
Arus Sahakyan

Software change impact analysis with respect to data

protection

Master’s Thesis in Information Technology

June 10, 2019

University of Jyväskylä

Faculty of Information Technology

Author: Arus Sahakyan

Contact information: arus.sahakyan@gmail.com

Supervisor: Oleksiy Khriyenko, Vagan Terziyan

Title: Software change impact analysis with respect to data protection

Project: Master’s Thesis

Study line: Web Intelligence and Service Engineering, Faculty of Information Technology

(Department of Mathematical Information Technology

Page count: 37+19

Abstract: Software evolves and becomes more complex faster every year. Changes and

alterations occur all the time, and new additions often can be contradictory to their previous

implementations or send a ripple effect through the system, creating many disturbances in

other areas. Software Change Impact Analysis studies the impact that a change can bring to

a system, and in this paper, we will discuss such changes with regard to the EU’s General

Data Protection Regulation (GDPR).

Keywords: software change, impact analysis, gdpr

i

Glossary

IA Software Change Impact Analysis

SDLC Software Development Life Cycle

GDPR General Data Protection Regulation of the EU

ii

List of Figures
Figure 1. Criterion for Lehnert’s taxonomy . 12
Figure 2. The Directory Structure of IA Tool . 15
Figure 3. IA Tool. Main page . 16
Figure 4. IA Tool. Filtered results . 24
Figure 5. DB example . 25

List of Tables
Table 1. Documentation Example . 25
Table 2. Example results of a term-by-document matrix . 26

iii

Contents
1 INTRODUCTION . 1

2 SOFTWARE CHANGE IMPACT ANALYSIS (IA) . 3
2.1 Historical Setting . 3

2.1.1 Software Engineering. 3
2.1.2 Software Development Life Cycle . 4
2.1.3 Software Evolution and Maintenance. 5

2.2 Technical Context . 8
2.3 Classifications . 9
2.4 Lehnert’s Taxonomy and Review . 10
2.5 Conclusion . 13

3 IA APPROACH SELECTION TOOL PROPOSAL . 14

4 GENERAL DATA PROTECTION REGULATION (GDPR) . 17
4.1 Historical setting . 17
4.2 Overview. 18
4.3 Conclusion . 19

5 GDPR AND CHANGE IMPACT ANALYSIS . 20
5.1 Overview. 20
5.2 Interview . 21
5.3 Choosing approach for GDPR . 23
5.4 Application of Jönsson’s approach . 24

6 CONCLUSION . 28

BIBLIOGRAPHY . 29

APPENDICES . 33
A Software Change Impact Analysis classified approaches . 34
B JSON data examples of the IA Approaches . 42
C Data initialization script . 44
D MySQL for the example database . 49

iv

1 Introduction

Software evolves and becomes more complex faster every year. Changes and alterations

occur all the time, and new additions often can be contradictory to their previous imple-

mentations or send a ripple effect through the system, creating many disturbances in other

areas.

Over the course of decades, many solutions have been presented for the change prepara-

tion process. Studies have been conducted to analyse the impact the change can bring to

a product, as well as several suggestions for classifications, have been made by numerous

scholars.

Software Change Impact Analysis (IA) is a subject that is still being studied. It continues

to evolve along with the advancement of other technological industries and domains but

remains largely non-categorised and non-classified.

In this thesis, we will try to explore the subject of IA and the existing approaches that have

been proposed to conduct software change impact analysis.

This thesis provides a new tool through which it would be possible for an individual or a

company to easily choose software change impact analysis methods that would fit best to

their interests of applying changes to their systems.

This thesis also makes an attempt to discuss how the software change impact analysis could

help when attempting to make one’s systems compliant with the European Union’s recent

General Data Protection Regulation (GDPR).

GDPR has affected many companies and their systems, and it is thought-provoking to see

what those companies have done or could have done to deal with the challenges of becoming

GDPR compliant. Particularly if the employment of change impact analysis approaches

would have helped companies to reduce the risks of applied changes.

A study will be conducted based on an interview with a particular company. In the study,

it will be discussed how the company became GDPR compliant, what the process was like,

1

and if the application of change impact analysis approaches would have aided to the process.

The thesis plans to:

- Give definitions and historical context of software change impact analysis. Explain

why change impact analysis is necessary, as well as provide information on existing

classifications and approaches that have been proposed before.

- Provide a new tool through which it would be possible based on various criteria to

choose a software change impact analysis method of implementation.

- Give definitions and historical context of the General Data Protection Regulation of

the European Union (GDPR)

- Use the introduced tool for the selection of software change impact analysis approach

for the utilisation of GDPR onto existing systems

The question that this thesis aims to answer is:

Is it possible to apply software change impact analysis approaches when making companies

GDPR compliant?

Motivation and the idea of the subject have come from the experience of the author work-

ing as a software developer in the field of IT and by witnessing the challenges that GDPR

compliancy had brought.

2

2 Software Change Impact Analysis (IA)

In this chapter, we will present the software change impact analysis. The chapter is divided

into five sections, with each section focusing on various aspects of the IA. The topics the

chapter aims to discuss are:

- the theoretical background of software change impact analysis (IA) with its relation to

the software engineering discipline and its role within the software development life

cycle

- IA definitions and descriptions

- IA existing taxonomies and classifications

- IA review of the existing approaches

2.1 Historical Setting

In software engineering, software change impact analysis is a process within the maintenance

phase of the software development life cycle.

2.1.1 Software Engineering

IEEE Standard Glossary of Software Engineering Terminology defines software engineering

as:

The application of a systematic, disciplined, quantifiable approach to the devel-

opment, operation, and maintenance of software

Laplante identifies it as “a systematic approach to the analysis, design, assessment, imple-

mentation, test, maintenance and re-engineering of software, that is the application of en-

gineering to software.” (Laplante 2001) Whereas Sommerville quite nicely concludes it as

“an engineering discipline that is concerned with all aspects of software production”. (Som-

merville 2016)

History of software engineering dates back to 1960s. From the 1950s and 1960s, due to

3

the lack of systematic software development processes, it became increasingly difficult to

develop large and complex systems, since the individual approaches of program development

were not sufficient enough. Projects were running over time and budget, the software was

inefficient, difficult to maintain, of low quality, and there were even cases of software causing

loss of life. (Leveson and Turner 1993) This period later became labelled as the “software

crisis” and in 1968 NATO organised a conference to discuss said “software crisis” and the

nature and future of software engineering. NATO conference on Software Engineering is

also from where the term “software engineering” has initially originated.

Later, in the 1970s and 1980s, a variety of software engineering techniques were introduced

and developed, and tools and standard notations were developed which became the basis of

modern software engineering. During this time, it was also identified that the programming

is not the only thing that there is in software engineering and other issues like architecture,

building and evolution are also important. (Estublier 2000)

2.1.2 Software Development Life Cycle

Software development life cycle (SDLC) is the term that defines the process of developing

and maintaining a software application. Goals of SDLC are to produce high-quality software,

provide strong management controls and maximise the productivity of the software.

SDLC acronym can be used to either describe software or systems development life cycles.

The concept between these two is the same. However, one refers to the lifecycle of software,

while the other refers to a system that encompasses a software (Ruparelia and B. 2010).

Sometimes SDLC is also called Software Development Process.

Because software creation became more complex, more structure was needed for the devel-

opment effort and to form a basis for project management and support, and when looking

back on the main trends of SDLC, history can be divided into different sections.

In the early years, the engineers mainly tried to understand what needs to be done to make the

development process more structured, so that to avoid future problems. The 1970s and 1980s

saw the “improved understanding of basic development steps”, which led to new develop-

ment methods and more structured and controlled development processes. However, counter-

4

movement grew later in the 1990s and 2000s, which focused more on self-organisation,

which in itself led to the rise of agile methodologies. Nowadays, “scaling agile” is more

fashionable, which is the understanding that both cultures of previous implementations have

their positive and negative sides. (Kneuper 2017)

SDLC consists of models and methodologies that are being used to develop the software.

Great many of such frameworks have evolved over the years, each having their recognised

strengths and weaknesses, advantages and disadvantages. (Maheshwari and Dinesh 2012)

These models describe SDLC phases and the order by which the phases are executed.

SDLC phases help the SDLC to achieve its goals. The phases can be defined and redefined

in various ways, but to give a basic understanding, we present a list of the more significant

ones.

1. Initiation and planning: This is when the project ideas emerge, the concept of the

system is developed, and the requirements are defined and analysed.

2. Design: Software design is prepared from the requirements specification.

3. Development: Actual coding and implementation are done based on software design.

4. Testing: After the development is done, the system is tested again against the require-

ments.

5. Deployment: Once the system is tested, it is ready to be delivered to the customer for

their use.

6. Maintenance: After the system delivery, the customer might want to alter the system

for various reasons.

SDLC helps us to keep the system under control and thus contributes to satisfying quality

and delaying constraints.

2.1.3 Software Evolution and Maintenance

Software maintenance is the discipline that is concerned with changes related to the software

system after the delivery is done. (Grubb and Takang 2003)

According to the definition by IEEE93 standard 1219 software maintenance is the

5

"...modification of a software product after the delivery to correct faults, to im-

prove the performance or other attributes or to adapt the product to a modified

environment."

Software maintenance can be the longest process of SDLC. Products evolve, and markets

change, forcing the systems to match their competitors and the requirements of the mar-

ket, and, alternatively, also overlooked software nuances, as well as software environment

changes, might force for bug fixes, even after the delivery of a software product.

The term “maintenance” was introduced by Swanson in 1976 when he grouped the main-

tenance activities into three basic categories: corrective, adaptive and perfective (Swanson

1976), which were later incorporated into the standard software life cycle processes (ISO

14764) when also the fourth category was introduced, the preventive one. This classification

of software maintenance is known as intention-based one. Other two classifications of soft-

ware maintenance activities introduced by Kitchenham et al (Kitchenham et al. 1999) and

Chapin et al (Chapin et al. 2001) are known as activity-based and evidence-based respec-

tively.

