
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

Towards Better Integration of Surrogate Models and Optimizers

© Springer Nature Switzerland AG 2020.

Accepted version (Final draft)

Chugh, Tinkle; Rahat, Alma; Volz, Vanessa; Zaefferer, Martin

Chugh, T., Rahat, A., Volz, V., & Zaefferer, M. (2020). Towards Better Integration of Surrogate
Models and Optimizers. In T. Bartz-Beielstein, B. Filipič, P. Korošec, & E.-G. Talbi (Eds.), High-
Performance Simulation-Based Optimization (pp. 137-163). Springer. Studies in Computational
Intelligence, 833. https://doi.org/10.1007/978-3-030-18764-4_7

2020

Towards Better Integration of Surrogate Models
and Optimizers ∗

Tinkle Chugh, Alma Rahat, Vanessa Volz, and Martin Zaefferer

Abstract Surrogate-Assisted Evolutionary Algorithms (SAEAs) have been proven
to be very effective in solving (synthetic and real-world) computationally expensive
optimization problems with a limited number of function evaluations. The two main
components of SAEAs are: the surrogate model and the evolutionary optimizer,
both of which use parameters to control their respective behavior. These parame-
ters are likely to interact closely, and hence the exploitation of any such relation-
ships may lead to the design of an enhanced SAEA. In this chapter, as a first step,
we focus on Kriging and the Efficient Global Optimization (EGO) framework. We
discuss potentially profitable ways of a better integration of model and optimizer.
Furthermore, we investigate in depth how different parameters of the model and
the optimizer impact optimization results. In particular, we determine whether there
are any interactions between these parameters, and how the problem characteristics
impact optimization results. In the experimental study, we use the popular Black-
Box Optimization Benchmarking (BBOB) testbed. Interestingly, the analysis finds
no evidence for significant interactions between model and optimizer parameters,
but independently their performance has a significant interaction with the objective
function. Based on our results, we make recommendations on how best to configure
EGO.

Tinkle Chugh
University of Jyvaskyla, Faculty of Information Technology, FI-40014 University of Jyvaskyla,
Finland,
Department of Computer Science, University of Exeter, UK
e-mail: tinkle.chugh@gmail.com

Alma Rahat
School of Computing, Electronics and Mathematics, University of Plymouth, Plymouth, UK
e-mail: alma.rahat@plymouth.ac.uk

Vanessa Volz
School of Electronic Engineering and Computer Science, Queen Mary University of London, Lon-
don, UK
e-mail: v.volz@qmul.ac.uk

Martin Zaefferer
Faculty of Computer Science and Engineering Science, TH Köln, Steinmüllerallee 1 51643 Gum-
mersbach, Germany e-mail: martin.zaefferer@th-koeln.de

∗ All authors contributed equally to this work

1 Introduction

Many real-world optimization problems depend on computationally expensive black-
box simulations or experiments. Examples are the design and optimization of air-
craft [34] or chemical reactors [31], which may require significant computational or
financial resources for each evaluation. Therefore, decision makers and optimiza-
tion analysts usually seek a good solution using a minimal amount of expensive
evaluations.

In the last few decades, evolutionary algorithms (EAs) became popular for both
single- and multi-objective optimization problems because of their several advan-
tages in this context. For instance, they usually do not assume any convexity and
differentiability of the objective or constraint functions [10, 12] and are thus well
suited to solve black-box problems. However, because of their exploratory nature,
EAs often need a considerable number of function evaluations to approximate op-
timal solutions. For problems with computationally expensive functions, surrogate-
assisted evolutionary algorithms (SAEAs) aim to alleviate this weakness by replac-
ing some evaluations with estimates from surrogate models.There are two main ap-
proaches to the integration of surrogate and optimizer: (1) The SAEA alternates
between improving the surrogate model and improving the estimate of the optimum
(via an optimizer operating on an acquisition function) and (2) certain parts of the
SAEA (e.g. selection in evolutionary algorithms) are enhanced by the knowledge
obtained through the surrogate model. In this study, we will be focusing on the first
approach as visualized in Fig. 1. For more details about the second approach, see
[9, 22].

The reason for choosing the first approach is that it is comparatively more mod-
ular, and hence more straightforward to explain through experiments. Henceforth,
we refer to the first approach as SAEAs within the context of this chapter.

Create
Initial

Design

Evaluate
Objective
Function

Run
Optimizer
on Model

Terminate
?

Report
Results

Train
Surrogate

Model

Propose
Solution

Yes

No

Fig. 1 The investigated SAEA process. The expensive objective function is optimized by itera-
tively optimizing a surrogate model based infill criterion. The optimizer is used to select solutions
for evaluation with the expensive objective function. The model is then updated accordingly and
the next iteration starts. The process terminates after the budget of expensive function evaluations
is exhausted.

As the first step, an initial set of samples is generated (e.g. using a design of
experiment technique [30]) as indicated in the top left corner of the figure. These
samples are evaluated with the expensive objective function and the derived data

is then used to train the surrogate model. An optimizer (e.g. an evolutionary algo-
rithm) is applied to find sample(s) for updating the surrogate, based on a so-called
infill criterion (or acquisition function or updating criterion). The selected sample(s)
are evaluated with the expensive evaluation(s) and combined with the previously
evaluated samples. This process is repeated until a termination criterion such as a
maximum number of expensive evaluations is met. The solution corresponding to
the minimum objective function value is used as the final solution among all the
evaluated ones.

In the literature, several SAEAs have been proposed for use cases with small
evaluation budgets. These algorithms can mainly be distinguished by the infill crite-
rion they use, i.e. their strategy for selecting new sample(s) to update the surrogate
model. Different strategies have been proposed in the literature, e.g., expected im-
provement [23], lower confidence bound [35], and probability of improvement [11].
For more details, e.g., advantages, limitations and other properties, see [9, 22].

In theory, any optimizer (or configuration of an optimizer) can be coupled with
any type of surrogate model. However, there is a lack of extensive studies or de-
tailed guidelines in the literature on co-configuring the optimizer and the modeling
approaches for improved performance. For instance, different modeling techniques,
e.g. neural networks, Kriging, and support vector regression, have their own advan-
tages and limitations. In addition, evolutionary algorithms have certain parameters
which can affect the performance of the SAEA. Therefore, an efficient integration
of two elements can be useful in increasing the performance of the algorithm. In the
next subsection, we present our hypothesis to incorporate two major elements, i.e.
surrogate and EA when developing and applying a SAEA.

1.1 Hypothesis

As mentioned above, numerous SAEAs have been proposed in the literature, in-
corporating surrogates and evolutionary algorithms in different ways. Most of these
approaches ignore the potential benefits of a proper integration of the two parts.
For example, harmonizing the correlation assumptions of the surrogate model and
the variation operators could speed up the optimization process. Another idea is to
choose and improve the surrogate model depending on what information is actually
used by the EA.

Moreover, EAs generally do not make assumptions about the properties of the
fitness landscape, but surrogate models often do. Additionally, the properties of the
model output are known and can be considered when selecting or configuring the
optimization algorithm. Practitioners and algorithm developers should be concerned
with choosing the algorithm and the type of variation operator that works best with
certain model assumptions, to avoid deteriorating optimization performance. Other
important issues to be considered are the allocation of a computational budget to the
model, and the optimizer and the balancing of the trade-off between exploration and

exploitation. In this chapter, we investigate the interaction between the EA and the
surrogate model, motivated by the following hypothesis.

Hypothesis. The two main components of SAEAs (optimizer & model) closely
interact with each other, thus influencing the overall algorithm performance.

That means, configuring the components separately may be detrimental for the
overall optimization performance. For example, the chosen EA could inform the
decision about the infill criterion and the error metrics used to train the surrogate
model. There is also a possibility of dynamic mutual adaptation of model and EA
as information is gathered during the optimization process and the problem starts to
change from a black-box to a gray-box. For instance, both EAs as well as the surro-
gate models define some concept of neighborhood. In EAs, the neighborhood of a
solution is determined by a variation operator. In the surrogate model, the neighbor-
hood of a solution may be represented by a similarity measure (e.g. the correlation
function in a Kriging model). Aligning both concepts of neighborhood may improve
performance: the similarity measure may be used to derive a variation operator, and
vice versa.

As a transparent example, consider a modeling approach that is prone to produce
piecewise constant, and non-smooth surrogate models of the fitness landscape, e.g.
tree-based models like random forest as used in [21]. Some simple hill climbing
or gradient-based optimization algorithm may easily fail for such a model. Even
certain design choices of more complex algorithms, e.g. the local search procedure
in a memetic EA [33], may provide poor results in that case. Of course, such an issue
would be rather obvious. But it nicely showcases how the choice or configuration of
surrogate model and optimizer can interact. In the next subsection, we present our
proposal and methodology for investigating the effect of different elements in the
surrogate and the EA.

1.2 Proposal and methodology

In this work, we investigate the following research questions to study the interac-
tions between the surrogate model and the EA-based optimizer:

• How does the choice of surrogate model affect the optimization process?
• How does the choice of optimization algorithm affect the optimization process?
• Are there any interactions between both elements?
• How do they relate to characteristics of the optimization problem?

Thus, we aim to lay the groundwork for a more efficient fusion of optimization
algorithm and surrogate model.

To enable a transparent and clearly arranged analysis, this study considers only
single-objective optimization problems. In order to focus the analysis, we concen-
trate on Kriging models. The Kriging or Gaussian process model [14] is one of
the most common surrogate techniques, mainly because of its ability to estimate

the prediction error/uncertainty measure. To ensure comparability, we also consider
only efficient global optimization (EGO) [23] described in Sect. 2 as an integration
approach, i.e. expected improvement-based concurrent improvement of the surro-
gate and optimization the problem. As a testbed for our experiments, we use BBOB
[17] and its single-objective problem suite [18] intended to represent a wide range
of problems. We focus on the following aspects by conducting several experiments
and show the effect of different algorithm configurations. In detail, we investigate:

• Effects of surrogate model configuration on the optimization process:

– Kernel properties and relationship with test functions.
– Initial sample size.

• Effects of optimizer configuration on the optimization process:

– Choice of variation operators and relationship with the infill criterion land-
scape induced by kernel functions.

• Interactions and observed patterns with respect to characteristics of the fitness
landscape.

