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Abstract

We propose a novel combination of an interactive multiobjective navigation
method and a trade-off free way of asking and presenting preference informa-
tion. The NAUTILUS Navigator is a method that enables the decision maker
(DM) to navigate in real time from an inferior solution to the most preferred
solution by gaining in all objectives simultaneously as (s)he approaches the
Pareto optimal front. This means that, while the DM reaches her/his most
preferred solution, (s)he avoids anchoring around the starting solution and, at
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the same time, sees how the ranges of the reachable objective function values
shrink without trading-off. The progress of the motion towards the Pareto
optimal front is also shown and, thanks to the graphical user interface, this
information is available in an understandable form. The DM provides prefer-
ence information to direct the movement in terms of desirable aspiration levels
for the objective functions, bounds that are not to be exceeded as well as the
motion speed. At any time, (s)he can change the navigation direction and
even go backwards if needed. One of the major advantages of this method
is its applicability to any type of problem, as long as an approximation set
of the Pareto optimal front is available and, particularly, to problems with
time-consuming function evaluations. Its functionality is demonstrated with
an example problem.

Keywords: Decision support systems, Multicriteria decision making, Inter-
active methods, Graphical user interface, Trade-off free, Navigation

1 Introduction

Multiobjective optimization methods are needed whenever optimization problems
have multiple conflicting objective functions. Such problems occur in various ap-
plication domains [see e.g. 34]. Because of the conflicting nature of the objective
functions, there does not exist a single solution where all objective functions can
reach their individual optima but, instead, there exist so-called Pareto optimal so-
lutions involving different trade-offs between the objective functions. This means
that moving from one Pareto optimal solution to another one implies an impairment
in, at least, one objective function in order to improve the value(s) of some other
objective function(s).

Since Pareto optimal solutions cannot be ordered without additional preference
information, typically coming from a human decision maker (DM), different multiob-
jective optimization methods can be classified according to the role of the DM in the
solution process [12, 20]. If no DM is available, some no-preference method must be
used, while if the DM expresses one’s preferences before the solution process, a priori
methods are applicable. The DM can also express preferences once a representative
set of Pareto optimal solutions has been generated and, thus, apply some a posteri-
ori method. In interactive methods, the DM takes part in the solution process and
iteratively sees information about the solutions available, expresses and fine-tunes or
even changes one’s preference information. The advantages of interactive methods
include that the DM can learn about what kind of solutions are attainable, with
no need to handle large amounts of data at a time, and that (s)he can adjust one’s
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preferences based on insight gained of the problem. Many interactive methods have
been developed (see e.g. [19, 20] and references therein) and they typically differ from
each other in the type of information shown to and asked from the DM, and also in
the way of generating new solutions based on the preference information expressed.

One appealing way of interaction is navigation. As stated in [1] regarding interac-
tive methods, “navigation is the interactive procedure of traversing through a set of
points (the navigation set) in the objective space guided by a decision maker (DM).
The ultimate goal of this procedure is to identify the single most preferred Pareto
optimal solution”. Recently, many neurobiological and behavioral experiments have
shown that decision-making tasks include a learning phase and a decision phase [e.g.
39], which often are also inherent in computational models of decision-making [e.g.
28]. In the learning phase of multiobjective optimization, the DM explores different
solutions in order to find the most interesting region of the Pareto optimal front. The
final solution is then to be identified in the decision phase. In particular, navigation
methods support the learning phase. Instead of directly jumping to the solution that
best matches with the preferences of the DM, the idea of navigation methods is to
continuously show to the DM how objective function values evolve when moving from
the current solution along some direction. By analyzing in real time how objective
function values change, the DM can gain insight of the interdependencies involved as
well as (s)he can understand the feasibility of one’s own preferences and modify them
(i.e. change one’s mind) if needed. Thus, navigation indeed supports the learning
phase of decision-making. These methods are in line with the brain’s mechanisms of
movement selection that incorporates all the elements of a deliberate decision, i.e.
decision-making designed to achieve goals in a dynamic environment [10].

Different methodologies to navigate towards the most preferred Pareto optimal
solution have been introduced earlier. In some approaches, the DM is shown Pareto
optimal solutions towards the direction (s)he is navigating in the Pareto optimal
front, but they are aimed at working with linear multiobjective optimization prob-
lems [7, 15, 17] or with a surrogate model of the Pareto optimal front designed for
convex problems [9, 24] or nonconvex problems [11]. Nevertheless, the only informa-
tion seen by the DM in these methods is limited to solutions of an approximation
set of the Pareto optimal front.

All of the previously mentioned methods (and in fact, most of the existing in-
teractive methods) are based on considering Pareto optimal solutions, which implies
that the DM must be willing to trade-off in order to get different Pareto optimal
solutions. But, as suggested by [14] and [16], people do not react symmetrically to
gains and losses, and therefore, the DM may be reluctant to sacrifice any objective
function value. In fact, [13] states that “trade-off conflict is a major source of deci-
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sional stress”, while [2] says that “choice sets that are high in trade-off conflict led
to less accurate decision making”. Besides, our past experiences affect our hopes
and this may lead to the so-called anchoring effect [see, e.g. 4], where the DM fixes
one’s thinking on some (possible irrelevant) information. The study presented in
[29] claims that trading-off among several Pareto optimal solutions is emotionally
taxing and increases the withdrawal motivation, and supports that the emotional
attachment to previously seen “good” solutions emphasizes the loss aversion and the
endowment effect. This issue has already been taken into account in methods such
as the interior primal-dual multiobjective linear programming algorithm presented
in [3].

On the other hand, if the navigation took place among points which are not
Pareto optimal, simultaneous gain in all the objective functions would be possible
without sacrificing any of the current values. Corresponding win-win strategies are
applied, e.g., in the negotiation literature [27] and ethical decision making [26]. Of
course, we do not question the importance and meaning of having a Pareto optimal
solution as the final solution of the navigation process, but we will just propose an
alternative way of getting there. In addition, observations in real life confirm that
if (s)he first sees a very unsatisfactory solution, a somewhat better solution is likely
to be more satisfactory than otherwise. As formulated in [14], “the past and present
context of experience defines an adaptation level, or reference point, and stimuli are
perceived in relation to this reference point.”