To describe the growth characteristics of software, in 1965 Mark Halpern introduced the term

and the concept of software evolution, which was later widely used by researchers to describe

software change. (Naik and Tripathy 2014) In late 1970s Belady and Lehman published a set

of principles that determined the evolution of a software system, known as Lehman’s laws

of evolution. (Lehman 1980)

Bennet and Rajlich discussed that the term software evolution lacks a standard definition and

that researchers use software evolution as well as software maintenance terms interchange-

ably. They propose that there are key semantic differences between the two terms:

- maintenance: means preventing the system from failing, fixing bugs

- evolution: means a continuous change from a simpler or worse state of a system to a

better state

At the same time, maintenance and evolution have also been distinguished by Bennet and

Xu:

6

- maintenance: all post-delivery activity

- evolution: perfective modifications, triggered by changes in requirements

Since there are not yet agreed differences in the scientific community regarding the difference

between maintenance and evolution, in this thesis the term maintenance would be used to

describe all of the post-delivery activity, including, bug fixes, perfective modifications as

well as other issues raised while the system is still running.

It may seem that maintenance is the continuation of new development, but there are fun-

damental differences between these two activities. The new development is done from an

empty page, while maintenance is done by the parameters and constraints of the existing

system. (Grubb and Takang 2003)

Schneidewind (F. Schneidewind 1987) even argued that traditional view of SDLC has done

a disservice to maintenance by depicting it solely as a single step at the end of the cycle,

which is why the software maintenance should have its own life cycle (SMLC) and a num-

ber of SMLC models have been introduced over the years with certain variations. (Chapin

1988) (Sharpley 1977) (Parikh 1986) (Martín and McClure 2019) (Chen et al. 1990) (Yau

et al. 1988)

Before undertaking any system development or maintenance work, an impact analysis should

be carried out to determine the ramifications of the new or modified system upon the environ-

ment into which it is to be introduced. (Grubb and Takang 2003) The impact of introducing

a specific feature into a system will be very different if it is done as a maintenance activity,

as opposed to development activity. It is the constraints that the existing system imposes on

maintenance that give rise to this difference. This difference is explained by Jones:

"The architect and the builders must take care not to weaken the existing struc-

ture when additions are made. Although the costs of the new room usually will

be lower than the costs of constructing an entirely new building, the costs per

square foot may be much higher because of the need to remove existing walls,

reroute plumbing and electrical circuits and take special care to avoid disrupting

the current site. (Jones 1986)

7

Software change is a fundamental ingredient of software maintenance and impact analysis is

the key in investigating the prospective change.

2.2 Technical Context

Today’s software development environment is highly complex and sophisticated, which makes

it harder and more challenging for software products to stay afloat in the modern market. A

product has the need to meet the new requirements of its users, shareholders and industry.

It constantly has the demand to match with competitors, adjust itself to the system environ-

ment changes as well as satisfy the latest and newest security requirements of the industry. To

face these challenges and to continue to evolve, the products must undergo constant changes

and modifications to their systems, because, for continuous and successful maintenance of

software, change is inevitable.

Each system has its own architectural, environmental, software and business requirements

and every time a change is proposed, a thorough evaluation and consideration for the rest

of the systems needs to be done. If a change is applied “blindly”, even smallest one can

easily lead to a complete disregard of previous implementations, resulting in loss of time

and money, due to the unexpected rework that needs to be performed.(Laplante and Neill

2003) Maintenance is considered to be the most expensive phase in the life-cycle of soft-

ware development, with more than 50% of the costs coming from applying changes to the

software.(Bennett and Rajlich 2000)

Over the course of the past decades, hundreds of approaches have been proposed on the ways

one can handle and analyse probable modifications of the systems, and software change im-

pact analysis is something that is required for systems that constantly evolve and continu-

ously become more complex.

Even though challenges of impact analysis can trace back to 1970s, when maintainability of

a software system, as well as the creation of systematic models for software development life

cycles were being introduced and developed, the term of software change impact analysis has

been initially introduced by Arnold and Bohner only in 1996. It defines as

8

Identifying the potential consequences of a change, or estimating what needs to

be modified to accomplish a change (Arnold and Bohner 1996)

The overall goal of IA is to identify entities which are directly or not directly affected by a

change (Arnold and Bohner 1993). IA is required for constantly growing systems so as to

assist with understanding, implementing and evaluating the changes (Lehnert 2011b)

Currently, there are several hundreds of studies concerned with impact analysis, but only a

few proposals have been made by the scholastic community to classify the approaches. The

purpose is not to propose any new approaches or classifications, but rather to find an appro-

priate way of separating approaches that could be more suitable for application of GDPR.

For this purpose we are presenting the classifications created and given to the approaches

analysed in Lehnert’s taxonomy of software change impact analysis. (Lehnert 2011b)

2.3 Classifications

Lehnert argues that a clear taxonomy of software change impact analysis is required due

to the “vast amount of approaches, techniques and publications” that have been published

over the course of the past several decades. He also argues that “.. a solid comparison and

classification of approaches could reduce development costs, since less time must be spent on

finding a suitable technique for the current problem.” and thus it would be easier to dismiss

approaches that would not be of help for the current state of problem. (Lehnert 2011b)

The need for a clear taxonomy exists, since application of an IA approach to existing systems,

should be very well understood and assessed beforehand.

In 1993 Arnold introduced a framework to characterize the approaches of software change

impact analysis. The framework discusses and introduces three definitions:

- IA Application, describes how the approach is used to execute impact analysis

- IA Parts, describes the functional part of the approach, what it does and how it is done

- IA Effectiveness, examines how effective was the approach for the achievement of the

goals

9

This framework was one of the pioneers of the classification of software change impact

analysis, however it seems to lack on the classification of what models or programming

languages are used ..

Later, taxonomy of Kilpinen (Kilpinen 2008) separates three groups of impact analysis ap-

proaches:

- Traceability IA

- Dependency IA

- Experimental IA

As well as the work of Mens and Buckley describes charactarisation of software change

which itself can be applied to impact analysis. (Mens et al. 2003) The characterization

included:

- System properties: what is being changed

- Object of change: where it is being changed

- Temporal properties: when a change should be made,

- Change support: how it is changed

However, with the introduction of these frameworks no proper inclusion of a review of the

existing approaches is done to justify the applicability of the classification. They lack the

proof that this or that taxonomy can be applied to the whole domain and therefore are pre-

sented in this section for the sake of the example and not the argument.

2.4 Lehnert’s Taxonomy and Review

More detailed and precise proposal of a taxonomy was done by Lehnert in 2011 when the

author introduced several approaches by which classification of impact analysis techniques

can be done. Furthermore, Lehnert continued his study and later has made comprehensive

review to analyse the approaches that were published before. The review is an extensive

assessment of approximately 150 studies, where the motivation and methodology behind

those approaches is discussed, as well as they are classified under the taxonomy proposed by

the writers in their previous publication.

10

In this paper we are taking into consideration the work done by Lehnert, in consideration of

his contribution to the domain.

Firstly, nine requirements are classified in Lehnert’s paper to create the possibility to compare

IA approaches to identify either the most suitable one or to investigate the difference between

said approaches.

- R1: Analysed artefacts

- R2: Provided results

- R3: Supported change types

- R4: Utilized techniques

- R5: Availability of tool support

- R6: Scalability

- R7: Quality of results

- R8: Supported languages / frameworks

- R9: Interactivity of the analysis process

These requirements used to later describe the criterions by which approaches can be grouped.

Such grouping is presented in Figure 1.

11

1. Scope of Analysis

Code

Static

Dynamic

Online

Models

Requirements

Architectural

2. Granularity of Entities

Granularity of Artifacts

Granularity of Changes

Granularity of Results

3. Utilized technique

Program Slicing

Call Graphs

Execution Traces

Program Dependency Graphs

Message Dependency Graphs

Traceability

Explicit Rules

Information Retrieval

Probabilitic Models

History Mining

4. Style of Analysis

Global Analysis

Search based

Exploratory

5. Tool Support

6. Supported Languages

7. Scalability

8. Experimental Results

Size of the Studied System

Precision

Recall

Time

Figure 1: Criterion for Lehnert’s taxonomy

12

- Scope of analysis: discusses what is analysed. Can be either actual source code, or

more formal models.

- Granularity of analysis; how fine-grained are entities, changes, and proposed results.

Suitable for developers and architects to choose from when they need to know evaluate

what the impact of a change would be on variables and/or classes

- Utilized technique: what kind of technique is used with the approach

- Scalability: how scalable the approach is.

- Supported languages: cases when there is a programming or natural language support

- Tool support: cases when there is a tool available.

- Style of analysis - the style of analysis, performed either globally, search-based or

exploratory

- Experimental results: if there has been a practical implementation, what the results are

After the publication of the taxonomy Lehnert also published an extensive review of ap-

proximately 150 approaches on the software change impact analysis that had been published

before. In that paper the approaches were matched with their corresponding criteria and

their results and outcomes were discussed. After analyzing the approaches Lehnert’s also

presented how the discussed studies are classified according to his taxonomy. His findings

showed that at least 65% of the proposed IA approaches are concerned with source code

analysis, making it the most. It was also concluded that 80% of the requirements approaches

as well as 50% of the architectural approaches were largely relying on the theory and were

lacking experimental results. (Lehnert 2011a)

2.5 Conclusion

Software Change Impact Analysis has been studied by many scholars over the course of the

past few decades but no proper classification proposal had been done before with support-

ing evidence of the review and evaluation of the existing material. We think that Lehnert’s

review and taxonomy can be the starting point of having the IA domain more assembled,

systematized and coordinated. Because of this we are introducing a new tool that will make

it possible for the interested parties to select IA approach, according to the needs and re-

quirements of their project.

