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Academic dissertation to be publicly discussed, by permission of
the Faculty of Mathematics and Science of the University of Jyväskylä,
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Abstract

Salvioni, Gianluca
Model nuclear energy density functionals derived from ab initio
calculations
Jyväskylä: University of Jyväskylä, 2019, 151 p.
(JYU Dissertations
ISSN: 2489-9003; 88)
ISBN: 978-951-39-7775-7 (PDF)
Diss.

This monograph focused on a method to link nuclear energy density functionals to
the ab initio solution of the nuclear many-body problem. This method, proposed
in Ref. [1], was here discussed in many aspects as well as applied to a state-of-art
ab initio approach.
We introduced the basis of the density functional theory, paying attention to the
concept of generators of the functional. In parallel, we explored the Self-Consistent
Green’s Function approach as ab initio framework to calculate ground-state energies.
We derived the model functional based on the Levy-Lieb constrained variation,
which exploited the response of the nucleus to an external perturbation.
Using the Green’s function technique and the NNLOsat chiral interaction in the
ab initio Hamiltonian, seven semi-magic nuclei were probed with perturbations
induced by generators of two- and three-body contact interaction (Skyrme-like).
We employed the same generators to built model functionals, whereupon the
coupling constants were fitted to reproduce the perturbed ground-state energies.
Several parametrizations of the functionals were obtained for given choices of
generators, selection of data points, and assumed uncertainties. We analysed the
derived parametrizations according to their statistical performances, magnitude
of the propagated errors, and corresponding nuclear matter description. Two
parametrizations emerged as the most promising, but the model functionals built
from them did not produce meaningful results. As it turned out, zero-range
generators provided a poor description of the chiral interaction. Moreover, the
performed error analysis suggested that the actual precision of the ab initio approach
may not be sufficient to improve the quality of the novel energy density functionals.

Keywords: energy density functionals, ab initio methods, chiral interaction,
theoretical uncertainties.
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1. Introduction

The atomic nucleus is identified with the massive core at the center of the atom
and it has the radial dimension of a few fm (10−15m). It is formed by positively
charged particles, protons (p) and neutral particles (n), that together are called
nucleons. The different types of nuclei are distinguished by the proton number Z
and the neutron number N , summing up to the mass number A = Z +N . Nuclei
with the same Z (i.e. same chemical element) but different N are called isotopes.
Nuclides are commonly presented within the nuclear chart as in Figure 1.1. Nuclei
can contain between one and a couple of hundreds of nucleons, requiring a proper
treatment as many-body systems.
A small part of them is stable, meaning that they have lifetimes larger than the
age of the Universe. The majority are radioactive, i.e., they are produced naturally
or in laboratory in certain unstable configurations, and then they decay until they
reach stable structures.
Neutron and proton numbers are not enough to describe a nuclear system. There are
other measurable quantities called experimental observables that define a particular
nuclear state. These are, for example, binding energies (masses), spins, radii,
electromagnetic moments as well as lifetimes, excitation energies, electromagnetic
transitions, decays, particle emissions and so on. In fact, the nuclear chart presents
only the lowest energy states (the ground states), on top of which a large variety
of excited states exist.
The technical development of experimental facilities continuously increases the
number of measured systems. With the help of theoretical models, boundaries have
been identified to the existence of nuclear systems that do not spontaneously emit
nucleons. These limits called ‘‘drip lines’’ predict that there are many more nuclei
to be observed, especially on the neutron-rich side [2].

The nuclear mass M relates to the proton mp and neutron mn masses as

Mc2 = Z mpc
2 +N mnc

2 −BE, (1.1)
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Figure 1.1: Section of the nuclear chart containing the lightest nuclei. The whole
nuclear chart is shown in the inset. The known nuclei are plot according
to the neutron number N (x-axis) and proton number Z (y-axis). Colors
represent the primary decay mode for the ground state. Stable nuclei are
in black. Neutron and proton magic numbers are indicated. Adapted from
Ref. [3].

where BE represents the binding energy of the nucleus. In the simplest approxi-
mation, the nucleus can be described as a high-density and incompressible fluid
of nucleonic matter, which organizes itself in a spherical drop. In this liquid-drop
model the binding energy assumes the form [4]

BE = aVA− asA2/3 − aC
Z(Z − 1)

A1/3
− aA

(A− 2Z)2

A
+ δ(A,Z). (1.2)

Every term stands for a specific effect of the residual interaction that binds the
system in a sphere of fermions. The first term is the volume energy, which accounts
for the interaction of each nucleon with its neighbors. The second term, surface
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energy, corrects the volume term for the nucleons on the surface of the drop. The
third term is the Coulomb energy, which describes the electric repulsion among the
protons. The fourth term is the symmetry energy accounting for the unbalance
of N and Z. The last term is the pairing energy, which models the preference of
the system to form pairs of like nucleons when A is even. The expression for the
pairing energy is

δ(A,Z) =


aPA

kP for N ,Z both even

0 for A odd

−aPAkP for N ,Z both odd

. (1.3)

The parameters aV , aS aC , aA, aP and kP are obtained by fitting experimental
masses, reason why Eq.(1.2) is called the semi-empirical mass formula. This gives
a simple estimation of the binding energy.

Similarly as in the atomic physics, where closed electronic configurations make the
atom less susceptible to ionization, in nuclear physics one also finds experimental
evidence of shell closure. We consider the separation energy, i.e., the energy to
remove a nucleon from a nucleus, defined respectively for neutron and proton as

Sn(N,Z) = BE(N,Z)−BE(N − 1, Z) (1.4)

Sp(N,Z) = BE(N,Z)−BE(N,Z − 1). (1.5)

Nuclei with a specific number N and/or Z, have much larger separation energy
than the neighboring nuclei, indicating that the former systems are more bound.
Such ‘‘magic numbers’’ (for spherical nuclei) equal 2, 8, 20, 28, 50, 82 (for protons
and nucleons) and 126 (only nucleons). When a nucleus has N or Z equal to
one of these numbers the nucleus is called ‘‘semi-magic’’, if both N and Z are
magic numbers the nucleus is called ‘‘doubly magic’’. The effect of large binding
in semi-magic and doubly-magic nuclei appears also in their stability against exci-
tations. In these systems, collective 2+ excitations are higher in energy than in the
neighboring systems.
The evidence of closed shells can be simulated by an average potential that localizes
the wave function of the nucleons inside the nuclear volume.
The shell configuration is fairly well described by the three-dimensional harmonic
oscillator (HO) potential with the addition of a spin-orbit term (the Nilsson model
[5]). The spin-orbit term, with tuned coupling constant, is able to separate har-
monic oscillator eigenstates with same angular momentum l but different j = |l+s|,
in the way that correct magic numbers are obtained. The resulting potential works
fine to approximate the nuclear mean field.
The description of the average potential can be improved by the Woods-Saxon
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potential [6], which provides more accurate single-particle wave functions of the
nucleons at the price that these solutions are not analytical.
It is a common practice in the many-body nuclear physics to expand the nuclear
wave function on a basis made of HO eigenstates. In fact, the analytical expression
of the HO eigenstates helps to simplify the theoretical calculations and implemen-
tations of the relevant equations in numerical codes. Furthermore, in the HO
system, analogously to the nuclear Hamiltonian, the center-of-mass motion can be
decoupled from the relative motion.

For the large majority of nuclei, away from closed shell configurations, it is
necessary to introduce a ‘‘residual’’ interaction to account for interplays among
nucleons that go beyond the average potential.
Intending to study the structure of the nuclear system, we deal with phenomena
at low-energy scale, it usually means of the order of MeV (compared to the rest
mass of the nucleons ∼ 1GeV). It is fundamental to characterize the residual
interaction at the level of low-energy physics, highlighting the relevant degrees of
freedom in the system. It is instructive to begin the discussion from the world of
quarks, gluons, and QCD towards the domain of neutrons, protons, and effective
Hamiltonians.

1.1 Fundamental particles and forces in nuclear

physics

Nucleons are composite particles, their fundamental constituents are known to be
quarks and gluons.

Quarks (q) are elementary particles with spin 1/2 and non-integer electric charge,
that is, the charge is proportional to a fraction of the elementary charge e. They
possess also color charge, which is responsible for their strong interaction. Quarks
are divided in six flavors, each flavor has specific mass and mean lifetime. Anti-
quarks (q̄), antiparticle of quarks, also exist, with the same flavor, mass, spin and
lifetime than quarks, but opposite charges. Gluons are elementary particles with
spin 1, mediators of the strong interactions of quarks, that also carry color charge,
i.e., they participate in the interaction in addition to mediating it.
While separating two color charges, the phenomenon of color confinement shows
that it is energetically more favorable a new quark-antiquark pair to appear rather
than increasing the separation distance, due to the fact that gluons are color
charged. It means that particles with singular color charge cannot be isolated,
but only states with global neutral color can be observed, namely, quarks and
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antiquarks manifest in composite particle called hadrons. Hadrons are formed by
valence quarks, from which they get their quantum numbers, plus an indefinite
number of virtual sea quarks, antiquarks and gluons. Among the hadrons, there are
mesons, formed by valence quark and antiquark (qq̄), such as pions, and baryons,
formed by three valence quarks (qqq), such as proton p and neutrons n. Recently
have been investigated states of tetraquarks (qqq̄q̄) and pentaquarks (qqqqq̄) [7].

Quarks and antiquarks interact with all the four fundamental forces: gravita-
tional, weak, electromagnetic and strong interaction (see Table 1.1). Then the
atomic nucleus, being composed by quarks, also experiences all the four forces, even
if only the last three play an active role in shaping its structure and regulating its
dynamics. The effects of the gravitational force are negligible, since its strength is
much smaller than that of the other interactions.

Table 1.1: Fundamental interactions and their properties. The strong interaction is
characterized as (fundamental) residual force. Adapted from Ref. [8], with
values from Ref. [9].

Interaction Gravitational Weak Electromagnetic
Strong

(fundamental)
residual

Particles
experiencing

all quarks, leptons charged particles
(quarks, gluons)

hadrons

Mediators (graviton) W+, W− and Z0 photons γ
(gluons)
mesons

Strength
p-p in nucleus

10−36 10−7 1 20

Range ∞ 10−18m ∞ 10−15m
Effects

in nucleus
- Beta decay

Coulomb,
EM transitions

Binding,
N-N scattering

The strong force is the one which keeps the nucleons together to form a bound
system and for this reason it is called ‘‘nuclear’’ force. At the fundamental level of
quarks and gluons, it is described by the quantum chromodynamics (QCD). At the
hadronic level, instead, the strong force emerges as residual interaction primarily
mediated by mesons.

QCD is a non-abelian gauge field theory, that is, the QCD Lagrangian is an
invariant of gauge transformations of the symmetry group SU(3) of color, and
the symmetry group is non-commutative. Colored particles, quark and gluons,
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interact weakly at short distances (corresponding to high-momentum transferred)
and strongly at distances larger than 1 fm (low energy). As a consequence, the
interaction can be treated perturbatively at high energy (asymptotic freedom) while
it is non-perturbative in the low-energy regime we are interested.
We briefly recall the notation commonly used in relativistic quantum field theory
with the spacetime index µ of a four-vector xµ ≡ (ct, x, y, z), in contrast with a
space vector x ≡ (x, y, z), and the Einstein convention for the sum on repeated
indices. The QCD Lagrangian density reads

LQCD = q̄ (iγµDµ −M) q − 1

4
gµν,a g

µν
a , (1.6)

where q ≡ q(x) are quark fields,M is the quark mass matrix, γµ are Dirac matrices.
Gluon fields Aµ,a(x) enter in the gauge-covariant derivatives Dµ as

Dµ = ∂µ − ig
λa
2
Aµ,a (1.7)

and in the gluon field strength tensors gµν,a, defined as

gµν,a = ∂µAν,a − ∂νAµ,a + gfabcAµ,bAν,c, (1.8)

where g is the strong coupling constant while the Gell-Mann matrices λa [10] and
the structure constants fabc are elements of the SU(3)color Lie algebra [11]. The
last term on the right-hand side of Eq.(1.8) represents the peculiarity of the strong
force, in which gluons interact also among themselves.
Up (u) and down (d) quarks are the lightest quarks with masses mu ≈ 2.5 MeV
and md ≈ 5 MeV. They are the valence quarks that form protons (uud), neutrons
(udd) and pions (ud̄, uū, dd̄, ūd). We limit our attention only to these two quark
flavors.
In the limit of vanishing quark masses mi = 0, we can rewrite Eq.(1.6) in the form

L0
QCD = q̄R (iγµDµ) qR + q̄L (iγµDµ) qL −

1

4
gµν,a g

µν
a , (1.9)

emphasizing the projection of the quark fields on their right-handed, qR = PR q,
and left-handed, qL = PL q, components. L0

QCD are invariant under a global unitary
transformation induced by elements of the symmetry group SU(2)R × SU(2)L.
Namely, the right- and left-handed components of massless quarks do not mix
under such transformation, and this property is known as chiral symmetry.
The chiral symmetry is broken explicitly by the mass matrix M = miδij because
mu 6= md. Such breaking is small since quark masses are a couple of order of
magnitude lower than pion and nucleon masses.
Furthermore, the hadronic phenomenology indicates that the chiral symmetry can
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be spontaneously broken. It happens when the ground state of the system does
not realize the symmetry of the Lagrangian. If the global symmetry is broken
spontaneously, there exist bosons with the same quantum numbers of the broken
generators, called massless Goldstone bosons [12]. In the case of the chiral symme-
try, the Goldstone bosons correspond to the isospin triplet of pseudoscalar pions.
Pions break the chiral symmetry spontaneously and explicitly. In fact, they are
the lightest mesons but their mass is not zero due to mu 6= md 6= 0.

The nuclear force can be described directly in terms of quark and gluons only in the
framework of lattice QCD. It requires an enormous computing power, which makes
this method feasible only to calculate observables of low-energy nucleon-nucleon
scattering or other few-body observables [13].
A more manageable approach is the effective field theory (EFT) [14], with a separa-
tion of scales placed around the breakdown scale Λb. The contributions to the force
are expanded in powers of Q/Λb, where Q is the soft scale. The physics at energies
around Q is accounted explicitly, while the high-energy effects are integrated in
the constants of the theory.
The separation of scales is fundamental to obtain an accurate representation of the
phenomena. In order to describe the large n-p scattering lengths, the pion-less EFT
is preferred, with the hard scale set at Λb ≈ mπc

2 = 139.6 MeV. When the pion
degrees of freedom are included, the pion-full EFT places Λb ≈ 770 MeV. To study
heavy nuclei and nuclear matter the Fermi momentum kF is the reference scale,
with the value kF ≈ 2mπc

2 at nuclear matter saturation density [15]. Yukawa
meson theory [16] and pion-exchange theory show that in nuclear structure and
reactions, nucleons and pions emerge as proper degrees of freedom, instead of
quarks and gluons.

The chiral perturbation theory (ChPT) is the EFT where the effective Lagrangian
is built satisfying the broken symmetries of QCD and using the pions and nucleons
as degree of freedom. Scattering matrix elements or Green’s functions, calculated
with the ChPT Lagrangian, admit an expansion of the form [17]

M =
∑
ν

(
Q

Λb

)ν
F
(
Q

µ
, gi

)
. (1.10)

Q represents the momentum or pion mass, corresponding to derivatives and mass
terms in the Lagrangian, Λb is around the mass of the ρ meson, Mρ ≈ 770 MeV
and the power ν is bound from below. The function F is of order 1 (naturalness),
depending on the regularization scale µ and the low-energy constants (LECs) gi.
LECs are usually obtained by fitting data, in the way that they mimic the unknown
high-energy physics. In ChPT Eq.(1.10) is justified by the vanishing interaction in
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the limit of pion mass or momentum going to zero. The relativistic expression of
the effective Lagrangian reads

Leff = Lππ + LπN + ... = L(1)
πN + L(2)

ππ + L(2)
πN + L(3)

πN + L(4)
ππ + L(4)

πN + ..., (1.11)

containing terms of increasing number of derivatives and pion mass insertions.
Ellipsis points include higher order dimensions as well as interaction of pions with
more nucleons.
The relativistic formulation is problematic because the mass of nucleons in LπN is
of the same order of the breakdown scale Λb. An improvement consists in going
to the non-relativistic limit through the heavy baryon chiral perturbation theory
(HBChPT) [18], where the Lagrangian assumes the form

Leff = Lππ + LπN + LNN + LNNN + ..., (1.12)

including many-nucleons contact interaction terms like LNN , LNNN , ... [14] .
Through the chiral perturbation theory, the nuclear force is represented by long-
intermediate range interaction, via pion(s) exchange, and short-range contact
interaction.
The naturalness of F makes the contribution to the next-to-leading order (NLO)
smaller than the leading order (LO), namely MLO(Λb) >MNLO(Λb) >MNNLO(Λb),
as shown in Figure 1.2.
Renormalized terms, derived from chiral effective field theory, are employed to
describe the nuclear Hamiltonian in ab initio methods.

Ab initio approaches include all the theoretical techniques that solve the non-
relativistic Schrödinger equation, with a Hamiltonian in which all the nucleons
are active and obey the Pauli exclusion principle. They are applied mostly to
light nuclei, in fact, the exact solution is available only for system of few nucleons
A . 4, while with certain controllable approximations heavier nuclei can be studied.
State-of-art calculations can reach Ni (Z=28), Zr (Z=40) and Sn (Z=50) isotopic
chains [19, 20]. In the interaction part of the Hamiltonian, the parameters are
fitted to reproduce 2N and 3N experimental data.
In the literature, there are several available ab initio methods, distinguished by
the technique adopted to calculate the many-body solution. The most developed
approaches are:

• In-Medium Similarity Renormalization Group (IM-SRG) [20]
• No-Core Shell Model (NCSM) [21]
• Lattice EFT [22]
• Many-Body Perturbation Theory (MBPT) [23]
• Coupled-Cluster (CC) [24]
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Figure 1.2: Schematic contributions to the potentials entering the Lagrangian density
of chiral EFT. The expansion is limited to next-to-next-to-leading orderd
(NNLO), for 2N (two-nucleons or two-body) and 3N forces. Continuous
(dashed) lines represent nucleons (exchanged mesons). Adapted from Ref.
[14]

• Self-Consistent Green’s Function (SCGF) [25]
• Green’s Function Monte Carlo (GFMC) [26]

When the number of nucleons is larger, due to the limits in computational re-
sources, more severe approximations need to be introduced. This is the case of the
Configuration Interaction (CI) theory (also known as nuclear shell model)[27].
The nucleus is divided in an inert core and valence nucleons, that is, the computing
resources are reduced by truncating the model space. The Hamiltonian contains
an average potential (usually harmonic oscillator or Woods-Saxon plus spin-orbit
interaction), that determines the single-particle energies, and a residual two-body
interaction, which accounts for interactions between nucleons in specific orbitals.
The solution of the Hamiltonian is simplified by a linear combination of Slater
determinants, made by single-particle wave functions. The Slater determinants
form the basis in which the Hamiltonian matrix is diagonalized. This approach
focuses particularly on medium-mass nuclei, 16 . A . 132. The parameters of
the interaction are fitted for the specific model space to observables available in
the same model space (e.g. ground and excited states of nuclei, in which valence
nucleons lie in a certain model space).
Recently this method was applied to the Hg isotopes (A ≈ 190) [28], where the
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valence nucleon space was extended with the Monte Carlo Shell Model technique
[29]. This procedure is able to select the most relevant Slater determinants to
describe a certain nuclear state by Monte Carlo sampling, and the reduced basis
makes the diagonalization possible.

When the dimension of the CI matrices overshoots the computational resources, the
nucleus can be modeled by the nuclear Energy Density Functionals (EDF)
or self-consistent mean-field method [30]. The force is parametrized by an average
mean-field potential, acting on each nucleon and originated by the interactions
with all the others. The information on the system is reduced to its densities.
This method requires to self-consistently calculate solutions of single-particles
Schrödinger equations. This approach, on the one hand, allows us to describe
heavy nuclei, on the other hand, is restricted mainly to study ground-state prop-
erties. Extensions to beyond mean-field theory and projection techniques help to
broaden the applicability to excited configurations.

1.2 ‘‘Effective’’ interactions

The term ‘‘effective’’ has assumed different meanings in the history of nuclear
physics.

The modern connotation tells that such interaction describes the degrees of freedom
at a certain energy scale, while the degrees of freedom relative to other scales are
integrated out and included in the parameters of the effective theory. The chiral
effective interaction is an example of this kind of force.

Conversely, the concept of microscopic effective interaction started in the context of
the Brueckner-Hartree-Fock calculations. The hard core part of the nucleon-nucleon
interaction, evaluated for a Slater determinant, will push the interaction energy
to explode. To avoid such divergence, an effective interaction can be calculated
by renormalization of bare nucleon-nucleon force. This can be achieved using
the Brueckner G-matrix [31], i.e., treating the two nucleons as if they scatter
in the nuclear medium. The independent particle picture still represents a good
approximation because the healing distance is smaller than the mean distance
between two nucleons inside the nucleus. That is, the two nucleons return to their
single-particle behavior before the next collision takes place.

Due to the difficulties to work with the microscopic potential, since the 1950s,
nuclear physics has seen a huge development of phenomenological effective forces to
be applied directly in the Hartree-Fock method. The adjective ‘‘phenomenological’’
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indicates that the interaction is described by a certain number of parameters fitted
to reproduce experimental data.
The nuclear wave functions should satisfy the invariance principles of the nuclear
Hamiltonian, but in the case of phenomenological interaction, these invariance
principles are not always fulfilled. Then, because of the phenomenon of spontaneous
symmetry breaking, the obtained solutions need to be projected on good quantum
numbers to be compared to experiments.
Since the range of the nuclear force is rather short, the simplest phenomenological
effective force is zero-range, i.e., described by a δ-function in the space coordinates.
More realistic forces require momentum dependence, density dependence or finite-
range.
Historically, the Skyrme-type force is an example of phenomenological effective
interaction. There are many parametrizations available in the literature due to the
different observables used to fit the parameters [30, 32].
In this work, we understand the components of the Skyrme potential as the ‘‘gener-
ators’’ of the energy density functionals. Namely, these components are operators
that, when calculating their average values with a Slater determinant, generate
the terms of the interaction part of the functionals, as shown in Section 2.5.

1.3 Motivation

We aim to explore the link between chiral EFT interactions and mean-field forces.
This may allow us to extend the description of nuclear interaction typical of the ab
initio framework to the domain of the EDFs. On one side we have a fundamental
description of the interaction among nucleons and on the other side we have a
method to describe medium- and heavy-mass systems. The development of ab
initio methods proceeds quickly, but the applicability to heavy systems is still
far to be reached with the actual computing resources. The scientific community
working with nuclear density functionals, instead, is looking towards new forms
and parametrizations of functionals that can increase precision of their predictions.
A successful extension could apply information from the chiral force to tackle a
larger variety of phenomena. Improving in the theoretical models are beneficial
in the comparison with experiments, especially when the theory is able to offer
uncertainties to the estimated values. The effective interaction can redefine the
driplines and it can increase the performance of the functionals on the whole nuclear
chart.

The research for a connection between ab initio and density functionals has already
started. In particular, possible ways to combine ab initio with EDFs are addressed
in the review article [33].
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A formal construction of EDF kernels grounded on ab initio methods is proposed
in Ref. [34].
In this work, I proceed by fitting parameters that enter the energy functional, to
ab initio calculations. Such derivation was suggested by Dobaczewski in [1], where
also a proof-of-principle was provided. In this thesis, I explore the potentiality and
limits of such a derivation, employing full-fledged ab initio calculations with chiral
interaction.

The thesis is organized as follows: Chapter 2 reviews the foundation of Energy
Density Functional theory in nuclear physics and Chapter 3 presents the current
status of nuclear functionals. Chapter 4 introduces the Self-Consistent Green’s
Function method and the ab initio technique we adopt in the calculations of ground
state energies. The methodology to derive the model functional is given in Chapter
5. In Chapter 6 the results obtained for the relevant case of NNLOsat with two-
and three-body interaction are discussed. Conclusions are given in Chapter 7.
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2. Energy Density Functionals

We present the principal aspects of the Density Functional Theory (DFT). The
DFT method was introduced in the 1960s to describe the properties of electronic
systems and very soon thereafter applied to atomic nuclei. We start from an
overview of foundations of electronic DFT [35], which then becomes a baseline for
the extension to the nuclear case.

2.1 Hohenberg-Kohn theorems

A many-body system composed of N electrons, subject to Coulomb repulsion and
immersed in an external potential v(r) is represented by the Hamiltonian operator

Ĥ = −
N∑
i=1

~2

2me

∇2
i +

N∑
i<j

e2

4πε0

1

|ri − rj|
+

N∑
i=1

v(ri) = T̂ + V̂ee + Ûext, (2.1)

where the contributes from kinetic energy T̂ , Coulomb V̂ee and external Ûext
potential are separated. From the (assumed) non-degenerate ground-state wave
function |Ψ(r1, ..., rN)〉, solution of the Schrödinger equation

Ĥ|Ψ〉 = E|Ψ〉, (2.2)

the electronic density ρ(r) of the system is obtained as

ρ(r) = N

∫
dr2 · · · drN |Ψ(r, r2, . . . , rN)|2. (2.3)

The density satisfies the N particle number constraint∫
dr ρ(r) = N. (2.4)
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The wave function |Ψ〉 depends on the potential v(r) through Eq.(2.2), then the
density, Eq.(2.3), is also a functional of v(r). Density associated with the (anti-
symmetric) ground state wave function of a Hamiltonian like Eq.(2.1) is called
v-representable. Hohenberg and Kohn [36] pointed out interesting properties related
with the v-representability.

Theorem 1: the external potential v(r) is a unique functional of the density
ρ(r), apart from a trivial additive constant.

The theorem establishes a one-to-one mapping between the v-representable density
and the external potential v(r). The ground state wave function is the mediator of
this relation, in fact v(r) determines Ĥ, which determines |Ψ〉, which defines ρ and
the chain rules equivalently in the opposite direction.
All the information about the interacting system of fermions is included in the
function ρ(r). In fact, the density determines the ground-state properties, such as
the number of electrons N , in Eq.(2.4), and the energy functional

Ev[ρ] = T [ρ] + Vee[ρ] + Uext[ρ] = FHK [ρ] +

∫
dr ρ(r)v(r), (2.5)

where the universal functional, FHK [ρ] ≡ 〈Ψ|T̂ + V̂ee|Ψ〉, is separated from the
v-dependent part. FHK [ρ] is defined ‘‘universal’’ because it is the same for all the
systems with density ρ, independently from the details of the external potential.
For the ground state density ρ0, the energy functional Ev[ρ0] is equal to the ground
state energy E0.

Theorem 2: for a trial density ρ̃(r), such that ρ̃(r) > 0 and
∫

dr ρ̃(r) = N ,
it results Ev[ρ̃] > E0, i.e., the functional Ev[ρ̃] assumes its minimum if ρ̃ = ρ0.

Alternatively it can be said that for all the v-representable densities ρ(r) con-
strained to

∫
dr ρ(r) = N , the ground-state density ρ0 is the one that minimize

the total energy:
Ev[ρ] > Ev[ρ0]. (2.6)

2.2 Levy-Lieb constrained-search

The v-representability is a strict condition that not all the density can satisfy. For
example a density obtained from degenerate ground state wave functions is not
v-representable. This condition can be relaxed by considering N-representable
density, which means density obtained from antisymmetric wave function that
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satisfies ρ(r) > 0,
∫

dr ρ(r) = N and
∫

dr|∇ρ1/2(r)|2 <∞.
Furthermore, given the ground state density ρ0, there can be found an infinite
number of wave functions |Ψ〉 that square integrated give ρ0 (we write Ψ→ ρ0),
including the ground state wave function |Ψ0〉. Determining |Ψ0〉 from ρ0 is not
trivial and it requires to consider the minimum energy principle of the ground
state. In fact, the ground state wave function is the one that minimizes the energy
functional and therefore the functional FHK [ρ] as

FHK [ρ0] = 〈Ψ0|T̂ + V̂ee|Ψ0〉 = min
Ψ→ρ0
〈Ψ|T̂ + V̂ee|Ψ〉. (2.7)

Levy [37] and Lieb [38, 39, 40] suggested a solution that eliminates the restriction
on the v-representability in the Hohenberg-Kohn variational principle (see Eq.(2.6))
and determines the ground-state wave function |Ψ0〉. This procedure is called
constrained-search. The Levy-Lieb functional FLL is an extension of the FHK
functional, and it is defined as

FLL[ρ] ≡ min
Ψ→ρ
〈Ψ|T̂ + V̂ee|Ψ〉, (2.8)

where ρ is a N -representable density. The minimization of the energy is carried
out in two steps:

E0 = min
Ψ
〈Ψ|T̂ + V̂ee +

N∑
i=1

v(ri)|Ψ〉

= min
ρ

{
min
Ψ→ρ
〈Ψ|T̂ + V̂ee +

N∑
i=1

v(ri)|Ψ〉

}

= min
ρ

{
min
Ψ→ρ

[
〈Ψ|T̂ + V̂ee|Ψ〉+

∫
dr ρ(r)v(r)

]}
= min

ρ

{
FLL[ρ] +

∫
dr ρ(r)v(r)

}
≡ min

ρ
E[ρ]. (2.9)

The inner minimization is restricted to the wave functions that give a certain
density profile ρ, while the outer minimization runs over all N -representable ρ.
In such a way, an universal functional FLL[ρ] and an energy functional minimum
principle are obtained for N -representable densities.

2.3 Kohn-Sham method

The Hohenberg-Kohn theorems and the Levy-Lieb constrained-search indicate the
existence and other properties of the ground-state density, without giving practical
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recipe how to calculate it. Help in this direction comes from the Kohn-Sham
method [41].
We consider a system of non-interacting electrons, with N -representable ground-
state density ρ(r). Kohn and Sham suggested to represent such density by specific
single-particle orbitals |φi〉. These Kohn-Sham orbitals are assumed to satisfy the
one-particle Schrödinger equations

ĥKS|φi(r)〉 =

[
− ~2

2me

∇2 + vKS(r)

]
|φi(r)〉 = εi|φi(r)〉, (2.10)

with the one-body Hamiltonian ĥKS, the Kohn-Sham (external) potential vKS(r)
and the single-particle energies εi. Due to the fact that the electrons do not interact
among themselves in this system, we can rewrite the many-body Hamiltonian ĤKS

by the sum of one-body Hamiltonians as

ĤKS =
N∑
i=1

ĥ
(i)
KS =

N∑
i=1

[
− ~2

2me

∇2
i

]
+

∫
dr vKS(r)ρ̂(r). (2.11)

The eigenstates of ĤKS are given by the Slater determinant |ΦKS〉 built of the
Kohn-Sham orbitals. The ground-state density results

ρ(r) = 〈ΦKS|ρ̂(r)|ΦKS〉 =
N∑
i=1

|φi(r)|2, (2.12)

namely, the density is determined by these specific orbitals. The ground-state of
the system reads

EKS[ρ] = 〈ΦKS|ĤKS|ΦKS〉 = TKS[ρ] +

∫
dr vKS(r)ρ(r), (2.13)

where TKS[ρ] ≡
∑N

i=1〈φi| −
~2

2me
∇2|φi〉 is the kinetic energy of a system of non-

interacting electrons with density ρ. Applying the Hohenberg-Kohn theorems to
the non-interacting system (Vee=0), TKS[ρ] appears as a universal functional, after
defining it in the restricted domain of v-representable densities. The extension of
the functional TKS[ρ] to N -representability is a conjecture with open discussions
about the methods to accomplish it [35].

