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ABSTRACT 

Liu, Jia 
Data Augmentation under Rician Noise Model in Diffusion MRI with Applications 
to Human Brain Studies 
Jyväskylä: University of Jyväskylä, 2019, 83 p. 
(JYU Dissertations 
ISSN 2489-9003; 93) 
ISBN 978-951-39-7787-0 (PDF) 

Diffusion magnetic resonance imaging (diffusion MRI) is capable of measuring the displacement 
diffusion of water molecules and of providing a unique insight by means of image contrasts from 
measurements to probe non-invasively the microscopic anatomical architectures of organic tissues 
in vivo. Many diffusion imaging approaches have been developed to measure the underlying 
diffusion function, among which diffusion tensor imaging (DTI) is the most popular. A conventional 
modeling approach postulates a Gaussian displacement distribution at each voxel characterized by 
means of a second order symmetric and positive definite diffusion tensor. Typically, the inference is 
based on a linearized log-normal regression model. However, such an approximation fails to fit the 
high frequency and/or the low signal to ratio (SNR) measurements containing important 
information on water diffusion. The diffusion weighted MR measurements are sparse and noisy, 
and after the Fourier inversion they yield a non-linear regression problem. However, working with 
the non-linear model for the data directly leads to heavy computation. 

In this thesis, I present a series of novel statistical methodologies to solve the computational 
problem. By using data augmentation, the non-linear regression problem under the Rician noise 
model is reduced to the generalized linear modeling (GLM) framework. For different purposes, we 
use both Bayesian and frequentist statistical inferences: A Bayesian hierarchical model is established 
to estimate the marginal posterior distribution of every parameter of interest, where we apply the 
Markov chain Monte Carlo (McMC) method, exploring the state space to compute averages under 
the joint posterior distribution of the unknown parameters and latent variables. Moreover, we also 
implement Variational Bayes (VB) algorithms as a faster scheme for converging to the optimum of 
each posterior distribution. Under the Bayesian framework, a regularization technique is developed 
for modeling the contextual dependence (interaction) between the tensors. This is done by 
constructing an isotropic prior for the tensor fields through the Gaussian Markov random fields 
(GMRF). This model is intended to smooth and denoise the image. In terms of computational issues 
in practice, we further employ the expectation-maximization (EM) algorithm under the joint 
likelihood in GLM by the data augmentation to reduce computational burden in both Bayesian and 
frequentist frameworks. This deterministic algorithm is implemented under the assumption of voxel 
independence in both maximum a posterior (MAP) estimation and maximum likelihood estimation 
(MLE). Furthermore, we apply the stabilized Fisher scoring method for achieving fast convergence 
in the calculation of the tensor parameter. In addition, we address the essential difference between 
these two inferences working in dMRI. All these methodologies are described in four papers under 
several popular signal decay models in dMRI, implemented and experimented both with synthetic 
and real data of the human brain, and compared with different popular methods in dMRI and in 
the recent literature. 

Keywords: Bayesian regularization, diffusion magnetic resonance imaging, diffusion tensor 
imaging, constrained diffusion kurtosis imaging, expectation maximization, Fisher scoring, 
generalized linear modeling, high angular resolution diffusion imaging, positivity condition, 
Markov chain Monte Carlo, maximum likelihood estimation, Rician noise, spherical harmonics, 
statistical inference, variational Bayes 
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PREFACE

In this thesis we present new developments of statistical methodologies in both
frequentist and Bayesian inference framework for estimating tensor-derived qu-
antities under different dMRI protocols, and to illustrate significantly promising
results through relevant comparison on both synthetic and real data to study the
human brain. The aim of the work is to solve the problems in dMRI and to con-
tribute the exploration of the structure of the human brain which may impact on
the diagnosis of brain diseases in clinical applications.

My doctoral work is composed of four papers describing different novel
statistical methods and developments implemented in dMRI with an object of
the human brain.

Terminology used in the summary

dMRI – diffusion magnetic resonance imaging

DTI – diffusion tensor imaging

DKI – diffusion kurtosis imaging

dMRI – diffusion magnetic resonance imaging

DW-MRI – diffusion weighted magnetic resonance imaging

EM – expectation-maximization

GLM – generalized linear modeling

GMRF – Gaussian Markov random fields

HARDI – high angular resolution diffusion imaging

MAP – maximum a posterior

McMC – Markov chain Monte Carlo

MLE – maximum likelihood estimation

SNR – signal to noise ratio

VB – variational Bayes

WLS – weighted least squares



Author’s contributions This thesis consists of a summary and four original re-
search papers. The author’s contributions of each paper are listed below.

PI The author jointly worked in method development and implementation, and
in drafting the manuscript. The author designed and implemented the simula-
tion study, and interpreted the results in the paper.

PII The author developed and implemented the methods, drafted the manuscri-
pt, interpreted the results and critically revised the manuscript.

PIII and PIV The author developed and implemented the method, drafted the
manuscripts and interpreted the results. The author critically revised PIII after
the peer-review.



ACKNOWLEDGEMENTS

I would like to express my great gratitude to my supervisor Dario Gasbarra, who
introduced this research topic to me and has shared a lot of his time with me to
carry out this project. I also thank Juha Railavo for his precious collaboration; he
introduced DTI to Dario and me and organized the data collection.

I am deeply indebted to Emeritus Professor Antti Penttinen for his huge
encouragement and inspiring guidance, especially at the last stage of my PhD
studies. He has invested a lot of his time in this project, been relentless in read-
ing and made many substantive suggestions and insightful comments that com-
pletely improved the corrections, clarity and readability of this work. Without his
counsel and follow-up, I would not finish this work smoothly nor be aware of the
importance of independence in doing research. I would also like to thank my co-
supervisor Doctor Salme Kärkkäinen. She has given me a lot of help during my
PhD in Jyväskylä and has never mind sharing her experience at different stages
of my studies. I would be grateful for the two pre-examiners for their expert
comments.

My thanks also spread to the Department of Mathematics and Statistics,
University of Jyväskylä and to every colleague there for the nice research envi-
ronment and kind discussions on research and other aspects. As an international
student and member of staff, I would like to specially thank Tuula Blåfield for her
hard work in English checking of the summary and also Sari Eronen, Hannele
Säntti-Ahomäki and Eeva Partanen, for their help in different practical things.

Further, I would like to thank my previous advisor Assistant Professor Jarno
Vanhatalo from University of Helsinki for his kind support. My thanks also to
Doctor Viljami Sairanen from the Department of Physics, University of Helsinki,
who commented on Chapter 2 of my thesis and Doctor Daniel Blande from Uni-
versity of Eastern Finland who helped me correct the English of several chapters
of this thesis.

I wish to thank the CSC-IT Center for Science Ltd. for providing powerful
computing resources. This work was funded by the Doctoral Program in Com-
puting and Mathematical Sciences (COMAS) and the Department of Mathematics
and Statistics, University of Jyväskylä.

Finally, I am extremely grateful to my family and my parents for their love
and constant support throughout my life. This work is dedicated to my daughter,
Kangxin Päivi.

Jia Liu

May 2019, Helsinki, Finland



CONTENTS

ABSTRACT
PREFACE
ACKNOWLEDGEMENTS
INCLUDED ARTICLES
CONTENTS
LIST OF INCLUDED ARTICLES

PART I 

1 INTRODUCTION ............................................................................ 16
1.1 Background ............................................................................. 16
1.2 Motivation ............................................................................... 17
1.3 Outline of the thesis .................................................................. 19

2 PRINCIPLES OF DIFFUSION MRI .................................................... 20
2.1 Basics of MRI ........................................................................... 20
2.2 Diffusion ................................................................................. 22
2.3 How to measure the diffusion.................................................... 23
2.4 The MR signal intensity and Fourier transform ........................... 25

3 DIFFUSION TENSOR IMAGING AND ITS EXTENSIONS................... 30
3.1 DTI ......................................................................................... 31
3.2 Tractography............................................................................ 31
3.3 HARDI .................................................................................... 35
3.4 DKI ......................................................................................... 35
3.5 Other related models ................................................................ 37
3.6 Positivity ................................................................................. 38

4 THE MR SIGNAL MEASUREMENT, RANDOM NOISE AND MLE ..... 39
4.1 Signal measurement in MRI....................................................... 39
4.2 LLS and WLS ........................................................................... 41
4.3 MLE ........................................................................................ 41
4.4 The Newton-Raphson Method and Fisher Scoring ....................... 42
4.5 Additional robustness of Fisher scoring ..................................... 43
4.6 The Barrier method................................................................... 44
4.7 Generalized linear models ......................................................... 45

PART II 

5 DATA AUGMENTATION AND EM-MLE .......................................... 47
5.1 DA in diffusion MRI ................................................................. 47
5.2 The EM algorithm for fast estimation ......................................... 50
5.3 EM in diffusion MRI ................................................................. 51