13

3 IA Approach Selection Tool Proposal

In this chapter we will present our proposal for a UI tool that would enable the users and the

interested parties to select the IA approach that would be suitable for their needs.

To make the process of the IA approach selection easy and more accessible so as to meet

the needs of an individual or a company, we have created a GUI tool that has the all the

approaches that have been presented and classified in Lehnert’s review in accordance to

taxonomy of Lehnert.

The tool gives the option to filter the IA approaches by searching through the scope of anal-

ysis, utilization techniques as well as granularity of entities that have been discussed and

presented before.

In Lehnert’s review of software change impact analysis, the approaches had already been

classified according to the criterions in a PDF file table format. With our proposed tool, we

are making an attempt to automate the process of the approach selection, so as the process is

smoother and easier to maintain.

To retrieve said data from its original format, we have used a third party converter to convert

the PDF file of the review into an Excel format. Through that then it was easily possible

to retrieve a CSV file and subsequently retrieve JSON format of investigated approaches.

JSON data is used to initiate and create database tables and their relations with the help of a

programming script.

Example of the data table where Lehnert has classified the approaches, as well as the JSON

data and the programming script can be found in Appendix A, Appendix B and Appendix C

respectively.

The tool has been written with Python programming language with the assistance of Django

framework. The source code of the tool can be found on yousource.it.jyu.fi. (Sahakyan

2019) and the directory structure is presented in Figure 2

14

iatool

iaselector

management

commands

initialize_data.py

migrations

0001_initial.py

__init__.py

templates

index.html

__init__.py

admins.py

apps.py

choices.py

models.py

urls.py

utils.py

views.py

iatool

__init__.py

settings.py

urls.pyl

wsgi.pyl

static

files

iaapproaches.json

Figure 2: The Directory Structure of IA Tool15

To be able to run it on the local machine one needs to have installed latest distributions of

Python3, Django2 as well as SQLite. After the installation simply relocate to the main folder

and run the commands.

Creates and initialize the database

1 python manage.py migrate

A script that inserts json data to the database

1 python manage.py initialize_data

Runs the tool on the local machine

1 python manage.py runserver

After this, the UI tool will be running on the localhost / 127.0.0.1 of the local machine and

will have the representation shown in Figure 3.

Figure 3: IA Tool. Main page

In the picture we can see that there are four search methods for the search: Scope of Interest,

Utilized Technologies, Granularity of Entities and support of a tool. By filter through these

options we are able to get the results we need.

16

4 General Data Protection Regulation (GDPR)

In this chapter we will discuss what European Union’s General Data Protection Regulation

is. The chapter is divided into two sections, where we briefly discuss:

- the history of data protection and origins of GDPR

- legal and theoretical explanation of what GDPR is and what it does

4.1 Historical setting

The history of data protection in the EU dates back to 1948 when the Universal Declaration of

Human Rights was proclaimed and adopted by the General Assembly of the United Nations.

Based on that the European Council drafted the European Convention for the Protection of

Human Rights, which guarantees the right to the respect for the private life of the citizens of

the member states.

Over the course of the following decades, with the increase of technological advances the

public and private enterprises were increasingly more able to collect and process personal

data of citizens, which soon created a discussion regarding information privacy and created

the need for personal data protection. In 1981 the Convention for the Protection of Individu-

als with regard to Automatic Processing of Personal Data (Council of European Union 1981)

was negotiated within European Council.

The Convention 108 obliged the signatories to provide national wide legislation in regard to

the processing of personal data and set minimum standards for personal data protection. In

the early 1990s, an EU level initiative was taken into action to match and coordinate data

protection across the member states and in 1995 the EU adopted European Commissions

Data Protection Directive. The prime objective of DIR95 was to regulate the processing of

the personal data as well as its flow across the EU borders and thus was so for more than 20

years until GDPR’s final approval in March 2016.

17

4.2 Overview

General Data Protection Regulation is a regulation in European Union law on data protection

and privacy for all citizens of the European Union (EU) and the European Economic Area

(EEA).

The aim of the legislature is to protect the fundamental rights and freedoms of the residents

of the in regard to the protection and processing of the their personal data. It gives the

individuals the control over their personal data, as well as harmonizes and stabilizes all data

protection laws across all member states with a single set of jurisdiction, establishing the

free movement of personal data

The regulation applies to organisations that collect data (data controller) from EU citizens,

organisations that process (data processor) said data on behalf of data controller, as well as

to individuals (data subject) who reside in the EU.

As an additional case, the jurisdiction of GDPR extended to organisations that are not based

in the EU, but that also process personal information of data subjects who are located within

the Union. Hence, GDPR is applicable to all organisations that process data of the subjects

residing in the EU, regardless of the location of the said organisation.

GDPR discusses various domains of data privacy and processing, but for the purpose of this

study we will discuss only those that are directly applicable to the topic of the thesis.

Because of GDPR now data controllers must provide a clearer information on what kind

of data they are storing and ask the consent from the data subjects in the clear and simple

language. For data subjects it also should be easy to understand what kind of information

they are giving and simultaneously should be easy to revoke such access that was given

before.

Chapter 3 of GDPR discusses the matters of concerning the rights of the data subjects. With

GDPR residents of the EU are granted numerous new rights. Those are including:

Right to access: possibility to obtain the information from data controllers if data subjects

personal data is being processed, where and for what purpose. The controller should be able

18

to provide a copy of said personal data, in readable electronic format

Right to erasure: possibility to be erased (also known as right to be forgotten), which means

that they have the authority to request the data controller to erase their personal data from

their systems.

Chapter 4 of GDPR dicusses responsibilities of the data processors and data controllers.

Records of processing activities: Data controller and data processor should maintain records

on activities that are done with regard of data subject’s private data. Said records must in-

clude information such as what categories of data are stored, what the purpose of the pro-

cessing was and said records should be able to be accessible in electronic contract if they are

requested by the authorities.

Notification of a data breach: If a data breach happens that “results in the risk for the rights

and freedoms” of the data subjects, then data controller must notify the interested parties

within 72 hours of the incident. When the data breach happens, the data controller should be

able to provide information on what data has been compromised, the approximate number of

data subjects that have been affected by the data breach, as well as what the nature of the data

breach was. In cases if information is not available immediately, then it should be provided

when already accessible without any delays. The controller has also the responsibility to

document any data breaches that happen.

4.3 Conclusion

GDPR can be named to be one of the biggest changes and improvements in data protection

history. It has affected numerous domains, industries, companies, businesses and individuals.

It will reshape the way data protection will be handled and the topics that are covered in this

chapter, merely touch the surface on what the regulation is in reality. Since this subject is not

directly related to the study of this paper, we will not expand more on it and will continue

further by discussing how impact analysis and GDPR are combined together.

19

5 GDPR and change impact analysis

So far, we have separately discussed and let the reader know what software change impact

analysis and what General Data Protection Regulation are. We have informed the reader

about the existing research, historical background, as well as intricacies of the law and we

have introduced a tool for the selection of IA approaches.

These two subjects may seem not related to an uninterested reader, but in this chapter, we

will make the attempt of explaining the connection that can be between GDPR and IA.

In this chapter, we also present findings from an interview done at a certain IT company and

regarding GDPR compliancy.

5.1 Overview

General Data protection Regulation was approved and adopted in April 2016 with enforce-

ment deadline of May 25th, 2018. This means that companies around the globe that would

had been affected by the new law of European Union had only two years to prepare for the

task of being compliant in the modern data protection environment.

European Union had not provided any solution regarding the fact on how the companies

should start the process of adhering to the new legislation. But it is safe to assume that such

endeavor would have proven pointless. Domain of the legislation is very wide and GDPR

affects many industries, therefore no one solution would have been applicable for all of the

existing industries.

Making a company compliant with a whole new set of laws is not an easy task. It requires

thorough investigation of the processes of the systems that deal with public data, as well as

understanding of the law and what exactly the new legislation requires of its subjects. In

some cases when proper documentation procedure has been administered before, the inves-

tigation process would be more straightforward to execute, but in those cases when no real

working routine, processes, documentation or archiving of information is practiced then the

task would be much more demanding to undertake.

20

There are numerous other components that affect how difficult of a task it is to inspect the

impact of GDPR-caused change on company’s systems. One thing that is most certain is

that change is inevitable in this situation. No matter how perfectly designed, implemented

and documented a system can be, application of change is a default when attempting GDPR

compliancy.

Because of the discussion in the “Software Change Impact Analysis” chapter, we can agree

that it is not a good practice to add a new component to a framework without considering

the rest of the complex structure of the system. It can cause ripple effects throughout the

systems, long term costs as well as degradation of the overall quality of the code. For this

reason, we are considering the utilization of software change impact analysis approaches

when making companies GDPR compliant, to see if the existing methods are in any way

beneficial for the process.

5.2 Interview

In this section, we will present an interview that was conducted with a representative of

a certain Finland based IT company, where it is discussed how their systems had changed

to become more GDPR compliant. The interview here is presented for the purpose of an

example of the subjects.

The process and preparations of making the systems GDPR compliant for the software that

is associated with this client had started in 2017. The client had requested information about

several domains

-what personal data exists in the systems, -where those are stored, -how these are processed

-are there any external interfaces where the data is being exchanged, whether it is incoming

or outgoing

All the information regarding the requested topics were needed to be documented in a form

of privacy impact assessment. The client had not requested actual actions to be implemented

at that stage, rather than the acquired documentation would have been thoroughly analysed

and the client would have decided how to proceed. The results were analysed and prioritised

21

in case there were any systems where critical data is stored.

Third party consultants were hired by the client afterwards to interpret the law and give

actions on what to do and a template used by the consultants was given to the data-processor

for the course of actions.

It is important to also note that this company is not the data-controller, but is merely the

data-processor for the mentioned client.