When we are interested in characterizing the potential vKS(r), we look now at an
interacting system described by Eq.(2.1) with the same ground-state density ρ(r)
of the Kohn-Sham system. For the former, we rearrange the universal functional
FHK [ρ] introducing the exchange-correlation functional Exc[ρ], that is,

FHK [ρ] ≡ TKS[ρ] + EH [ρ] + Exc[ρ]. (2.14)
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Here the Hartree functional EH [ρ] represents the classical Coulomb interaction,
i.e., the direct term of Vee[ρ],

EH [ρ] =
1

2

∫
dr dr′

ρ(r)ρ(r′)

|r− r′|
. (2.15)

The exchange and correlation energies are included in the functional Exc[ρ], that we
can rewrite as Exc[ρ] = T [ρ]− TKS[ρ] + Vee[ρ]− EH [ρ], pointing out the difference
between the true T [ρ] and the Kohn-Sham TKS[ρ] kinetic energy functionals.
The minimum condition, Eq.(2.6), is equivalent to require

δFHK [ρ]

δρ(r)
= −v(r). (2.16)

Expressing FHK [ρ] by Eq.(2.14), and using Eq.(2.13) for the Kohn-Sham kinetic
functional, Eq.(2.16) provides the expression of the Kohn-Sham effective potential
as

vKS(r) = v(r) + vH(r) + vxc(r), (2.17)

where the Hartree potential is vH(r) ≡
∫

dr′ ρ(r′)
|r−r′| and the exchange-correlation

potential is vxc(r) ≡ δExc[ρ]
δρ(r)

.

The derivation of the Kohn-Sham potential is fundamental to link the non-
interacting system with the interacting one. The Kohn-Sham method suggests that
the ground-state energy of interacting electrons can be obtained as the ground-state
energy of non-interacting electrons with the same ground-state density of the
interacting ones and the effective Kohn-Sham potential vKS(r).
Looking at the components on the right-hand side of Eq.(2.17), vKS(r) depends on
the density ρ, then Eq.(2.10) needs to be solved self-consistently.

At this point the principal difficulties are located in finding a good approximation
for the exchange-correlation functional Exc[ρ]. The Linear Density Approximation
(LDA) considers the system locally equivalent to the homogeneous electron gas of
density ρ(r), meaning that the exchange-correlation functional takes the form

ELDA
xc [ρ] =

∫
dr [εx(ρ(r)) + εc(ρ(r))] . (2.18)

εx(ρ) and εc(ρ) represent respectively the exchange and correlation energy per
volume unit for a homogeneous system of density ρ.
More accurate expressions are studied in the Generalized Gradient Approximation
(GGA) [42], where

EGGA
xc [ρ] = ELDA

xc [ρ] +

∫
dr f

(
ρ(r),∇ρ(r)

)
, (2.19)
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i.e., the exchange-correlation functional is expanded in functionals of the density
and its gradient. The LDA is the zero-order term of such expansion.

2.4 Nuclear Density Functional Theory

Extending the density functional method to the nucleus faces new challenges. On
the one hand, the electronic system is subject to the external potential, usually
due to the interaction with the charged nuclei. This interaction has the effect of
localizing the electronic density. On the other hands, the nucleus is a self-bound
system, due to the attractive strong force among nucleons, which is responsible for
the nuclear density localization.
Moreover, on the one hand, the electrons interact among themselves through the
well-established Coulomb force, which is a two-body interaction. On the other hand,
the nuclear interaction at the level of nucleons involves two-body and three-body
terms at least. As discussed in Section 1.1, it is formed by a long-range part, the
pion-exchange and Coulomb potentials, and by a short-range part, described by a
contact interaction. In the vertex of the contact interaction all the high-energy
contributions are integrated out.

Experimental evidence shows that the inner part of the nucleus has almost constant
density ρsat ≈ 0.16 fm−3, and the density sharply drops down at the surface, which
has a thickness of around 0.6 fm. The Pauli exclusion principle and the range of
nuclear interaction, around 1 fm, shorter than the average distance between two
nucleons 2r0 ≈ 2.5 fm, suggest that the nucleons experience the mutual interaction
not so often. In fact, inside the nucleus the nucleon mean free path is of the order
of the nuclear radius [43].
The mean-field theory can be used to describe such system, namely the nucleons
move in an average potential created by the mutual interaction with the other
nucleons. This consideration leaded to formulation of several mean-fields, among
them stands the famous empirical Woods-Saxon potential [6].
At the same time, the shell model picture proposed the idea of single-particle
orbitals filled by the nucleons, interacting through a residual potential.

The Nuclear Energy Density Functional theory attempts to connect the mean-field
approximation with the orbital representation characteristic to the Kohn-Sham
method. This requires to construct a functional to be employed in the framework of
a microscopic mean-field approach, in nuclear physics known as the Hartree-Fock
method.
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The many-body Hamiltonian Ĥ for a system of A nucleons can be written as

Ĥ = −
A∑
i=1

~2

2mN

∇2
i +

1

2

A∑
i 6=j=1

V̂ (i, j), (2.20)

where mN is the average nucleon mass and V̂ (i, j) is a two-body potential (three-
body and many-body terms are neglected at the moment for simplicity). We assume
that the ground-state solution of Eq.(2.20) is described by a Slater determinant
|Φ〉 of single-particle states φi. With the orbital φi we indicate the wave function
φi(r, σ, τ) in the space-spin-isospin coordinates, which is equivalent to the ket
|i〉. In second-quantization formalism, |i〉 = a†i |−〉, where the fermionic creation
operator a†i acts on the particle vacuum |−〉 1. It results

|Φ〉 =
A∏
i=1

a†i |−〉. (2.21)

We recall that the complete set {a†i} can be expanded on another complete set of
eigenstates, a basis {c†k}, through an unitary transformation. In the many-body
nuclear physics, it is common practice to use the harmonic oscillator wave functions
as basis in which expand the solutions. In fact, in the harmonic oscillator problem
the wave functions are localized, i.e., their values approach zero at large distance
|r|.
In second-quantization, we rewrite the Hamiltonian Ĥ in Eq.(2.20) as

Ĥ = T̂ + V̂ =
∑
ij

〈i|T̂ |j〉 a†iaj +
1

4

∑
ijkl

〈ij|V̂ |kl〉 a†ia
†
jalak, (2.22)

where 〈i|T̂ |j〉 and 〈ij|V̂ |kl〉 are respectively the kinetic one-body and the (antisym-
metrized) potential two-body matrix elements.
The expectation value of the Hartree-Fock energy defines the energy functional as
[44]

EHF [ρ] ≡ 〈Φ|Ĥ|Φ〉

=
A∑
i=1

〈i|T̂ |i〉+
1

2

A∑
i,j=1

〈ij|V̂ |ij〉, (2.23)

1 The hermitian conjugate of the creation operator is represented by the annihilation or
destruction operator ai. a†i and ai obey the anticommutation rules for fermionic operators{
ai, a

†
j

}
= δij .
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where in the last line we applied the Wick theorem [45], and, after defining the
one-body density matrix ρji ≡ 〈Φ|a†iaj|Φ〉, we used that ρji = δji. The minimization
of the functional EHF [ρ] with respect to the constrained density ρ can be replaced
by a constrained variation respect to the single-particle states φ∗j as

δ

δφ∗j

[
EHF [ρ]−

A∑
j=1

εj

∫
dr|φj(r)|2

]
= 0. (2.24)

Eq.(2.24) gives the set of Hartree-Fock single-particle equations as

− ~2

2mN

∇2φj(r) +

∫
dr′ V (r, r′)

[
ρ(r′)φj(r)− ρ(r′, r)φj(r

′)
]

= εjφj(r). (2.25)

These coupled equations need to be solved self-consistently. In fact, each single-
particle state depends on the mean field generated by the total density as shown
in the integrand. Schematically the procedure consists of the following steps:

1. starting with a reasonable guess for φj;
2. calculating ρ from φj;
3. calculating the integrand in Eq.(2.25) with ρ;
4. solving the Hartree-Fock equations to obtain new φj;
5. repeating the loop of steps 2 to 4 until the convergence of the solution, i.e.,

when the difference between the new solution and the previous one is smaller
than a fixed value. The difference in the value of EHF is commonly used as
index of convergence.

In term of single-particle energies the ground-state energy in Eq.(2.23) becomes

EHF =
A∑
i=1

εi −
1

2

A∑
i,j=1

〈ij|V̂ |ij〉. (2.26)

The single-particle equations Eq.(2.25) are formally similar to the Kohn-Sham
equations Eq.(2.10), but they are conceptually diverse. The Kohn-Sham method
reformulates the interacting problem to solve it exactly, while the Hartree-Fock
method replaces the initial many-body problem by a simpler one-body problem.
Here, the Hartree-Fock technique has been presented as the procedure to obtain
Kohn-Sham like equations in the context of nuclear interaction.

2.5 Interactions and Skyrme energy density func-

tionals

The interaction V̂ needs to satisfy the symmetry properties relevant for the nuclear
system. We recall that, once the symmetry operator can be written as P̂ , the
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Hamiltonian Ĥ is invariant under P̂ if Ĥ commutes with P̂ , that is, [Ĥ, P̂ ] = 0.
Important symmetries are:

• Hermiticity, V̂ † = V̂ , such that the Hamiltonian Ĥ has real eigenvalues.
• Invariance under exchange of particles, V̂ (1, 2) = V̂ (2, 1).

• Translational invariance, represented by P̂ = e(ia·K̂), where a is the shift
vector and K̂ is the total linear momentum operator.
• Rotational invariance, represented by P̂ = e(iα·Ĵ), where α is the rotation

angle and Ĵ is the total angular momentum operator.
• Isospin invariance, represented by P̂ = e(iβ·T̂), where β is the iso-rotation

angle and T̂ is the total isospin operator.
• Galileian invariance, that is, V̂ does not change if the system moves at

constant velocity (for non-relativistic systems).

• Particle-number invariance, P̂ = e(iθN̂), with gauge angle θ and total particle
number operator N̂ , standing that the number of particles is fixed to A.
• Space reflection, P̂ =

∏A
i=1 π̂i, where π̂i is the particle parity operator, setting

that the total parity is conserved.
• Time-reversal, represented by P̂ = e(iπŜy)Ĉ , where Ŝy is the y-component of

the total spin operator and Ĉ is the complex conjugation operator.

Such symmetries put limits to the possible form of the interaction. The potential
must be a scalar, containing functions of the relative coordinates r ≡ r1 − r2, of
the square of relative momentum k2, where k ≡ − i

2
(∇1 −∇2), of the spin-orbit

product L · S.

Including the spin and isospin-exchange operators [46],

P σ =
1

2
(1 + σ1 · σ2), (2.27)

P τ =
1

2
(1 + τ1 · τ2), (2.28)

in the central potential facilitates the saturation of the nuclear density, the condi-
tion when the kinetic energy and the repulsive part of the potential balance the
strong attractive part.
Furthermore, in order to obtain a distribution of nuclear levels comparable to the
experimental one, a density-dependent term needs to be added to the two-body
interaction, as shown in Ref. [47].

Many phenomenological interactions have been developed to built energy func-
tionals and among them three families gain large success in their application.
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They use finite-range, zero-range or relativistic interactions [48] to describe the
nuclear structure. The latter kind is just mentioned here since we consider the
non-relativistic approach to the nuclear many-body problem.
The finite-range Gogny interaction [49, 50], written as 2

V̂Gogny(r1 − r2) =
2∑
j=1

e
|r1−r2|

2

µ2
j (Wj +BjP̂

σ −HjP̂
τ −MjP̂

σP̂ τ )

+ iWls(σ̂1 + σ̂2) ·
[
k̂
′ × δ(r1 − r2)k̂

]
+ t3(1 + x0P̂

σ)δ(r1 − r2)ρα
(

r1 + r2
2

)
, (2.29)

is formed by two Gaussians to mimic the finite-range, by the spin-orbit and by the
density dependent term.
The zero-range momentum-dependent Skyrme interaction [51, 52],

V̂Skyrme(r1 − r2) = t0(1 + x0P̂
σ)δ(r1 − r2)

+
1

2
t1(1 + x1P̂

σ)
[
k̂′2δ(r1 − r2) + δ(r1 − r2)k̂2

]
+ t2(1 + x2P̂

σ)k̂′ · δ(r1 − r2)k̂

+ iw0(σ̂1 + σ̂2) ·
[
k̂′ × δ(r1 − r2)k̂

]
+

1

6
t3(1 + x3P̂

σ)δ(r1 − r2)ρα
(

r1 + r2

2

)
, (2.30)

presents the momentum-dependent, the spin-orbit and the density-dependent terms.
These effective interactions are used to generate the energy functional as

E[ρ] = 〈Φ|T̂ + V̂ [ρ]|Φ〉. (2.31)

For this reason, the terms in Eq.(2.29) or in Eq.(2.30) are considered the generators
of the functional E[ρ], which is commonly expressed by the energy density E as

E[ρ] =

∫
dr E [ρ]. (2.32)

The Gogny interaction generates functionals of non-local densities, like ρ(r, r′),
while Skyrme functionals contain quasi-local ones, as ρ(r).
Both include a certain number of parameters, (µj,Wj, Bj, Hj,Mj,Wls, t3, x0) in
Gogny and (t0, x0, t1, x1, t2, x2, w0, t3, x3) in Skyrme, that are fitted to reproduce

2The notation k̂′ ≡ k̂† indicates that the derivatives act on the 〈bra| side.
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experimental data. In the literature, there are many parametrizations available,
corresponding to different choices of experimental properties to be described. Vary-
ing the relative strength of the parameters corresponds to tune the singular terms
of the interaction.

In this work we are interested in Skyrme-type energy density functionals.

The generators of the Skyrme interaction in Eq.(2.30), acting on the density matrix
ρ(r, σ, t; r′, σ′, t′) ≡

∑
i φ
∗
i (r, σ, t)φi(r

′, σ′, t′), can produce the following densities:

• isoscalar one-body density

ρ0(r) = ρ0(r, r′)
∣∣
r=r′

=
∑
σ t

ρ(r, σ, t; r′, σ, t)
∣∣
r=r′

(2.33)

• isovector one-body density

ρ1(r) = ρ1(r, r′)
∣∣
r=r′

=
∑
σ t

t ρ(r, σ, t; r′, σ, t)
∣∣
r=r′

(2.34)

• kinetic energy density

τT (r) = ∇ · ∇′ρT (r, r′)
∣∣
r=r′

(2.35)

• spin-density

sT (r) =
∑
σ σ′ t

ρT (r, σ, t; r′, σ′, t)〈σ′|σ̂|σ〉
∣∣
r=r′

(2.36)

• current density
jT (r) = k ρT (r, r′)

∣∣
r=r′

(2.37)

• spin-current tensor
JT (r) = k⊗ sT (r, r′)

∣∣
r=r′

(2.38)

often approximated by the spin-orbit current

JT (r) =
∑
ijk

εijk ı̂ [JT (r)]jk (2.39)

• kinetic spin-density

TT (r) = ∇ · ∇′sT (r, r′)
∣∣
r=r′

. (2.40)

The index T = 0 distinguishes the isoscalar densities from the isovector (T = 1)
ones. For example ρ0 ≡ ρn + ρp and ρ1 ≡ ρn − ρp.
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The EDF is invariant under time-reversal, then it separately contains bilinear terms
with time-even and time-odd densities as

ESkyrme(r) =
∑
T= 0,1

(EevenT + EoddT ). (2.41)

The time-even part results

EevenT = Cρ
Tρ

2
T + C∆ρ

T ρT∆ρT + Cτ
TρT τT + CJ

TJ2
T + C∇JT ρT∇ · JT . (2.42)

The time-odd part, different from zero only in case of odd number of nucleons, is

EoddT = Cs
T s2

T+C∆s
T sT ·∆sT+CsT

T sT ·TT+C∇sT (∇·s)2+Cj
T j2
T+C∇jT sT ·∇×jT . (2.43)

The coefficients Ci
T are called coupling constants and are linear combinations of

the Skyrme parameters. The density-dependent term is absorbed in the coupling
constant Cρ

T ≡ Cρ 0
T + Cρ dd

T ρα0 .
We focus on studying even-even nuclei and for this reason the time-odd part of the
functional will be neglected later.

Eq.(2.42) and Eq.(2.43) have been derived from the generators of the interac-
tion in Eq.(2.30) [44].
The total energy of the Skyrme-type functional results

E[ρ] =

∫
dr
[
Ekin(r) + ESkyrme(r)

]
+ ECoul, (2.44)

including the kinetic energy density

Ekin(r) ≡ − ~2

2mN

τ0(r), (2.45)

and the Coulomb energy

ECoul =
e2

4πε0

∫
drdr′

[
ρch(r)ρch(r

′)

|r− r′|
− ρ2

ch(r, r
′)

|r− r′|

]
, (2.46)

with the charge density ρch.
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3. Development of EDFs

Phenomenological energy density functionals can be constructed without a connec-
tion to the underlying Hamiltonian, but building them from bilinear terms of local
densities and their derivatives, that are invariant with respect to translational,
rotational, isospin, parity and time-reversal transformations. The pairing sector
(see Section 3.1) can be described by a potential other than the force used in
the particle-hole channel. The exchange terms can be treated in simplified forms,
as in the case of the Slater approximation of the Coulomb exchange term. The
density-dependent part of the potential can contain a non-integer power of the
density, α in Eqs.(2.29) or (2.30), as in the functional SLy4 [53]. Functionals
can be formed by terms coming from finite-range interactions and from realistic
microscopic interactions, as in the functional BCPM [54]. This large freedom in
the selection of the building terms lead to an extended phenomenology of EDFs,
complementary to the functionals derived in Sections 2.4 and 2.5.
The most general total energy assumes the form

E = Ekin + Eint + ECoul + Epair − Espur, (3.1)

with the pairing energy Epair and the correction for spurious motion Espur.
Spurious effects, like self-interaction terms, can appear when the functional is not
derived from a Hamiltonian or when the theory is extended beyond the mean-field
approximation. Such difficulties, discussed in the Section 3.2, recommend the use
of energy density functionals derived from generators rather than functionals built
without an underlying Hamiltonian.

3.1 Pairing and Hartree-Fock-Bogoliubov equa-

tions

Pairing effects are relevant to describe the stability of nuclear systems [5].
In the EDF theory pairing can be included, for example, through an effective
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density-dependent interaction that gives

Epair =
∑
q=p,n

Vq
4

∫
dr

[
1−

(
ρ(r)

ρc

)β]
ρ̃q(r)ρ̃∗q(r), (3.2)

where ρc is called ‘‘switching’’ density and ρ̃q(r) is the pair density [55]. The choice
of the parameter ρc selects the kind of pairing, namely ρc →∞ represents volume
pairing concentrated in the inner part of the nucleus, while ρc ≈ ρsat is the surface
pairing.

A formal way to introduce pairing in the mean-field approach is the Hartree-
Fock-Bogoliubov (HFB) method. The Bogoliubov-de Gennes transformation,(

b
b†

)
=

(
U † V †

V T UT

)(
a
a†

)
≡ W†

(
a
a†

)
, (3.3)

defines the quasiparticle creation b† and annihilation b operators as linear combina-
tions (matrices U and V ) of particle operators a and a†. Such transformation W is
unitary (WW† =W†W = 1).
The quasiparticle vacuum of this theory is the product state

|ΦHFB〉 =
A∏
i=1

bi|−〉, (3.4)

that satisfies the condition bi|ΦHFB〉 = 0 ∀i. Quasiparticles represent excitations of
the system: the ground state corresponds to the vacuum, a state without excitation,
while excited states are produced adding quasiparticle creation operators to the
vacuum.
The one-body density matrix is defined as [30]

ρij = 〈ΦHFB|a†jai|ΦHFB〉 =
(
V ∗V T

)
ij

= ρ∗ji, (3.5)

and the pairing tensor (or abnormal density) as

κij = 〈ΦHFB|ajai|ΦHFB〉 =
(
V ∗UT

)
ij

= −κji. (3.6)

They are the components of the generalized quasiparticle density

R =

(
ρ κ
−κ∗ 1− ρ∗

)
. (3.7)

In HFB theory there is a one-to-one mapping between the reference state |ΦHFB〉,
the matrices (U, V ) of the Bogoliubov transformation and the set of densities (ρ, κ).
The ground state is calculated by minimization of the Routhian

R(λp, λn) = E − λp〈ΦHFB|N̂p|ΦHFB〉 − λn〈ΦHFB|N̂n|ΦHFB〉, (3.8)
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with the Lagrange multipliers λ used to constrain the expectation value of the
particle number operator N̂ for both protons and neutrons, since the particle
number symmetry is broken.
The total energy E in the Routhian consists of a functional derived by an effective
Hamiltonian Ĥ as

E = 〈ΦHFB|Ĥ|ΦHFB〉

=
∑
ij

〈i|T̂ |j〉ρji +
1

2

∑
ijkl

〈ij|V̂ |kl〉 ρkiρlj +
1

4

∑
ijkl

〈ij|V̂ |kl〉κ∗ijκkl = E[ρ, κ, κ∗],

(3.9)

or of a functional of the generalized density not fully linked to any underlying
Hamiltonian as

E = E[ρ, κ, κ∗] = E[R]. (3.10)

Analogously to the Hartree-Fock equations, the minimization of Eq.(3.8) gives the
HFB equations (

h− λi ∆
−∆∗ −h∗ + λi

)(
Ui
Vi

)
= εi

(
Ui
Vi

)
, (3.11)

with hij ≡ ∂E
∂ρji

and ∆ij ≡ ∂E
∂κ∗ij

. In case of energy obtained from a two-body

Hamiltonian, we obtain again the Hartree-Fock single-particle hamiltonian hij =

〈i|T̂ |j〉+ Γij, where the Hartree-Fock self-consistent field is

Γij ≡
∑
kl

〈ik|V̂ |jl〉 ρlk, (3.12)

plus the pairing gap

∆ij ≡
1

2

∑
kl

〈ij|V̂ |kl〉κkl. (3.13)

The eigenvalues of the HFB equations appear in pairs ±εi and only one value for
each pair is considered. By the Bloch-Messiah theorem [5], the solution can be
expressed in the canonical basis (natural orbitals), in which the density matrix ρij
is diagonal and the pairing tensor appears in its canonical form.

3.2 Beyond the mean-field approach

HFB, like HF, is a mean-field method constructed by single-reference energy density
functionals (SR-EDF) because the ground state wave function |Φ〉 is represented
by a single product state or Slater determinant. Such wave function describes
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the nucleus on its intrinsic reference system, the center-of-mass frame, where the
symmetries of the nuclear interaction are broken by the quasiparticle operators. As
an example the ground state, linear combination of quasiparticle wave functions,
mixes particle creation and annihilation operators, breaking the particle number,
angular momentum and parity symmetries.
On the contrary, experimental observables are measured in the laboratory frame,
where the symmetries are conserved. Transferring the mean-field wave function
to the laboratory system requires the ‘‘beyond mean-field’’ approach. The broken
symmetries are restored by projecting the wave function on good quantum numbers,
conserved by the nuclear interaction. The operator Ŝ, generator of the symmetry
group, and Ĥ commute. Nevertheless the solution |Φ〉 is obtained by symmetry
breaking, and it makes necessary to project the product state on the eigenstate |s〉
of Ŝ, namely |s〉 = P̂ S|Φ〉. The projection, performed by the operator P̂ S, can be in-
cluded at two stages: projection-after-variation (PAV) or variation-after-projection
(VAP). In PAV procedure, the projection operator acts on the state, solution of the
variational method. In VAP way, the variational equation is solved in the subset
of projected state P̂ S|Φ〉. The domain of this subset is larger than the domain of
|Φ〉 and, as a consequence, the VAP strategy can find a lower minimum than the
PAV. These techniques demand the construction of a set of several product states
(configuration mixing), usually performed by the generator coordinate methods
(GCM). In this context, the functionals are named multi-reference energy density
functionals (MR-EDF).

In GCM the many-fermion state is approximated by

|Ψ〉 =

∫
dq f(q)|Φ(q)〉, (3.14)

where f(q) is the weight and |Φ(q)〉 indicates a family of product states (generator
states) parametrized by the continuous generator coordinates q. Such family can
be derived from the solution of the constrained variation

δR = δ

[
〈Φ(q)|Ĥ|Φ(q)〉
〈Φ(q)|Φ(q)〉

−
∑
i

λi〈Φ(q)|Ôi|Φ(q)〉

]
= 0, (3.15)

where the Lagrange multipliers λi are determined by the constraint 〈Φ(q)|Ôi|Φ(q)〉 =
qi for the operators Ôi. These operators describe the relevant degrees of freedom
for the system to be parametrized, like particle numbers, quadrupole moments, ...
Introduced the energy kernel H(q, q′) ≡ 〈Φ(q)|Ĥ|Φ(q′)〉 and the norm kernel
I(q, q′) ≡ 〈Φ(q)|Φ(q′)〉, we can rewrite the average energy as

E =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

=

∫
dqdq′ f ∗(q)H(q, q′)f(q′)∫
dqdq′ f ∗(q)I(q, q′)f(q′)

. (3.16)
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The variation of E with respect to the weight gives the Hill-Wheeler equation [56]∫
dq′ [H(q, q′)− EI(q, q′)] f(q′) = 0, (3.17)

from which the weight f(q) is determined.
The projected energy on a quantum number s reads

Es(q) =
〈Φ(q)|ĤP̂ S|Φ(q)〉
〈Φ(q)|P̂ S|Φ(q)〉

. (3.18)

Projection techniques can experience spurious effects when the functional is not
derived from a proper Hamiltonian. An irregular behavior of the energy projected
on particle number was pointed out in Ref. [57], due to the presence of the density-
dependent term. Successive works [58, 59, 60] proposed a regularization method to
remove spurious states limited to the case of density-dependent functionals with
integer power α.
Inaccuracies can regard also the angular momentum projection, for which a simple
regularization scheme is discussed in Ref. [61], to treat the situation when the
norm kernel I(q, q′) is null in the denominator of E.

In the context of GCM, we can define the transition density matrix as

ρ̄ij(q, q
′) =

〈Φ(q)|a†jai|Φ(q′)〉
〈Φ(q)|Φ(q′)〉

. (3.19)

After applying the generalized Wick’s theorem to the energy and norm kernel, the
kernels appear to depend on transition densities, namely H(q, q′)[ρ̃] and I(q, q′)[ρ̃].
In this sense, the beyond mean-field approach manifests itself as an extended
formulation of EDFs with transition densities.

3.3 Current status of nuclear functionals

The state-of-art functionals provide ground state energies close to the experimental
values along the whole nuclear chart (see Figure 3.1). The root-mean-square differ-
ence between the theoretical and experimental binding energies reached below 0.8
MeV in the optimization described in Ref. [62], using the Gogny D1M interaction
with quadrupole corrections. The Skyrme-type functionals showed a root-mean-
square of about 1.4 MeV within the UNEDEF0 [63] parametrization. This level
of accuracy, even if it appears small compared to total binding energies of few
hundreds MeV, is not sufficient to provide valid theoretical estimates. Nuclear
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Figure 3.1: Performance of energy density functionals. The difference between theo-
retical and experimental binding energies, y-axis, is plotted in function of
the neutron number N , x-axis. Continuous lines represent isotopic chains.
The arch structures are typical features when the parameters are fitted to
magic nuclei: energies of closed-shell nuclei are more constrained than the
extrapolated energies of mid-shell systems.
(Left) Gogny-type functionals D1S, D1N and D1M. Plot taken from Ref.
[62]. (Right) Skyrme-type functionals SLy4 [53] and UNEDEF0. Plot
adapted from Ref. [63].

observables are measured with higher precision in laboratory, and models based
on nuclear structure outputs are sensitive to small differences in the value of
observables. Other properties of nuclei as radii, quadrupole deformations, and of
infinite nuclear matter systems (see Appendix B) provide terms for comparison
with the available data.
The choice of the observables, which enter as inputs in the optimization procedure
of the functional parameters, influences the quality of the functional in reproducing
the observables themselves. If the optimization is done properly, the fitted func-
tional returns the correct values of observables for the nuclei included in the fit,
and it provides model extrapolations for the other nuclei.
The comparison with experiment addresses the fundamental aspect of estimating
uncertainties in theoretical results. In this direction the research have improved
recently. The topic has been more and more discussed in the literature concerning
theoretical methods in nuclear physics, particularly in the context of energy density
functional with Skyrme-type interaction [64, 65, 66, 67, 68].
Error analysis not only makes a solid link between model estimates and data, but
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also offers hints on the limits and weaknesses of the model itself. In Ref. [69], the
study of uncertainties brought the authors to conclude that the optimization of
EDFs based on standard Skyrme generators reached its best.
In order to improve the prediction power (the quality of the theoretical outputs)
new terms need to be considered in the functionals. The form of the Skyrme inter-
action can be extended using new pseudopotentials with higher order derivatives
[70, 71]. EDFs generated from regularized finite-range pseudopotential have been
examined in Refs. [72, 73]. Other improvement can emerge by adding specific
terms in the functional to study particular configurations, as done in the case of
isopin-breaking generators [74].
More terms in the functionals entail more parameters to be optimized, then a larger
database of experimental inputs needs to be considered, including deformed nuclei.

In this work I explore another direction, namely, we are interested in study-
ing the information that ab initio interactions can transfer to EDFs, when the
parameters of Skyrme-type functional are fitted to ab initio results.
The formal attempts to derive EDFs from first principle [33] deal with the density
matrix expansion (DME) technique. In Refs. [75, 76] DME was used to relate
mean-field calculations performed with realistic 2N interactions to results of the
Skyrme-interaction. For a general purpose, building quasilocal functionals from
an expansion of the non-local one-body density matrix is an useful method. The
interaction energy for an arbitrary two-body potential V̂ (r1, r2) can be written in
function of density matrices in coordinate space as

Eint =
1

2

∫
dr1dr2 V̂ (r1, r2) [ρ(r1)ρ(r2)− ρ(r2, r1)ρ(r1, r2)] , (3.20)

where the exchange term, depending on the non-local density ρ(r1, r2), makes the
corresponding energy density nonlocal.
The non-locality issue is absent in the Skyrme interaction because it is zero-range
and, due to the symmetry property of the δ-interaction, δ(r1 − r2), the functional
generated is quasilocal. Skyrme-EDFs are local (depending only on r) in the
momentum-independent and density-dependent terms, while they are quasilocal
(depending on the derivatives of local densities) in the momentum-dependent and
spin-orbit parts.
DME, instead, produces quasilocal density functionals to approximate finite-range
interactions. Following Ref. [77], introducing the coordinates R = 1

2
(r1 + r2),

r = r1− r2, the derivatives ∇ ≡ ∂
∂R

, ∂ ≡ ∂
∂r

, the non-local density can be expanded
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as

ρ(r1, r2) = ρ(R, r)

= ν0(r)ρ(R) + iν1(r)raja(R)

+
1

2
ν2(r)rarb

[
1

4
∇a∇bρ(R)− τab(R) +

1

5
δabk

2
Fρ(R)

]
+ ..., (3.21)

where ja(R) ≡ −i∂aρ(R, r)r=0 and τab(R) ≡ ∇(1)
a ∇(2)

b ρ(r1, r2)r1=r2 .
ν0(r), ν1(r) and ν2(r) are auxiliary functions that define the quasi-local approxima-
tion and correct the asymptotic behavior of the expansion. They depend on the
Fermi momentum kF and on the local density ρ(R), through their derivation from
infinite nuclear matter properties.
The direct and exchange parts of the energy become 1 respectively

Edir
int =

1

2

∫
dR

[
V0ρ

2(R) +
1

6
V2ρ(R)∆ρ(R)

]
, (3.22)

Eexc
int = −1

2

∫
dR

[
V 00
ν0 ρ

2(R)

+
1

3
V 02
ν2

(
1

4
ρ(R)∆ρ(R)−

(
ρ(R)τ(R)− j2

)
+

3

5
k2
Fρ

2(R)

)
+ ...

