
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

CC BY-NC-ND 4.0

https://creativecommons.org/licenses/by-nc-nd/4.0/

A Root Cause Analysis Method for Preventing Erratic Behavior in Software
Development: PEBA

© 2019 Elsevier Inc.

Accepted version (Final draft)

Mohammadnazar, Hojat; Pulkkinen, Mirja; Ghanbari, Hadi

Mohammadnazar, H., Pulkkinen, M., & Ghanbari, H. (2019). A Root Cause Analysis Method for
Preventing Erratic Behavior in Software Development: PEBA. Reliability Engineering and System
Safety, 191, Article 106565. https://doi.org/10.1016/j.ress.2019.106565

2019

Accepted Manuscript

A Root Cause Analysis Method for Preventing Erratic Behavior in
Software Development: PEBA

Mr Hojat Mohammadnazar

PII: S0951-8320(18)30939-6
DOI: https://doi.org/10.1016/j.ress.2019.106565
Article Number: 106565
Reference: RESS 106565

To appear in: Reliability Engineering and System Safety

Received date: 30 July 2018
Revised date: 30 May 2019
Accepted date: 7 July 2019

Please cite this article as: Mr Hojat Mohammadnazar , A Root Cause Analysis Method for Preventing
Erratic Behavior in Software Development: PEBA, Reliability Engineering and System Safety (2019),
doi: https://doi.org/10.1016/j.ress.2019.106565

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.ress.2019.106565
https://doi.org/10.1016/j.ress.2019.106565

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

 Preventing erratic behaviors could prevent faults from being introduced or

going undetected.

 Mismatches between development context and practices could signal erratic

behaviors.

 Proactive Erratic Behavior Analysis (PEBA) method as a proactive complement

for existing RCA methods is developed.

 PEBA is resource-friendly, flexible and appropriate for SMEs as well as large

organizations.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2

A Root Cause Analysis Method for Preventing Erratic Behavior in Software

Development: PEBA

Mr Hojat Mohammadnazar

University of Jyväskylä

Faculty of Information Technology

P.O.Box 35 (Agora)

FI-40014 Jyväskylä

Finland

Phone: +358466150448

E-mail: homohamm@student.jyu.fi

Abstract

Measures taken to prevent faults from being introduced or going undetected can secure

development of highly reliable software systems. One such measure is analyzing root

causes of recurring faults and preventing them from appearing again. Previous methods

developed for this purpose have been reactive in nature and relied heavily on fault

reporting mechanisms of ogranizations. Additionally, previous efforts lack a defined

mechanism for innovating corrective actions. In this study, we strive to complement the

existing methods by introducing a proactive and qualitative method that does not rely on

fault data. During the course of the research, in addition to an extensive literature

search, an empirical field study is conducted with representatives of companies active in

safety-critical and business-critical domains. Our proposed method relies on identifying

mismatches between development practices and development context in order to predict

erratic behaviors. Corrective actions in this method are innovated by resolving these

mismatches. The use of the method is demonstrated in two safety-critical projects.

Evaluation of the proposed method is done by two experts with respect to proactivity,

resource-intensity, and effectiveness.

Keywords: Software Reliability, Fault Prevention, Fault Removal, Quality Assurance,

Root Cause Analysis, Software Process Improvement

1 Introduction

With increasing presence of automated computation and networked communication,

quality measures of systems responsible for delivering these services become critical.

Reliability as the degree to which a system can continue to operate correctly in a

specified duration of time has been a matter of concern in computer engineering from

the early ages of computer evolution [1]. Over the past few decades, however, the

intricacies of developing highly reliable software has come to the fore. Reliability of a

system suffers with occurrences of service failures [2]. Unsatisfactory reliability might

have catastrophic consequences on the user(s) and the environment especially in safety-

critical [3] and business-critical [4] systems. Several instances of aircraft and spacecraft

accidents due to software failures are presented in [5] and [6], respectively.

Even though it is a common practice, setting a numerical reliability target in terms

of failures, time-between-failures or similar measures is not viewed as the most

effective way to develop a highly reliable software system by all experts [7], [8]. The

software reliability community has been challenged to leave the prevalent idea of

software reliability modeling and provide credible methods for developing highly

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3

reliable software systems [7]. Experts advocating the use of credible methods rather

than reliability targets, argue that the rigor of practices and procedures could ensure

development of highly reliable software. In fact, ECSS (i.e. European Cooperation for

Space Standardization) software dependability and safety standard ECSS-Q-HB-80-03A

[9], advised against using reliability models. Credible methods for developing highly-

reliable software fall into four categories [2]: (1) fault prevention, (2) fault tolerance, (3)

fault removal, and (4) fault forecasting [10]. Of these four, fault prevention and fault

removal are primary means accessible to developers to stop faults from being

introduced or to go undetected.

One well-known approach to fault prevention is to track down root causes of

recurring faults and preventing them from appearing later on. This approach could be

used to address faults in all the undertakings for quality improvement from inception to

delivery. A myriad of methods have been introduced in the literature for this purpose,

commonly known as Root Cause Analysis (RCA) [11]–[15]. Most RCA methods rely

on statistical models of fault data for identifying recurring faults. To generate such

models, the fault data should be collected in a formulated manner. Even though reliance

on fault data is insightful [13], it comes at a high price for RCA methods. Fault data is

difficult to collect [16]; and its collection needs upfront investment and personnel

training [17]. Furthermore, RCA is a reactive practice by design.

In this study, realizing that erratic behavior is one of the main means of fault

delivery, we set out to develop a method that proactively and without reliance on fault

data could prevent erratic behavior. In the course of this research, we find that

mismatches between development context and development practices provide a fertile

ground for erratic behavior and consequently introduction of faults into software

products. Resultantly, we develop Proactive Erratic Behavior Analysis (PEBA) method,

aiming to prevent erratic behaviors by identifying such mismatches and resolving them.

PEBA makes use of a taxonomy of contextual factors for mapping the development

context. This taxonomy is developed in this research by conducting an extensive

literature search and resembles situational factors reported by Clarke and O‟Connor

[18]. Using PEBA, introduction and non-detection of faults could be minimized. As

such, PEBA complements the existing RCA methods.

2 Background

RCA is a structured investigation to identify the underlying causes of faults. By

conducting an RCA, root causes of recurring faults are tracked down and resolved in

order to prevent them from being introduced or going undetected. RCA can be

performed both during the development and after product release. In the former case,

RCA can result in in-process improvements [11], while in the latter, it helps create an

organizational portfolio by which lessons learned from one project can be put into

practice in later projects [19]. RCA can lead to improvements in artifacts of all stages of

development.

Lehtinen et al. [15] identified three common steps to all RCA methods – (1) target

problem detection, (2) root cause detection and (3) corrective action innovation. In

target problem detection stage, recurring faults are identified. This is done either by

qualitative analysis of faults by a team of experts [13], [15], [20] or by statistical

analysis of fault reports [11]. When recurring faults are identified, their root causes

should be discovered, hence, root cause detection stage. Several methods have been

proposed for tracking down the root causes. Among them using fishbone diagrams

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4

[21] and causal maps [22] are common. As soon as, one identifies recurring faults and

their root causes, corrective measures could be undertaken. Therefore, in the last stage

of RCA corrective actions are devised and undertaken to address the root causes of

recurring faults. Unfortunately, not much is known about innovating corrective

measures [15]. Previous literature often cites brainstorming, brainwriting, interviews,

and focus group meetings [12], [14], [15] as approaches for innovating corrective

measures.

Majority of RCA methods proposed in the literature rely on statistical analysis of

fault reports in order to identify recurring faults. Fault reports, themselves, are

formalized via a fault classification scheme. Reliance of the majority of RCA methods

on fault reports makes them vulnerable to fault reporting mechanisms of organizations.

Fault reports that are collected in organizations usually have comprehensibility and

inaccuracy issues [23]. Mohagheghi et al. [16] have identified a number of problems in

fault reporting processes. They reported ambiguous problem report fields as a source of

confusion for developers. Definitions and terms might mean different things to different

groups of stakeholders [16]. Lack of attention to product releases, changes in report

fields between releases, coarse-grained information in reports, and different report

formats and reporting tools are other issues that these researchers witnessed in fault

reporting practices of organizations [16]. Furthermore, in practice, fault reports are

usually collected just for fault removal and unfortunately are not further analyzed to

gain process improvement insights [23], particularly in smaller organizations [24]. The

considerable amount of upfront investment needed for collecting fault reports has made

others to argue that RCA methods relying on fault data are inappropriate for SMEs [15].

Non-immediate visible gains, required customization, change in people‟s routines [17],

and impractical assumption of full knowledge of faults [25] are other issues associated

with RCA. These issues may be seen by SMEs as impediments to conducting RCA.

RCA could support development of highly reliable software systems by

preventing recurring faults from being introduced and from going undetected. However,

considering the reactive nature of existing RCA methods, prevention might not occur

after all. The underlying assumption in existing RCA methods is that a problem

(recurring faults) already exists, root causes of which should be identified. This

assumption reveals the reactive nature of RCA. On the other hand, our review of 18

studies in the literature on fault reporting and RCA
1
 revealed further evidence that

current RCA methods are reactive. Despite highlighting the significance of proactive

rather than reactive prevention of faults [13][26], most studies conducted in the

literature are conducted after product release (retrospective) and fall short in providing

insights for in-process improvements (See Table 1). Furthermore, closer inspection of

the recommended time for conducting RCA (after each phase, after each iteration and in

exceptional cases) suggests that results of RCA are only useful for later phases or

iterations of development. Table 1 suggests that RCA could prevent faults from being

introduced and from going undetected in future phases, iterations or projects. Benefits

of RCA, therefore, seem not to have a bearing on the current phase, iteration or project.

1 RCA is also used in project management and for examining project failures. We have not included
studies that use RCA for such purposes here.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5

Table 1 RCA approaches and timing

Method

recommended
Method demonstrated Timing Source

In-process

In-process

No time recommended [27]

After each phase [28]

After each iteration [29][26]

Retrospective No time recommended [11], [19], [30]

Retrospective and In-process No time recommended [15]

NA
Right after each phase or in
exceptional cases

[14]

Retrospective Retrospective NA [31]

Retrospective

and In-
process

NA No time recommended [13]

NA

 In-process No time recommended [32]

Retrospective NA
[33], [34],

[35], [36], [24]

Retrospective and In-process No time recommended [37]

Considering their reactive nature and reliance on fault data, it is arguable that benefits of

existing RCA methods could be complemented with a method that looks forward to

prevent faults proactively and without reliance on fault data in a lightweight manner.

Such a method should also provide a systematic mechanism for innovating corrective

actions.

In software development research and practice, proactive improvement of

software quality is often sought by means of applying Software Process Improvement

(SPI). Oftentimes, SPIs have a continuous and cyclic nature that is perhaps best

epitomized in Shewhart–Deming‟s plan-do-check-act (PDCA) paradigm [38]. Petterson

et al. [38] characterized SPIs into two groups: (1) prescriptive SPIs such as CMMI, and

ISO/IEC 15504 that take a top-down approach suggesting a number of best practices

and (2) inductive ones such as iFlap [38] that take a bottom-up approach suggesting

improvements based on current state of affairs in a software organization. Experiences

of applying prescriptive methods such as CMMI and evidence of their effectiveness in

fault prevention has been reported in the literature [39]–[42]. RCA methods are often

suggested as an improvement opportunity in prescriptive SPIs. For instance, one of the

key process areas of the CMMI level 5 is „Causal Analysis and Resolution‟. RCA

methods are, therefore, part of prescriptive SPIs and as such have a different scope and

application. Recently, however in the light of increasing necessity for SPIs in SMEs

[43], and in order to tackle the cumbersome nature of SPIs such as CMMI [38],

lightweight inductive approaches have been proposed. SPIs such as iFlap [38],

COMPETISOFT [44], ASPE-MSC [45] and FLEX-RCA [46], to name a few, represent

this group. The goal of such SPIs is to provide a lightweight solution particularly for

SMEs to increase software quality by identifying and addressing problem areas in their

development processes. With the exception of Flex-RCA, SPIs in this group, however,

address problem areas mostly at a high level [46]. RCA methods, in contrast, focus on

faults and provide concrete ways to identify root causes of recurring faults and suggest

corrective measures. These corrective measures could deliver improvements to

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

6

development processes as well as instigating changes in staff roles, tools, and

equipment during development.

In this study, focusing on faults, we set out to develop a proactive and lightweight

RCA method and provide proof of concept. Like other RCA methods, our proposed

method would focus on faults, however, the proactive nature of the method would hold

resemblence to lightweight inductive SPIs as it aims at resolving problem areas in

processes as well other problem areas.