Software developers, as well as other professionals who had worked on products that were

associated with this client, were involved in the process of the prior assessment and impact

analysis. After which, several solutions were implemented with regard to the law:

- Possibility to have a fast and easy way of getting data dumps was added to the system

(right to access)

- A script for the anonymization of the data-subject’s data was created (right to erasure)

- Audit Logging was added (records of processing activities)

GDPR requires that there are no misuses of data and therefore logs are created whenever

someone imports or exports data or deletes or performs any action on it. A user id is stored

with the time and what the action was.

At the time of the interview, the anonymization script had been requested to be used only

once, whereas data dumps have been used more often.

No other formal technique was used for the assessment of the change impact analysis and

only the template by the third-party provider was used for this purpose.

On a positive side the company now has everything documented, they know where what data

is. It is clear what development and testing environments have. This has eased the process

of creating new solutions and also in another positive way a process has been agreed in the

case of a data breach. 72h to inform about the breach and whose data has been breached.

(notification of data breach).

22

5.3 Choosing approach for GDPR

Currently, there can be numerous ways to tackle the task of handling GDPR compliancy.

Each organisation decides on their own how they would want to achieve it, and even though

EU has not proposed any solution for the subject, numerous third-party consultancy organi-

sations have taken the responsibility of conducting investigations for the companies in their

need to become more compliant with the new legislation. Other options can be, by making

"in-house" solutions for impact analysis or manually going through the law with their own

legal advisors and deciding for the further course of action. It all depends on the needs and

goals of the company.

Machine learning has also been catching up with recent developments in data protection law

with a new research project that enables the evaluation of GDPR with the help of AI. (Lippi

et al. 2019)

In the previous chapter, we have introduced a new tool that can be used when choosing

software change impact analysis approach. The tool is based off on Lehnert’s review of

existing approaches and taxonomy. We will apply this tool for the selection of a change

impact analysis approach that could assist in making a company GDPR compliant.

We will apply this tool for the selection of a change impact analysis approach that could

assist in making a company GDPR compliant.

As discussed above, options of becoming GDPR compliant can be many, but for the purpose

of this study, we are assuming that a company has a good documentation history and track

record of their systems. Because of that, in our IA tool, we are choosing Requirements scope

from under Scope of Analysis drop-down, as well as IR: Information Retrieval from under

Utilized Technique filter.

As a result, we have only two approaches. As we can see from the Figure 4, one of the

solutions also supports Architecture scope and both have tool support. For the purpose of

the example, we are interested only in the study of Jönsson, because he mainly focuses on

Informational Retrieval, whereas the study of von Knethan and Gund is more concerned with

Traceability.

23

Figure 4: IA Tool. Filtered results

In his PhD thesis, Jönsson discusses the impact analysis from a more organizational and

requirements view. His thesis concludes that most of the studied material regarding impact

analysis is how it is done from the perspective of software development and he proposes an

IA approach by informational retrieval technique. Information Retrieval is the process of

searching and recovering information about the system from the network of its structures.

It can be either logs, documentation and other areas where information is present. This

information retrieval approach of Jönsson uses latent semantic indexing (LSI) and use of

term-by-document matrix, through which terms can be associated with a document. (Jönsson

2005)

If we apply this method when making a company GDPR compliant, a company can make

a list of terms that are associated with their documentation and through that eliminate the

documents that would clearly not be related to the subject. Through this they can work their

way in the relevant documentation and create the course of actions for the future, as well as

they would not have the need to go through each document one by one and hence would save

time in the process.

5.4 Application of Jönsson’s approach

In this section we will create a dummy system for to apply Jönsson’s strategy of information

retrieval with the purpose of application of GDPR compliancy.

For this purpose, we are creating a system that stores information regarding courses, teachers

and students. In Figure 5 we present an example of a DB schema of a system. MySQL script

for the creation of this database can be found in Appendix D.

24

Figure 5: DB example

For the example let us assume that there are multiple documentation papers for the presented

schema. In the Table 1 we show which mock-up documentation paper consists of what kind

of data.

Table 1: Documentation Example

Document

Name

Description

Course Information on what data of a course is stored (i.e. name and created date), as

well as connection with students and teachers.

Student Information on what personal data is stored about a student

Teacher Information on what personal data is stored about a teacher

We have already discussed that when making a system GDPR compliant there are several

actions that need to be undertaken by the data-processor and data-controller. Currently, we

are at the stage where data-processor and data-controller need to find out if their systems are

GDPR compliant and what actions need to be taken to make sure that the complex meets

the new requirements and for this purpose, we chose Jönsson’s approach for information

25

retrieval.

Jönsson establishes four steps for the information retrieval method:

- Step 1: Screen for Relevance - disregard requirements that are strongly not connected

to the architecture

- Step 2: Identify Keywords - manually decide the keywords for the look-up

- Step 3: Identify Dependencies Using LSI - identified keywords are added to the term-

by-document matrix

- Step 4: Examine Results and Estimate Impact - requirement-component dependencies

are manually examined

Since the system in our example is a simple one, and we do not have obvious areas that can be

disregarded, we are skipping the first step. Then, we need to manually establish the keywords

by which we need to do the lookup search regarding the data that can be associated with

GDPR compliancy. Namely, in our case, we have sensitive information regarding natural

citizens, and therefore our established keywords are data and personal. These keywords are

placed in a term-by-document matrix’s vertical axis, and each document is searched to be

matched to contain exact terms. Example results are shown in Table 2.

Table 2: Example results of a term-by-document matrix

Term Document Name

data Student, Teacher

personal Student, Teacher

Based on this example results, we can disregard the documents that are not connected to our

list and later by examining the dummy documents we can make decisions and action lists on

what kind of changes are needed to be implemented.

Even though we do not have Course document in our list, we still need a more narrow

search, so that it is easier to establish the strong links across architectures, and if needed the

connection to a course can still be found through the documents Student and Teacher.

26

A drawback of Jönsson’s study is that there is a mention of an automatic tool for creation

of the term-by-document matrix, but the tool itself is not presented for the general purpose,

therefore the users would have to do the creation of a term-by-document matrix manually.

This kind of information is something that should be mentioned when creating the listing of

the approaches and filtering through them to find a suitable process.

Nevertheless, a search through a term-by-document matrix, can save more time, because

of the dismissal of the non-needed documentation and giving more time in analysing the

relevant records of a system, therefore we can conclude that the usage of a software change

impact analysis approach can be beneficial for the process of becoming GDPR compliant.

27

6 Conclusion

The question that this paper aimed to answer was if it is possible to use techniques of software

change impact analysis to make companies GDPR compliant. Through the creation of an

IA approach selector tool we have been able to filter and find approaches that would be

applicable for our example and we have proven that their application is beneficial due to

time consumption and therefore also in cost reduction.

One of the main drawbacks of this study is that many companies that had to be compliant

with GDPR due to their association with the EU have already taken necessary measures to do

so, hence, for the case of GDPR, this study will not be needed anymore with already existing

companies.

Although EU continues to expand, therefore there would be new organizations that would

need assistance with becoming GDPR compliant, and research studies and new automations

for the processes could help to make the transition smoother and easier for all the involved

parties.

Contribution of this paper was also an IA approach selector tool as well as digitalisation

of the existing approaches under Lehnert’s classification. The tool can be used by all the

interested parties to also select IA approaches in the cases that are not related to GDPR and

are more of technical value. It has been made for non-commercial usage and can be used for

further expansion and study of this subject

For the future studies, we suggest expanding on the subject of software change impact anal-

ysis, proposing own approach and IA method, as well as considering automation for the IA

approach selection process.

28

Bibliography

Arnold, Robert S., and Shawn A. Bohner. 1993. ”Impact analysis-Towards a framework for

comparison”. In 1993 Conference on Software Maintenance, 292–301. IEEE Comput. Soc.

Press. ISBN: 0-8186-4600-4. doi:10.1109/ICSM.1993.366933.

. 1996. Software change impact analysis. 376. IEEE Computer Society Press. ISBN:

0818673842.

Bennett, Keith H., and Václav T. Rajlich. 2000. ”Software Maintenance and Evolution: A

Roadmap”. In Proceedings of the Conference on The Future of Software Engineering, 73–

87. ICSE ’00. Limerick, Ireland: ACM. ISBN: 1-58113-253-0. doi:10.1145/336512.

336534.

Chapin, N. 1988. ”Software maintenance life cycle”. In Proceedings. Conference on Soft-

ware Maintenance, 1988. 6–13. doi:10.1109/ICSM.1988.10133.

Chapin, Ned, Joanne E. Hale, Khaled Md. Khan, Juan F. Ramil, and Wui-Gee Tan. 2001.

”Types of software evolution and software maintenance”. Journal of Software Maintenance

and Evolution: Research and Practice 13 (1): 3–30. doi:10.1002/smr.220.

Chen, S., K. G. Heisler, W. T. Tsai, X. Chen, and E. Leung. 1990. ”A model for assembly

program maintenance”. Journal of Software Maintenance: Research and Practice 2 (1): 3–

32. doi:10.1002/smr.4360020103.

Council of European Union. 1981. Treat no 108. https://www.coe.int/en/web/

conventions/full-list/-/conventions/treaty/108.

Estublier, Jacky. 2000. ”Software Configuration Management: A Roadmap”. In Proceedings

of the Conference on The Future of Software Engineering, 279–289. ICSE ’00. Limerick,

Ireland: ACM. ISBN: 1-58113-253-0. doi:10.1145/336512.336576.

F. Schneidewind, Norman. 1987. ”The State of Software Maintenance”. Software Engineer-

ing, IEEE Transactions on SE-13 (): 303–310. doi:10.1109/TSE.1987.233161.

