ∼15–45% of the cross sections with all partonic
channels included. This contribution becomes increasingly
important towards low x2 and higher M. The large-x
positive correlation persists also in a leading-order calcu-
lation so it is due to the indirect constraints from the scale
evolution and momentum sum rule. Because the qq̄
channel dominates the cross sections, the correlation with
the gluon PDF is moderate but can reach almost up to
∼40% at small x. Below x ∼ 10−3 the correlation begins to
decrease as this region is beyond the kinematic reach of the
projected experimental acceptance. In part, the residual
nonzero correlations x≲ 10−3 are due to the assumed form
of the small-x fit function, but the momentum conservation
and evolution effects also place indirect constraints. All in
all, we can conclude that the Drell-Yan production at
forward kinematics is indeed sensitive to the small-x gluon
PDFs.
We note that the dijet and photon-jet pseudodata probe

the mid- and high-x part of the nuclear PDFs. The
uncertainties for these two observables are dominated by
the assumed 5% uncorrelated bin-to-bin systematic error
and the obtained improvements in nuclear PDFs are
dictated by this assumption. If systematic uncertainties
like those achieved in pþ Pb collisions at the LHC [32]
could be reached, the impact would be clearly larger. In
addition, the systematic uncertainty of the LHC measure-
ments is almost always of a correlated nature, but such
correlation is difficult to estimate in advance. All in all,
assuming a 5% uncorrelated systematic uncertainty appears
thus a reasonable test scenario which should not overstate
the constraining power.

IV. CONSTRAINING THE A DEPENDENCE OF
NUCLEAR PDFs WITH LIGHTER IONS

The mass-number (A) dependence of the current nuclear
PDFs is not well known: direct constraints exist only for
large-x valence quarks and intermediate-x sea quarks. On
the one hand, e.g., in the EPPS16 analysis, the guideline
has been that the nuclear effect should be larger for larger
nuclei at the parametrization scale Q ¼ mcharm which then
tends to lead to physically sound A systematics also at
larger Q. On the other hand, in the recent nuclear-PDF
analysis by the NNPDF Collaboration [18] there is less
direct control over the A dependence and thus the nuclear
effects from one nucleus to another can fluctuate signifi-
cantly. Due to the pþ Pb and Pbþ Pb collisions program
at the LHC, the near-future improvements on nuclear PDFs
are bound to be driven by the Pb nucleus. For example, the

FIG. 5. Effects of PDF profiling for EPPS16. The light-
blue bands (‘EPPS16”) are the original EPPS16 errors and
the darker bands (“EPPS16þ CB”) are those after profiling
with the central-barrel pseudodata. The results of adding also
the forward-instrumentation data are shown as green bands
(“EPPS16þ CBþ FI”).
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FIG. 6. Correlation cosine between the gluon PDF at
Q2 ¼ 10 GeV2 and small-x2 Drell-Yan cross sections.
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dijet [32], D-meson [47] and W� [48] measurements
efficiently constrain [25,49] the gluons in the Pb nucleus,
perhaps providing even stronger constraints for Pb than
what we have found in the present study for Au. The LHCb
fixed-target mode facilitates measurements on lighter
noble-gas targets [50], but only the very-high x regime
of nuclear PDFs is accessible. However, e.g., in astro-
physical applications the relevant nuclei (e.g., oxygen and
nitrogen) are much lighter and thus collider measurements
involving lighter nuclei would be very useful [51]. In
addition, the study of the onset of jet quenching and
saturation phenomena with lighter ions will require nuclear
PDFs for nuclei other than Au or Pb. Interest in light-ion
beams at the LHC has been expressed [52] but since the
main focus of the LHC is still on pþ p collisions, it is not
clear whether and when this would materialize. Here, the
flexibility of RHIC to run with different ions is a clear asset.
Indeed, at least p, d, Al, Cu, Ru, Zr and U ions have already
been used in physics runs which demonstrates that a proper
“A scan” is, in principle, possible. The same multi-ion
option would also be available if RHIC is eventually turned
into an electron-ion collider [53], where the possibilities to
constrain nuclear PDFs are undisputed [54,55]. To high-
light the present uncertainties for light ions, Fig. 7 shows
the nuclear effects for A ¼ 40 (Ca, Ar) from the EPPS16
and nCTEQ15 [15] global fits of nuclear PDFs. While the
uncertainty bands overlap, the shapes at intermediate and
large x are quite different: while the nuclear effects in
nCTEQ15 monotonically rise towards high x, the EPPS16
error band more closely resembles the typical pattern of
shadowing, antishadowing and EMC effect. Figure 8 shows
how this different behavior would be reflected in dijet
production. In the backward direction (ydijet < 0) one is
sensitive to the large-x part of nuclear PDFs and the
nCTEQ15 prediction tends to be above the EPPS16 one,
consistently with Fig. 7. The difference in Fig. 8 is not as
marked as in Fig. 7 as towards large x the valence quarks
also play an increasingly important role. Towards ydijet ≫ 0

the probed x gets lower and, in line with Fig. 7, the
nCTEQ15 prediction tends to be at the lower limit of

EPPS16. Assuming a similar ∼50% reduction in the gluon
PDF uncertainties as found for Au in Fig. 5, it appears
reasonable that the measurements would be able to resolve
between nCTEQ15 and EPPS16. In an approach like that
of the NNPDF Collaboration [18], where more freedom for
the A dependence is allowed than in nCTEQ15 or EPPS16,
the benefit would be even more pronounced.
An additional interesting possibility we would like to

point out would be to study pþ Ai collisions of two
isobaric nuclei A1 and A2 (e.g., A1 ¼96

44 Ru vs A2 ¼96
40 Zr

collisions) with constant A but differences in proton
and neutron content. Precision measurements of e.g.,
ðpþ RuÞ=ðpþ ZrÞ ratios for hard processes (like those
discussed in this paper) would allow a study of the
assumptions made in the present global fits of nuclear
PDFs. Indeed, it is currently assumed that the nuclear
effects depend only on the mass number A, and not on the
mutual balance of neutrons and protons. In addition, the
isospin symmetry (i.e., uproton=A ¼ dneutron=A) is assumed to
be exact. Thus, ðpþ RuÞ=ðpþ ZrÞ ratios, or other similar
constant-A combinations, would test the assumptions made
in global analyses at a deeper level and also test other
theoretical approaches, e.g., the importance of short-range
nucleon-nucleon correlations [56], or the lack of them [57].
In principle, in an optimal situation the neutron-to-proton
mixture in the two nuclei should be as different as possible,
with (at least nearly) constant A. Such a measurement
makes optimal use of the flexibility of the RHIC facility.