To overcome the disadvantages of trading-off, different methods in the so-called
NAUTILUS family have been proposed [21, 22, 23, 31]. They all share the philosophy
that the solution process starts from the worst possible objective function values and
the DM iteratively takes steps towards the set of Pareto optimal solutions, directing
the process with her/his preferences. Thus, at each iteration, (s)he can gain in each
objective function and no trade-offs are needed, and only the last solution is Pareto
optimal. This enables the DM to conduct the search without the pain of sacrificing
and find the most preferred Pareto optimal solution without the fear of anchoring.
As the Pareto optimal front is approached, the ranges of the objective function values
which are reachable from the current iteration shrink, and for this reason, the DM
is shown these reachable ranges after every iteration takes place.

In this paper, inspired by the navigation ideas of the Pareto Navigator method
[9] and the NAUTILUS philosophy, we propose a trade-off free navigation method
called NAUTILUS Navigator. It features a new way of presenting information in
multiobjective optimization methods using an effective graphical user interface which
supports an easy interpretation of relevant information. It allows the DM to freely
navigate in real time from undesirable objective function values towards the most
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preferred solution of the Pareto optimal front. In our method, instead of Pareto
optimal solutions, what the DM sees in real time is the evolution of the reachable
ranges of each objective function. Therefore, unlike in other navigation methods, the
DM gets information which goes beyond the values that the objective functions have
at the solutions of an approximation set of the Pareto optimal front. In [24], the DM
is provided with the ranges of reachable solutions, but the navigation is done using
a single objective at a time, and not all of them at the same time, as in NAUTILUS
Navigator. The new method essentially differs from previous NAUTILUS versions
in the interaction style and how information is visualized.

The starting point of NAUTILUS Navigator is a pre-generated approximation
of the Pareto optimal front. This discrete set is to be generated before involving
the DM, using a appropriate a posteriori method. Then, the DM gets involved
in the interactive navigation. To converge from the initial undesirable objective
function values towards her/his most preferred solution, the DM gives preference
information (usually, in the form of a reference point) which determines a movement
direction. Then, the DM dynamically sees how the reachable ranges of the objective
functions change when travelling towards the Pareto optimal front and, according
to the information visualized, (s)he can stop the movement at any time and provide
new preference information (in terms of a new reference point or bounds not to be
exceeded). Besides, like in [9] or [15], the DM can also set (and change at any time)
the navigation speed. One can also return to any of the previously seen solutions
and re-specify preferences there in order to define a new direction. Thus, the speed
of finding the final solution is not an end itself but the confidence of the DM that
(s)he has found a satisfactory solution.

Visualization is a core element of any interactive method in which the DM nav-
igates, so the design of an intuitive graphical user interface plays a crucial role in
practical applications. It is important that the user interface is easy to use and
supports the DM in gaining insight into the problem and the interdependencies
among the objective functions. Thus, here we also propose a graphical user in-
terface for NAUTILUS Navigator that supports the decision-making process. As
mentioned before, the interface is based on the visualization of the evolution of
the reachable ranges for each objective function. A video containing the solu-
tion process for the example that will be considered in Section 4 can be seen at
https://desdeo.it.jyu.fi/nautilus-navigator. Furthermore, to extend the ap-
plicability of NAUTILUS Navigator, its source code is publicly available at https:

//desdeo.it.jyu.fi to the community of people interested in solving multiobjec-
tive optimization problems.

Another advantage of NAUTILUS Navigator is that, since it utilizes an approx-
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imation of the Pareto optimal front, any type of problem can be handled as long
as an appropriate method can generate this approximation in a reliable way. This
feature makes NAUTILUS Navigator well suited for problems which involve expen-
sive function evaluations, as it does not matter for the DM if the generation takes
hours or days. When the actual interaction takes place, the original multiobjective
optimization problem, which may have time-consuming simulations, is not solved
and thus the navigation takes place in real time without introducing any waiting
times for the DM. There exist other approaches such as e.g. [37], where the DM can
explore pre-generated solutions, but do not include interactive navigation aspects.

The three features described above, that is, the combination of the navigation
methodology with the trade-off free philosophy, the visualization of the evolution
of the reachable ranges of the objective functions in real time, and the ability to
handle a broad range of multiobjective optimization problems, constitute the main
contributions of the NAUTILUS Navigator method. As said, trading-off is a source
of decisional stress and may cause the DMs to employ a low number of iterations. We
can avoid these shortcomings by combining navigation with a trade-off free search,
as we do. The way the user interface has been designed allows the DM to perceive
the solution process as a continuous navigation instead of discrete iterations. All
these properties should facilitate the learning process of the DM about the problem
and the feasibility of one’s preferences. To the best of our knowledge, our way of
visualizing reachable ranges dynamically changing while navigating in a trade-off free
fashion has not been considered before.

The rest of this paper is organized as follows. In Section 2, basic concepts and
tools utilized in the paper are introduced and outlined. The NAUTILUS Navigator
method is proposed in Section 3 and the graphical user interface is also described
there. The applicability of the new method is illustrated with an example in Section
4. Finally, the paper is concluded in Section 5.

2 Formulation and background concepts

Let S ⊂ Rn be the feasible set of solutions or decision vectors in the decision space Rn

of a multiobjective optimization problem, where we wish to minimize k ≥ 2 objective
functions fi : S → R, for i = 1, . . . , k, simultaneously. Without loss of generality,
the multiobjective optimization problem can be defined as follows:

min {f1(x), f2(x), . . . , fk(x)}
subject to x ∈ S. (1)
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The image of each decision vector x = (x1, . . . , xn)T ∈ S, f(x) = (f1(x), . . . , fk(x))T ,
is called an objective vector of the feasible objective set f(S), which is a subset of the
objective space Rk.