The rest of the chapter is organized as follows. In the next section, we present the
working methodology of Kriging and a brief description of the EGO algorithm con-
sidered in this study. In Sect. 3, we elaborate on integrating surrogate models and
optimizers, and present relevant approaches from the literature. In Sect. 4, we de-
scribe the experiments conducted to address the hypothesis and discuss the results.
Finally, we conclude and suggest future research directions in Sect. 5.

2 Efficient Global Optimization (EGO)

A very effective optimization framework for expensive single-objective problems is
Efficient Global Optimization (EGO). It is widely used in the literature (for more
details, see a recent review [39] and references therein).

In essence, EGO is a model-based sequential search strategy that samples the
design space at likely locations of the global optimum as indicated by a surrogate,
i.e. a subclass of the surrogate-assisted approaches depicted in Fig. 1. It starts with a
space filling design, usually a Latin Hypercube Design (LHD) [30], of the decision
space. The initial design samples are evaluated with the expensive objective func-
tion. With the observed mapping from decision space to objective space, a surrogate
(regression) model based on Kriging is built. It should be noted that any model capa-
ble of producing a predictive distribution may be used within the EGO framework,
but here we choose to use Kriging.

Once trained, the model generates a global posterior predictive (normal) distri-
bution. As such, querying the model at any potential position in the decision space
may indicate how likely it is to achieve an improvement over the best function value
observed so far and how large this improvement may be. This particular measure

of utility (or infill criterion) is the expected improvement, and the benefit of using
Kriging is that it permits the exact computation of the expected improvement. Fur-
thermore, the expected improvement has monotonicity properties: it is inversely pro-
portional to the predicted mean (with fixed uncertainty), and directly proportional to
the uncertainty in prediction (with fixed mean prediction). It therefore strikes a bal-
ance between exploration and exploitation, and thus it is the most commonly used
infill criterion in EGO.

Consequently, an obvious strategy to select the next solution to be evaluated by
the expensive objective function is to select the solution that maximizes the infill
criterion. This newly evaluated solution is then added to the current database and the
Kriging model is retrained. This process is repeated until the budget of expensive
function evaluations is exhausted.

Without loss of generality, a single-objective optimization problem may be ex-
pressed as:

min f (x)
subject to x ∈ S

(1)

with f (x) : S→ ℜ. The (nonempty) feasible region S is a subset of the decision
variable space ℜn and consists of decision variable vectors x = (x1, . . . ,xn)

T that
satisfy all the constraints.

Given the initial design D = {(xm, f (xm))}M
m=1 of M samples, a Kriging model

may be constructed. It is essentially a collection of random variables, and any finite
number of these have a joint Gaussian distribution [37]. The predictive density of
the Kriging model for an individual x may be expressed as:

P(f̂ (x)|x,D,θ) = N (µ(x),σ(x)), (2)

where the predicted mean and the variance are given by

µ(x) = κκκ(x,X ,θ)K−1f (3)

σ(x) = κ(x,x,θ)−κκκ(x,X ,θ)>K−1
κκκ(X ,x,θ). (4)

Here, X ∈ℜM×n is the design matrix (that consists of the initial LHD at the start
of the algorithm and is later augmented by additional evaluations) in the decision
space and f ∈ℜM is the vector of associated expensive function responses. The co-
variance matrix K ∈ℜM×M captures the covariances among observations as defined
by (covariance or kernel) function κ(x′,x′′,θ) where x′,x′′ ∈X are two observed de-
cision vectors. κκκ(x,X ,θ) is the vector of covariances between an arbitrary decision
vector x and the observations X . The hyperparameters θ control the nature and the
flexibility of the specified kernel function. It should be noted that any function de-
pendent on two decision vectors may be used to capture the covariances, as long as
the derived matrix K remains positive semi-definite [37]. The kernel functions used
in this chapter and the associated hyperparameters are described in section 4.1.2.

Irrespective of the particular kernel function used, training a Kriging model con-
stitutes estimating the hyperparameters θ by maximizing the log likelihood of the

data given by:

logP(D|θ) =−1
2

log |K|− 1
2

f>K−1f− M
2

log(2π). (5)

Although it is possible to marginalize the hyperparameters using Markov Chain
Monte Carlo method [42], we do not investigate its efficacy here. 2

The predicted improvement over the current best f ∗=minm f (xm) is I(x, f ∗| f̂)=
max{ f ∗− f̂ (x),0}. Hence, the expected improvement may be calculated as:

E[I(x, f ∗| f̂)] =
∫

∞

−∞

I(x, f ∗)P(f̂ |x,D,θ)d f̂ = σ(x)(sΦ(s)+φ(s)), (6)

where, s = f ∗−µ(x)
σ(x) , and Φ(.) and φ(.) are the standard normal cumulative and prob-

ability density function, respectively.
Given the model, the solution that maximizes the expected improvement is ex-

pected to yield the most improvement over the best evaluated solution so far. There-
fore, in the EGO framework, the next solution that is subjected to expensive eval-
uation is x∗ = argmaxx E[I(x, f ∗| f̂)]. The dataset D is augmented with x∗, i.e.
D := D∪{(x∗, f (x∗))}, and the Kriging model is retrained. Until the budget of ex-
pensive function evaluations is exhausted, the process is repeated. The framework
is summarized in Algorithm 1.

Algorithm 1 Efficient global optimization.
Inputs

M : Number of initial samples
T : Budget on expensive function evaluations
f (x) : Expensive objective function

Steps
1: X ← Latin Hypercube Sampling(S) . Generate initial samples
2: f← f (x ∈ X) . Expensively evaluate all initial samples
3: for i = M→ T do
4: f̂ ← Train Kriging Model(X , f) . Train a Kriging model
5: x∗← argmaxx E[I(x, f ∗| f̂)] . Maximize expected improvement
6: X ← X ∪{x∗} . Augment data set with x∗
7: f← f∪{ f (x∗)} . Expensively evaluate x∗
8: end for
9: return X , f

2 It should be noted that it is common to use maximum likelihood estimation of hyperparameters
rather than integrating over all possible hyperparameters given a prior probability distribution.
Although some research suggest it aids the optimization process, but it may increase the overall
computation time [42].

2.1 Suitability of EGO

Although the EGO framework has been successfully demonstrated in the literature,
it can be envisaged that it may not be suitable for all classes of objective functions.
In this chapter, we are partly interested in laying out the foundation of scrutiniz-
ing the appropriateness of EGO with respect to different problem classes through
experiments. It is therefore pertinent to know what is currently considered as the
advantages and disadvantages of EGO, as this helps the practitioners to determine
its suitability to their specific use case. We briefly present such properties of EGO
below.

Advantages

• It is a very flexible predictor, and this flexibility is borne of the specific kernel
function [37].

• It is possible (and often recommended) to incorporate expert knowledge, for in-
stance via Co-Kriging [15], or trend functions [4].

• In addition to continuous domains, kernel functions may be designed for various
data representations [50].

• The Kriging posterior predictive distribution is Gaussian, and thus it permits ex-
act computation of uncertainty based infill criteria, e.g. the expected improve-
ment [39].

• Data that is non-deterministic, e.g. subject to measurement errors (noise), can
be readily incorporated into the model. However, if the noise is heteroscedastic,
then the infill criterion may no longer be appropriate [14].

• It allows automatic relevance determination, i.e. irrelevant variables may easily
be discounted through the hyperparameters of the covariance function [37].

• It is possible to further improve prediction, and consequently optimization per-
formance, by reducing the overall uncertainty in prediction using the gradient
information of the expensive function (if available) [28].

Disadvantages

• The computational complexity for prediction (and training) using Kriging is
O(M3) for M data points due to matrix inversions (or decompositions) necessary
for training and prediction [5]. Therefore, a large data set may become costly to
train and to predict with. However, sparse Kriging [41], or cluster Kriging [46],
where a subset of all data points are carefully selected to train models, may be
used to tackle this issue.

• Kriging performs poorly for high dimensional decision spaces (e.g., n≥ 20). This
is because a large amount of data is required to build a representative model, and
also distances fail to appropriately represent proximity in higher dimensions [3].
High dimensional decision spaces may necessitate some dimensionality reduc-
tion method [43].

• Selecting a sensible kernel function requires domain expertise. Unsurprisingly,
it is therefore hard to design a general framework that would work well for all
kinds of problems.

• Discontinuities in the objective landscape may be problematic for Kriging. This
is because standard stationary kernels (suggested for general use [42]) may
fail to approximate the objective function well enough for it to be useful in
EGO. Nonetheless, such kernels usually work well for smooth landscapes (given
enough training data).

• Except for the relevance determination (or the sensitivity of the variables), it is
difficult to derive any logical conclusions on the interactions or relationships be-
tween the decision space and the objective space, which is possible for example,
from linear and decision tree models.

• Especially in the context of optimization, data-sets may become very dense in
specific areas of the decision space, e.g., when candidate solutions cluster around
a potential optimum. This may yield close-to singular correlation matrices, which
may cause numerical problems with regards to matrix inversions or decomposi-
tions (e.g., Cholesky decomposition).

It should be noted that these advantages and disadvantages may not be valid for
all variants of the Kriging method, but they capture the behavior of some of the most
frequently employed implementations.

3 Integration of model and optimizer

In this section, we detail three different areas where surrogate and EA interact, and
the SAEA could thus profit from more explicit integration. These are integration of:
1) search operators and kernels, 2) error measure and performance measure and 3)
acquisition functions and optimizer configuration.

3.1 Integration I: Search Operators and Kernels

One important aspect of Kriging and related models is the choice of their kernels.
These kernels or correlation functions are important as they essentially control how
the model perceives local neighborhoods. Here, we understand neighborhoods as
connected areas with similar function values. For example, a fast decaying kernel
function leads to smaller neighborhoods, and vice versa. Similarly, search operators
of evolutionary algorithms define the neighborhood structure that the optimization
algorithm perceives. This analogy of kernels and search operators highlights why
their integration may be a promising next step.

The importance of the selection of the correct search operator is well established
in the literature, e.g. highlighted by studies on search operator tuning for evolution-
ary algorithms. For instance in [49], an empirical study has been performed to tune
different genetic operators. Similarly in [13], the authors showed the influence of
different search operators on the performance of the employed evolutionary algo-
rithm. On the other hand, selection of a particular kernel or a combination of them

during optimization has also been studied in the literature. To alleviate this problem,
approaches such as model ensembles [2, 27] and selecting one kernel based on the
accuracy [40] exist in literature. Nevertheless, research on the integration of search
operators and kernels in model based evolutionary algorithms is limited.