V. SUMMARY

Using the Au nucleus as a test case, we have examined
the prospects for constraining nuclear gluon PDFs at RHIC
with new measurements that assume detector acceptances
similar to those proposed for STAR and sPHENIX with
forward upgrades. We have found that the Drell-Yan
process at low invariant mass is able to significantly
constrain the low-x gluon distribution with up to 50%

FIG. 7. Nuclear modifications of gluon PDFs for A ¼ 40 nuclei
from EPPS16 and nCTEQ15.
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FIG. 8. Dijet nuclear modification in p-Ar scattering as
predicted by EPPS16 and nCTEQ15 for an invariant mass
20 < M < 30.
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reduction in the current EPPS16 uncertainty. The con-
straints at higher x depend considerably on the assumed
systematic uncertainty, which is expected to dominate over
the statistical uncertainty for dijet and photon-jet processes.
Assuming an order of 5% bin-to-bin independent system-
atic uncertainty leads to modest constraints in the mid- and
high-x regions. Even so, we find the inclusion of additional
observables along with the Drell-Yan data of utmost
importance to overcome the overall normalization uncer-
tainty in the RpA ratio. Without supplementing the Drell-
Yan pseudodata with other observables (here either dijets,
photon-jet, or both), we find that the power of the
measurement of Drell-Yan to constrain the small-x behav-
ior of the gluon is lost. It is possible that even stronger
constraints could be obtained if measurements of forward
direct photons could be added to this suite of observables.
While the focus of our analysis was on the Au nucleus,

similar constraints can be expected to be obtained for any
other nucleus. In this respect we briefly discussed the A
dependence of nuclear PDFs and highlighted the significant

opportunity for improvements that could be attained with a
proper A scan—measuring the same observables with
several nuclear beams—for which the RHIC collider
provides a unique opportunity.
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Abstract: We scrutinize the recent LHCb data for D0-meson production in p+Pb collisions

within a next-to-leading order QCD framework. Our calculations are performed in the

SACOT-mT variant of the general-mass variable-flavour-number scheme (GM-VFNS), which

has previously been shown to provide a realistic description of the LHC p+p data. Using

the EPPS16 and nCTEQ15 nuclear parton distribution functions (PDFs) we show that a

very good agreement is obtained also in the p+Pb case both for cross sections and nuclear-

modification ratios in the wide rapidity range covered by the LHCb data. Encouraged by

the good correspondence, we quantify the impact of these data on the nuclear PDFs by

the Hessian reweighting technique. We find compelling direct evidence of gluon shadowing

at small momentum fractions x, with no signs of parton dynamics beyond the collinear

factorization. We also compare our theoretical framework to other approaches and are led to

conclude that a full GM-VFNS calculation is most essential in constraining general-purpose

PDFs with D-meson data.
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1 Introduction

In the collinear-factorization approach to describe scattering of protons and heavier nuclei in

Quantum Chromodynamics (QCD), the non-perturbative structure of the hadrons — parton

distribution functions (PDFs) — is factorized from the perturbatively calculable coefficient

functions [1, 2]. The PDFs are typically extracted from experimental data via global

analysis and their accurate determination has been a long-standing effort in the community

[2, 3]. For the free proton PDF fits there are plenty of accurate data available and the most

recent global analyses [4–8] result with PDFs that are reasonably well constrained within

the typical kinematics probed at the Large Hadron Collider (LHC).

For PDFs in heavier nuclei, nuclear PDFs (nPDFs), the available data have been rather

sparse until very lately [9]. Indeed, even some recent analyses still rely only on older fixed-

target deep inelastic scattering (DIS) and Drell-Yan (DY) data [10, 11]. Due to the relatively

low center-of-mass (c.m.) energy
√
s, these data provide constraints only for momentum

fractions x � 0.01, and the gluons are constrained only indirectly via scale-evolution effects

and momentum sum rule [12]. To obtain better gluon constraints, the potential of inclusive

pion production in d+Au collisions at RHIC [13–16] was first discussed in ref. [17] and

eventually the data were incorporated into the global fits [18–21]. The x reach was still,

however, rather similar to the available DIS data. The currently most comprehensive nPDF

analysis, EPPS16 [22], includes also LHC Run-I data for electroweak-boson (W± and Z0)

[23–25] and dijet production [26] in p+Pb collisions. Because of the large masses of the

W± and Z0 bosons, the interaction scale is high and a significant sensitivity to gluons via
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evolution effects will eventually set constraints on gluons, as has been shown in ref. [27]

(sect. 10.4.2). However, the Run-I W± and Z0 data have still a rather limited impact due

to the low statistics. The dijet production, on the other hand, probes the gluon density

much more directly and already the Run-I data clearly helps to narrow down the gluons in

the x � 0.002 region [28]. All this still leaves the small-x region only weakly constrained.

To probe gluons at small x, almost any conceivable observable at lowish interaction scales

and forward rapidity y � 0 would do. Good candidates at hadron colliders include e.g.

low-mass Drell-Yan dilepton and isolated-photon production at low transverse momentum

pT [29–35]. Isolated photons in p+Pb collisions have already been measured at central

rapidities [36], and the large-y measurements appear to be within the capabilities of the

LHCb collaboration [37]. In further future, measurements of isolated-photon production

would be a central goal of the ALICE FoCal upgrade [38].

Another promising observable for gluon constraints is the inclusive D- and B-meson

production where the heavy-quark mass provides the hard scale even at zero pT. In fact,

the LHCb collaboration has published low-pT data on D-meson production at forward

kinematics in p+p collisions at different
√
s [39–41], and recently also in the p+Pb case

at
√
s = 5 TeV [42]. The use of these D-meson data as a free proton and nuclear PDF

constraint has been advocated e.g. in refs. [43–48] and studied otherwise [49], but for the

moment the default sets of globally fitted general-purpose PDFs [4–8, 21, 22] do not include

any D-meson data. Here, our purpose is to provide a first estimate of the impact the

recent LHCb p+Pb data have on globally fitted nPDFs within a rigorous next-to-leading

order (NLO) perturbative-QCD framework. We will focus only on the LHCb measurements

[42], as the the central-rapidity ALICE [50] data are not as precise and as the ATLAS

central-rapidity data [51] are only preliminary. The cross sections are calculated in the

SACOT-mT general-mass variable-flavour-number scheme (GM-VFNS) presented in ref. [52].