When dealing with a multiobjective optimization problem, in general, it is not
possible to find a unique optimal solution where all the objectives can reach their
individual optima at the same time. So, the concept of an optimal solution needs to
be generalized to the concept of Pareto optimal solutions, which are feasible solutions
at which no objective can be improved without impairing, at least, one of the others.
Given two vectors in the objective space, z1, z2 ∈ Rk, we say that z1 dominates
z2 if z1i ≤ z2i for every i = 1, . . . , k and z1j < z2j for, at least, one j ∈ {1, . . . , k}.
Otherwise, if z1 and z2 do not dominate each other, we say that z1 and z2 are
mutually nondominated. Then, a feasible decision vector x∗ ∈ S is said to be a
Pareto optimal solution if there does not exist another decision vector x ∈ S such
that f(x) dominates f(x∗). Its corresponding image, f(x∗), is called a Pareto optimal
objective vector. Usually, there are many Pareto optimal solutions. The set of all the
Pareto optimal solutions is the Pareto optimal set, denoted by E, and its image in
the objective space, f(E), is referred to as the Pareto optimal front. In this paper,
we refer to objective vectors which map with decision vectors as solutions, and to
vectors in the objective space which do not necessarily correspond to any decision
vector as points. Besides, for a point z ∈ Rk, we say that a solution x ∈ S is reachable
from z if f(x) dominates z. By a reachable region in the Pareto optimal set from z
we refer to the subset of Pareto optimal solutions x ∈ E which are reachable from
z. Moreover, the image in Rk of this reachable region from z defines the reachable
values of the objective functions from z, which we will also call the reachable ranges
from z. Finally, if there exists at least one solution x ∈ S that is reachable from z,
we say that the point z is achievable.

The ranges of the values that the objective functions take in the Pareto optimal
set are defined by so-called ideal and nadir points. An ideal point is defined as
z? = (z?1 , . . . , z

?
k)T , where z?i = minx∈S fi(x) = minx∈E fi(x) (i = 1, . . . , k), and its

components are the best values that the objective functions can have individually in
the Pareto optimal set. The worst possible values for each of the objective functions
in the Pareto optimal set are the components of a nadir point, denoted by znad =
(znad1 , . . . , znadk )T with znadi = maxx∈E fi(x) (i = 1, . . . , k). In practice, the nadir point
is difficult to calculate because, usually, the set E is unknown, and normally znad is
estimated using different approaches (see e.g. [35]). Finally, we define a utopian point
z?? = (z??1 , . . . , z

??
k )T , which is strictly better than the ideal point, as z??i = z?i − ε

(i = 1, . . . , k), where ε is a small positive scalar.
In a mathematical sense, Pareto optimal solutions are incomparable without ad-
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ditional information about the preferences of a DM and, thus, the solution process
comprises a decision making phase to identify the Pareto optimal solution which
satisfies the DM the most. This solution is referred to as the most preferred solution.
There exist many possibilities for the DM to express the preference information, such
as desirability of trade-offs, reference points formed by desirable objective function
values (denoted by q = (q1, . . . , qk)T ∈ Rk, with qi the desirable aspiration level for
the objective fi, for i = 1, . . . , k), classification of objective functions, marginal rates
of substitution or choosing one among several solutions (see e.g. [20, 33]).

3 NAUTILUS Navigator: A new way for inter-

acting with the DM

NAUTILUS Navigator is an interactive method, enhanced by a graphical visualiza-
tion interface, for general multiobjective optimization problems that enables the DM
to freely navigate in real time from the nadir point, or any undesirable point, towards
the Pareto optimal front until her/his most preferred solution is found. On the one
hand, the solution process is trading-off-free, and on the other hand, the navigation
ideas are extended to search for a final solution by progressively moving through the
whole feasible region in real time. The information shown to the DM basically con-
sists on the visualization of the evolution of the reachable ranges for each objective
function from the current point. In what follows, for the sake of simplicity, we will
refer to “reachable ranges from the current point” just as the reachable ranges.

The general idea of NAUTILUS Navigator is the following. First, a discrete set
approximating the Pareto optimal front is generated using an appropriate a poste-
riori method. The method starts the navigation from an undesirable point (either
provided by the DM, or an estimation of the nadir point obtained using the approx-
imation set). For simplicity, in what follows, we will refer to it as the nadir point
in both cases. To converge from this initial point towards her/his most preferred
solution, the DM gives preference information which determines a movement direc-
tion from the current point and a speed for this movement. On the one hand, the
movement direction is specified by giving aspiration levels for the objective func-
tions, which form a so-called reference point. Each aspiration level must lie within
the reachable range of the corresponding objective function, which is initially defined
by the ideal and nadir values. On the other hand, the DM specifies the movement
speed towards the Pareto optimal front by selecting one of the following options:
”very slow”, ”slow”, ”intermediate speed”, ”fast” and ”very fast”. For simplicity,
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we here denote them by integer numbers ranging from 1 (minimum speed) to 5
(maximum speed). The speed scale can be changed if the DM wishes so.

Additionally, at any time, the DM is offered the option to specify upper bounds
for the objective functions (that is, values above which the objective function values
are not regarded as acceptable). These values must lie within the current reachable
ranges.

With this preference information, NAUTILUS Navigator progressively moves to-
wards the Pareto optimal front in the direction defined by the DM as fast as (s)he
has specified. As these movement goes on, the reachable region of the Pareto op-
timal front shrinks. Because of this, the DM is dynamically informed about the
evolution of the reachable ranges of the objective function values if the movement
continues towards the same reference point (i.e., in the same direction). Moreover,
the progress of the motion to the Pareto optimal front is constantly shown to the
DM. This progress is given as a number ranging between 0 and 100, with 0 mean-
ing the minimum progress, and 100 meaning full progress (that is, a Pareto optimal
solution has been reached).

Based on the information given, the DM evaluates whether the objective function
values are progressively converging to values of her/his interest. On the way, (s)he
may wish to change the preference information, and thus change the direction and/or
the movement speed, add some bound, or go backwards and continue the solution
process from some previously seen point. In this way, any solution in the Pareto
optimal front can be reached at the end of the solution process, without the necessity
of trading-off, by re-directing the search for her/his most preferred solution as desired.