6 BAYESIAN MODELING, COMPUTATION AND REGULARIZATION . 52
6.1 Prior selection .......................................................................... 52
6.2 Markov chain Monte Carlo sampling ......................................... 55
6.3 Gibbs sampler .......................................................................... 56
6.4 Metropolis-Hastings algorithm .................................................. 57
6.5 Adaptive McMC....................................................................... 58
6.6 Variational Bayes approximation................................................ 58
6.7 Bayesian regularization and GMRF ............................................ 60
6.8 Nearest neighboring system in 3D neural networks ..................... 61
6.9 GMRF for DT ........................................................................... 62

PART III 

7 CONCLUSION AND DISCUSSION ................................................... 66
7.1 Two schemes of DA .................................................................. 66
7.2 Comparison ............................................................................. 67
7.3 Summary of the data and the included papers............................. 68

7.3.1 Real data....................................................................... 68
7.3.2 Summary ...................................................................... 68

REFERENCES.......................................................................................... 72



LIST OF FIGURES

FIGURE 1 (a) The macroscopic WM architecture from a postmortem hu-
man sample. (b) DTI-based reconstruction. ............................. 17

FIGURE 2 Diffusion weighted MR images generated by applying differ-
ent b-values. ......................................................................... 17

FIGURE 3 The Rician density curves with different SNR. ......................... 18
FIGURE 4 Three scenarios of three water molecules in the magnetic field

w/o field gradient................................................................. 21
FIGURE 5 The DW-MR images of the brain with varying gradients and

b-values................................................................................ 25
FIGURE 6 An example of the phase changes in two water molecules and

the possible presence of the diffusion. ..................................... 26
FIGURE 7 Several ways to achieve and manipulate the diffusion weight-

ing. ...................................................................................... 26
FIGURE 8 Signal dephasing represented as a function of time t. ............... 28
FIGURE 9 Vectorization of an ellipsoid of the 2nd order tensor. ................ 31
FIGURE 10 The morphologies of four DTs. ............................................... 32
FIGURE 11 The MD and FA maps from two consecutive slices of a human

brain. ................................................................................... 33
FIGURE 12 Fiber tracts in human brain. ................................................... 34
FIGURE 13 Two sketches of fibre tracts in human brain. ............................ 34
FIGURE 14 A typical shape of a 4th order tensor. ...................................... 35
FIGURE 15 The non-Gaussian diffusion at higher angular resolution dis-

covered in human brain. ........................................................ 36
FIGURE 16 Neighborhood structure of one pixel....................................... 62
FIGURE 17 The 2nd and 4th order tensor fields w/o regularization. ........... 63



LIST OF INCLUDED ARTICLES

PI Dario Gasbarra, Jia Liu and Juha Railavo. Data augmentation in Rician
noise model and Bayesian Diffusion Tensor Imaging. Submitted, (2019).

PII Jia Liu, Dario Gasbarra and Juha Railavo. Fast estimation of diffusion ten-
sors under Rician noise by the EM algorithm. Journal of Neuroscience Meth-
ods, 257: 147-158, (2016).

PIII Jia Liu. An improved EM algorithm for solving MLE in constrained diffu-
sion kurtosis imaging of human brain. Submitted, (2019).

PIV Jia Liu, Dario Gasbarra and Juha Railavo. Variational Bayes Estimation in
Constrained Kurtosis Diffusion Imaging under a Rician Noise Model. Sub-
mitted, (2019).



PART I



1 INTRODUCTION

1.1 Background

Human brain is one of the most interesting and mysterious media in the world.
The living brain is soft and delicate and is protected by the solid bones of the
skull and covered by a thick layer of neural tissue termed cerebral cortex. An
adult’s brain takes about 2% of the body weight being around 1.5kg on an av-
erage. At the macroscopic level, the brain is divided into grey matter (GM) and
white matter (WM): 40% of the brain is occupied by GM, and the remaining is
filled by WM. The human brain is composed of 73% water, of which WM struc-
tures (see Figure 1a) have significantly higher myelin water percentages than the
GM structures, and the water diffuses preferentially along the fibre bundles, see
Goss (1960), Damasio (1995), Mai et al. (1997), Thomalla et al. (2005) for deeper
knowledge of the anatomy of human brain. Therefore, in order to explore the
brain architecture represented by the fine and rich fibrous structure (see Figure
1b), it is extremely important to study in vivo water diffusion, especially how it
maps the white matter pathways.

Diffusion magnetic resonance imaging (diffusion MRI) is a currently known
imaging method that enables us to measure the diffusion of water molecules and
to probe the microstructure of the brain by the measurements (Tuch et al. , 2003).
It provides a powerful non-invasive way to retrieve the anatomical and connec-
tivity information of the brain. This information resource is thought to be useful
and had/may have strong impacts on clinics for diagnosis of brain disorders,
such as ischemic stroke (Mori , 2007, Thomalla et al. , 2005) and dementia with
Lévy bodies (DLB), see Kantarci (2010), Mak et al. (2014).
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FIGURE 1 (a) The macroscopic WM architecture from a postmortem human sample.
(b) DTI-based reconstruction. The figures are reprinted from Mori (2007).
Copyright (2007), with permission from Elsevier, http://www.elsevier.com.

1.2 Motivation

The diffusion MRI measurements are sparse and noisy, especially when the b-
value is large, see Figure 2. A common simplifying assumption about the dif-

FIGURE 2 Diffusion weighted MR images generated by applying different b-values.

fusion magnetic resonance (MR) signal measurements (the data) is a Gaussian
distribution. This assumption fits data well in those particular cases where the
signal-to-noise ratio is (SNR =S/σ) ≥ 3. However, statistical inference reveals
that the information retrieved in this way is unreliable in the low SNR regime.
This is because the probability distribution of the data is far from being Gaussian,
see Figure 3. In the past decades, numerous works such as Henkelman (1985),
Bernstein et al. (1989), Andersen (1996), have been devoted to the study of the
effects of the complex Gaussian noise in magnitude MRI. The theoretical distribu-
tion of the magnitude data has been proved to have a Rician distribution (Jones
and Basser , 2004, Henkelman , 1985, Zhu et al. , 2007, Assemlal et al. , 2009,
Landman et al. , 2007). Several authors, such as Zhu et al. (2007), Salvador et
al. (2004), add the noise-induced bias into the measurements so that a simple
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(a) (b)

FIGURE 3 The Rician density curves for a signal S = 5 (Figure 3a) and for standard
variance σ from the noise (Figure 3b) of different SNR. For SNR ≥ 3, the
density is approximated to be Gaussian. Figure 3a shows that when the
noise increases, the SNR decreases from the top curve to the bottom. Fig-
ure 3b depicts that for a fixed value of σ = 2, the SNR increases when the
signals increase, and the distribution gradually tends towards the Gaussian
distribution.

Gaussian noise model can be fitted to the data. But none of these techniques ap-
plies satisfactorily in the high b-value range and/or in the low SNR regime, and
the Gaussian model does not fit the corrected data, see e.g. Mori (2007), Bur-
dette et al. (2001). Furthermore, the Rician noise model (a commonly used name,
referring to the complex Gaussian noise model with magnitude measurements,
see Cardenas-Blanco et al. (2007)) has been used in the literature, e.g. Gudb-
jartsson and Patz (1995), Veraart et al. (2011), Andersson (2008), Lauwers et al.
(2010), but in all cases the methods dealing with the Rician model are computa-
tionally intensive. On the other hand, Lu et al. (2006a) demonstrated in their
experiments that the non-Gaussian behavior turned out to be more evident using
diffusion-weighted sequences with higher b-values. The definition of the b-value
can be found in Equation (2.10).

Statistical modeling and efficient computing are needed in combination to
truly benefit from the full power of the noisy measurements of the diffusion spec-
tra. Our motivation is that even a slight improvement of the statistical analyses
and/or mathematical modeling could have significant impacts on neuroscience
and on the diagnosis of common neurological disease of the brain. On the other
hand, Dementia with Lévy bodies (DLB) is a demanding application and an-
other strong motivation of this thesis. It is a brain disorder related to Parkin-
son’s disease and is difficult to be diagnosed. Lévy bodies are found not only
in the deep grey matter structures, but also diffusely in the brain cortex. Lévy
bodies are spherical intraneuronal protein aggregates that consist primarily of
alfa-synuclein, a presynaptic microtubule protein, see e.g. Brown, D.F. (1999),
Issidorides et al. (1991). This is why DLB is considered to be a group of synucle-
opathy, and a group of disorders with alfa-synuclein gene mutations. Nowadays
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DLB is regarded as the second among the most common neurodegenerative dis-
eases, and is also found in other brain disorders such Alzheimer’s disease and
Parkinson’s disease dementia (Alzheimer’s Association , 2015). In the US, ap-
proximately 1 million individuals of the population have been diagnosed with
dementia, which typically begins at age over 50, see e.g. NIA and NINDS (2015).
Standard MRI findings are generally nonspecific despite the often prominent vi-
sual symptoms that characterize DLB. There are some studies, e.g. Firbank et al.
(2007), Watson et al. (2012), in which DTI shows increased mean diffusivity in
the amygdala region and especially in the inferior longitudinal and in the inferior
fronto-occipital fasciculus. This is among the main reasons to carry out this work
for a possible contribution to clinic practice through characterizing the quantities
of diffusion.