3 Research Approach

Our study is carried out in three phases. The sources used for collecting data are

published scientific studies and semi-structured interviewees with engineers active in

safety-critical and business-critical domains (see Table 2). The underlying research

strategy in this study in Design Science Research Methodology [47].

In phase one, we set out to understand erratic human behavior as one of the main

sources of fault introduction and non-detection. In this phase, 10 experts from six

international, privately-owned companies operating in safety-critical and business-

critical domains were interviewed (Interviews 1-10 in Table 2). These companies

provided engineering services for their customers in their respective domains and

ranged from small to large size. The interviews were conducted by two of the authors

independent of each other. At the end of this phase, we find that mismatches between

development practices and development context could signal erratic behaviors.

In the second phase, based on this finding, we develop the PEBA method as a

proactive complement for existing RCA methods. PEBA makes use of the taxonomy of

contextual factors affecting fault prevention and fault removal. This taxonomy is also

developed in this phase. Development of the taxonomy was done using directed

qualitative content analysis [48] on 142 studies. These 142 studies were analyzed after

carrying out an extensive literature search on topics associated with software reliability,

fault prevention, fault removal and RCA. The literature search process is detailed in

Appendix F. The complete list of reviewed articles is provided as supplementary

material. For details of taxonomy development, please refer to section 5.1 and Figure 1.

The third phase is proof of concept. First, we demonstrate the use of PEBA and

later we evaluate the method. For demonstration, we show the use of PEBA in two

ongoing small and high impact projects in a company active in avionics domain. Two

interviews (Interviews 11 and 12) were conducted with representatives of these two

projects in this phase. Evaluation is done by interviewing two quality assurance experts

in two companies providing software services to energy and healthcare suppliers.

Interview guides are provided in Appendix G.

Table 2 Interviews

ID Role(s) Experience

(at the time)

Domain Company

1 Team leader 9-10 years Avionics 1

2 Head of department 22 years Avionics 1

3 Team leader & software
process owner

8-9 years Automotive 2

4 Testing engineer 11 years Healthcare 3

5 Solutions engineer 5 years Avionics 4

6 Team leader 5 years Telecommunication 5

7 Head of development 10 years Healthcare & 6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

7

Telecommunication

8 Software developer 9 years Healthcare &

Telecommunication

6

9 Senior software architect NA Healthcare &

Telecommunication

6

10 Software developer over 14 years Healthcare &

Telecommunication

6

11 Software engineer over six years Avionics 1

12 System engineer over 20 years Avionics 1

13 Lead quality assurance

engineer

15-16 years Energy 7

14 Senior quality assurance

engineer

13 years Healthcare 8

4 Phase 1: Erratic behavior

Looking at the studies that provided categories of root causes (Table 3), it becomes

clear that individuals are the main actors who deliver faults; meaning that they can

either introduce faults or they might fail in detecting and removing faults. The

predominant role of human behavior in delivering faults suggests that by preventing

erratic behaviors, one of the main avenues to fault introduction and undetection could be

blocked. Therefore, we probed ten professionals (Interviews 1-10) about quality

practices in their respective organizations and the difficulties they face to understand

erratic behaviors.

Table 3 Root cause categories

Developed artifact Root cause categories Source

Taxonomy of software

error causes

Consistency, Completeness, Communication, Clerical [49]

Root cause scheme Application Errors, Problem-Solution Errors,

Semantics Error, Syntax Error, Environment Errors,

Information Management Errors, Clerical Errors

[31]

Classes of root cause Phase-related, Human-related, Project-related, Review-
related

[19]

Most cited cause-

categories in the literature

Tools, Input, People, Methods [14]

Requirements common
causes

Noncompliant Process,
Lack of Understanding, Human Error

[34]

Requirement error

taxonomy

People Errors, Process Errors, Documentation Errors [50]

Root cause taxonomy for
software defects

Human Error, Process Error, Tool Problems, Task
Problems

[51]

Categories of error causes Communication Failure, Oversight, Education,

Transcription Error,

[20]

Error causes Programmer Error, Language Misunderstood, Previous
Fix, Communication Failure,

Spec unclear, Clerical, Programming Language Bug,

Specification Changed, Other, Unknown

[52]

Levels of programming

error causes

Technological, Organizational, Historic, Group

Dynamic, Individual, Inexplicable Causes

[53]

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

8

We used inductive thematic analysis [54] for capturing themes (i.e. important patterns

related to a phenomenon) in interviews. We started analysis by highlighting parts of the

text that indicated problematic or fault-prone exercises. Following this step, we looked

for possible patterns within the text in a cyclic and iterative process which included

revisiting our analysis multiple times. Doing this, three recurring themes emerged.

Interviewees referred to (1) a development practice, (2) a contextual factor and (3) a

mismatch between these when they addressed system quality or problems in

development. For example, multiple interviewees explained a mismatch between time

and resources and the practice of code reviewing. Such a mismatch could result in

abandonment of reviews in favor of catching deadlines and eventually to ineffective

fault removal. Another interviewee signaled a mismatch between communication

mechanisms, culture and the international nature of the development team. He lamented

that due to cultural differences in an international team, ideas are not challenged or

communicated properly. Later on in the interview, he elaborated that because of this

mismatch reviews of system documents might not take place. Mismatch between tool

support and different development practices were commonly observed as well. Table 4

shows the mismatches referred to in interviews. Each row in the table refers to a

mismatch (theme 3) between a development practice (theme 1) and a contextual factor

(theme 2). The last column in the table indicates the interview in which each mismatch

was signaled. Corresponding interview text from which these themes emerged could be

found in Appendix D in order of the appearance in Table 4.

Table 4: Recurring themes and pattern in interview analysis

Theme 1 (practice) Theme 2 (context) Interview

Code review Time and resources 1

Team communication channel of choice

(Scrum‟s daily standup meetings in this
case)

Organizational structure allowing a

person to work in three projects

1

Audit practices Schedule 1

Ideal testing practices Project size 1

Developer‟s background and way of
working

Task at hand 1

Planning practices Tool support 2

Compliance with defined rules and

practices

Organizational inertia 2

Senior management compliance Defined practices 2

Quality management practices Knowledge of standards 2

Requirement engineering practice External stakeholders 2

Code review Time 3

Consistent application of the process Having defined processes 3

Communication mechanisms Culture and the international nature of

the development team

3

Iterative software development practice Involvement of external stakeholders 3

Information management practices Tool support 3

Traceability practices Tool support 3

Manual testing Number of code reviews per reviewer 4

Developers‟ coding Tool support 4

Compliance coding rules Quick development 4

Testing practices Time 5

Compliance with guidelines Legacy code 5

Refactoring practices Evolving code 5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

9

Transparent communication between

team members (i.e during standup

meetings)

Work pressure 6

Fault reporting practices Tool support 6

Commenting practices Market share of a product, and its

complexity

6

Testing practices Time 7

Testing practices Budget 7

Testing and documentation practices Quick delivery 8

Coding standard practiced in the project Project members‟ coding styles 8

Use of (new) technologies Product‟s projected software lifecycle 8

Coding standards practiced in the

project

Number of tools (technologies) in a

project

9

Code review Schedule 9

Integration testing Rapidly changing technology 10

Documentation practices Staff changes 10

Compliance with development
guidelines

Multiple contractors 10

Documentation practices Rapidly changing technology 10

The important role of mismatches between development context and development

practices have been touched upon by scholars as well. Fenton and Neil [55] claimed

that while the mismatch between design effort and problem complexity leads to

introduction of faults, the mismatch between design size and testing effort leads to

ineffective detection of faults. Design effort and testing effort are development practices

that are asked to be matched to design size, and problem complexity that are factors of

the context. Similarly, the mismatch between design effort and functionality was argued

by Avižienis et al. [2] as one of the prime causes of development failures. It is worth

noting that Endres [53] considered a root cause of a programming fault to be a

mismatch between problem difficulty and adequate practices applied. Furthermore,

Leszak et al. [19] reported that mismatch between the skill-level needed in a project and

individuals‟ skills can lead to introduction of faults.

Therefore, based on the analysis of responses from the interviews, and previous

scholarly observations, there exists promising evidence that mismatches between

development practices and context could result in erratic behavior. Erratic behaviors are

prone to occur if circumstances to which they are vulnerable emerge. Therefore, erratic

behaviors could be prevented by resolving mismatches between development practices

and context. Consequently, by identifying mismatches, one could predict potential for

erratic behaviors. In other words, mismatches can signal potential for erratic behaviors.

If this holds, it follows that erratic behaviors can be prevented, simply, by

tailoring the development method so that the development practices fit the context. The

idea of matching the software development method to the needs of the context is well-

established in the research community [56]–[58]. In practice, there is indeed very little

chance that a method is fully adopted and development methods are almost always

subject to tailoring [59]. Following this line of reasoning, a group of experts have

argued that there is no universally applicable software development method which suits

all kinds of projects [60], [61]. Available methods must be tailored according to

characteristics of software development context and needs of development teams [62],

[63]. Data from the interviews confirmed the potential of tailoring as a corrective action.

So usually there is request for performance and criticality analysis of the system.

This means, in this space standards, four levels of criticality that depends on the

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

10

consequences of the failure of the systems or parts of the system. So once you

perform this analysis and decide what is your criticality level, then, it drives what
practices you have to follow per standard. You tailor the standard. (Interview 1)

In a way, it is perfectly normal, to have a difference, between what the book says,

the standard says, and the actual practice. It's even part of the standards, or the

methods to accept this idea of tailorage. The ECS standards have somewhere, it

tells, you should tailor this standard. The […] project management thing, people

think often that it's a huge bureaucratic thing. No, one of the key principal of the

method tells, tailoring to meet environment. (Interview 2)

Therefore, a method could be developed that relies on identifying mismatches between

development practices and context for predicting potential erratic behaviors.

Consequently, resolving such mismatches could provide a means to systematically

innovate corrective actions.

5 Phase 2: Taxonomy of contextual factors and PEBA

Based on the findings in the first phase of this research endeavor, we propose a method

for proactively identifying and resolving erratic behaviors as the main avenue to fault

delivery. The proposed method is PEBA, a proactive method that relies on the

knowledge of individuals from the development arena for finding mismatches between

development practices and context. In order to get a strong foothold for identifying

mismatches, PEBA takes advantage of a taxonomy classifying contextual factors

affecting fault prevention and detection. The taxonomy is an analyst‟s guiding light to

finding mismatches between development practices and context.

5.1 Taxonomy of contextual factors

Development of the taxonomy was done using directed qualitative content analysis [48]

on 142 studies. These studies were analyzed after carrying out an extensive literature

search on topics associated with software reliability, fault prevention, fault removal and

RCA. More information on the literature search is provided in Appendix F. Qualitative

content analysis
2
 is used to understand or explain a phenomenon through a systematic

process of coding and identifying patterned regularities in text [48]. In directed

qualitative content analysis previous research findings or theory is used to initialize a set

of predetermined categories [48]. In order to define the initial set of code categories for

developing taxonomy of contextual factors, it was found necessary to determine the best

way a development context could be understood. According to Sjøberg et al. [64], in a

typical software engineering situation “an actor applies technologies to perform certain

activities on an (existing or planned) software system”. From this statement, four key

elements of a typical software engineering situation are understood to be (1) actor, (2)

technology, (3) activity and (4) software system. Additionally, the development context

can be described from different perspectives. We examined the context from (1) region,

(2) organization, (3) project and (4) team perspectives. To summarize, the four

perspectives of context and the four key elements of software engineering were

considered two dimensions by which the context could be analyzed. For coding, a factor

2 Qualitative content analysis (Hsien, & Shannon, 2005) is different from content analysis that is
normally described as quantitative analysis of qualitative data

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

11

was defined as any phenomena, stimulant or circumstance that can be characterized as

part of the context. Figure 1 depicts the taxonomy development process.

Figure 1 Taxonomy development process

After comparison and analysis of all factors, including the uncategorized ones, the

key elements dimension was extended to human, environment, activity and artifact.

Environment factors, as the name implies, refer to phenomena or stimulants in the

surroundings of the people involved, the practices and deliverables. Factors related to

high-level strategies and supporting technologies are included as environment factors.

Human factors are those relating to individual‟s characteristics, behaviors, duties and

their interactions with other individuals. The activity factors characterize the context in

terms of the practices carried out and the processes followed to develop a product. It is

important to emphasize that these factors do not refer to technicality of activities and

how they are done, rather the existence and quality of activities that are known to affect

the development practices. Finally, artifact factors address characteristics of any

deliverable produced during development. The artifact could be a document that is the

outcome of requirement analysis, or design. It could be the source code or the whole

software system.