In order to reduce the computation time of the solution process while inter-
acting with the DM, as introduced, a well-spread approximation set of the Pareto
optimal front must be pre-computed before the navigation starts using any a poste-
riori method, such as e.g. evolutionary multiobjective optimization algorithms [6, 8]
or approximation methods [32]. As explained hereafter, this approximation set is
internally used in NAUTILUS Navigator to find optimal solutions of several single-
objective optimization problems that need to be solved during the interaction with
the DM. Thus, the search for the DM’s most preferred solution takes place using
the approximation set, avoiding waiting times while iterating with her/him. In this
way, our method is well suited for problems which involve expensive objective and
constraint function evaluations.

Next, we describe how the algorithm works, and we also propose a graphical user
interface which illustrates how the information is given by and presented to the DM.
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3.1 The algorithm

As previously mentioned, we assume that an approximation set of the Pareto optimal
front, denoted by P , is pre-generated using some a posteriori method. All the solu-
tions of P are assumed to be mutually nondominated. Note that special effort should
be devoted to ensuring that the solutions in P are not only nondominated but also
constitute a good approximation of the Pareto optimal front (i.e. they are as close
as possible to the Pareto optimal front and well-spread along it), but this depends
on the accuracy of the a posteriori method used and not on NAUTILUS Navigator.
For simplicity, in what follows, we will refer to this set also as the Pareto optimal
front, and to its solutions as Pareto optimal solutions. The nadir and the ideal values
of each objective are approximated using the worst and the best objective function
values corresponding to the solutions in P , respectively.

Although the interface presents a continuous movement towards the Pareto opti-
mal front (i.e. towards P ), internally this movement is discretized by dividing it into
a number of small steps. The total number of steps from znad to the Pareto optimal
front is initially set to 100. The following notations will be used. Let us denote by h
the current step number, rsh the number of remaining steps (including step h) until
reaching a Pareto optimal solution, zh the point calculated at step h, fh,lo, fh,up ∈ Rk

the lower and upper vector bounds of the reachable values at step h, respectively, ph

the progress of the motion at step h and P h the subset of Pareto optimal solutions in
P which can be reached from the current point zh without impairing any objective
function value. Note that, in fact, the reachable region is defined by the worst and
the best value that each objective function can have in the subset P h. Besides, we
denote by qh = (qh1 , . . . , q

h
k )T the reference point given by the DM at step h. Let

us refer by sh to the movement speed set by the DM at step h, given as integers
sh ∈ {1, 2, 3, 4, 5}. In practice, sh is the number of steps that are taken per second
by the algorithm. This way, when the DM sees the reachable ranges changing in real
time with the graphical user interface, (s)he experiences a continuous motion towards
the Pareto optimal front as fast as (s)he wants. If sh remains constant throughout
the whole solution process, reaching the Pareto optimal front will take 100

sh
seconds.

Obviously, this time can be increased or decreased if the DM wishes to move slower
or faster, respectively, by giving a different value for sh at any step h.

NAUTILUS Navigator is described in detail in Algorithm 1. To start with, the
DM has to indicate the aspiration levels (s)he would like to achieve for each objective
function, which define q1, and the initial speed, s1 (step 2 of Algorithm 1). By
showing the initial reachable ranges defined by f0,lo and f0,up, the DM has a clear
view of what kind of values are achievable for each objective function at this moment.
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Algorithm 1 Algorithm of the NAUTILUS Navigator method

Input: A set approximating the Pareto optimal front, P , and estimates of the nadir
and ideal points, znad and z?.

Output: Most preferred Pareto optimal solution, zpref .
1. Initialization. Set the initial point z0 = znad, the initial bounds of the reachable

region, f0,up = znad and f0,lo = z? and the initial set of reachable solutions P 0 =
P . Also, set d0 = 0, the step number h = 1 and rs1 = 100.

2. Initial preference information. Ask the DM to give desirable values for the
objective functions and set them as the components of q1. Also, ask her/him
to indicate an initial movement speed and denote it by an appropriate integer
s1 ∈ {1, 2, 3, 4, 5}.

3. Take a new main step. A number of sh steps per second are taken towards the
Pareto optimal front, until it is reached or until the DM stops the movement to
give a new reference point and/or to change the movement speed. Each step h is
carried out in the following way:

3.a If h = 1 or if the DM has given a new reference point qh, let xh be the
solution of problem (2). Otherwise, set qh = qh−1 and xh = xh−1. Let us
denote fh = f(xh).

3.b Calculate the next point as zh = rsh−1
rsh

zh−1 + 1
rsh

fh.

3.c Update the lower and upper bounds, fh,lo and fh,up, of the reachable ob-
jective function values from zh. To this end, obtain optimal solutions of the
min/max problems (P h

r ) defined in (4), for every r = 1, . . . , k. Then, set fh,lo

= (fh,lo
1 , . . . , fh,lo

k )T and fh,up = (fh,up
1 , . . . , fh,up

k )T , where fh,lo
r and fh,up

r are
the optimal objective function values of the min and the max formulations of
the problem (4), respectively, for every r = 1, . . . , k.

3.d Compute the progress of the motion ph at step h, according to (5).

3.e Calculate the subset P h of reachable solutions from as follows. Initialize
P h = ∅ and, for each solution x ∈ P h−1 such that fh,lo

i ≤ fi(x) ≤ fh,up
i , for all

i = 1, . . . , k, update P h = P h ∪ {x}.

3.f. Going to a previous point. If the DM decides to return to a previous
point, then restart the solution process from this point, set the values of h,
zh, fh,lo, fh,up, P h, ph and rsh to those of the previous solution chosen.

3.g. New preference information. If, right after step h, the DM decides to
stop the movement towards the Pareto optimal front and give new preference
information, then reset qh+1 and/or sh+1 accordingly.

3.h If rsh = 1, stop the solution process with the last solution xh and the
corresponding objective vector fh as the final solution zpref . Otherwise, set
ith+1 = rsh − 1, h = h+ 1 and go to 3.a.
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With the preferences defined, sh steps are taken per second until the Pareto
optimal front represented by P is reached (that is, if rsh = 1), or until the DM decides
to stop the movement and give new preference information (step 3.g of Algorithm
1). At each step, a new point zh is computed, which is a point lying in the segment
joining the previous point zh−1 and the objective vector associated with a Pareto
optimal solution denoted by xh. In practice, f(xh) is obtained by projecting the
reference point qh given by the DM onto the subset P h−1 of Pareto optimal solutions
reachable from zh−1, and xh is the decision vector corresponding to f(xh).