1.3 Outline of the thesis

This thesis is composed of an introduction and four papers describing differ-
ent novel statistical methods and developments implemented in diffusion MRI
with applications to a human brain study. The introduction is divided into three
parts. Part 1 (Chapters 2-3) provides the requisite background, aiming to help
the readers who are not familiar with the research topic of this thesis. In Chap-
ter 2, we briefly review the principle of MRI and introduce the diffusion and
diffusion MRI. The diffusion tensor imaging (DTI) as a key term applied in the
thesis as well as its extensions are introduced in Chapter 3. In Chapter 4, we
describe the Rician model of the diffusion MR signal measurements, and high-
light the regression problem in DTI. We then go through the commonly applied
statistical methods and optimization tools for inferring diffusion through diffu-
sion tensor estimation. Part II consists of Chapters 5-6, which contain the original
contributions of this thesis. In Chapter 5 we derive two new ideas of data aug-
mentation working with Rician likelihood of the data. Based on that, we propose
an expectation-maximization (EM) algorithm for tensor estimation. A Markov
chain Monte Carlo (McMC) and a Variational Bayes (VB) methods are two other
novel alternatives in Bayesian framework, which are introduced in the following
chapter. Additionally, we present a new development of imaging regularization
for imaging smoothness. Part III consists of a conclusion about the methods de-
veloped, and Chapter 7 includes the comparison of the proposed methods and a
short introduction of each paper included.



2 PRINCIPLES OF DIFFUSION MRI

2.1 Basics of MRI

Magnetic resonance imaging (MRI) has been extensively used to study the anato-
my and the disease process of the living body. This imaging method is a practical
application for a physical phenomenon known as nuclear magnetic resonance
(NMR), see Das (2015), in which radio frequency (RF) pulses are used to perturb
nuclei spins from a known equilibrium induced by an external magnetic field. As
the amount of energy that a nucleus can absorb depends on the strength of the
external magnetic field, slight deviations induced with spatial gradient fields can
be used to determine the locations in which nuclei are excited. Excited nuclei,
i.e., those that absorbed the RF pulse, rapidly relaxate towards equilibrium after
the RF pulse ends and emit the excess energy as a measurable RF signal. The MR
image is finally formed by coupling these measurements with the known spatial
encoding. Even though the exact details of NMR physics and MRI engineering
are certainly interesting topics, they are omitted as they lie beyond the scope of
this dissertation. The readers who are interested in these topics can find more
detailed description in, for instance, Hornak (1996), Slichter (2013), Brown et
al. (2004). In MRI, the typical used nucleus refers to the single proton from a
hydrogen atom due to its richness in water. This implicitly states that the proton
density (the water concentration) dominates the MRI signal intensity.

In an external magnetic field B, protons have a microscopic magnetization
and their precession is analogous to tiny spinning tops wobbling. The resonance
(formally named as the Larmor frequency) refers to the rate of the precession.
The magnetic field gradient is a technology introducing gradients which orien-
tate in three directions x (right-left), y (up-down) and z (front-back) and generate
a magnetic field that varies spatially according to the locations of the spins. The
(static) magnetic field is known the B0 field defined along the direction of z axis.
The B0 strength is measured in unit teslas (T). The relationship between the fre-
quency (ω) andB0 is formulated by the famous Larmor Equation (see for instance
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Hashemi et al. (2012)), that is

ω = γB0, (2.1)

where the constant γ is the gyromagnetic ratio and ω denotes the Larmor fre-
quency. The strength of magnetic field can be modulated linearly along each axis
by applying the field gradient GXt = (∂B/∂x, ∂B/∂y, ∂B/∂z) combined from the
x−, y− and z− axis gradients, affecting at the frequency when the protons pro-
cess.

In an MRI experiment, the water molecules start to process at the same fre-
quency as B0 is kept as homogeneous as possible, shown in the graph demon-
stration in Figure 4a. When the field gradient is applied, the water molecules at
different locations experience different external magnetic field B and give differ-
ent frequencies (the sine waves) as depicted in Figure 4b and c, where the water
molecule sees stronger B, resonating at a higher frequency in Figure 4b than the
one in c. The arrows in the circles describe the magnetic moment of three water
molecules (counted in column) in the rotated frame at different locations, that is,
the phases of the MR signals from each molecule. The water molecules in all plots

FIGURE 4 Three scenarios of three water molecules (counted in column) in the mag-
netic field without (Figure 4a) and with field gradient (Figure 4b and c). The
locations of the particles determine their received values of B and the res-
onated frequencies vary. Because of the Larmor principle, different parts of
the sample would have different resonance frequencies, and so a given reso-
nance frequency could be associated with a given position.

of Figure 4 have a Larmor frequency of which Figure 4b and c are slightly differ-
ent than that in Figure 4a described in Eq. 2.1. The Larmor frequency in Figure
4b and c has a general expression

ω(x, y, z) = γB0 + γGX0X0, (2.2)

where X0 denotes the location of a water molecule. In MRI, the amount of the
frequency difference is often considered as γB0 is a constant. Therefore, in general
the phase (φ) of the detected MR signal refers to the amount of phase difference,
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which is given by

4φ(x) =

∫
4ω(t)dt = γ

∫
G(t)x(t)dt and 4ω(t) = γG(t)x(t), (2.3)

see NessAiver and Moriel (1997), Haacke (1999), where G(t) is the time-depen-
dent magnetic field gradient and x(t) denotes the trajectory of a particle at time
t.

The spin-echo sequence Among the MRI pulse sequences, the spin-echo se-
quence is the most widely used one. It makes up of a series of events: a 90 ° RF
pulse followed by one or more 180 ° refocusing pulses. The essential parameters
in a spin echo sequence are the repetition time (RT) and the echo time (TE), where
TR is the time interval between two consecutive 90 ° RF waves and TE is the time
interval between the initial 90 ° RF pulse and the echo. TR depends on longitudi-
nal relaxation time (T1) and TE depends on transverse relaxation time (T2), where
T1 and T2 are known as basic parameters to determine the MR signal intensity
(Hornak , 1996, Mori , 2007, Das , 2015). The T1 relaxation time measures how
quickly the precession of the protons (the sum of the magnetic moment) recovers
to its ground state in the direction of B0. It depends on the B0 field, in general:
the higher B0 field the longer period of T1. T2 relaxation refers to the progressive
dephasing of spinning dipoles following the 90 ° pulse as seen in a spin-echo
sequence. T1 and T2 relaxation rates affect signal to noise ratio (SNR) in an MR
image, see Bloch (1946), Hesselink (1996). Relaxation refers to the process in
which spins release the energy received from a RF, hence describes how signal
changes with time, see NessAiver and Moriel (1997).

Three common spin-echo pulse sequences include the T1 weighted, the T2
weighted and their mixture. The T1 weighted sequences are obtained by using
short TR and short TE values (typically TR < 1000ms, TE < 30ms) compared to
the T2 sequences with long TR and long TE values, see Hornak (1996), NessAiver
and Moriel (1997). A (T1 and T2) mixed sequence usually refers to the proton
density weighted sequence, obtaining by a long TR and short TE sequence.

2.2 Diffusion

Diffusion usually refers to a process where water molecules or atoms in a liquid
or a gas travel from a high concentration to a low one. This phenomenon is typi-
cally accompanied by a random thermal motion of the particles called Brownian
motion (Mori , 2007, Tuch , 2002). When a water molecule travels in liquid water,
the diffusion process (Itô diffusion) of the water molecule is described by the Itô
stochastic differential equation (Baz and Chacko , 2004, Øksendal , 2003),

dXt = a(Xt)dξt, (2.4)

where ξt is the 3-dimensional (3D) Brownian motion (BM) with zero drift and
unit volatility. The random variable Xt describes the spatial position of the water
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molecule determined at time t in 3D physical world and, correspondingly, a(x)

is a 3 × 3 matrix depending on the diffusing location of the water molecule, and
Dx = 1

2
a(x)a(x)> is usually called the apparent diffusion coefficient.

Free diffusion Multiple water molecules perform BM in a space determining
the distribution of water molecules in free diffusion. When the space has no addi-
tional boundary conditions, water diffuses freely. Such kind of diffusion is called
free diffusion. Owing to the central limit theorem, the displacement (Xt−X0) of the
water molecules (also called the ensemble-average diffusion propagator (EAP),
see Tuch (2002), Descoteaux (2010)) has a Gaussian distribution with zero mean
and covariance aa> = 2D (Chandrasekhar , 1943, Stieltjes et al. , 2013), which is
given by

p(x, t) = (4πt)−3/2|D|−1/2 exp
(
−x

>D−1x

4t

)
(2.5)

and in the case of free diffusion

p(x, t) = (4πtD)−3/2 exp
(
−‖x‖

2

4Dt

)
(2.6)

with scalar diffusion coefficient D.