Overall, 85 factors were identified and taxonomy of contextual factors was

developed. Figure 2 depicts the taxonomy and its structure. On the innermost circle, the

perspectives of the context, and on the second layer, the key elements of context are

visible. Some contextual factors are presented as examples in the outermost circle,

however, due to space limitations the complete taxonomy of contextual factors is

presented in Appendix A. The taxonomy will aid an analyst in identifying mismatches

between development practices and context.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

12

Figure 2 Taxonomy of contextual factors

5.2 PEBA method

PEBA is a proactive method, complemenatry to the existing RCA methods that are

reactive in nature. PEBA does not rely on fault data. Based on the finding that

mismatches between context and development practices can signal erratic behavior,

PEBA is developed comprising three steps:

(1) Context mapping

(2) Erratic behavior mapping

(3) Corrective action innovation

In the first step, the development context is mapped. This task can be completed using

the taxonomy of contextual factors developed in section 5.1. In the second step,

mismatches between the context and development practices are identified and using

causal maps [22] the relationship between mismatches and erratic behaviors are

mapped. In the last step, corrective actions will be introduced. These corrective actions

are derived from mismatches mapped in the previous step.

Two roles are defined for carrying out PEBA: the participant and the facilitator.

The distinction between the participant and the facilitator roles is in the logical design

of the method, and in reality the facilitator can take the role of the participant, as well,

and vice versa. Such a design allows logical distribution of responsibilities between the

participant and the facilitator while allowing the responsibilities to be assigned to

individuals flexibly with respect to available project resources and structure. The role of

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

13

facilitator is similar to that of moderator in inspection [65]. The facilitator guides and

controls the analysis. The participant, on the other hand, has the knowledge and know-

how of the context and practices of development. The participant can be any of the

stakeholders in the development. Project managers, quality managers, analysts,

designers, developers, testers, reviewers, team leaders could all take the role of

participant. The decision of who actually becomes a participant depends on the

resources available and is up to the facilitator or management.

Acquiring a good understanding of the context is necessary for identification of

mismatches. In step one of PEBA, the goal is to map the context to aid identification of

mismatches later on. To this end, the facilitator selects the participants and outlines

meetings. The meetings can be in the form of qualitative interviews, focus group

meetings, or any other form according to available resources. The number of meetings

is also a decision for the facilitator to make. If deemed sufficient for mapping the whole

context, one meeting will wrap this step. Otherwise, further meetings are held. During

the meeting(s), the facilitator and the participant(s) use the taxonomy of contextual

factors, to map the context. As soon as the facilitator and/or the participants reach a

consensus that the context is well understood, step one is complete.

The prerequisite of step two is a good understanding of the context and practices.

So far, as a result of completing step one, the context has already been understood and

wise selection of participants has ensured a good knowledge of development practices.

The second step is carried out with the purpose, firstly, to identify mismatches between

the context and practices and, secondly, to map the relationship between mismatches

and erratic behaviors. To this end, the facilitator plans and holds meetings with the

participant(s) similar to step one. During the meetings, the participant(s) and the

facilitator, identify mismatches. Next, the relationship between mismatches and erratic

behaviors will be mapped using a causal map [22] to potential erratic behaviors. The

potential erratic behaviors, coupled with other mismatches, can lead to other erratic

behaviors. Both the facilitator and the participant(s) can draw upon their experience and

knowledge to map mismatches to erratic behaviors. The facilitator should promote

discourse at this stage. The participant should convince the facilitator and other

participants that an erratic behavior would occur due to a certain mismatch or

combination of mismatches using reasonable arguments. If the participant manages to

convince others of the possibility of an erratic behavior, the facilitator draws an arrow

between the mismatch and that erratic behavior. This process will be iterated until the

facilitator and participant(s) conclude that all mismatches are mapped to possible erratic

behaviors.

The final step of PEBA is innovation of corrective actions. In PEBA, innovating

corrective actions is done in a straightforward manner by deriving corrective actions

from mismatches leading to erratic behaviors. Corrective actions should prevent the

emergence of circumstances that give rise to erratic behaviors by resolving relevant

mismatches. To this end, meetings are held by the facilitator, in accordance with the

resources available. Yet again, the form and the number of the meetings are for the

facilitator to decide. During the meetings, the participant(s) prioritizes erratic behaviors.

This prioritization could be done in different manners, for instance, with respect to

severity of the erratic behavior or by identifying bottlenecks in causal maps. The

prioritization of erratic behaviors drives the agenda of the meeting and the innovation of

corrective actions. After prirotization, the facilitator and the participants innovate

corrective actions by proposing solutions that could resolve mismatches leading to an

erratic behavior.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

14

It is note-worthy, that the three steps need not be conducted in separate meetings.

In one single qualitative interview or focus group meeting all the steps could be

completed. The facilitator should plan according to the available resources, and

participants‟ schedules. This makes PEBA a flexible method to be used in SMEs as well

as large enterprises. As regards the appropriate time for carrying out PEBA, it is

recommended to be conducted before each major stage of development or iteration.

6 Phase 3: Proof of concept

In this phase, we attend to proof of concept. Initially, we demonstrate the use of PEBA

in two small and high-impact projects. Later, we evaluate the method by interviewing

two independent quality assurance experts.

6.1 Demonstration

In Project 1, a system including both hardware and software was under development for

the domain of avionics. This system was a replacement for an onboard system that was

already operational on a well-known spacecraft at the time of carrying out this research,

hence, a low level of tolerable risk and necessity for backward compatibility. Project 2

was also in the domain of avionics, however, in this project onboard software system

prototypes were being developed to be used in future spacecrafts. In both cases, the

software developer had close contact with the team leader and participated in meetings

with their respective clients. At the time of conducting PEBA, Project 1 was still in the

early stages, while Project 2 was in late stages of development and mainly validation

activities was taking place. Therefore, proactive RCA was very much relevant to Project

1.

For mapping the development context, the facilitator held two online interviews

with the main software developer in each project (Interviews 11-12). In this step, the

researcher took the role of the facilitator and the main developer in charge of each

project was the participant. The choice of online interviews over focus group meetings

or face-to-face meetings was made based on the availability of participants and the

geographical distance between the researcher and the participants.

The interviewee for Project 1 (Interview 11) was responsible for design and

development of the software and selection of the hardware. The interviewee for Project

2 (Interview 12) had been working for the company for four years at the time of the

interview and was the fourth engineer assigned to this project in three years. Project 1

was running for over two years. In order to map the context, the facilitator analyzed

interview data using the taxonomy of contextual factors. At the end of this step, for each

project a file was created, holding the key-value pairs of contextual factors (see

Appendix B). It is important to note that since this was only proof of concept the

analysis was limited to the project and team perspectives of the taxonomy and did not

cover region and organization perspectives.

In step two of PEBA, erratic behaviors are mapped using directed graphs. Before

the mapping starts, mismatches between practices and the context must be identified.

The researcher took both facilitator and participant roles to find mismatches and map

potential erratic behaviors. This is possible since the distinction between the roles are

logical. Using the file containing key-value pairs of contextual factors and with the

knowledge of practices discussed during interviews mismatches were identified. As

soon as no further mismatches could be identified, mapping the erratic behaviors

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

15

started. Figure 3 and Figure 4 demonstrate the map of erratic behaviors and their

relationship with mismatches and other erratic behaviors in the Project 1 and 2,

respectively. Due to space limitations, here we only provide the description of

mismatches and erratic behaviours of Project 1 and provide full description of

mismatches and erratic behaviors for Project 2 in Appendix C.

Figure 3: Project 1 causal map

The causal map of Project 1 (Figure 3) shows two separate paths. The first path depicted

on the top shows the interconnections between „Mismatches 1, 2, 3, 4‟ and „Erratic

behaviors 1, 2, 3, 4, 5‟. The second path, visible on the bottom of the figure, shows the

potential cause-effect relationship between „Mismatch 5‟ and „Erratic behavior 6‟.

Description of mismatches for Project 1 is provided in Table 5.

Table 5 Description of mismatches for Project 1

Mismatch # Between Description

Mismatch 1 Necessity of

backward

compatibility and
concurrency of

development

Part of the system needs to hold backward compatibility

with scripts developed by experiment container

developers. Since these developers are working in parallel
to the team, no such script is provided to the development

team. This could result in faults in the form of

unsupported previous behavior.

Mismatch 2 Selection of fault
detection practices

and reliance on

customer feedback

Reviews are performed in order to detect faults. However,
late reviews held with the customer and reliance on such

reviews for feedback, results in long time-span between

updates to documents and late delivery.

Mismatch 3 Reliance on

documentation and

time-span between
updates to

documents

Considering that the developer relies heavily on

documentation, long time-span between updates to

documents might lead to fault introduction or
nondetection

Mismatch 4 Availability and

quality of
documentation and

tool support

The interviewee wished for better tool support for

documentation. In case the tool is difficult to use and
handle, considering that high quality and availability of

documentation is necessary for this project and

considering that the developer relies heavily on
documentation, this inconsistency might lead to improper

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

16

handling or update of the document and eventually a fault

introduction or nondetection.

Mismatch 5 Availability of

feedback with
number of project

members

No one inside the company is reviewing the works of the

developer, this means that the point of departure is
meetings and reviews with the customer. These meetings

might be too little, too late.

Descriptions of erratic behaviors for the Project 1, presented in Figure 3, are provided in

Table 6. The last column of the table includes the cause of each erratic behavior.

Table 6 Description of erratic behaviors for Project 1

Erratic behavior

Description Cause

Erratic behavior 1 Development without regards to

requirements

Mismatch 1

Erratic behavior 2 Late update of documents Mismatch 2 or Mismatch 4

Erratic behavior 3 Delayed delivery Erratic behavior 2 or Mismatch 1

Erratic behavior 4 Development based on incorrect

information

Erratic behavior 2 and Mismatch 3

Erratic behavior 5 Non-compliance with

documentation procedure

Mismatch 4

Erratic behavior 6 Not noticing self-mistakes Mismatch 5

The causal map of Project 2 is shown in Figure 4 below. Descriptions of mismatches

and erratic behaviors for Project 2 are provided in Appendix C.

Figure 4: Project 2 causal map

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

17

The goal in the last step of PEBA is innovation of corrective actions. The corrective

actions can be derived from mismatches in order to prevent erratic behaviors. In this

step, corrective actions could be prioritized so that a sudden change of routines does not

distress development. An example of possible corrective actions are innovated in this

step for the purpose of demonstration. Consider „Erratic behavior 2‟ in Project 1. This

erratic behavior represents a bottleneck in Figure 3 as it could lead to „Erratic behavior 1,

3 and 4‟. Since either „Mismatch 2‟ or „Mismatch 4‟ could lead to „Erratic behavior 2‟,

solutions should address both of these mismatches. Corrective action for „Mismatch 2‟

could be adding extra review sessions with internal reviewers. On the other hand,

„Mismatch 4‟ could be resolved by introducing new documentation tools or recruiting

new members into the project to care for and handle the documentation.

6.2 Evaluation

Evaluation of PEBA is done by interviewing two quality assurance experts (Interview

13 and 14). Evaluators were provided with a description of the method and the findings

presented in the demonstration phase. Corresponding interview text for evaluation could

be found in Appendix E.

PEBA is designed to be proactive. This feature of PEBA is in stark distinction to

the existing RCA methods in the literature that are reactive in nature. One of the

evaluators stressed the complementary nature of PEBA and its necessity.

I think the method works as a complementary to the, sort of, rigorous

mathematical models and I do think that [a conventional RCA model] also needs

complementary methods, in the sense that, if you just focus on, sort of, these are

the faults that we have identified and these are the weak areas because they have
most faults; it’s analysis that is not easy to do either (Interview 13)

Resource-wise, one of the evaluators (Interview 13) was rather concerned about the

resources needed, particularly, about scaling the method up from the two projects

demonstrated to larger, more agile methods such as Scrum. She drew an analogy with

retrospective meetings in Scrum and concluded that retrospective meetings in Scrum get

to the problem quicker but if a project requires completeness then she would opt for

PEBA. We believe this is a legitimate concern but it does not undermine the method. In

agreement with the evaluator who mentioned completeness, we remind the reader that

PEBA is developed as a credible method for development of highly reliable software

systems and, therefore, it could be as lightweight or heavyweight in the scope of such

projects. In essence, PEBA is not fixated on any number of interviews or even any

particular data collection method. For that matter, one might decide on conducting a

focus group meeting rather than several interviews. This is because we wish NOT to

prescribe a one-size-fits-all solution. We believe the method is open for customization

to the needs and resources of each organization or project. Secondly, we emphasize the

proactive nature of the method as opposed to Scrum‟s retrospective meetings. When we

mentioned this difference, the evaluator agreed and clarified that there is no such

approach in Scrum.

Regarding needed resources, the second evaluator (Interview 14) noted that the

proposed method is highly reliant on the competence of participants and the facilitator.