29

http://dx.doi.org/10.1109/ICSM.1993.366933
http://dx.doi.org/10.1145/336512.336534
http://dx.doi.org/10.1145/336512.336534
http://dx.doi.org/10.1109/ICSM.1988.10133
http://dx.doi.org/10.1002/smr.220
http://dx.doi.org/10.1002/smr.4360020103
https://www.coe.int/en/web/conventions/full-list/-/conventions/treaty/108
https://www.coe.int/en/web/conventions/full-list/-/conventions/treaty/108
http://dx.doi.org/10.1145/336512.336576
http://dx.doi.org/10.1109/TSE.1987.233161

Grubb, Penny, and Armstrong A. Takang. 2003. Software Maintenance: Concepts And Prac-

tice (Second Edition). Singapore: World Scientific Publishing Co Pte Ltd. ISBN: 9789812384263.

Jones, Capers. 1986. ”How not to measure programming quality”. 20, number 3 (). https:

//archive.org/details/computerworld203unse/page/82.

Jönsson, Per. 2005. ”Impact Analysis: Organisational Views and Support Techniques”. PhD

thesis, Blekinge Institute of Technology. https://pdfs.semanticscholar.org/

b35e/eba2d78b53d6581bf12058f61a22bf649f3e.pdf.

Kilpinen, Malia Sofia. 2008. The Emergence of Change at the Systems Engineering and

Software Design Interface: An Investigation of Impact Analysis. University of Cambridge.

https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612389.

Kitchenham, Barbara A., Guilherme H. Travassos, Anneliese von Mayrhauser, Frank Niessink,

Norman F. Schneidewind, Janice Singer, Shingo Takada, Risto Vehvilainen, and Hongji

Yang. 1999. ”Towards an ontology of software maintenance”. Journal of Software Main-

tenance: Research and Practice 11 (6): 365–389. doi:10.1002/(SICI)1096-908X(1

99911/12)11:6<365::AID-SMR200>3.0.CO;2-W.

Kneuper, Ralf. 2017. ”Sixty Years of Software Development Life Cycle Models”. IEEE An-

nals of the History of Computing 39 (3): 41–54. ISSN: 1058-6180. doi:10.1109/MAHC.

2017.3481346.

Laplante, Phillip. 2001. Dictionary of computer science, engineering, and technology / editor-

in-chief, Phillip A. Laplante. 543 p. CRC Press Boca Raton, FL ; London. ISBN: 0849326915.

Laplante, Phillip A., and Colin J. Neill. 2003. ”Requirements Engineering: The State of the

Practice”. IEEE Softw. (Los Alamitos, CA, USA) 20, number 6 (): 40–45. ISSN: 0740-7459.

doi:10.1109/MS.2003.1241365.

Lehman, M.M. 1980. ”Programs, life cycles, and laws of software evolution”. Proceedings

of the IEEE 68 (9): 1060–1076. ISSN: 0018-9219. doi:10.1109/PROC.1980.11805.

Lehnert, Steffen. 2011a. ”A review of software change impact analysis”. Technische Univer-

sität Ilmenau. urn:nbn:de:gbv:ilm1-2011200618.

30

https://archive.org/details/computerworld203unse/page/82
https://archive.org/details/computerworld203unse/page/82
https://pdfs.semanticscholar.org/b35e/eba2d78b53d6581bf12058f61a22bf649f3e.pdf
https://pdfs.semanticscholar.org/b35e/eba2d78b53d6581bf12058f61a22bf649f3e.pdf
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612389
http://dx.doi.org/10.1002/(SICI)1096-908X(199911/12)11:6<365::AID-SMR200>3.0.CO;2-W
http://dx.doi.org/10.1002/(SICI)1096-908X(199911/12)11:6<365::AID-SMR200>3.0.CO;2-W
http://dx.doi.org/10.1109/MAHC.2017.3481346
http://dx.doi.org/10.1109/MAHC.2017.3481346
http://dx.doi.org/10.1109/MS.2003.1241365
http://dx.doi.org/10.1109/PROC.1980.11805
urn:nbn:de:gbv:ilm1-2011200618

Lehnert, Steffen. 2011b. ”A Taxonomy for Software Change Impact Analysis”. In Proceed-

ings of the 12th International Workshop on Principles of Software Evolution and the 7th

Annual ERCIM Workshop on Software Evolution, 41–50. IWPSE-EVOL ’11. ACM. ISBN:

978-1-4503-0848-9. doi:10.1145/2024445.2024454.

Leveson, N. G., and C. S. Turner. 1993. ”An Investigation of the Therac-25 Accidents”.

Computer (Los Alamitos, CA, USA) 26, number 7 (): 18–41. ISSN: 0018-9162. doi:10.

1109/MC.1993.274940.

Lippi, Marco, Przemysław Pałka, Giuseppe Contissa, Francesca Lagioia, Hans-Wolfgang

Micklitz, Giovanni Sartor, and Paolo Torroni. 2019. ”CLAUDETTE: an automated detector

of potentially unfair clauses in online terms of service”. Artificial Intelligence and Law 27,

number 2 (): 117–139. ISSN: 1572-8382. doi:10.1007/s10506-019-09243-2.

Maheshwari, Shikha, and Jain Ch Dinesh. 2012. A Comparative Analysis of Different types

of Models in Software Development Life Cycle. Technical report 5.

Martín, James, and Carmen McClure. 2019. ”Software maintenance : the problem and its

solutions / James Martín, Carmen Mcclure”. SERBIULA (sistema Librum 2.0) ().

Mens, Tom, Jim Buckley, Matthias Zenger, and Awais Rashid. 2003. ”Towards a Taxonomy

of Software Evolution” ().

Naik, Kshirasagar, and Priyadarshi Tripathy. 2014. Software Evolution and Maintenance.

John Wiley / Sons, Incorporated.

Parikh, Girish. 1986. ”Exploring the World of Software Maintenance: What is Software

Maintenance?” SIGSOFT Softw. Eng. Notes (New York, NY, USA) 11, number 2 (): 49–

52. ISSN: 0163-5948. doi:10.1145/382248.382820.

Ruparelia, Nayan B., and Nayan B. 2010. ”Software development lifecycle models”. ACM

SIGSOFT Software Engineering Notes 35, number 3 (): 8. ISSN: 01635948. doi:10.1145/

1764810.1764814.

Sahakyan, Arus. 2019. Software Change Impact Analysis Approach Selector Tool. https:

//yousource.it.jyu.fi/iatool/iatool/.

31

http://dx.doi.org/10.1145/2024445.2024454
http://dx.doi.org/10.1109/MC.1993.274940
http://dx.doi.org/10.1109/MC.1993.274940
http://dx.doi.org/10.1007/s10506-019-09243-2
http://dx.doi.org/10.1145/382248.382820
http://dx.doi.org/10.1145/1764810.1764814
http://dx.doi.org/10.1145/1764810.1764814
https://yousource.it.jyu.fi/iatool/iatool/
https://yousource.it.jyu.fi/iatool/iatool/

Sharpley, W.K. 1977. ”Software Maintenance Planning for Embedded Computer Systems”.

In Proceedings of the IEEE COMPSAC, 520–526.

Sommerville, Ian. 2016. Software engineering. 810. Pearson. ISBN: 9781292096148.

Swanson, E. Burton. 1976. ”The Dimensions of Maintenance”. In Proceedings of the 2Nd

International Conference on Software Engineering, 492–497. ICSE ’76. San Francisco, Cal-

ifornia, USA: IEEE Computer Society Press.

Yau, S. S., R. A. Nicholl, J. J. -. Tsai, and S. -. Liu. 1988. ”An integrated life-cycle model

for software maintenance”. IEEE Transactions on Software Engineering 14, number 8 ():

1128–1144. ISSN: 0098-5589. doi:10.1109/32.7624.

32

http://dx.doi.org/10.1109/32.7624

Appendices

33

Approach Scopes Techniques Granularity of Entities Tool Supported Scalability Style of Experimental Results
Entities Changes Results Support Languages Analysis Size P R Time

Ryder and
Tip [4]

Code CG class,
method,
variable,
test case

+/- class,
+/-/chg. method,
+/- variable

test case no Java - - - - - -

Ren et al.
[26]–[28]

Code CG class,
method,
variable,
test case

+/- class,
+/-/chg. method,
+/- variable

test case Chianti Java - Expl. 123 kLOC,
11k
changes

- 1.0 10 min

Xia and Srikanth
[30]

Code CG statements - statements no - - - - - - -

Badri et al. [31] Code CG method chg. method method PCIA Tool Java - - 77 classes - - -
Briand et al.
[32]

Code DG class - class Concerto2/
AUDIT

C++ - - 40 kLOC - - -

Kung et al. [33] Code DG class,
method,
variable

+/-/inh./vis. class,
+/-/sig./vis.
method,
+/-/typ./vis.
variable

class,
method,
variable

OOTME C++ - - > 140
classes

- - -

Li and Offutt
[43]

Code DG class,
method,
variable

+/- class,
+/-/sig./vis.
method,
+/-/typ./val./
vis. variable

class no - T:
O(m3n2)

- - - - -

Rajlich [34] Code DG class +/-/chg. class class Ripples 2 C, C++ - Expl. 2 kLOC - - -
Pirklbauer et al.
[35]

Code DG - - - CIAMSS COBOL - - - - - -

Zalewski and
Schupp [38]

Code DG STL spec. +/- STL spec. STL spec. no C++ - - - - - -

Petrenko and Ra-
jlich [39]

Code DG class,
method,
statement,
variable

- class,
method,
statement,
variable

plug-in for
JRipples

Java - Expl. 550 kLOC < 0.19 - -

Black [40] Code DG variable - variable REST C - - 725 LOC - - -
Lee et al. [6] Code DG class,

method
- class ChAT - - - 30 kLOC - - -

Beszédes et al.
[44]

Code DG class,
method

- class - C++, Java T: O(n∗e+
n ∗ k ∗m)

- 400 classes 0.85 1.0 -

Bilal and Black
[42]