One promising exception is the recent study by Lane et al. [25]. They propose
the use of kernels in the context of evolutionary search operators. As the very same
kernels may then be employed in the optimization algorithm (here: an evolutionary
algorithm) as well as the model (e.g., Kriging or SVMs) Lane et al. [25] state that
this might

lead to a more seamless integration between EAs and kernel-based surrogate
models being used to augment them.

This further integration based on kernels seems to be quite promising. In fact, the
modeling procedure might be able to suggest not just the right search operator, but
as well may suggest a corresponding step size parameter value, based on the param-
eters of the model. This, in combination with the self-adaptive capabilities of EAs
may be a profitable direction for further research.

Such potential integration of model and optimizer is not limited to EAs. Other
optimization algorithms employ kernel functions, e.g. Estimation of Distribution
Algorithms (EDAs) [20]. Here, a distribution is iteratively fit to estimate the loca-
tion of the best candidate solutions in the decision space. Samples from the distri-
bution are taken, and evaluated sequentially. In the context of EDAs, distributions
can hence be interpreted as search operators. Clearly, the distribution may as well
be based on kernel functions. However, an arbitrary new kernel would also rely on
the availability of an efficient sampling technique.

3.2 Integration II: Error Measure and Performance Measures

The training process of a surrogate model integrated into an SAEA can be inter-
preted as an optimization problem regarding some error or other performance mea-
sure. A common choice is an error measure computed based on the predicted values
or residuals, such as the mean squared error. However, the ability to distinguish be-
tween solutions is often more important than absolute prediction accuracy in the
context of SAEAs. In the following, we therefore highlight two alternative concepts
for performance measures that integrate better with their usage within an SAEA:
rank and locality.

Many meta-heuristic optimization algorithms are based on comparisons and
ranks rather than absolute objective values. Hence, they do not actually require an
exact, numeric prediction provided by the surrogate model. A ranking of candi-
date solutions would be sufficient (cf. [45]). Machine learning models rarely con-
sider ranking errors. There are, however, attempts at rank-based surrogate models

as described by Runarsson [38] or the approach based on rank-SVMs proposed by
Loshchilov et al. [29].3

Besides ranking, another important issue is locality. While machine learning
models are often optimized regarding global accuracy, it is clearly more important
to have high accuracies in promising areas of the decision space. This holds true re-
gardless of the nature of the prediction, i.e. function value or rank. A first step in this
direction could be to bias the initial sample for the training of the surrogate model
with previous knowledge (if available) instead of using a space-filling design.

In terms of local performance measures for surrogate models in SAEAs, Le et
al. have recently introduced the concept of evolvability [26]. In this context, the
evolvability of a surrogate model is defined as the expected amount of improvement
of an offspring (derived by local search) in comparison to its parent. As such, the
evolvability measure considers information about the fitness landscape, the state of
the search process as well as aspects of the optimization algorithm [6].

Another important question about measuring of optimization performance is
what kind of optimal values can really be reached under the restriction of a strictly
limited budget. This also extends to the question of measuring model quality: what
quality can be reached, given a potentially small, sparse data set? For instance, the
convergence properties of EGO can be computed analytically [7], yet real-world
restrictions will often allow so few evaluations that these theoretical considera-
tions become pointless. Following these arguments, Wessing and Preuss [48] re-
cently questioned whether global optimization is actually a suitable goal for EGO,
or whether it is much better suited for the discovery of multiple local optima. This
line of argument also affects the question of optimizer and model integration. If
global optimization is not the goal, the model does not need to be accurate enough
to respect the global structure, and the optimization algorithm will not necessarily
have to find the exact optimum of the surrogate. Hence, with respect to the prob-
lem definition, the required amount of accuracy of both the model and the optimizer
should be traded off against their cost in a more controlled manner.

3.3 Integration III: Acquisition Functions and Optimizer

EGO is primarily driven by a utility function that indicates the usefulness of a can-
didate solution that may be subjected to expensive evaluation. This utility function
is often referred to as the infill criterion, updating criterion or acquisition function.
This, in essence, forms the connection between the model and the optimizer. Thus,
one critical issue is how to determine a good acquisition function that is capable
of utilizing the information from the model and provide a good balance between
exploration and exploitation.

3 Rank models are also important in the domain of multi-objective optimization. Here, ranks can
be easily produced (via non-dominated sorting), whereas numeric indicators (such as crowding
distance or hypervolume) are still subject of current research. Rank-based models would allow to
represent multiple objectives with just one single surrogate model.

Many different acquisition functions have been proposed in the literature, e.g.,
probability of improvement (PI), expected improvement (EI), lower confidence
bound (LCB), stepwise uncertainty reduction (UR), etc.; for more details see [39].
While some, like EI, have proven convergence properties [7], the characteristics,
e.g., multi-modality of an acquisition function are vital in the performance of the
overall algorithm.

To enable further integration between modeling and optimization, we may ex-
ploit the knowledge available regarding the acquisition function. Unlike the real
(black-box) objective function, some of the properties of the infill criterion are usu-
ally known: they depend on the model as well as the criterion itself. Such knowledge
could be more explicitly exploited by the optimization algorithm. One example of
such properties is the multi-modal landscape of the function. By design, most uncer-
tainty based acquisition functions promote search away from the observed solutions.
As such, they naturally generate a multi-modal landscape with local optima that re-
side between observed solutions, as shown in Fig. 2. This information may be used

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

x

P
re

di
ct

io
n

●

●

●

●

●

0.
00

0.
02

0.
04

0.
06

0.
08

E
xp

ec
te

d
Im

pr
ov

em
en

t

●

Prediction
Observation
Expected Improvement

Fig. 2 An example of the prediction and expected improvement derived from a Kriging model. It
showcases the potential multi-modality of the expected improvement fitness landscape. This exam-
ples assumes minimization of the objective function (and hence, the prediction) but maximization
of the expected improvement.

to tune parameters of the optimizer that are strongly related to the multi-modality
of a problem, e.g., the number of restarts, or the population size of an EA. Also,
initializing optimizers by generating new samples between known solutions may be
helpful. A similar integration step can be made on the side of the optimizer: here,
the properties are known and can be exploited.

As previously mentioned in Sect. 3.2, most optimizers do not require exact ob-
jective function values, but rather, are based on comparing candidate solutions. The
development of rank-based infill criteria may hence be a promising research direc-
tion. When a model predicts ranks rather than numeric predictions, criteria such

as expected improvement would automatically be reinterpreted as rank-based mea-
sures.

Another possible avenue of research is to interpret the two conflicting compo-
nents that are balanced in most acquisition functions, i.e. exploration and exploita-
tion, as two separate goals [44, 47]. In this case, evolutionary algorithms specifically
designed for multi-objective optimization are employed to potentially find more bal-
anced solutions.

4 Numerical experiments

In this section, we first briefly elaborate different types of kernels, recombination
and mutation operator, and their combinations used. In addition, we give an intro-
duction to benchmark problems used in this study. Then, we present the results and
discuss them based on several experiments conducted.

4.1 Experimental Setup

4.1.1 Algorithm Configurations

As stated in the research questions in Sect. 1, we are interested in the effects and
interactions of i) surrogate model, ii) optimization algorithm and iii) optimization
problem. For the surrogate model, we investigate the influence of different kernels.
For the optimization algorithm, we consider different variation operators in an evo-
lutionary algorithm (EA) which are combined in an EGO variant. The parameter
values of the different modules of our algorithms are given in Table 1. As a baseline
comparison, we also conducted the experiments with a model-free EA (genetic algo-
rithm in this case) with a population of size 2×n, with Gaussian mutation operator
and uniform crossover. For the model-based EGO, we also tested different initial
design sizes when training the Kriging model. Note, that when the initial design
size is equal to the whole budget of evaluations, EGO reduces to Latin Hypercube
sampling (LHC).

We use the python GPy [1] library for the Kriging implementation. GPy en-
codes Gaussian process regression and offers several different kernels to be used in
the model. For the optimizer, we use the DEAP library [16], which is a modular
framework for evolutionary algorithms. For details on the employed modeling and
optimization tools, we refer to the documentation.

The acronyms mentioned in the table are defined as follows:

• n samples: initial design size, the number of samples used to build the first Krig-
ing model in each run

• budget: maximum number of objective function evaluations allowed to the algo-
rithm, including the initial design sampling

Table 1 Parameter values of different modules considered in this study. The first column specifies
the component, the second column the parameter name and the third column gives the chosen
parameter values, as well as additional, related values and further details. The last column specifies
the data type of the parameters, i.e., whether they are integer (int.), or categorical (cat.).

Component Name Details Type

n samples
0.25 × budget
0.5 × budget int.
1.0 × budget

Main budget n × 20 int.
method EA cat.

Model Kernels see 4.1.2 cat.

EA

selection tournament (size: 3) cat.

mutation
multi-variate Gaussian, σ = diag(0.1), mutpb = 0.1
polynomial bounded, eta=20, indpb = 1/n cat.
mutESLogNormal, c=20, indpb = 1/n

recombination uniform, indpb = 0.5, cxpb = 0.8 cat.
simulated binary bounded, eta =20,cxpb = 0.8

budget surrogate 4000 × n int.
pop size 0.01 × budget surrogate int.

• method: optimizer or the evolutionary algorithm used
• kernels: different correlation functions in the Kriging model. Details of the cho-

sen kernels are introduced in 4.1.2.
• selection: selection operator which is kept fixed to tournament selection operator

with size 3 in this study
• mutation: mutation operator
• recombination: crossover or recombination operator
• budget surrogate: number of function evaluations used to optimize the surrogate

model with the optimizer (in each iteration)
• pop size: population size in the EA
• mutpb: probability of mutation
• cxpb: probability of recombination
• indpb: parameter of mutation and recombination operators
• eta: distribution index of mutation and recombination operators
• c: learning parameter in mutESLogNormal mutation operator
• σ : variance, step size of the mutation operator

The chosen kernels are excluded from Table 1. Instead, since they require addi-
tional details and explanations, they are introduced in the next section.