In particular, the evaluator underlined the need for knowledge of the domain for

achieving fruitful results. We acknowledge that the qualitative nature of PEBA makes

correct selection of participants and facilitator essential to the success of its application.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

18

When addressing effectiveness of the method, one of the evaluators (Interview 13)

highlighted the value of the method in forcing individuals, and particularly

management, into honesty. She stressed that knowing the mismatches and the potential

erratic behavior that could follow them would help decision-makers in making

conscious decisions. Furthermore, both evalutors recommended adding follow-ups to

the method as an improvement that could highlight the effect of corrective actions. One

evaluator (Interview 14) in particular made the recommendation stressing the necessity

of reporting tangible results and the difficulty in doing so. According to him,

participants, mostly developers in this case, might be unwilling to continue applying the

method if the outcomes are not very tangible. He then continued that it is particularly

difficult to see the results unless it is applied every few months to see if mismatches still

exist or not. The comments of the evaluators address an important issue with regard to

PEBA or any other preventive method for that matter. The proactive nature of such

methods bars them from reporting “would-be” results such as number of faults that

would have been detected if the method was not applied. However, PEBA is

recommended to be conducted before each major stage of development or iteration.

This would allow the team to assess mismatches identified in previous iterations and see

whether they still exist or not as the evaluator suggested. In this manner, the next

application of PEBA could act also as the follow-up to the previous application.

Evaluators made two recommendations. One evaluator (Interview 13) stated that,

unlike risk analysis methods, it is not clear how one should prioritize tasks in PEBA.

Prioritizing could be done in different manners for instance with respect to severity of

the erratic behavior that follows a mismatch or by identifying bottlenecks in causal

maps (see „Erratic behavior 2‟ in Figure 3). In companies with fewer resources who

cannot manage to resolve all issues, we suggest identifying and resolving bottlenecks

since in this manner the route to several different erratic behaviors could be blocked.

The other evaluator (Interview 14), on the other hand, suggested leaving some room for

unforeseen problems that might occur later. Drawing from his experience in applying

Scrum, he suggested that extra resources including man-power and time are considered

for application of PEBA to account for such problems. While we find this suggestion

intriguing, we also find it necessary to point out that SMEs might not have the resources

to do so. The evaluator admitted that his experience comes from working in relatively

large organizations and as such this recommendation might be useful for such settings.

The taxonomy of contextual factors developed in this research endeavor is

instrumental to conducting PEBA. However, it is by no means exhaustive or finalized.

Based on the knowledge and experience of the staff in the context, the taxonomy can be

customized in a way to represent the context in the best possible way. One evaluator

(Interview 13) refused to make a strong comment about the taxonomy on the grounds

that it really needs to be evaluated in action. However, she did mention the large

number of factors as an inhibiting factor for adoption of the method and recommended

that different presets of factors be provided for different types of organizations or

projects. This task however, is beyond what we could possibly do in this research effort.

Our taxonomy development method simply does not allow for such an action, even

though we find it useful. By contrast, the other evaluator (Interview 14) viewed the

large number of contextual factors as an indication of the comprehensiveness of the

taxonomy. For instance, he mentioned that one source of trouble in software projects is

accounting for customer demands. He then added that several contextual factors in the

taxonomy such as „involvement of different stakeholders‟ could capture such demands.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

19

7 Discussion, Limitations and Future research

We acknowledge that this research endeavor is very much informed by, and

extends the works of Lanubile et al. [66], Lehtinen et al. [15], and Clarke and O‟Connor

[18]. The PEBA method, while benefiting from the merits of the ARCA method [15] is

designed to be proactive. It does not assume the existence of problems. Similar to the

“Error abstraction” method proposed by Lanubile et al. [66], in this study the main

underlying theme is identification of common individual errors. However, while the

error abstraction method relies on abstracting common errors from a set of already

existing faults, in this research the goal is prediction of erratic behaviors. It is arguable

that this difference between the two studies marks a difference in a reactive approach

and a proactive approach. Another point of departure between the two is the scope of

application. Lanubile et al. [66] focused solely on requirement faults; however, fault

prevention should be extended to all stages of development. Identification of erratic

behaviors in this study is done proactively for all development stages.

As regards mapping the context, Clarke and O‟Connor [18] developed a reference

framework of situational factors that can be used as a tool for defining software

development processes or delivering improvements. The taxonomy of contextual factors

developed in this research effort is similar to the situational factors reference framework

of Clarke and O‟Connor [18] in providing a tool for mapping the context of

development. However, in doing so, the taxonomy of contextual factors, presented in

this research, limits factors to those that can affect fault introduction and fault

nondetection. Narrowing down the scope of the taxonomy improves its utilization for

finding mismatches between the development context and practices. The reference

framework of Clarke and O‟Connor [18] has 8 factor classifications, 44 factors, and 172

sub-factors. The large scale of this framework compared to 85 factors and two

dimensions presented in our taxonomy of contextual factors may render it inapplicable

for the purposes of PEBA. Even though 85 contextual factors might still be too many to

handle in practice, since the taxonomy is presented in two dimensions, practitioners can

focus on the dimensions that they find most important. Furthermore, our taxonomy of

contextual factor is flexible and could be customized based on the context in which

PEBA is conducted.

Like other RCA methods, our proposed method focuses on faults. However, the

proactive nature of the method resembles lightweight inductive SPIs such as iFlap [38]

and FLEX-RCA [46] as it aims to resolve problem areas in processes as well as other

problem areas. FLEX-RCA [46] is particularly of interest as, unlike other inductive

SPIs, it provides detailed suggestions for practitioners rather than high-level advice and

it relies on the traits of the participants. The main difference between FLEX-RCA [46]

and PEBA, however, is in approaches for identifying problem areas themselves. FLEX-

RCA [46] suffices to suggest methods such as brainstorming for identifying problems in

process areas. Our proposed method goes one step further to suggest identifying

mismatches between development context and development practices for that matter.

Additionally, PEBA holds similarities to risk management methods. Seeking a

similar goal as risk management methods which aim to ensure the integrity of software

development processes [67] and avoiding unsatisfactory or unwanted outcomes [68],

PEBA enables development teams to prevent erratic behaviors by identifying corrective

actions suitable for a context. Risk management frameworks often involve both reactive

and proactive elements. While risk identification, and assessment comprise the

proactive elements in risk management frameworks, contingency planning forms their

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

20

reactive nature. This dual character is observable in frameworks such as ProRisk [67],

PRAM [69], Boehm‟s risk management framework [68] and KBRM [70]. PEBA

overlaps risk management frameworks in their proactive elements and perhaps

complements them. PEBA, by means of enabling identification of mismatches, could

systematize the identification of risks in risk management frameworks, thereby,

providing a concrete basis for risk mitigation and contingency planning. A systematized

way for identification of mismatches is often missing in risk management frameworks.

For instance, Boehm [68] suggests using checklists for risk identification. Interestingly,

many of the risk factors identified by Boehm [68] and Schmidt et al. [71] such as

personnel shortfalls and unrealistic schedules and budgets were identified as

mismatches in this research.

7.1 Limitation

This study has a number of limitations. The reliability of the taxonomy of contextual

factors developed in this study is subject to vulnerabilities. The directed qualitative

content analysis conducted for developing the taxonomy might suffer from coder bias.

In such a situation, a contextual factor might be missed or wrongly included. It is

arguable, however, that the large number of factors coded alleviates the problem of

missing a factor by increasing the chance of covering it in the analysis of other studies.

The wrongly included factors are likely to have been dropped during the later steps of

the development of the taxonomy.

Other limitations were faced in the phase 3. The scale and scope of the two

projects for which the use of PEBA was demonstrated might not allow all the potential

difficulties of the method to be surfaced. In Project 1, with a low level of tolerable risk,

the focus was primarily on hardware rather than software. Project 2 was a prototype

project for which the level of tolerable risk was fairly high. However, both project 1 and

2 were high-impact projects affecting space-exploration efforts and satisfied the goal of

phase 3 which was proof of concept for a proactive preventive method that could be

used in SMEs as well as large organizations.

Lastly, the data collection took place within projects in safety-critical and

business-critical domains where software reliability is a sensitive topic. Therefore, in

addition to the normal limitations attributed to interview data, some information might

have been withheld from the researchers.

7.2 Future research

This research is mainly based on the finding that mismatches between context and

development practices could signal potential erratic behaviors. There is a need for

further assessment of this fresh reading of erratic behaviors. Consequently, we

encourage future research to undertake this burden.

Furthermore, it is paramount to note that much research has been conducted on

human behavior and there already exists substantial theories on human error [72], [73].

However, these theories are primarily addressing operator errors while we focus on

developer errors. While Walia and Carver [50] explicitly differentiate between these, we

refrain from drawing such distinction until further evidence is provided by future

research and note that our finding does not challenge any of these theories. In fact, it

corroborates with Reason‟s underlying assumption that human errors fall into recurring

patterns [74].

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

21

Another area of exploration for future research is measurement of improvement in

preventive methods such as PEBA. In this case, one of the evaluators suggested that

revisiting previous mismatches in later stages of development could bring about the

improvement potential of the method. However, still, a universal approach for

preventive methods that could lay out their improvement potential could make it easier

to convince senior management as well as developers into adoption.

8 Conclusion

In this research, the task of developing a proactive RCA method was undertaken. PEBA

as the outcome of this endeavor is flexible and proactive, and relies on identification of

mismatches between the development context and practices in order to predict erratic

behaviors. Preventing these erratic behaviors could then prevent faults from being

introduced or going undetected. Even though, development of a system that is

completely free from faults is far from reality, this could make considerable

contributions to the development of highly reliable systems.

REFERENCES

[1] A. Goel, “Software reliability models:Assumptions, limitations, and applicability,” IEEE

Trans. Softw. Eng., vol. SE-11, no. 12, pp. 1411–1423, 1985.

[2] A. Avižienis, J. C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and taxonomy

of dependable and secure computing,” IEEE Trans. Dependable Secur. Comput., vol. 1,
no. 1, pp. 11–33, 2004.

[3] P. Bishop, “Does software have to be ultra reliable in safety critical systems?,” Int. Conf.
Comput. Safety, Reliab. Secur., pp. 118–129, 2013.

[4] J. A. Børretzen, T. Stålhane, T. Lauritsen, and P. T. Myhrer, “Safety activities during
early software project phases.,” in Norwegian Informatics Conference, 2004.

[5] F. M. Favarò, D. W. Jackson, J. H. Saleh, and D. N. Mavris, “Software contributions to

aircraft adverse events: Case studies and analyses of recurrent accident patterns and
failure mechanisms,” Reliab. Eng. Syst. Saf., vol. 113, no. 1, pp. 131–142, 2013.

[6] N. G. Leveson, “Role of Software in Spacecraft Accidents,” J. Spacecr. Rockets, vol. 41,
no. 4, pp. 564–575, 2004.

[7] R. W. Butler and G. B. Finelli, “The Infeasibility of Quantifying the Reliability of Life-
Critical Real-Time Software,” IEEE Trans. Softw. Eng., vol. 19, no. 1, pp. 3–12, 1993.

[8] B. Littlewood and L. Strigini, “„Validation of ultra-high dependability…‟ – 20 years on
Bev,” Saf. Syst. Safety-Critical Syst. Club Newsl., vol. 20, no. 3, 2011.

[9] ECSS, “Space product assurance–Software dependability and safety ECSS-Q-HB-80-

03A:2012.” European Cooperation for Space Standardization, 2012.

[10] M. R. Lyu, “Software Reliability Engineering : A Roadmap,” Futur. Softw. Eng., pp.

153–170, 2007.

[11] R. Chillarege et al., “Orthogonal defect classification-a concept for in-process

measurements,” IEEE Trans. Softw. Eng., vol. 18, no. 11, pp. 943–956, 1992.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

22

[12] D. N. Card, “Learning from our mistakes with defect causal analysis,” IEEE Softw., vol.

15, no. 1, pp. 56–63, 1998.

[13] R. Grady, “Software failure analysis for high-return process improvement decisions,”

Hewlett Packard J., no. August, pp. 1–12, 1996.

[14] M. Kalinowski, G. H. Travassos, and D. N. Card, “Towards a defect prevention based
process improvement approach,” EUROMICRO 2008 - Proc. 34th EUROMICRO Conf.

Softw. Eng. Adv. Appl. SEAA 2008, pp. 199–206, 2008.

[15] T. O. A. Lehtinen, M. V. Mäntylä, and J. Vanhanen, “Development and evaluation of a

lightweight root cause analysis method (ARCA method) - Field studies at four software

companies,” Inf. Softw. Technol., vol. 53, no. 10, pp. 1045–1061, 2011.