]
, (3.23)

where in the square brackets we can recognize quasilocal energy density functionals
Eint(R). The moments of the interaction,

Vn =

∫
dr rnV (r), (3.24)

V ij
νn =

∫
dr rnνi(r)νj(r)V (r), (3.25)

are running coupling constant, dependent on kF or ρ(R), and they contain all the
information of the short-range interaction relevant to study low-energy nuclear
physics.

1The two-body interaction is assumed to depend only on the distance between the coordinates,
V̂ (r1, r2) = V̂ (r).
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4. Self-Consistent Green’s Function
method

Several methods are available to perform ab initio low-energy nuclear physics
calculations, and in Section 1.1 the principal ones are listed. They employ different
approaches and controlled approximations to solve the many-body Schrödinger
equation. We choose to apply the Self-Consistent Green’s Function method (SCGF)
in this work. SCGF has an affinity with DFT, in fact, both can be included in the
family of Green’s function methods, that study the ground state through its response
to external probes [33]. A specific analogy between SCGF and quasiparticle-DFT
for the electron case was discussed in Ref. [78].

The Green’s function method was firstly introduced in the literature to extend the
knowledge of quantum field theory to the Schrödinger field.
The many-body problem is studied in terms of fundamental excitations of the
system. These excitations, rather than all the particles, are used as degrees of
freedom. In fact, the method does not attempt to calculate the full many-body
wave function, but, it determines the propagation of single-particles excitations
and the correlated density matrix ραβ of the system.

In the coming Chapter, we present the corner stone of this method, the prop-
agator, starting from the trivial case of non-interacting particles, moving to the
general case of an interacting one. We linger on the Hartree-Fock approximation
and finally we consider the beyond mean-field truncation schemes that are used in
this work. The exposure follows Ref. [79], which contains further details.
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4.1 The non-interacting propagator as starting

point

We describe the non-interacting system ofA fermions by a Hamiltonian Ĥ0 = T̂ + Û ,
where an auxiliary one-body potential Û is accounted for.
The ground state |ΦA

0 〉, solution of Ĥ0|ΦA
0 〉 = E

(0)
0 |ΦA

0 〉, is represented by a Slater

determinant |ΦA
0 〉 =

∏
α<F a

†
α|0〉 and the ground-state energy reads E

(0)
0 =

∑
α<F εα.

F represents the Fermi energy, then all the single particle states |α〉 below F are
occupied.
The unperturbed single-particle propagator (also called one-body Green’s function)
is defined as

G
(0)
αβ(t, t′) = − i

~
〈ΦA

0 |T [aαI (t)a
†
βI

(t′)]|ΦA
0 〉, (4.1)

with the time ordering operator for fermions T [aαI (t)a
†
βI

(t′)] ≡ θ(t−t′)aαI (t)a
†
βI

(t′)−
θ(t′ − t)a†βI (t

′)aαI (t)
1. The subscript I stands for interaction picture, that is, the

operators carry a time dependence of the form aαI (t) ≡ e
i
~ Ĥ0taαe

− i
~ Ĥ0t. The time-

independent Hamiltonian Ĥ0, due to the time translation invariance of the system,
makes the one-body Green’s function dependent only on the time difference t− t′.
Eq.(4.1) can be interpreted as the probability amplitude for adding a particle in a
state β and removing it from a state α after a time t− t′, or generating a hole in a
state α and annihilating it from a state β after a time t′ − t, on top of the ground
state.
Using the single-particle eigenstates and writing explicitly the time factors, Eq.(4.1)
becomes

G
(0)
αβ(t− t′) = − i

~
δαβ

[
θ(t− t′) θ(α− F )e−

i
~ εα(t−t′) − θ(t′ − t) θ(F − α)e

i
~ εα(t′−t)

]
.

(4.3)
Note that, for the unperturbed propagator, it can only be α = β since these
single-particle states are eigenstates of Ĥ0.

1 θ(x) is the step function, defined as

θ(x) =

{
1 for x ≥ 0

0 for x < 0
.

It satisfies the relation

θ(±x) = ∓ lim
η→0+

1

2πi

∫
dE

e−
i
~Ex

E ± iη
, (4.2)

where the term ±iη in the denominator stands for the proper boundary conditions imposed by
causality.
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The Fourier transform of Eq.(4.3), with the help of Eq.(4.2), gives

G
(0)
αβ(E) = δαβ

[
θ(α− F )

E − εα + iη
+

θ(F − α)

E − εα − iη

]
, (4.4)

showing that, in the complex plan, the poles of G
(0)
αβ(E) appear at value of the

energy E corresponding to the single-particle energies εα. The one-body density
matrix for the non-interacting system reads 2

ρ
(0)
αβ ≡ 〈Φ

A
0 |a
†
βaα|Φ

A
0 〉 =

∫ ε−F

−∞
dE

1

π
ImG

(0)
αβ(E) = δαβ θ(F − α), (4.6)

namely the density is diagonal with value 1 corresponding to the single-particle
states with energy smaller or equal than the hole Fermi energy ε−F .

4.2 The interacting case

We consider now the general case of a nuclear system described by a Hamiltonian
Ĥ = Ĥ0 + Ĥ1, where the interaction part Ĥ1 = −Û + V̂ includes the residual
interaction operator V̂ (only two-body terms for the moment).
The ground state is indicated by |ΨA

0 〉, to be distinguished from the non-interacting
solution |ΦA

0 〉. The single-particle propagator associated with |ΨA
0 〉 is defined as

Gαβ(t− t′) = − i
~
〈ΨA

0 |T [aαH (t)a†βH (t′)]|ΨA
0 〉, (4.7)

where the annihilation and creation operators appear in the Heisenberg picture H ,
that is, the operators carry a time dependence as aαH (t) ≡ e

i
~ Ĥtaαe

− i
~ Ĥt. Notice

the exponentials with arguments Ĥ, in contrast to the interaction picture with
Ĥ0. {|α〉} is any single-particle basis defined by the model space, chosen for
(computational) convenience. The propagator in Eq.(4.7) is ‘‘dressed’’ by the
many-body correlations included in the solution |ΨA

0 〉.
The Fourier transform and Eq.(4.2) hold

Gαβ(E) = 〈ΨA
0 |aα

1

E − (Ĥ − EA
0 ) + iη

a†β|Ψ
A
0 〉+ 〈ΨA

0 |a
†
β

1

E − (EA
0 − Ĥ)− iη

aα|ΨA
0 〉,

(4.8)

2We can separate the real and imaginary part of the propagator through the equality

1

x± iη
= P 1

x
∓ i π δ(x), (4.5)

which uses the concept of principal value P.
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where EA
0 is the ground state energy, Ĥ|ΨA

0 〉 = EA
0 |ΨA

0 〉. The intermediate (A± 1)-
body system is introduced through the complete set of eigenstates |ΨA+1

n 〉, |ΨA−1
k 〉

with eigenvalues EA+1
n , EA−1

k , leading to the spectral representation (called also
Lehmann representation [80]) of the one-body Green’s function

Gαβ(E) =
∑
n

〈ΨA
0 |aα|ΨA+1

n 〉〈ΨA+1
n |a†β|ΨA

0 〉
E − (EA+1

n − EA
0 ) + iη

+
∑
k

〈ΨA
0 |a
†
β|Ψ

A−1
k 〉〈ΨA−1

k |aα|ΨA
0 〉

E − (EA
0 − EA−1

k )− iη

≡ Gp
αβ(E) +Gh

αβ(E). (4.9)

In Eq.(4.9), n and k are indices for propagating quasi-particle (p) and quasi-hole
(h) states, with excitation energies ε+n ≡ EA+1

n − EA
0 and ε−k ≡ EA

0 − EA−1
k . The

Fermi energy is usually taken as EF = 1
2
(ε+0 + ε−0 ), with ε+0 the lowest of particle

states and ε−0 the highest of hole states.
The one-body spectral function Sαβ(E) = Spαβ(E) + Shαβ(E) can be extracted from

Eq.(4.9). Its components are defined for the particle case (E ≥ ε+0 ) as

Spαβ(E) ≡ − 1

π
ImGαβ(E)

=
∑
n

〈ΨA
0 |aα|ΨA+1

n 〉〈ΨA+1
n |a†β|Ψ

A
0 〉 δ(E − ε+n ), (4.10)

and for the hole case (E ≤ ε−0 ) as

Shαβ(E) ≡ 1

π
ImGαβ(E)

=
∑
k

〈ΨA
0 |a
†
β|Ψ

A−1
k 〉〈ΨA−1

k |aα|ΨA
0 〉 δ(E − ε−k ). (4.11)

The diagonal part of the spectral function has the interesting physical interpretation
of the probability of adding (Spαα(E)) or removing (Shαα(E)) one particle in the
single-particle state |α〉, leaving the (A + 1)-body system in a state with energy
EA

0 +E or the (A− 1)-body system with energy EA
0 −E. To shorten the notation,

we define the removal (addition) spectroscopic amplitude as

Ykα ≡ 〈ΨA−1
k |aα|ΨA

0 〉
(
X n
α ≡ 〈ΨA+1

n |a†α|ΨA
0 〉
)
. (4.12)

The one-body density matrix ραβ is obtained directly from the hole spectral function

ραβ ≡ 〈ΨA
0 |a
†
βaα|Ψ

A
0 〉 =

∫ ε−0

−∞
dE Shαβ(E) =

∑
k

(Ykβ)∗Ykα. (4.13)
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After introducing the supplemental quantity dαβ ≡ 〈ΨA
0 |aαa

†
β|ΨA

0 〉 =
∫∞
ε+0

dE Spαβ(E),

the anti-commutation relation gives the sum rule for the spectroscopic function as∫
dE Sαβ(E) = ραβ + dαβ = 〈ΨA

0 |a
†
βaα + aαa

†
β|Ψ

A
0 〉 = δαβ. (4.14)

The spectroscopic amplitudes define the theoretical spectroscopic factors (for
removal or addition of one particle)

Zk ≡
∑
α

|〈ΨA−1
k |aα|ΨA

0 〉|2 =
∑
α

|Ykα|2 (4.15)

Zn ≡
∑
α

|〈ΨA+1
n |a†α|ΨA

0 〉|2 ≡
∑
α

|X n
α |2. (4.16)

Spectroscopic factors carry information on how strongly the single-particle levels
are occupied.
In experiment of knockout reactions 3 as [81], the comparison between theoretical
and experimental cross sections shows a non trivial reduction of the spectroscopic
strength of dominant quasiparticle states (see Eq.(4.48) below) with respect to
predictions from independent-particle models. This constitutes an experimental
evidence that the single-particle levels are only partially filled in a correlated system.

Any one-body operator Ô1B in the ground state can be calculated as function
of the spectroscopic amplitudes as

〈ΨA
0 |Ô1B|ΨA

0 〉 =
∑
αβ

O1B
αβρβα =

∑
k

∑
αβ

(Ykα)∗O1B
αβYkβ . (4.18)

If the Hamiltonian contains only up to two-body interactions, Ĥ = T̂ + V̂ , the
ground state energy depends only on the knowledge of the one-particle propagator.
In fact, the Migdal-Galitski-Koltun (MGK) sum rule [82, 83] establishes that

EA
0 = 〈ΨA

0 |Ĥ|ΨA
0 〉 =

∑
αβ

1

2

∫ ε−0

−∞
dE
[
〈α|T̂ |β〉+ E δαβ

]
Shβα(E). (4.19)

3Knockout reactions are phenomena of peripheral scattering, in which one nucleon (or more
nucleons) is removed from the projectile nucleus, due to the interaction between target and
projectile nuclei. The valence nucleon, occupying the most weakly bound states of the projectile
system, is ejected and the surviving core is measured. In the Plane Wave Impulse Approximation,
the Fermi’s golden rule estimates the differential knockout cross section as being proportional to
the hole spectral function Sh:

dσ = K σsp S
h(p, E), (4.17)

where K is a kinematic factor, σsp is the single-particle cross section for the reaction under study,
and Sh depends on the momentum and energy of the removed particle. The comparison between
theoretical and experimental cross sections, the observables of the reaction, allows us to estimate
spectroscopic factors.
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4.3 Irreducible self-energy and Dyson equation

In order to account for the time evolution of the propagator in Eq.(4.7), it is
convenient to consider its perturbative expansion in powers of the interacting
Hamiltonian Ĥ1 [79, 84]. The propagator results

Gαβ(t− t′) = − i
~

∞∑
n=0

(
i

~

)n
1

n!

∫
dt1 . . .

∫
dtn

× 〈ΦA
0 |T

[
Ĥ1I (t1) · · · Ĥ1I (tn)aαI (t)a

†
βI

(t′)
]
|ΦA

0 〉conn, (4.20)

where Ĥ1, aα and a†β appear in the interaction picture with respect to Ĥ0, and the

time ordering operator acts on the non-interacting solution |ΦA
0 〉.

Ĥ1 (see Eq.(4.40)) can contain terms of one-, two- (or three-) body interactions, with
their creation and annihilation operators. When performing the Wick contractions
[45] of the time-ordered product of these operators, a large number of contributions
appears. These contributions can be organized in schematic diagrams, Feynman
diagrams, that keep track of the terms and symmetries arising from the contractions.
Presenting the rules to construct the Feynman diagrams is out of the scope of this
thesis, since we present Green’s function formulas already derived in the literature.
However, we discuss some of the properties of the diagrams with examples and
intuitive arguments. Each Wick contraction produces an unperturbed propagator
G(0) (solid single lines) that can be attached to vertices (dots) of the interaction
(dashed lines). To calculate the propagator in Eq.(4.20) only the connected diagrams
are relevant, as indicated by the subscript conn. The concepts of connected, one-
particle reducible or irreducible diagrams are illustrated with examples in Figure
4.1(a-c). Contributions to the propagator can come from one-particle reducible
or irreducible diagrams, and for all of them the irreducible parts can be grouped
inside the irreducible self-energy Σ? insertions (see Figure 4.1(d-e)). After Fourier
transforming to energy and introducing Σ?, the expansion in Eq.(4.20)) becomes

Gαβ(E) = G
(0)
αβ(E) +

∑
γδ

G(0)
αγ (E)Σ?

γδ(E)G
(0)
δβ (E)

+
∑
γδεφ

G(0)
αγ (E)Σ?

γδ(E)G
(0)
δε (E)Σ?

εφ(E)G
(0)
φβ (E) + ... (4.21)

All the terms of this infinite sum are included in the Dyson equation [85] as

Gαβ(E) = G
(0)
αβ(E) +

∑
γδ

G(0)
αγ (E)Σ?

γδ(E)Gδβ(E). (4.22a)
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Figure 4.1: Example of Feynman diagrams. Solid single (double) lines indicate the
undressed propagators G(0) (dressed propagators G) for fermionic states,
with the direction of propagation shown by the arrows, dashed lines are
used for interactions. Gray filled circles stand for irreducible self-energy
Σ? insertions. Dots correspond to labels of single-particle states, as the
indices in the definition of propagators, self-energies or in the matrix
elements of the interactions. (a) Disconnected diagram, that does not
contribute to Eq.(4.20). (b) Connected and one-particle irreducible diagram,
that is, if one of the propagator lines is cut, the diagram will not result
disconnected. (c) Connected and one-particle reducible digram, that is, it
can be reduced to a disconnected diagram by cutting one solid line. In fact,
opening the fermionic line, where indicated by the scissors mark, creates two
disconnected diagrams. (d) Irreducible self-energy insertion, that include
all connected diagrams that are one-particle irreducible, as the one in panel
(b). (e) One-particle reducible diagram made with irreducible self-energy
insertions. The diagram in panel (c), contributes to this diagram, since the
irreducible parts of the diagram (c) can be included in the corresponding
self-energy insertions. (f) Representation of the Dyson equation, Eq.(4.22).

The irreducible self-energy Σ?
γδ(E) represents the nonlocal and energy-dependent

potential to which each nucleons is subject when interacting with the nuclear
medium. Through the self-energy the unperturbed propagator G

(0)
αβ is dressed by

the many-body correlations.
The diagrammatic expression of the self-energy arises through the Feynman ex-
pansion in Eq.(4.20) or equivalently when the Dyson equation is derived from the
equation of motion for the propagator. We consider here the latter method.
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The time derivative of the single-particle propagator reads

i~
∂

∂t
Gαβ(t− t′) =

∂

∂t
〈ΨA

0 |T [aαH (t)a†βH (t′)]|ΨA
0 〉 = · · ·

= δ(t− t′)δαβ + εαGαβ(t− t′)−
∑
γ

〈α|U |γ〉Gγβ(t− t′)

− i

2~
∑
γζθ

〈αγ|V |θζ〉〈ΨA
0 |T

[
a†γH (t)aζH (t)aθH (t)a†βH (t′)

]
|ΨA

0 〉.

(4.23)

In the last line, 〈ΨA
0 |T

[
a†γH (t)aζH (t)aθH (t)a†βH (t′)

]
|ΨA

0 〉 mimics the propagation

of two quasiparticles and introduces a hierarchy between the (n + 1)- and the
n-particle propagators.
The two-particle propagator, formally defined as

GII
αβγδ(tα, tβ, tγ, tδ) = − i

~
〈ΨA

0 |T
[
aβH (tβ)aαH (tα)a†γH (tγ)a

†
δH

(tδ)
]
|ΨA

0 〉, (4.24)

can be expanded in power of the interaction Ĥ1I as

GII
αβγδ(tα, tβ, tγ, tδ) = − i

~

∞∑
n=0

(
i

~

)n
1

n!

∫
dt1 . . .

∫
dtn

× 〈ΦA
0 |T

[
Ĥ1I (t1) · · · Ĥ1I (tn)aβI (tβ)aαI (tα)a†γI (tγ)a

†
δI

(tδ)
]
|ΦA

0 〉conn,
(4.25)

where only the connected diagrams are counted. The infinite expansion can be
simplified as shown in Ref. [86] with

GII
αβγδ(tα, tβ, tγ, tδ) = i~ [Gαγ(tα − tγ)Gβδ(tβ − tδ)−Gαδ(tα − tδ)Gβγ(tβ − tγ)]

+ (i~)2

∫
dtε

∫
dtζ

∫
dtη

∫
dtθ
∑
εζηθ

Gαε(tα − tε)Gβζ(tβ − tζ)

× 〈εζ|Γ(tε, tζ , tη, tθ)|ηθ〉Gηγ(tη − tγ)Gθδ(tθ − tδ), (4.26)

where Γ is the four-points vertex function, representing an effective interaction
between the particles in the medium.
The Dyson equation, Eq.(4.22), can be extracted from the equation of motion,
Eq.(4.23), with the help of Eq.(4.26), some algebra and Fourier transforms. The
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comparison gives the expression for the irreducible self-energy

Σ?
γδ(E) = −〈γ|U |δ〉 − i

∫
C↑

dE ′

2π

∑
µν

〈γµ|V |δν〉Gνµ(E ′)

+
1

2

∫
dE1

2π

∫
dE2

2π

∑
εµνζρσ

〈γµ|V |εν〉Gεζ(E1)Gνρ(E2)

×Gσµ(E1 + E2 − E)〈ζρ|Γ(E1, E2, E, E1 + E2 − E)|δσ〉, (4.27)

where C ↑ means that the integration is performed on the positive imaginary part
of the complex plane.
We can summarize that the irreducible self-energy is composed by three parts as

Σ?
γδ(E) = −〈γ|U |δ〉+ Σ

(∞)
γδ + Σ̃γδ(E), (4.28)

respectively the auxiliary potential, the static mean-field and the energy-dependent
component. These parts corresponds to the three terms in the right-hand side of
Eq.(4.27) and their Feynman diagrams are presented in Figure 4.2.

Figure 4.2: Diagrammatic picture of the irreducible self-energy. In the right-hand
side the auxiliary potential, the static mean-field and the energy-dependent
contributions are shown. Adapted from Ref. [25].

To account for all the contributions, Σ?(E) can be expanded in terms of skeleton
[87, 79] diagrams constructed with dressed propagators, as explained in Figure 4.3.
The advantages are that calculations are non-perturbative and independent from
the choice of the reference state (the auxiliary potential U cancels out in the Dyson
equation), the many-body correlations are expanded in terms of single-particle
excitations of the true propagator, the conservation laws are satisfied at the level of
the truncation of the self-energy, the number of one-particle irreducible diagrams
is reduced. The disadvantage is that the dressed propagator contains a very large
number of poles and it is, therefore, extremely difficult to handle beyond mean
field.
The use of dressed propagators in Σ?(E) makes Eq.(4.22) to be nonlinear in Gαβ(E).
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Figure 4.3: Example of skeleton (a) and non skeleton (b) Feynman diagrams. Skeleton
diagram means one-particle irreducible diagram that does not contain any
portion that can be disconnected by cutting any two fermionic lines at
different points. In panel (b), the scissors mark cuts the two fermionic
lines, that make the diagram disconnected. This disconnected portion is
contained by definition in the dressed fermionic loop of diagram (a).

The final unique solution of the Dyson equation is obtained by iterative calculations
of self-energy and dressed propagator, until convergence is reached. This method
is called Self-Consistent Green’s Function theory.

4.4 Hartree-Fock approximation

It is interesting to compare the mean-field description of the SCGF formalism with
the EDF one.
The mean-field or Hartree-Fock approximation is obtained imposing Γ = 0 in
Eq.(4.27). The corresponding Hartree-Fock self-energy becomes

ΣHF
γδ = −〈γ|Û |δ〉 − i

∑
µν

∫
C↑

dE ′

2π
〈γµ|V̂ |δν〉GHF

νµ (E ′). (4.29)

GHF is different from the non-interacting propagator G(0), in fact, it is the solution
of the Dyson equation when the self-energy is calculated at the lowest order (first
order) in power of Ĥ1I , namely

GHF
αβ (E) = G

(0)
αβ(E) +

∑
γδ

G(0)
αγ (E)ΣHF

γδ G
HF
δβ (E). (4.30)

We expect that the Lehmann representation of GHF has a simple-poles structure,
allowing to write the propagator as

GHF
αβ (E) =

∑
n

zn+
α (zn+

β )∗

E − ε+n + iη
+
∑
k

zk−α (zk−β )∗

E − ε−k − iη
, (4.31)
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with energies ε+n = EA+1
n − EA

0 , ε−k = EA
0 − EA−1

k and amplitudes

zn−α = 〈ΨA−1
n |aα|ΨA

0 〉, (4.32)

zn+
α = 〈ΨA

0 |aα|ΨA+1
n 〉. (4.33)

Recalling the expression for the one-body density matrix ρHFµν =
∑

k z
k−
ν (zk−µ )∗,

Eq.(4.29) gives

ΣHF
γδ = −〈γ|Û |δ〉+

∑
µν

〈γµ|V̂ |δν〉 ρHFµν . (4.34)

ΣHF
γδ emerges as an energy-independent potential that simulates the effects of the

potential V̂ mediated over the one-body density of the nucleons (plus the auxiliary
potential).
Solving the limit

lim
E→ε−k

(E − ε−k )

[
GHF
αβ (E)−G(0)

αβ(E)−
∑
γδ

G(0)
αγ (E)ΣHF

γδ G
HF
δβ (E)

]
= 0, (4.35)

we obtain the Hartree-Fock equations for hole states

∑
δ

{
〈α|T̂ |δ〉+

∑
µν

〈αµ|V̂ |δν〉 ρHFµν

}
zk−δ = ε−k z

k−
α . (4.36)

They need to be calculated self-consistently since the density depends on the
removal amplitudes. The equations for the particle states read

∑
δ

{
〈α|T̂ |δ〉+

∑
µν

〈αµ|V̂ |δν〉 ρHFµν

}
zn+
δ = ε+n z

n+
α , (4.37)

which represent a linear eigenvalue problem because ρHFµν depends only on the hole
amplitudes zk−α . The ground state energy of the system results (cfr. Eq.(2.26))

EA
0 =

A∑
k=1

ε−k −
1

2

∑
αβµν

〈αµ|V̂ |βν〉 ρHFµν ρHFαβ . (4.38)

Eqs.(4.36) and (4.37) are analogous to Eq.(2.25) and they can be derived also from
the constrained variational equation

∂

∂zi∗α

[
E −

A∑
i=1

εiz
i∗
α z

i
α

]
= 0, (4.39)
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consistent with Eq.(2.24) for the EDF case.
At the mean-field level, the equivalence of the SCGF approach with the variational
theorem, fundament of the EDF method, establishes a point of contact between
the two techniques. On one side the Green’s function method studies the response
of the ground state to adding or removing particles, on the other side the EDFs
consider the perturbation induced by a source of interaction coupled to the density.
At the first order in the perturbative expansion of the self-energy, the perturbation
by the source is represented by a local shift in the density [33] that is exactly how
the DFT faces the many-body problem.

4.5 ADC(3) approximation

After the illustrative case of the mean-field approximation, we are interested to
study the self-energy for a more realistic bound state. In the nucleus, when the
number of nucleons is larger than two, the correlations due to the three-body
interaction become important to determine the ground state energy. We include
the three-body potential V̂ 3B in the many body Hamiltonian Ĥ = Ĥ0 + Ĥ1, written
in the second quantization as

Ĥ =
∑
α

ε0αa
†
αaα −

∑
αβ

〈α|Û |β〉a†αaβ +
1

4

∑
αβγδ

〈αβ|V̂ 2B|γδ〉a†αa
†
βaδaγ

+
1

36

∑
αβµγδν

〈αβµ|V̂ 3B|γδν〉a†αa
†
βa
†
µaνaδaγ, (4.40)

where ε0α are the single-particle energies of the unperturbed Hamiltonian Ĥ0. To
further reorganize the contributions to the irreducible self-energy, we restrict the
one-particle irreducible and skeleton diagrams to be also interaction-irreducible, as
shown in Figure 4.4. In addition, we replace the bare interactions in these diagrams
with effective interactions, which represent irreducible and system-dependent
effective forces. The corresponding effective Hamiltonian [88] reads

H̃1 = Ũ + Ṽ 2B + V̂ 3B. (4.41)
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Figure 4.4: Examples of interaction-irreducible (a) and interaction-reducible (b) contri-
butions to the irreducible self-energy. A diagram is considered interaction
reducible if cutting an interaction vertex the whole diagram becomes discon-
nected. In panel (b), the scissors mark indicates the vertex that, when cut,
makes the diagram disconnected. (c) Interaction-irreducible contribution
to Σ? with effective interactions represented by sinusoidal lines. Effective
interactions appear in the effective Hamiltonian, Eq.(4.41) and they are
illustrated in Figure 4.5. The diagrams (a) and (b) are included in (c)
through the effective interactions.

V̂ 3B is the bare three-body force, while the effective one-body Ũ and two-body
Ṽ 2B forces are respectively

Ũ =
∑
αβ

[
−〈α|Û |β〉+

∑
γδ

〈αγ|V̂ 2B|βδ〉ρδγ +
1

4

∑
µνγδ

〈αµν|V̂ 3B|βγδ〉Γγδ,µν

]
a†αaβ,

(4.42)

Ṽ 2B =
∑
αβγδ

[
〈αβ|V̂ 2B|γδ〉+

∑
µν

〈αβµ|V̂ 3B|γδν〉ρνµ

]
a†αa

†
βaδaγ. (4.43)

The reduced two-body density matrix Γγδ,µν is obtained from the two-body Green’s
function GII

γδ,µν(τ) as

Γγδ,µν = lim
τ→0−

(−i)GII
γδ,µν(τ) = 〈ΨA

0 |a†νa†µaγaδ|ΨA
0 〉. (4.44)

In Eq.(4.42), the static self-energy appears in the right-hand side as

Σ
(∞)
αβ =

∑
γδ

〈αγ|V̂ 2B|βδ〉ρδγ +
1

4

∑
µνγδ

〈αµν|V̂ 3B|βγδ〉Γγδ,µν . (4.45)

Staticity means that no intermediate excitations propagate in the system, and
the Feynman diagrams of Σ

(∞)
αβ have the form of one-body effective interaction,

as shown in Figure 4.5. The static self-energy represents an extension of the
Hartree-Fock potential (cfr. Eq.(4.34)), since, if calculated with dressed G and
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Figure 4.5: One-body (a) and two-body (b) effective interactions, described respectively
in Eq.(4.42) and Eq.(4.43). Sinusoidal lines represent effective interactions,
short (long) dashed lines are two-body (three-body) bare interactions, where
the dots show the interaction vertices. One-body interactions are presented
with short dashed lines and a cross symbol in place of the second interaction
vertex. Double solid fermionic lines indicate dressed propagators. Adapted
from Ref. [89].

GII , it includes more correlations then the Hartree-Fock case.
The energy dependent part of the self-energy, Σ̃(E), propagates intermediate state
configurations such as 2p1h (two particle one hole), 2h1p, 3p2h, etc. It appears
starting from the second order in power of interaction because it is necessary to
have at least one interaction to create and one to annihilate the intermediate states.
We employ the Algebraic Diagrammatic Construction method [90, 91] up to the
third order, ADC(3), to perform the calculations in this work. A pedagogical
treatment of the method is presented in Ref. [89] in the context of nuclear physics.
ADC(3) approach is based upon expressing Σ̃(E) in its Lehmann representation of
the form

Σ̃αβ(E) =
∑
rr′

M †
α,r

[
1

E − (E> + C) + iη

]
r,r′

Mr′,β

+
∑
ss′

Nα,s

[
1

E − (E< +D)− iη

]
s,s′

N †s′,β. (4.46)

We specify with index n and k respectively the particle and hole single-particle
states. In the forward part, the indices r stand for intermediate state configu-
rations, as for example r = {n1 < n2, k3} defines 2p1h configuration. M are
coupling matrices, containing combinations of the spectroscopic amplitudes X
and Y, defined in Eq.(4.12), two- and three-body matrix elements, unperturbed
energies. E + iη is a diagonal matrix (proportional to δr,r′). E

> represents the
unperturbed energies for the configuration, i.e., E>

r,r′ = diag(ε+n1
+ ε+n2

− ε−k3). C is
an interaction matrix, containing combinations of spectroscopic amplitudes and
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interaction matrix elements.
In the backward part, similarly we notice the configuration indices s, the coupling
matrices N , the backward energies E< and the interaction matrix D.
All the Feynman diagrams up to the order n = 3 are included by construction,
which would make the expansion to be perturbative. The diagrams necessary to
achieve the analytical form of Eq.(4.46) are added as well as infinite summations.
ADC(3) method accounts for all these diagrams, resulting in a non-perturbative
approximation. The precision of ADC(3) calculation is estimated as O(Ĥ4

1I
), giving

an error of 1% on the total binding energy [89].