4.1.2 Kernels

In essence, a kernel function encapsulates the relationship and the permitted vari-
ation in function responses between two decision vectors x and x′. A kernel with
its hyperparameters thus imposes a reproducing kernel Hilbert space for all possi-
ble functions that may be represented. A typical avenue to describe the relationship
is through a distance measure r2 = ∑

n
i=1(xi− x′i)

2/l2
i , where li is a hyperparameter

which determines the lengthscale associated with the ith dimension. Here the role
of li is to scale, and consequently specify the importance of the ith dimension in the
decision space with respect to the function responses. In addition, another hyperpa-
rameter often used is the kernel variance σk that controls the amplitude of respective
kernels and determines how much the function responses may vary depending on
distances. Hence, the set of hyperparameters θ = {σk, l1, . . . , ln} effectively control
what function responses may be achieved with Kriging models. As such, learning
in this context constitutes locating a set of suitable hyperparameters that represents
the data best4. In this chapter, we used the following kernel functions [1, 37]:

• RBF: The Gaussian or radial basis function (RBF) kernel is the most popular
kernel. It has infinitely many derivatives and it is a universal (stationary) kernel.

κ(x,x′) = σ
2
k exp

(
− r2

2

)
, (7)

• MLP: The multi-layer perceptron (MLP) is a class of kernel functions that cap-
tures the flexibility of multi-layer neural networks with infinitely many hidden
units. It is a non-stationary kernel. It is also known as the arc-sine or neural net-
work kernel.

κ(x,x′) = σ
2
k

2
π

asin

 σσσ2
wxT x′+σ2

b√
σσσ2

wxT x+σ2
b +1

√
σσσ2

wx′T x′+σ2
b +1

 , (8)

where σσσw and σb hyperparameters can be seen as the variances in weight vector
and a bias respectively for a neural network with infinitely many hidden layers.

• EXP: The exponential (EXP) kernel is another stationary kernel, closely related
to the RBF kernel.

κ(x,x′) = σ
2
k exp(−r) , (9)

• Mat52: The Matern-5/2 is a stationary kernel that is twice differentiable. It is
frequently recommended to use this kernel for real world problems [42].

κ(x,x′) = σ
2
k

(
1+
√

5r+
5
3

r2
)

exp
(
−
√

5r
)
, (10)

• LIN: The linear kernel is a non-stationary kernel that captures any linearity pre-
sented by data.

4 We used limited memory BFGS with five restarts to estimate the hyperparameters [1].

κ(x,x′) =
n

∑
i=1

σixix′i, (11)

0.0 0.2 0.4 0.6 0.8 1.0
x

2

1

0

1

2
f(x

)
RBF
MLP
EXP
Mat52
LIN

Fig. 3 Randomly drawn realizations of Gaussian processes with different kernels. The hyperpa-
rameters are optimized based on a hypothetical set of data shown in black crosses. Clearly, EXP
produces a non-smooth realization and LIN only captures the linear trend in the data. In contrast,
RBF, MLP, and Mat52 generate smoother representations of the data.

To understand these kernels, it is helpful to investigate how realizations of the
respective models behave. It is common to depict the mean prediction and the un-
certainty around it due to specified decision vectors. Generally, such visualizations
smooth over how a realization from the full posterior predictive distribution may
behave. Thus, it is somewhat difficult to observe differences in behavior. Therefore,
it is useful to generate a random multi-variate normal sample for a range of decision
vectors at regular intervals. In Fig. 3, we show such random realizations of the above
kernels. Unsurprisingly, the realizations clearly suggest that it is unlikely to derive
good performance from a specific kernel across problems with different character-
istics. For instance, a linear kernel may only be useful if the expensive function is in
fact linear. Or, a fast changing and non-smooth function may be better represented
with an exponential kernel.

4.1.3 BBOB benchmark problems

The BBOB function suite within the benchmarking COCO framework contains 24
different single-objective functions, which are scalable regarding the decision space

dimension. These functions vary in terms of characteristics such as separability,
conditioning, modality and global structure, thus ensuring some level of diversity.

In order to be able to formulate statements on the performance of an algorithm on
a function type as well as its robustness, the functions can be instantiated. The test
suite contains 15 instances for each of the functions that result from transformations
and differ in terms of some properties, e.g., the location of optima. In our experi-
ments, we considered problems with decision space dimensions 2, 3, 5 and 10. The
bounds of the variables are also limited to [−5,5] ⊂ ℜ per dimension. We set the
maximum budget of function evaluations to only 20 evaluations per dimension.

Since the optima are known for each function instance, the performance of an
algorithm can be measured as the difference of the best discovered value and the
correct optimum (precision). The benchmark measures anytime performance by
recording the best precision achieved at each function evaluation. To that end, pre-
cision targets are defined and it is recorded when the algorithm is able to reach the
respective target.

4.1.4 Summary of Test Runs

With the above described choices the following three (partially overlapping) sets of
experiments were conducted:

1. First, the kernel (RBF), mutation operator (Gaussian) and recombination operator
(Uniform) were kept fixed, while the initial design size was set to either 25% (5n)
or 50% (10n) of the budget (20n), where n is the dimension of the decision space.

2. Second, the interaction of kernel choice and mutation operator was investigated,
by testing all combinations of kernels and mutation operators. The initial design
size was fixed at 25% (5n).

3. Finally, only for the RBF and MLP kernel, all combinations of mutation and
recombination operators were tested. The initial design size was fixed at 25%
(5n).

All tests were run on the complete BBOB test suite with specification as detailed in
the previous section.

4.2 Results

To analyze the results of the experiments, a measure of performance is required. Fol-
lowing the BBOB framework, we compute empirical cumulative distribution func-
tions (ECDF) [18]. Hence, we specify a set of target values (in terms of precision)
that should be achieved by the tested algorithms. Since we do runs with severely
limited budgets, we do not use the default targets of BBOB, but only a set of eas-
ier targets: tar = {103,102.8,102.6, ...,10−3}. The runtimes required to attain these
targets are recorded for each algorithm run and target. As an aggregated measure

of performance, the Area Under the resulting ECDF Curves (AUC) is computed for
each algorithm run.

As outlined earlier, we are interested in interactions of the problem (i.e., rep-
resented by type of function or dimensionality), the optimizer (mutation and re-
combination operators) and the model (kernel). To discover whether any of these
interactions are observed in the experimental results, we use an ANOVA / linear re-
gression analysis [32]. All main effects and two-way interaction terms are included
in the model.

First experiments are focused on one kernel (RBF), mutation operator (Gaus-
sian) and recombination operator (Uniform), but with varying initial design sizes
(25 and 50 percent of the budget). The resulting linear model has an R2 value of
approximately 0.9262. This indicates that a large proportion of the variance in the
observations is explained by the model. It has to be noted, that the ANOVA model
assumes independent random samples from a normal distribution with constant vari-
ance (homoscedastic).

As the analysis plots in Fig. 4 indicate, the residuals are not perfectly normally
distributed (due to their deviation from the diagonal in the quantile-quantile plot
(QQ-plot), right side in Fig. 4) and may be slightly heteroscedastic (due to the
structure seen in the residuals, left side in Fig. 4). Still, as the deviations are not
that extreme and since the number of observed samples is rather large, we argue
that the model is still adequate. Similar results are valid for all models described in
this section.

0.0 0.4 0.8

−
0.

1
0.

0
0.

1
0.