[16] P. Mohagheghi, R. Conradi, and J. A. Børretzen, “Revisiting the problem of using

problem reports for quality assessment,” Proc. 2006 Int. Work. Softw. Qual. - WoSQ ’06,
pp. 45--50, 2006.

[17] G. Carrozza, R. Pietrantuono, and S. Russo, “Defect analysis in mission-critical software

systems: a detailed investigation,” J. Softw. Evol. Process, vol. 27, no. 1, pp. 22–49,
2015.

[18] P. Clarke and R. V. O‟Connor, “The situational factors that affect the software
development process: Towards a comprehensive reference framework,” Inf. Softw.

Technol., vol. 54, no. 5, pp. 433–447, 2012.

[19] M. Leszak, D. E. Perry, and D. Stoll, “Classification and evaluation of defects in a

project retrospective,” J. Syst. Softw., vol. 61, no. 3, pp. 173–187, 2002.

[20] R. G. Mays, C. L. Jones, G. J. Holloway, and D. P. Studinski, “Experiences with Defect

Prevention,” IBM Syst. J., vol. 29, no. 1, pp. 4–32, 1990.

[21] K. Ishikawa, Guide to quality control: industrial engineering and technology. Asian
Productivity Organization., 1976.

[22] F. O. Bjørnson, A. I. Wang, and E. Arisholm, “Improving the effectiveness of root cause
analysis in post mortem analysis: A controlled experiment,” Inf. Softw. Technol., vol. 51,

no. 1, pp. 150–161, 2009.

[23] J. A. Børretzen and J. Dyre-Hansen, “Investigating the Software Fault Profile of

Industrial Projects to Determine Process Improvement Areas: An Empirical Study,” Eur.

Conf. Softw. Process Improv., pp. 212–223, 2007.

[24] A. Raninen, T. Toroi, H. Vainio, and J. J. Ahonen, “Defect Data Analysis as Input for

Software Process Improvement,” in International Conference on Product Focused

Software Process Improvement, 2012, pp. 3–16.

[25] N. Mellegård, M. Staron, and F. Törner, “A light-weight defect classification scheme for

embedded automotive software and its initial evaluation,” Proc. - Int. Symp. Softw.
Reliab. Eng. ISSRE, pp. 261–270, 2012.

[26] M. Soylemez and A. Tarhan, “Challenges of software process and product quality
improvement : catalyzing defect root-cause investigation by process enactment data

analysis,” Softw. Qual. J., vol. 26, pp. 779–807, 2018.

[27] B. Freimut, C. Denger, and M. Ketterer, “An Industrial Case Study of Implementing and
Validating Defect Classification for Process Improvement and Quality Management

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

23

Bernd Freimut,” Softw. Metrics, 2005. 11th IEEE Int. Symp., no. Metrics, pp. 10–19,

2005.

[28] I. Bhandari, M. Halliday, E. Tarver, D. Brown, J. Chaar, and R. Chillarege, “A case

study of software process improvement during development,” IEEE Trans. Softw. Eng.,

vol. 19, no. 12, pp. 1157–1170, 1993.

[29] P. Jalote and N. Agrawal, “Using defect analysis feedback for improving quality and

productivity in iterative software development,” Proc. Inf. Sci. Commun. Technol., pp.

701–713, 2005.

[30] A. A. Shenvi, “Defect prevention with orthogonal defect classification,” Proc. 2nd India

Softw. Eng. Conf., pp. 83–88, 2009.

[31] V. R. Basili and H. D. Rombach, “Tailoring the Software Process to Project Goals and

Environments,” in Proceedings of the 9th international conference on Software
Engineering, 1987, pp. 345–357.

[32] G. Y. Hong, M. Xie, and P. Shanmugan, “A Statistical Method for Controlling Software

Defect Detection Process,” Comput. Ind. Eng., vol. 37, pp. 137–140, 1999.

[33] N. Bridge and C. Miller, “Orthogonal Defect Classification Using Defect Data to

Improve Software Development Norm Bridge Motorola Corporate Software Center
Motorola GSM Products Division Arlington Heights , Illinois,” Softw. Qual., vol. 3, no.

1, pp. 1–8, 1998.

[34] J. H. Hayes, I. Raphael, E. A. Holbrook, and D. M. Pruett, “A case history of

International Space Station requirement faults,” 11th IEEE Int. Conf. Eng. Complex

Comput. Syst., 2006.

[35] R. Lutz and I. C. Mikulski, “Empirical analysis of safety-critical anomolies during

operations,” IEEE Trans. Softw. Eng., vol. 30, no. 3, pp. 172–180, 2004.

[36] W. D. Yu, “A Software Fault Prevention Approach in Coding and Root Cause Analysis,”

Bell Labs Tech. J., no. June, pp. 3–21, 1998.

[37] N. Li, Z. Li, and X. Sun, “Classification of software defect detected by black-box

testing: An empirical study,” Proc. - 2010 2nd WRI World Congr. Softw. Eng. WCSE

2010, vol. 2, pp. 234–240, 2010.

[38] F. Pettersson, M. Ivarsson, T. Gorschek, and P. Ohman, “A practitioner‟s guide to light

weight software process assessment and improvement planning,” J. Syst. Softw., vol. 81,

pp. 972–995, 2008.

[39] F. Huang, B. Liu, S. Wang, and Q. Li, “The impact of software process consistency on

residual defects,” J. Softw. Evol. Process, vol. 27, no. 9, pp. 625–646, 2015.

[40] M. S. Krishnan and M. I. Kellner, “Measuring Process Consistency : Implications for

Reducing Software Defects,” IEEE Trans. Softw. Eng., vol. 25, no. 6, pp. 800–815,
1999.

[41] D. E. Harter, C. F. Kemerer, and S. A. Slaughter, “Does software process improvement
reduce the severity of defects? A longitudinal field study.,” IEEE Trans. Softw. Eng.,

vol. 38, no. 4, pp. 810–827, 2012.

[42] M. Diaz and J. Sligo, “How software process improvement helped Motorola,” IEEE
Softw., vol. 14, no. 5, pp. 75–82, 1997.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

24

[43] F. J. Pino, F. Garcia, and M. Piattini, “Software process improvement in small and

medium software enterprises: a systematic review,” Softw. Qual. J., vol. 16, pp. 237–

261, 2008.

[44] F. J. Pino, O. Pedreira, F. García, M. Rodríguez, and M. Piattini, “Using Scrum to guide

the execution of software process improvement in small organizations,” J. Syst. Softw.,

vol. 83, no. 10, pp. 1662–1677, 2010.

[45] C. G. von Wangenheim, S. Weber, J. C. Rossa Hauck, and G. Trentin, “Experiences on

establishing software processes in small companies,” Inf. Softw. Technol., vol. 48, pp.
890–900, 2006.

[46] J. Pernstål, R. Feldt, T. Gorschek, and D. Floré, “FLEX-RCA : a lean-based method for
root cause analysis in software process improvement,” Softw. Qual. J., pp. 1–40, 2018.

[47] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A Design Science
Research Methodology for Information Systems Research,” J. Manag. Inf. Syst., vol. 24,

no. 3, pp. 45–77, 2007.

[48] H. F. Hsieh and S. E. Shannon, “Three approaches to qualitative content analysis,” Qual.
Health Res., vol. 15, no. 9, pp. 1277–1288, 2005.

[49] B. W. Boehm, R. K. Mcclean, and D. E. Urfrig, “Some Experience with Automated Aids
to the Design of Large-Scale Reliable Software,” IEEE Trans. Softw. Eng., vol. SE-1, no.

1, pp. 125–133, 1975.

[50] G. S. Walia and J. C. Carver, Using error abstraction and classification to improve

requirement quality: Conclusions from a family of four empirical studies, vol. 18, no. 4.

2013.

[51] F. Huang, B. Liu, and B. Huang, “A Taxonomy System to Identify Human Error Causes

for Software Defects,” in 18th International Conference on Reliability and Quality in

Design (ISSAT), 2012.

[52] T. J. Ostrand and E. J. Weyuker, “Collecting and categorizing software error data in an

industrial environment,” J. Syst. Softw., vol. 4, no. 4, pp. 289–300, 1984.

[53] A. Endres, “An analysis of errors and their causes in systems programs,” IEEE Trans.

Softw. Eng., vol. SE-1, pp. 140–149, 1975.

[54] V. Braun and V. Clarke, “Using thematic analysis in psychology,” Qual. Res. Psychol.,

vol. 3, no. 2, pp. 77–101, 2006.

[55] N. E. Fenton and M. Neil, “A critique of software defect prediction models,” IEEE

Trans. Softw. Eng., vol. 25, no. 5, pp. 675–689, 1999.

[56] R. D. Austin and L. Devin, “Weighing the benefits and costs of flexibility in making

software: Toward a contingency theory of the determinants of development process

design,” Inf. Syst. Res., vol. 20, no. 3, pp. 462–477, 2009.

[57] B. C. Hardgrave, R. L. Wilson, and K. Eastman, “Toward a Contingency Model for

Selecting an Information System Prototyping Strategy,” J. Manag. Inf. Syst., vol. 16, no.
2, pp. 113–136, 1999.

[58] J. Iivari, “A methodology for IS development as organizational change: A pragmatic

contingency approach,” Inf. Syst. Dev. Hum. Prog. Organ., pp. 197–217, 1989.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

25

[59] B. Fitzgerald, N. L. Russo, and T. O‟Kane, “An Empirical Study of System

Development Method Tailoring in Practice,” Eur. Conf. Inf. Syst., no. 2000, pp. 187–

194, 2000.

[60] D. Truex, R. L. Baskerville, and J. Travis, “Amethodical systems development: The

deferred meaning of systems development methods,” Accounting, Manag. Inf. Technol.,

vol. 10, no. 1, pp. 53–79, 2000.

[61] J. Iivari and N. Iivari, “The relationship between organizational culture and the

deployment of agile methods,” Inf. Softw. Technol., vol. 53, no. 5, pp. 509–520, 2011.

[62] K. Conboy and B. Fitzgerald, “Method and developer characteristics for effective agile

method tailoring,” ACM Trans. Softw. Eng. Methodol., vol. 20, no. 1, pp. 1–30, 2010.

[63] B. W. Boehm, “Get ready for agile methods, with care,” Computer (Long. Beach. Calif).,

vol. 35, no. 1, pp. 64–69, 2002.

[64] D. I. K. Sjøberg, T. Dybå, B. C. D. Anda, and J. E. Hannay, “Building Theories in

Software Engineering,” Guid. to Adv. Empir. Softw. Eng., pp. 312–336, 2008.

[65] A. Aurum, H. Petersson, and C. Wohlin, “State-of-the-art: Software inspections after 25

years,” Softw. Test. Verif. Reliab., vol. 12, no. 3, pp. 133–154, 2002.

[66] F. Lanubile, F. Shull, and V. R. Basili, “Experimenting with error abstraction in

requirements documents,” Softw. Metrics Symp. 1998. Metrics 1998. Proceedings. Fifth

Int., pp. 114–121, 1998.

[67] G. G. Roy, “A Risk Management Framework for Software Engineering Practice,” Proc.

Aust. Softw. Eng. Conf., pp. 60–67, 2004.

[68] B. W. Boehm, “Software risk management: principles and practices,” IEEE Softw., vol.

8, no. 1, pp. 32–41, 1991.

[69] C. Chapman, “Project risk analysis and management-- PRAM the generic process,” Int.

J. Proj. Manag., vol. 15, no. 5, pp. 273–281, 1997.

[70] S. Alhawari, L. Karadsheh, A. Nehari, and E. Mansour, “Knowledge-Based Risk

Management framework for Information Technology project,” Int. J. Inf. Manage., vol.

32, no. 1, pp. 50–65, 2012.

[71] R. Schmidt, K. Lyytinen, M. Keil, and P. Cule, “Identifying software project risks: An

international Delphi study,” J. Manag. Inf. Syst., vol. 17, no. 4, pp. 5–36, 2001.

[72] J. Rasmussen, “Skills, Rules, and Knowledge; Signals, Signs, and Symbols, and Other

Distinctions in Human Performance Models,” IEEE Trans. Syst. Man Cybern., vol.

SMC-13, no. 3, pp. 257–266, 1983.

[73] J. Reason, Human error. Cambridge University Press, 1990.

[74] J. Reason, “Human error: models and management,” BMJ Br. Med. J., vol. 320, no.

March, pp. 4–6, 2000.