Restricted diffusion In the brain, water diffusion is restricted due to additional
surface boundary conditions such as cell membranes, boundaries and other com-
plex compartments. These boundary conditions control the diffusion restrictions,
which is a common scenario encountered in a biological tissue. In a short time
interval [0, t], it is unlikely for a water molecule to hit the boundary, hence the dif-
fusion is almost free, and the probability distribution of the displacement is ap-
proximately Gaussian. After a certain time, water diffusion becomes restricted,
hence the restricted diffusion coefficient D is time-dependent. The probability
distribution of diffusion is then not a Gaussian function and can be extremely
difficult to be formulated due to the complex of microstructure based on the very
limited knowledge on the brain. Hence, the probability distribution of diffusion
is determined by many additional parameters rather than a single diffusion coef-
ficient.

2.3 How to measure the diffusion

A brief history Diffusion as a physical phenomenon has been an essential part
of the history and development of diffusion MRI. Let us skip the era of nuclear
magnetic resonance (NMR), diffusion MRI goes back to the nineteen fifties when
Hahn (1950) observed the effect of diffusion to spin-echoes and pointed out that
diffusion of the spins would reduce the amplitude of the observed signal over



24

an inhomogeneous magnetic field. This finding is considered as a keynote in un-
derstanding the diffusion MRI. Four years later, Carr and Purcell (1954) studied
the effect of diffusion on free precession, and Torrey (1956) modified the Bloch
equations to include a diffusion term with a spatially varying magnetic field. Ste-
jskal and Tanner (1965), in their seminal paper, introduced the pulsed gradient
spin echo sequence and showed the potential of diffusion related signal atten-
uation to probe the motion of molecules and to define the diffusion coefficient.
Lauterbur (1973) published his groundbreaking paper entitled “Image forma-
tion by induced local interactions: Examples employing nuclear magnetic reso-
nance”. Owing to this work, in the year 2003 he shared the Nobel Prize together
with Sir Peter Mansfield who proposed the echo-planar technique by studying
the mathematical properties of the MR signal (Mansfield , 1977). In the exper-
iment Lauterbur superimposed a gradient on the static uniform magnetic field.
He also pointed out that it is possible to measure molecular diffusion from the
decay of the MR signal. Based on that, diffusion weighted magnetic resonance
imaging (DW-MRI) was introduced by Le Bihan et al. (1986) measuring the dis-
placement of protons. In 1996, Stejskal and Tanner (Stejskal and Tanner , 1965)
originated the famous pulse gradient spin echo experiment (PGSE), where they
point out that diffusion occurring between two different diffusion gradient pulses
can be reflected by the magnitude decay of the spin echoes. The question comes
out: How to measure the diffusion through MRI?

Diffusion weighted (DW-) MR images The MR signal intensity is currently
known information that is usually used in measuring diffusion. When applying
a bipolar gradients, and in addition to the spatial field gradient: The MR signal
intensity becomes very sensitive to the diffusion of protons when applying two
consecutive and opposite (bipolar) gradients, which leads to imperfect rephas-
ing and signal decay (loss) between the two gradients. As an illustration we use
Figure 6 to describe what happens: The 90° RF generates a transversal magneti-
zation. At time S1, the purple and blue protons (particles) start to see the same B
and resonate at the same frequency. When the first (positive) gradient is applied,
the two protons at different locations see different B and resonate at different fre-
quencies (S2). At time S3, the system regains the homogeneous B, but the phases
of the signal (the small arrows in the circles) are different than that at S1, which
may cause the signal loss, equaling to a sum of signals from all the protons, which
is the sum of all the arrows in the circles (Mori , 2007, Hornak , 1996). If there is
no diffusion, the 2nd (negative but with the same strength) gradient helps the
protons to regain the same phase (the positions of the arrows) as in S1 at time
S4. If there is diffusion present, the protons perform random walk and change
their spatial locations at time S3. An illustration describing such a phenomenon
is depicted in Figure 6 below the green line: The blue water molecule performs a
random walk in S3 until it moves to the location shown in S4. It then causes the
protons imperfectly rephased in S4. Therefore, S2 and S4 are called the dephasing
and the rephasing stage, respectively.

In the dephasing stage, the locations of all the protons are recorded using
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their signal phase. If diffusion happens in some protons, their phase may be
disrupted resulting in imperfect rephasing in S4, which is different than oth-
ers (no diffusion). It turns out that diffusion can be inferred by signal decay
(S/S0) detected from the imperfect rephasing among all the protons, and signal
decay can be measured by the signal with (S) and without diffusion weighting
(S0). Here the diffusion weight refers to the values gradients that determined by
the strength (G), the duration (δ) of the gradient and the duration (4) between
the two gradients. The applied gradients that cause the diffusion weighting are
named diffusion-weighting gradients. The stronger and longer the gradients are,
the farther the water molecules move, which then causes the stronger diffusion
and much signal is lost. Figure 5 illustrates four DW-MR images by applying
different gradients. It shows that when the gradients become more and more
stronger and longer as indicated by the b-values, the images turn much nois-
ier representing that the signal loss increases. There are many ways to achieve
and manipulate the diffusion weighting for acquiring imaging data, we illustrate
some commonly used methods shown in Figure 7.

FIGURE 5 The DW-MR images of the brain with varying gradients and b-values. High
b-values corresponding to heavy diffusion weights, result much noisier DW-
MR images.

2.4 The MR signal intensity and Fourier transform

The signal decay in connection with Equation (2.3) can be formulated as

S/S0 = < eiφ > = < eiγ
∫ T
0 G(t)x(t)dt >, (2.7)

where the signal phase can be expressed as a function of time T , which is

φ(T ) = γ

∫ T

0

x(t)G(t)dt, (2.8)

where x(t) is the path of the particle, see Tuch (2002), Stieltjes et al. (2013).
For free diffusion in the direction of the gradient, the Fourier transform is ob-
tained by integrating out the Brownian path x(t) with respect to the probability,
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FIGURE 6 The left part of the figure depicts an example of the phase changes in two
water molecules at different locations during a dephase-rephase experiment
with gradient application. If there is no diffusion after the first gradient is
applied, the second gradient rephases the magnetization under the condition
that the strength and length of the second gradient is identical to the first
as shown above the green line. When there is diffusion, for example for
the molecule marked in blue under the green line, the molecules perform a
random walk moving away from their initial locations. It leads to signal loss,
shown in the right part of the picture. The black arrows indicate phases of
the MR signals from each molecule and the MR signal is the sum of all signals
from the molecules. The right plot of Figure 6 describes the possibility of the
signal loss after the phase changes, see also Mori (2007).

FIGURE 7 Several ways to achieve and manipulate the diffusion weighting. Figure
7a shows after 90 ° RF a weak diffusion weighting, which is generated by
the very short diffusion gradients. Figure 7b demonstrates that the diffusion
weighting can be manipulated by changing the values of the gradient pa-
rameters (G, δ,4). Figure 7c describes spin-echo sequences with more com-
plicated diffusion-weighting gradients.
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as

S

S0

= exp

(
−γ

2

2

∫ T

0

∫ T

0

G(t)G(t′)〈X(t)X(t′)〉dtdt′
)

= exp

(
−γ2D

∫ T

0

∫ T

0

G(t)G(t′)(t ∧ t′)dtdt′
)
,

and by using integration by parts together with the equation∫ T

0

G(t)dt = 0

we obtain the log-signal decay

log
S

S0

= −Dγ2

∫ T

0

dt

∫ T

t

dt′G(t)G(t′)(t′ − t), (2.9)

see details for instance in Mori (2007), Stieltjes et al. (2013), where T is the total
duration of the diffusion gradient.

The diffusion weighting factor (the b-value) Equation (2.9) explicitly contains
a well-known formula of the b-value defined by

b = γ2

∫ T

0

dt

∫ T

t

dt′G(t)G(t′)(t′ − t). (2.10)

Hence the signal intensity can be written as a function of b-value, which is

S(b) = S0 exp(−bD). (2.11)

This simplest expression only works for the free diffusion, and hence here D is a
constant. Considering a diffusion weighting sequence produced by a pair of bipo-
lar gradients, the time caused signal dephasing can be measured by the function∫ T

0
G(t)dt, and the amount of dephase is represented as the red area in Figure 8.

The integral in Equation (2.10) can be then calculated with three time intervals
recorded at time lags t1 = 0, t2 = δ, t3 = 4 and t4 = δ +4, see Mori and Van Zijl
(1995), Stieltjes et al. (2013), Bammer (2003), resulting in the famous Stejskal and
Tanner b-value Equation, b = γ2G2δ2(4− δ/3), see Stejskal and Tanner (1965).

The Fourier transform The diffusion MRI is capable of capturing the mean (av-
erage) displacement of water molecules through the probability density function
P (x, t), which represents the sum of the diffusion from all water molecules over
the microscopic level existing in the image volume element known as voxel. The
resolution of the voxel is defined by the macroscopic spatial encoding (Tuch ,
2002), referring as a measurable pixel in the brain. In the PGSE experiment (Ste-
jskal and Tanner , 1965), the gradient duration is much shorter than the duration
between two gradients, δ << 4. The signal phase in Equation (2.3) is refor-
mulated as φ = γGδ(Xt − X0), where γ is the gyromagnetic ratio and Gδ is the
gradient scheme.
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FIGURE 8 The amount of signal dephasing caused by the dephasing gradient can be
represented as a function of time t, dephasing as the red area in Figure 8.