Our framework takes fully into account the D mesons produced by gluon fragmentation

— something that has been overlooked in the above-mentioned works [43–48] — and thus

provides a realistic estimate of the data impact. To quantify the impact on the EPPS16 [22]

and nCTEQ15 [21] nPDFs, we will use the Hessian reweighting technique [28, 53–55] that

facilitates an estimate of the data impact without re-doing the complete global analysis.

The paper will now continue as follows: In section 2, we introduce our theoretical

setup, including the GM-VFNS framework and the applied reweighting machinery. Then, in

section 3, we compare the resulting cross sections and nuclear modification ratios with the

LHCb data, demonstrate the impact these data have on nPDFs, and discuss their sensitivity

to small-x gluons. We summarize our findings in section 4.

2 Theoretical framework

2.1 SACOT-mT scheme for heavy-quark production

The general idea of D-meson hadroproduction in the GM-VFNS approach [52, 56] is to

reproduce the results of (3-flavour) fixed flavour-number scheme (FFNS) at the small pT
limit and match to the massless calculation at high values of pT. Let us first discuss the

FFNS limit, in which the cross section for inclusive production of a heavy-flavoured hadron
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h3 at a given transverse momentum PT and rapidity Y in a collision of two hadrons, h1
and h2, can be written as

dσh1+h2→h3+X

dPTdY

∣∣∣
FFNS

=
∑
ij

∫ 1

zmin

dz

z

∫ 1

xmin
1

dx1

∫ 1

xmin
2

dx2

×DQ→h3(z) f
h1
i (x1, μ

2
fact)f

h2
j (x2, μ

2
fact)

dσ̂ij→Q+X

dpTdy
(τ1, τ2,m, μ2

ren, μ
2
fact) .

(2.1)

In this expression, f
h1,2

i,j are the PDFs (in 3-flavour scheme) for partons i and j in hadrons

h1 and h2 with momentum fractions x1 and x2, and dσ̂ij→Q+X/dpTdy denote the perturba-

tively calculable coefficient functions for inclusive heavy-quark Q (here charm) production

[57] with fixed rapidity y and transverse momentum pT of Q. The renormalization and

factorization scales are denoted by μ2
ren, μ

2
fact and m is the heavy-quark (here charm) mass.

The fragmentation of a heavy-quark to hadron h3 is described by a scale-independent frag-

mentation function (FF) DQ→h3 (such as in ref. [58]). The invariants τi can be calculated

from the partonic transverse mass mT =
√

p2T +m2 and rapidity y as

τ1 ≡ p1 · p3
p1 · p2 =

mTe
−y

x2
√
s

and τ2 ≡ p2 · p3
p1 · p2 =

mTe
y

x1
√
s
. (2.2)

where p1 and p2 are the momenta of the incoming massless partons, and p3 is the final-state

heavy-quark momentum. When masses are neglected, the relation between partonic and

hadronic variables is simply y = Y and PT = zpT. However, when the masses of the

heavy quark and the final-state hadron are taken into account, the definition of z becomes

ambiguous [59]. Adopting the choice made in [52],

z ≡ P3 · (P1 + P2)

p3 · (P1 + P2)
, (2.3)

where Pi is the momentum of hadron hi, the z variable can be interpreted as the fraction of

partonic energy carried by the outgoing hadron in the c.m. frame of the initial-state hadrons

h1 and h2. The relations between partonic and hadronic variables become somewhat more

involved, but eq. (2.1) stays intact.

When the transverse momentum of the produced hadron h3 is large, PT � m, the

heavy-quark mass can be neglected and thus the zero-mass description becomes the most

relevant. In this limit, the cross section can be written as [60],

dσh1+h2→h3+X

dPTdY

∣∣∣
ZM

=
∑
ijk

∫ 1

zmin

dz

z

∫ 1

xmin
1

dx1

∫ 1

xmin
2

dx2

×Dk→h3(z, μ
2
frag) f

h1
i (x1, μ

2
fact)f

h2
j (x2, μ

2
fact)

dσ̂ij→k+X

dpTdy
(τ01 , τ

0
2 , μ

2
ren, μ

2
fact, μ

2
frag) .

(2.4)

The formal difference with respect to eq. (2.1) is that now the FFs are fragmentation-scale

μ2
frag dependent, and a summation over all partonic channels is included. For massless

partons the invariants τ0i are obtained as

τ01 = lim
m→0

τ1 =
pTe

−y

x2
√
s

and τ02 = lim
m→0

τ2 =
pTe

y

x1
√
s
. (2.5)
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The GM-VFNS technique [52, 56] provides a general framework to match the two

extremes of eq. (2.1) and eq. (2.4) in a way that is consistent with collinear factorization.

If we start from the FFNS description and increase PT, the cross sections will quickly

be dominated by log(pT/m) terms whose origin is in the initial- and final-state partons’

collinear splittings into QQ pairs. In GM-VFNS these logarithms are resummed to the

scale-dependent heavy-quark PDFs and scale-dependent FFs. Because the FFNS expressions

already contain the first of the resummed logarithmic terms, subtraction terms are needed

to avoid double counting and ensure the correct zero-mass limit of eq. (2.4). For example,

the inclusion of the gluon production channel gg → gg,

dσh1+h2→h3+X

dPTdY

∣∣∣
gg→gg

=

∫ 1

zmin

dz

z

∫ 1

xmin
1

dx1

∫ 1

xmin
2

dx2

×Dg→h3(z, μ
2
frag) f

h1
g (x1, μ

2
fact)f

h2
g (x2, μ

2
fact)

dσ̂gg→g+X

dpTdy
(τ̃1, τ̃2, μ

2
ren, μ

2
fact, μ

2
frag)

(2.6)

on top of eq. (2.1), must be accompanied by a subtraction term which has otherwise the

same expression as eq. (2.6) but where the gluon-to-h3 FF is replaced by

Dg→h3(x, μ
2
frag) =

αs

2π
log

(
μ2
frag

m2

)∫ 1

x

dz

z
Pqg(x/z)DQ→h3(z)

=
αs

2π
log

(
μ2
frag

m2

)∫ 1

x

dz

z
Pqg(x/z)DQ→h3(z, μ

2
frag) +O(α2

s) ,

(2.7)

which is the first term in the definition of scale-dependent FFs with massive quarks. In an