In NAUTILUS Navigator (step 3.a of Algorithm 1), this projection is done by
solving the following problem, which minimizes an achievement scalarizing function
[38] over P h−1:

min
x∈Ph−1

max
i=1,...,k

{
fi(x)− qhi
znadi − z??i

}
+ ρ

k∑
i=1

fi(x)− qhi
znadi − z??i

, (2)

where ρ > 0 is a small real number and znadi and z??i are the nadir and the utopian
points, respectively. By minimizing this function over the finite set P h−1, the com-
putation cost of finding the solution xh at each step h is significantly small. Further-
more, it must be noted that problem (2) must be solved only at the first step (i.e. if
h = 1) or if the DM has modified the reference point at step h. If qh = qh−1, there
is no need to solve (2) again and, in this case, xh = xh−1.

Once the solution xh has been obtained, the corresponding objective vector is
calculated, denoted by fh = f(xh), and the next point zh is computed as follows
(step 3.b of Algorithm 1):

zh =
rsh − 1

rsh
zh−1 +

1

rsh
fh. (3)

It can be seen that zh is a point in the line joining zh−1 and fh and, as more steps are
taken (i.e. rsh decreases), zh is further from the initial point (that is, from znad) and
closer to the objective vector fh, i.e. to the solution xh in P . One should note that
these points are never shown to the DM as such, they are just internally calculated
by the algorithm in order to determine the reachable region and the progress of the
motion to the Pareto optimal front, which are continuously given at each moment to
the DM by NAUTILUS Navigator.

Observe that if h is the last step (i.e. rsh = 1), zh = fh from equation (3), which
implies that the Pareto optimal solution xh in P h−1 ⊂ P has been reached. If h is not
the last step (i.e. rsh > 1), the new point zh is not Pareto optimal and may not be
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even feasible for the original problem (1). However, as demonstrated in [21, 31], zh

is always an achievable point when rsh > 1 and this implies that, if it is not feasible,
at least, there always exists a Pareto optimal objective vector which dominates it.
Furthermore, it is proven that zh dominates zh−1 at any step h [21, 31], which means
that each point zh produced dominates all the previous ones, i.e. each objective
function is improved at each step taken. Therefore, a continuous improvement of the
objective function values takes place until the final solution is reached.

If rsh > 1, the range of reachable values that each objective function can take
from zh shrinks and this information is constantly shown to the DM in NAUTILUS
Navigator (step 3.c of Algorithm 1). The lower and upper bound vectors at step
h, fh,lo and fh,up, respectively, (which determine the reachable ranges from zh) are
calculated by solving the following ε-constraint problems (P h

r ) [5]:

(P h
r )


min/max fr(x)
subject to fj(x) ≤ zhj , j = 1, . . . , k, j 6= r,

x ∈ P h−1,
(4)

using the min formulation for the lower bounds, and the max formulation for the
upper bounds. That is, for every r = 1, . . . , k, if fh,lo

r and fh,up
r are the optimal

objective function values of the min and the max formulations of problem (P h
r ),

respectively, the lower and upper bound vectors are set as fh,lo = (fh,lo
1 , . . . , fh,lo

k )T

and fh,up = (fh,up
1 , . . . , fh,up

k )T , respectively. Observe that these problems minimize or
maximize each objective function not over the whole feasible set, but over the (finite)
subset of reachable solutions P h−1. Problem (2) is correspondingly solved over the
subset. With this, we save computational effort for solving these 2k problems at each
step h.

Besides the upper and lower bound vectors, the DM is continuously informed
about the progress of the motion to the Pareto optimal front at step h, which is in
fact calculated in terms of the distances from zh and fh to the nadir point znad (step
3.d of Algorithm 1):

ph =
‖zh − znad‖2
‖fh − znad‖2

× 100, (5)

where ‖ · ‖2 denotes the L2-norm. This information is useful to let the DM have
an idea of how fast the approach towards the approximation set P is at the current
moment in the direction defined by the current reference point qh.

At each step h, the point zh is closer to the approximation set P and, then,
some of the solutions in P h−1 become not reachable at the next step (unless the DM
decides to go backwards) and have to be discarded (step 3.e of Algorithm 1). Then,
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the subset P h with the reachable Pareto optimal solutions from zh is constituted by
the solutions x ∈ P h−1 whose objective values are within the corresponding lower
and upper bounds, i.e. with fh,lo

i ≤ fi(x) ≤ fh,up
i , for all i = 1, . . . , k.

3.2 Discussion and remarks about the NAUTILUS Naviga-
tor algorithm

Some issues must be clarified regarding NAUTILUS Navigator, which have not been
indicated in Algorithm 1 for simplicity.

The solution process followed in NAUTILUS Navigator takes place in the objec-
tive space, and the connection to the decision space is temporarily lost. The points
zh internally calculated while the DM navigates may be even infeasible, but all of
them are achievable, as explained before. Nevertheless, if so desired, it is easy to
calculate and visualize ranges of decision variable values corresponding to the current
reachable set in the objective space. Furthermore, it is assured that the final solution
belongs to the approximation set P . Of course, the DM can be informed about the
decision variable values corresponding to the final solution if desired.

The total number of steps from znad to the Pareto optimal front, which is set
to 100 by default, can be changed at any time if the DM wishes so. In practice,
the number of steps defines the size of each step taken towards the Pareto optimal
front and determines the time needed to converge to a final solution. Thus, a higher
number of steps than 100 means that the journey towards the Pareto optimal front
would take more time since the step-size would be smaller than before, while a lower
number implies a reduction of the time needed as the size of the step would be bigger.