We identify with εi and Z iα the energy and spectroscopic amplitudes for every state
(without distinction if above or below the Fermi surface, because the following
derivation is equivalent). Using the limit of residues

limE→εi(E − εi)
[
Gαβ(E)−G(0)

αβ(E)−
∑

γδ G
(0)
αγ (E)Σ?

γδ(E)Gδβ(E)
]

= 0, the eigen-

value equation results

εiZ iα =
∑
β

[
T̂ + Û + Σ?(E)

]
αβ
Z iβ
∣∣∣
E=εi

=
∑
β

[
T̂ + Σ(∞) +M † 1

E − (E> + C) + iη
M

+N
1

E − (E< +D)− iη
N †
]
αβ

Z iβ
∣∣∣∣
E=εi

. (4.47)

The spectroscopic amplitudes provide the spectroscopic factor for the state i as

SFi ≡
∑
α

|Z iα|2 =
1

1−
∑

βγ

[(
Ziβ
SFi

)∗ dΣ?βγ(E)

dE

∣∣∣
E=εi

Ziγ
SFi

] . (4.48)

Eq.(4.47) should be solved by finding all the solutions that match the eigenvalues
εi with the arguments of Σ?(εi), which is extremely time consuming.
Instead, defining the intermediate configurations vectors W i and V i as

[E − E> − C]r,r′W
i
r′ ≡Mr,βZ iβ (4.49)

[E − E< −D]s,s′ V
i
s′ ≡ N †s,βZ

i
β, (4.50)

we can rewrite Eq.(4.47) asT̂ + Σ(∞) M † N
M E> + C 0
N † 0 E< +D

Z iW i

V i

 = εi

Z iW i

V i

 , (4.51)
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where the normalization
∑

α |Z iα|2 +
∑

r |W i
r|2 +

∑
s |V is|2 = 1 holds and it is equiv-

alent to Eq.(4.48).
Eq.(4.51) linearizes Eq.(4.47) in a matrix form. The matrix elements are energy
independent, such that all the solutions can be obtained in one diagonalization.
To deal with the large dimension of the Dyson matrix, E> + C and E< +D can
be calculated in small Lanczos subspaces, reducing the number of poles of the
propagator away from the Fermi surface, while keeping the overall strength to
describe the ground state.

Accounting for the presence of the three-body interaction V̂ 3B, the ground state
energy is approximated by the modified Migdal-Galitski-Koltun (MGK) sum rule
in Ref. [92] as

EA
0 = 〈ΨA

0 |Ĥ|ΨA
0 〉 =

∑
αβ

1

2

∫ ε−0

−∞
dE [Tαβ + E δαβ]Shβα(E)− 1

2
〈V̂ 3B〉. (4.52)

The expectation value of the three-body interaction 〈V̂ 3B〉 requires to calculate
many-body propagators (at least the two-body propagators). Using the fact that
such interaction gives a smaller contribution to the total energy compared to the
other terms of the Hamiltonian, we choose the lowest order approximation that
gives

〈V̂ 3B〉 ≈ 1

6

∑
αβµγδν

〈αβµ|V̂ 3B|γδν〉 ργαρδβρνµ. (4.53)

The implementation of the self-consistency in the ADC(3) approximation is done
in the following steps:

• We start from a guess for the dressed propagator, called reference propagator,
with its spectral amplitudes and single-particle energies.
• Using the reference propagator, the three-body interaction is contracted to

give a contribution to the two-body effective interaction.
• We employ the reference propagator and the effective interactions to calculate

the components of the energy dependent part of the self-energy in Eq.(4.46),
namely the coupling matrices M and N , the interaction matrices C and D.
• The Dyson equation, or more precisely Eq.(4.51) is solved with the refer-

ence propagator and the irreducible self-energy, with its static and energy-
dependent parts. The solution provides the dressed propagator, with the
corresponding energy poles and spectral amplitudes.
• The large information, contained in the dressed propagator, is reduced to an

optimized reference state propagator (defined in Section 4.6).
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• The optimized propagator is used to restart the procedure from the contraction
of the three-body force. The scheme is iterated until the solution converges,
specifically, when the ground state energy differs less than 50 eV from the
value of the previous iteration.

4.6 Expectation value of two-body operator

We are interested to estimate the expectation value of a two-body operator Ô2B.
The exact value 〈Ô2B〉 is given as infinite expansion in terms of the effective
interaction and dressed propagators as pictured in Figure 4.6 (first line). From the

Figure 4.6: Diagrammatic representation of the expectation value of the two-body
operator Ô2B, indicated with blue zigzag lines. Double straight lines are used
for dressed propagators, single lines for OpRS propagators and sinusoidal
lines for two-body effective interactions. These are Feynman diagrams in
the energy formulation, i.e., they include forward and backward propagation.
In the second line, from left to right we can recognize the leading order term
LO, the next-to-leading order NLO (first order in the effective interaction),
the NNLO ring and NNLO ladder (second order of H̃1). In the last line, we
use the ph-RPA and pp/hh-RPA insertions to estimate the contributions
from NNLO and higher order terms.

practical point of view, such summation becomes computationally difficult since
the dressed propagators contain many poles, that multiplicate the matrix elements
of every interaction line. We approximate the single-particle propagator Gαβ(E)
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with an optimized reference state (OpRS) propagator [93, 94] of the form

GOpRS
αβ (E) =

∑
n/∈F

(φnα)∗φnβ

E − εOpRSn + iη
+
∑
k∈F

φkα(φkβ)∗

E − εOpRSk − iη
. (4.54)

This is a model propagator for independent-particle states with energy εOpRS and
wave function φ. Such propagator contains a reduced number of poles compared
to the dressed one. The lowest moments of spectral distribution with respect to
energy poles can be defined as

M0
αβ =

∑
n

(X n
α )∗X n

β +
∑
k

Ykα(Ykβ)∗, (4.55)

M1
αβ =

∑
n

(X n
α )∗X n

β

EF − ε+n
+
∑
k

Ykα(Ykβ)∗

EF − ε−k
, (4.56)

and these quantities constrain the density distributions and the Koltun energy
sum rule. The energies and wave functions of the OpRS propagator are selected in
order that the OpRS momenta reproduce those of the dressed propagators, namely
M0 OpRS

αβ = M0
αβ and M1 OpRS

αβ = M1
αβ.

We estimate 〈Ô2B〉 using the dressed propagators in the leading order (LO) and
the OpRS propagators in the next-to-leading order (NLO) and NNLO (see Figure
4.6). We account for higher order with the ph-, pp- and hh-RPA (Random
Phase Approximation) insertions respectively in the NNLO-ring and NNLO-ladder
diagrams.
The LO contribution, known also as Hartree-Fock average value, results

〈Ô2B〉LO = 〈Ô2B〉HF =
1

2

∑
αβγδ

〈αβ|Ô2B|γδ〉ργαρδβ. (4.57)
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5. Model EDF linked to ab initio

Dobaczewski [1] proposed a method to employ ab initio calculations in the fit of
EDF coupling constants for finite nuclear systems. The goal of this technique is to
construct a model energy density functional of the form

Ẽ[ρ] = T [ρ] + V Coul[ρ] +
∑
j

Cj V
gen
j [ρ], (5.1)

as approximation to the ab initio ground state energy. The functional is built from
a Slater determinant |Φ〉, with the Hartree-Fock average value of the kinetic part
T [ρ] ≡ 〈Φ|T̂ |Φ〉HF , of the Coulomb potential V Coul[ρ] ≡ 〈Φ|V̂ Coul|Φ〉HF and of the
interaction components V gen

j [ρ] ≡ 〈Φ|V̂ gen
j |Φ〉HF . The operators V̂ gen

j represent
our choice of the generators for the model EDF, when the functional is built
from an underlying model Hamiltonian with potential V̂ mod = V̂ Coul +

∑
j CjV̂

gen
j .

The coupling constants Cj are fitted to the ab initio energies, linking the model
functional to the ab initio interaction.

5.1 Derivation

In the spirit of the Levy-Lieb constrained-variation (see Section 2.2), a density
functional can be built from a two-stage variation.
In the following discussion, we consider only one density, the particle density,
and we neglect the spin and isospin dependency, namely our system is described
by ρ(r). Such assumption is made at this point to present the derivation in a
simpler way, and, for the same reason, we consider only the direct contribution
of the generators. Nevertheless the results presented in Chapter 6 include several
densities, with their spin and isospin dependency, as well as direct and exchange
terms of the generators.
In the standard Levy-Lieb construction, the first stage of the variation consists of
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the minimization of the Routhian R̂ as

δΨ〈Ψ|R̂|Ψ〉 = δΨ

[
〈Ψ|Ĥab|Ψ〉+

∫
dr U(r)ρ(r)

]
= 0, (5.2)

where Ĥab is the Hamiltonian of the system. We use the superscript ab to indicate
that it comes from the ab initio theory, distinguishing it from the Hamiltonian
used to built the model functional.
The auxiliary potential U(r) is the Lagrange multiplier of the density operator,
which average value is 〈Ψ|ρ̂(r)|Ψ〉 ≡ 〈Ψ|a†(r)a(r)|Ψ〉 = ρ(r).
The Routhian simulates a variation in which the one-body density is constrained
to a given density profile. The minimization produces the solution |Ψ(U)〉. If we
were able to probe the system with all the possible potential U(r), we would obtain
the functional Eab[U ] ≡ 〈Ψ(U)|Ĥab|Ψ(U)〉, that describes how the energy of the
system changes with varying the auxiliary potential. The integrand on the right
hand side of Eq.(5.2) introduces a perturbation to the system at rest. The response
of the system to the perturbation causes a change in the density ρ. Inverting the
relation ρ[U ] in U [ρ], we get the energy functional Eab[ρ].
In the second step, the functional Eab[ρ] is minimized respect to ρ. This gives the
ground state energy Eab

g.s. and the ground state density ρg.s..

Being unable to perturb the system with an infinite number of auxiliary po-
tentials, we discretize the perturbation to a finite number of Lagrange multipliers
λ and to the operators V̂ gen. λ represents the strength of the perturbation and it
can assume values around zero. With the choice of V̂ gen we select the relevant
terms for the model functional.
Let us assume that we are interested to built a model functional only of the local
density ρ(r). We can employ the δ-interaction as generator, that is, in the con-
figuration space it results V̂ gen(r, r′) = δ(r− r′)(1− PrPσPτ ) a†(r)a†(r′)a(r′)a(r).
Eq.(5.1) in the specific case reads

Ẽ[ρ] = T [ρ] + V Coul[ρ] + C〈Φ|δ(r− r′)(1− PrPσPτ ) a†(r)a†(r′)a(r′)a(r)|Φ〉

= T [ρ] + V Coul[ρ] + C

∫
dr dr′ ρ(r)ρ(r′)δ(r− r′)− C

∫
dr dr′ ρ2(r, r′)δ(r− r′)

≈ T [ρ] + V Coul[ρ] + C

∫
dr ρ2(r), (5.3)

where we applied the Wick’s theorem to the Slater determinant |Φ〉, and used the
definition ρ(r, r′) ≡ 〈Φ|a†(r′)a(r)|Φ〉. In the last line, the exchange term has been
neglected for simplicity.
In the framework of the ab initio method, we minimize the Routhian as

δΨ〈Ψ|R̂|Ψ〉 = δΨ

[
〈Ψ|Ĥab|Ψ〉+ λ〈Ψ|V̂ gen|Ψ〉

]
. (5.4)
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Dealing with the exact wave function |Ψ〉, the action of the creation and annihilation
operators in the Wick’s theorem produce the two-particle density ρ(2)(r, r′; r, r′) ≡
〈Ψ|a†(r)a†(r′)a(r′)a(r)|Ψ〉. This can be replaced by

ρ(2)(r, r′; r, r′) =ρ(r)ρ(r′)− ρ2(r, r′) + Λ(r, r′; r, r′), (5.5)

where Λ is the two-particle density cumulant, that accounts for the correlations
of the two-particle density not included in the products of one-particle densities.
With the choice of δ-interaction as generator, Eq.(5.4) becomes

δΨ〈Ψ|R̂|Ψ〉 = δΨ

[
〈Ψ|Ĥab|Ψ〉+ λ

∫
dr ρ2(r) + λ

∫
dr dr′ ρ2(r, r′)δ(r− r′)

+ λ

∫
dr dr′ δ(r− r′)Λ(r, r′; r, r′)

]
≈ δΨ

[
〈Ψ|Ĥab|Ψ〉+ λ

∫
dr ρ2(r)

]
= 0, (5.6)

where in the last line we have neglected the exchange term and the cumulant for
simplicity. Comparing Eq.(5.6) with Eq.(5.2), it appears that using λ and V̂ gen is
equivalent to an auxiliary potential of the form U(r) = λρ(r). In particular, due
to the choice of the δ-force, the main contribution from the perturbation part in
Eq.(5.6) depends on the correlated local density ρ(r). According to the Kohn-Sham
method (Section 2.3), it exists an uncorrelated local density, Kohn-Sham local
density, that can represent any local density. Such Kohn-Sham density will enter
the model functional.

From Eq.(5.6) we obtain the solution |Ψ(λ)〉 as function of the Lagrange multiplier.
The ab initio energy of the perturbed state results

Eab(λ) = 〈Ψ(λ)|T̂ |Ψ(λ)〉+ 〈Ψ(λ)|V̂ ab|Ψ(λ)〉
= 〈Ψ(λ)|T̂ |Ψ(λ)〉+ 〈Ψ(λ)|V̂ ab

n + V̂ Coul|Ψ(λ)〉, (5.7)

where the ab initio potential is described by its nuclear V̂ ab
n and Coulomb V̂ Coul

components. With the correlated Ψ(λ), we calculate the Hartree-Fock average
value of the generator as

〈Ψ(λ)|V̂ gen|Ψ(λ)〉HF =

∫
dr ρ2

λ(r), (5.8)

where ρλ(r) indicates that the local density is a function of λ. With ‘‘Hartree-Fock
average value’’ we intend that the expectation value of the operator is calculated at
the leading order of the expansion in effective interactions, as shown in Eq.(4.57).
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We want to describe the ab initio energy with a functional of the form of Eq.(5.3)
including the Coulomb term, that is

Eab(λ) = T [ρλ] + C

∫
dr ρ2

λ(r) + V Coul[ρ]. (5.9)

Considering that the Kohn-Sham kinetic energy represents a good approximation
to the total kinetic energy, we assume that

〈Ψ(λ)|T̂ |Ψ(λ)〉 ≈ T [ρλ]. (5.10)

Analogously we suppose that the Coulomb contribution in the ab initio Hamiltonian
is close to the Hartree-Fock average in the functional, namely

〈Ψ(λ)|V̂ Coul|Ψ(λ)〉 ≈ V Coul[ρλ]. (5.11)

Then, we can subtract the kinetic energy and the Coulomb energy in the left-hand
and in the right-hand sides of Eq.(5.9), rewriting it as

〈Ψ(λ)|V̂ ab
n |Ψ(λ)〉 = C

∫
dr ρ2

λ(r). (5.12)

The coupling constant C is now fitted, knowing 〈Ψ(λ)|V̂ ab
n |Ψ(λ)〉 and

∫
dr ρ2

λ(r),
both calculated with the ab initio technique.
We can repeat the same machinery for different value of λ in order to fit the value
of C to a larger dataset. The coupling constant is not dependent on λ but it is
defined on the manifold generated by the Lagrange multiplier λ.
The obtained C is then inserted in Eq.(5.3) and the model functional is minimized
in the space of local densities ρ(r).
The ground state energy Ẽg.s. should be close to the ab initio energy Eab

g.s. if the
generator is adequate to reproduce the ab initio description of the system. Lack of
accuracy in determining the coupling constant requires to modify or to extend the
number of model EDF generators.
The ground state (local) density ρg.s. in the functional should be similar to the ab
initio local density ρ0(r), for the unperturbed case λ = 0.
Our research aims is to study the validity of the assumption discussed above.

The earlier construction can be extended to a model functional of different densities
Ẽ[ρ, τ , ρ∆ρ,J], using perturbations by the generators that in the Hartree-Fock ap-
proximation induce such densities. The minimization of the Routhian is generalized
as

δΨ〈Ψ|R̂|Ψ〉 = δΨ

[
〈Ψ|Ĥab|Ψ〉+ λi〈Ψ|V̂ gen

i |Ψ〉
]

= 0. (5.13)
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The index i indicates the possible choices of values of λ as well as the choices of
different generators. The perturbation technique not only tests the changes in
the nucleus due to external probes, but also it enlarges the number of ab initio
computable solutions, otherwise limited to experimental energies or unperturbed
ab initio results. In this way, as many data points as the values of λi are made
available for fitting. We obtain a number of coupling constants Cj equal to the
number of generators of the model functional. We can calculate perturbations of
several nuclei and fit the coupling constants simultaneously, in order to derive a
model functional that can be applicable over the nuclear chart.

In the SCGF approach, we recall that not the wave function but the propa-
gator is used to describe the ground state, solution of the Routhian minimization.
From the propagator Gαβ we obtain the correlated one-body density matrix ραβ,
Eq.(4.13), used to extract the Hartree-Fock expectation value of any operator
〈O(λi)〉HF ≡ 〈Ψ(λi)|Ô|Ψ(λi)〉HF . The kinetic energy as one-body operator reads

T (λi) ≡
∑
αβ

〈α|T̂ |β〉 ρβα(λi) = 〈T (λi)〉HF . (5.14)

Regarding the Hartree-Fock average value of the generators 〈V gen
j (λi)〉HF , we

distinguish two- and three-body cases. The expectation value of the two-body
potential, according to Eq.(4.57), reads

〈V̂ 2B(λi)〉HF =
1

2

∑
αβγδ

〈αβ|V̂ 2B|γδ〉ργα(λi)ρδβ(λi), (5.15)

where 〈αβ|V̂ 2B|γδ〉 are antisymmetric two-body matrix elements. In the case of
three-body interaction, from Eq.(4.53), it follows that

〈V̂ 3B(λi)〉HF =
1

6

∑
αβµγδν

〈αβµ|V̂ 3B|γδν〉 ργα(λi)ρδβ(λi)ρνµ(λi), (5.16)

where 〈αβµ|V̂ 3B|γδν〉 are antisymmetric three-body matrix elements.
We extract the nuclear interaction energy as

V ab
n (λi) = 〈Ψ(λi)|Ĥab − T̂ − V̂ Coul|Ψ(λi)〉, (5.17)

rewriting Eq.(5.12) in the general form

V ab
n (λi) =

∑
j

Cj〈V gen
j (λi)〉HF , (5.18)

55



where 〈V gen
j (λi)〉HF are specified in Eqs.(5.15) and (5.16).

Eq.(5.18) represents the cornerstone of the derivation. In fact, the coupling con-
stants Cj are fitted by regression analysis (see Section 5.2) to carry the information
of the ab initio interaction. Eq.(5.18), if validated through our analysis, suggests
that the correlations of the ground state solution can be absorbed by the Cj.

We use the SCGF solver ‘‘BoccaDorata’’ [95], in which the contributions V ab
n (λi),

V Coul(λi) and λiV
pert(λi) = λi〈Ψ(λi)|V̂ gen

i |Ψ(λi)〉 to the interaction energy are not
separated when solving Eq.(5.13). In the Routhian, the total interaction energy
then becomes

V tot(λi) = 〈Ψ(λi)|V̂ ab
n + V̂ Coul + λiV̂

gen
i |Ψ(λi)〉, (5.19)

from which we approximate the ab initio contribution as

V ab
n (λi) ≈ V tot(λi)− 〈V Coul(λi)〉RL − 〈λiV pert(λi)〉RL. (5.20)

The subscript RL indicates the inclusion of ring and ladder RPA contributions in
〈V 2B(λi)〉RL, as shown in the Feynman diagrams in Fig. 4.6. We will discuss the
uncertainties associated with Eq.(5.20) in Section 6.3.2.

5.2 Linear regression analysis

We perform the fit of the coupling constants Cj through the linear regression
method.
From the perturbation method, we obtain d interaction energies V ab

n (λi), that
represent the regression data yi. We intend to describe the data in function of p
regression parameters Cj, corresponding to the coupling constants.
The comparison with EDF methods (cfr. Eqs.(5.1) and (5.18)) and the idea that
the ab initio correlations are absorbed in the coupling constants suggest a relation
of the form

yi =
n∑
j=0

Cj〈Ψ(λi)|V̂ gen
j |Ψ(λi)〉HF . (5.21)

Namely the Jacobian matrix is identified with the Hartree-Fock average of the
generator V̂ gen

j , for the wave function relative to the Lagrange multiplier λi, as

Jij ≡ 〈Ψ(λi)|V̂ gen
j |Ψ(λi)〉HF . (5.22)

Ab initio data yi and the Jacobian Jij are the inputs in the regression equation
that reads (in vector notation)

y = JC. (5.23)
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When fitting data, it is common procedure to rank different data according to the
importance we want to attribute to them. In this way, the value of the parameters
is constrained to specific data more strongly than to the others. The practice
consists in introducing an artificial weight wi for each data, then the larger the
weight, the more importance is assigned to the corresponding data. In the present
case, all the observables are of the same type (interaction energy) and there are not
a priori reason to prefer some datapoints to others. The weight is then assigned
by the inverse of the estimated error on each datapoint as

wi =
1

(∆yi)2
. (5.24)

The error ∆yi contains different contributions [65], that can be sintesized as

(∆yi)
2 = (∆yabi )2 + (∆ynum)2 + (∆ymod)2. (5.25)

∆yabi is the error attributed to the ab initio calculation and it will be presented in
Chapter 6. ∆ynum is the numerical precision. It can be taken from the convergence
condition of the total energy in the SCGF calculations, where the convergence is
reached if the difference between two consecutive iterations is smaller that 5×10−5

MeV. The numerical precision has the same value for all the data.
∆ymod represents the error associated to the model and it can be tuned to normalize
the penalty function χ2. In fact, starting from an arbitrary value ε > 0, ∆ymod can
be increased iteratively up to the value at which the χ2 approaches the value of 1.
We build the penalty function by ordinary-least-squares (OLS) method as

χ2(C) =
1

d− p

d∑
i=1

wi

[
p∑
j=1

JijCj − yi

]2

=
1

d− p
(JC− y)T W (JC− y) ,

(5.26)

where the weight matrix W is a diagonal matrix with elements Wii = wi. This
penalty function satisfies the normalization property χ2(C)→ 1 at the minimum,
typical of statistical analysis.
The optimal set of variables Cmin is obtained from the minimum of Eq.(5.26), i.e.,
we require that ∀j = 1, ..., n

∂ χ2(C)

∂Cj

∣∣∣∣
C=Cmin

= 0. (5.27)

The solution of Eq.(5.27) reads

Cmin = (J TWJ )−1J TWy. (5.28)
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It is important to underline that some parameters cannot be determined from the
fit, as the parameters lying in the kernel of J TWJ , if this product is singular,
or that some parameters can poorly describe the chosen dataset. In Appendix A
the Singular Value Decomposition method is presented as solution to the ill-posed
problem when J TWJ is singular.

The regression analysis can return the statistical error associated to the parameter
Cmin
j , namely

∆Cmin
j =

√
Kjj. (5.29)

where the covariance matrix K, between the parameters Ca and Cb, is defined as

Kab ≡ 〈(Ca − 〈Ca〉)(Cb − 〈Cb〉)〉 = χ2(C) (J TWJ )−1
ab . (5.30)

For a general observable A, that varies almost linearly with the variation of C
around Cmin, the propagated error due to the uncertainties on the parameters is

∆A =

√∑
il

GA
i KilGA

l , (5.31)

where GA
i ≡ ∂A

∂Ci

∣∣
C=Cmin

is the Jacobian relative to the observable A.
In the specific case of the interaction energy, the observable used in the fit, we
obtain

ythi =
n∑
j=1

JijCmin
j (5.32)

and the associated error becomes

∆ythi =

√∑
jl

Jij Kjl (J T )li. (5.33)

ythi can be compared with the input value yabi . The smaller the difference |yabi −ythi |,
the better the coupling constants Cmin reproduce the ab initio interaction energy.

5.2.1 Constrained regression

We consider valuable to introduce constraints in the linear regression. With the
constraints, we aim to drag the coupling constants toward values we expect, pri-
marily to satisfy nuclear matter properties. Linear regression with constrained
solution is in the spirit of the Bayesian inference where the prior distribution of
the parameters is known.
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A technique to include constraints in the regression is represented by the Tikhonov
regularization [96] or ridge regression [97], which consists of minimizing a penalty
function of the form

χ2
T (C) =

1

d− p+ f

[
(y − JC)TW (y − JC) + λT (b−QC)T (b−QC)

]
. (5.34)

The Tikhonov parameter λT is a real positive number and b = QC is a system of
equations in the parameters C with constant terms b. The final values of C will
depend on λT . For λT=0, the constraints are neglected and Eq.(5.34) reduces to
Eq.(5.26). Increasing the value of the Tikhonov parameter, the relevance of the
constraints increases, in a way that we can consider λT as the weight factor of the
constraining equations.
In this formalism, the solution CT of the regression reads

(CT )min =

([
J
Q

]T [
W 0
0 λT I

] [
J
Q

])−1 [
J
Q

]T [
W 0
0 λI

] [
y
b

]
, (5.35)

with the corresponding covariance matrix

(KCT )ab = χ2
T (CT )

([
J
Q

]T [
W 0
0 λT I

] [
J
Q

])−1

. (5.36)

In the Tikhonov regularization, the constraints are realized at the expenses of the
difference yab − yth(CT ). That is, forcing the parameters to satisfy the equations
b = QC produces a deterioration of the χ2 in the part related to the data.

Reasonable constraining equations for the parameters C regard the properties
of the nuclear matter system, described in Appendix B. Particular quantities char-
acteristic of this system, like the energy per particle E/A, effective mass m∗/m,
symmetry energy J , can be expressed in function of the coupling constants of the
EDFs.
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6. Results from ab initio calcula-
tions

We present the results obtained by applying the technique explained in Chap-
ter 5. The Self-Consistent Green’s Function calculations are performed with the
solver BoccaDorata [95]. It uses a spherical harmonic oscillator basis, including all
the neutron and proton orbitals up to the specified principal quantum number Nmax.

Similarly to the proof of principle in Ref. [1], we test the perturbative method at
the Hartree-Fock level, with Skyrme SV [98] as interaction, namely Ĥab = T̂ + V̂SV .
Such test returns the same parameters of the SV original interaction we started
from. Since we limit the calculations to the Hartree-Fock order, the expectation
values of the generators produce uncorrelated densities corresponding one-to-one
with the densities in the model functional.
This test represents a benchmark among the codes in use for the SCGF solutions,
the regression analysis and the spherical Hartree-Fock solver for the model func-
tional (HOSPHE [99]). Details are shown in Appendix F.

We are interested to fit the functional coupling constants to the state-of-art chiral
interactions, employing ab initio methods beyond the Hartree-Fock approximation.
Then, in the following, we discuss principal results.

6.1 NNLOsat: chiral interaction optimized for

nuclei

Ab initio calculations employ Hamiltonians derived from chiral effective field theory,
accounting for the symmetries of QCD. Such Hamiltonians contain coupling con-
stants of the long-range (pion exchange) physics and LECs for the nucleon-nucleon
(2N) channel. The three-body (3N) forces are adjusted successively to data from
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systems with A ≤ 4. This way of tuning the interaction leads to over binding of
medium-mass nuclei and underestimating of charge radii. Furthermore, reproducing
binding energy and radii of finite nuclei simultaneously with the empirical nuclear
matter saturation point and incompressibility, appears to be an issue for ab initio
techniques.
To overcome such problems, the authors in Ref. [100] optimized the 3N and 2N
forces together, improving the force order by order in the chiral expansion. Their
fit includes binding energies and radii of light and medium-mass nuclei as well as
deuteron, p-p and p-n scattering data at low energy. The choice of the observables
used in the penalty function was made in the spirit of mean-field calculations and
energy density functionals.
The obtained interaction called ‘‘NNLOsat’’, performs well to reproduce binding
energy and radii of nuclei from He to Ca. The 3N forces play a major role in
obtaining saturation of nuclear matter in a way similar to the density dependent
term in the EDF theory.
With such derivation, this interaction promises power to extrapolate bulk properties
of heavier nuclei.

NNLOsat interaction contains charge symmetry breaking terms other than the
Coulomb interaction, and it means that the strength of the interaction is different
among neutrons and protons. In our density functional, we neglect the isospin-
breaking terms, and generalizations in the spirit of Refs. [74, 101] are left to future
work.

6.2 Data points from ab initio calculations

We performe calculations with the Self-Consistent Green’s Function method in the
ADC(3) approximation (see Section 4.5), where the chosen interaction NNLOsat
(Section 6.1) is included through the two-body and three-body matrix elements.
An exploratory study, employing the coupled-cluster-doubles method [102], has
investigated the behavior of the ground-state energies in function of the harmonic
oscillator energy ~ω and of the model space, labeled with Nmax. It emerges that
with NNLOsat interaction the minimum energy for Ca and Ni isotopes is reached
at the oscillator energy ~ω=20 MeV. The convergence in term of Nmax is not
assumed to be exact, nevertheless increasing Nmax decreases the binding energy
towards the experimental values. In terms of computational resources, even if the
present technology allows calculations up to Nmax = 13, this would require a too
large amount of CPU hours to complete the full set of perturbations. Reducing
our model space to Nmax = 11 or Nmax = 9 is a necessary compromise between
available resources and precision.
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With the choice of ~ω=20 MeV, we complete SCGF calculations for 7 semi-
magic nuclei 16O, 24O, 34Si, 36S, 40Ca, 48Ca and 56Ni. Each nucleus is formed by a
closed level configuration: at least a magic number for one kind of nucleon and a
fully filled valence orbital for the other kind. These nuclei represent the available
convergent ADC(3) calculations among the semi-magic systems between 16O and
56Ni, where the magic numbers are 8, 20 and 28.
The ground state energy per nucleon E/A is plotted in Figure 6.1 for the model
spaces Nmax = 7, Nmax = 9 and Nmax = 11. These unperturbed cases (λ=0) can be
compared with the experimental values [103]. The model space Nmax = 7 appears
to be too small to reproduce experimental results. The theoretical predictions
improve increasing the oscillator space. For Nmax = 11 the maximum difference
with experiment is at 56Ni. The difference of 0.25 MeV per nucleon means around
3% error on the total energy that overestimates the assumed 1% error due to the
ADC(3) truncation [89]. In absolute value, the calculated 56Ni binding energy
is more than 10 MeV away from the measured value. Such deviation is much
larger than the standard deviation of common EDFs (of the order of 1 MeV). The
precision of the SCGF method conflicts with the ambition of the novel functionals
to reduce the difference with the experimental results. However, in this work,
we intend to reproduce the ab initio energy irrespective of its agreement with
experiments.
In Figure 6.1, we present also the behavior for Nmax = 9 ‘‘nocm’’, where ‘‘nocm’’
indicates that the two-body center-of-mass correction has been neglected during all
the self-consistent calculation. This is our choice of model space. Due to limited
computational resources, especially in terms of available CPU memory, we opt
for an harmonic oscillator basis truncated to Nmax = 9. We decide to neglect the
two-body center-of-mass correction from the beginning because, removing it at the
end of the calculation, would have introduced a systematic error in the value of
the ab initio interaction energy1. In this way, if on one side the difference with
experimental energies becomes larger, on the other side our fit is cleaned from the
corresponding systematic error. This choice reflects our focus on the theoretical
predictions more than on experimental results.