Appendix A: Taxonomy of Contextual Factors

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

26

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

27

Appendix B: contextual factors identified for two projects

Project 1 contextual factors

Environment factors

Budget and schedule Schedule is very tight

Degree of customer involvement High

Education and training None

Involvement of different stakeholders Sub-contractors and customers

Level of tolerable risk Low

Office ergonomics All members in one office

Project size Small

Standards in place Tailored ECSS E-40 standard

Tool support Redmine, Doors, Doxygen

Human factors

Availability of dedicated testing staff No

Degree of trust in other staff High

Frequency of change in staff members No staff change

The number of project staff Three

Artifact factors

Application domain Avionics - onboard flight system

Availability and Quality of documentation Everything in word docs

Backward compatibility Yes

Fault classification scheme used for fault reporting Provided by Redmine tool

Expected lifetime of system 10 years

Modeling paradigm Not a model-driven development

Operational usage
Known by operational scenarios

Product complexity
A lot of interfaces and challenges of open source

libraries

Product size Large

Programming language used and its features C, C++

Scope of system's possible behaviors Predictable by using a state machine

Source code evolvability
Coding rules are defined, Doxygen documentation

style

Testability No, no time for analysis

Volatility of requirements Volatile for new parts of the system

Activity factors

Availability of feedback Non, reliance on customer feedback

Concurrency of activities

Yes, concurrent with customer and sub-contractors,

experiment container developers (customer) are

working in parallel

Development strategy Heavy use of open source software and libraries

Division of responsibilities between teams No division. One person is responsible for all

Independent fault detection
Yes, another team will test the system in the end but

not at this stage

Quality of intra-project communication

High, daily standup meeting, meetings within the

project; with subcontractor and customer and phone

Calls and emails

Selection process of fault detection practices
Mainly oriented around customer requirements

(reviews) but tests are designed in-house

Synchronicity of communication

Synchronous with other members of the project,

synchronous with subcontractors, bi-weekly meeting

with customer,

Traceability Doors is used for manageability

Team contextual factors

Environment factors
Team size Small

Team‟s physical location Co-located

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

28

Project 2 contextual factors

Environment factors

Degree of customer involvement Regular meetings

Education and training None

Involvement of different stakeholders Minor support from other engineers

Level of tolerable risk High – because it is a prototype project

Office ergonomics Cubicles and ergonomics campaign

Project size Small

Project structure No other related projects

Standards in place Tailored ECSS E-40 standards

Tool support Redmine

Human factors

Availability of dedicated testing staff No

Degree of trust in other staff High

Frequency of change in staff members Frequent

Level of commitment to fault data collection Time pressure can stop collection

Staff knowledge, skill and experience High

The number of project staff Two

Artifact factors

Application domain Avionics

Availability and Quality of documentation High at the beginning but low at the end, might be

problems because members have left

Backward compatibility NA

Fault classification scheme used for fault reporting Provided by Redmine tool

Expected lifetime of system NA

Modeling paradigm UML

Operational usage Prototype

Product complexity Low, subsystems and interactions are known

Product size Not large

Source code evolvability

A matter of schedule, no reviews for this matter. But

the customer has specific requirement for percentage

of comments

Testability Not considered

Volatility of requirements Low

Activity factors

Assignment and handling of priorities
At the beginning of the project for bug fixes but a

chance they would be ignored later

Availability of definitions and guidelines
Available in certain cases like coding rules but no

official procedure to review compliance

Availability of feedback No, customer reviews

Coordination of testing activities NA

Division of responsibilities between teams One person responsible for all tasks

Frequency of updates to documents Either immediately or next release

Independent fault detection No

Interaction of developers with testing staff NA

Quality of intra-project communication Good but still miscommunication is reported

Selection process of fault detection practices No defined process

Synchronicity of communication
Synchronic with project leader, not synchronic with

the customer

Team contextual factors

Environment factors
Team size One

Team‟s physical location Co-located

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

29

Appendix C: Mismatches and Erratic Behaviors of Project 2

Description of mismatches for project 2

Mismatch

Between Description

Mismatch 1 Project schedule and

developer tasks

If the schedule is tight and the developer has a lot of tasks to complete, the level of

commitment to fault data collection falls

Mismatch 2 Level of commitment

to fault data collection

and the practice of

prioritizing the fault

fixes

It was stated by the interviewee that a mechanism for fault data collection existed but as

the schedule becomes tighter, the level of commitment to fault data collection falls. Lack

of commitment to fault data collection might primarily cause a problem when you

consider that in the project fault fixes are prioritized. A fault that has not been reported

might go unnoticed in planning and scheduling of fault fixes and subsequently slip

through to the final product.

Mismatch 3 Level of commitment

to fault data collection

and staff changes

If faults data are not collected properly, considering that the project has seen several staff

changes before, there is a chance for them going unnoticed.

Mismatch 4 Evolvability and

frequency of changes

in staff members

When members sacrifice commenting at the expense of catching deadlines there is a

threat that if a staff change occurs, the next person will have difficulty understanding

what was supposed to go on, what was supposed to be developed and etc.

Misunderstanding of the works of previous developers can lead to introduction of faults

in addition to a waste of valuable time.

Mismatch 5 Project schedule and

documentation

practices

Quality of documentation drops at the expense of catching deadlines.

Mismatch 6 Reliance on

documentation, quality

of documentation and

frequency of staff

changes

If quality of documentation drops at the expense of catching deadlines then reliance on

documentation can introduce problems. The interviewee however claimed that he relies

less on documentation in the latest phases. This does not solve the problem, however. If

the documentation is not relied upon for development, then development becomes a

matter of developer‟s experience and skills, considering the frequency of staff changes

even if the current developer is highly skilled and experienced, the staff who are

supposed to continue development in future or maintain and update the product in future

might inadvertently introduce faults.

Mismatch 7 Degree of trust in other

members and

documentation quality

High trust in what previous members have done coupled with documentation quality that

drops at the expense of deadlines, might inhibit critical analysis of documentation and

result in faults slipping through to operation.

Mismatch 8 Availability of

feedback with number

of project members

Since there is only one person doing everything in this project, if that person does not

receive constructive feedback, he is prone to not noticing his own mistakes. The

interviewee admitted that this is not ideal. Even though the meetings with the customer

can act as a feedback process, it might simply be too little too late.

Mismatch 9 Developer experience

with DSDM and

development method

chosen

The interviewee stated that an agile development method called DSDM with a number of

iterations were planned for the project in the beginning, he also admitted his lack of

experience with this method. Had they actually stuck by their plans to develop using

DSDM, such lack of experience with the chosen development method of the sole and

main developer of the project could have led to ad-hoc development practices. However,

the interviewee mentioned that they went through one V-cycle at the end.

Mismatch

10

Intention to reuse in

future and availability

of definitions and

guidelines

Even though the interviewee expressed his lack of information whether this prototype

project would continue, he did express that they intend to reuse several components in

future. If this is the case, then lack of high quality documentation and non-evolvability of

source code could lead to introduction of faults. Plus, definitions and guidelines would be

necessary. As the interviewee mentioned they are not doing any extra effort.

Mismatch

11

Quality of

documentation,

reliance on

documentation and

timespan between

updates

As the interviewee mentioned some inconsistencies in the documents goes unnoticed

until they are reported by the customer, in such a case the inconsistencies are fixed in

next stages, however, this lag coupled with non-reliance on documentation toward the

final stages by the developer might come at a high price of developing using ad-hoc

processes. Some issues might be forgotten or go unnoticed.

Mismatch

12

Commenting practices

and project schedule

The interviewee mentioned that commenting might sometimes be sacrificed to catch

deadlines. This could later lead to non-evolvability of the code. Which could in the long

run lead to faults slipping through by misunderstanding in addition to waste of time.

Description of erratic behaviors for project 2

Erratic behavior # Description Cause

Erratic behavior 1 Noncompliance with fault reporting procedures Mismatch 1

Erratic behavior 2 Faults go unnoticed in planning and scheduling of

fault fixes

Erratic behavior 1 and mismatch 2 and mismatch 3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

30

Erratic behavior 3 Misunderstanding of the works of previous

developers

(Mismatch12 and Mismatch 4) or Erratic behavior 5

Erratic behavior 4 Noncompliance with documentation procedures Mismatch 5

Erratic behavior 5 Non-reliance on documentation for development Erratic behavior 4 and mismatch 6

Erratic behavior 6 omission of critical analysis of documents Mismatch 7 and Erratic behavior 4

Erratic behavior 7 Not noticing self-mistakes Mismatch 8

Erratic behavior 8 Non-compliance with the development method and

defined procedures

Mismatch 9 or (Erratic behavior 4 and mismatch 11)

Erratic behavior 9 Delayed delivery Erratic behavior 8

Erratic behavior 10 Non-evolvability of the source code Mismatch 12

Erratic behavior 11 Reuse of faulty components Erratic behavior 4 and 10 and mismatch 10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

31

APPENDIX D: Mismatches Implied in phase one interviews (Data for Table 4)

Implied possible mismatch between Interviewee response

Mismatch between time and resources and

the practice of code reviewing
We have envisaged to use code review in projects and we finally don‟t have time to

do it; or resources. (Interview 1)

Mismatch between an organizational

structure allowing a person to work in three

projects could come at odds with a team

communication channel of choice (Scrum‟s

daily standup meetings in this case)

You cannot do daily [stand up] meetings […] when one person is working for three

projects. (Interview 1)

Schedule, and the audit practices could lead

to minimal unit testing. Lack of sufficient

unit testing could lead to fault introduction

and nondetection

I think it‟s more time pressure, let‟s say, for unit test which is probably the most

useful, it requires a lot of maintenance and usually if you don‟t have someone

behind that really sees that you invest some effort in doing unit testing, the result is

that you end up testing for having the system working more or less; you don‟t care

about finding all the defects, you say when problem appears in the future, I will

solve this specific problem; I won‟t invest effort in developing a test suite that will

double my maintenance work. (Interview 1)

Ideal testing practices and the project size If you are developing a software, it is difficult to define tests that will discover

problems because the problems you can think about, you have already put in there.

But, also in that case, we didn‟t have the size scale to have two separate parts of

organization [testers and developers]. (Interview 1)

Mismatch between the task and the

background and ways of working of

developers

It‟s a matter of also assigning, to each person working in the project, the activities

that are more suited to the way of working, to the background. (Interview 1)

Mismatch between tool support and the

existing planning practices

[…] those tools are awfully complicated. I mean, any planning tool is complicated,

that's a problem of planning, it's very multiple dimensional […] In every planning,

you have what we call a planning horizon, the duration, over which you can do

[reliable] planning. The planning horizon here, as I understood it, is so short that it's

best to naviguer à vue. So, personally I do not plan any more in the sense, I do some

kind of planning but I'm not, using those tool[s] because I know I waste my time.

(Interview 2)

Mismatch between organizational inertia and

compliance with defined rules and practices.

This mismatch could lead to non-compliance

with the rules or application of an obsolete

rule

And staff including myself who do not necessary know everything. Or, by the way,

do not even concur, with the official rules. That's maybe another interesting thing.

Because, the rules that are imposed to me. That was my best practice five years ago.

In the meantime I'm, I mean, this is obsolete practice for me. But the inertia makes

that I'm imposed now, sort of thing, that for me is, ridiculously… it [would] be a

regression for me, to comply with the rules of the company. (Interview 2)

Defined practices and top management

compliance

…there are people who are supposed to be the good example. Because they have

invented, those things. Or they have been pushing for that. I mean, directors … That

for example the role and responsibility of the project manager, includes this

activity… But for a strange reason they don't care, they don't mind. And they find,

some obscure good reason, (at least that) for not following the rules. Which by the

way troubles everything afterwards […] they have pushed the employees to sign

this document but they do not seem to, to follow themselves.(Interview 2)

Knowledge of standard and quality

management practices

sometimes, people just by ignorance, do not follow, the good rules that are in the

standards. Or they simply don't know enough the standard. Also the standard is not

necessary, very educative. It's a statement, like a statement of law. The way they

wrote that is really not educative at all. It's normal that people, to ignore good

practice. It's even the same thing at the level of the QMS of the company.

Everybody is supposed to have signed with his blood, a paper, yes I swear on the

Holy Bible that I will follow the QMS of the company. But if I ask a few questions

about, certain rules and procedure that are in there, they don't know. (Interview 2)

External stakeholders and requirement

engineering practice

[external stakeholders] are not really capable to act as requirement engineer and, in

the sense of producing the documents, at the end, everything is document. So

producing user requirement document, or.. okay, software requirement is more the

domain of the software solution but user requirement document, it is problematic.