Code DG class,
method

- class,
method

REST,
CodeSurfer

C++ - - - - - -

Jász et al. [45] Code DG method - method CodeSurfer C, C++,
Ada

T: O(n+e) - 1.4 mLOC,
83k
methods

0.87 1.0 3h

Chen and Rajlich
[46]

Code DG method,
variable

- method,
variable

RIPPLES C - Expl. - 0.09 1.0 -

Gwizdala et al.
[47]

Code DG class,
method,
variable

- class JTracker Java - Expl. 400 classes - - -

Bishop [48] Code DG class,
method,
variable

+/- method class Incremental
Impact
Analyzer

Java - - 9 KLOC - - 350ms

A Software Change Impact Analysis classified approaches

All studied approaches classified according to the criteria of Lehnert’s taxonomy and corre-

sponding review. (Lehnert 2011b) (Lehnert 2011a)

34

Fasching [36] Code DG - - - CIAMSS - - Gloabl 6k artifacts - - -
Tonella [53] Code SL variable chg. statement variable reachability

tool
C - - 2 kLOC - 1,0 -

Korpi and Koski-
nen [50]

Code SL variable - variable GRACE Visual
Basic

- - 18.7 kLOC - - 5 s

Vidács et al. [55] Code SL macro chg. macro defini-
tion

class,
method,
variable,
macro

Columbus
C/C++
frontend

C, C++ - Search-
based

- - - -

Binkley and
Harman [54]

Code SL variable - variable CodeSurfer C O(n2) Search-
based

179 kLOC - 1.0 -

Gallagher and
Lyle [51]

Code SL variable +/-/val. variable variable - - T:
O(n2eloge)

- - - - -

Hutchins and
Gallagher [52]

Code SL variable val. variable variable Surgeon’s
Assistant

C - Search-
based

- - - -

Korpi and Koski-
nen [50]

Code SL variable - variable GRACE Visual
Basic

- - 18.7 kLOC - - 5 s

Binkley and
Harman [54]

Code SL variable - variable CodeSurfer C O(n2) Search-
based

179 kLOC - 1.0 -

Santelices and
Harrold [56]

Code SL statement chg. statement statement DUAForensics Java - Search-
based

21 kLOC - - 2 h

Apiwattanapong
et al. [62]

Code ET method chg. method method EAT Java T: O(n)
S: O(n)

- 33 kLOC 0,24 - -

Breech et al.
[60]

Code ET method chg. method method DynamoRIO,
RVM

Java, C++,
C, Fortran

- Search-
based

131 kLOC - - 4 h

Law and
Rothermel [57]

Code ET method chg. method method Codesurfer C T: O(n) Search-
based

> 6 kLoc - - -

Law and
Rothermel [58]

Code ET method chg. method method - C T: O(n)
S: O(n)

- > 6 kLoc - - 58 min

Orso et al. [59] Code ET method chg. method method JABA Java - - 60 kLOC - - -
Breech et al.
[61]

Code ET method chg. method method - C T: O(n3)
S: O(n2)

- 40 kLOC - - 38 min

Gupta et al. [65] Code ET variable val. variable variable - - - - - - - -
Gupta et al. [66] Code ET method,

statement
+/-/chg. method,
+/-/chg. statement

method - - - - - - - -

Huang and Song
[63]

Code ET method +/- method method no - - - - - - -

Vanciu and
Rajlich [67]

Code ET method - method Reveal - T: O(s ∗
T + s ∗n2)

- 190 classes,
1.6k meth-
ods

0.543 - 5h

Beszédes et al.
[64]

Code ET method - method JImpact Java T: O(n)
S: O(m∗n)

Global 2,3 kLOC 0.35 - -

Chaumun et al.
[69]

Code ER class,
method,
variable

+/-/vis. class,
+/-/sig./vis.
method,
+/-/vis./typ.
variable

class,
method,
variable

- C++ - - > 1k
classes

- - -

Sun et al. [71] Code ER class,
method,
variable

+/-/inh./mod./vis.
class,
+/-/mod./vis.
method,
+/-/mod./
vis. variable

class,
method,
variable

JHDG Java - - 157 classes 0.541 0.712 -

Han [68] Code ER module,
class,
method,
statement

+/-/inh. class,
+/-/chg. method

class,
method

- C++ - - - - - -

Arisholm et al.
[70]

Code ER class - class JDissect Java - - 17 kLOC,
408 classes

- - -

Poshyvanyk et al.
[75]

Code IR class,
method

- class IRC2M C++ - - 4 mLOC < 0.28 < 0.66 -

Vaucher et al.
[74]

Code IR class +/-/chg. method class PTIDEJ Java - - 790 classes - - -

Antoniol et al.
[73]

Code IR - - - - C++ - - - 0.487 0.696 -

Zhou et al. [76] Code PM class,
method,
variable

+/-/m. class,
+/-/m. method,
+/-/m./val. variable

class,
method,
variable

Evolizer Java - Expl. - 0.815 0.623 -

Tsantalis et al.
[77]

Code PM class,
method

inh. class,
+/- method

class yes, unnamed Java - Global 169 classes 0.554 - -

Abdi et al.
[78], [79]

Code PM class,
method,
variable

+/-/vis. class,
+/-/vis. method,
+/-/vis. variable

class PTIDEJ Java - - 394 classes 0.689 - -

Abdi et al.
[80], [81]

Code PM class - class BNJ - - - - - - -

Mirarab et al.
[82]

Code PM adaptable adaptable adaptable Smile and
other, not
named tools

Java - - 263 kLOC,
> 6k revi-
sions

0.63 0.259 -

Gethers and
Poshyvanyk [83]

Code PM class - class - C++, Java - - 1.9 mLOC 0.118 0.446 -

Hassan and
Holt [95]

Code HM class,
method,
variable

CVS record class,
method,
variable

- C - - > 15k revi-
sions

0.51 0.49

Ying et al. [94] Code HM source file CVS record source file - C++, Java - Global > 20k files,
> 100k re-
visions

0.4 0.2 55 min

Kagdi [103] Code HM class,
method,
statement

change record class,
method,
statement

sqminer,
srcML, dwdiff,
codeDiff

- - - - - - -

Gall et al. [86] Code HM class CVS record class - Java - Global 500 kLOC - - -
Zimmermann
et al. [87]

Code HM method,
variable

+/-/chg. method,
+/-/val. variable

method,
variable

ROSE Java, C++,
C, Python

- Expl. > 34k files,
> 53k revi-
sions

0.38 0.416 -

Gı̂rba et al. [92] Code HM class +/- method class Van, Moose Smalltalk - Global > 500 revi-
sions

- - -

Gı̂rba et al. [93] Code HM package,
class,
method

+/-/chg. method,
+/-/chg. statement

package,
class,
method

- - - - 281 kLOC - - -

Bouktif et al.
[96]

Code HM source file CVS record source file no Java, C++,
C

- Global > 9k files 0.772 0.792 3 min

Robbes and
Lanza [98]

Code HM package,
class,
method,
statement,
variable

+/- package,
+/-/inh. class,
+/- method,
+/-/val. variable

- SpyWare Smalltalk - - - - - -

Robbes et al. [99] Code HM package,
class,
method,
statement,
variable

+/- package,
+/-/inh. class,
+/- method,
+/-/val. variable

- SpyWare Smalltalk - - 40 classes - - 1 min

Robbes and
Lanza [100]

Code HM package,
class,
method,
statement,
variable

+/- package,
+/-/inh. class,
+/- method,
+/-/val. variable

- SpyWare - - - - - - -

Fluri et al. [84] Code HM class,
method,
variable

+/-/chg. class,
+/-/chg. method,
+/-/chg. variable

class,
method,
variable

- Java T: O(n2) Global 26 kLOC - - -

Fluri and Gall
[85]

Code HM class,
method,
statement,
variable

+/-/inh./mod./vis./r.
class,
+/-/sig./mod./vis./r.
method,
+/-/chg.
statement,
+/-/vis./mod./typ./r.
variable

class,
method,
statement,
variable

ChangeDistiller Java - - 1.4k classes - - -

Popescu et al.
[125]

Code MDG, SL component - component Helios Java, C#,
C++

- - 19 kLOC - - -

Popescu [126] Code MDG, SL component - component Helios - - - 19 kLOC - - -
Kagdi and
Maletic [102],
[104]

Code HM, DG adaptable change record adaptable sqminer,
srcML, dwdiff,
codeDiff

- - - - - - -

Ceccarelli et al.
[108]

Code HM, PM source file CVS record source file - - - - > 10k revi-
sions

0.8 < 0.3 -

Canfora et al.
[109]

Code HM, PM source file CVS record source file - Java, C,
C++

- - > 500 files,
> 1.7k revi-
sions

0.31 < 0.6 -

Wong et al. [117] Code PM, HM - - - - Java - - 278 kLOC 0.618 0.355 -
Hattori et al. [14] Code DG, HM,

PM
class,
method,
variable

+/-/vis./inh. class,
+/-/vis. method,
+/-/vis. variable

class,
method,
variable

Impala Java - - 3.6 kLOC 0.875 0.775 -

German et al.
[105]

Code DG, HM method rename, merge,
split, clone

method - C - - - - - -

Kabaili et al.
[110]

Code DG, ER class,
method,
variable

+/-/inh. class,
+/- method,
+/- variable

class - C++ - - - - - -

Canfora and
Cerulo [106]

Code HM, IR source file - source file yes, unamed - - - > 1.4k files < 0.36 < 0.67 -

Queille et al.
[111]

Code DG, ER - - - IAS C, C++ - - 2 kLOC - - -

Barros et al.
[112]

Code DG, ER - - - IAS - - - - - - -

Huang and Song
[113]

Code ET, DG method,
variable

+/- method,
+/-/val. variable

method,
variable

no Java - - - - - -

Huang and Song
[114]