Instead of a reference point, alternative options for defining a direction of move-
ment can be also considered in NAUTILUS Navigator. For example, weights for the
objective functions which indicate the relative importance given by the DM to the
improvement of the current objective values [18] can be considered. In this option,
the higher the weight, the closer the final solution will be to the best reachable value
of the corresponding objective. If this is the case, step 3.a of Algorithm 1 has to be
adapted as follows. If the vector of weights given by the DM at step h is denoted by
ω = (ω1, . . . , ωk)T , then xh is the solution of the following problem:

min
x∈Ph−1

max
i=1,...,k

{
1

ωi

fi(x)− zh−1i

znadi − z??i

}
+ ρ

k∑
i=1

fi(x)− zh−1i

znadi − z??i
, (6)

and fh = f(xh) as before. It must be pointed out that it is necessary to calculate a
new point xh only when the DM changes the search direction by giving a new vector
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of weights ω at step h, otherwise xh = xh−1.
As mentioned before, the DM is given the option of specifying bounds for the

objective functions as values which must not be exceeded. In case the DM indicates
a bound bp for an objective fp (1 ≤ p ≤ k) at any step h, with fh,lo

p ≤ bp ≤ fh,up
p , an

additional constraint as fp(x) ≤ bp has to be added to problem (2) (or to problem
(6) if weights are used for giving the direction) and to the (P h

r ) problems given in
(4). As one constraint of this type must be included per each bound given, the DM
must set them carefully given that, if the bounds are too restrictive, there may not
be Pareto optimal solutions in P h−1 which satisfy all the constraints at the same
time. In this case, the DM must be informed in order to re-adjust the information
given.

Note that, in step 3.e of Algorithm 1, it may happen that the only Pareto optimal
solution in P which is reachable from the current zh is xh, i.e. P h = {xh}, at some
step h. This may happen if, e.g. the region of the Pareto optimal front that is
reachable from zh has not been approximated accurately in P and, before completing
the 100 steps of the solution process, the DM has oriented the search towards this
region. In this case, the DM must be told about the progress already made to the
approximation set in order to let her/him evaluate whether the current point is still
too far from the Pareto optimal front or not. According to this information, (s)he
may desire to see the only remaining Pareto optimal solution xh that is reachable,
and its objective vector fh, and if it is satisfactory enough, stop the solution process
with xh as the final solution. But alternatively, (s)he may be interested in waiting
for the generation of more Pareto optimal solutions in order to further explore the
objective function values in this region. In this case, new Pareto optimal solutions
must be generated within the current lower and upper bounds, fh,lo and fh,up, in
order to improve the accuracy of the approximation in the reachable region. This
can be done using e.g. the Pareto fill module of the E-NAUTILUS method [31].

Finally, given that an approximation set P has been used, the final solution ob-
tained is a nondominated solution approximating the Pareto optimal front, whose
accuracy depends on the method used to generate P . In any case, if the user wishes
so, we can guarantee, at least, the local Pareto optimality of the final solution by
projecting it onto the Pareto optimal front. For this, problem (2) can be minimized
over the feasible set S using the objective function values of the final solution as the
reference point. Given that, in practice, this may imply to solve a single-objective op-
timization problem with the original (possibly computationally expensive) functions,
this step can be skipped if it is regarded to be too time-consuming.
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3.3 Graphical user interface

Because of the crucial role of a DM in interactive methods, a graphical user interface
is important. Next, we propose the graphical user interface of NAUTILUS Navigator
which permits an easy interaction with the DM and illustrates the functioning of the
method better than the plain algorithm.

In order to visualize continuously and in real time all the information regarding
the reachable objective function values, the approximated paths suggested in [36]
have been used as an inspiration and elaborated and extended for the needs of NAU-
TILUS Navigator. We employ representations which we call reachable range paths
(see Figure 1, which illustrates the problem with three objective functions used for
the numerical example in Section 4). For each objective function fr (r = 1, . . . , k),
represented in the vertical axis of the plot, we have a reachable range path which ini-
tially ranges between the minimum and maximum values that the objective function
can reach (that is, f 0,lo

r and f 0,up
r ). As the solution process proceeds, the variation

of the reachable values for each objective function is shown in real time using two
plot lines, one representing the lowest reachable value (fh,lo

r ) and the other one cor-
responding to the highest reachable value (fh,up

r ) from the current point. This means
that the progress along the horizontal axis describes the evolution of the reachable
ranges for the objective functions along the solution process. The DM can see the
reachable ranges shrinking as the Pareto optimal front is approached and can stop the
movement at any time, if desired, to provide new preferences. This way of showing
the information enables the DM to see all the previous reachable ranges at once, in-
stead of visualizing only the ones corresponding to the current moment. This implies
a lower cognitive effort for the DM since, as stated in [25], ”comparing something
visible with memories of what was seen before is more difficult than comparing things
simultaneously visible side by side”. In addition, with these reachable range paths,
the DM is also able to jump backwards to any previously seen value of any objective
function, just by clicking on it at the corresponding reachable range path.

In the graphical user interface, the DM indicates her/his preferences as follows.
On the one side, the components of the reference point (which determine the move-
ment direction) are initially specified by the DM using the text boxes labelled as
”Aspiration level” (in Figure 1, an ”Aspiration level” text box is shown for each of
the three objectives of the problem used). On the other side, the movement speed
is set by moving the scroll bar labelled as ”Speed” and placed in the graphical user
interface below the reachable range paths (see Figure 1). As said, the DM can also
specify bounds for the objectives, which are indicated in the graphical user interface
using the ”Bound” text boxes defined for each of the objective functions.
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Once a reference point and a speed have been set, the ”Start Navigation” button
starts the movement towards the Pareto optimal front and the ”Stop” button stops
the movement at any time, in order to allow a further examination of the current
information shown, or to change any preference information if desired. Along the
navigation, the components of the reference point used are represented by horizontal
dotted lines in the reachable range paths, as it can be seen in Figure 1. The DM
can change these values dynamically at any time just by pressing the ”Stop” button
and moving the lines representing them upwards or downwards, or by indicating new
values in the ”Aspiration level” text boxes. Afterwards, by clicking again the ”Start
Navigation” button, the movement towards the Pareto optimal front continues using
the new preference information.