Let q = γGδ, when the time interval is short to be ignored, the signal decay
in the physical 3D world can be written as

S(q)/S0 =

∫
p(x, t) exp(iqTx)dx, (2.12)

where S0 is the non-diffusion weighted signal intensity at the voxel v. Hence,
the signal decay is the Fourier transform of p(x, t), which allows us to describe
the probability distribution of diffusion from the spin echo signal intensity by the
inverse Fourier transform, that is,

p(x, t) = S−1
0 F−1

(
S(q)

)
. (2.13)

When the displacement is Gaussian, we obtain the commonly used Stejskal-Tan-
ner signal intensity equation. Accordingly, in the diffusion-MR experiment the
water molecules at the voxel v emit a spin echo signal with amplitude

Sv(q) = S0 exp
(
−1

2
q> Dv q ) = S0 exp

(
−bg> Dv g

)
, (2.14)

where Dv denotes diffusion coefficients or named diffusion tensor at voxel v. The
gradient pulse q ∈ R3 is a predefined parameter of the MR experiment. The dif-
fusion weighting is b = |q|2/2, the b-value, and g = q/|q| ∈ S2 indicates the gra-
dients on the unit sphere. Equation (2.14) in particular shows that the probability
distribution of the departure of water molecules can be implicitly represented by
the covariance matrix D (for simplicity we omitted subscript v here and there-
after), and describes the diffusion tensor imaging model (DTI, Basser et al. (1993,
1994b)) when D is forming as 3 × 3 positive semi-definite matrix. DTI is one of
key concepts in this thesis, which has also been extended to more complex situa-
tions, where a single diffusion tensor is not enough to describe the displacement
distribution at all locations within a voxel, and we should rather think about a
population of diffusion tensor within the same voxel. One of the solutions could
be that the displacement distribution of a water molecule (Xt − X0) is modeled
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as a mixed Gaussian starting from the initial location x during a unit time with
Fourier transform

Sx(q)

S0

= Ex

(
exp
(
i q>(Xt −X0)

))
=

∫
M+

exp

(
−1

2
q>D

∗
q
)
dQx(D

∗
) , (2.15)

where Qx is a probability distribution on the space of positive matricesM+. This
equation implicitly describes that the symmetric and positive definite matrix-
valued field (D

∗
) as covariance matrices of water displacement can explain the

geometry of an underlying media.
The Fourier transform gives us a path to describe the diffusion process by

means of diffusion tensor D. Computational accuracy and efficiency in the es-
timation of the tensor matrix D and the relatives are the key objectives in this
thesis.



3 DIFFUSION TENSOR IMAGING AND ITS
EXTENSIONS

In anisotropic media the mobility of the molecules is orientation dependent and
can not be represented in terms of one single diffusion coefficient. The three-
dimensional (3D) diffusion process modeled by means of simple 2nd order diffu-
sion tensors was introduced by Basser et al. (1993, 1994a), and this well-known
diffusion MRI reconstruction technique is named diffusion tensor imaging (DTI),
which was considered in PI and PII of this thesis. DTI as an established ap-
proach during almost two decades provides a systematic description of diffusion
anisotropy and fibre tacking in the study of the brain connectivity, which is ca-
pable of quantifying in vivo the diffusion displacement of water molecules at the
microscopic level describing the structural information and the geometric organi-
zation of brain anatomy. DTI has been successfully applied in many clinical stud-
ies for detecting common brain disorders, such as stroke (Mori , 2007), intrinsic
tumor and demyelination (Giussani et al. , 2010), and others, see e.g. Sundgren
et al. (2004), Ringman et al. (2007), Wozniak et al. (2013). However, it suffers
from an intrinsic limitation that the displacement of water molecules is assumed
to follow a 3D homogeneous Gaussian distribution within each voxel (Basser ,
1995). Tuch et al. (1999), Tuch (2002) developed an approach to detect com-
plex tissues within each voxel, overcoming the limitation of DTI in the regions
of heterogeneous structure which restricts diffusion. This method is termed the
higher angular resolution imaging (HARDI), which is considered in PI and PII.
Meanwhile, Niendorf et al. (1996) pointed out that the water diffusion in bio-
logical structures indicates non-Gaussian diffusive behavior due to the barriers
of the cellular compartments and membranes inside biological tissue. In the last
few years, several approaches, such as Clark et al. (2002), Özarslan and Mareci
(2003), Yablonskiy et al. (2003), characterized the non-Gaussian properties of wa-
ter diffusion. Jensen and Helpern (2003), Jensen et al. (2005) extended DTI and
obtained significantly more promising results of characterizing the diffusion and
tissue structure. This method is called diffusion kurtosis imaging (DKI), which is
considered in PIII and PIV.
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3.1 DTI

Owing to the highly directional architecture of the white matter (WM), DTI has
been widely used for the study of WM integrity and changes in diffusion aniso-
tropy through a simple second order symmetric and positive semi-definite tensor
matrix D and the model gives rise to

S(b,g) = S0 exp

(
−bD

)
= S0 exp(−bgTDg), (3.1)

where b gives the weights to the diffusion, g ∈ R3 contains the pulse gradients
on the unit sphere and D is formally named apparent diffusion coefficients (ADC),
D = ADC, in Dong et al. (2004). In DTI, the geometric structure (morphology) of
the 2nd order tensor typically is an ellipsoid determined algebraically by a vector
parameter θθθ ∈ R6 containing six spatial random variables. This tensor parameter
can be easily vectorized to be a 3 × 3 tensor matrix D := (Di,j : 1 ≤ i ≤ j ≤ 3)

with at most six unique elements due the symmetry and θ1 = D11, θ2 = D22, θ3 =

D33, θ4 = D12, θ5 = D13, θ6 = D23, see the description in Figure 9. DTI then can
be parametrized as

S = S0 exp

(
Z(b,g)θ

)
, (3.2)

where Z is a m× 6 design matrix and here m = 1.

FIGURE 9 An anisotropic 2nd order tensor represented as an ellipsoid can be vector-
ized as a 3× 3 symmetric positive semi-definite matrix D.

3.2 Tractography

The 3 × 3 tensor matrix D is composed of three eigenvector-eigenvalue pairs
(λi,vi, i = 1, · · · , 3) and λ1 ≥ λ2 ≥ λ3 ≥ 0, since negative diffusion has nonphys-
ical sense. This equation delivers detailed information on the principal direction
(v1) of diffusion in such a way that for each Gaussian component in the mixture,
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the MR signal is highest when g belongs to the eigenspace of the smallest eigen-
value of D, and lowest in the principal direction.

An isotropic diffusion tensor (DT) has a ball shape, where the off-diagonal
elements in D are vanished to be zero and the diagonal entries are identical, that
is D11 = D22 = D33 and D11 = λ1, D22 = λ2, D33 = λ3. When the diagonals are not
equal, they describe the diffusion coefficients along certain directions: D11 for x
direction, D22 for y direction and D33 for z direction. Two common morphologies
of the tensor are prolate when D11 ≥ D22 = D33 and oblate (D11 = D22 ≥ D33), see
an example in Figure 10. A typical anisotropic 2nd order tensor as also shown
in Figure 9 is nondegenerated that all eigenvalues differ and all off diagonals
in D appear. Such a tensor describes the diffusion coefficients along different
directions, implying the corresponding fibre has an arbitrary orientation. The
principal eigenvector corresponding to the largest eigenvalue of the tensor can
sometime directly indicate the fibre orientation. A scalar measure called the mean
diffusivity (MD) is commonly used to describe the strength of the diffusion as the
average values of diffusivity in a diffusion process, which has a formula

MD = (D11 +D22 +D33)/3. (3.3)

The degree of anisotropy can be simply measured by the division between the

FIGURE 10 The morphologies of four DTs.

largest and smallest eigenvalues. More often people use the fractional anisotropy
(FA) to express anisotropy and is defined as

FA =

√
3

2

√
(D11 −MD)2 + (D22 −MD)2 + (D33 −MD)2√

D2
11 +D2

22 +D2
33

. (3.4)

These quantities can be further visualized as maps (see Figure 11) to describe
the properties of the diffusion in a region of the underlying object. The fibre
orientation can be estimated by measuring the diffusion anisotropy and depicted
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FIGURE 11 The FA maps (bottom) from two consecutive slices of a human brain encod-
ing by two Red-Green-Blue (RGB) colormaps. The three colors correspond
to x-z-y coordinates of the principal eigenvector and show the orientations
of the fibres. The two MD maps (top) give an overview of the architecture
of the regions of the human brain.

by the underlying connection of the tensor ellipsoid (Barmpoutis et al. , 2009b,
Basser et al. , 2000, Behrens et al. , 2007, Descoteaux , 2010, Zhu et al. , 2007).