Even if I give hints, and concrete help for producing the document, telling you

should follow this template, you should do this you should do that [breathes in

deeply] it's getting messy. (Interview 2)

Mismatch between time and the practice of

code reviewing

we would like to have a full review of our documentation and the code before we

release. Currently this is not always the case, mainly due to time constraints

(Interview 3)
Mismatch between having defined processes

and consistent application of the process

On average project I would say, in most projects they really do their best to try and

follow the process. But there is still no predictability, if you look to the different

projects I would say. So, depending on the designer, he puts more focus on one part

of the process and the other designer puts more focus on the other parts of the

process. (Interview 3)

Mismatch between communication

mechanisms, culture and the international

nature of the development team

[…], due to the fact that [we are an] international company, [and the] development

team is also international, it sometimes makes it more difficult to communicate

between the system architect and the different subgroups. A lot of designers are

like, ah, the system architect says I want to do it in this way and they just

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

32

implement it, without thinking or without challenging him [...]. System architect

has, this, like, standing, and the designers are below the system architect; and in

certain cultures it's really hierarchical. I give this to you and no questions asked

how we do it. So they don't challenge. (Interview 3)

Mismatch between external stakeholders and

iterative software development practice

In general people, outside of the software center, they don't get or don't see the

benefits of the iterative approach, or the early delivery. They don't understand. So

most, like digital and, test, and, yeah, other groups, they work like this, big bang

approach. So, yeah, I get my requirements, I do my work, here is my deliverable,

(funnel). So they don't almost have any iterations whatsoever, they just work in one

sequence […] you deliver(ed) a very complex system and then bugs start popping

up from everywhere, then you have to dig in this complex system and to pinpoint

where the bugs are coming from… (Interview 3)

Mismatch between tool support and

information management practices which

leads to information unavailability

[…] we have a revisioning system where normally all information should be at a

certain location, but most of the time this information is at another location. So we

have to try and search for this information and it's really, almost, unacceptable […]

information is sometimes hard to find, and, you have to go and get it basically, and

then it depends on the designer, whether he's introvert or extrovert […] (Interview

3)

For the Office-based, Word-based, binary files, I would say, it's, hell. Because you

always have to open it, not everybody has the same language settings, not

everybody has the same Word document['s, revision], I don't know what, so, it fails

always […] in our repository we cannot see the diff[erence]s between what is

changed and what is not […] (Interview 3)

Mismatch between tool support and

traceability practices which leads to reliance

on individuals‟ discipline to keep track of

changes.

[…] not everything is in [issue tracking software name]. And, most of it is basically

in the documentation, and there, we don't have then traceability anymore and it

really depends on the people itself, the discipline of the people that they track their

references and that they keep track of all the status in the documents and it's really a

hassle. (Interview 3)

Mismatch between number of code reviews

per reviewer and manual testing

we review the code manually and in any case human makes mistake. Also the

number of code reviews is high. For example at the moment I have three developers

that I review their tests and someone else review my tests. But yeah I have to

review these three developers‟ test and it is a lot of code and you might miss

something when doing it manually. (Interview 4)

Mismatch between tools used and different

coding styles for each developer

our problem in testing is that we use two languages both Python and Robot

Framework. They match with each other but they have different coding styles

especially Robot Framework doesn't have an extensive documentation. And maybe

because of this, developers have difficulties (Interview 4)

Mismatch between quick development and

compliance coding rules

[developers] are under lots of pressure to deliver quickly… they constantly deliver

code it goes under review and like this… this might also affect that they say we

don‟t spend time on following [coding] rules (Interview 4)

Mismatch between available time and

testing practices

time is limiting factor so you start ignoring proper unit tests or you start doing

things which directly save you the time (Interview 5)

Mismatch between code age and following

guidelines

old things tend to not really change however if you do a related thing, if you change

something on existing things, and there are no tests, for example there are no unit-

tests, you should be writing them from scratch and all of them (even if you don't

touch the class and plus there are some specific bugs and issues dedicated) […] but

that is because we don't follow because in the past either us or that company had it

before us did not really pay attention to that and violated the guideline (Interview 5)

Mismatch between evolving code and

refactoring practices

I would say like, that, if there is a part which is evolving stably or there is a

prediction be evolved in the future, you definitely should be refactoring it

constantly because if you do not you will end up with very big sh*t (Interview 5)

Mismatch between transparent

communication between team members (i.e

during standup meetings) and pressure from

work

When you are stuck in a project, when you are stuck in something and you have this

guilt or this fear that you might not be able to do your project and you go under

certain pressure that I have to finish it or, I don‟t know, I might get stuck in very big

problems, transparency would help removing some part of this process by like

talking about them everyday and by knowing that this is not just for you, but this is

something that belongs to the team and will be solved in the team. So, for example,

these daily standups are very important as soon as someone says that ok what did

we do yesterday, what are you doing today and what is the problem? We will find

someone. (Interview 6)

Mismatch between tool support and fault

reporting practices

None of these existing tools can be altered enough that can be modified based on

what you do in the company or what you do in your product. so you end up writing

the description and it will be really dependent on the language in which people are

expressing themselves and these can be sometimes very complicated (Interview 6)

Mismatch between market share of a

product, it‟s complexity and commenting

practices

When you have product that its market share is improving, it necessarily would

increase in complexity as well. When you have more customers, more requests will

come, it gets more complicated and definitely the number of people that know its

whole point of view will decrease and that‟s why commenting is important because

there will be people that have experience and understand, saw something in detail

that the experts cannot see, experts that at different various points should give their

comments, and it will grow from a single picture to a puzzle that is made out of

many different people that their comments are a lot more valuable (Interview 6)

Mismatch between testing practices and time sometimes small projects are more simple to develop and place them up and

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

33

constraints

running if we just skip some parts of that.. but my experience tells me that later that

will be thrown back to us because I've.. I maybe, I may have taken some options to

ignore Unit-Tests in development stage and I think well the code seems to be good,

this will work, let's put it in production but when I get back to that code, to that

application, I will see that I‟ve missed some (Interview 7)

Mismatch between testing practices and

budget
I believe budget is one these issues and sometimes bad project management… but

budget essentially. When we sell a project, we sometimes forget to include the test

part and testing is very important and it's hard to sell time to do tests, it's very hard

to sell. Our customer will not understand why we are taking so long doing tests

even [if] we tried to explain [to] them those test parts are important and will ensure

software quality in the future but it's hard to sell those time and sometimes we just

place that time on top [of] any other tasks on the project or project management

process. We place that time under that task. (Interview 7)

Mismatch between quick delivery and

testing and documentation practices

I think for instance I think testing and documentation they suffer the most They're

the first things getting out of the way [to deliver quickly].

so testing and documentation always come at the end.. you have your part done you

think.. Now you should test but at the end, you start cutting at the end! (Interview 8)

Mismatch between project members‟ coding

styles and recommended coding standard

practiced in the project

I've been in projects where this was a problem: you have four persons you have four

styles of coding… Yeah so one of the reasons is also to keep it consistent.

(Interview 8)

Mismatch between projected software

lifecycle and use of technologies

if it's a software project that's going to live for a long time for ten to twenty years

we have projects like that for twenty years or almost then and it's important to do

the things in a way we know it‟s going to be sustainable for two next decades or

something like that. it usually also means of not try new weird technologies that no

one tested because we have to be sure that we're going to.. we don‟t want to

maintenance of the project would cost as much as developing a new. (Interview 9)

Mismatch between number of tools

(technologies) in each project and coding

standards practiced in the project

The kind of coding standards that depends a bit on the technology so far we had

much more technology than projects. So it‟s a little bit hard to say we are following

rules because those rules, coding styles are just for one kind of technology and for

another kind of technology don‟t apply anymore. (Interview 9)

Mismatch between project timeframe and

code review practice

[Conducting code reviews] depends on.. well the time frame that we have available.

So if we have a short timeframe, sometimes make a decision … and let these things

go like this so we can keep the deadline or not. (Interview 9)

Mismatch between rapidly changing

technology and integration testing

every six months, you have a major framework coming of age and then everything

switches to that and we have like four applications and each one uses a different

framework and different methods. Every time we need to make a new feature we

need to update everything behind because the framework has changed and so it's

not easy to have a clean roadmap about integration test and everything because it

simply doesn't work. (Interview 10)

Mismatch between staff changes and

documentation practices

right now the most senior guy which was from the [***] is leaving the company so

we are going to be three new guys and the senior guy is going away and the last

month is going to be to document everything that he knows but is not documented

and there are lots and lots of processing and things to be documented. (Interview

10)

Mismatch between multiple contractors and

compliance with development guidelines

the same issue we have now which is the lack of a technical person from the client

to take the same decisions in every team like ok this team has these guidelines, you

should have these guidelines, and if you don't want them we'll talk about it and find

out why. But, right now you get a new company there or some person from other

companies and they say no no in our company, we do it like this. And, since we are

two different companies, we have been talking about it but there's no central

decision. (Interview 10)

Mismatch between rapidly changing

technology and the practice of slow

documentation

[the documentation team], they are working on this for a year and they talked to us

like one week ago for the first time. So it's a very slow movement because no one

wants to document. we find the issues and then oops we should have

documentation.. and there was another issue like server changes every API and the

main application stop working and no one told the mobile application guys, which

were us, that the API had changed. (Interview 10)

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

34

APPENDIX E: Data for Evaluation

Theme Evaluator 1 (Interview 13) Evaluator 2 (Interview 14)

complementary

nature

I think the method works as a complementary to the,

sort of, rigorous mathematical models and I do think that

[a conventional RCA model] also needs complementary

methods, in the sense that, if you just focus on, sort of,

these are the faults that we have identified and these are

the weak areas because they have most faults; it‟s

analysis that is not easy to do either (Interview 6)

NA

resources

needed

I do not know how I would adapt this to Scrum, I don‟t

know how this would scale. Do you need to interview

everybody, so on and so on? For example team

retrospectives, I think, there, the nice thing about it is

you get to the „what do we do to improve‟, much

quicker, because, here, time is spent on the analysis or

what causes what, which is good, I think, in terms of

completeness, but, even, how [our] software projects

are, you cannot, usually, strive for completeness, you

can strive for, let‟s do, at least, something. So, I think I

would go for it in larger projects with big risks.

(Interview 6)

[…]because the thing that looks forward is, in Scrum, is

sprint planning but this is not a sprint planning method

because it‟s all about the contents of the sprints. So this

would, basically be, sort of, a tool for planning the

sprints, in the sense that, these are the things we should

take into account as we go forward. (Interview 6)

It requires that participants or the [facilitator] should

have a really good knowledge of domain of the

context. I think the person should know the context

pretty well. It can be a bit.. if a person who doesn‟t

have enough knowledge of the domain, if he‟s the

one participant or the facilitator it might also lead to

some not completely let‟s say fruitful results.

Effectiveness I think it would at least force the project and the

company into honesty […] the, sort of, value

mismatches, […] so this would actually bring it out that

disregarding something like rules or ideals or even

strategy, initiative or whatever; that it would be a

conscious decision rather than something that, would be,

implicitly forced by something else. (Interview 6)

They [developers] would be open to the idea but

they need to see the results at some point. If they,

let‟s say they do this, they follow this method and

after a while they still don‟t see a tangible result the

might get a bit demotivated

… sometimes it‟s very hard to see the results. If I

see that the results have changed dramatically, it‟s

obvious, but if I see the results are slightly better,

it‟s hard to say that it‟s because of this method or

because the team included someone more skillful or

we are in a part of the project in which the tasks are

easier. So, in a way, I would say it is difficult to

measure it but it‟s also not impossible, if you follow

this method, find mismatches etc. and then again do

this after one month, two months and see if those

still exist and how it affected the product

suggestions […]what I found that was missing was that, you get a

nice graph, but how do you prioritize things (Interview

6)

So I think this method can have some sort of a space

or place for some unseen problems that would come

and you also need to perhaps allow some time and

resource when you plan your development. In our

team we always have scrum and we always put one

man per day just for nothing. And it‟s always used.

Taxonomy I looked at it and unfortunately, I think it is one of those

things that I need to apply it myself in the method in

order to give any feedback. I think it looked very

comprehensive but is this sort of classification correct, I

actually don‟t know, because it‟s one of those things that

I can look at it and say „ok, this makes sense‟ but to give

any sort of „oh, I think I would move this here and this

here and I think this is a whole different category‟, I

can‟t tell without actually running through the process

myself.

I think there, going forward to sort of lower the barrier

for, you know, adoption for the method, I think then

providing some sort of examples that perhaps would not

be so large, broad, because it‟s like a lot of things, then,

I think that would help in , you know, if you have this

sort of project, you know, try this, with maybe these

modifications or if you have this sort of a project and

this sort of company try these and so on.

There‟s also always, there are many projects that, in

our company also that the customer is very

powerful. The customer is saying, ok, I want this

and I want it by this time. They are the ones who are

paying so maybe one factor here in that taxonomy

table could be influence of customer. It affects the

deadline it affects the features of the program that

you are giving them. in our field for example many

times the customer we just did something, we

provided something, we have a tool, and our tool is

customized based on the…. But some of our

customers, who are big and who have been our

customer for ten years or something, they sometimes

want some features and those features from a

development point of view, it‟s a bit of a struggle to

make those features and to tell them but they are the

one that [pay], our company exists because of them,

they are the ones that pay, that‟s a factor that also

affects the deadline and resources and everything.