2

Fitted values

R
es

id
ua

ls

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●●

●●
●

●

●

● ●●

●

● ●

●
●

● ●

●

●

●

●

●

●
●

●

●

●
●

●
● ●

●

●

●
●

●

●●
●

● ●

●

●● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●
●

●

●

●
●

●

●

●

●

●
●●

●

● ●
● ●

●

●

● ●

●

●

●

●●
●

●

●

●
●

●

●

●

●●●
●

●
●
●
●

●

●

●

●

●

●●●●
●
●
●
●

●
●●
●

●

●

●
●
●

●
●●

●

●●

●

●●

●

●

●

●●
●
●

●
●

●

●
●

●

●

●
●

●

●●
●
●●

●●

●

●

●
●●●

●●

●

●
●
●
●●
●

●●

●

●●●
●●●

●●
●●●

●

●
●●●●●●●

●

●●
●

●●
●
●

●
●
●

●

●
●
●●●●
●
●
●

●
●

●●

●●
●●
●●

●
●●
●

●
●
●●●

●●
●●

●
●●

●

●
●

●

●●

●●

●
●

●

●●
●●

●
●

●●

●

●

●

●

●

●
●

●●●

●

●

●●●

●

●
●

●

●

●

●

●
●●

●

●●
●●
●
●

●●
●
●

●

●

●

●
●●

●
●
●
●

●
●●
●●

●
●

●●

●
●
●●●

●

●

●●
●
●

●
●
●

●

●
●

●

●●
●●
●

●
●

●

●
●●
●

●
●

●

●●●

●
●
●●●

●
●
●●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●●●●
●
●
●●
●●
●

●●
●
●

●●

●
●●
●●●

●●
●
●

●
●
●●
●●
●

●

●●●●
●

●
●

●●

●●●●
●
●●

●●

●●
●
●●

●

●

●
●●●

●●
●●

●
●●

●

●
●
●
●

●

●
●
●

●●
●
●
●

●

●●●
●
●
●
●
●

●●
●●

●
●●

●

●
●

●
●

●

●
●
●
●

●

●●
●
●

●

●
●

●

●●

●

●

●

●●●

●

●

●
●●

●

●
●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●
●●

●●●
●●
●

●●

●●
●
●
●●
●
●●
●●
●●

●
●

●
●

●●●●
●●●

●

●

●●

●
●●●●●●●
●●●

●●

●

●
●●●●

●●●●

●

●
●

●

●

●

●

●
●●
●

●
●●
●●

●●

●●●●●●●

●●
●

●

●
●

●

●

●
●
●●●●●
●

●●●●●

●
●

●●●

●

●
●●

●

●

●

●●
●

●
●
●
●
●●●
●
●
●

●●
●

●

●
●●●●●

●
●
●
●

●
●●●●●
●
●

●

●

●
●
●

●
●
●●

●

●
●●

●

●

●
●●

●
●
●
●
●

●
●
●

●
●

●

●
●

●

●
●

●

●●

●
●●

●

●

●●
●

●

●●

●

●●
●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●
●

●

●
●

●

●

●

●●
●

●

●
●●

●●●
●

●

●
●●
●

●

●
●
●
●●

●

●

●

●
●
●●●
●

●
●
●
●
●
●

●●

●
●

●
●
●●●●

●

●●●
●

●
●
●

●

●

●
●
●●●

●
●

●
●

●
●

●

●

●
●

●

●●

●
●●●

●

●

●●

●

●●
●●
●

●

●●●●
●

●

●●

●

●

●●●
●

●
●
●

●
●

●●

●●

●
●

●
●●

●
●
●●

●
●●●●

●
●

●
●
●

●

●●

●●
●●
●

●●
●
●

●
●

●

●

●
●●

●
●●
●●●●

●

●
●

●●●●
●

●●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●
●

●
●●

●
●

●

●
●
●●

●

●

●

●
●

●

●
●
●

●
●
●●

●
●

●

●

●

●
●

●●
●

●●

●

●

●●

●

●

●
●
●
●●●
●●

●

●

●●●

●
●
●●
●

●●●
●

●
●

●●●
●
●●●
●

●●
●●

●●●●
●●●●

●●

●●●●
●●
●●
●●●●
●●●●

●

●

●

●●

●
●

●

●

●●●

●
●

●

●

●

●
●

●
●●

●

●

●●

●
●

●

●

●
●●

●
●

●●
●

●
●●
●●
● ●

●
●

●●
●
●
●

●●

●
●●

●

●
●

●
●
●

●
●

●●
●

●
●●
●●
●

●
●
●

●●
●●●

●
●
●

●●
●
●

● ●
●

●

●
●●

●

●
●

●

●

●
●●

●

●

●
●

●

●●
●
●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●●

●

●

●
●●

●

●●

●
●●
●

●

●

●
●
●

●

●●
●

●

●

●●● ●

●

●

●
●●

●

●●

● ●

●

●
●

●

●

●●

●

●

●
●●
●

●

●

●
●

●

●

●
●
●

●

●

●●
●

●
●

●

●

●
●
●

●

●

●

●

●
●

●●●●
●
●●●●

●●
●●

●●
●●●

●●●●●
●●

●●
●●

●●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●●
●

●●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●●●
●
●

●●

●
●

●
●

●
●●
●

●
●●●

●

●

●●
●

●
●●

●

●
●
●

●●
●
●

●●
●

●
●
●

●
●

●
●●

●
●●

●

●
●●
●

●
●●●

●
●

●
●

●
●●
●
●
●

●
●●●

●
●

●
●

●
●

●
●●
●

●
● ●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●●

●●

●
●

●●●
●
●

●

●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●
●●

●

●
●

●●

●
●

●

●

●●

●

●
●
●

●

●●
●

●
●●●●●●●
●●

●●

●
●
●
●

●●
●●
●
●

●●
●●
●●
●●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●
●

●
●●
●

●

●

●

●
●●

●

●
●
●

●
●

●

●
●

●
●

●

●

●

●

●

●●
●

●●

●

●
●

●

●

●

●

●

●●●
●●

●

●

●

●

●
●

●
●●

●●

●

●

●

●
●

●

● ●

●

●

●●
●●
●
●

● ●

●
●

●
●

●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●●

●●
●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●
●

●

●

●

●●

●
●

●

●

●●

●
● ●

●

●

●●●

●

●●●●
●

●

●●

●

●

●
●●●

●
●● ●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●
●

●
● ●

●●

●

●●

●

●
●

●●

●

●
●

●

●
●

●
●● ●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●●

●
●
●

●
●

●

●
●

●●
●

●
●

●

●
● ●●

●●

●

●
●

●●

●●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●
●

●
●

● ●
●

●
●

●

●

●
●

●
●

●●

●

●

●

●

●
●

●●
●

●

●
● ●●

●●
●●
●●

●

● ●
●

●

●

●●

●

● ●

●
●

●

●

●
●●
●

● ●
●

●

●
●

●

●

●

●
● ●●

●●

●

● ●
● ●

●

●

●
●

●
●

●
●

●

●●
●

●
●

● ●
● ●●

●
●
●
●

●●
●●
●●
●
●●●●●
●●

●●

●
●●
●
●

●●
●
●●

●

●●

●●●
●

●

●

●

●

●

●

●

●

●●

●

●
●●

●
●

●●●

●

●●●

●
●

●

●

●
●
●●
●

●

●●

●

●

●

●●

●
●●
●
●
●
●
●●

●
●●●

●●

●
●
●
●●●●
●

●

●●●
●
●●●

●
●●
●
●
●

●●
●●●●

●●
●●
●●
●

●
●●●●
●

●

●
●●●●
●
●
●
●●●●●●●●

●

●

●

●

●

●
●
●
●

●●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●
●

●

●

●●
●●

●●
●
●
●●
●

●
●●

●

●
●

●
●●
●

●
●

●
●●

●

●●

●
●
●
●●
●●●

●●
●●●
●
●●
●
●

●●
●
●

●
●●●

●
●
●

●

●

●
●

●
●

●
●
●
●

●●

●

●

●

●●●

●
●

●

●

●●●
●●

●●●

●
●

●

●

●

●

●●

●
●

●

●

●

●●

●
●
●

●

●●

●●

●
●●
●
●●

● ●

●

●

●
●●

●

●

●

●

●

●●
●●

●

●

●
●

●

●

●

●

●
●
●
●

●
●

●

●

●●●

●●●
●●
●

●

●

●
●●

●

●●

●

●
●

●
●

●

●

●
●
●

●
●

●●

●
●

●
●●

●
●
●●
●

●
●●●●
●
●

●

●
●●●●
●
●

●●
●
●

●

●

●

●

●
●●

●

●
●

●

●

●
●●●

●

●

●
●●●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●
●●
●

●
●

●

●

●●
●

●●

●
●

●

●●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●●●●

●
●

●

●

●●●
●●●

●
●
●

●

●

●
●

●●
●

●
●

●

●●●

●

●
●●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●
●●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●
●