The tractography of human brain contains millions of fibres and their ori-
entations (Tournier et al. , 2012, Özarslan et al. , 2006), consequently the tracts
from a small area of the human brain can be very complicated as illustrated in
Figure 12. Characterizing the morphologies of DTs hence has been used in cur-
rent imaging studies for tracking fibres and for reconstructing the tractography
of the human brain. Figure 13 sketches two possible fibre tracts (the dark lines)
in human brain from the estimated tensor shape. It also indicates that the tensor
shape in human brain can be much more complicated than an ellipsoid, which in-
dicates that the 2nd order tensor of a low angular resolution may be insufficient
to describe the complex structure of the brain. In fact, the intrinsic limitations
in DTI come from the original model assumption that the water diffusion has a
Gaussian distribution (Basser et al. , 2000, Barmpoutis and Vemuri , 2010).

High order diffusion tensors (HODT) Modeling diffusivity is very compli-
cated in the real scenario as in human brain. Using classic 2nd order tensors as
the tensor parameter to capture the complex feature of biological tissue such as
fibre crossing may be practically infeasible, which hence results in the lost of ma-
jor anatomical information. Özarslan and Mareci (2003) propose a generalized
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FIGURE 12 Fiber tracts in human brain. The figures are reprinted from Mori (2007).
Copyright (2007), with permission from Elsevier, http://www.elsevier.com.

FIGURE 13 Two sketches of fibre tracts in human brain retrieved by the estimates of
the tensor parameters. The colors indicate the main direction of the princi-
pal eigenvalue of the tensor: red, left-right; green, anterior-posterior; blue,
superior-inferior.
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Stejskal-Tanner equation to express the diffusivity as a function of gradients

D :=
3∑

`1=1

3∑
`2=1

· · ·
3∑

`2n=1

D`1,`2,...,`2ng`1g`2 · · · g`2n , (3.5)

being homogeneous polynomials. The 4th order tensor as one of common HODTs
has been widely studied in the literature (e.g. Barmpoutis et al. (2009), Barm-
poutis and Vemuri (2009), Basser and Pajevic (2007)), based on the high angular
resolution imaging (HARDI) acquisitions, see Tuch et al. (1999), Tuch (2002),
Descoteaux (2010). A 4th order tensor can be vectorized as a 6 × 6 symmetric
positive semi-definite matrix D, see e.g. Barmpoutis et al. (2007), and typically
has a cross shape as illustrated in Figure 14.

FIGURE 14 A typical shape of a 4th order tensor that is in general controlled by 15
unique tensor coefficients.

3.3 HARDI

The diffusion reflecting the displacement distribution of water molecules may
exhibit non-Gaussian behavior due to the disturbance from the structure of bi-
ological tissues (Cory , 1990). Higher angular resolution imaging (HARDI) de-
veloped by Tuch et al. (1999), Tuch (2002), refers to a sampling technique that
originally intends to discover evidence of spatially non-Gaussian diffusion in the
white matter of human brain. Accordingly, using the HARDI data to model ADC
is possible to overcome the limitations in DTI, especially for approximating the
complex tissue geometry. Figure 15 reflects the non-Gaussian behavior in the hu-
man brain with multi-lobed diffusivity profiles. This modality has been extended
later on from a signal-shell acquisition to the multiple-shell scheme, allowing us-
ing multiple b-values to acquire data in the sampling procedure.

3.4 DKI

The Gaussian assumption of the water diffusion is argued to diverge significantly
from the genuine in biological tissue. It is known that appendages are highly
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FIGURE 15 The non-Gaussian diffusion at higher angular resolution (mainly refers to
the 4th order tensors marked by the arrows) is discovered at the corona
radiate lateral to the lateral ventricle and medical to the Sylvian fissure in
human brain, with zoom. The figure is adapted from Tuch et al. (1999),
with permission from ISMRM.

complex and rich structures, consisting of multiple biological tissues. In the
human brain such tissues include for example cell membranes, boundaries and
other complex compartments, where water diffusion is far away from Gaussian.
Diffusion kurtosis imaging (DKI) proposed by Jensen et al. (2005) as an exten-
sion of DTI has recently become popular in quantifying the degree of diffusional
deviation from Gaussianity. The model is addressed to be useful in diagnosis of
brain disorder, such as Alzheimer’s disease (Lu et al. , 2006b) and ischemic stroke
(Helpern et al. , 2009).

The DKI model is derived through the Taylor expansion of signal decay
truncated at order 4 and may be expressed by

S(b,g)/S0 = exp(−bD +
1

6
b2D(g)2K(g)) (3.6)

= exp

(
−b

3∑
`1,`2=1

g`1g`2D`1,`2 +
b2

6
(

3∑
`1=1

D`1`1

3
)2

3∑
`1,`2,`3,`4=1

g`1g`2g`3g`4W`1,`2,`3,`4

)
,

as in Jensen et al. (2005), Ghosh et al. (2014), where the signal decay is defined
as a function of the b-value and K(g) indicates the apparent kurtosis coefficient.
There are two unknown components in the model, the 2nd order diffusion tensor
D and the 4th order kurtosis tensor W . Additionally, the model requires at least
three distinct b-values ( ≤ 3000s/mm2) and fifteen distinct gradient acquisitions.
All the three constraints arise a nonlinear regression problem including a non-
linear constraint in the estimation of the tensor parameters. In comparison with
MD and FA in DTI, mean kurtosis (MK) and kurtosis anisotropic (KA) are two
primarily interesting metrics for DKI.

MK and KA are formulated as

MK =
1

4π

∫
dOgK(g) and KA =

√
1

4π

∫
dOg(K(g)−MK)2, (3.7)
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where O denotes the unit sphere and g ∈ O, see Jensen and Joseph (2010), Poot
et al. (2010), Tabesh et al. (2011).

3.5 Other related models

This thesis also considered some other signal models. In PIII we had talked
about biexponential model and multicompartment model in the simulation stud-
ies, here we just give a short description.

Biexponential model Several studies have shown that signal decay in the brain
exhibits non-monoexponential diffusion and can be approximated well by using
biexponential curves at very high b-values (5000 s/mm2), see Maier et al. (2004),
Jensen et al. (2005), Maier and Mulkern (2008). The biexponential model is
represented by

S/S0 = f exp(−bDf ) + (1− f) exp(−bDs), (3.8)

where Df and Ds are the diffusion coefficients of a fast and a slow diffusion
component, respectively, corresponding to the water fraction f and 1 − f , and
is computed by means of the nonlinear least-squares Levenberg-Marquardt algo-
rithm. This model is suitable for studying water diffusion both in the gray matter
(GM) and in the white matter (WM) of the brain, and manages to reveal the dif-
fusional difference between GM and WM from the high b-value diffusion MRI
data. Therefore, we use this model as a reference model in the simulation studies
to test the results under other imaging protocols. The reader should bear in mind
that, although a simulation study is an inverse process of estimation, choosing
appropriate pulse gradients is challenging in terms of making synthetic data to
be close to the real ensemble. This is in connection with the experimental design,
an important topic in statistics.

Multicompartment model The multicompartment model (Tuch et al. , 2003,
Behrens et al. , 2003, 2007) is used to infer multiple fibre orientations in each
voxel. The model may be expressed by

Si/S0 = (1− f) exp(−bid) + f exp

(
−bidgTi D(ϑ, ϕ)gi

)
(3.9)

as in Behrens et al. (2003), where f and 1 − f are the water fractions, and d

denotes the diffusivity. The anisotropic DT, D, is along the fibre direction (ϑ, ϕ).
A specific case described by Zhu et al. (2013), also called “ball-and-sticks”

model,

Si/S0 = f0 exp(−bθ0) +
M∑
j=1

exp

(
−bθj(gTi uj)

)
, (3.10)
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is used for tracking complex fibre orientations in WM. The model contains three
vector parameters including the diffusion coefficients θ0 · · · , θM , the water frac-
tions f0, · · · , fM , and the WM fibre orientations u1, · · · , uM , where M is the maxi-
mum number of anisotropic compartments.

3.6 Positivity

The diffusivity is in DW-MRI a real valued positive function, implying the tensor
of any order constrained by positivity. Numerous works (Barmpoutis et al. ,
2009, Barmpoutis and Vemuri , 2010, Qi et al. , 2010) have been dedicated to the
study of the positivity constraint in DT. The typical idea originates from Hilbert’s
Theorem (Hilbert , 1888) that any real-valued positive function can be written as a
sum of three squares of quadratic forms. Barmpoutis and Vemuri (2010) pointed
out that for any Kth order tensor, the diffusivity can be modeled by a sum of
squares of K

2
th-order homogeneous polynomials

D =
M∑
j=1

poly(g; cj)
2

with M ≤ (2+K/2)!
2(K/2)!

, and there exists a map between the polynomial coefficients c

and tensor parameter θθθ. For the 4th order tensor (HOT4) the diffusivity function
may be expressed by

D =
3∑
i=1

(gTCig)2 (3.11)

(Papadopoulo et al. , 2014), where Ci is a symmetric 3 × 3 matrix. Here K must
be an even number since an odd order of tensor has no physical meaning.

Estimating tensor coefficients The signal model in general transforms water
diffusion into diffusion tensor and the pre-set gradients. When the tensor is
estimated, tractography becomes feasible through the classification of the mor-
phologies of the tensors. How to obtain accurate and efficient tensor estimates
under certain signal model hence becomes a statistical problem. We use the sim-
plest model DTI to describe the problem. When signal S is observable from the
noisy-free DW-MR images, the tensor parameter can be calculated accurately
from Equation (3.2). This, however, is not true in general and the DW-MR im-
ages contain various noise components affecting DTs. In the following chapter
we will describe the MR signal measurement that we observed from the DW-MR
images, the random noise from the images and the commonly used methods for
tensor estimation.