1In the SCGF solver, the two-body center-of-mass corrections [104] are implemented through
two-body center-of-mass matrix elements, that are added to the two-body potential at every
stage of the self-consistent calculation. As a consequence these corrections will be included in
the value of the total interaction energy V tot(λi), and they will need to be subtracted from the
left-hand side of Eq.(5.20), using the approximated expansion in Fig. 4.6. The subtraction will
produce a further contribution to the error associated with V abn (λi) described in Section 6.3.2.
The two-body center-of-mass corrections, if neglected from the beginning, will not contribute
to the error on the interaction energy. Furthermore, the two-body center-of-mass corrections
are not implemented in the Hartree-Fock solver, then, without these corrections, it is easier to
compare ground-state energies from ab initio calculations and from the model functionals.
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Figure 6.1: Binding energy per nucleon E/A for different nuclei. The theoretical values
Eab/A correspond to the unperturbed cases (λ = 0). Calculations are made
with NNLOsat interaction, ~ω=20 and model space specified by Nmax in
the legend. Black triangles represent the experimental values taken from
Ref. [103].

In our model functional, we consider generators of zero-range contact interac-
tion (Skyrme-like) as in Eq.(C.2). The matrix elements of the two-body terms
can be found in Appendix D. They are labeled with the parameters ti. t0 and t0x0

describe momentum-independent central interaction (in the power of momentum
they represent the leading order k0). t1, t1x1, t2 and t2x2 indicates momentum-
dependent central interaction (order k2), te and to are tensor interactions (order
k2) and w0 is the spin-orbit potential (order k2). The density-dependent term,
proportional to t3, is replaced by the three-body zero-range interaction (order k0)
as specified in Appendix E.
Using Eq.(C.4), we can replace the central and tensor interaction terms with the
generators V̂ ρ

0 , V̂ ρ
1 , V̂ ∆ρ

0 , V̂ ∆ρ
1 , V̂ τ

0 , V̂ τ
1 , V̂ J1

0 and V̂ J1
1 .

It is important to consider the meaning of the subscript T=0 and T=1 to indicate
respectively the generators associated with isoscalar and isovector densities. Such
link between generators and densities is valid only when the average value of
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the generators is calculated at the Hartree-Fock level, as in the energy density
functional. In fact, already at the next-to-leading order in powers of the interaction,
the expectation value of a generator contains contributions not only proportionals
to the densities. The Skyrme-like interaction, as shown in Appendix D, is formed
by the identity operator 1T in the isospin space, then all the generators are isoscalar
or isospin invariant.

The studied set of generators consists of 10 elements, the above mentioned V̂ X
T

plus the spin-orbit V̂w0 and the three-body V̂t3 .
2

We use each generator separately as perturbation potential for the system, namely
V̂ pert=V̂ gen, with 4 different intensity of λpert. We obtain 284 convergent results,
which represent our full database of the perturbed and unperturbed ground state
energies. The value of λpert is selected specifically for each V̂ pert as shown in Table
6.1. The choice of λpert represents a compromise between large perturbation and
convergent results for perturbed nuclei. In fact, the larger is the perturbation
strength, the wider is the density space probed. Nevertheless, if the perturbation
is excessively strong, the numerical solution of SCGF may diverge.
As motivated in Section 5.1, the parameters of the model EDF are fitted only to
the interaction energy V ab

n (λi), given in Eq.(5.20).

Table 6.1: The value of λperti used for different V̂ pert
i . The strength of the perturbation

parameter is obtained as λperti = s ki where s ∈ {−2,−1, 1, 2} and ki is
tabled below.

i V̂ ρ
0 V̂ ρ

1 V̂ ∆ρ
0 V̂ ∆ρ

1 V̂ τ
0 V̂ τ

1 V̂ J1
0 V̂ J1

1 V̂w0 V̂t3
ki 2.0 2.0 1.0 1.0 2.0 2.0 2.0 1.0 5.0 100.0

We recall that the NNLOsat interaction is optimized to reproduce ground state
properties of finite nuclei as well as saturation of infinite nuclear matter. We will
consider the nuclear matter properties as a test of the quality of the parameters
obtained in the regression analysis. In fact, the derivation ab initio should be able
to reproduce the saturation properties included in the ab initio interaction.
Our interest is to find the most significant selection of generators that can reproduce
calculated data and nuclear matter properties.

2The generators V̂w0
and V̂t3 do not have the separation in isoscalar and isovector because

the relation between the coupling constants and the parameter (respectively C∇J0 , C∇J1 and w0

or Cρ dd0 , Cρ dd1 and t3) is not invertible.
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6.3 Criticalities of the method and sources of er-

rors

Before performing the regression to fit the parameters, we address some criticalities
that emerge due to the approximation used in the SCGF method.

6.3.1 Hellmann-Feynman theorem

As discussed in Section 5.1, the Routhian in Eq.(5.13) can be seen as a perturbation
to the ab initio Hamiltonian Ĥab. In perturbation theory, especially in atomic and
molecular physics, the Hellmann-Feynman theorem [105, 106] represents a general
approach to evaluate the change of the energy in function of the perturbation.
For a system in which the Hamiltonian Ĥλ = Ĥ0 + λV̂ depends explicitly on the
parameter λ only in the perturbative term, the theorem states

dEλ
dλ
≡ d

dλ
〈Ψ(λ)|Ĥλ|Ψ(λ)〉 = 〈Ψ(λ)|∂Ĥλ

∂λ
|Ψ(λ)〉. (6.1)

That is, the first derivative of the total energy with respect to parameter λ of
the perturbation is equal to the expectation value of the derivative of the total
Hamiltonian operator Ĥλ respect to the same perturbation parameter.
Eq.(6.1) is valid under the condition that |Ψ(λ)〉 is an eigenstate of Ĥλ. Ref. [107]
shows that also the Hartree-Fock wave function can satisfy the Hellmann-Feynman
theorem. Furthermore, Eq.(6.1) can be fulfilled by approximate wave functions
that satisfy the variational principle 〈δΨ|Ĥ − E|Ψ〉 = 0 for a variation of the
form |δΨ〉 = ∂Ψ

∂λ
dλ, as stated in Ref. [108]. However, when the wave function is

expanded in a truncated basis [109] or it is a solution of a perturbative expansion
[108], the Hellman-Feynman theorem is violated and the gradients of the wave
function need to be included as

dEλ
dλ

= Eλ

[
〈dΨ(λ)

dλ
|Ψ(λ)〉+ 〈Ψ(λ)|dΨ(λ)

dλ
〉
]

+ 〈Ψ(λ)|∂Ĥλ

∂λ
|Ψ(λ)〉. (6.2)

Inserting Ĥab + λiV̂
gen
i (see Eq.(5.13)) in Eq.(6.1), we obtain that

dEλj
dλj

= 〈Ψ(λj)|
∂

∂λj

[
Ĥab + λiV̂

gen
i

]
|Ψ(λj)〉 = 〈Ψ(λj)|V̂ gen

j |Ψ(λj)〉. (6.3)
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Here, the first derivative can be calculated with the finite difference method,
specifically with the centered-difference formula 3

dEλ
dλ

∣∣∣∣
λ=0

=
E(λ)− E(−λ)

2λ
+O(λ2). (6.4)

The ground state wave function of the ab initio Hamiltonian is not variational,
because the SCGF method at the ADC(3) level employes a truncated expansion.
We are in the condition discussed above, in which the Hellmann-Feynman theorem
is violated. Anyway, we study the case that the perturbation is given by λabV̂

ab =
λab(V̂

ab
n + V̂ Coul), i.e., the same potential entering in Ĥab. The Hellmann-Feynman

formula in Eq.(6.3) together with Eq.(6.4) give at the point λ = 0 the result

E(λab)− E(−λab)
2λab

≈ dEλab
dλab

∣∣∣∣
λab=0

= 〈Ψ(0)|V̂ ab
n + V̂ Coul|Ψ(0)〉 ≡ V ab(0). (6.5)

This compares the finite difference of the energy for the perturbed cases (λab and
−λab) with the average value of the interaction energy in the unperturbed case
(λ = 0). The quantities in the left-hand and right-hand side of Eq.(6.5) are available
from the SCGF solver for a numerical analysis. Such analysis offers an estimate for
the difference between the approximated solution in the ADC(3) method and the
exact solution, which should satisfy the variational principle and, as a consequence,
the Hellmann-Feynman theorem. We can define an error on the ab initio energies
as

∆VH =

∣∣∣∣dEλabdλab
(0)− V ab(0)

∣∣∣∣, (6.6)

where the subscript H stands for error extracted from Hellmann-Feynman theorem.
This error represents an absolute error on the measure of the interaction energy,
due to the truncation in the theoretical method. It is assumed to be dependent
on the nucleus but independent from the perturbation, namely the central point
value (λ=0) is attributed to all perturbed and unperturbed interaction energies of
a certain nucleus.
Figure 6.2 shows the ratio ∆VH

|V ab(0)| , as percentage, in function of the mass number A

3For the first derivative, the central finite difference formula

df(x0)

dh
=
f(x0 + h)− f(x0 − h)

2h
+O(h2),

can be further improved using the five-points formula as

df(x0)

dh
=
f(x0 − 2h)− 8f(x0 − h) + 8f(x0 + h)− f(x0 + 2h)

12h
+O(h4).
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of the nucleus. Such ratio, and consequently the precision of the solution, increases
with the increasing of the model space (Nmax in the legend). In the case Nmax=9
‘‘nocm’’ discussed in the calculation of coupling constants, the imprecision results
around 3-4 % of the interaction energy for the heaviest systems. For 16O and 24O,
it drops down around 1%, which is the expected correction on the total energy due
to the ADC(3) truncation.

16O 24O 34Si 36S 40Ca 48Ca 56Ni
A

1

2

3

4

5

6

V H
|V

ab
(0

)|
 [%

]

Nmax = 7
Nmax = 9
Nmax = 9 nocm
Nmax = 11

Figure 6.2: The ratio ∆VH
|V ab(0)| is plotted for different nuclei. Results are relative to the

NNLOsat (two and three-body) interaction with the value of λab = 0.005.
The model space is specified in the legend, for all the cases the oscillator
energy is ~ω = 20 MeV. The two-body center-of-mass correction is removed
from Vab(0) (the label ‘‘nocm’’ means that the two-body center-of-mass
correction has already been neglected in the calculation of the ab initio
solutions).

6.3.2 Minima of the ab initio energy

Effects of the approximations made in the SCGF calculation appear also in the
ground state energy of perturbed systems.
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Figure 6.3 shows the behavior of the ab initio energy in function of λi for different
perturbation V pert

i explained in the legend. We expect that the case λ = 0 (black
triangle) is the one with lower binding energy Eab(0) because |Ψ(0)〉 is the solution
that minimize the unperturbed case that correspond to the Routhian R̂ = Ĥab. Any
other wave function |Ψ(λi 6= 0)〉 represents the solution of a perturbed case, namely
it is the minimum for the system described by the Routhian R̂ = Ĥab + λiV̂

gen
i

with λi 6= 0. For each solution of the perturbed system, it results

Eab(λi) = 〈Ψ(λi)|Ĥab|Ψ(λi)〉 ≥ Eab(0), (6.7)

if the ab initio energy is calculated exactly. From the plot, it is evident that there
are cases of energies Eab(λi) smaller than Eab(0). In these cases, the minimum
is shifted at values λi 6=0 in constrast with the variational principle. For the
perturbation induced by the three-body generator V̂t3 (orange curve), the energy
does not present a minimum but decreases monotonically towards negative λi. This
effect is partially related to the way the contribution of the three-body interaction is
extracted. In fact, we can estimate only the leading order as in Eq.(4.53). Including
high order corrections can push the curve to a concavity shape.
It is necessary to study the impact of the uncertainty on the energy minima.
In Section 6.3.1, we discussed the Hellmann-Feynman difference as a source of
an absolute error associated with the energy. Here, another source of error is
due to subtraction of the perturbation energy from the solution of the Routhian,
since Eab(λi) = R(λi)− λiV gen

i . We assume that only the perturbation potential
contributes to this uncertainty. Then, the imprecision associated with the value
Eab(λi) can be estimated from

∆Eab
S (λi) =

∣∣〈Ψ(λi)|λiV̂ gen
i |Ψ(λi)〉RL − 〈Ψ(λi)|λiV̂ gen

i |Ψ(λi)〉NLO
∣∣, (6.8)

where 〈〉RL indicates the full ring and ladder RPA approximation (RL). Such
error can be viewed as a relative error between the perturbed solutions and the
unperturbed one.

In the bottom panels of Figure 6.3, we present the effect of the subtraction
error ∆Eab

S (λi) (left) and of the Hellmann-Feynman error ∆Eab
H (right), on the

energy minima. For the Hellmann-Feynman uncertainty, we extend the error on
the potential to the energy as ∆Eab

H = ∆VH , assuming that the value of potential
is the only source of errors for the total energy. The error bars are visualized as
shadows. The case of 16O, where ∆Eab

H value is the smallest among the nuclei,
shows that in most of the cases ∆Eab

H > ∆Eab
S . In the other nuclei, ∆Eab

H is around
one order of magnitude larger than ∆Eab

S . In both situations, including the error
bars, we can say that Eab(λi 6= 0) can be larger than Eab(0) in the error limit.
Then, the variational principle, on which the Levy-Lieb construction is based,
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Figure 6.3: (Top) Ab initio energy for the perturbed and unperturbed cases in 16O.
Colors in the legend correspond to the generator used as V̂ pert

i . The black
triangle indicates the unperturbed case and the black dashed line shows the
reference value Eab(0). (Bottom) The shadows represent the error bars
associated to the ab initio energy. The same color scheme is employed
as in the legend. In the left panel the error is given by Eq.(6.8). In the
right panel the error is extracted from the Hellmann-Feynman theorem,
corresponding to Eq.(6.6).

continues to hold.
The significant difference in magnitude of ∆Eab

H and ∆Eab
S suggests to keep separate

these errors in the following analysis.
When we move to the ab initio (nuclear) interaction energy, V ab

n (λi) = R(λi) −
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λiV
gen
i (λi)− V Coul(λi)− T ab(λi), the imprecision due to subtractions becomes

[∆V ab
n (λi)]S =

[(
〈λiV̂ gen

i (λi)〉RL − 〈λiV̂ gen
i (λi)〉NLO

)2

+
(
〈V̂ Coul(λi)〉RL − 〈V̂ Coul(λi)〉NLO

)2 ] 1
2
. (6.9)

It means that the perturbation potential and the Coulomb potential have the
larger uncertainties among the removed quantities. The largest contribution in
Eq.(6.9) comes from the error associated to the perturbation potential λiV̂

gen
i .

The difference between the expectation value at RL and at NLO is larger for the
perturbation potential as well as dependent on the kind of perturbation. The
error associated with the Coulomb interaction is, instead, similar for the different
perturbations in the same nucleus.
In the Hellmann-Feynman error, ∆VH contains also the contribution from the
Coulomb interaction. However, we calculate that the uncertainties associated
to the Coulomb potential do not affect significantly (around 1%) the value of
the Hellmann-Feynman differences. In this case, we can neglect the Coulomb
contributions, and we take [∆V ab

n ]H = ∆VH .

6.4 Results

We collect the unperturbed and perturbed calculations to organize four smaller
databases from the 284 data points available. We select the generators of the
model functional according to the expansion in power of the momentum, namely
the leading order (k0) and the next-to-leading order (k2). We can also identify the
generators that produce isoscalar densities or isovector densities at the Hartree-Fock
level. In such way, we fit ‘‘isoscalar’’ generators only to energies of N = Z nuclei
(16O, 40Ca and 56Ni), while ‘‘isoscalar’’ and ‘‘isovector’’ generators together are
used to describe energies of all the 7 nuclei. The combination of two order in
momentum (leading, leading + next-to-leading) and two isospin-like behaviors
(isoscalar, isoscalar + isovector) produces the four databases D1, D2, D3 and D4.
The inputs and characteristics of each database are summarized in Table 6.2.

We perform the linear regression as described in Section 5.2 to estimate the coupling
constants Ci corresponding to the selected generators. We conduct the analysis us-
ing separately [∆V ab

n (λi)]S or [∆V ab
n ]H as ab initio error ∆yabi in the weight function.

As guideline for the discussion, in Table 6.3 we present the coupling constants of
Skyrme SIII functional [98]. This mean-field functional, including momentum- and
density-dependent generators, is a good reference point. Its parameters are in the
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Table 6.2: Specific inputs for the databases Ds.

Name D1 D2 D3 D4

nuclei 3 (N = Z) 7 3 (N = Z) 7
datapoints 123 284 123 284
gen. order k0 k0 k0, k2 k0, k2

generators V̂ ρ
0 , V̂t3 V̂ ρ

0 , V̂ ρ
1 , V̂t3

V̂ ρ
0 , V̂ ∆ρ

0 , V̂ τ
0 ,

V̂ J1
0 , V̂w0 , V̂t3

V̂ ρ
0 , V̂ ρ

1 , V̂ ∆ρ
0 , V̂ ∆ρ

1 ,

V̂ τ
0 , V̂ τ

1 , V̂ J1
0 , V̂ J1

1 ,

V̂w0 , V̂t3

domain of natural units according to Ref. [110], i.e., they scale similarly as the
terms of an effective Lagrangian.

Table 6.3: Skyrme SIII [98] coupling constants. In the spin-orbit sector C∇J0 =-90.0
and C∇J1 =-30.0 correspond to Cw0=-120.0. In the density dependent part

Cρ dd0 =875.0 and Cρ dd1 =-875.0 are equivalent to Ct3=14000.0 . CJ1
0 and

CJ1
1 are null in this parametrization.

Cρ
0 Cρ

1 C∆ρ
0 C∆ρ

1 Cτ
0 Cτ

1 CJ1
0 CJ1

1 C∇J0 C∇J1 Cρ dd
0 Cρ dd

1

-423.28 268.08 -62.97 17.03 44.37 -30.62 0 0 -90.00 -30.00 875.00 -875.00

Case with error from subtraction [∆V ab
n ]S

We indicate the results corresponding to this prescription with the subscript S. The
numerical values are presented in Table 6.4 with the associated errors. In the D1S
and D2S database, we fit the ab initio potential with only the contact two-body
and three-body generators, that are the zero-order terms of the functional. The
values we obtained for Cρ

0 , Cρ
1 and Ct3 are of the same order of magnitude as the

corresponding values of SIII.
When the momentum-dependent generators are included in the model, in the
database D3S and D4S, the behavior of the fitted coupling constants changes from
SIII values. Ct3 doubles its value compared to the cases D1S and D2S and the
parameters C∆ρ

0 , Cτ
0 and Cw0 , relative to new generators included in the model

functional, assume opposite signs with respect to SIII. The Ci of the isovector
generators of the case D4S assume values significantly larger than the corresponding
isoscalar coupling constants. These oversized numbers are artefacts of the χ2 mini-
mization. The expectation values of the isovector generators are generally small,
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Table 6.4: Values of the parameters for the parametrizations D1S, D2S, D3S and D4S,
with relative errors. In the bottom of the Table, the statistical quantities χ2,
model error, Birge factor and BIC are given for each parametrization.

parameter D1S D2S D3S D4S

Cρ
0 -402.3 ± 1.3 -411.9 ± 2.3 -384.7 ± 4.5 -366.4 ± 2.7

Cρ
1 - 183.2 ± 6.4 - -748.4 ± 68.0

C∆ρ
0 - - 46.4 ± 4.9 52.0 ± 2.7

C∆ρ
1 - - - -996.0 ± 243.4
Cτ

0 - - -146.2 ± 11.0 -164.4 ± 6.3
Cτ

1 - - - 722.9 ± 79.8
CJ1

0 - - -266.8 ± 291.5 -1057.4 ± 213.0
CJ1

1 - - - -1128.6 ± 189.1
Cw0 - - 73.4 ± 114.7 400.5 ± 83.8
Ct3 13231.5 ± 146.0 14292.8 ± 264.5 31448.0 ± 1267.3 31874.3 ± 764.9
χ2 1.000 1.000 1.000 1.000

model error 1.816 5.448 0.000 0.000
Birge factor - - 0.399 0.693

BIC 2693.9 6663.4 2708.8 6483.6

then the regression push the corresponding coupling constants to large values to
reduce the penalty function. The conspicuous errors associated to these parameters
reflect the inability of the regression to estimate the parameters themselves.

We consider now statistical quantities that can help us to evaluate the qual-
ity of the coupling constants and, as a consequence, the generators of the model.
In the regression, the χ2, Eq.(5.26), is normalized adjusting the model error ∆ymod.
When the ab initio error ∆yabi is large, it can happen that χ2 < 1, then no values
of the model error can normalize the penalty function. In this case, we use the
Birge factor b [111] as universal factor (equal for all the data points) to force the

penalty function to 1, namely χ2(C) −→ χ2(C)
b

.
A large model error means that the difference between the observables and the
fitted quantities, y − JC, is large and then the ab initio inputs are not accurately
reproduced.
It is reasonable to compare D1S with D3S, both using 123 data points, and sepa-
rately D2S with D4S, including 284 data. However, D1S and D2S normalize the
penalty function by the model error, while D3S and D4S require the Birge factor,
as shown in the bottom of Table 6.4. Such distinction makes hard to relate the
performance of the different databases.
The Bayesian Information Criterion (BIC) is a statistical quantity useful to study
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the relevant number of generators. It is defined as [112]

BIC = 2d ln(∆RMS[KeV]) + p ln(d), (6.10)

where d is the number of data and p is the number of parameters or equivalently
the number of generators. ∆RMS =

√
(y − JC)2, expressed in KeV, represents the

root-mean-square deviation of the data points from the fitted values. The smaller
the BIC value, the more relevant are the parameters to describe the model.
BIC is, then, a proper index to contrast D1S with D3S. By a little difference,
D1S seems to carry out more information, since BIC(D1S) < BIC(D3S). That is,
the isoscalar coupling constants of the order k2 do not add relevant knowledge to
describe the ab initio interaction energy.
In the comparison of D2S and D4S, on the contrary, the addition of the momentum-
dependent generators in D4S reduces the value of BIC. As explained before, this
database has a larger disposition of unconstrained parameters that the regression
can adjust to minimize ∆RMS.

The residuals of the Eq.(5.18) are defined as

Residuals ≡
∑

j Cj〈V
gen
j (λi)〉HF − V ab

n (λi)

V ab
n (λi)

. (6.11)

They are presented in Figure 6.4 and Figure 6.5, respectively for 16O and 56Ni,
the lightest and the heaviest of the calculated systems. A model that fit precisely
V ab
n (λi) will produce residuals close to zero (black dashed line) for all the pertur-

bation generators. In the present cases, instead, the residual of the unperturbed
system (λ=0) is around zero, while, when λi moves away from zero, the distance
of the residual tends to raise. For 16O the residuals due to the perturbation V̂ J1

1

and V̂ τ
1 pass over 2%. The residuals of 56Ni are around half the value of the

corresponding ones in 16O, suggesting that the data relative to 56Ni are reproduced
better by the fit. We propagate the error on the residuals, due to the uncertainty
[∆V ab

n (λi)]S, and we plot the error bars as shadows in Figures 6.4 and 6.5. The
propagated errors are similar for the two nuclei, when we take in account the
different scale on the y-axis.
In the comparison of Figure 6.4 with Figure 6.3, it emerges a similarity between
the behavior of Eab and of the residuals corresponding to the same generators. It
means that the fit is hardly able to describe systems that are strongly perturbated.
We observe that the most of the residuals lay in the half-plane y > 0, i.e., consider-
ing that the interaction energies are negative, the fitted values

∑
j Cj〈V

gen
j (λi)〉HF

are smaller than V ab
n (λi).
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Figure 6.4: Residuals calculated with the parametrization D4S in 16O. In the notation
of the linear regression, they read Residuals = JC−y

y .
The perturbation potential is described by color in the legend and by λi on the
x-axis. The errors propagated on the residuals are illustrated with shadowed
areas of the same color and they are equivalent to ∆Residuals = J ∆C

y .
The reference value 0 is shown with a dashed black line.

Now we will look at the details of the regression to check that the large val-
ues of the isovector parameters in D4S and their errors are not related with
numerical singularities. We study the singular values of the matrix J TWJ . Its
inverse enters in the equation for the parameters, Eq.(5.28) and for the covariance
matrix, Eq.(5.30). We refer to Appendix A for the definition of singular values
and singular value decomposition (SVD).
The singular values α2

k of the matrix J TWJ are shown in Figure 6.6 for the case
D4S. We define the SVD condition number as

FSV D =
max(α2

k)

min(α2
k)
. (6.12)

It is common practice to assume that J TWJ is singular when FSV D ≈ 1014. In the
actual case FSV D = 1.3×109, then the inversion of J TWJ is free from singularities.
In Table 6.5, the parametrization D4S is compared with the parameters derived
from the same database D4 when only the largest 9 singular values out of 10 are
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Figure 6.5: Same as in Figure 6.4 for 56Ni.

kept in (J TWJ )−1. We call this new parametrization D4S(9sv). Reducing the

Table 6.5: The comparison between D4S and D4S(9sv) parameters.

parameter D4S D4S(9sv)

Cρ
0 -366.4 ± 2.7 -362.0 ± 5.5

Cρ
1 -748.4 ± 68.0 -2903.5 ± 149.3

C∆ρ
0 52.0 ± 2.7 -18.5 ± 3.9

C∆ρ
1 -996.0 ± 243.4 -3224.1 ± 596.2
Cτ

0 -164.4 ± 6.3 56.1 ± 4.5
Cτ

1 722.9 ± 79.8 1463.1 ± 165.7
CJ1

0 -1057.4 ± 213.0 52.8 ± 479.5
CJ1

1 -1128.6 ± 189.1 -736.9 ± 420.5
Cw0 400.5 ± 83.8 82.8 ± 188.6
Ct3 31874.3 ± 764.9 369.1 ± 29.4
χ2 1.000 1.000

model error 0.000 4.195
Birge factor 0.693 -

BIC 6483.6 6612.5
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Figure 6.6: Singular values α2
k for D4S and D4H parametrization. As discussed in

Appendix A, they are organized in descending order.

number of singular values means neglecting the smallest contribution to J TWJ .
It corresponds to neglect the linear combinations of parameters that influence
the fit less or spoil it. In this instance, the smallest contribution comes from the
expectation value of the generator of three-body, as the SVD suggests. Ignoring
α10 explains the small value Ct3=369.1 in D4S(9sv), when usual value is on the
order of 104.

In D4S(9sv) the distance between data and fitted values, y − JC, is large enough
to require a model error of 4.195 to normalize the penalty function, on the contrary
of the Birge factor in the case D4S. This is even more evident when looking at
the BIC values, that read BIC(D4S) < BIC(D4S(9sv)). In general, we observe
that reducing the number of singular values produces a decreasing of the absolute
values of the parameters and their errors. This happens because the elements of
the matrix (J TWJ )−1 become smaller at the price of deteriorating the penalty
function.

All these evidences suggest that the large value of isovector parameters and errors
in D4S are not related to numerical issues in the fitting procedure.
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We plot the correlation matrix for D4S in Figure 6.7, to study if there are evident
relation between the parameters. We notice, in particular, the correlation between
CJ1

0 and CJ1
1 and various anti-correlations.

C0 C1 C0 C1 C0 C1 C J1
0 C J1

1 Cw0 Ct3

C 0
C 1
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C 1

C
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C w
0

C t
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0.0

0.4

0.8

D4S

Figure 6.7: Correlation matrix for the parametrizations D4S. Full correlation is indi-
cated in yellow, anti-correlation in dark blue.

Case with error from Hellmann-Feynman difference [∆V ab
n ]H

We consider the case in which the error ∆yabi is due to the difference in the
Hellmann-Feynman theorem and we indicate the parametrizations with the sub-
script H . Results obtained for the databases D1H , D2H , D3H and D4H are presented
in Table 6.6.
We have already understood from the bottom panels in Figure 6.3 that, in general,
[∆V ab

n ]H > [∆V ab
n ]S. This induces in each parametrization DH a larger error on

the coupling constants, respect to the corresponding DS. The huge value of ∆yi
makes the weight function smaller and then the normalization of the χ2 requires
the use of the Birge factor. The Birge factor decreases while increasing the number
of parameters (or generators) in the database. This fact suggests an improvement
in the fit. The same advise can be extracted by comparing the BIC for D1H and
D3H , for D2H and D4H . In particular, similarly to the DS case, the inclusion of
all the possible generators, D4H , seems to provide the better fit of the ab initio
interaction energy. We observe also that BIC(D4H)<BIC(D4S), indicating this
parametrization as the best fit.
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Table 6.6: Values of the parameters for the parametrizations D1H , D2H , D3H and
D4H , with relative errors, and related statistical quantities.

parameter D1H D2H D3H D4H

Cρ
0 -397.0 ± 8.5 -392.6 ± 7.0 -418.0 ± 26.3 -410.7 ± 21.3

Cρ
1 - 142.7 ± 10.5 - -120.2 ± 708.2

C∆ρ
0 - - 30.3 ± 33.7 38.0 ± 20.0

C∆ρ
1 - - - -1451.1 ± 1850.9
Cτ

0 - - -111.5 ± 69.3 -125.2 ± 41.5
Cτ

1 - - - -26.3 ± 458.5
CJ1

0 - - 223.4 ± 1424.7 506.9 ± 970.3
CJ1

1 - - - 315.5 ± 916.0
Cw0 - - -158.7 ± 554.6 -267.8 ± 374.6
Ct3 12704.6 ± 1080.3 12129.2 ± 882.9 30406.6 ± 8832.1 31494.8 ± 6012.6
χ2 1.000 1.000 1.000 1.000

model error 0.0 0.0 0.000 0.000
Birge factor 0.109 0.089 0.049 0.030

BIC 2717.6 6704.3 2637.0 6360.6

Residuals are shown in Figure 6.8 and 6.9 respectively for 16O and 56Ni. In
both nuclei the residuals are smaller than 1%, and of the corresponding systems in
D4S parametrization. It is also evident that the propagated errors are broader than
the ones in D4S. Including the error bars, almost all the residual are compatible
with the value zero.

The singular values for D4H are plotted in Figure 6.6. They are more than a
factor 10 smaller than the ones for D4S, because the large uncertainties make
the elements of the weight matrix W smaller. Anyway, the condition number
FSV D = 9.6 × 108 keeps the regression away from singularities. Removing the
smallest singular values does not improve the fit, in a similar way as we already
discussed for D4S.

The correlation matrix for D4H , in Figure 6.10, points out the correlation be-
tween CJ1

0 and CJ1
1 . The number of anti-correlated parameters seems to be raised

but with slightly reduced amplitude respect to D4S.