●

●

●

●●

●

●
●
●
●

●

●

●
●

●

●

●
●
●

●
●●

●●●
●
●

●
●

●●

●

●●

●●

●●●

●
●
●

●●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●
●

●

●

●
●

●
●

●

●

●

●
●●
●

●●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●
●●

●
●
●

●
●

●●
●
●
●●●
●●●

●
●●●●
●●
●●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●●

●

●

●

●
●
●●

●

●

●

●
●●
●

●
●

●

●●

●●

●
●

●

●

●

●
●●

●
●

●

●
●

●
●●

●

●

●●

●

●

●

●●●

●

●●

●
●

●
●

●
●
●

●

●

●

●●

●
●●

●

●

●●
●
●

●●●
●●

●

Residuals vs Fitted

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●●

●●
●

●

●

●●●

●

●●

●
●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●
●

●

●●
●●●

●

●●●
●

●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●●

●

●●
●●

●

●

●●

●

●

●

●●
●

●

●

●
●

●

●

●

●●●
●

●
●

●
●

●
●

●

●

●

●●●●
●

●
●

●

●
●●

●

●

●
●

●
●

●
●●

●

●●

●

●●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●●

●

●●
●

●●

●●

●

●

●
●●●

●●

●

●
●

●
●●

●

●●
●

●●●
●●●

●●
●●●

●

●
●●●●●●●

●
●●

●

●●●
●

●
●

●

●

●
●

●●●●
●

●
●

●
●

●●
●●

●●
●●

●
●●
●

●
●

●●●

●●
●●

●
●●

●

●
●

●

●●

●●

●
●

●

●●
●●

●
●

●●

●

●

●

●

●

●
●●●●

●

●
●●●

●

●
●

●

●

●

●

●
●●

●

●●●●
●

●
●●

●
●

●

●

●

●
●●

●
●

●
●

●
●●

●●
●

●

●●

●
●

●●●

●

●

●●●
●

●
●

●

●

●
●

●

●●
●●●

●
●

●

●
●●
●

●
●

●

●●●

●
●

●●●●
●

●●
●

●
●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●●●
●

●
●●

●●●

●●
●

●
●●

●
●●

●●●
●●

●
●

●
●

●●
●●

●●

●●●●
●

●
●

●●
●●●

●
●

●●

●●

●●
●

●●

●

●

●
●●●

●●
●●

●●●
●

●
●

●
●

●

●
●

●●●
●

●
●

●

●●●
●

●
●

●
●

●●
●●

●
●●

●

●
●

●
●

●

●
●

●●

●

●●●
●

●

●
●

●

●●

●

●

●

●●●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●●

●●
●

●●

●●
●

●
●●

●
●●
●●

●●

●
●

●
●

●●●●
●●●

●

●

●●
●

●●●●●
●●●●●●●

●

●
●●●●●●●●

●

●
●

●

●

●

●

●
●●

●

●
●●
●●

●●

●●●●●●●

●●
●

●

●
●

●

●
●

●
●●●●●●

●●●●●

●
●

●●●
●

●
●●

●

●

●

●●
●

●
●

●
●

●●●●
●

●

●●
●

●

●
●●●●●
●●
●

●

●
●●●●

●
●

●

●

●

●
●

●

●
●

●●

●

●
●●

●

●

●
●●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●

●●

●
●●

●

●

●●
●

●

●●

●

●●
●●
●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●

●
●●

●●●
●

●

●●●
●

●

●
●●
●●

●

●

●

●
●

●●
●

●

●
●●

●
●

●

●●
●

●

●
●

●●●●
●

●●●
●

●
●

●
●

●

●
●

●●●

●
●

●
●

●
●

●

●
●

●
●

●●

●
●●●

●

●

●●

●

●●
●●

●

●

●●●●
●

●

●●

●

●

●●●
●

●
●

●

●●

●●

●●

●
●

●
●●

●●
●●

●
●●●

●
●

●
●

●
●

●

●●

●●
●●

●

●●
●

●

●
●

●

●

●
●●

●
●●

●●●
●

●

●
●

●●●●
●

●●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●
●

●
●●

●
●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●
●

●●
●

●

●

●

●

●
●

●●
●

●●

●

●
●●

●

●

●
●

●
●●●

●●

●

●

●●●

●
●

●●
●

●●●
●

●
●

●●●
●

●●●
●

●●
●●

●●●●
●●●●

●●
●●●●

●●
●●

●●●●
●●●●

●

●

●

●●

●●

●

●

●●●

●
●

●

●

●

●
●

●●●

●

●

●●

●●

●

●

●
●●

●
●

●●
●

●
●●

●●
●●

●
●

●●
●

●
●

●●

●
●●

●
●

●

●●
●

●●
●●
●

●
●●
●●

●

●
●

●
●●

●●●

●
●

●
●●

●
●

●●●

●

●
●●

●

●
●

●

●

●
●●

●

●

●
●

●

●●
●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●●

●

●

●
●●

●

●●

●
●●

●

●

●

●
●

●

●

●●
●

●

●

●●●●

●

●

●
●●

●

●●

●●

●

●
●

●

●

●●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●●●
●

●●●●
●●

●●
●●

●●●
●●●●●

●●
●●

●●
●●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●●
●

●●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●●●
●

●

●●

●
●

●
●

●
●●

●
●

●●●
●

●

●●
●

●
●●

●

●
●●
●●
●

●
●●●

●
●

●
●

●
●

●●

●
●●

●

●
●●

●

●
●●●

●
●

●
●

●
●●

●●
●

●
●●●

●
●

●
●

●
●

●
●●

●
●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●●

●●

●
●

●●●
●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●
●●

●

●
●

●●
●

●

●

●

●●
●

●
●

●

●

●●
●

●
●●●●●●●
●●

●●

●
●

●
●

●●
●●

●
●

●●
●●
●●

●●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●●

●
●●

●●

●

●

●
●●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●●

●

●
●

●

●

●
●

●

●●●
●●

●
●

●

●

●
●

●
●●

●●

●

●

●

●
●

●

●●

●

●

●●
●●

●
●

●●

●
●

●
●

●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●
●

●
●

●

●●

●

●

●
●

●
●

●●●

●

●

●

●●

●●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●●
●

●

●

●

●●

●
●

●

●

●

●●

●
●

●

●

●●

●
●●

●

●

●●●

●

●●●●
●●

●●

●

●

●
●●●

●
●●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●
●

●
●●

●●

●

●●

●

●●
●●

●

●
●

●
●

●

●
●●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●
●

●

●
●

●●
●

●
●

●

●
●●●

●●

●

●
●

●●

●●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●
●

●
●

●●
●

●
●

●

●

●
●

●
●●●

●

●

●

●

●●
●●

●
●

●
●●●

●●
●●

●●

●

●●
●

●

●

●●

●

●●

●
●

●

●

●
●●

●
●●

●

●

●●
●

●

●

●
●●●

●●

●
●●●●

●

●

●
●●

●
●

●
●

●●
●

●
●

●●
●●●

●
●

●
●

●●
●●

●●
●

●●●●●
●●

●●

●
●●

●
●

●●
●

●●

●

●●

●●●
●

●

●

●

●

●
●

●

●

●●

●

●●●

●
●

●●●

●
●●●

●
●

●

●

●
●

●●
●

●

●●

●

●

●

●●

●
●●

●
●

●
●

●●

●
●●●

●●

●
●

●
●●●●●

●

●●●●
●●●

●
●●

●
●

●
●●

●●●●

●●
●●

●●
●

●
●●●
●

●

●

●
●●●●

●
●

●
●●●●●●●●

●

●
●

●

●

●
●

●
●

●●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●
●

●

●

●●
●●

●●
●

●
●●

●

●
●●

●

●
●

●
●●

●

●
●

●●●

●

●●

●
●

●
●●

●●●
●●

●●●●
●●

●
●

●●
●

●
●

●●●●
●

●
●

●

●
●

●
●

●
●

●
●

●●

●

●

●

●●
●

●
●

●

●

●●●
●●

●●●

●
●

●

●

●

●

●●

●
●

●

●

●

●●

●
●

●

●

●●

●●

●
●●●

●●

●●

●

●

●
●●

●
●

●

●

●

●●
●●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●●●

●●●
●●

●●

●

●
●●●

●●

●

●
●

●
●

●

●

●
●

●

●
●

●●

●
●

●
●●

●
●

●●
●

●
●●●●

●
●

●

●
●●●

●
●

●
●●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●
●●●

●

●

●
●●●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●
●●

●●
●

●
●

●

●
●●

●
●●

●
●

●
●●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●●●●●
●

●

●

●

●●●
●●●

●
●

●

●

●

●
●

●●
●

●
●

●
●●●

●

●
●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●●

●

●

●

●●

●

●
●

●
●

●
●●

●●●
●

●

●
●

●●

●

●●

●●

●●●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●●
●●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●
●●

●
●●

●
●

●●
●

●●●●
●●●
●

●●●●
●●

●●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●●

●

●

●

●
●●

●
●

●

●

●●

●●

●
●

●

●
●

●
●●

●
●

●

●
●

●
●●

●
●

●●

●

●
●

●●●

●

●●

●
●

●
●

●
●

●

●

●

●
●●

●
●●

●

●

●●
●

●

●●●
●●●

−3 −1 1 3

−
2

0
2

4
6

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

Fig. 4 Analysis plots for checking the assumptions (normal distribution, homoscedastic) of the
model. This is the result for the data generated with fixed kernel, fixed mutation and recombination
operators, and varying design sizes. All main effects and interactions are considered in the model.
The plot is based on the residuals of the model, plotting them against the fitted values (left) and
plotting their actual quantiles against the theoretical (normal distribution) quantiles

The resulting ANOVA for the first set of data is presented in Table 2. The ANOVA

Table 2 ANOVA for preliminary tests with RBF kernel, Gaussian mutation and Uniform recom-
bination operator, with varying initial design sizes. The rows report statistics for target function
(fun), dimension (dim), function instance (inst), design size (size) and their respective interaction
terms. Importantly, numbers close to zero (bold numbers, < 0.05) indicate significant effects. For
an interpretation of other reported statistics, see [32].

Df Sum Sq Mean Sq F value Pr(>F)
fun 23 58.64 2.55 1030.47 <2.2e-16
dim 1 11.75 11.75 4748.94 <2.2e-16
inst 14 0.04 0.00 1.05 0.3952
size 1 0.20 0.20 80.80 <2.2e-16
fun:dim 23 4.11 0.18 72.25 <2.2e-16
fun:inst 322 0.59 0.00 0.74 0.9998
fun:size 23 0.45 0.02 7.88 <2.2e-16
dim:inst 14 0.02 0.00 0.63 0.8412
dim:size 1 0.07 0.07 28.87 8.467e-08
inst:size 14 0.02 0.00 0.46 0.9521
Residuals 2443 6.04 0.00

determines that function, dimension, initial design size and their interactions seem
to have significant effects. The problem instance and its corresponding interaction
terms have no significant effect. This is a promising first result: Different functions
and dimensions should affect performance, but an instance of the same problem
should not. The effect of the initial design size is also easy to explain: a smaller size
leaves a larger part of the budget for a more purposeful exploration of the decision
space. While final best values (after the budget is exhausted) may not vary much,
runs with smaller design sizes seem to reach good solutions faster.

AUC values are overall larger for all runs with the smaller of the tested initial
design sizes (25 percent of the budget). Note, that this general remark is not affected
by the interaction terms. The respective coefficients (which we do not include due
to their large number) indicate that the design size has stronger effects for certain
functions. The rest of the analysis will hence focus on results with the lower design
size and the insignificant influence of test function instances will be ignored.

The second set of experiments tested all 5 different kernels in the model in combi-
nation with 3 different mutation operators employed in the optimizer. The resulting
linear model has an R2 value of approximately 0.9034. Again, this indicates that a
large proportion of the variance in the observations is explained by the model. The
ANOVA for this model is presented in Table 3. While all other terms are significant,
the interaction of kernel and mutation operator is insignificant. There seems to be
no evidence that changing both kernel and mutation operator has an effect on the
optimization performance. Changing them individually however does have a signif-
icant effect, there are even multiple significant interactions with the test function and
dimension. That means, the performance of different kernels changes depending on
the objective function.

The third set of experiments was intended to determine interactions with the re-
combination operator. Hence, all combinations of two kernel choices (RBF, MLP)
three mutation operators, and two recombination operators were tested. The result-

Table 3 ANOVA for tests with different kernels and mutation operators. The rows report statistics
for target function (fun), dimension (dim), function instance (inst), kernel (kern), mutation oper-
ator (mutation) and interaction terms. Importantly, numbers close to zero (bold numbers, < 0.05)
indicate significant effects. For an interpretation of the other reported statistics, see e.g., [32].

Df Sum Sq Mean Sq F value Pr(>F)
kern 4 0.99 0.25 90.00 <2.2e-16
mutation 2 0.23 0.11 41.22 <2.2e-16
fun 23 430.33 18.71 6792.26 <2.2e-16
dim 1 85.30 85.30 30965.08 <2.2e-16
kern:mutation 8 0.02 0.00 0.87 0.5413
kern:fun 92 1.37 0.01 5.40 <2.2e-16
kern:dim 4 1.00 0.25 91.03 <2.2e-16
mutation:fun 46 1.93 0.04 15.24 <2.2e-16
mutation:dim 2 0.03 0.01 4.67 0.0094
fun:dim 23 29.76 1.29 469.79 <2.2e-16
Residuals 21394 58.93 0.00

ing linear model has an R2 value of approximately 0.9131. This indicates that a
large proportion of the variance in the observations is explained by the model. The
ANOVA for this model is presented in Table 4. Again, the interactions between the

Table 4 ANOVA table, analyzing influence of the used kernel (kern), mutation operator (muta-
tion), recombination operator (operator), test function (fun), dimension (dim) and their interac-
tions. Importantly, numbers close to zero (bold numbers, < 0.05) indicate significant effects. For
an interpretation of other reported statistics, see [32].