Code DG, ER,
ET

class,
method,
variable

+/-/inh. class,
+/- method,
+/-/val. variable

class,
method,
variable

JDIA Java - - 903 kLOC - - 103 s

Walker et al.
[115]

Code DG, PM,
HM

type CVS record type TRE Java T:
O(nlogn)

Global - - - -

Maia et al. [116] Code DG, ET class,
method,
variable

+/- class,
+/- method,
+/- variable

- SD-Impala Java - - 6 kLOC 0.274 0.566 -

Kagdi et al.
[118]

Code IR, HM statement CVS record statement srcML,
srcDiff,
sqminer

C++, C,
Java

- - 367 kLOC,
2k files

0.852 0.455 -

Sun et al. [119] Code SL, DG package,
class,
method,
statement,
variable

+/- package,
+/-/r. class,
+/-/sig./r. method,
+/- /r./t. variable

package,
class,
method,
statement,
variable

JHSA Java - - 3.9 kLOC 0.184 - -

Buckner et al.
[182]

Code - class - class JRipples Java - Expl. - - - -

Mohamad [120] Code TR, SL package,
class,
method

- package,
class,
method

CIA-V C++ - Expl. 4 KLOC - - -

Kagdi [20] Code DG, HM file, class,
method,
variable

- file, class,
method,
variable

codeDiff,
sqminer

- - Global 600 KLOC - - -

Lee [124] Code DG, ER class,
method,
variable

+/-/inh. class,
+/-/vis./r./sig.
method,
+/-/typ./val.
variable

class,
method,
variable

ChaT C++ - Global 29 KLOC - - -

Ren [29] Code CG, ET class,
method,
variable

+/- class,
+/-/sig. method,
+/- variable

test case Chianti Java - Global 123 KLOC,
700 classes,
7k methods

- - -

Canfora and
Cerulo [107]

Code HM, IR source file,
statement

+/-/chg. statement source file,
statement

Jimpa Java, C++ - Global 272 kLOC,
1.5k files

< 0.15 > 0.7 400 s

Hoffman [128] Code - class,
method

- class,
method

JFlex Java - Global - - - -

Moonen [127] Code Island
Grammar

variable - variable ISCAN COBOL - - 901 kLOC - - 26 min

Aryani et al.
[129]

Arch. DG component - component - - - - - - - -

Aryani et al.
[130]

Arch. DG, PM domain
var.,
domain
func.,
UI comp.

- domain
var.,
domain
func.,
UI comp.

- - - - 104 kLOC 0.614 0.428 -

Briand et al.
[131], [132]

Arch. ER entire UML - entire UML iACMTool UML - - - - - -

Dantas et al.
[133]

Arch. TR, HM entire UML - entire UML Odyssey-SCM UML - - 60 kLOC 0.6 0.15 -

Xing and
Stroulia [134],
[135]

Arch. HM class +/-/r./m. class class JRefleX UML - - 144 classes - - -

Xing and
Stroulia [136]

Arch. HM package,
class,
interface,
variable

+/- package,
+/-/r./m./vis. class,
+/-/r./m./vis.
interface,
+/-/r./m./vis.
variable

package,
class,
interface,
variable

JDEvAn UML - - 800 classes 0.955 - 58 min

McNair et al.
[137]

Arch. HM component,
package,
class

+/-/chg.
component,
+/-/chg. package,
+/-/chg. class

component,
package,
class

Motive Java - - 1.5k classes - - -

Yoo and
Choi [138]

Arch. MDG system - system - XML - - - - - -

de Boer et al.
[139]

Arch. DG component,
process,
data object

+/-/chg.
component,
+/-/chg. process,
+/-/chg. data object

component,
process,
data object

- ArchiMate - - - - - -

Vora [140] Arch. ER, CG class,
method

- component - TeCFRADL - - 10 kLOC - - -

Feng and
Maletic [141]

Arch. ER, SL component,
interface,
method

+/- interface,
+/- method

component,
interface,
method

SOCIAT UML - - - - - -

Tang et al. [142] Arch. PM entire UML - entire UML AREL UML - - - - - -
Zhao et al. [143] Arch. SL component,

connector
- component,

connector
Ciasa Wright - - - - - -

Wong and
Cai [101]

Arch. PM, HM class - class - UML - - 14 revisions 0.021 0.061 -

van den Berg
[144]

Arch. TR, DG adaptable - adaptable no UML - - - - - -

ten Hove et al.
[149]

Req. ER requirement +/- requirement requirement plug-in for
BluePrint

SysML - - - - - -

Hewitt and
Rilling [145]

Req. DG scenario,
component

- scenario,
component

extended
UCMNav2

UCM - -

Lock and
Kotonya [148]

Req. TR, PM requirement - requirement ARChlVisT - - - - - - -

Hassine et al.
[150]

Req. SL entire UCM
spec.

- entire UCM
spec.

CIA Tool UCM - - - - - -

Goknil et al.
[151]

Req. ER requirement,
predicate,
relation

+/- requirement,
+/- predicate,
+/-/typ. relation

requirement no - - - - - - -

Lee et al. [152] Req. TR goal,
use case

- goal,
use case

- - - - - - - -

Spijkerman [153] Req. TR, ER requirement,
constraint,
property,
relation

+/- requirement,
+/-/chg. property,
+/-/val. constraint,
+/-/typ. relation

requirement - - - - - - - -

Jönsson [154] Req. IR requirement - requirement SVDLIBC - - - 400 require-
ments

0.171 0.177 -

O’Neal [156] Req. TR requirement,
misc.
artifacts

- requirement - - - - 120
artifacts,
1100 traces

- - -

O’Neal and
Carver [155]

Req. TR requirement +/chg. requirement requirement - - - - - - - -

Antoniol et al.
[157]

Misc.
Art.

HM file CVS record file no - - - 10k files,
3.7 mLOC

- - -

Beyer and
Noack [158]

Misc.
Art.

HM file CVS record file StatCVS,
cvs2cl2,
CrocoPat

- - - 4 mLOC,
3.9k files

- -

Askari and
Holt [159]

Misc.
Art.

PM, HM file CVS record file no - - - - - - -

Sherriff and
Williams [160]

Misc.
Art.

HM file change record file Matlab - T: O(n2) - 12k files,
240k
revisions

- - -

Jashki et al. [161] Misc.
Art.

HM file CVS record file Matlab - - - 3k files,
31k
revisions

- - -

Nadi et al. [162] Misc.
Art.

HM - - - DRACA - - - 27k
changes

0.885 0.698 -

Hammad et al.
[166]

Arch.,
Code

ER C++ class,
C++
method

+/- C++ class,
+/- C++ method

UML class srcTrace C++, UML - - 550 files,
200
changes

- - -

Sharafat and
Tahvildari [167]

Arch.,
Code

PM class,
method,
variable

+/- method,
+/-/val. variable

class - Java, UML - - 58 classes 0.702 - -

Sharafat and
Tahvildari [168]

Arch.,
Code

PM class,
method,
variable

- class - Java, UML - - 58 classes 0.707 - -

Kotonya and
Hutchinson [170]

Arch.,
Req.

DG component,
requirement

+/- component,
chg. property,
chg. constraint

component,
requirement

ECO-ADM CADL - - - - - -

Xiao et al. [171] Req.,
Code

CG, ER BPEL task +/- task,
chg. task-property,
chg. task-data

method - BPEL - - - - - -

Bohner [37],
[172]

Arch.,
Code

DG - - - - - - - - - - -

Bohner and
Gracanin [173]

Arch.,
Code

DG - - - - - - - - - - -

Hutchinson et al.
[169]

Arch.,
Req.

TR component,
requirement

- component,
requirement

no CADL - - - - - -

Khan and
Lock [174]

Arch.,
Req.

TR component,
use case

- component - - - - - - - -

Yu et al. [175] Arch.,
Req.

CG component,
requirement

- component - - - - - - - -

Briand et al.
[176]

Arch.,
Req.

TR class,
method,
sequence,
use case,
variable,
message,
test case

+/- use case,
+/-/chg. message,
+/-/sig./chg.
method,
+/-/vis./typ.
variable

test case RTSTool UML - - 320k test
cases

- - -

Ibrahim et al.
[121]–[123]

Arch.,
Req.,
Code

TR class,
method,
requirement,
test case

chg. method class,
method,
requirement,
test case

Catia C++, UML - - 4 kLOC - - -

von Knethen
and Grund [177]

Arch.,
Req.

TR, IR entire UML - entire UML QuaTrace UML - - - - - -

Kim et al. [163] Arch.,
Code

DG source file,
class,
method,
variable

- source file,
class,
method,
variable

iCIA C, C++ - - 7 mLOC - - 3 min

Hassan et al.
[180]

Arch.,
Code

ER component,
interface,
connector,
port

+/- component,
+/- interface,
+/- connector,
+/- port

component,
interface,
connector,
port

set of Eclipse
plug-ins

Ada, Perl,
PHP, Java,
AADL,
XADL 2.0

- - - - - -

Looman [179] Arch.,
Req.