NLO-accurate O(α3
s) calculation, only the leading-order part of dσ̂gg→g+X is included in

the subtraction term. However, the exact form of dσ̂gg→g+X in the equation above is not

fixed by this construction. The only condition is that we recover the standard zero-mass MS

expression at pT → ∞ to meet eq. (2.4). This means that we can include mass-dependent

terms in dσ̂gg→g+X as we like, and a specific choice defines a scheme. The difference between

the added and subtracted contributions discussed above is formally of order O(α4
s), so

that different schemes are formally equivalent up to O(α3
s). Here we adopt the so-called

SACOT-mT scheme [52]. It is rooted in a simple observation that in order to make a

heavy-flavoured hadron in QCD, a QQ̄ pair must be first produced. That is, the relevant

invariants to describe the process are the massive ones, τ̃1,2 = τ1,2, even for seemingly

massless partonic contribution (like the gg → gg channel). Importantly, the mass then

prevents the partonic cross sections from diverging towards small pT exactly in the same

way as the FFNS cross section are finite at pT = 0. In the previous GM-VFNS approach

[56] such a physical behaviour is obtained only by a particular choice of QCD scales [61, 62].

The final differential cross sections are then calculated by using the FFNS expressions

for the explicit QQ production, and for all other channels zero-mass expressions with the

mentioned massive kinematics. The subtraction terms discussed above are included to avoid

double counting and to ensure proper matching between αs and PDFs in 3- and 4-flavour

schemes. The switch from 3- to 4-flavour scheme is done at the charm-mass threshold.

The bottom decays to D0 are an order of magnitude smaller [63] than the “direct” charm
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fragmentation to D0. Thus, the treatment of the bottom mass is not as critical, and in our

present setup we switch from 4- to 5-flavour scheme at the bottom-mass threshold with no

matching conditions and ignoring the bottom mass. For the numerical implementation of

the described SACOT-mT scheme the massless NLO matrix elements are obtained from the

incnlo [60] code and the FFNS part with explicit heavy-quark production is obtained from

the mnr code [64]. As presented in refs. [52, 63], this framework is in a very good agreement

with the ALICE [50, 63] and LHCb [39–41] data for inclusive D-meson production in p+p

collisions in a broad rapidity range.

2.2 Powheg+Pythia approach

We will also contrast our results in the SACOT-mT framework with a Monte-Carlo based

NLO computation that is often applied to heavy-meson phenomenology at the LHC in the

context of PDFs [44, 45, 65]. This approach is based on the Powheg method [66] to combine

NLO matrix elements with a parton shower and hadronization from a general-purpose

Monte-Carlo event generator. The underlying idea is to generate the partonic 2 → 2 and

2 → 3 events with the NLO-correct matrix elements. These events are then passed to any

parton shower generator that provides the rest of the partonic branchings, accounting for

the fact that the first one may already have occurred. The parton shower can be considered

as being analogous to the scale evolution of FFs and PDFs as the splitting probabilities are

based on the DGLAP evolution equations in both cases.

We generate the partonic events with the heavy-quark pair production (hvq) scenario

[67] of the Powheg Box framework [68] which we pass on to Pythia 8 [69] for showering and

hadronization. As Powheg generates only events where the heavy-quark pair is produced

in the Born-level process or in the first (hardest) splitting, it ignores the component where

the QQ would be created only later on in the shower e.g. starting from a hard gg → gg

process. Such contributions are, however, effectively included in any GM-VFNS framework

via the scale-dependent PDFs and FFs. Since charm quarks are abundantly produced in

parton showers at the LHC energies [70], truncating the resummation of the splittings to

the first one will underestimate the charmed-meson cross section as pointed out in ref. [52].

Similarly the results in ref. [44] show that the cross sections obtained with this method are

below the D-meson data measured by LHCb and a compatibility can be concluded only

due to large scale uncertainties. Furthermore, this is bound to result as an overestimate of

the sensitivity to low-x PDFs as the neglected contributions with several emissions would

always require a higher value of x to produce a heavy meson at a fixed PT and Y . Therefore

these comparisons should be taken as an estimation for the effect of truncating the chain of

partonic splittings.

2.3 Reweighting machinery

We will quantify the impact of the single inclusive D0-meson production data in p+Pb

collisions on nuclear PDFs by the Hessian reweighting method [28, 53–55]. The method

has recently been discussed at length e.g. in ref. [28] so here we only outline the basic

underlying idea. Let us consider a global PDF analysis whose fit parameters ai are tuned
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to minimize a global χ2 function, χ2
0 = minχ2 = χ2{ai = a0i }. The χ2 function is expanded

around the best fit as

χ2{a} ≈ χ2
0 +

∑
ij

(ai − a0i )Hij(aj − a0j ) = χ2
0 +

∑
i

z2i , (2.8)

where Hij is the Hessian matrix, Hij = 1
2∂

2χ2/(∂ai∂aj). Denoting by O the orthogonal

matrix that diagonalizes the Hessian matrix, OHOT = I, the zi variables are linear

combinations zi ≡ Oij(aj − a0j ). We refer to the best-fit as S0, and it corresponds to the

point z = 0. The Hessian error sets S±
k can then be defined by zi(S

±
k ) = ±

√
Δχ2δik, where

Δχ2 is the estimated tolerance. It follows [71] that for any PDF-dependent quantity X

there are unique points in the z space that extremize its positive and negative deviations

from the central value X(S0). These deviations, ΔX±, are given by

ΔX± = ±1

2

√∑
k

[
X(S+

k )−X(S−
k )

]2
. (2.9)

This, or its asymmetric version (see later), is normally quoted as the uncertainty in Hessian

PDF fits. In a global analysis, the χ2 contributions of individual data sets are simply

summed in the overall χ2. Thus, if we wish to include a new set of data into our global fit,

we just add its contribution to eq. (2.8),

χ2
new ≡ χ2

0 +
∑
k

z2k +
∑
i,j

(
yi{z} − ydatai

)
C−1
ij

(
yj{z} − ydataj

)
, (2.10)

where ydatai denote the new data points with a covariance matrix Cij . The PDF-dependent

values yi{z} can now be approximated linearly as

yi{z} ≈ yi [S0] +
∑
k

∂yi[S]

∂zk

∣∣∣
S=S0

zk ≈ yi [S0] +
∑
k

yi[S
+
k ]− yi[S

−
k ]