6.4.1 Nuclear matter properties

We test the performance of the obtained parametrizations in the description of
nuclear matter.
Appendix B discusses the concept of infinite nuclear matter and shows how to

78



10 8 6 4 2 0 2 4 6 8 10
i

0.50

0.25

0.00

0.25

0.50

0.75

1.00
R

es
id

ua
ls

 [%
]

D4H
16O

Vpert
i

V0  fit

V1  fit

V0  fit

V1  fit

V0  fit

V1  fit

V J1
0  fit

V J1
1  fit

Vw0 fit

Vt3( /20) fit
= 0 fit

Figure 6.8: Residuals for the parametrization D4H in 16O.

extract its properties from a Skyrme-like functional. We derive such quantities for
the databases D1S, D2S, D3S and D4S in Table 6.7, and for D1H , D2H , D3H and
D4H in Table 6.8.
It is interesting to compare them with the properties described by the original
NNLOsat interaction. In Ref. [100], the equation of state for the NNLOsat
parametrization presents a minimum for the energy at the value of E/A ≈-14.5
MeV. Such minimum is obtained when the Fermi wave vector kF = 1.35 fm−1, i.e.,
using the relation ρsat = 2

3π2k
3
F , this value corresponds to ρsat = 0.166 fm −3. The

incompressibility is given K = 253 MeV.
Considering the NNLOsat values and the empirical ones (see Table B.1) D4S and
D4H seem to provide a better description of the bulk properties as saturation
density ρsat, volume radius r0 and binding energy per particle E/A. This fact
agrees with the previous statistical analysis to indicate D4S and D4H as the best
among the respective parametrizations.
The symmetry energy J and its slope L are poorly determined with huge propagated
errors. In general, the propagated errors in DH are larger than in DS, as expected.
The effective mass m∗/m represents an issue for this kind of model. The empirical
value is considered between 0.6 and 0.9, with Skyrme-like interactions that often
underestimate it (for Skyrme SV m∗/m ≈ 0.38). In the fitted parametrizations,
the closest value appears in the D1 and D2 database, where the value 1 is only due
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Figure 6.9: Same as in Figure 6.8 for 56Ni.
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Figure 6.10: Correlation matrix for the parametrizations D4H .

to the absence of the coupling constant Cτ
0 from the model (Cτ

0 =0). Including the
error bars, m∗/m for D4H is in the empirical range, but this is not enough to have
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Table 6.7: Nuclear matter properties extracted for the parametrization D1S, D2S, D3S
and D4S, with relative propagated errors. Empirical values are provided in
Table B.1. The properties relative to the NNLOsat interaction are ρsat =
0.166 fm −3, E/A ≈-14.5 MeV and K = 253 MeV, given in Ref. [100].

quantity D1S D2S D3S D4S

ρsat [fm−3] 0.191 ± 0.002 0.181 ± 0.002 0.130 ± 0.002 0.132 ± 0.002
r0 [fm] 1.078 ± 0.003 1.097 ± 0.005 1.223 ± 0.007 1.219 ± 0.005

E/A [MeV] -21.79 ± 0.09 -21.28 ± 0.13 -15.19 ± 0.34 -14.56 ± 0.20
m∗/m 1 - 1 - 12.52 ± 11.02 -22.72 ± 21.95
J [MeV] -16.3 ± 0.3 17.2 ± 1.0 -32.6 ± 2.1 10.1 ± 16.0
L [MeV] -152.9 ± 2.0 -49.5 ± 3.3 -228.6 ± 11.7 190.4 ± 79.0
K [MeV] 491.7 ± 13.6 479.0 ± 21.8 386.1 ± 26.9 380.2 ± 17.5

Table 6.8: Same as in Table 6.7 for D1H , D2H , D3H and D4H parametrizations.

quantity D1H D2H D3H D4H

ρsat [fm−3] 0.196 ± 0.012 0.203 ± 0.011 0.129 ± 0.017 0.128 ± 0.012
r0 [fm] 1.068 ± 0.023 1.056 ± 0.019 1.227 ± 0.055 1.232 ± 0.039

E/A [MeV] -21.99 ± 0.93 -22.55 ± 0.86 -16.43 ± 2.13 -15.99 ± 1.25
m∗/m 1 - 1 - 3.27 ± 4.62 4.38 ± 4.90
J [MeV] -16.4 ± 2.6 12.1 ± 3.1 -28.4 ± 13.7 -50.2 ± 99.2
L [MeV] -154.4 ± 15.5 -71.5 ± 15.1 -205.8 ± 77.5 -284.1 ± 436.2
K [MeV] 497.0 ± 109.9 509.5 ± 97.2 399.1 ± 195.9 393.3 ± 143.5

a correct distribution of single-particle energies. We aim to improve the effective
mass by the constraint of its value with the Tikhonov term.

6.4.2 Constrained results

Following Section 5.2.1, we introduce the Tikhonov term λT as Lagrangian param-
eter of the constraint b = QC. For our interest to adjust the effective mass m∗/m,
the constraint equation is given by Eq.(B.5) and the target effective mass is set to
m∗/m=0.70 .
We vary the value of log10λT from -4 to 2 and we study the changes in the
constrained parameters CT , solutions of the constrained regression. In the uncon-
strained part of χ2

T , we take the inputs used respectively for the databases D4S
and D4H , that have provided the best fit of the ab initio interaction. For every λT ,
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we obtain the parametrizations D41c
S (λT ) and D41c

H (λT ), where 1c indicates that one
constraint is used. The evolution of the constrained parameters CT in function
of the Tikhonov parameter is shown respectively in the top panels of Figure 6.11
(D41c

S ) and Figure 6.13 (D41c
H ).
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Figure 6.11: D41c
S (λT ) parametrization with m∗/m constrained to 0.70 . (Top) Value

of the coupling constants CT in function of λT . Ct3 is scaled by a factor 50
as explained in the legend. (Bottom) Contribution of the data points χ2

data

and contribution of the Tikhonov term χ2
constr to the total χ2

T (normalized).

For the case D41c
S , the changes in the parameters happen at log10λT between

-1 and 0. Out of this region their values are quite stable. Cρ
1 , C∆ρ

1 , CJ1
0 , CJ1

1 and
Ct3 are the coupling constants in which the constraint makes the largest impact.
We have already noticed that these coupling constants were poorly determined by
the regression in the parametrization D4S.
In the bottom panel of Figure 6.11, the normalized χ2

T is separated in the contribu-
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tion from the data points χ2
data and from the constrained part χ2

constr (see Eq.(5.34)).
It is evident that the contribution of the constrained part to the total χ2

T increases
with λT up to log10λT ≈ -0.5. After that, such contribution drops quickly down to
zero. The explanation for this effect is that at the peak of χ2

constr the parameters
begin to be adjusted to give m∗/m close to the target value. Increasing λT decreases
χ2
constr because b−QC→ 0, while the reproduction of the data points deteriorates

since the difference y − JC becomes always more prominent.
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Figure 6.12: Infinite nuclear matter properties extracted from D41c
S (λT ). The curves

show ρsat (top left), E/A (top right), m∗/m (bottom left) and symmetry
energy J (bottom right). The red shadows indicate the propagated error
bars. The gray regions illustrate the range of the empirical values in Table
B.1.
The kink in the plot of the effective mass m∗/m is due to numerical
instability.

We present the nuclear matter properties ρsat, E/A, m∗/m and symmetry energy
J relative to the parametrization D41c

S (λT ) in Figure 6.12. For small λT the values
of such quantities equal the values extracted from D4S. In the region of log10λT
between -1 and 0, the ‘‘active’’ region of the constraint, the properties change
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abruptly and the effective mass is dragged towards the target value. When the
target value is reached, at log10λT between 0 and 1, these quantities do not vary
any more. We note that the kink in the plot of the effective mass is an artefact of
numerical instability, a pole in the Eq.(B.5), and does not have physical signifi-
cance.
The curves for ρsat, E/A and symmetry energy cross their region of empirical values
(shown in gray color) before setting to values far away from standard nuclear matter
conditions. Such crossing occurs at slightly different value of λT for the three
quantities and before the effective mass reaches its empirical range. We conclude
that there are no values of the Tihkonov parameter in which all the mentioned
quantities are in their expected domain, even including the propagated error bars.
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Figure 6.13: Same as in Figure 6.11 for the parametrization D41c
H (λT ).

A similar analysis is performed for the case D41c
H (λT ) in Figure 6.13. Here, the
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large variation of the coupling constants can be noticed around log10λT = -2. The
largest changes concern, also in this situation, the parameters C∆ρ

1 , CJ1
0 , CJ1

1 and
Ct3 .
In χ2

T , the separation of the contributions manifests the peak in the curve χ2
constr

near log10λT = -2. Such peak is smaller in amplitude compared to the case D41c
S (λT )

in Figure 6.11. The reduction is explained by the fact that the unconstrained
solution D4H has an effective mass closer to the target value and, then, the distance
b−QC does not grow significantly.
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Figure 6.14: Same as in Figure 6.12 for the parametrization D41c
H (λT ).

The corresponding variation of the nuclear matter parameters appears smoother
in Figure 6.14. However, neither in this case the nuclear matter properties are
simultaneously (at the same λT ) in agreement with the empirical values. When
the effective mass approaches the reference value 0.70, namely around log10λT ≈
-1, the energy per particle E/A results over bound and the symmetry energy has
become huge.

Both parametrizations, D41c
S (λT ) and D41c

H (λT ), fail to reproduce the nuclear
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matter properties by constraint of the effective mass. A possible reason for the
failure regards the correlation between the parameters. Figure 6.7 (for D4S) and
Figure 6.10 (for D4H) point out a strong anti-correlation between the parameters
Cτ

0 and Ct3 . The effective mass depends explicitly and only on Cτ
0 . Trying to adjust

the value of this parameters moves Ct3 out of its local minima in the domain of the
regression. Since Ct3 is the parameter of the three-body part of the functional, a
large reduction of Ct3 value produces strong effect on the saturation properties of
the nuclear matter. In fact, the repulsive contribution of the three-body interaction
becomes smaller and the nuclear matter system results over bound, with a large
saturation density.

Attempts to constraint at the same time the effective mass and the energy per
particle have failed to provide reasonable results. The parameters of the model
were not able to approach the targeted values of these properties simultaneously.

6.5 Model functional

This work aimed to study the feasibility of the derivations based on the ab initio
interaction to built a model energy density functional. The performed analysis
suggested that D4S and D4H are the most reasonable parametrizations among the
set of available generators, namely, the models in which our confidence is higher,
also thanks to the prior knowledge on the nuclear matter properties.

We insert the obtained parameters and the corresponding generators in the model
EDF in Eq.(5.1), obtaining Ẽ[ρ]. In particular, we construct the functionals Ẽ[ρ]D4S

and Ẽ[ρ]D4H . We minimize the functionals with respect to all the possible densities
(second stage of the Levy-Lieb constrained search). Such minimization, for the case
of the parametrization D4S as well as for D4H , does not converge to a self-consistent
solution. That is, the minimum of the functional is not stable and corresponds to
densities out of the domain of the densities explored by the perturbations λi. It may
indicate that the actual information we extracted from the ab initio interaction is
not extendible to the framework of the EDFs.

We can address possible reasons for the failure of the method.
The derivation assumes that generators of one-body densities are able to fit the ab
initio interaction energy, which is calculated with the self-energy in approximation
ADC(3), well beyond the mean-field order. The coupling constants have the role of
absorbing the high order effects in their values. This approach is fully compatible
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with the Levy-Lieb construction of exact density functionals. However, if the set of
generators is not adequate to describe the original interaction, the minimization of
the penalty function can lead values of the coupling constants outside the physical
region. Large values of the penalty function relative to NNLOsat interaction,
compared to the exact fit of Skyrme SV interaction (Appendix F), can be evidence
of that misbehavior.
The introduction of the constraint on the effective mass was not decisive to improve
the description of nuclear matter, worsening the bulk properties like saturation
density and energy per particle. This can be seen as another indication that the
list of parameters and generators is severely limited.
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7. Summary, conclusions, and per-
spectives

In this thesis, I studied a link between functional generators employed in the
nuclear Energy Density Functionals theory and the chiral interactions used within
the ab initio calculations.

Applying the technique suggested in Ref. [1], seven semi-magic nuclei in the
light-medium mass region were probed with perturbations induced by generators of
two- and three-body contact interaction (Skyrme). The perturbations provided a
large collection of ground state energies, calculated with the Self-Consistent Green’s
Functions method in ADC(3) approximation. Such theoretical results formed a
database, that extended beyond the limited number of unperturbed solutions nor-
mally available, corresponding to the experimental ground state energies.
We used the collection of ab initio data points to compare competing models,
differing by the selection of generators and by the estimated errors on the data,
to describe the ab initio interaction energy. For each model or parametrization,
we derived the coupling constants of a model functional, to be built by the same
generators.
We studied the properties of the obtained coupling constants in relation to their
ability to reproduce the potential of the NNLOsat chiral interaction as well as the
infinite nuclear matter properties, which the functional is expected to satisfy.
In the Bayesian language, we can say that we had different competing hypotheses,
the parametrizations or selection of generators, and we completed the task to deter-
mine the set of parameters, in the values of which we placed the largest confidence.
Such confidence was also assigned according to the prior best knowledge, namely
the nuclear matter properties.

At the end of our analysis, with the help of statistical tools, we preferred two
parametrizations D4S and D4H , both employing all the generators available in

88



our Skyrme-like functional. They differed by the estimated errors on the ab initio
interaction energies, respectively due to the approximation made on the calculation
of the perturbation and Coulomb contributions and due to the estimates obtained
by employing the Hellmann-Feynman theorem. The D4H parametrization gave
slightly better description of the nuclear matter system, including the large propa-
gated error bars.
However, we verified that the fitted parameters were not able to provide a valid
model Energy Density Functional since the preferred parametrizations did not lead
to convergent functionals.

We discussed possible issues to explain the failure of the approach, pointing
towards the conclusion that the set of generators was not adequate to reproduce the
ab initio interaction. Extension to finite-range and symmetry-breaking generators
could be beneficial to establish the suitability of the approach and will be explored
in further studies.

Our derivation of the functionals was based only on the information contents
of the ground-state energies, in the spirit of the Levy-Lieb construction. It is an
open problem whether this information can be sufficient to characterize functionals
for nuclear structure calculations. Parametrizations available in the literature
usually include such observables as charge radii and nuclear matter properties,
together with ground-state energies, in the penalty functions to be optimized.

We also pointed out some limitations of the actual ab initio calculations, in
particular, related to the SCGF method. In fact, the current approximations,
employed to calculate the ground-state energies, seemed to show large uncertainties
of the estimated averaged interaction. We could see it by applying the Hellmann-
Feynman method or estimating the difference between the highest order and the
next-to-leading order contributions. Such uncertainties appeared to be significantly
larger than the precision expected at the level of nuclear density functionals.
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Appendices



A. Singular Value Decomposition

We consider a m × n matrix A with rank r ≤ min(m,n). The Singular Value
Decomposition [113] of A allows to write

A = LΣRT . (A.1)

L is a m×m matrix containing l1, ..., lk column vectors that form an orthonormal
basis for the column space and lk+1, ..., lm column vector, orthonormal basis for the
left null space N (AT ). R is a n×n matrix containing r1, ..., rk row vectors that form
an orthonormal basis for the row space and rk+1, ..., rn row vector, orthonormal
basis for the left null space N (A). Σ is a m×n matrix made with all zeros but the
first k matrix elements σi = [Σ]ii. σ1, ..., σk are positive numbers called ‘‘singular
values’’.
The decomposition of A appears in vector notation as Ari = σili for i = 1, ..., k.
Eq.(A.1) can be explicited as

 A

 =

l1 ... lk ... lm



σ1

. . .

σk
0

0


rT1 ... rTk ... rTm


= l1σ1r

T
1 + · · ·+ lkσkr

T
k . (A.2)

The singular values σi are in descending order (σ1 ≥ σi ≥ σk > 0), meaning that
the terms in the last line of Eq.(A.2) appear in order of importance.
It is significant to notice that σ2

i are eigenvalues of ATA as well as AAT .
Studying the response of the singular values to a small variation in A, Ref. [113]
shows that for a small change in one of the matrix elements [A]ij → [A]ij + ε, with
ε� [A]ij , the singular values will not be altered more than ε. That is, the singular
values of A are stables.
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If eigenvalues of A exist (A is a square matrix), and if A is not normal (ATA 6= AAT ),
the same small svariation in a matrix element can lead to a drastic change in the
eigenvalues of A (change � ε). It means that the eigenvalues of a not normal
square matrix are unstable, contrarily to the singular values.

A.1 SVD applied to ill-posed problem

In Section 5.2, we have presented concerns about calculating the inverse of the
matrix J TWJ , when it is singular. We can use the SVD to solve this problem.
We start with the decomposition of the p× p square matrix J TWJ , that results
[114]

J TWJ = R α2RT , (A.3)

where α2 are q positive (> 0) singular values, with q ≤ p, and R is a p× q matrix.
This is equivalent to assume the decomposition of the rectangular matrix Jji as

Jji =

q∑
k=1

Ljk αk (RT )ki, (A.4)

where L is a d× q matrix. Outside the null space of J TWJ , its inverse results

(J TWJ )−1 = R 1

α2
RT . (A.5)

Selecting only the singular values larger than a certain value ε, we can rewrite the
inverse as

(J TWJ )−1 = R


1
α2
1

. . .
1
α2
k

0
0

RT , (A.6)

where αk+1, ..., αq < 0. In the regression analysis, the fitted parameters are
determined by the cut off ε. In fact, only the first k out of the q singular values
influence the value of the parameters as

(Cmin)j =
k∑
l=1

p∑
m=1

d∑
i=1

Ril
1

α2
l

(RT )lm(J T )miwi yi. (A.7)
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B. Infinite nuclear matter proper-
ties

Infinite nuclear matter can be viewed as an idealized system made of nucleons,
interacting only through nuclear force. The system is considered infinite in the
sense that it does not have a surface, and it is invariant for translation.
We are interested to study the Symmetric Nuclear Matter (SNM), assuming that
the nuclear matter contains an equal number of protons and neutrons.
For a Skyrme-like functional or interaction the characterizing properties of SNM
can be calculated analytically. Such system is described by an energy density in
which the terms containing derivatives of the densities are neglected. The energy
per nucleon E/A reads

E

A
(ρ) =

E
ρ

=
~2

2m

(
3π2

2

)2/3
3

5
ρ2/3 + Cρ

0ρ+
1

16
t3ρ

γ+1 +

(
3π2

2

)2/3
3

5
Cτ

0ρ
5/3 (B.1)

=
~2

2m

(
3π2

2

)2/3
3

5
ρ2/3 +

3

8
t0ρ+

1

16
t3ρ

γ+1

+

(
3π2

2

)2/3
3

80
(3t1 + 5t2 + 4t2x2)ρ5/3, (B.2)

where the kinetic energy is taken from the Thomas-Fermi model. Eq.(B.1) is
expressed with the coupling constants, while Eq.(B.2), in terms of the Skyrme
parameters, follows from Ref. [32]. The pression P of the system, equivalent to

P (ρ) ≡ ρ2∂(E/ρ)

∂ρ
=

~2

2m

(
3π2

2

)2/3
2

5
ρ5/3 + Cρ

0ρ
2 +

1

16
t3(γ + 1)ργ+2

+

(
3π2

2

)2/3

Cτ
0ρ

8/3, (B.3)
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defines the saturation density ρsat as the density at which P (ρsat) = 0 (minimum
of the binding energy per nucleon E/A). The volume incompressibility is

K(ρ) ≡ 9
∂P

∂ρ
=

~2

2m

(
3π2

2

)2/3

6ρ2/3 + 18Cρ
0ρ+

9

16
t3(γ + 1)(γ + 2)ργ+1

+

(
3π2

2

)2/3

24Cτ
0ρ

5/3. (B.4)

The in-medium effective (isoscalar) nucleon mass is given as

m∗

m
(ρ) =

[
1 +

2m

~2
Cτ

0ρ

]−1

. (B.5)

It is important to notice that it depends explicitly only on the coupling constant
Cτ

0 , while the value of ρ is determined by the saturation condition. The effective
mass is related with the density of single-particle levels in the energy space.
The isovector coupling constants enter in the expressions for the symmetry energy
J and its derivative L, calculated at the saturation density as

J(ρsat) =
~2

2m

(
3π2

2

)2/3
1

3
ρ

2/3
sat + Cρ

1ρsat −
1

48
t3(1 + 2x3)ργ+1

sat

+

(
3π2

2

)2/3(
1

3
Cτ

0 + Cτ
1

)
ρ

5/3
sat , (B.6)

L ≡ 3ρsat
∂J

∂ρ

∣∣∣∣
ρ=ρsat

=
~2

2m

(
3π2

2

)2/3
2

3
ρ

2/3
sat + Cρ

1ρsat −
1

16
t3(1 + 2x3)(γ + 1)ργ+1

sat

+

(
3π2

2

)2/3

10

(
1

3
Cτ

0 + Cτ
1

)
ρ

5/3
sat . (B.7)

Nuclear matter quantities have definite values extrapolated from experimental
results or deduced from empirical models (see Table B.1).

In Section 6.4.1, we evaluated the infinite nuclear matter properties for the
parametrizations obtained by the regression analysis. Moreover, thanks to Eq.(5.31),
we quantified the error propagated on the nuclear matter quantities, helping in
the comparison with empirical values. Specifically, the central-difference formula
provided the numerical derivatives as

GA
j =

∂A
∂Cj

∣∣
C=Cmin

=
A(Cmin + hj)−A(Cmin − hj)

2hj
+O(h2

j). (B.8)
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Table B.1: Typical values for the properties of infinite nuclear matter taken from Ref.
[32] and evaluated at ρ = ρsat.

quantity value (or range)

ρsat [fm−3] 0.17 ± 0.03
E/A [MeV] -16 ± 0.5
m∗/m 0.65 - 0.9
J [MeV] 30 - 35
L [MeV] 40 - 76
K [MeV] 200 - 260
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C. Parameters and coupling con-
stants of Skyrme interaction

The interaction part of Skyrme-type EDFs is formed by combinations of density
generators Vgenj and coupling constants Cj, namely Eint[ρ] =

∑
j

∫
drCj Vgenj [ρ].

Taking Eq.(2.42) as example,

Cj Vgenj [ρ] = Cρ
Tρ

2
T + C∆ρ

T ρT∆ρT + Cτ
TρT τT + CJ

TJ2
T + C∇JT ρT∇ · JT . (C.1)

The coupling constants Cj are connected to linear combinations of the Skyrme

parameters ti, defining V̂Skyrme =
∑

i tiV̂
gen
ti . We can distinguish the generators

V̂ gen
ti in the standard form of the Skyrme interaction

V̂Skyrme(r1 − r2) = t0(1 + x0P̂
σ)δ(r1 − r2)

+
1

2
t1(1 + x1P̂

σ)
[
k̂′2δ(r1 − r2) + δ(r1 − r2)k̂2

]
+ t2(1 + x2P̂

σ)k̂′ · δ(r1 − r2)k̂

+ iw0(σ̂1 + σ̂2) ·
[
k̂′ × δ(r1 − r2)k̂

]
+
te
2

{[
3(σ1 · k′)(σ2 · k′)− (σ1 · σ2)k′

2
]
δ(r1 − r2)

+ δ(r1 − r2)
[
3(σ1 · k)(σ2 · k)− (σ1 · σ2)k2

]}
+ to

{
3(σ1 · k′)δ(r1 − r2)(σ2 · k)− (σ1 · σ2) [k′ · δ(r1 − r2)k]

}
+

1

6
t3(1 + x3P̂

σ)δ(r1 − r2)ρα
(

r1 + r2

2

)
, (C.2)

which includes also the generators of the tensor part. Using the summation on
repeated indices, the Skyrme coupling constants, for an interaction up to the second
order in momentum, read

Cj =Mi
jti, (C.3)
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where the matrix Mi
j is obtained explicitly from

Cρ
0

Cρ
1

C∆ρ
0

C∆ρ
1

Cτ
0

Cτ
1

CJ
0

CJ
1

Cw0

Ct3



=



3
8

0 0 0 0 0 0 0 0 0

−1
8
−1

4
0 0 0 0 0 0 0 0

0 0 − 9
64

0 5
64

1
16

0 0 0 0

0 0 3
64

3
32

1
64

1
32

0 0 0 0

0 0 3
16

0 5
16

1
4

0 0 0 0

0 0 − 1
16
−1

8
1
16

1
8

0 0 0 0

0 0 1
32

− 1
16
− 1

32
− 1

16
5
32

15
32

0 0

0 0 1
32

0 − 1
32

0 − 5
32

5
32

0 0

0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 1





t0

t0x0

t1

t1x1

t2

t2x2

te

to

w0

t3



. (C.4)

Here the 1
2

factor in the tensor term
∑

T
1
2
CJ
TJ2

T is included in CJ
T , such that, in

spherical symmetry, the corresponding tensor terms give the same results in Ref.
[115] as in Ref. [116].
For EDFs derived from an underlying Hamiltonian, holds the relation∫

dr
∑
j

CjVj[ρ] =
∑
j

Cj〈Φ|V̂ gen
j |Φ〉 =

∑
i

ti〈Φ|V̂ gen
ti |Φ〉, (C.5)

that is, CjV̂ gen
j = tiV̂ gen

ti . After substituting Cj = (Cj)
T = tiMj

i , the generators

V̂ gen
j are identified as

V̂ gen
j = (Mj

i )
−1 V̂ gen

ti , (C.6)

that explicitly reads

V̂ ρ
0

V̂ ρ
1

V̂ ∆ρ
0

V̂ ∆ρ
1

V̂ τ
0

V̂ τ
1

V̂ J
0

V̂ J
1

V̂w0

V̂t3



=



8
3
−4

3
0 0 0 0 0 0 0 0

0 −4 0 0 0 0 0 0 0 0

0 0 −16
3

8
3

16
3
−8

3
−16

15
16
15

0 0

0 0 0 8 −32
3

40
3

16
5

16
15

0 0

0 0 4
3
−2

3
4 −2 − 8

15
0 0 0

0 0 0 −2 −8 10 8
5

0 0 0

0 0 0 0 0 0 8
5

8
5

0 0

0 0 0 0 0 0 −24
5

8
5

0 0

0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 1





V̂t0
V̂t0x0
V̂t1
V̂t1x1
V̂t2
V̂t2x2
V̂te
V̂to
V̂(t)w0

V̂t3



. (C.7)
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The notation V̂(t)w0 distinguishes the generator of the spin-orbit term associated

with the parameter w0 from the generator V̂w0 associated to the coupling constant
Cw0 .
Eq.(C.7) considers the vector contribution V J

T ≡ V J1
T to the tensor term, which is

the only non-zero contribution to the tensor interaction in spherical symmetry.
For the spin-orbit interaction, the only relation available is

Cw0〈Φ|V̂w0|Φ〉 = w0〈Φ|V̂(t)w0|Φ〉 =

∫
dr
(
C∇J0 ρ0(r)∇ · J0(r) +C∇J1 ρ1(r)∇ · J1(r)

)
,

(C.8)
making not possible to separate the contribution of the isoscalar generator from
the isovector one.
The derivation of the two-body matrix elements for the Skyrme interaction is
presented in Appendix D.
Similarly, when deriving the term proportional to t3 from a zero-range three-body
interaction (see Appendix E) with x3 = 1 fixed, the isospin components are not
separable, and it results

Ct3〈Φ|V̂t3|Φ〉 = t3〈Φ|V̂t3|Φ〉 =

∫
dr
(
Cρ dd

0 ρ2
0(r) + Cρ dd

1 ρ2
1(r)

)
. (C.9)
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D. Skyrme two-body zero-range in-
teraction

We present the expressions for the matrix elements of the two-body zero-range
Skyrme interaction, Eq.(C.2)1, derived with the help of Ref. [117].
We consider the antisymmetrized2 JT-coupled matrix element

〈ab; J ′M ′;T ′M ′
T |V̂ |cd; JM ;TMT 〉as

= Nab(J ′T ′)Ncd(JT )
[
〈ab; J ′M ′;T ′M ′

T |V̂ |cd; JM ;TMT 〉

+ (−1)jc+jd−J−T 〈ab; J ′M ′;T ′M ′
T |V̂ |dc; JM ;TMT 〉

]
, (D.1)

where the normalization of the two-particle state reads

Nab(JT ) =

√
1− δab(−1)J+T

1 + δab
. (D.2)

In the following, we first concentrate on the part 〈ab; J ′M ′;T ′M ′
T |V̂ |cd; JM ;TMT 〉

and then we provide the complete expression, Eq.(D.1), for the distinct components
of the interaction.

Since interested in a scalar potential V̂ , the angular momentum rules impose
the condition δJJ ′δMM ′ , such that

〈ab; J ′M ′;T ′M ′
T |V̂ |cd; JM ;TMT 〉 = 〈ab; JM ;T ′M ′

T |V̂ |cd; JM ;TMT 〉. (D.3)

1The density-dependent part, last line in Eq.(C.2), is derived from the three-body zero-range
interaction in Appendix E.