The changes produced in the reachable range paths when several changes of
direction have been specified along the solution process can be seen in the rest of
figures shown in Section 4. In this way, the historical changes in the reachable
ranges of the objective functions for the different reference points given are depicted
all together with the reachable range paths, and they are visible for the DM at one
glance. Finally, the numerical values of all elements (upper and lower bounds for
the current reachable values, components of the reference point and speed), together
with the progress of the motion to the Pareto optimal front, are also shown in the
interface.

If alternative options for the preference information are considered, the graphical
user interface of NAUTILUS Navigator can be adapted accordingly. For example, if
the DM wishes to give a direction of movement by means of weights as mentioned in
Section 3.2, they could be specified in the graphical user interface using e.g. sliding
bars or a spider web chart.

4 Illustrative example

In this section, we demonstrate how the NAUTILUS Navigator method can be used
from the DM’s point of view, that is, we describe what kind of interaction takes place
during the solution process. We consider the three-objective optimization problem
described in [30], which aims to identify the improvements that can be carried out
in the auxiliary services of a power plant in order to enhance its efficiency, taking
into account energy savings and economic criteria. The objective functions are the
energy saving achieved (denoted by f1, in MWh, to be maximized), the economic
investment required (denoted by f2, in million e, to be minimized) and the Internal
Rate of Return (IRR) of the investment (denoted by f3, in %, to be maximized). Note
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that, although internally we convert all objectives to be minimized for calculation
purposes, for the convenience of the DM, the graphical user interface displays the
original values. The efficiency can be improved by means of three strategies: (a)
the replacement of the current engines by more efficient ones, (b) the installation of
variable speed drives, and (c) compensation for reactive power. Then, binary and
continuous decision variables are considered in order to indicate whether strategies
(a) and (b) are implemented or not in the different drives of the plant, and to specify
the amount of reactive power (in kVAR) to be compensated for on each component
in relation to strategy (c). The feasible set is defined by simple bound constraints
which control that the final situation of the auxiliaries regarding strategies (a) and
(b) is never worse than their initial situation. Besides, regarding strategy (c), some
constraints assure that the reactive power to be compensated for on each element is
never higher than the reactive power required on that element. The problem solved
in [30] is based on the auxiliary services of a 1100 MW power plant and it has 13
continuous and 20 binary decision variables.

Due to the complex engineering formulas behind the model, the objective func-
tions and constraints are modelled using a black-box simulator which is very time-
consuming to execute. Therefore, given that the model involves computationally
expensive function evaluations, the use of a method such as NAUTILUS Navigator
is highly recommended to identify a satisfactory final solution interacting with a DM.

In [30, 31], several evolutionary multiobjective optimization algorithms were used
to approximate the Pareto optimal front of this problem. The approximation set gen-
erated was formed by 2,118 mutually nondominated solutions and we use it as the set
P . As described in [30], the Pareto optimal front of this problem is formed by several
disconnected subsets of solutions. The ideal and the nadir points were estimated us-
ing the best and the worst objective function values corresponding to the solutions
in P , respectively, and their approximations are z? = (47526.37, 0.05, 100.00)T and
znad = (408.49, 9.28, 22.13)T (remember that the second objective is to be minimized
and the others maximized).

To begin with, the upper and lower bounds of the reachable objective function
values were set using the components of znad and z?, respectively. They were shown
to the DM in the graphical user interface. The DM wanted to use the maximum
speed and, thus, s1 was set to 5.

Initially, the DM wanted to investigate which type of Pareto optimal solutions can
be found if (s)he set the aspiration level for f1 to 30000 MW, which was a satisfactory
enough value. The DM had a limited budget of 3 million e, but he first wanted to
investigate what could be achieved if he invested 4 million e. Regarding f3, he was
very optimistic and decided to set the aspiration level for the IRR to 60%. Anyway,
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he was aware that reaching a solution with a lower IRR than this was also profitable
enough. Thus, the first reference point was (30000.0, 4.0, 60.0)T .

As the navigation proceeded towards the first reference point, the DM could see
how the reachable ranges for the objective functions evolved and shrank. Figure 1
shows the navigation using this reference point until the DM decided to first stop
the movement and give new information to reorientate the search. For example, a
significant decrease of the upper bound for the reachable IRR values (f3) is observed
in Figure 1 at the beginning of the movement. This indicates that the nondomi-
nated solutions with the highest IRR became unreachable right from the beginning.
However, the reachable IRR values were still very high (above 60%) and thus, the
DM knew that very profitable solutions could still be attained in this direction. Be-
sides, the reachable values for the energy saving (f1) and the investment (f2) were
appealing for the DM despite of the reduction of their ranges.

After several seconds, the DM could observe that, once the upper bound for the
reachable investment values was close to 4 million e, the maximum energy savings
that could be achieved decreased and its upper bound was getting close to his as-
piration level (30000 MW), represented by the horizontal line. Furthermore, if the
navigation continued in this direction, the energy savings achieved would fall down to
values lower than 30000 MW. Then, he decided to stop the movement (i.e. stop the
continuously changing visualization of the reachable range paths) in order to redirect
the approach towards a new reference point. He indicated that the new reference
point was (30000.0, 3.0, 45.0)T , which implies a relaxation on the investment and
the IRR values. These are the reference values shown in Figure 1 in the ”Aspiration
level” text boxes. Note that the horizontal dotted lines represent the reference values
used for the objectives and, as the DM gave new aspiration levels for the investment
and the IRR objectives, a change can be observed for the corresponding horizontal
dotted lines.

At this moment, he decided to let the solution process reach the Pareto optimal
front from the second reference point given in order to check how the reachable
objective function values behaved in this direction. The navigation towards a final
solution (belonging to P ) is shown in Figure 2. He could see that the maximum
reachable values for the energy saving decreased at the same time than the lower
bounds for the reachable investment values increased. This fact highlighted the
conflict degree among these two objective functions. The final solution reached was
z = (30700.0, 3.26, 46.1)T and the DM was also shown the corresponding decision
variable values.