2

zk√
Δχ2

, (2.11)

and by substituting this into eq. (2.10), we see that χ2
new is still quadratic in variables zk

and has therefore a unique minimum which we denote by zk = zmin
k . Note that we do not

need to know the value of χ2
0. The PDFs fnew

i (x,Q2) that correspond to this new minimum

are obtained by replacing yi in eq. (2.11) by PDFs,

fnew
i (x,Q2) ≈ fS0

i (x,Q2) +
∑
k

f
S+
k

i (x,Q2)− f
S−
k

i (x,Q2)

2

zmin
k√
Δχ2

. (2.12)

Since we now know χ2
new analytically, we can repeat the original treatment by computing

the new Hessian matrix and diagonalizing it exactly the same way as outlined above. As

a result, we have an approximation of how a new set of data has affected a set of PDFs

and its errors. In comparison to a full global analysis, the advantage of the reweighting

technique is that it avoids the time-consuming fitting procedure which, in practice, is

only available to the people that performed the PDF analysis itself. In addition, and

also importantly, there is no need to implement a potentially CPU-expensive cross-section
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computation as a part of the fitting framework or to compute partial cross sections to

form three dimensional (x1,x2,μ
2
fact) grids to facilitate a rapid cross-section evaluation. The

downside is that since the reweighting method relies completely on the assumptions made

in the prior PDF analysis, including e.g. a specific parametrization which may artificially

overestimate the impact in a kinematic region beyond the reach of a given observable.

The Hessian reweighting method sketched above relied on a linear approximation for

the PDFs and observables in the z space, and on a quadratic expansion of the original

χ2 function. These are not always good approximations and, as described in ref. [28],

the results can be refined by taking into account higher order terms in z. The results

presented in this paper (section 3.3) have been obtained using a quadratic extension of the

approximation made in eq. (2.11). In the case of EPPS16 we also take into account cubic

terms in the original χ2 profile, eq. (2.8). See ref. [28] for further technical details.

3 Results

Throughout this section, we will use two recent globally-fitted nPDF sets, EPPS16 [22]

and nCTEQ15 [21] in our calculations. In the case of EPPS16 we use CT14NLO [5]

as the free proton PDF set and with nCTEQ15 we use its own proton PDF (with no

uncertainties on it). As a default setup for the GM-VFNS calculation we adopt the

KKKS08 [72] parton-to-hadron FFs and set the renormalization and factorization scales

as μren = μfact =
√
P 2
T +m2

c with mc = 1.3 GeV for the charm quark mass. For the

fragmentation scale we set μfrag =
√

P 2
T + (1.5 GeV)2 as the KKKS08 analysis assumed

this slightly higher value for the charm-quark mass. In the matrix elements we always

use mc = 1.3 GeV. For the D0 mass, relevant for transforming the partonic kinematics to

hadronic ones, we adopt the value MD0 = 1.87 GeV [73]. With the Powheg approach, we

use the same nuclear and proton PDFs and the same value for the charm mass but the

renormalization and factorization scales are fixed to transverse mass of the produced charm

quark,
√
p2T +m2

c . At the time of generating the partonic events with Powheg it is not

yet known which PT the D meson will have (if formed at all), so relating the scales to the

partonic variables is the only reasonable option. The parton shower and hadronization for

the Powheg events are generated with the Pythia version 8.235 [69] using parameters

from the default Monash tune [74].

3.1 Double-differential cross section for D0 production in p+Pb collisions

To benchmark our GM-VFNS framework in p+Pb collisions we first compare our calculations

with the double-differential single-inclusive D0 production cross section measured by LHCb

[42]. This comparison is important since a good agreement with the measured cross sections

would indicate that the framework includes e.g. all the relevant partonic processes. In this

way we ensure that the framework is realistic.

In figure 1 we compare the calculated cross sections with the LHCb data at backward

rapidities (Pb-going direction) in five different rapidity bins spanning −5.0 < Y < −2.5 in

the nucleon-nucleon (NN) c.m. frame. The resulting cross sections with the default setup
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are shown for both the EPPS16 and nCTEQ15 nPDFs, whereas the theoretical uncertainties

are quantified with EPPS16 only. These include now scale variations and PDF uncertainties.

The former are calculated by varying the three QCD scales independently by a factor of

two around the default choice. In addition, ratios μfact/μren and μfrag/μren are required to

stay within [0.5, 2] and the mass of the charm quark is used as a lower limit for all scales.

For the PDF uncertainties the error bands from proton and nuclear PDFs are added in

quadrature as they are approximately independent in the EPPS16 global analysis. Here,

we use the asymmetric error prescription

ΔX+ =

√∑
k

max
[
X(S+

k )−X(S0), X(S−
k )−X(S0

k), 0
]2

, (3.1)

ΔX− =

√∑
k

min
[
X(S+

k )−X(S0), X(S−
k )−X(S0

k), 0
]2

, (3.2)

where the sum now runs over both the EPPS16 and CT14NLO error sets. Uncertainties due

to the mentioned ambiguity in defining the fragmentation variable z, FFs, or e.g. variation

in charm-quark mass are not considered. In addition to the GM-VFNS results, comparison

with the Powheg+Pythia setup is shown. The correspondence between the data and

the GM-VFNS calculation with both EPPS16 and nCTEQ15 is found to be very good,

though the theoretical uncertainties become large at PT < 3 GeV. Interestingly the PDF

uncertainty at small PT is large above the central result but small below it. This can be

traced back to the parametrization applied in the CT14 analysis where the requirement for

positive-definite PDFs limits the small-x behaviour as already the central set for gluons

near the initial scale Q2
0 at small x is close to zero. Since similar positivity restriction was

not applied in NNPDF3.1 [7], the PDF uncertainties shown in ref. [52] behave in a different

manner at small values of PT. As in the p+p case [52], the cross sections obtained from the

Powheg+Pythia setup fall below the data. As discussed in ref. [52] and mentioned in the

preceding section, this likely follows from truncating the collinear splittings producing QQ̄

pairs after the hardest one. The corresponding cross sections at forward rapidities (p-going

direction) are shown in figure 2. Here the five rapidity bins cover the range 1.5 < Y < 4.0.

The conclusions are very similar as at backwards rapidities, the agreement between the

GM-VFNS calculation and the data being very good, particularly at PT � 3 GeV where the

theoretical uncertainties are in control. The comparisons with the absolute cross sections

lead us to conclude that the SACOT-mT framework [52] works very well also for p+Pb

collisions and can be faithfully applied to study the nPDF constraints — at least for

PT � 3 GeV.