2In Appendices D and E, we explicitly use the subscript ‘‘as’’ to distinguish the antisym-
metrized matrix elements from the ones that are not. In the other parts of the thesis, we referred
to antisymmetric matrix elements omitting the subscript for simplicity of notation.
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After introducing the relative coordinates X = 1√
2
(r1 + r2) and x = 1√

2
(r1 − r2),

the space part of the interaction becomes

〈r′1r′2|V̂ |r1r2〉 = δ

(
1√
2

(X′ −X)

)
v(x′,x). (D.4)

In this relative coordinates, the δ-interaction results

〈r′1r′2|δ(r1 − r2)|r1r2〉 = δ(r1 − r2)δ(r1 − r′1)δ(r2 − r′2) (D.5)

= δ

(
1√
2

(X′ −X)

)
δ(
√

2x)δ(
√

2x′). (D.6)

The corresponding relative momenta are

kx =
√

2kr =
√

2

[
− i

2
(∇r1 −∇r2)

]
, (D.7)

k′x′ ≡
√

2

[
i

2

(
∇r′1
−∇r′2

)]
. (D.8)

The JT -coupled matrix elements can be written as

〈ab; JM ;T ′M ′
T |V̂ |cd; JM ;TMT 〉

= 〈nalajama, nblbjbmb; JM ;
1

2
τa,

1

2
τb;T

′M ′
T |V̂ |nclcjcmc, ndldjdmd; JM ;

1

2
τc,

1

2
τd;TMT 〉

=
∑

λ′S′T ′M ′T

λ̂′Ŝ ′ĵaĵb


la lb λ′
1
2

1
2

S ′

ja jb J

C
T ′M ′T
1
2
τa

1
2
τb

∑
N ′L′n′l′

MN ′L′n′l′

nalanblb,λ′
∗

×
∑

λSTMT

λ̂Ŝĵcĵd


lc ld λ
1
2

1
2

S
jc jd J

CTMT
1
2
τc

1
2
τd

∑
NLnl

MNLnl
nclcndld,λ

× 〈N ′L′, n′l′λ′; 1

2

1

2
S ′M ′

S; JM ;
1

2

1

2
T ′M ′

T |δ
(

1√
2

(X′ −X)

)
v(x′,x)f(σ1, σ2)f(τ1, τ2)

× |NL, nlλ;
1

2

1

2
SMS; JM ;

1

2

1

2
TMT 〉,

(D.9)

with the coupled orbital angular momentum λ (λ′), the coupled spin S (S ′) and
the notation ĵ =

√
2j + 1. MNLnl

n1l1n2l2,λ
= 〈2n1 + l1, l1, 2n2 + l2, l2;λ|2N + L,L, 2n+

l, l;λ〉d=1 are the coefficients of the Talmi-Moshinski transformations for the har-
monic oscillator brackets [118].
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The dependence on space-spin-isospin coordinates appears in

〈N ′L′, n′l′λ′; 1

2

1

2
S ′M ′

S; JM ;
1

2

1

2
T ′M ′

T |δ
(

1√
2

(X′ −X)

)
v(x′,x)f(σ1, σ2)f(τ1, τ2)

× |NL, nlλ;
1

2

1

2
SMS; JM ;

1

2

1

2
TMT 〉

=
∑

MλMSM
′
λM
′
S

CJM
λ′M ′λS

′M ′S
CJM
λMλSMS

∑
MLmlM

′
Lm
′
l

CλMλ
LMLlml

C
λ′M ′λ
L′M ′Ll

′m′l

× 〈N ′L′M ′
L|δ
(

1√
2

(X′ −X)

)
|NLML〉〈n′l′m′l|v(x′,x)|nlml〉

× 〈1
2

1

2
S ′M ′

S|f(σ1, σ2)|1
2

1

2
SMS〉〈

1

2

1

2
T ′M ′

T |f(τ1, τ2)|1
2

1

2
TMT 〉.

(D.10)

The center-of-mass motion results

〈N ′L′M ′
L|δ
(

1√
2

(X′ −X)

)
|NLML〉 = (

√
2)3δLL′δMLM

′
L
δNN ′ . (D.11)

The Skyrme interaction in relative coordinates reads

v(x′,x)f(σ1, σ2) = t0(1 + x0Pσ)δ(
√

2x′)δ(
√

2x)

+
t1
2

(1 + x1Pσ)

[
1

2
k′x′

2
δ(
√

2x′)δ(
√

2x) + δ(
√

2x′)δ(
√

2x)
1

2
kx

2

]
+ t2(1 + x2Pσ)

[
1√
2
k′x′ · δ(

√
2x′)δ(

√
2x)

1√
2
kx

]
− iw0 (σ1 + σ2) ·

[
1√
2
k′x′ × δ(

√
2x′)δ(

√
2x)

1√
2
kx

]
+
te
2

{
3(σ1 ·

1√
2
k′x′)(σ2 ·

1√
2
k′x′)δ(

√
2x′)δ(

√
2x)

− δ(
√

2x′)δ(
√

2x)(σ1 · σ2)
1

2
k′x′

2

+ 3 δ(
√

2x′)δ(
√

2x)(σ1 ·
1√
2
kx)(σ2 ·

1√
2
kx)

− δ(
√

2x′)δ(
√

2x)(σ1 · σ2)
1

2
kx

2
}

+ to

{
3(σ1 ·

1√
2
k′x′)δ(

√
2x′)δ(

√
2x)(σ2 ·

1√
2
kx)

− (σ1 · σ2)

[
1√
2
k′x′ · δ(

√
2x′)δ(

√
2x)

1√
2
kx

]}
,

(D.12)
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while the isospin independence of the interaction gives

〈1
2

1

2
T ′M ′

T |1T |
1

2

1

2
TMT 〉 = δTT ′δMTM

′
T
. (D.13)

The tensor part in Eq.(D.12) can be rewritten as

v(x′,x)f(σ1, σ2)
∣∣∣
tensor

=
3

2
te

1

2

{
2∑

Mσ=−2

(−1)2−Mσ [σ1 ⊗ σ2]2Mσ
[k′x′ ⊗ k′x′ ]2,−Mσ

× δ(
√

2x′)δ(
√

2x) + δ(
√

2x′)δ(
√

2x)

×
2∑

Mσ=−2

(−1)2−Mσ [σ1 ⊗ σ2]2Mσ
[kx ⊗ kx]2,−Mσ

}

+ 3to
1

2

{
2∑

Mσ=−2

(−1)2−Mσ [σ1 ⊗ σ2]2Mσ
[k′x′ ⊗ kx]2,−Mσ

× δ(
√

2x′)δ(
√

2x)

}
.

(D.14)

In the spin sector, we can distinguish different contributions. The spin identity
gives

〈1
2

1

2
S ′M ′

S|1S|
1

2

1

2
SMS〉 = δSS′δMSM

′
S
, (D.15)

the spin-exchange operator reads

〈1
2

1

2
S ′M ′

S|P σ|1
2

1

2
SMS〉 = (−1)S+1δSS′δMSM

′
S
. (D.16)

The term entering the spin-orbit part results

〈1
2

1

2
S ′M ′

S| [σ1 + σ2]1Mσ
|1
2

1

2
SMS〉 =

(
(−1)S

′
+ (−1)−S

)√
6Ŝ ′(−1)MσCSMS

S′M ′S1,−Mσ

×
{

1
2

1
2

S ′

S 1 1
2

}
= δSS′=12

√
6Ŝ(−1)S+MσCSMS

SM ′S1,−Mσ

{
1
2

1
2

S
S 1 1

2

}
,

(D.17)
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where we used that
(
(−1)S

′
+ (−1)−S

)
= 2(−1)SδSS′ , with the triangular rule in

CSMS

S′M ′S1−Mσ
6= 0 giving S=S ′=1, and the relations

〈1
2

1

2
S ′M ′

S| [σ1]1Mσ
|1
2

1

2
SMS〉 =

∑
m′1m

′
2m1m2

C
S′M ′S
1
2
m′1

1
2
m′2
CSMS

1
2
m1

1
2
m2

√
3C

1
2
m′1

1
2
m11Mσ

δm′2m2

= (−1)S
′√

6Ŝ ′(−1)MσCSMS

S′M ′S1,−Mσ

{
1
2

1
2

S ′

S 1 1
2

}
,

(D.18)

〈1
2

1

2
S ′M ′

S| [σ2]1Mσ
|1
2

1

2
SMS〉 =

∑
m′1m

′
2m1m2

C
S′M ′S
1
2
m′1

1
2
m′2
CSMS

1
2
m1

1
2
m2

√
3C

1
2
m′2

1
2
m21Mσ

δm′1m1

= (−1)S
√

6Ŝ ′(−1)MσCSMS

S′M ′S1,−Mσ

{
1
2

1
2

S ′

S 1 1
2

}
.

(D.19)

The spin contribution in the tensor part is

〈1
2

1

2
S ′M ′

S| [σ1 ⊗ σ2]2Mσ
|1
2

1

2
SMS〉 = Ŝ ′−1C

S′M ′S
SMS2Mσ

(S ′|| [σ1 ⊗ σ2]2 ||S)

= Ŝ ′−1C
S′M ′S
SMS2Mσ

Ŝ ′Ŝ2̂


1
2

1
2

S ′
1
2

1
2

S
1 1 2


×
(

1

2
|| [σ1]1 ||

1

2

)(
1

2
|| [σ2]1 ||

1

2

)
= δSS′=12

√
5

3
C

1M ′S
1MS2Mσ

,

(D.20)

where, for the triangular rule, S=S ′=1 is necessary to have C
S′M ′S
SMS2Mσ

6= 0, and we

used that
(

1
2
|| [σ1]1 ||

1
2

)
=
√

6, Ŝ =
√

3 and


1
2

1
2

1
1
2

1
2

1
1 1 2

 = 1
9
.

For the spatial part of the interaction, we calculate the integral in the momuntum
space as

〈n′l′m′l|v(x′,x)|nlml〉 ≡
∫

dxdx′φ∗n′l′m′l(x
′)v(x′,x)φnlml(x)

=

∫
dqdq′φ̃∗n′l′m′l(q

′)ṽ(q′,−q)φ̃nlml(q),

(D.21)

thanks to the Fourier transform

ṽ(q′,−q) =
1

(2π)3

∫
dxdx′v(x′,x)e−iq

′·x′eiq·x. (D.22)
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The separation of the momentum dependence in radial and angular part reads

ṽ(q′,−q) ∝ c′kg
′(q′)Yk′M ′k(Ω

′)g(q)ckYkMk
(Ω), (D.23)

where the coefficient ck are such that 1 =
√

4π Y00(Ω), qµ =
√

4π
3
q Y1µ(Ω), q2 =

√
4πY00(Ω).

From the coupling of the spherical harmonics 3

{Yl1m1(Ω)⊗ Yl2m2(Ω)}LM =
l̂1l̂2√
4πL̂

CL0
l10l20YLM(Ω), (D.24)

we obtain

q2 = q · q = (−
√

3)q2 4π

3
{Y1m1(Ω)⊗ Y1m2(Ω)}00

= (−
√

3)q2 4π

3

3√
4π

(
−
√

1

3

)
Y00(Ω) = q2

√
4πY00(Ω),

(D.25)

and

{q⊗ q}2,−Mσ
= q2 4π

3
{Y1m1(Ω)⊗ Y1m2(Ω)}2,−Mσ

= q2 4π

3

3√
5
√

4π

√
2

3
Y2,−Mσ(Ω) = q2

√
4π

√
2

15
Y2,−Mσ(Ω).

(D.26)

Inserting Eq.(D.23) in the integral in Eq.(D.21) leads to the simplified expression∫
dqdq′ φ̃∗n′l′m′l(q

′)
[
g′(q′)Yk′M ′k(Ω

′)g(q)YkMk
(Ω)
]
φ̃nlml(q)

=

∫
dq′ q′2g′(q′)R̃∗n′l′(q

′)

∫
dq q2g(q)R̃nl(q)

×
∫

dΩ′ Y ∗l′m′l(Ω
′)Yk′M ′k(Ω

′)

∫
dΩ (−1)−MkY ∗k,−Mk

(Ω)Ylml(Ω)

= (−1)−Mkδl′k′δm′lM ′kδlkδml,−Mk
r∗n′l′(g

′)rnl(g),

(D.27)

with rnl(g) ≡
∫

dq q2g(q)R̃nl(q). The radial part of the harmonic oscillator solution
is defined as

Rnl(x) ≡ b
3
2

√
2(n!)

Γ(n+ l + 3
2
)
(bx)lL

(l+ 1
2

)
n ((bx)2) e−

1
2

(bx)2

≡ b
3
2Fnl(bx) e−

1
2

(bx)2 ,

(D.28)

3Eq.(14) page 144 of Ref. [119].
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where b =

√
~ωmN c2
~c is the harmonic oscillator lenght (in fm−1).

The Fourier transform,

R̃nl(q) =
(−i)2n+l

b3
Rnl

( q
b2

)
= b−

3
2 (−i)2n+lFnl

(q
b

)
e−

1
2

( q
b
)2 , (D.29)

leads (after defining y ≡ q
b
) to

rnl(g) =

∫
dy y2b

3
2 g(by)(−i)2n+lFnl(y) e−

1
2

(y)2 . (D.30)

When building the antisymmetrized matrix element, we consider the property
of the particle exchange symmetry. In fact, the matrix element with exchanged
particles c↔ d results

〈ab; JM ;T ′M ′
T |V̂ |dc; JM ;TMT 〉

= (−1)λ−L(−1)lc+ld+λ+ 1
2

+ 1
2

+S+jc+jd+J〈ab; JM ;T ′M ′
T |V̂ |cd; JM ;TMT 〉,

(D.31)

due to the symmetries for particle exchanging, respectively in the Talmi-Moshinski
transformations

MNLnl
ndldnclc,λ

= (−1)λ−LMNLnl
nclcndld,λ

, (D.32)

and in the 9j-symbols
ld lc λ
1
2

1
2

S
jd jc J

 = (−1)lc+ld+λ+ 1
2

+ 1
2

+S+jc+jd+J


lc ld λ
1
2

1
2

S
jc jd J

 . (D.33)

D.1 Central part

Term V̂ = t0V̂t0 + t0x0V̂t0x0
The coupling of momentum space and spin parts of the interaction,

ṽ(q′,−q)f(σ1, σ2) = t0(1 + x0P
σ)

1

(2π)3

1

(
√

2)6
4πY00(Ω′)Y00(Ω)g′(1)g(1), (D.34)
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gives the coupled matrix element as

〈ab; JM ;T ′M ′
T |V̂ |cd; JM ;TMT 〉

=
∑
λ′S′

λ̂′Ŝ ′ĵaĵb


la lb λ
1
2

1
2

S ′

ja jb J

 ∑
N ′L′n′l′

MN ′L′n′l′

nalanblb,λ′
∗

×
∑
λS

λ̂Ŝĵcĵd


lc ld λ
1
2

1
2

S
jc jd J

∑
NLnl

MNLnl
nclcndld,λ

×
∑

MλMSM
′
λM
′
S

CJM
λ′M ′λS

′M ′S
CJM
λMλSMS

∑
MLmlM

′
Lm
′
l

CλMλ
LMLlml

C
λ′M ′λ
L′M ′Ll

′m′l

× (
√

2)3δLL′δMLM
′
L
δNN ′δTT ′δMTM

′
T
δSS′δMSM

′
S
t0(1 + x0(−1)S+1)

× 1

(2π)3

1

(
√

2)6
4πδl′0δm′l0δl0δml0r

∗
n′l′(1)rnl(1)

=
∑
NLS

L̂L̂ŜŜĵaĵbĵcĵd


la lb L
1
2

1
2

S
ja jb J




lc ld L
1
2

1
2

S
jc jd J


×

(∑
n′

MNLn′0
nalanblb,L

∗r∗n′0(1)

)(∑
n

MNLn0
nclcndld,L

rn0(1)

)
δTT ′δMTM

′
T

× 1

(4π)2
2
√

2 t0(1 + x0(−1)S+1).

(D.35)

The antisymmetrized matrix element is

〈ab; JM ;TMT |V̂ |cd; JM ;TMT 〉as

= Nab(JT )Ncd(JT )
∑
NLS

L̂L̂ŜŜĵaĵbĵcĵd


la lb L
1
2

1
2

S
ja jb J




lc ld L
1
2

1
2

S
jc jd J


×

(∑
n′

MNLn′0
nalanblb,L

∗r∗n′0(1)

)(∑
n

MNLn0
nclcndld,L

rn0(1)

)
1

(4π)2
2
√

2 t0(1 + x0(−1)S+1)

×
[
1 + (−1)jc+jd−J−T (−1)lc+ld+L+ 1

2
+ 1

2
+S+jc+jd+J

]
.

(D.36)

Term V̂ = t1V̂t1 + t1x1V̂t1x1
The coupling of momentum space and spin parts of the interaction,

ṽ(q′,−q)f(σ1, σ2) =
t1
2

(1 + x1P
σ)

1

2

1

(2π)3

1

(
√

2)6
4πY00(Ω′)Y00(Ω)

× [g′(q′2)g(1) + g′(1)g(q2)],

(D.37)
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gives the coupled matrix element as

〈ab; JM ;T ′M ′
T |V̂ |cd; JM ;TMT 〉

=
∑
λ′S′

λ̂′Ŝ ′ĵaĵb


la lb λ
1
2

1
2

S ′

ja jb J

 ∑
N ′L′n′l′

MN ′L′n′l′

nalanblb,λ′
∗

×
∑
λS

λ̂Ŝĵcĵd


lc ld λ
1
2

1
2

S
jc jd J

∑
NLnl

MNLnl
nclcndld,λ

×
∑

MλMSM
′
λM
′
S

CJM
λ′M ′λS

′M ′S
CJM
λMλSMS

∑
MLmlM

′
Lm
′
l

CλMλ
LMLlml

C
λ′M ′λ
L′M ′Ll

′m′l

× (
√

2)3δLL′δMLM
′
L
δNN ′δTT ′δMTM

′
T
δSS′δMSM

′
S

t1
2

(1 + x1(−1)S+1)

× 1

2

1

(2π)3

1

(
√

2)6
4πδl′0δm′l0δl0δml0

[
r∗n′l′(q

′2)rnl(1) + r∗n′l′(1)rnl(q
2)
]

=
∑
NLS

L̂L̂ŜŜĵaĵbĵcĵd


la lb L
1
2

1
2

S
ja jb J




lc ld L
1
2

1
2

S
jc jd J

 δTT ′δMTM
′
T

×
∑
n′n

MNLn′0
nalanblb,L

∗MNLn0
nclcndld,L

[
r∗n′0(q′2)rn0(1) + r∗n′0(1)rn0(q2)

]
× 1

(4π)2

√
2
t1
2

(1 + x1(−1)S+1).

(D.38)

The antisymmetrized matrix element is

〈ab; JM ;TMT |V̂ |cd; JM ;TMT 〉as

= Nab(JT )Ncd(JT )
∑
NLS

L̂L̂ŜŜĵaĵbĵcĵd


la lb L
1
2

1
2

S
ja jb J




lc ld L
1
2

1
2

S
jc jd J


×
∑
n′n

MNLn′0
nalanblb,L

∗MNLn0
nclcndld,L

[
r∗n′0(q′2)rn0(1) + r∗n′0(1)rn0(q2)

]
× 1

(4π)2

2
√

2

2

t1
2

(1 + x1(−1)S+1)
[
1 + (−1)jc+jd−J−T (−1)lc+ld+L+ 1

2
+ 1

2
+S+jc+jd+J

]
.

(D.39)
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Term V̂ = t2V̂t2 + t2x2V̂t2x2
The coupling of momentum space and spin parts of the interaction gives

ṽ(q′,−q)f(σ1, σ2) =
t2
2

(1 + x2P
σ)

1

2

1

(2π)3

1

(
√

2)6

4π

3

× (−
√

3)
∑
M ′kMk

C00
1M ′k1Mk

Y1M ′k
(Ω′)Y1Mk

(Ω)g′(q′)g(q),
(D.40)

where the factor (−
√

3) arises from the definition of the scalar product in terms of
irreducible tensors (L=1),

AL ·BL = (−1)L
√

2L+ 1 [ALBL]00 = (−1)L
√

2L+ 1
∑
m1m2

C00
Lm1Lm2

ALm1BLm2

=
∑
m

(−1)mALmBL,−m.

(D.41)

The coupled matrix element results

〈ab; JM ;T ′M ′
T |V̂ |cd; JM ;TMT 〉

=
∑
λ′S′

λ̂′Ŝ ′ĵaĵb


la lb λ
1
2

1
2

S ′

ja jb J

 ∑
N ′L′n′l′

MN ′L′n′l′

nalanblb,λ′
∗

×
∑
λS

λ̂Ŝĵcĵd


lc ld λ
1
2

1
2

S
jc jd J

∑
NLnl

MNLnl
nclcndld,λ

×
∑

MλMSM
′
λM
′
S

CJM
λ′M ′λS

′M ′S
CJM
λMλSMS

∑
MLmlM

′
Lm
′
l

CλMλ
LMLlml

C
λ′M ′λ
L′M ′Ll

′m′l

× (
√

2)3δLL′δMLM
′
L
δNN ′δTT ′δMTM

′
T
δSS′δMSM

′
S
t2(1 + x2(−1)S+1)

× 1

2

1

(2π)3

1

(
√

2)6

4π

3
(−
√

3)
∑
M ′kMk

C00
1M ′k1Mk

(−1)−Mkδl′1δm′lM ′kδl1δml,−Mk
r∗n′l′(q

′)rnl(q)

=
∑
λS

λ̂λ̂ŜŜĵaĵbĵcĵd


la lb λ
1
2

1
2

S
ja jb J




lc ld λ
1
2

1
2

S
jc jd J

 δTT ′δMTM
′
T

×
∑
NL

(∑
n′

MNLn′1
nalanblb,λ

∗r∗n′1(q′)

)(∑
n

MNLn1
nclcndld,λ

rn1(q)

)

× 1

(4π)2

√
2

3
t2(1 + x2(−1)S+1).

(D.42)
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The antisymmetrized matrix element is

〈ab; JM ;TMT |V̂ |cd; JM ;TMT 〉as

= Nab(JT )Ncd(JT )
∑
λS

λ̂λ̂ŜŜĵaĵbĵcĵd


la lb λ
1
2

1
2

S
ja jb J




lc ld λ
1
2

1
2

S
jc jd J


×
∑
NL

(∑
n′

MNLn′1
nalanblb,λ

∗r∗n′1(q′)

)(∑
n

MNLn1
nclcndld,λ

rn1(q)

)

× 1

(4π)2

2
√

2

6
t2(1 + x2(−1)S+1)

×
[
1 + (−1)jc+jd−J−T (−1)λ−L(−1)lc+ld+λ+ 1

2
+ 1

2
+S+jc+jd+J

]
.

(D.43)

D.2 Spin-orbit part

Term V̂ = w0V̂(t)w0

The coupling of momentum space and spin parts of the interaction gives

ṽ(q′,−q)f(σ1, σ2) = −i w0
1

2

1

(2π)3

1

(
√

2)6

4π

3
(−
√

3)
∑
MσMr

C00
1Mσ1Mr

(σ1 + σ2)1Mσ

× (−i
√

2)
∑
M ′kMk

C1Mr

1M ′k1Mk
Y1M ′k

(Ω′)Y1Mk
(Ω)g′(q′)g(q),

(D.44)

where the factor (−i
√

2) arises from

(A1 ×B1)1m = −i
√

2
∑
m1m2

C1m
1m11m2

A1m1B1m2 . (D.45)
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The coupled matrix element results

〈ab; JM ;T ′M ′
T |V̂ |cd; JM ;TMT 〉

=
∑
λ′S′

λ̂′Ŝ ′ĵaĵb


la lb λ
1
2

1
2

S ′

ja jb J

 ∑
N ′L′n′l′

MN ′L′n′l′

nalanblb,λ′
∗

×
∑
λS

λ̂Ŝĵcĵd


lc ld λ
1
2

1
2

S
jc jd J

∑
NLnl

MNLnl
nclcndld,λ

×
∑

MλMSM
′
λM
′
S

CJM
λ′M ′λS

′M ′S
CJM
λMλSMS

∑
MLmlM

′
Lm
′
l

CλMλ
LMLlml

C
λ′M ′λ
L′M ′Ll

′m′l

× (
√

2)3δLL′δMLM
′
L
δNN ′δTT ′δMTM

′
T

(−i w0)
1

2

1

(2π)3

1

(
√

2)6

4π

3

× (−
√

3)
∑
MσMr

C00
1Mσ1Mr

δSS′=12
√

6Ŝ(−1)S+MσCSMS

SM ′S1,−Mσ

{
1
2

1
2

S
S 1 1

2

}
× (−i

√
2)
∑
M ′kMk

C1Mr

1M ′k1Mk
(−1)−Mkδl′1δm′lM ′kδl1δml,−Mk

r∗n′l′(q
′)rnl(q)

=
∑
λλ′

λ̂λ̂λ̂′λ̂′ĵaĵbĵcĵd


la lb λ′
1
2

1
2

1
ja jb J




lc ld λ
1
2

1
2

1
jc jd J

 δTT ′δMTM
′
T

×
∑
NL

(∑
n′

MNLn′1
nalanblb,λ′

∗r∗n′1(q′)

)(∑
n

MNLn1
nclcndld,λ

rn1(q)

)

× (−1)L+λ+λ′+J 1

(4π)2
(−12

√
2) w0

{
1 L λ
λ′ 1 1

}{
1 λ′ J
λ 1 1

}
.

(D.46)

The antisymmetrized matrix element is

〈ab; JM ;TMT |V̂ |cd; JM ;TMT 〉as

= Nab(JT )Ncd(JT )
∑
λλ′

λ̂λ̂λ̂′λ̂′ĵaĵbĵcĵd


la lb λ′
1
2

1
2

1
ja jb J




lc ld λ
1
2

1
2

1
jc jd J


×
∑
NL

(∑
n′

MNLn′1
nalanblb,λ′

∗r∗n′1(q′)

)(∑
n

MNLn1
nclcndld,λ

rn1(q)

)

× (−1)L+λ+λ′+J 1

(4π)2
2
√

2(−6) w0

{
1 L λ
λ′ 1 1

}{
1 λ′ J
λ 1 1

}
×
[
1 + (−1)jc+jd−J−T (−1)λ−L(−1)lc+ld+λ+jc+jd+J

]
.

(D.47)
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D.3 Tensor part

Term V̂ = teV̂te
The coupling of momentum space and spin parts of the interaction gives

ṽ(q′,−q)f(σ1, σ2) =
3

2
te

1

2

1

(2π)3

1

(
√

2)6
4π

√
2

15

×
∑

Mσm1m2

(−1)2−MσC2Mσ
1m11m2

(σ1)1m1
(σ2)1m2

×
[
Y2,−Mσ(Ω′)Y00(Ω)g′(q′2)g(1) + Y00(Ω′)Y2,−Mσ(Ω)g′(1)g(q2)

]
.

(D.48)

The coupled matrix element results

〈ab; JM ;T ′M ′
T |V̂ |cd; JM ;TMT 〉

=
∑
λ′S′

λ̂′Ŝ ′ĵaĵb


la lb λ′
1
2

1
2

S ′

ja jb J

 ∑
N ′L′n′l′

MN ′L′n′l′

nalanblb,λ′
∗

×
∑
λS

λ̂Ŝĵcĵd


lc ld λ
1
2

1
2

S
jc jd J

∑
NLnl

MNLnl
nclcndld,λ

×
∑

MλMSM
′
λM
′
S

CJM
λ′M ′λS

′M ′S
CJM
λMλSMS

∑
MLmlM

′
Lm
′
l

CλMλ
LMLlml

C
λ′M ′λ
L′M ′Ll

′m′l

× (
√

2)3δLL′δMLM
′
L
δNN ′δTT ′δMTM

′
T

3

2
te

1

2

1

(2π)3

1

(
√

2)6
4π

√
2

15

×
∑
Mσ

(−1)2−MσδSS′=1Ŝ6
√

5 C
S′M ′S
SMS2Mσ


1
2

1
2

S ′
1
2

1
2

S
1 1 2


×
[
δl′2δm′l−Mσδl0δml0r

∗
n′l′(q

′2)rnl(1) + (−1)Mσδl′0δm′l0δl2δmlMσr
∗
n′l′(1)rnl(q

2)
]
.

(D.49)

Looking at the total spin quantum numbers, we rewrite

∑
S′S

Ŝ ′ŜδSS′=1Ŝ6
√

5 C
S′M ′S
SMS2Mσ


1
2

1
2

S ′
1
2

1
2

S
1 1 2

 = 2
√

15C
S′M ′S
SMS2Mσ

, (D.50)

keeping in mind that S and S ′ in the Clebsch-Gordan have value 1.
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We start by studying the first case, corresponding to {q′ ⊗ q′}2,−Mσ
:

〈ab; JM ;T ′M ′
T |V̂ |cd; JM ;TMT 〉1

= δTT ′δMTM
′
T

∑
λλ′

λ̂λ̂′ĵaĵbĵcĵd


la lb λ′
1
2

1
2

1
ja jb J




lc ld λ
1
2

1
2

1
jc jd J


× (
√

2)3 3

2
te

1

2

1

(2π)3

1

(
√

2)6
4π

√
2

15
2
√

15

×
∑
NL

(∑
n′

MNLn′2
nalanblb,λ′

∗r∗n′2(q′2)

)(∑
n

MNLn0
nclcndld,λ

rn0(1)

)
×

∑
MλMSM

′
λM
′
SMLMσ

(−1)−MσCJM
λ′M ′λS

′M ′S
CJM
λMλSMS

CλMλ
LML00C

λ′M ′λ
LML2−Mσ

C
S′M ′S
SMS2Mσ

= δTT ′δMTM
′
T

∑
λλ′

λ̂λ̂′ĵaĵbĵcĵd


la lb λ′
1
2

1
2

1
ja jb J




lc ld λ
1
2

1
2

1
jc jd J


× (
√

2)3 3

2
te

1

2

1

(2π)3

1

(
√

2)6
4π

√
2

15
2
√

15(−1)1+λ+J λ̂′
√

3

{
1 λ′ J
λ 1 2

}
×
∑
N

(∑
n′

MNλn′2
nalanblb,λ′

∗r∗n′2(q′2)

)(∑
n

MNλn0
nclcndld,λ

rn0(1)

)
.

(D.51)
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We consider now the second case, corresponding to {q⊗ q}2,−Mσ
:

〈ab; JM ;T ′M ′
T |V̂ |cd; JM ;TMT 〉2

= δTT ′δMTM
′
T

∑
λλ′

λ̂λ̂′ĵaĵbĵcĵd


la lb λ′
1
2

1
2

1
ja jb J




lc ld λ
1
2

1
2

1
jc jd J


× (
√

2)3 3

2
te

1

2

1

(2π)3

1

(
√

2)6
4π

√
2

15
2
√

15

×
∑
NL

(∑
n′

MNLn′0
nalanblb,λ′

∗r∗n′0(1)

)(∑
n

MNLn2
nclcndld,λ

rn2(q2)

)
×

∑
MλMSM

′
λM
′
SMLMσ

(−1)−Mσ+MσCJM
λ′M ′λS

′M ′S
CJM
λMλSMS

CλMλ
LML2Mσ

C
λ′M ′λ
LML00C

S′M ′S
SMS2Mσ

= δTT ′δMTM
′
T

∑
λλ′

λ̂λ̂′ĵaĵbĵcĵd


la lb λ′
1
2

1
2

1
ja jb J




lc ld λ
1
2

1
2

1
jc jd J


× (
√

2)3 3

2
te

1

2

1

(2π)3

1

(
√

2)6
4π

√
2

15
2
√

15(−1)1+λ′+J λ̂
√

3

{
1 λ′ J
λ 1 2

}
×
∑
N

(∑
n′

MNλ′n′0
nalanblb,λ′

∗r∗n′0(1)

)(∑
n

MNλ′n2
nclcndld,λ

rn2(q2)

)
.

(D.52)

Then, including both cases, we obtain

〈ab; JM ;T ′M ′
T |V̂ |cd; JM ;TMT 〉

= δTT ′δMTM
′
T

∑
λλ′

λ̂λ̂′ĵaĵbĵcĵd


la lb λ′
1
2

1
2

1
ja jb J




lc ld λ
1
2

1
2

1
jc jd J


× (−1)1+J(

√
2)3 3

2
te

1

2

1

(2π)3

1

(
√

2)6
4π

√
2

15
2
√

15
√

3

{
1 λ′ J
λ 1 2

}
×
∑
N

[
(−1)λλ̂′

(∑
n′

MNλn′2
nalanblb,λ′

∗r∗n′2(q′2)

)(∑
n

MNλn0
nclcndld,λ

rn0(1)

)

+ (−1)λ
′
λ̂

(∑
n′

MNλ′n′0
nalanblb,λ′

∗r∗n′0(1)

)(∑
n

MNλ′n2
nclcndld,λ

rn2(q2)

)]
.

(D.53)
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The antisymmetrized matrix element is

〈ab; JM ;TMT |V̂ |cd; JM ;TMT 〉as

= Nab(JT )Ncd(JT )
∑
λλ′

λ̂λ̂′ĵaĵbĵcĵd


la lb λ′
1
2

1
2

1
ja jb J




lc ld λ
1
2

1
2

1
jc jd J


× (−1)1+J(2

√
2)

3

2
te

1

(4π)2

√
6

{
1 λ′ J
λ 1 2

}
×
∑
N

[
(−1)λλ̂′

(∑
n′

MNλn′2
nalanblb,λ′

∗r∗n′2(q′2)

)(∑
n

MNλn0
nclcndld,λ

rn0(1)

)
×
[
1 + (−1)jc+jd−J−T (−1)λ−λ(−1)lc+ld+λ+jc+jd+J

]
+ (−1)λ

′
λ̂

(∑
n′

MNλ′n′0
nalanblb,λ′

∗r∗n′0(1)

)(∑
n

MNλ′n2
nclcndld,λ

rn2(q2)

)

×
[
1 + (−1)jc+jd−J−T (−1)λ−λ

′
(−1)lc+ld+λ+jc+jd+J

] ]
.