I see you have this „involvement of different

stakeholders‟ and that can be related to the customer.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

35

APPENDIX F: Literature search

Development of the taxonomy was done using directed qualitative content analysis [1] on 142

studies. To this end, an extensive literature search was conducted on topics associated with

software reliability, fault prevention and fault removal. The literature search was conducted

using snowballing [2]–[4]. Figure 1 shows the process using which the literature search was

conducted. The initial search was conducted using the keywords „software reliability, „fault

prevention‟, and „software reliability engineering‟. As Figure 1 indicates, further keywords were

included later on as the literature search progressed. These keywords were searched on the fly

and they were not recorded.

Figure 1 Literature search process

For inclusion of a study, first the title was investigated, if the title revealed new or relevant

information regarding software reliability, fault prevention, fault detection, and RCA, that study

was selected for abstract review. If the same conditions proved right for the abstract then the

study was selected for full review. The stopping rule for material extraction was increasing

frequency of repeating and irrelevant entries. However, later on a calendar date constraint was

also set to stop the search. The literature search was concluded in 2015. Please note that RCA is

also used in project management and for examining project failures. We have not included

studies that use RCA for such purposes in this literature search. Overall, the literature search

revealed 179 studies. However, before the review process for developing taxonomy of

contextual factors started, these 179 studies were categorized based on their topic area. This step

was similar to conducting a systematic mapping study [5]. After this categorization, studies in a

number of categories were removed, as they were deemed irrelevant. The excluded groups

consisted of studies on safety, maintenance and agile methods. At the end, 142 studies were

reviewed for taxonomy development. It is important to note that results reported in Table 1 and

Table 3 were also based on the studies revealed in the literature search. However, the literature

search for these tables was not limited to a calendar deadline and therefore these tables include a

few studies that were analyzed for taxonomy development.

[1] H. F. Hsieh and S. E. Shannon, “Three approaches to qualitative content analysis,”

Qual. Health Res., vol. 15, no. 9, pp. 1277–1288, 2005.

[2] S. Jalali and C. Wohlin, “Systematic Literature Studies : Database Searches vs .
Backward Snowballing,” Proc. ACM-IEEE Int. Symp. Empir. Softw. Eng. Meas., pp. 29–

38, 2012.

[3] C. Wohlin, “Guidelines for Snowballing in Systematic Literature Studies and a
Replication in Software Engineering,” Proc. 18th Int. Conf. Eval. Assess. Softw. Eng.,

2014.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

36

[4] D. Badampudi, C. Wohlin, and K. Petersen, “Experiences from using snowballing and

database searches in systematic literature studies,” Int. Conf. Eval. Assess. Softw. Eng.,

2015.

[5] B. A. Kitchenham and S. Charters, “Guidelines for performing Systematic Literature

Reviews in Software Engineering,” 2007.

APPENDIX G: Interview guides

Overall, we conducted 14 semi-structured interviews. Interview guides are provided below.

Interviews were conducted by two of the researchers independent of each other before the

analysis started. Please note that the interviews did not follow the linear progression that is

presented in the below guides. The researchers allowed discussions during the interviews to

resolve based on their own momentum. Therefore, some interview questions shown below may

not have been asked at all. However, due to the importance of Interview 11 and 12 for

demonstration purposes, interview guide for these were followed almost to the letter.

Interviews

1-10
I. Background

1. Could you please introduce yourself and let us know about your background and role at [company name]?

2. Could you please briefly introduce [company name]?

II. General information

1. Could you please explain the development method currently being practiced at [company name]?

2. Are there any contractors involved in the development? For example in coding, testing, etc.

3. How are sub-projects and development of sub-components dealt with (Contractors, separate teams in a serial

manner, teams working in parallel, distributed development)? How does this affect the development method?

4. How frequently are components reused at [company name] or are they at all? Do reused components go

through a defect detection process too?

5. What standards are complied with?

6. Could you please explain the verification and validation practices at [company name]?

7. What mechanisms are in place at [company name] to help developer teams prevent, detect and remove faults?

8. What are the general practices at [company name] to make sure developers comply with practices and policies?

9. Are there practices in [company name] that promote and encourage developers to enhance their personal

disciplines? (education, training, feedback on frequent mistakes)

III. Detailed questions

Agile methods

1. Does [company name] have any experience with or considered using agile methods and/or practices for

development? For example, pair programming, Test-Driven Development, scrum sprints, daily stand-up

meetings, etc.

2. If yes, how are such practices chosen and adopted?

Customer reliability requirements

3. How does [COMPANY NAME] determine customer reliability requirements? For example, the customer

asks for a certain reliability level, certification standards determine the necessary reliability, or by

contacting the customer and extracting the requirements from discussions.

4. How is reliability measured at [COMPANY NAME]?

5. Is criticality analysis of functions and components performed at [COMPANY NAME]? Is there a

difference between critical components and non-critical ones in terms of development and reliability

practices?

6. Are the most frequently used functions of a system under development identified?

Fault data and changes

7. How do you deal with changes during development at [COMPANY NAME]? Do you have mechanisms

like a Change Control Board (CCB), use agile processes, or there is a customer proxy involved in the

project?

8. Are defects, failures and changes traceable? What are the mechanisms used? What tools are used? How

do you ensure that the traces are kept up to date (Is there a certain role that is responsible for keeping

them up to date or each developer must make sure he/she submits the changes to a repository)?

9. How fault data is collected at [COMPANY NAME] or is it at all? What tools are used?

10. Could you please explain briefly what sort of information is collected for defects? Do developers fill in

different forms at different stages of development?

11. How often does the structure of fault reports change or does it at all?

12. Who is responsible for defect detection (testers, inspectors, all project stakeholders)?

13. Who can report defects or failures (coders, designers, testers, sales persons, or anyone in the company)?

Who has access to tools for fault reporting?

14. How is fault reporting enforced? What happens if a developer does not fill in fault reports or does not

provide the necessary information?

15. In general how do you see developers‟ perception of fault reporting (as an overhead or important part of

work)?

16. Does the quality of defect data filled in by developers allow analysis of data or is it ambiguous, too

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

37

coarse-grained, etc.?

17. What kind of analysis is performed on fault/change data at [COMPANY NAME]?

18. Do you look for root causes of problems (frequent, severe, etc.) at [COMPANY NAME]? How? Do you

perform Root Cause Analysis?

19. Do you deliver process improvements to prevent faults? How?

Defect detection

20. How is testing performed (in-house testing department or testing team, independent contractors)?

21. Do you use theorem proving and/or model checking techniques for verification? Do you use any tools

helping with that?

22. Is inspection performed at [COMPANY NAME] in order to detect defects?

23. Could you please explain a typical inspection meeting?

24. Who do the inspection teams consist of?

25. At what points during development an inspection meeting is held (after each milestone, each sprint,

iteration, etc.)?

26. Is analysis of defect data used to guide defect detection?

27. Are test cases traceable? What tools are used? Who is responsible?

28. How is the testing strategy determined?

29. Are static code analysis tools used?

Developer communication

30. What are the communication mechanisms between developers, used at [COMPANY NAME] (Official

meeting, unofficial meetings, Scrum standup meetings)? What are the tools that enable such

communication?

31. In particular what mechanisms exist in [COMPANY NAME] to allow testers and other developers

(coders, designer, analysts, etc.) communicate? For example, how do the developers let testers know of

changes? Are testers involved in early planning stages?

32. Is testability considered during requirements specification, design, and coding?

Other practices

33. What are the commenting practices at [COMPANY NAME]? What if a developer does not comply with

commenting policies or best practices? How do make sure comments are kept up to date?

34. Are there any coding standards defined for coders? How are they enforced? What if someone does not

comply?

Interview

11-12
I. Background

1. Could you please introduce yourself and let us know about your background and role at [company name]

and the project you are involved with?

2. Could you please briefly introduce [company name] and the project?

3. What is the application domain of the system under development?

3.1 How many people (approx.) are working on the project?

3.2 How complex is the system under development? (scope of system‟s possible behaviors large or small,

interactions between system‟s sub-systems, etc.)

3.3 How large is the system under development?

3.4 What is the expected lifetime of the system?

3.5 Are there any external parties involved in the development? For example in coding, testing, etc.

3.6 Is independent defect detection performed in the project?

3.7 Contractors?

3.8 Is it a multiple release project or just one release at the end of the project?

3.9 Who/what is the user of the system being developed?

3.10 Is the operational usage known to developers including the frequency of usage?

3.11 Do you need to take backward compatibility in mind?

3.12 How does the customer get involved in the project? During, before and after.

II. General information

4. Could you please explain the development method currently being practiced at the project?

4.1 Do you use agile methods and/or practices for development? For example, pair

programming, Test-Driven Development, scrum sprints, daily stand-up meetings, etc. If

yes, how are such practices chosen and adopted?

4.2 How frequently are components reused at [company name] or are they at all?

4.3 Do reused components go through a defect detection process too?

5. How are the teams managed (assigned responsibilities) in the project in which you are involved (division

of responsibilities between teams, etc.)?

5.1 Is there a virtual development environment? Do you have virtual teams?

6. What precautions are taken to reduce the number of faults introduced?

6.1 Do you care for testability during development (all stages)?

6.2 Do you look for root causes of failures and faults? Do you perform Root Cause Analysis? Is there a

defined feedback process (for example to let developers know what type of mistakes they have

made and etc.)?

7. What are the defect detection practices used in the project? (testing strategies, testing techniques, type of

reviews, people involved, , automatic scripts, etc.) How are they chosen?

7.1 How are test activities coordinated?

7.2 Are lower and upper bounds for defects detected during reviews?

8. What are the mechanisms to ensure high quality of documentation?

8.1 How much do you rely on documentation in the project?

8.2 How long does it take for a document (requirement, design, etc.) to be updated if there is any

change?

8.3 How committed are project members to document?

8.4 What are the defect reporting mechanisms?

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

38

8.5 How good are the defect reports in terms of quality?

8.6 How committed are project members to defect data collection?

9. What are the defect fixing mechanisms?

9.1 What information is relied on for fixing?

9.2 What is the defect fixing strategy (for example fixing low severity defects later and attend to high

severity defects now)?

10. What are the general practices at [company name] to make sure developers comply with practices and

policies?

10.1 Are there defined guidelines and procedures available to members of the project?

10.2 Are there project specific standards that you have to comply with?

11. Is this a critical project in terms of reliability?

11.1 What percentage of the components of the system is critical?

11.2 Is there a difference between the way you handle critical components and non-critical ones in

terms of development practices including requirements analysis, design, defect detection, fault

reporting, etc.?

12. What are the mechanisms that ensure information flow between requirements analysis and testing?

12.1 Are the defects detected traced back to test cases that detected them?

III. Detailed questions

13. How volatile are the requirements? How do you deal with changes during development in this project?

13.1 Do you have mechanisms like a Change Control Board (CCB), league of experts or you use agile

processes for this purpose?

13.2 Are the defects traced back to requirements?

14. What are the communication mechanisms (Face-2-face, email, a proprietary system, Official meeting,

unofficial meetings, Scrum standup meetings)?

14.1 Is communication synchronic or is it deferred?

14.2 How friendly is the interaction between project members; specifically testing staff and developers?

14.3 How hard is it to organize a meeting in the project considering the busy schedules of parties

involved?

15. What are the evolvability practices (commenting for code, coding standards, coding styles, design

paradigm, etc.)?

15.1 How much do you rely on them, for example on code comments in the project?

15.2 Are there any coding standards defined for coders?

16. Is there a priority list or a similar mechanism to handle high priority tasks?

17. How often do the project members change? What about other staff members who have an influence on

the project?

18. How much do you rely on and trust other project members? Is there a fear of data misuse by other

members among project staff?

19. Please describe the office ergonomics.

Interview

13-14

1. Would you consider adopting this method for software development projects? Why?

2. How do you think developers would react to this method if you adopt it? What about managers or other

quality assurance experts?

3. What do you think are the weaknesses and strengths of PRORCA.

4. What is your opinion about the idea that mismatches between development context and practices lead to

erratic behaviors? Do you find proactive identification of erratic behaviors valuable (the way PRORCA

recommends)?

5. What do you think about the fact that fault data in not used for analysis in PRORCA?

6. What do you think about resource-intensity of PRORCA?

7. What is your opinion about PRORCA‟s effectiveness in improving software quality and its efficiency?

8. How do you find the taxonomy? Is it informative? Would you consider using it to find mismatches

between development practices and context?