3.2 Nuclear modification ratio for D0 production in p+Pb collisions

To constrain nPDFs with D mesons, it is useful to consider an observable in which theoretical

uncertainties related to scale variations, free proton PDFs, and FFs cancel out to a large

extent. In the case of single-inclusive hadron production a suitable observable is the nuclear

modification factor Rh3
AB, defined for inclusive D0 meson production in p+Pb collisions at
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Figure 1. Double-differential cross section for D0 production in p+Pb collisions at
√
sNN = 5.0 TeV

in five different Y bins at backward rapidities. Data from LHCb [42] are compared to the GM-

VFNS calculations with EPPS16 (solid black) and nCTEQ15 (dashed purple) nPDFs, and to a

Powheg+Pythia setup with EPPS16 nPDFs (dot-dashed green). The theoretical uncertainties

related to the PDFs are shown with dark grey and the combination of the scale variations and PDF

uncertainties with light blue.
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Figure 2. Same as figure 1 but at forward rapidities.

– 10 –



the LHC as

RD0

pPb(PT, Y ) ≡ 1

208

dσp+Pb→D0+X

dPTdY

/
dσp+p→D0+X

dPTdY
. (3.3)

We compare our calculations with the measured RD0

pPb in figures 3 and 4 at backward

and forward rapidities, respectively. The LHCb data span over four Y bins in a range

−4.5 < Y < −2.5 at backward rapidities and 2.0 < Y < 4.0 at forward rapidities.

Comparisons with the EPPS16 and nCTEQ15 nPDFs using the GM-VFNS framework and

Powheg+Pythia setup are separately shown in each panel, and the uncertainty bands

correspond to the nPDF errors calculated in the GM-VFNS approach. Furthermore, also

the GM-VFNS result using the zero-mass definition for the fragmentation variable, and the

scale variation band, are shown in each kinematic bin.

First observation is that the data uncertainties are in most of the cases smaller than the

nPDF-originating ones with both nPDF sets considered. Especially at forward rapidities

the EPPS16 nPDF uncertainty bands are much larger than the experimental uncertainties

due to the poorly-constrained small-x nuclear gluon distributions. This demonstrates

the potential of these data to significantly constrain the current nPDFs at small-x where

no other data currently exist. Also, the good overall agreement with the calculated and

measured RD0

pPb over the wide rapidity range provides a strong indication of the applicability

of factorization-based approach in this previously unconstrained kinematic region. The

large uncertainties from scale variations observed for the differential cross sections largely

cancel out in the nuclear modification ratio. However, at PT < 3 GeV they start to grow

and the downward uncertainty is limited by the minimum scale Q = 1.3 GeV of EPPS16

and nCTEQ15. If the PDF parametrizations would extend to lower values, the downward

uncertainty would probably be much larger. Similarly, the use of massless definition for

the fragmentation variable z — taken here as an indicator of the associated uncertainty —

can lead to a significant variation in the calculated RD0

pPb at small values of PT at backward

rapidities. The reason is that the definition of z provides the link between hadronic and

partonic kinematics and therefore the probed x regions are slightly different from one

definition to another. In backward direction we are sensitive to the mid-x region where the

slope in both EPPS16 and nCTEQ15 nuclear gluon modifications is somewhat steepish (see

figures 9 and 11 ahead), and changes in the probed x regions matter. To make sure that we

stay in a region where these theoretical uncertainties are in control, it seems sufficient to

discard the data points below PT = 3 GeV.

Since many theoretical uncertainties get suppressed in RD0

pPb, we might expect that

the Powheg+Pythia results would be very close to GM-VFNS ones. While the two are

indeed very similar, we find that the Powheg+Pythia results tend to lie systematically

below the GM-VFNS calculations. In part, the differences can be explained by the different

scale choices (pT instead of PT) but since the differences persist even at the largest PT

bins, this cannot be the full explanation. Indeed, the main factor seems to be, as argued

also in ref. [52], that Powheg+Pythia framework misses the contributions in which the

cc̄ pair would be produced only at later stages of the shower and therefore biases the

kinematics to lower values of x2 compared to the GM-VFNS calculation. Thus, the nuclear

effects in the Powheg+Pythia predictions at a given PT come from smaller x2 than in
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GM-VFNS. This explains why, when compared to the GM-VFNS results, the nuclear effects

in Powheg+Pythia predictions are seemingly shifted towards higher values of PT in all

rapidity bins, apart from the very lowest PT bins where the impact of the scale choice

becomes important. We again emphasize that the difference between the two frameworks

should not be taken as an additional theoretical uncertainty but as a measure of the effect

arising from truncating the series of collinear partonic splittings.

3.3 Impact of the LHCb data on nPDFs

The observed consistency between the measured and calculated RD0

pPb indicates that these

data could be used in a global nPDF analysis. As a preparation for this, we now estimate

the impact of the LHCb data for RD0

pPb on the EPPS16 and nCTEQ15 nPDFs by applying

the reweighting method outlined in section 2.3. By excluding the data points at PT < 3 GeV

we are left with Ndata = 48 data points. The level of agreement is quantified by calculating

the standard figure-of-merit χ2 before and after reweighting. The numbers are presented

in table 1. Before the reweighting, the central nCTEQ15 value is somewhat high, but

upon performing the reweighting both the EPPS16 and nCTEQ15 values are close to unity,

indicating a good agreement with the data. To further study the statistical properties of our

Table 1. Values of χ2/Ndata for the EPPS16 and nCTEQ15 nPDFs before and after reweighting.

χ2/Ndata EPPS16 nCTEQ15

before reweighting 1.56 2.09

after reweighting 1.02 1.12

results, histograms of the data residuals are shown in figure 5. The residuals are calculated

(for uncorrelated errors) as a difference between the theory value Ti and corresponding data

point Di normalised with the experimental uncertainty δi. Ideally the distribution of the

residuals should follow a Gaussian distribution with standard deviation of one and zero mean

to which the calculated values are compared to. In addition, Gaussian fits are performed for

the residuals obtained after reweighting to ease the comparison with the ideal distributions.

With the original central EPPS16 and nCTEQ15 results the distributions show a behaviour

diverting from the ideal Gaussian, but after reweighting a closer resemblance to that is

obtained. With both nPDF sets the resulting distributions are slightly narrower than the

ideal distribution but the mean is close to zero, confirming a reasonable statistical behaviour.

The results for RD0

pPb after reweighting, compared with the data and original predictions,

are shown in figures 6 and 7. As expected, the reweighted results are in an excellent

agreement with the data across the wide rapidity range covered by the data, the only

exception being the most backward bin where the data show a stronger enhancement

than the reweighted PDF predictions. The new nPDF uncertainties computed from the

reweighted nPDFs are significantly reduced in comparison to the original error bands.