4 THE MR SIGNAL MEASUREMENT, RANDOM
NOISE AND MLE

4.1 Signal measurement in MRI

The MR signal measurement y is generated from the real and imaginary parts
of the MR images, where the signal intensity S is corrupted by the noise ε, re-
sulting in y = |S + ε| =

√
(S + εr)2 + ε2

i . Due to the nonlinear mapping, the
noise distribution is no longer Gaussian (Gudbjartsson and Patz , 1995), but is a
complex-valued variable. If (S + εr) and εi are two independent Gaussian ran-
dom variables, then the probability distribution of the MR signal measurement
will be Rician (Rice , 1944, Henkelman , 1985, Bernstein et al. , 1989, Andersen ,
1996) and has a Rician density function

pS,σ2(y) =
y

σ2
exp

(
−y

2 + S2

2σ2

)
I0

(
yS

σ2

)
1(S ≥ 0), (4.1)

where I0 = 1
π

π∫
0

exp(z cos t)dt is called the modified zeroth order Bessel function

of the first kind, which is a special case of the α-order modified Bessel function of
the first kind ( Iα(·)) with a general expression

Iα(z) =
∞∑
n=0

(z/2)2n+α

n!(n+ α)!
=

1

π

∫ π

0

exp(z cos t) cos(αt)dt, for α ∈ N,

and σ2 is the variance from the noise components. We use 1(·) as the indicator
function to emphasize the signal intensity S is a real-valued positive quantity.
If we only consider the random noise in the MR images and ignore the struc-
tured noise caused by for example bulk movement or blood flow (Mori and
Van Zijl , 1995), then the real and imaginary noise components εr and εi form
the complex-valued noise, are independent and Gaussian distributed with zero
mean and common variance σ2 (Henkelman , 1985, Koay and Basser , 2006, Zhu
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et al. , 2007) and have a joint density

pS,σ2(εr, εi) =
1

2πσ2
exp

(
−ε

2
r + ε2

i

2σ2

)
. (4.2)

The noise ε is a complex-valued Gaussian noise, and in convention is called “Ri-
cian noise”. This is because the noise term couples the MR signal measurement
and itself does not have the Rician distribution.

Multichannel signal model The MR signal measurement in multichannel case
is straightforwardly along the following expressions. Suppose we have κ chan-
nels, κ > 1, the signal intensity again is corrupted by a complex-valued noise
ε(`)

x =
1

κ

κ∑
`=1

|S + ε(`)|2 (4.3)

in forming the MR images, where the data y =
√
x. If the complex noise ε(`) =

ε
(`)
x + iε

(`)
y from each channel is independently generated by two i.i.d. Gaussian

random variables ε(`)
x , ε

(`)
y ∼ N (0, κσ2), ` = 1, . . . , κ, with noise parameter σ2, the

MR signal measurement follows the Rician distribution with density

pS,σ2,κ(y) =
S

σ2

(
y

S

)κ
exp

(
−y

2 + S2

2σ2

)
Iκ−1

(
yS

σ2

)
, (4.4)

see Aja-Fernández and Vegas-Sanchez-Ferrero (2004). If the random variable of
the observation (data) Y = 0, we have then ε(`)

x = −S, ε(`)
y = 0, ` = 1, . . . , κ, with

likelihood contribution

(2πκσ2)−κ exp
(
− S2

2σ2

)
.

Specially, when κ = 1 we are back in the simple case as in Equation (4.1).
Let the MR signal in DTI be S = exp(Zθθθ), so that θ0 ∈ θθθ ∈ R7 stands for the

signal without diffusion weighting S0 and the dimension of the corresponding
design matrix will be m× 7. When we only consider the real random noise in the
DW-MR images, the logarithmic signal measurement then can be linearized by
log transformation and falls into the linear framework. A log-linear model hence
gives rise to

log y|Z,θθθ = Zθθθ + exp(−Zθθθ)ε, (4.5)

where we use the fact that log(1 + exp(−Zθθθ)ε) ≈ exp(−Zθθθ)ε. The error ε in dif-
ferent DTs can have different distributions and heterogenous variance. When it
follows a Gaussian distribution, the likelihood of the MR signal measurement
reduces to be Gaussian with a common assumption of zero mean. In fact, the
logarithm of the MR signal measurement in Equation (4.1) starts to approximate
the Gaussian distribution with mean E(log Yi|Z,θθθ) = Zθθθ and standard deviation



41

1/SNR (SNR := S/σ), when the value of SNR is equal to 3, and the approxima-
tion works well with SNR > 5, see Gudbjartsson and Patz (1995), Salvador et al.
(2004), Zhu et al. (2007).

Among a number of different estimation approaches, the most common
and standard methods for linear regression are linear least squares (LLS) and
weighted least squares (WLS), which are usually applied with the Gaussian mod-
els. When the noise has a common finite variance, LLS is applied; whereas when
ε has violated variance, WLS is the right choice.

4.2 LLS and WLS

The theory behind LLS is minimizing the error between the observed data log Y

and the predicted data log Ŷ = E(log Y |Z, θ̂θθ) measured in terms of their Euclidean
norm, known as the sum of square residuals function,

f(θθθ) = || log Y − Zθθθ||22. (4.6)

If the number of observed signal measurements m > dim(θθθ) = d + 1, a unique
solution θ̂θθ = (ZTZ)−1ZT log y can be obtained, which is called the original least
squares (OLS) estimator. The variance of the error can be estimated by σ̂2 =
(Y−Zθ̂θθ)T (Y−Zθ̂θθ)

m−d , see e.g. Patterson and Thompson (1971), where m− d in statistical
convention is called the number of degree of freedom.

When the error on different acquisition has violated variance, Equation (4.5)
becomes a heteroscedastic linear model (Goldberger , 1964). WLS then is the
method to apply, which minimizes the weighted sum of squared residuals

f(θ) =
m∑
i=1

wi(log Yi − Ziθθθ)2. (4.7)

When the weights www equal to the inverse model variance (square of SNR), www =

exp(2Zθθθ)σ−2, θ̂θθ is the best linear unbiased estimator (BLUE), see Aitken (1935).
Since σ2 is unknown, in practice the choice of the weights can be for example
www = Y orwww = exp(Zθθθ), see PIII for details.

4.3 MLE

In the standard linear model, the response typically follows an implicit assum-
ption that the components are i.i.d. Gaussian random variables which have a
roughly linear relation to the explanatory variables. Such an assumption does not
hold for the Rician model of the MR data, especially when SNR is lower than 3. A
linear model, when fitted to data that do not follow such a linearity assumption,
may result in a bad performance for estimation and prediction. Hence, estimation
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of the tensor and variance parameter with the Rician likelihood rises a nonlinear
regression problem.

Nonlinear regression is a form among regression techniques, in which the
observations are modeled as a function of a nonlinear combination of the model
parameters and one or more independent explanatory variables. The maximum
likelihood estimation (MLE) is among the most general and popular estimation
techniques and can directly solve the nonlinear regression problem. It usually
works with the log of the likelihood function utilizing the monotonic property of
the logarithm function and provides estimators by maximizing the object func-
tion: In DTI, the object function is the log-likelihood of the MR signal measure-
ments Y = (Yi, i = 1, · · · ,m)T , which is given by

logL(β|Y, Z) =const−m log(σ2)− 1

2σ2

m∑
i=1

(
Y 2
i + exp(2Ziθθθ)

)
(4.8)

+
m∑
i=1

log I0

(
Yi exp(Ziθθθ)

σ2

)
.

The parameter vector is specified by β = {θθθ, σ2}, “const” denotes the constant
term in short and L is also called the loss function in decision theory. The pri-
mary attraction of the maximum likelihood estimator (MLE) is in its asymptotic
properties, consistency and asymptotic normality (under regularity conditions).
Accordingly, the sampling distribution of β̂mle can be approximated by the nor-
mal distribution with mean β and covariance matrix I−1(β) where the latter is the
inverse of the expected Hessian matrix (Fisher information matrix). The proofs
can be found in e.g. Cramér (1946), Amemiya (1985).

Under the principle of maximizing the log-likelihood, the MLEs are typi-
cally rendered by calculating the first derivative (the score) of the log-likelihood,
considered as a function of each unknown parameter, set the score to zero, and
then solve the system of the equations. In using numerical methods, MLEs usu-
ally cannot be expressed in closed form and the system of the equations has to
be solved iteratively. The Newton-type algorithm is commonly applied in cal-
culation of MLEs, obtaining from the asymptotic normality of MLEs. When the
likelihood function is a linear model with normal noise, then the MLEs are equiv-
alent to the ordinary least squares estimators.

4.4 The Newton-Raphson Method and Fisher Scoring

The standard Newton-Raphson iteration, also called the Newton method, is a fre-
quently used optimization method in statistics. In line with the Newton scheme
the tensor parameter θθθ can be updated by

θθθ ← θθθ + S(θθθ)H(θθθ)−1.