Note that the energy saving achieved at solution z meets the desirable value set by
the DM in the second reference point, and it also reached a very profitable IRR, but it
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Figure 1: NAUTILUS Navigator: Interaction with the DM with the initial prefer-
ences.

20



Figure 2: NAUTILUS Navigator: Interaction with the DM until a solution in P is
reached.
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Figure 3: NAUTILUS Navigator: Interaction with the DM when travelling backward,
providing new preferences.

requires an investment over the initial budget (3 million e). Because of this, the DM
decided to go backwards and reorientate the search in order to investigate Pareto
optimal solutions needing less than 3 million e. Thus, he returned to a previous
point reached using the second reference point from which the investment objective
function could have values bellow 3 million e. Furthermore, in order to assure that
the final solution to be obtained did not require more than 3 million e, he introduced
this amount as a bound for f2. The new navigation towards the same reference point
with the f2 bound restriction can be seen in Figure 3. The DM did not change the
direction further (i.e. the reference point) and, thus, reached a new final solution z′ =
(26000.0, 2.54, 50.3)T . In comparison to z, z′ saves less energy but needs a smaller
investment, which is within the budget limit. However, the IRR reached at z′ is higher
than the one achieved at z and this indicates that z′ represents a more profitable
solution than z from the economic point of view. This analysis encouraged the DM
to select z′ as the final solution. A video showing the complete navigation process
for this example can be seen in https://desdeo.it.jyu.fi/nautilus-navigator.
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With this example, we have illustrated how the DM can interact with NAUTILUS
Navigator until a satisfactory final solution is found. It must be mentioned that, in
this illustrative example, we did not project the final solution selected by the DM to
generate a Pareto optimal final solution because, on the one hand, the computational
effort was too high and, on the other hand, the approximation set P generated in
[30, 31] can be regarded as representative and reliable enough. This highlights the
fact that the more accurate the initial approximation set of the Pareto optimal front
is, the more reliable the results of NAUTILUS Navigator are, without the necessity
of additional calculations to assure the Pareto optimality of the final solution.

With NAUTILUS Navigator, the DM could conveniently navigate across the
objective space, conduct a free search without anchoring and find a satisfactory final
solution. The search was trade-off free as he did not have to sacrifice in order to gain
improvement in the objective functions. In addition, the graphical user interface
enabled him to learn about the interdependencies among the objective functions and
direct the solution process as desired, with information that was understandable and
easy to provide, and the effect of which was directly noticeable.

Note that working with problems with discontinuous Pareto optimal fronts (as
the one considered here) does not represent any major difficulty for NAUTILUS
Navigator. Although this feature may not be known beforehand, the discontinuities
(if any) will be evident during the interaction when looking at the information shown
in the reachable range paths. As seen in Figures 1, 2 and 3, during the journey
towards the final solution, some drops were observable in the reachable range paths,
which indicated that the ranges of the reachable objective values decreased suddenly
at some moments of the navigation. In practice, this means that the navigation
procedure progressively discarded some disconnected parts of the Pareto optimal
front. Note that, although we show reachable ranges for the objective functions, not
all the objective values in the ranges may be feasible but they are still achievable (as
explained in Section 3.2). Overall, solving a problem with a discontinuous Pareto
optimal front did not represent any major inconvenience in the interaction with the
DM.

5 Conclusions

In NAUTILUS Navigator, we have jointly considered the interaction style of naviga-
tion and a win-win philosophy to create a trade-off free navigation method for general
multiobjective optimization problems. The method is based on a new way of pre-
senting information to the DM, both from the analytical point of view (thanks to the
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use of the reachable ranges for the objective functions), and from the practical point
of view (thanks to the visualization allowed by the graphical user interface). At first,
an approximation of the Pareto optimal front is to be pre-generated without involv-
ing the DM. The interactive solution process starts from an undesirable point, and
it evolves towards the Pareto optimal front in such a way that every point obtained
dominates all the previous ones. We do not question the importance and meaning
of having a Pareto optimal solution as the final solution of an interactive solution
process, but we provide an alternative way of getting there. On the other hand, the
graphical user interface proposed allows the DM to easily see all relevant information
simultaneously and freely navigate in real time towards her/his most desired solution
by dynamically adjusting the movement direction, using a reference point, and the
motion speed. Unlike any other navigation method, NAUTILUS Navigator shows
the ranges of the reachable objective values in real time while approaching the Pareto
optimal front.

The benefits of NAUTILUS Navigator are several. First, the method allows a
navigation supported by the visualization of the evolution of the reachable ranges of
the objective functions, which allows the DM to freely explore and learn about the
problem. This learning process is a key for the success of any interactive method
in practical applications. Second, we offer a trade-off free environment for the nav-
igation, which prevents from behaviours like anchoring effects, or reduction of the
number of iterations carried out by the DM. Third, the graphical user interface de-
veloped presents the results in an intuitive and comprehensible way. The DM can see
at a glance the evolution of the regions of the Pareto optimal front that are reachable
according to the current preferences. This allows her/him to easily check past points
and go back to any of them if desired. Finally, the fact that the whole interactive
solution process takes place using a pre-generated approximation of Pareto optimal
solutions, makes it capable to handle any type of problem (whenever this approxi-
mation can be sufficiently accurately computed), specially those involving expensive
function evaluations.

We have provided a proof of concept and demonstrated the applicability of our
method with a practical example. In there, one can see both through the description
of the solution process and in the video mentioned in Section 4 how the DM can, in
practice, always see gains avoiding anchoring and loss-aversion by freely navigating
without trading-off. Designing an experiment framework for comparing the method
with others is a research question of its own. Since our method is based on free
navigation and free exploration, the behaviour of a real DM cannot be sufficiently
modelled by e.g. a value function, which is sometimes used in testing interactive
methods. Instead, appropriate indicators or quality measures for e.g. anchoring and

24



loss aversion must be established and validated, which is far from trivial. Besides, a
large amount of human DMs with appropriate domain expertise will be needed for
testing independently different interactive methods in a different order, to compen-
sate the fact that the DM learns about the problem while using some method(s) first
and methods tested after the first one(s) will benefit from this. Therefore, designing
an experiment framework to cover all these issues is our future research topic.
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