This holds especially at forward rapidities where the small-x region with no previous data
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Figure 3. Nuclear modification ratio for D0 production in p+Pb collisions in different backward-

rapidity bins from the LHCb measurement [42] (black points with error bars) and the SACOT-mT

calculation with the EPPS16 (left) and nCTEQ15 (right) nPDFs. In addition to the central result

(solid) and the nPDF-originating uncertainties (coloured bands), the scale variations (dotted band)

and the result with massless definition of the fragmentation variable (dashed) are shown, as well as

the Powheg+Pythia predictions (dot-dashed).
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Figure 5. The histograms of the RD0

pPb-data residuals obtained before (left) and after (right) the

reweighting with EPPS16 (top) and nCTEQ15 (bottom). Ideal Gaussian distributions (dashed) are

compared to fitted ones (solid) in the reweighted case.

constraints, is probed. For the EPPS16 nPDFs an improvement of a factor of three is

observed whereas for nCTEQ15 the improvement is somewhat more modest. This difference

follows from a bit more rigid functional form of the nCTEQ15 parametrization which leads

to smaller errors to begin with. Interestingly, even though the lowest-PT bins were not

included in the analysis, the agreement remains very good also with the data points in the

PT < 3 GeV region. We can thus conclude that to describe these data, no physics outside

collinear factorization is needed.

In figures 8 – 11 we finally compare the EPPS16 and nCTEQ15 nuclear modifications

in bound protons, R
p/Pb
i (x,Q2) = fPb

i (x,Q2)/fp
i (x,Q

2), before and after reweighting.

We present the results at two different scales: the initial scale of the original analyses,

Q2 = 1.69 GeV2, and a somewhat higher scale Q2 = 10 GeV2 directly probed by the

considered observable when reweighting to the PT > 3 GeV subset of data. The valence

and sea quark distributions are shown separately for each partonic flavour. For the EPPS16

analysis these are plotted in figures 8 and 9. The central values remain unchanged for all
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Figure 6. Nuclear modification ratio for D0 production at backward rapidities in p+Pb collisions at√
sNN = 5.0 TeV from the LHCb measurement [42] (black points with error bars) compared with the

SACOT-mT calculation using the EPPS16 (left) and nCTEQ15 (right) nPDFs with uncertainties

before (light-coloured bands) and after reweighting (dark-grey bands) including the central result

from the reweighted nPDFs (solid).
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Figure 7. Same as in figure 6 but at forward rapidities.
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quark flavours but for gluons a somewhat stronger shadowing and slightly weaker EMC

suppression are preferred by the data. At the parametrization scale Q2 = 1.69 GeV2

the uncertainty bands remain practically unchanged for quarks but a drastic reduction is

observed for small-x gluons. At Q2 = 10 GeV2 also the sea-quark uncertainties are slightly

reduced due to the DGLAP evolution which correlates sea quarks with gluons. For gluons

the strong shadowing at the initial scale is reduced to around 0.7 at x � 0.01 due to the

evolution effects. Incidentally, the changes in the EPPS16 gluon PDFs are remarkably

similar as found in ref. [28] based on the recent CMS dijet data [75]. In addition, since

the central values are only slightly modified, the good agreement with the recent W±

data at
√
sNN = 8.16 TeV [76] is expected to persist. We should also mention that the

gluon errors at Q2 = 1.69 GeV2 dropping negative is of no concern. Indeed, a backward

evolution by the DGLAP equations will make any gluon PDF negative at sufficiently low

scales, and demanding a positive-definite gluon distribution at any arbitrary scale would be

an unphysical requirement. At a deeper level, the resummation of log(1/x) terms in the

DGLAP splitting functions [77] may slow down the evolution speed particularly at low Q2

and thereby better retain the gluons positive.

For nCTEQ15 the original and D-meson updated nuclear modifications are plotted

in figures 10 and 11. As was the case with EPPS16, the quark nuclear modifications

remain more or less the same after reweighting with the LHCb data. The originally strong

shadowing for small-x gluons becomes slightly weaker after reweighting and is now rather

similar to the gluon shadowing obtained with the reweighted EPPS16. The resulting

uncertainties for the gluon shadowing are also on the same ballpark with with EPPS16. In

addition, the reweighted nCTEQ15 nuclear modifications for gluons tend to have somewhat

less anti-shadowing (the bump around x ∼ 0.1) than in the original analysis and the

uncertainties are significantly reduced also in this regime.

3.4 Impact without the lower cut on PT

The agreement between the measured and calculated RD0

pPb was found to be very good also at

PT < 3 GeV which we excluded from the reweighting due to theoretical concerns. To check

how much potential constraints we threw away, we have repeated the reweighting procedure

this time including all the LHCb data. The resulting gluon nPDFs at Q2 = 1.69 GeV2

and Q2 = 10 GeV2 are shown in figure 12 for EPPS16 and nCTEQ15. Effect for quark

nPDFs was found negligible at Q2 = 1.69 GeV2. In both cases the reweighted central

results remain practically unchanged but the uncertainties are further reduced at small x in

the case of EPPS16 and also at larger x in the case of nCTEQ15. However, the bulk part of

the uncertainty reduction still comes from the data in the “safe region” PT > 3 GeV such

that inclusion of the PT < 3 GeV data is not critical. As we will argue next, including the

lower PT data would not even increase the sensitivity to the small x region significantly.

3.5 Sensitivity to small-x region

The x values probed by a given PT and Y are often in the literature estimated with simplified

leading-order kinematics, see e.g. ref. [46]. To get a more complete understanding on the

small-x sensitivity of D0 production at forward rapidities we show the contributions from
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Figure 8. The EPPS16 nuclear modifications for bound-proton PDFs in Pb nucleus before (blue)

and after (red) reweighting with the LHCb data. The scale is Q2 = 1.69 GeV2.
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Figure 9. The EPPS16 nuclear modifications for bound-proton PDFs in Pb nucleus before (blue)

and after (red) reweighting with the LHCb data. The scale is Q2 = 10 GeV2.
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Figure 10. The nCTEQ15 nuclear modifications for bound-proton PDFs in Pb nucleus before

(purple) and after (blue) reweighting with the LHCb data. The scale is Q2 = 1.69 GeV2.
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Figure 11. The nCTEQ15 nuclear modifications for bound-proton PDFs in Pb nucleus before

(purple) and after (blue) reweighting with the LHCb data. The scale is Q2 = 10 GeV2.
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Figure 12. The EPPS16 (left) and nCTEQ15 (right) nuclear modifications for bound-proton PDFs

in Pb nucleus before (EPPS16 blue, nCTEQ15 purple), after reweighting with the LHCb data with

PT > 3 GeV (EPPS16 red, nCTEQ15 blue), and including all data points (dotted curves). The

results are shown at Q2 = 1.69 GeV2 (upper panels) and at Q2 = 10 GeV2 (lower panels).

different values of x2 (momentum fraction in nucleus) to the D0 cross section in figure 13.