Df Sum Sq Mean Sq F value Pr(>F)
kern 1 0.01 0.01 4.29 0.0384
mutation 2 0.09 0.04 16.22 9.126e-08
recombination 1 0.20 0.20 74.52 <2.2e-16
fun 23 365.71 15.90 6056.62 <2.2e-16
dim 1 77.02 77.02 29339.03 <2.2e-16
kern:mutation 2 0.00 0.00 0.45 0.6407
kern:recombination 1 0.00 0.00 1.50 0.2214
kern:fun 23 0.32 0.01 5.30 2.292e-15
kern:dim 1 0.01 0.01 3.99 0.0457
mutation:recombination 2 0.01 0.01 2.60 0.0744
mutation:fun 46 1.12 0.02 9.30 <2.2e-16
mutation:dim 2 0.01 0.00 1.43 0.2398
recombination:fun 23 0.63 0.03 10.38 <2.2e-16
recombination:dim 1 0.00 0.00 1.35 0.2457
fun:dim 23 27.60 1.20 457.17 <2.2e-16
Residuals 17127 44.96 0.00

variation operators (mutation, recombination) and the kernels are not significant.
The analysis presented above determined which parameters of the algorithm

configurations affect performance. But it remains unclear, which algorithm con-
figuration works well, and on what type of function. To that end, as a follow up
on the ANOVA analysis, we use Tukey’s Honest Significant Difference (Tukey’s

HSD) test [32, Sec. 3-5.7] to generate pairwise comparisons of all algorithm con-
figurations, with respect to their performance on different test functions, function
instances, and dimensions. The resulting pairwise comparisons are used to com-
pute non-dominated sorting ranks: all algorithms that were not significantly worse
than any other algorithm received rank one, and were removed from the list. Then,
all of the remaining algorithms that were not significantly worse than any other
algorithm received rank two. This procedure is iterated until all algorithms are
ranked. The ranking is done for all functions, as well as each function class (separa-
ble, low/moderate conditioning, high conditioning, multi-modal with strong global
structure, weak global structure). See [19] for details on the function classes and
the respective properties. Table 5 presents the respective ranks. Variants with RBF
or MLP kernel and Simulated Binary recombination seemed to perform best over-
all. Both model-free base-line algorithms (EA and LHC) performed worst. Of all
model-based variants, the ones with linear kernel performed worst. In case of the
multi-modal functions with weak global structure, the chosen algorithm configu-
ration did not matter much, there were no differences between the model-based
approaches. This may be attributed to the larger difficulty of these functions, due to
the weak global structure.

Table 5 Ranks and AUC values for each algorithm on all functions (All), separable functions (A),
low to medium conditioned functions (B), high conditioning functions (C), multi-modal functions
with adequate global structure (D), and multi-modal functions with weak global structure (E).
Left part shows ranks based on Tukey’s HSD tests, right part shows average AUC values for the
respective groups. Sorted by the AUC column All.

All A B C D E All A B C D E
RBF.Gauss.SimulatedBinary 1 1 1 1 1 1 0.264 0.330 0.201 0.158 0.313 0.306

Mat52.Gauss.Uniform 1 1 1 1 1 1 0.263 0.321 0.206 0.161 0.311 0.306
RBF.LogNorm.SimulatedBinary 1 1 1 1 1 1 0.261 0.311 0.204 0.157 0.314 0.307

MLP.Gauss.SimulatedBinary 1 1 1 2 1 1 0.261 0.324 0.203 0.144 0.313 0.308
RBF.Poly.SimulatedBinary 1 1 1 1 1 1 0.261 0.311 0.208 0.153 0.315 0.306

MLP.LogNorm.SimulatedBinary 1 2 1 1 1 1 0.259 0.304 0.211 0.147 0.315 0.311
RBF.Gauss.Uniform 1 1 1 1 1 1 0.259 0.318 0.204 0.152 0.311 0.300

MLP.Poly.SimulatedBinary 1 2 1 2 1 1 0.258 0.308 0.206 0.144 0.317 0.303
MLP.Gauss.Uniform 1 1 1 1 1 1 0.257 0.312 0.201 0.145 0.314 0.303
EXP.Gauss.Uniform 1 2 1 1 1 1 0.257 0.306 0.199 0.147 0.317 0.304
Mat52.Poly.Uniform 2 3 1 1 1 1 0.254 0.288 0.198 0.152 0.318 0.303

RBF.LogNorm.Uniform 2 2 1 1 1 1 0.253 0.289 0.205 0.148 0.309 0.303
Mat52.LogNorm.Uniform 2 3 1 1 1 1 0.253 0.285 0.198 0.149 0.316 0.305

MLP.LogNorm.Uniform 2 3 1 2 1 1 0.252 0.284 0.202 0.141 0.314 0.309
EXP.LogNorm.Uniform 2 3 1 2 1 1 0.252 0.278 0.203 0.141 0.319 0.308

MLP.Poly.Uniform 2 3 1 2 1 1 0.251 0.285 0.205 0.140 0.313 0.305
RBF.Poly.Uniform 2 3 1 1 1 1 0.251 0.282 0.201 0.150 0.309 0.301
EXP.Poly.Uniform 2 3 1 2 1 1 0.250 0.277 0.202 0.141 0.317 0.302

LIN.Gauss.Uniform 3 3 2 2 2 1 0.241 0.288 0.176 0.128 0.302 0.298
LIN.LogNorm.Uniform 3 4 2 2 2 1 0.237 0.261 0.182 0.131 0.302 0.296

LIN.Poly.Uniform 3 4 2 2 2 1 0.235 0.257 0.177 0.130 0.307 0.292
LHC 4 5 3 3 2 2 0.214 0.205 0.152 0.111 0.303 0.284

EA.Gauss.Uniform 5 5 4 3 3 2 0.200 0.188 0.129 0.102 0.294 0.275

4.3 Discussion of Results

To summarize, we can draw the following conclusions from the presented results.

Should we use SAEA algorithms such as EGO? Based on the results this can
be answered positively. Table 5 shows that even the worst model-based algorithm
variants outperform the model-free competitors. Since this conclusion is based
on the specific budget used here, they may not be generalized for larger budget.

What kernels should be used? The choice of kernel has a significant effect, yet
it is hard to make a general recommendation since the best working kernel may
be problem dependent. Also, several kernels may provide equally good results.
The only general (yet also obvious from Fig. 3) recommendation is to avoid
using the linear kernel. The earlier ANOVA indicates that the kernel choice has
interactions with the objective function and its dimensionality. This means that
tuning is required to find the right kernel for a specific problem.

Which search operators should be chosen? In some cases, simulated binary
crossover seems to perform better than uniform crossover. While the algorithm
is sensitive to the mutation operator, no general recommendation can be made.
This, and the observed interactions with objective function and dimensionality
clearly necessitates to be resolved by tuning.

How large should the initial design be? The smaller initial design size (25% of
the budget or 5n for n-dimensional decision space enables the algorithm to spend
more evaluations on exploiting the information provided by the model. This
seems to yield better performance.

Is there an interaction between search operators and kernels? Unfortunately,
no significant relationship between search operators and kernels was observed.
Firstly, this could be an effect of over-searching. If we assume that the budget
of surrogate model evaluations available to the optimizer is large, then the exact
configuration of the optimizer will matter less, since even a poorly configured
optimizer may provide sufficient results. Otherwise, the reason may be found in
the selection of kernels and search operators. If none of them interact well, re-
sults are all equally poor. If all of them interact well, results will correspondingly
be equally good.

Does the problem class play a role? Table 5 shows that the problem class
clearly matters: depending on the amount of local or global structure, differ-
ent algorithms (or sets of algorithms) may perform best. Also, if global problem
structure is weak, there seems to be no difference in performance between the
employed modeling procedures. Then, even the linear kernel provides competi-
tive results.

5 Conclusions and Outlooks

In this chapter, we discussed a better integration of model and optimizer in SAEAs.
We have performed an extensive study to investigate the effects and interactions
of different modules of SAEAs. Most importantly, we focused on different types
of kernels, search operators and their combinations. These elements of model and
optimizer were applied in the EGO algorithm. The EGO variants arising from this
setup were tested in several numerical experiments based on a set of single-objective
test functions, taken from the BBOB framework.

The observed results provide some important insights which may be of use when
developing or applying a SAEA to solve an expensive optimization problem; the
effect of choosing different kernels may be affected by the dimensionality of the
problem. In practice, problem dimensionality should hence be taken into consider-
ation when choosing a kernel. Similarly, the type of objective function has a strong
impact. While search operators and kernels each affect the performance of the al-
gorithm, no interaction could be observed. The effect of search operators and ker-
nels also depends on the objective function. Finally, smaller initial design sizes are
preferable to allow sufficient evaluations to the model-driven search procedure.

In addition to these findings, statistical test procedures were used to rank the
employed algorithm configurations. The ranking provides an insight to the practi-
tioners and optimization algorithm analyst to select an appropriate element before
developing or applying a SAEA; as far as problems similar to the BBOB test bench-
marks are concerned, it seems to be recommendable to use RBF, Matern or MLP
kernels, which (overall) seemed to work best in combination with simulated binary
crossover.

The results of the experiments seem to raise the issue that a close interaction of
optimizer and surrogate model is not always observable. One likely reason is the
selection of kernels and operators. One way to alleviate this would be to design
additional experiments where search operators and kernels are selected (by prior
knowledge), so that certain combinations complement each other whereas others
are opposing. That means, two extreme cases may then be of interest: i) the ideal
case, combining kernels with specific, matching variation operators and ii) the worst
case, search operators that are based on a completely different structure as used by
the kernel. Thus, we propose that the analysis of more narrow, yet focused test cases
would be an interesting next step.

This study stresses the importance looking into the integration of surrogate and
optimizer. In an ideal scenario, all the components of an SAEA are well integrated
and self-adaptive. For instance, selection of search operators and their corresponding
parameters, selection of a kernel, using an error measure and acquisition function
can be done on the fly when doing optimization. However, making rules for such a
self-adaptive framework may not be straightforward and the whole procedure can
be potentially time-consuming. Such self-adaptive configuration may introduce an-
other set of parameters which could be sensitive for the performance of the algo-
rithm.

In the future, we would like to extend our study to multi-objective optimiza-
tion problems by employing state-of-the-art algorithms such as ParEGO [24], SMS-
EGO [35], K-RVEA [8], and HypI [36]. In addition, we will also investigate the
integration of other surrogate techniques with further optimizers like CMA-ES and
differential evolution. Furthermore, there exist separate integration methods for mul-
tiple machine learning models (ensemble techniques) and optimization algorithms
or their configurations, respectively. Applying these approaches and results to the
integration of surrogate model and optimization algorithm is hence an interesting
next step.