(D.54)

Term V̂ = toV̂to
The coupling of momentum space and spin parts of the interaction gives

ṽ(q′,−q)f(σ1, σ2) = 3 to
1

2

1

(2π)3

1

(
√

2)6

4π

3

×
∑
Mσ

(−1)2−Mσ
∑
m1m2

C2Mσ
1m11m2

(σ1)1m1
(σ2)1m2

×
∑
M ′kMk

C2,−Mσ

1M ′k1Mk
Y1M ′k

(Ω′)Y1Mk
(Ω)g′(q′)g(q).

(D.55)

115



The coupled matrix element results

〈ab; JM ;T ′M ′
T |V̂ |cd; JM ;TMT 〉

=
∑
λ′S′

λ̂′Ŝ ′ĵaĵb


la lb λ
1
2

1
2

S ′

ja jb J

 ∑
N ′L′n′l′

MN ′L′n′l′

nalanblb,λ′
∗

×
∑
λS

λ̂Ŝĵcĵd


lc ld λ
1
2

1
2

S
jc jd J

∑
NLnl

MNLnl
nclcndld,λ

×
∑

MλMSM
′
λM
′
S

CJM
λ′M ′λS

′M ′S
CJM
λMλSMS

∑
MLmlM

′
Lm
′
l

CλMλ
LMLlml

C
λ′M ′λ
L′M ′Ll

′m′l

× (
√

2)3δLL′δMLM
′
L
δNN ′δTT ′δMTM

′
T

3to
1

2

1

(2π)3

1

(
√

2)6

4π

3

×
∑
Mσ

(−1)2−MσδSS′=1Ŝ6
√

5 C
S′M ′S
SMS2Mσ


1
2

1
2

S ′
1
2

1
2

S
1 1 2


×
∑
M ′kMk

C2,−Mσ

1M ′k1Mk
(−1)−Mkδl′1δm′lM ′kδl1δml,−Mk

r∗n′l′(q
′)rnl(q)

=
∑
λλ′

λ̂λ̂λ̂′λ̂′ĵaĵbĵcĵd


la lb λ′
1
2

1
2

1
ja jb J




lc ld λ
1
2

1
2

1
jc jd J

 δTT ′δMTM
′
T

×
∑
NL

(∑
n′

MNLn′1
nalanblb,λ′

∗r∗n′1(q′)

)(∑
n

MNLn1
nclcndld,λ

rn1(q)

)

× (−1)L+λ+λ′+J+13to
1

(4π)2
10
√

2

{
1 L λ
λ′ 2 1

}{
1 λ′ J
λ 1 2

}
.

(D.56)

The antisymmetrized matrix element is

〈ab; JM ;TMT |V̂ |cd; JM ;TMT 〉as

= Nab(JT )Ncd(JT )
∑
λλ′

λ̂λ̂λ̂′λ̂′ĵaĵbĵcĵd


la lb λ′
1
2

1
2

1
ja jb J




lc ld λ
1
2

1
2

1
jc jd J


×
∑
NL

(∑
n′

MNLn′1
nalanblb,λ′

∗r∗n′1(q′)

)(∑
n

MNLn1
nclcndld,λ

rn1(q)

)

× (−1)L+λ+λ′+J+13to
1

(4π)2
10
√

2

{
1 L λ
λ′ 2 1

}{
1 λ′ J
λ 1 2

}
.

(D.57)
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E. Three-body zero-range contact
interaction

We study the case of the generators of three-body force. We consider an antisym-
metric three-body zero-range contact interaction, represented by the operator

V̂t3 = δ(r1 − r2)δ(r2 − r3) A123(P̂ σ, P̂ τ ) ≡ V̂δ A123(P̂ σ, P̂ τ ), (E.1)

where the antisymmetric part is described by

A123 =
[
1− P̂ σ

12P̂
τ
12 − P̂ σ

23P̂
τ
23 − P̂ σ

31P̂
τ
31 + P̂ σ

12P̂
τ
12P̂

σ
23P̂

τ
23 + P̂ σ

13P̂
τ
13P̂

σ
23P̂

τ
23

]
. (E.2)

Its contribution to the interaction potential is V̂ 3B = t3V̂t3 .

E.1 Three-body matrix elements

In the JT coupling, we indicate a three-body antisymmetric matrix element with
〈ab(JabTab)c; JM ;TMT |V̂t3|de(JdeTde)f ; JM ;TMT 〉as.
The JT -coupling can be translated in the LST -coupling as

〈ab(JabTab)c; JM ;TMT |V̂t3 |de(JdeTde)f ; JM ;TMT 〉as =∑
LabLdeLL′

∑
SabSdeSS′

ŜabŜdeL̂abL̂deĴabĴdeL̂L̂′ŜŜ ′ĵaĵbĵcĵdĵeĵf

×


la

1
2

ja
lb

1
2

jb
Lab Sab Jab




Lab Sab Jab
lc

1
2

jc
L S J




ld
1
2

jd
le

1
2

je
Lde Sde Jde




Lde Sde Jde
lf

1
2

jf
L′ S ′ J


×

∑
MLML′MSMS′

CJM
LMLSMSC

JM
L′ML′S

′MS′

× 〈ab(LabSabTab)c;LML;SMS;TMT |V̂t3 |de(LdeSdeTde)f ;L′ML′ ;S
′MS′ ;TMT 〉as,

(E.3)
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where the 9j-symbols recouple four angular momenta (see Sections 1.3 and 1.4 of
Ref. [120]) in the form

|lasa(ja)lbsb(jb); JabMab〉 =
∑
LabSab

ŜabL̂abĵaĵb


la

1
2

ja
lb

1
2

jb
Lab Sab Jab


× |lalb(Lab)sasb(Sab); JabMab〉. (E.4)

The single-particle state |a〉 is labeled as

|a〉 = |nalaml
a

1

2
ms
a

1

2
mt
a〉 = Rnala(r)Ylamla(θ, φ)χS1

2
msa

(σ)χT1
2
mta

(τ), (E.5)

and the single-particle coordinates are expressed by x ≡ (r, θ, φ, σ, τ).
In our case, the direct (i.e. not antisymmetrized) LST -coupled matrix element is
written explicitly as

〈ab(LabSabTab)c;LML;SMS;TMT |V̂δ|de(LdeSdeTde)f ;L′ML′ ;S
′MS′ ;TMT 〉dir

=
∑

mlam
l
bm

l
cM

L
ab

∑
mldm

l
em

l
fM

L
de

∑
msam

s
bm

s
cM

S
ab

∑
msdm

s
em

s
fM

S
de

∑
mtam

t
bm

t
cM

T
ab

∑
mtdm

t
em

t
fM

T
de

× CLabM
L
ab

lamlalbm
l
b

CLML

LabM
L
ablcm

l
c
C
LdeM

L
de

ldm
l
dlem

l
e
C
L′ML′

LdeM
L
delfm

l
f

C
SabM

S
ab

1
2
msa

1
2
msb
CSMS

SabM
S
ab

1
2
msc
C
SdeM

S
de

1
2
msd

1
2
mse
C
S′MS′

SdeM
S
de

1
2
msf

× CTabM
T
ab

1
2
mta

1
2
mtb
CTMT

TabM
T
ab

1
2
mtc
C
TdeM

T
de

1
2
mtd

1
2
mte
CTMT

TdeM
T
de

1
2
mtf

×
∫

dx1dx2dx3dx4dx5dx6 R
∗
nala(r1)R∗nblb(r2)R∗nclc(r3)Rndld(r4)Rnele(r5)Rnf lf (r6)

× δ(r1 − r2)

r2
2

δ(r1 − r3)

r2
3

(
δ(r1 − r4)

r2
4

δ(r2 − r5)

r2
5

δ(r3 − r6)

r2
6

)
× Y ∗lamla(θ1, φ1)Y ∗lbmlb

(θ2, φ2)Y ∗lcmlc(θ3, φ3)Yldmld(θ4, φ4)Ylemle(θ5, φ5)Ylfmlf (θ6, φ6)

× δ(θ1 − θ2)δ(φ1 − φ2)

sinθ2

δ(θ1 − θ3)δ(φ1 − φ3)

sinθ3

×
(
δ(θ1 − θ4)δ(φ1 − φ4)

sinθ4

δ(θ2 − θ5)δ(φ2 − φ5)

sinθ5

δ(θ3 − θ6)δ(φ3 − φ6)

sinθ6

)
× χS∗1

2
msa

(σ1)χT∗1
2
mta

(τ1)χS∗1
2
msb

(σ2)χT∗1
2
mtb

(τ2)χS∗1
2
msc

(σ3)χT∗1
2
mtc

(τ3)χS1
2
msd

(σ4)χT1
2
mtd

(τ4)

× χS1
2
mse

(σ5)χT1
2
mte

(τ5)χS1
2
msf

(σ6)χT1
2
mtf

(τ6) (δσ1σ4δτ1τ4δσ2σ5δτ2τ5δσ3σ6δτ3τ6) ,

(E.6)

where the δ-functions in the round parentheses mean the particle number conser-
vation before and after the interaction.
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E.2 Spin and isospin sectors

In Eq.(E.6) the spin and isospin parts can be separated from the orbital and radial
parts, namely

〈ab(LabSabTab)c;LML;SMS;TMT |V̂δ|de(LdeSdeTde)f ;L′ML′ ;S
′MS′ ;TMT 〉dir

=
∑

mlam
l
bm

l
cM

L
ab

∑
mldm

l
em

l
fM

L
de

C
LabM

L
ab

lamlalbm
l
b

CLML

LabM
L
ablcm

l
c
C
LdeM

L
de

ldm
l
dlem

l
e
C
L′ML′

LdeM
L
delfm

l
f

×
∫

dr1dr2dr3dr4dr5dr6 R
∗
nala(r1)R∗nblb(r2)R∗nclc(r3)Rndld(r4)Rnele(r5)Rnf lf (r6)

× δ(r1 − r2)

r2
2

δ(r1 − r3)

r2
3

(
δ(r1 − r4)

r2
4

δ(r2 − r5)

r2
5

δ(r3 − r6)

r2
6

)
× Y ∗lamla(θ1, φ1)Y ∗lbmlb

(θ2, φ2)Y ∗lcmlc(θ3, φ3)Yldmld(θ4, φ4)Ylemle(θ5, φ5)Ylfmlf (θ6, φ6)

× δ(θ1 − θ2)δ(φ1 − φ2)

sinθ2

δ(θ1 − θ3)δ(φ1 − φ3)

sinθ3

×
(
δ(θ1 − θ4)δ(φ1 − φ4)

sinθ4

δ(θ2 − θ5)δ(φ2 − φ5)

sinθ5

δ(θ3 − θ6)δ(φ3 − φ6)

sinθ6

)
× 〈ab(Sab)c;SMS|Vδ|de(Sde)f ;S ′MS′〉dir 〈ab(Tab)c;TMT |Vδ|de(Tde)f ;TMT 〉dir.

(E.7)

Using the following relation in the spin (and isospin) channel,∑
σ1σ2

χS∗1
2
msa

(σ1)χS1
2
msb

(σ2)δσ1σ2 = δ 1
2

1
2
δmsamsb , (E.8)

we obtain respectively

〈ab(Sab)c;SMS|1S|de(Sde)f ;S ′MS′〉dir = δSabSdeδSS′δMSMS′
, (E.9)

〈ab(Tab)c;TMT |1T |de(Tde)f ;TMT 〉dir = δTabTdeδTT δMTMT
. (E.10)

E.2.1 Antisymmetrization of spin and isospin

The antisymmmetric |ket〉 can be written as

|def〉as = |def〉dir − |edf〉+ |fde〉 − |dfe〉+ |efd〉 − |fed〉. (E.11)

We use Eq.(3) from Ref. [121] to re-write the coupling of the third nucleon to the
antisymmetric state of the other two nucleons. We also consider that the orbital
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part does not affect the antisymmetrization of the |ket〉 because of the spatial
symmetry of the δ-interaction. Then, it results

〈ab(SabTab)c;SMS;TMT |V̂t3|de(SdeTde)f ;S ′MS′ ;TMT 〉as

=

[
δSabSdeδTabTde −

[
1− (−1)Sde+Tde

]
ŜabŜdeT̂abT̂de

{
1
2

1
2

Sab
1
2

S Sde

}{
1
2

1
2

Tab
1
2

T Tde

}]
×
[
1− (−1)Sab+Tab

]
.

(E.12)

E.3 Radial and orbital sectors

For the radial and angular part in Eq.(E.6), redefined as

V space
δ ≡

∑
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l
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l
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L
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∑
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l
em

l
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de
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l
dlem

l
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C
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delfm
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×
∫

dr1dr2dr3dr4dr5dr6R
∗
nala(r1)R∗nblb(r2)R∗nclc(r3)Rndld(r4)Rnele(r5)Rnf lf (r6)

× δ(r1 − r2)

r2
2
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(
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× Y ∗lamla(θ1, φ1)Y ∗lbmlb

(θ2, φ2)Y ∗lcmlc(θ3, φ3)Yldmld(θ4, φ4)Ylemle(θ5, φ5)Ylfmlf (θ6, φ6)

× δ(θ1 − θ2)δ(φ1 − φ2)

sinθ2

δ(θ1 − θ3)δ(φ1 − φ3)

sinθ3

×
(
δ(θ1 − θ4)δ(φ1 − φ4)

sinθ4

δ(θ2 − θ5)δ(φ2 − φ5)
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)
,
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we use the separation of radial and angular coordinates in spherical symmetry∫
dr =

∫
r2dr

∫
sinθ dθ

∫
dφ. After coupling the spherical harmonics and applying

angular momentum algebra,

V space
δ =

l̂al̂b̂lĉldl̂el̂f

16π2L̂2
CLab0
la0lb0

CL0
Lab0lc0

CLde0
ld0le0

CL′0
Lde0lf0(−1)la+lb+lc−LδLL′δMLML′

×
∫

dr r2R∗nala(r)R
∗
nblb

(r)R∗nclc(r)Rndld(r)Rnele(r)Rnf lf (r).

(E.14)
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E.4 JT -coupled matrix elements

Inserting Eqs.(E.6), (E.12) and (E.14) in the JT -coupled matrix element, Eq.(E.3)
reads

〈ab(JabTab)c; JM ;TMT |V̂t3|de(JdeTde)f ; JM ;TMT 〉as

=
∑

LabLdeLL′

∑
SabSdeSS′

(−1)la+lb+lc−LŜabŜdeL̂abL̂deĴabĴdeL̂L̂′ŜŜ ′ĵaĵbĵcĵdĵeĵf
l̂al̂b̂lĉldl̂el̂f

16π2L̂2

×
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×
∫
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∗
nblb

(r)R∗nclc(r)Rndld(r)Rnele(r)Rnf lf (r).
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The sum over Sab and Sde, and the conditions δ(Tab+Sab,1)δ(Tde+Sde,1) produce four
different cases. In the following, we use also that (−1)Sab+Sde = (−1)Tab+Tde .

Case Sab=0, Sde=0, Tab=1 and Tde=1
With the help of Eq.(1.97) in Ref. [120], that is

l̂1l̂2

(
l1 l2 l12

0 0 0

)
l1 l2 l12

j1 j2 l12
1
2

1
2

0

 =
1 + (−1)l1+l2+L12

2

(−1)l2+j2+ 1
2

√
2 l̂12

(
j1 j2 l12

−1
2

1
2

0

)
,

(E.16)
and with the relation between Clebsch-Gordan coefficients and 3j-symbols,

C l120
l10l20 = (−1)l1−l2 l̂12

(
l1 l2 l12

0 0 0

)
, (E.17)
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we obtain

〈ab(Jab1)c; J ;
1

2
|V̂t3|de(Jde1)f ; J ;

1

2
〉as

=
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2
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×
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(E.18)

The conditions δLabJab , δLdeJde , la+ lb+Lab= even, lc+Lab+L= even, ld+ le+Lde=
even, lf + Lde + L= even appear during the derivation.

Case Sab=1, Sde=0, Tab=0 and Tde=1
Using Eq.(1.98) in Ref. [120],
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(E.19)
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the matrix element results

〈ab(Jab0)c; J ;
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〉as =∑

Lab

√
3

2
(−1)Tab+TdeL̂2
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×
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with the conditions δLdeJde , and la+ lb+Lab= even, lc+Lab+L= even, ld+ le+Lde=
even, lf + Lde + L= even.

Case Sab=0, Sde=1, Tab=1 and Tde=0
The matrix element results
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(E.21)

with the conditions δLabJab , and la+ lb+Lab= even, lc+Lab+L= even, ld+ le+Lde=
even, lf + Lde + L= even.
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Case Sab=1, Sde=1, Tab=0 and Tde=0
The matrix element results

〈ab(Jab0)c; J ;
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(E.22)

with the conditions la + lb + Lab= even, lc + Lab + L= even, ld + le + Lde= even,
lf + Lde + L= even.
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F. Tests and benchmarks

Here we present results of tests and benchmarks performed to check the numerical
consistency of the different solvers used in this work. In fact, we employ a code
for the SCGF solutions (Boccadorata [95]), an Hartree-Fock solver in spherical
harmonic oscillator basis for the model EDFs (HOSPHE [99]) and a code to perform
the regression analysis of the data.
All the solvers use the same values of physical constants relevant for the nuclear
many-body problem. These values are collected in Table F.1.

Table F.1: Physical constants used in the calculations.

constant value
mNc

2 [MeV] 938.918267
~c [MeV·fm] 197.326972

F.1 Test of the functional derivation at Hartree-

Fock level

We apply the method described in Section 5 to Hartree-Fock calculations, that is,
the quantities entering in the regression come from not correlated solutions.
In the reference Hamiltonian Ĥab 1, we choose to describe the system with Skyrme
SV [98] interaction, namely Ĥab = T̂ + V̂SV , where the Coulomb interaction is
neglected for simplicity. The potential is formed by generators commonly used to
build the EDF at the mean-field level and then gives stable binding energies for

1The subscript ab is used to keep the same notation as in Section 5 even if in this Appendix
the Hamiltonian includes a phenomenological effective interaction.
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Hartree-Fock calculations. The specific form of the interaction is

V̂SV = (t0 + t0x0P̂
σ)δ(r1 − r2) +

1

2
(t1 + t1x1P̂

σ)
[
k̂′2δ(r1 − r2) + δ(r1 − r2)k̂2

]
+ (t2 + t2x2P̂

σ)
[
k̂′2 · δ(r1 − r2)k̂2

]
+ i w0(σ̂1 + σ̂2) ·

[
k̂′ × δ(r1 − r2)k̂2

]
≡ t0V̂t0 + t0x0V̂t0x0 + t1V̂t1 + t1x1V̂t1x1 + t2V̂t2 + t2x2V̂t2x2 + w0V̂(t)w0 , (F.1)

where the density-dependent term (∝ t3) is absent in the SV parametrization. The
last line of Eq.(F.1) defines the generators V̂ gen

j . Note that in this Section we work
with the parameters tj, instead of the coupling constants Cj, and their relative
generators.
In our choice, the perturbations are induced by the same generators, V̂ pert

i = V̂ gen
i ,

acting one at a time with a certain Lagrange multiplier λi. We are interested, for
testing purposes, to construct a model functional Ẽ = 〈Φ|T̂ +

∑
j tjV̂

gen
j |Φ〉, with

the model Hamiltonian analogous to the reference Hamiltonian.
The independent-particle nature of the Hartree-Fock solution |Φ(λi)〉 allows us to
directly evaluate the expectation value of the interaction energy as

V ab(λi) ≡ VSV (λi) = 〈Φ(λi)|V̂SV |Φ(λi)〉. (F.2)

More important, since we built the model functional with the same generators
used in the ab initio-like interaction energy, and we perform a calculation at the
Hartree-Fock level, we expect an exact fulfillment of Eq.(5.18), that is

V ab(λi) =
∑
j

tj〈Φ(λi)|V̂ gen
j |Φ(λi)〉HF =

∑
j

tj〈Φ(λi)|V̂ gen
j |Φ(λi)〉. (F.3)

In the following, we indicate the Hartree-Fock average value of the generators as
V gen
j (λi) ≡ 〈Φ(λi)|V̂ gen

j |Φ(λi)〉HF .

The kinetic energy results 〈Φ(λi)|T̂ |Φ(λi)〉 = T [ρ(λi)], such that the model func-
tional in Eq.(5.1) appears equivalent to the standard functional for Skyrme SV.

We consider a small model space, the spherical harmonic oscillator basis is restricted
to Nmax = 5, with oscillator energy ~ω = 14 MeV. The calculations employ the
matrix elements defined in Appendix D for the generators. The same matrix
elements provide the Skyrme SV potential, using the parameter values given in
Ref. [98] and shown in Table F.2. We use the solver BoccaDorata [95], with the
Hartree-Fock (HF ) option.
The regression analysis (see Section 5.2) involves results calculated for 7 closed-shell
nuclei (16O, 24O, 34Si, 36S, 40Ca, 48Ca and 56Ni), each one perturbed with 7 different
interactions V gen

i and 10 possible values of λi for each i (λi =-9,-7,-5,-3,-1,1,3,5,7,9).
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Figure F.1: Plot of the average value of the Skyrme SV energy Eab for 16O. The
solutions |Φ(λi)〉, corresponding to the perturbations (λi), are identified by
the markers color and the strength shown on the x-axis.

In total, we collect 496 data points, corresponding to convergent solutions, including
the unperturbed ground states (λi =0). Each data point contains the observables
V ab(λi) and the variables V gen

j (λi) as inputs.
Data relative to the nucleus 16O are presented in Figure F.1, where the plot shows
that the unperturbed solution λ = 0 represents the minimum for the ab initio-like
energy Eab, in agreement with the variational principle.

This exercise does not offer any physical argument of discussion about the interac-
tion, because we fit a mean-field interaction using its own generators. However,
apart the goal of testing the numerical coherence of the codes, it is interesting to
study some general features of the regression analysis.
First of all, the results of the fit are strongly deteriorated removing the smallest
singular values as described in Appendix A. It means that the corresponding χ2(t)
increases significantly when reducing the number of singular values, because the
Eq.(F.3) is not exact any more. This fact suggests that all the singular values are
important to determine the parameters ti or, equivalently, there are not singular
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values small enough to make the matrix J TWJ singular.
More interesting point, it is the discussion of the generators relevant to reproduce
the ab initio-like interaction. Skyrme SV potential presents only 5 non-zero param-
eters out of the 7 available ones for the central and spin-orbit parts (see the column
V̂SV in Table F.2). We observe that using the 5 non-zero generators (5p) or using
all 7 of them (7p) does not change significantly the χ2(t). However, as one of the
5 original generators is substituted with one of the zero ones, for example V̂(t)w0 is

replaced with V̂t1x1 (5p*), the χ2(t) becomes much larger than zero and the values
of the parameters change completely from the value of the original interaction V̂SV .
These results are summarized in Table F.2, including the associated errors obtained
from regression.

Table F.2: Comparison between the value of the parameters used in the Skyrme SV
interaction (V̂SV ) and the ones obtained from the regression analysis (fit).
Also the errors associated with the fitted parameters are displayed. The
different selection of parameters and relative generators (5p, 7p and 5p*)
are explained in the text.

parameter V̂SV fit (5p) fit (7p) fit (5p*)

t0 -1248.29 -1248.291 ± 0.003 -1248.294 ± 0.004 -1193.0 ± 21.7
t0x0 212.21 212.209 ± 0.002 212.160 ± 0.028 -2120.2 ± 119.7
t1 970.56 970.560 ± 0.005 970.566 ± 0.006 861.5 ± 37.4
t1x1 - - - 0.065 ± 0.042 3930.6 ± 173.6
t2 107.22 107.221 ± 0.001 107.237 ± 0.018 110.1 ± 4.0
t2x2 - - - -0.019 ± 0.022 - -
w0 150.00 150.001 ± 0.001 150.000 ± 0.001 - -
χ2 2.22×10−7 2.21×10−7 7.70

BIC 2357.7 2366.9 10969.2

In Table F.2, the comparison of the BIC value, Eq.(6.10), for (5p) and (7p) shows
that the interaction energy VSV can be reproduced better with the 5 generators
(the ones which are, in fact, used to build the Skyrme SV potential) than the 7
generators. That is, among the 7 generators, 2 are redundant and do not improve
the information content.
We need to clarify that we have used the weight wi=1 in the χ2 because the
theoretical uncertainties, associated with the interaction energy, are around 1 eV
and then negligible. The χ2 is not normalized.
Figure F.2 offers a graphical representation of Eq.(F.3), where data points relative
to nucleus 56Ni are displayed. The parametrization (5p) shows a great agreement
between the average value Vab of the interaction energy (markers) and the right-
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Figure F.2: Plot of Eq.(F.3) for the nucleus 56Ni and parametrization (5p). The
average values Vab(λi) of the Skyrme SV interaction energy are represented
with markers (‘‘ab’’ in the legend), while the lines describe the right-hand
side of Eq.(F.3), dependent on the fitted parameters tj (‘‘fit’’). Different
colors indicates different perturbation potentials V̂ gen

i = V̂ti , with the value
of λi shown on the x-axis. The shadowed areas identify the propagated
errors on the interaction energies, associated with the error on the fitted
parameters.

hand side of Eq.(F.3), with the parameters obtained from the regression analysis.
The parametrization (5p*), instead, gives an appreciable difference between the
Skyrme SV average value and the product of the expectation value of the generators
and the corresponding parameters. Such difference is responsible for the large value
of the χ2 in the (5p*) case. Figure F.3 points out that, if the selected generators
are not adapt to describe the interaction energy, the behavior of the fitted values
can be tilted respect to the data. Furthermore, since the regression fits the data
points from all the nuclei at once, for some nuclei it can happen a vertical shift
between markers and lines. That is, the parameters underestimate or overestimate
the average value of the potential systematically for all the data points of the
nucleus, including the unperturbed case (λ = 0). As mentions, not shown here, in
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Figure F.3: Same as Figure F.2 for the nucleus 56Ni and parametrization (5p*).

24O (34Si) the fitted values underestimate (overestimate) the inputs data.
The propagated errors (shadowed areas) are large for the (5p*) case while negligible
for the (5p) case.

The parametrization (5p) allows to calculate the infinite nuclear matter quan-
tities described in Appendix B. The values are collected in Table F.3. The standard
properties of Skyrme SV interaction are reproduced as in particular the small
isoscalar effective mass m∗/m and the large incompressibility K, due to the lack
of the density-dependent term.

The previous analysis is performed including V̂t3 , the generators of the three-
body contact term, among the possible generators. The obtained parametrization
(8p) extends the parametrization (7p) to include the t3 parameter. As shown in
Table F.4, the larger number of parameters does not provide an improvement
in the fit of the Skyrme SV potential since the BIC is larger than in the case of
(5p). The parametrization (5p**) considers the parameters t0,t1,t2,w0 and t3, i.e.,
replaces the t0x0 parameter in the original Skyrme SV with the parameter relative
to the three-body zero-range interaction. In the case (5p**) as in the case (5p*),
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Table F.3: Values of infinite nuclear matter quantities for the parametrization (5p)
of the Skyrme SV model functional (compare with Table B.1 for standard
value).

quantity value

ρsat [fm−3] 0.15509 ± 0.00001
r0 [fm] 1.15463 ± 0.00001
E/A [MeV] -16.04774 ± 0.00001
m∗/m 0.38289 ± 0.00001
J [MeV] 32.82451 ± 0.00016
L [MeV] 96.09112 ± 0.00052
K [MeV] 305.67449 ± 0.00380

replacing one of the original generators corresponds to a large increase of the χ2,
and a decreasing quality to reproduce Eq.(F.3).

Table F.4: Same as in Table F.2, but with the generator of the three-body contact
interaction t3 included in the regression analysis. (8p) is the extension
of (7p) to include t3. (5p**) parametrization uses t0, t1, t2, w0 and t3 as
generators.

parameter V̂SV fit (8p) fit (5p**)

t0 -1248.29 -1248.295 ± 0.004 -1429.26 ± 7.85
t0x0 212.21 212.162 ± 0.028 - -
t1 970.56 970.567 ± 0.007 1263.70 ± 15.85
t1x1 - 0.065 ± 0.042 - -
t2 107.22 107.237 ± 0.018 121.02 ± 2.63
t2x2 - -0.018 ± 0.023 - -
w0 150.00 150.000 ± 0.001 197.36 ± 2.26
t3 - -0.018 ± 0.028 652.56 ± 100.61
χ2 2.22×10−7 3.123

BIC 2372.7 10521.8
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F.2 Benchmarks for the matrix elements

The matrix elements for the generators V̂ gen
j corresponding to the coupling constant

Cj are obtained from the generators V̂tj , derived in Appendix D, and from Eq.(C.7).
To check the correctness of the matrix elements, we can consider that, for a Hartree-
Fock state |Φ(λi)〉, it results

〈Φ(λi)|T̂ + V̂SV + λiV̂
gen
i |Φ(λi)〉 = T [ρ(λi)] + VSV [ρ(λi)] + λiV

gen
i [ρ(λi)], (F.4)

where the Coulomb interaction is neglected on both sides. The left-hand side can
be calculated with the SCGF method, at the Hartree-Fock level, and the matrix
elements V̂ gen

i we are interested to test. The right-hand side can be obtained
from an energy density functional solver after rescaling the coupling constants as
Cj → Cj for j 6= i and Ci → Ci + λi. Specifically we compare the results from
the SCGF code Boccadorata [95] and the EDFs code HOSPHE [99]. Both use a
basis of spherical harmonic oscillator wave function, and we choose a model space
limited to Nmax = 9 and energy ~ω = 20 MeV. We select value of λi such that the
differences in total energy respect to the λ = 0 case are of the order of few MeV.
The agreement between the perturbed energy from Green’s functions and from
EDFs is at the eV level for all the generators V̂ ρ

0 , V̂ ρ
1 , V̂ ∆ρ

0 , V̂ ∆ρ
1 , V̂ τ

0 , V̂ τ
1 , V̂ J1

0 , V̂ J1
1

and V̂w0 .

F.2.1 Benchmarks for the three-body matrix elements

The three-body matrix elements for a zero-range potential are given in Eq.(E.15).
For an Hartree-Fock state that describes the ground state of a spin saturated
system, Ref. [44] shows that the expectation value of the three-body generator
V̂t3 (see Eq.(E.1)) is equivalent to the expectation value of the two-body density
dependent operator

V̂dd = (1 + x3P̂
σ) δ(r1 − r2) ρ

(r1 + r2
2

)
, (F.5)

with the parameter x3 = 1 fixed 2. We use this fact to benchmark the three-body
matrix elements, namely

〈Φ(λt3)|T̂ + V̂SV + λt3V̂t3 |Φ(λt3)〉 = T [ρ(λt3)] + VSV [ρ(λt3)] + λt3Vdd[ρ(λt3)]. (F.6)

We compare the results from the SCGF code Boccadorata [95], for the left-hand side,
and the EDFs code HOSPHE [99], for the right-hand side. For testing purpose, we

2We remind that V̂t3 and V̂dd are multiplied by the parameter t3, respectively in the contri-
butions to the three-body δ−interaction and to the density-dependent potential.
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select a model space limited to Nmax = 5 and energy ~ω = 14 MeV. The reduction
to Nmax = 5 is necessary in order to have no truncation in the two particles basis
Nmax(2) = 10 and in the three particles basis Nmax(3) = 15. Otherwise the model
space is limited to Nmax(2) = Nmax(3) = 16 for larger single-particle model space,
Nmax > 5, due to memory limitations.
The agreement between the perturbed energies is at the order of the eV, proving
the equivalence between the three-body zero-range interaction and the two-body
density-dependent potential.
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