These distributions are based on full NLO GM-VFNS calculation with EPPS16 including the

convolution with fragmentation functions. The results are compared to distributions from

a “matrix-element fitting” approach similar to the one introduced in ref. [78] and applied

in ref. [48] to study the impact of the LHCb data on nPDFs. In the latter method the

squared matrix element |M|2 for D-meson production is parametrized and the parameters

are fitted to data from p+p collisions assuming that the only contribution is gluon-gluon

initiated 2 → 2 scattering. The parameters used for the result in figure 13 are obtained

from ref. [78] but the correspondence is not guaranteed to be exact since the details of

the applied two-body phase space are not explicitly defined in the reference. However,

the main point here is that the assumed x1,2 dependence which, together with PDFs,

dictates the shape of the x distributions is rather trivial, of the form |M|2 ∝ x1x2. The x

distributions from the full NLO GM-VFNS calculation are shown for PT-integrated case

with and without the lower cut of PT > 3 GeV. As expected, the D0 meson production

at forward rapidities is indeed sensitive to small-x region reaching down to 10−5 in the
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Figure 13. Contributions to differential D0 cross section from different values of x2 at 3.0 < Y < 3.5

from the GM-VFNS in PT ranges of [0, 10] GeV (solid green) and [3, 10] GeV (short-dashed blue)

and from matrix-element fitting approach for same PT ranges (long-dashed red and dot-dashed

purple).

considered 3.0 < Y < 3.5 bin. However, there is still a significant contribution from larger

x. These large-x tails mainly arise from the convolutions with the fragmentation functions

which smears the connection between partonic and hadronic kinematics. Also the NLO

corrections contribute to the tail as discussed in ref. [52]. Maybe a bit surprisingly, the tail

extends to higher values of x when no lower cut on PT is applied. A very similar behaviour

has been seen in the case of inclusive photon production [33]. In part, this can be explained

by the valence-like gluons at low scales which shift the cross section to higher x region.

In addition, the nuclear effects in EPPS16 are most pronounced at low scales and the

shadowing further suppresses the contributions from small x, whereas anti-shadowing tends

to increase the larger-x tail. All this dilutes the extra small-x constraints that could be

obtained by releasing the PT > 3 GeV cut. Thus, a significant part of the reduced small-x

uncertainties in figure 12 can be explained just by the increased statistics (24 data points

more) rather than pushing to smaller x. These long large-x tails are not visible in the

distributions obtained with the matrix-element fitting approach as it assumes leading-order

partonic kinematics and, in particular, a naive |M|2 ∝ x1x2 behaviour of the coefficient

function. Thus the matrix-element fitting approach would overestimate the sensitivity of

the LHCb data on the small-x PDFs and would lead to an overly optimistic impact at small

x if used in a global analysis. This underlines the importance of using a proper calculation

in order to realistically estimate the impact of D-meson data on PDFs.
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4 Summary

We have presented the first direct QCD analysis of the recent LHCb data [42] for D0 meson

production in p+Pb collisions and their impact on nuclear PDFs. To accomplish this

we have used the Hessian reweighting method and the cross sections calculated within

GM-VFNS using the recently introduced SACOT-mT scheme at NLO [52]. The advantage

of the new scheme over the previous GM-VFNS implementations is that by explicitly

including the heavy-quark masses in the kinematics also for processes where the QQ pair

is produced from light-flavour fragmentation, a sensible behaviour in the PT → 0 limit is

always obtained. The resulting cross sections are in a very good agreement with the single-

inclusive D-meson PT spectra in the wide rapidity range covered by the LHCb measurement.

We also computed predictions by a frequently used Powheg approach in which the heavy

quarks are first produced in the partonic 2 → 2 and 2 → 3 scattering events, and then

showered and hadronized with Pythia. This approach undershoots the absolute differential

cross sections roughly by a factor 2. We attribute this to the omission of contributions in

which the heavy-quark is produced in 2 → 4 processes and beyond. These are resummed in

GM-VFNS.

A very good agreement with the RD0

pPb data is found with both of the considered nPDF

analyses, EPPS16 and nCTEQ15, and the data are accurate enough to set significant further

constraints. For quark PDFs the modifications in the central values are weak but for gluons

a somewhat stronger (weaker) small-x shadowing than originally in EPPS16 (nCTEQ15)

is preferred by the data. The reweighting also brings the gluon shadowing in these two

nPDF sets into a better mutual agreement. The main impact of the data is, however, the

substantial reduction of the uncertainties for gluon nuclear modifications at x < 0.01. In

fact, these are the first data directly sensitive to small-x gluons in heavy nuclei at clearly

perturbative scales, and therefore provide the first unambiguous direct evidence for nuclear

gluon shadowing in the context of a global analysis. The backward data seem to confirm

the presence of a moderate gluon antishadowing at large x. We note that the effect of these

data on EPPS16 are remarkably similar as recently found from dijet data at significantly

higher interaction scales, though there the region x < 0.002 is not directly probed [28].

By studying how the cross section builds up from different values of nuclear x we

have shown that the LHCb D0 data constrain nPDFs down to x ∼ 10−5 but, due to the

convolution with FFs, there is still a notable contribution from the high-x region. The

importance of using a full QCD calculation to quantify the impact of D-meson data was

also underlined. Indeed, a simplified framework can lead to an apparent increase in the

sensitivity to the small-x region and would therefore not provide a realistic estimation of

the constraints. The good agreement between the nPDF calculation and the data down to

PT = 0 GeV — even when rejecting data points at PT < 3 GeV from the fit — implies that

the pure collinear-factorization approach is valid also in the small-x region. All in all, we

conclude that the LHCb D-meson data can be included in future updates of global nPDF

analyses without causing conflicts with the other existing data. To more deeply test the

factorization and the universality of nPDFs, data with similar x-reach but for a different

observable would be crucial.
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