TR component,
requirement

+/-/chg. req.,
+/- req. predicate,
+/-/chg. component

component,
requirement

Alloy AADL - - - - - -

TABLE II: All studies classified according to the criteria of our taxonomy [9]

B JSON data examples of the IA Approaches

1 [

2 {

3 "approach": "Ryder and Tip ",

4 "scopes_of_analysis": "Code",

5 "utilized_techniques": "CG",

6 "granularity_of_entities": "class,method, variable, test

case",

7 "granularity_of_changes": "+/- class,+/-/chg. method,+/-

variable",

8 "granularity_of_results": "test case",

9 "tool_support": false,

10 "supported_languages": "Java",

11 "scalability": null,

12 "style_of_analysis": null,

13 "experimental_results_size": null,

14 "experimental_results_precision": null,

15 "experimental_results_recall": null,

16 "experimental_results_time": null

17 },

18 {

19 "approach": "Ren et al.",

20 "scopes_of_analysis": "Code",

21 "utilized_techniques": "CG",

22 "granularity_of_entities": "class,method, variable, test

case",

23 "granularity_of_changes": "+/- class,+/-/chg. method,+/-

variable",

24 "granularity_of_results": "test case",

25 "tool_support": "Chianti",

26 "supported_languages": "Java",

42

27 "scalability": null,

28 "style_of_analysis": "Expl.",

29 "experimental_results_size": "123 kLOC,11k changes",

30 "experimental_results_precision": null,

31 "experimental_results_recall": "1.0",

32 "experimental_results_time": "10 min"

33 },

34 {

35 "approach": "Xia and Srikanth",

36 "scopes_of_analysis": "Code",

37 "utilized_techniques": "CG",

38 "granularity_of_entities": "statements",

39 "granularity_of_changes": null,

40 "granularity_of_results": "statements",

41 "tool_support": false,

42 "supported_languages": null,

43 "scalability": null,

44 "style_of_analysis": null,

45 "experimental_results_size": null,

46 "experimental_results_precision": null,

47 "experimental_results_recall": null,

48 "experimental_results_time": null

49 },

50]

43

C Data initialization script

1 import json

2

3 from django.core.management.base import BaseCommand,

CommandError

4 from django.conf import settings

5 from iaselector import models

6

7

8 class TechniqueAbbreviations:

9 PM = ’Probabilistic Models’

10 DG = ’Dependency Graph’

11 MDG = ’Message Dependency Graph’

12 SL = ’Slicing’

13 IR = ’Information Retrieval’

14 TR = ’Traceability’

15 HM = ’History Mining’

16 CG = ’Call Graph’

17 ER = ’Explicit Rules’

18 ET = ’Execution Trace’

19

20

21 class Command(BaseCommand):

22

23 @staticmethod

24 def add_scopes(data):

25 for name in data:

26 models.ScopeOfAnalysis.objects.get_or_create(name

=name)

27

28 @staticmethod

44

29 def add_techniques(data):

30 for abbreviation in data:

31 try:

32 name = getattr(TechniqueAbbreviations,

abbreviation)

33 except AttributeError:

34 name = ’’

35 models.Technique.objects.get_or_create(

abbreviation=abbreviation, name=name)

36

37 @staticmethod

38 def add_granularity_of_entities(data):

39 for name in data:

40 models.GranularityOfEntity.objects.get_or_create(

name=name)

41

42 @staticmethod

43 def add_granularity_of_changes(data):

44 for name in data:

45 models.GranularityOfChanges.objects.get_or_create

(name=name)

46

47 @staticmethod

48 def add_granularity_of_results(data):

49 for name in data:

50 models.GranularityOfResults.objects.get_or_create

(name=name)

51

52 def add_criterions_data(self, data):

53 separated_unique_sets = dict()

45

54 keys = [’scopes_of_analysis’, ’utilized_techniques’,

’granularity_of_entities’,

55 ’granularity_of_changes’, ’

granularity_of_results’]

56

57 for key in keys:

58 separated_unique_sets[key] = set()

59 for data_item in data:

60 if data_item[key]:

61 list = [item.strip() for item in

data_item[key].split(’,’)]

62 separated_unique_sets[key].update(list)

63

64 for key, values in separated_unique_sets.items():

65 if key == ’scopes_of_analysis’:

66 self.add_scopes(values)

67 if key == ’utilized_techniques’:

68 self.add_techniques(values)

69 if key == ’granularity_of_entities’:

70 self.add_granularity_of_entities(values)

71 if key == ’granularity_of_changes’:

72 self.add_granularity_of_changes(values)

73 if key == ’granularity_of_results’:

74 self.add_granularity_of_results(values)

75

76 def add_approaches(self, data):

77 for data_item in data:

78 model_data = {

79 ’name’: data_item[’approach’],

80 ’tool_support’: data_item[’tool_support’] if

data_item[’tool_support’] else None,

46

81 ’supported_languages’: data_item[’

supported_languages’],

82 ’scalability’: data_item[’scalability’],

83 ’analysis_style’: data_item[’

style_of_analysis’],

84 }

85 approach = models.IAApproach.objects.create(**

model_data)

86

87 if data_item[’scopes_of_analysis’]:

88 sliced = [item.strip() for item in data_item[

’scopes_of_analysis’].split(’,’)]

89 for slice in sliced:

90 instance = models.ScopeOfAnalysis.objects

.get(name=slice)

91 approach.scope.add(instance)

92

93 if data_item[’utilized_techniques’]:

94 sliced = [item.strip() for item in data_item[

’utilized_techniques’].split(’,’)]

95 for slice in sliced:

96 instance = models.Technique.objects.get(

abbreviation=slice)

97 approach.technique.add(instance)

98

99 if data_item[’granularity_of_entities’]:

100 sliced = [item.strip() for item in data_item[

’granularity_of_entities’].split(’,’)]

101 for slice in sliced:

102 instance = models.GranularityOfEntity.

objects.get(name=slice)

47

103 approach.granularity_of_entity.add(

instance)

104

105 if data_item[’granularity_of_changes’]:

106 sliced = [item.strip() for item in data_item[

’granularity_of_changes’].split(’,’)]

107 for slice in sliced:

108 instance = models.GranularityOfChanges.

objects.get(name=slice)

109 approach.granularity_of_change.add(

instance)

110

111 if data_item[’granularity_of_results’]:

112 sliced = [item.strip() for item in data_item[

’granularity_of_results’].split(’,’)]

113 for slice in sliced:

114 instance = models.GranularityOfResults.

objects.get(name=slice)

115 approach.granularity_of_result.add(

instance)

116

117 experimental_result_instance = models.

ExperimentalResult.objects.create(

118 size=data_item[’experimental_results_size’],

119 precision=data_item[’

experimental_results_precision’],

120 recall=data_item[’experimental_results_recall

’],

121 time=data_item[’experimental_results_time’],

122)

123

48

124 approach.experimental_result =

experimental_result_instance

125

126 def handle(self, *args, **options):

127 path = settings.BASE_DIR + settings.STATIC_URL + ’

files/iaapproaches.json’

128 with open(path, ’r’) as f:

129 json_data = json.load(f)

130

131 self.add_criterions_data(json_data)

132 self.add_approaches(json_data)

133

134 f.close()

D MySQL for the example database

1 CREATE TABLE ‘student‘ (

2 ‘id‘ INT NOT NULL AUTO_INCREMENT,

3 ‘first_name‘ VARCHAR(255),

4 ‘last_name‘ VARCHAR(255),

5 ‘address‘ VARCHAR(255),

6 ‘number‘ VARCHAR(255),

7 PRIMARY KEY (‘id‘)

8);

9

10 CREATE TABLE ‘course‘ (

11 ‘id‘ INT NOT NULL AUTO_INCREMENT,

12 ‘name‘ VARCHAR(255),

13 ‘created_at‘ DATETIME NOT NULL,

14 PRIMARY KEY (‘id‘)

15);

49

16

17 CREATE TABLE ‘student_has_courses‘ (

18 ‘id‘ INT NOT NULL AUTO_INCREMENT,

19 ‘student_id‘ INT NOT NULL,

20 ‘course_id‘ INT NOT NULL,

21 PRIMARY KEY (‘id‘)

22);

23

24 CREATE TABLE ‘teacher‘ (

25 ‘id‘ INT NOT NULL AUTO_INCREMENT,

26 ‘first_name‘ VARCHAR(255),

27 ‘last_name‘ VARCHAR(255),

28 ‘address‘ VARCHAR(255),

29 ‘number‘ VARCHAR(255),

30 PRIMARY KEY (‘id‘)

31);

32

33 CREATE TABLE ‘teacher_has_courses‘ (

34 ‘id‘ INT NOT NULL AUTO_INCREMENT,

35 ‘teacher_id‘ INT NOT NULL,

36 ‘course_id‘ INT NOT NULL,

37 PRIMARY KEY (‘id‘)

38);

39

40 ALTER TABLE ‘student_has_courses‘ ADD CONSTRAINT ‘

student_has_courses_fk0‘ FOREIGN KEY (‘student_id‘)

REFERENCES ‘student‘(‘id‘);

41

42 ALTER TABLE ‘student_has_courses‘ ADD CONSTRAINT ‘

student_has_courses_fk1‘ FOREIGN KEY (‘course_id‘)

REFERENCES ‘course‘(‘id‘);

50

43

44 ALTER TABLE ‘teacher_has_courses‘ ADD CONSTRAINT ‘

teacher_has_courses_fk0‘ FOREIGN KEY (‘teacher_id‘)

REFERENCES ‘teacher‘(‘id‘);

45

46 ALTER TABLE ‘teacher_has_courses‘ ADD CONSTRAINT ‘

teacher_has_courses_fk1‘ FOREIGN KEY (‘course_id‘)

REFERENCES ‘course‘(‘id‘);

51

	1 Introduction
	2 Software Change Impact Analysis (IA)
	2.1 Historical Setting
	2.1.1 Software Engineering
	2.1.2 Software Development Life Cycle
	2.1.3 Software Evolution and Maintenance

	2.2 Technical Context
	2.3 Classifications
	2.4 Lehnert's Taxonomy and Review
	2.5 Conclusion

	3 IA Approach Selection Tool Proposal
	4 General Data Protection Regulation (GDPR)
	4.1 Historical setting
	4.2 Overview
	4.3 Conclusion

	5 GDPR and change impact analysis
	5.1 Overview
	5.2 Interview
	5.3 Choosing approach for GDPR
	5.4 Application of Jönsson's approach

	6 Conclusion
	Bibliography
	Appendices
	A Software Change Impact Analysis classified approaches
	B JSON data examples of the IA Approaches
	C Data initialization script
	D MySQL for the example database