Acknowledgements

Parts of this work are the result of the discussions at the Surrogate-Assisted Multi-
Criteria Optimization (SAMCO) Lorentz Center Workshop in Leiden, NL (February
29, 2016 till March 4, 2016). The research of Tinkle Chugh was supported by the
FiDiPro project DeCoMo funded by Tekes: Finnish Funding Agency for Innovation
and Natural Environment Research Council [grant number NE/P017436/1]. Alma
Rahat was supported by the Engineering and Physical Sciences Research Council,
UK [grant number EP/M017915/1]. The research of Martin Zaefferer is part of a
project that has received funding from the European Union’s Horizon 2020 research
and innovation program under grant agreement No. 692286.

References

1. GPy: A gaussian process framework in python. http://github.com/SheffieldML/GPy (since
2012)

2. Acar, E., Rais-Rohani, M.: Ensemble of metamodels with optimized weight factors. Structural
and Multidisciplinary Optimization 37(3), 279–294 (2009)

3. Aggarwal, C.C., Hinneburg, A., Keim, D.A.: On the surprising behavior of distance metrics in
high dimensional space. In: Database Theory — ICDT 2001, pp. 420–434. Springer Science
+ Business Media (2001)

4. Andrianakis, I., Vernon, I.R., McCreesh, N., McKinley, T.J., Oakley, J.E., Nsubuga, R.N.,
Goldstein, M., White, R.G.: Bayesian history matching of complex infectious disease models
using emulation: A tutorial and a case study on hiv in uganda. PLoS Computational Biology
11(1), 1–18 (2015)

5. Barber, D.: Bayesian reasoning and machine learning. Cambridge University Press (2012)
6. Bartz-Beielstein, T.: A survey of model-based methods for global optimization. In: G. Papa,

M. Mernik (eds.) Bioinspired Optimization Methods and their Applications, pp. 1–18 (2016)
7. Bull, A.D.: Convergence rates of efficient global optimization algorithms. Journal of Machine

Learning Research 12, 2879–2904 (2011)
8. Chugh, T., Jin, Y., Miettinen, K., Hakanen, J., Sindhya, K.: A surrogate-assisted reference

vector guided evolutionary algorithm for computationally expensive many-objective optimiza-
tion. IEEE Transactions on Evolutionary Computation 22, 129 – 142 (2018)

9. Chugh, T., Sindhya, K., Hakanen, J., Miettinen, K.: A survey on handling computationally ex-
pensive multiobjective optimization problems with evolutionary algorithms. Soft Computing
23(9), 3137–3166 (2019)

10. Coello, C., Lamont, G., Veldhuizen, D.: Evolutionary Algorithms for Solving Multi-objective
Problems, 2nd edn. Springer, New York (2007)

11. Couckuyt, I., Deschrijver, D., Dhaene, T.: Fast calculation of multiobjective probability of
improvement and expected improvement criteria for Pareto optimization. Journal of Global
Optimization 60, 575–594 (2014)

12. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Chichester
(2001)

13. Eiben, A., Smit, S.: Parameter tuning for configuring and analyzing evolutionary algorithms.
Swarm and Evolutionary Computation 1(1), 19 – 31 (2011)

14. Forrester, A., Sobester, A., Keane, A.: Engineering design via surrogate modelling. John Wiley
& Sons (2008)

15. Forrester, A.I., Sóbester, A., Keane, A.J.: Multi-fidelity optimization via surrogate mod-
elling. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
463(2088), 3251–3269 (2007)

16. Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP: Evolutionary
algorithms made easy. Journal of Machine Learning Research 13, 2171–2175 (2012)

17. Hansen, N.: Compilation of results on the 2005 CEC benchmark functions (2005)
18. Hansen, N., Auger, A., Mersmann, O., Tušar, T., Brockhoff, D.: COCO: A platform for com-

paring continuous optimizers in a black-box setting. ArXiv e-prints, arXiv:1603.08785 (2016)
19. Hansen, N., Finck, S., Ros, R., Auger, A.: Real-Parameter Black-Box Optimization Bench-

marking 2009: Noiseless Functions Definitions. Research Report RR-6829, INRIA (2009)
20. Hauschild, M., Pelikan, M.: An introduction and survey of estimation of distribution algo-

rithms. Swarm and Evolutionary Computation 1(3), 111–128 (2011)
21. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general

algorithm configuration (extended version). Tech. Rep. TR-2010-10, University of British
Columbia, Department of Computer Science (2010)

22. Jin, Y.: Surrogate-assisted evolutionary computation: Recent advances and future challenges.
Swarm and Evolutionary Computation 1(2), 61–70 (2011)

23. Jones, D., Schonlau, M., Welch, W.: Efficient global optimization of expensive black-box
functions. Journal of Global Optimization 13, 455–492 (1998)

24. Knowles, J.: ParEGO: A hybrid algorithm with on-line landscape approximation for expensive
multiobjective optimization problems. IEEE Transactions on Evolutionary Computation 10,
50–66 (2006)

25. Lane, F., Azad, R.M.A., Ryan, C.: Principled evolutionary algorithm search operator design
and the kernel trick. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI),
pp. 1–9 (2016). DOI 10.1109/SSCI.2016.7850204

26. Le, M.N., Ong, Y.S., Menzel, S., Jin, Y., Sendhoff, B.: Evolution by adapting surrogates.
Evolutionary Computation 21(2), 313–340 (2013)

27. Lim, D., Jin, Y.: Generalizing surrogate-assisted evolutionary computation. IEEE Transactions
on Evolutionary Computation 14, 329–354 (2010)

28. Lockwood, B.A., Anitescu, M.: Gradient-enhanced universal kriging for uncertainty propaga-
tion. Nuclear Science and Engineering 170(2), 168–195 (2012)

29. Loshchilov, I., Schoenauer, M., Sebag, M.: Dominance-Based Pareto-Surrogate for Multi-
Objective Optimization. In: R.T. et al. (ed.) Simulated Evolution and Learning (SEAL 2010),
pp. 230–239. LNCS 6457, Springer Verlag (2010)

30. Mckay, M., Beckman, R., Conover, W.: A comparison of three methods for selecting values
of input variables in the analysis of output from a computer code. Technometrics 42, 55–61
(2000)

31. Mogilicharla, A., Chugh, T., Majumder, S., Mitra, K.: Multi-objective optimization of bulk
vinyl acetate polymerization with branching. Materials and Manufacturing Processes 29, 210–
217 (2014)

32. Montgomery, D.C.: Design and Analysis of Experiments, 5th Edition. Wiley (1997)
33. Moscato, P., Cotta, C.: A Gentle Introduction to Memetic Algorithms, pp. 105–144. Springer

US, Boston, MA (2003)
34. Oyama, A., Okabe, Y., Shimoyama, K., Fujii, K.: Aerodynamic multiobjective design explo-

ration of a flapping airfoil using a navier-stokes solver. Journal of Aerospace Computing,
Information, and Communication 6, 256–270 (2009)

35. Ponweiser, W., Wagner, T., Biermann, D., Vincze, M.: Multiobjective optimization on a lim-
ited budget of evaluations using model-assisted S-metric selection. In: Proceedings of the
Parallel Problem Solving from Nature-PPSN X, pp. 784–794. Springer, Berlin, Heidelberg
(2008)

36. Rahat, A.A.M., Everson, R.M., Fieldsend, J.E.: Alternative infill strategies for expensive
multi-objective optimisation. In: Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 873–880. ACM (2017)

37. Rasmussen, C.E., Williams, C.K.I.: Gaussian processes for machine learning. The MIT Press
(2006)

38. Runarsson, T.P.: Ordinal regression in evolutionary computation. In: T.P. Runarsson, H.G.
Beyer, E. Burke, J.J. Merelo-Guervós, L.D. Whitley, X. Yao (eds.) Parallel Problem Solving
from Nature - PPSN IX: 9th International Conference, Reykjavik, Iceland, September 9-13,
2006, Proceedings, pp. 1048–1057. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

39. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the human out of the
loop: A review of Bayesian optimization. Proceedings of the IEEE 104(1), 148–175 (2016)

40. Singh, H., Ray, T., Smith, W.: Surrogate assisted simulated annealing (SASA) for constrained
multi-objective optimization. In: Proceedings of the IEEE Congress on Evolutionary Compu-
tation, pp. 1–8. IEEE (2010)

41. Snelson, E., Ghahramani, Z.: Sparse gaussian processes using pseudo-inputs. Advances in
neural information processing systems 18, 1257 (2006)

42. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning
algorithms. In: Advances in neural information processing systems, pp. 2951–2959 (2012)

43. Tripathy, R., Bilionis, I., Gonzalez, M.: Gaussian processes with built-in dimensionality re-
duction: Applications to high-dimensional uncertainty propagation. Journal of Computational
Physics 321, 191 – 223 (2016). DOI https://doi.org/10.1016/j.jcp.2016.05.039

44. Ursem, R.K.: From Expected Improvement to Investment Portfolio Improvement: Spreading
the Risk in Kriging-Based Optimization, pp. 362–372. Springer International Publishing,
Cham (2014)

45. Volz, V., Rudolph, G., Naujoks, B.: Surrogate-assisted partial order-based evolutionary opti-
misation. In: Conference on Evolutionary Multi-Criterion Optimization (EMO), pp. 639–653.
Springer, Cham, CH (2017)

46. Wang, H., van Stein, B., Emmerich, M., Bäck, T.: Time complexity reduction in efficient
global optimization using cluster kriging. In: Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’17, pp. 889–896. ACM, New York, NY, USA (2017)

47. Weihs, C.: Moi-mbo: Multiobjective infill for parallel model-based optimization. In: Learning
and Intelligent Optimization: 8th International Conference, Lion 8, Gainesville, FL, USA,
February 16-21, 2014. Revised Selected Papers, vol. 8426, p. 173. Springer (2014)

48. Wessing, S., Preuss, M.: The true destination of EGO is multi-local optimization. ArXiv e-
prints, arXiv:1704.05724 (2017)

49. Yao, X.: An empirical study of genetic operators in genetic algorithms. Microprocessing and
Microprogramming 38(1), 707 – 714 (1993)

50. Zaefferer, M., Stork, J., Friese, M., Fischbach, A., Naujoks, B., Bartz-Beielstein, T.: Efficient
global optimization for combinatorial problems. In: Proceedings of the 2014 Conference on
Genetic and Evolutionary Computation, GECCO ’14, pp. 871–878. ACM, New York, NY,
USA (2014)