The idea is to use the first two terms of the Taylor series expansion, which are
the score S(θθθ) := ∂Q/∂θθθ and the Hessian matrix H := ∂2Q/∂θθθT∂θθθ, being a log-
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likelihood quadratic in θθθ, to find the mode of the tensor by maximizing the log-
likelihood function Q(θθθ), where the restriction on the score S = 0 is running
through the whole iteration to convergence. The advantage of the Newton meth-
od is that it is invariant under constant, nonsingular and linear transformations.
However, calculating the second derivatives (H) may sometimes be very difficult
and monitoring the convergence may not be straightforward.

In 1925, Fisher (Fisher , 1925) used the Newton method, replacing the nega-
tive Hessian matrix by its expectation, H(θθθ)→ I(θθθ) := E(−H(θθθ)).

Eθθθ
(
H(θθθ)

)
= Eθθθ

(
S(θθθ)TS(θθθ)

)
is much easier, which allows us to avoid the computation of the second deriva-
tives of the log-likelihood. In DTI we use the Cholesky decomposition on the
tensor matrix D = LLT to guarantee the symmetric and positive semi-definite,
and consider θθθ as a function of L. The second derivatives can usually be approx-

imated by ∂2Q
∂LT ∂L

= −
∑ ∂Q

∂θθθj

∂2θθθj
∂LT ∂L

−
(
∂θθθ
∂L

)T(
∂2Q
∂θθθT ∂θθθ

)(
∂θθθ
∂L

)
, see e.g. Koay et al.

(2006). Using the Fisher scoring, we can thus reduce the computation substan-
tially by taking

E(∂Q/∂θθθ) = 0 and E
(

∂2Q

∂LT∂L

)
= E

(
(
∂θθθ

∂L
)T (

∂2Q

∂θθθT∂θθθ
)
∂θθθ

∂L

)
,

as in Green (1984).

4.5 Additional robustness of Fisher scoring

Since these Newton-type methods implicitly use the quadratic assumption on
the objective function, they usually converge fast. However, the algorithms are
sometimes sensitive to the initial points, and hence modifications of the scoring
method are necessary in order to ensure the desired increase of the likelihood in
each update. A trust-region approach is among the modifications where a step
parameter α ∈ [0, 1] is included and the update of θθθ is then given by

θθθ ← θθθ + αS(θθθ)I(θθθ)(−1). (4.9)

Other serious problems in the scoring method concerning the convergence
behavior may be: 1) Singular Fisher information appears in the iteration, and as
a result the algorithm goes uphill. 2) Inverse Fisher information reaches a large
value. To solve these problems and to make the algorithm stable, we have applied
the Levenberg-Marquardt (LM) method, a combination scheme of the gradient
descent method and the Fisher-scoring method to update θθθ by

θθθ ← θθθ +

[
I(θθθ) + γ diag

(
I(θθθ)

)]−1

S(θθθ),
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demonstrated by Marquardt (1963), where γ is the well-known LM parameter
updated in each iteration to avoid a singular or ill-conditioned I(·), and diag(·)
is the diagonalizing operator. Optimal choices of γ have been studied in many
works, and recently Fan and Yuan (2001), Yamashita and Fukushima (2001)
show that ‖S(θθθ)‖ and S(θθθ)TS(θθθ) perform well in practice. The alternative schemes
include

θθθ ← θθθ + α

[
I(θθθ) + ‖S(θθθ)‖diag

(
I(θθθ)

)]−1

S(θθθ), see PIII and PIV, (4.10)

θθθ ← θθθ + α

[
I(θθθ) + S(θθθ)TS(θθθ) · I

]−1

S(θθθ), see PI and PII,

combining the trust-region and the LM schemes, where I is the identity matrix.
Additionally, to reduce the computational burden, the LM scheme can be reduced
to Equation (4.9) by the pre-evaluation of I(·).

4.6 The Barrier method

The modified Fisher scoring method can solve nonlinear optimization problems
robustly with fast convergent rate. When the probabilistic model contains nonlin-
ear constraints, for example in DKI, both the diffusion tensor D and the apparent
kurtosis coefficients W are constrained (see details in PIII), it is possible to call
for some optimization tools in the scoring method to impose the constraints. The
barrier method is among the popular ones. The idea is to build a “barrier ”close
to the boundary of the cone Rm

+ , avoiding the constraint being close to the bound-
ary. When the barrier is close to zero, the solution of the optimization problem
with the barrier will be approximated to that of the original (Ruszczyński , 2006)
[Chapter 6].

For example, suppose we have a maximization (some time minimization)
problem with nonlinear constraint gj(θ̃) ≤ 0 and nonlinear log-likelihood func-
tion Q(θ̃), after introducing the barrier, an approximated system is given by

maximize Q(θ̃) + µ
m∑
j=1

ln(νj)

subject to gj(θ̃) + νj = 0, j = 1, · · · ,m. νj ≥ 0, gj(θ̃) ≤ 0, (4.11)

where µ is a positive scalar called barrier parameter, which should be decreasing
at each iteration. In DKI , θ̃ represents all the twenty one diffusion and kurto-
sis tensor coefficients. Applications of the Barrier method in DKI can be found
in PIII and PIV. Fisher scoring method can be applied in solving the problem
described in Equation (4.11). The reader however should bear in mind that in or-
der to implement the constrained Fisher scoring method efficiently, experienced
collaboration within the regularization (modified) scheme, the choices of step pa-
rameters and the barrier parameters are required.
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4.7 Generalized linear models

Solving the score functions for achieving the MLEs in DTI is obviously compu-
tationally demanding. In some cases, a nonlinear regression problem can be re-
duced to a linear domain by suitable transformation, for which the model be-
comes easy to understand. In statistics, a nonlinear regression problem is most
conveniently framed in the context of generalized linear models (GLMs) for whi-
ch a simple transformation can not achieve the linearity assumption in the model.
GLMs are extensions of the linear models, describing the linear relation between
a link function g(·) and the linear predictor ξ (Nelder and Baker , 1972), and the
choice of g(·) is of a wide range but depends on the distribution of the response.
In DTI, if the likelihood of the MR signal measurement can be reduced to a GLM
by

g

(
E(Yi|Z,θθθ)

)
= Zi0θ1 + Zi1θ2 + · · ·+ Ziθ6, for i = 1, · · · ,m, (4.12)

where Zθθθ is the linear predictor and E(Y |Z,θθθ) is the conditional expectation of
the responses, the model will simplify the estimation scheme and consequently
reduce the computation. For example, achieving the MLEs is usually fairly easy,
see Darmois (1935), Pitman (1936). GLMs are quite flexible in reducing the com-
plexity in a variety of nonlinear regression problems. However, there is an as-
sumption that in GLMs the response y is conditionally independent and from a
simple exponential family 1, and not all the density functions satisfy the assump-
tion that the response has an exponential family density. The Rician likelihood
of the MR signal measurement is such a case. In order to facilitate the nonlin-
ear regression problem in diffusion MRI into GLMs framework and to ease the
problem, we invoke the tool of data augmentation.

1 fξ,φ(y) = exp

(
yξ−a(ξ)

φ + c(y, φ)

)
, where ξ is called the natural parameter, φ is the scalar

or dispersion parameter describing the variance of the response and a(·), and c(·) are two
specific functions. In general, we have µ = a

′
(·), and σ2 = φa

′′
(·), see McCullagh and

Nelder (1989), Tutz (2011), Gelman et al. (2014).



PART II



5 DATA AUGMENTATION AND EM-MLE

We develop two new ideas, employing a widely used statistical tool, data aug-
mentation (DA), for reducing the nonlinear regression model of the MR signal
measurement into a generalized linear modeling (GLM) framework. These origi-
nal contributions involved in this thesis are the first to our knowledge applied in
diffusion MRI.

DA is commonly used in Bayesian statistics for bypassing difficulties in the
computation of the posterior distributions. The essential idea of DA, however,
arises naturally from the comprehensive statistical topic of missing data models
of the general form that the likelihood can be written as

g(y|β) =

∫
n

f(y, n|β) dn,

see Tanner and Wong (1987), Robert and Casella (2004), Gelman et al. (2014).
The model contains missing data, which are denoted by N . The likelihood
f(y, n|β) is called the complete-data likelihood and it is assumed that it is easier
to deal with than g(y|β). In DA we ease the problem by augmenting the quan-
tity n into the observations y. Such kind of augmented data may be thought to
contain missing data, although being a user-defined instrumental variable. The
augmented variables are named latent or auxiliary variables in the constructed
model.

5.1 DA in diffusion MRI

DA in count data space. Consider random variables (N,X), whereN is Poisson
distributed with mean t > 0 , and given N , X follows the conditional distribution
Gamma(N + 1, 1/(2σ2)), which distributional assumptions result in the join dis-
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tribution

Pt,σ2(N = n,X ∈ dx) = Pt(N = n)Pσ2(X ∈ dx|N = n) =

(tx)n

(n!)2(2σ2)n+1
exp

(
−t− x

2σ2

)
dx . (5.1)

Then the following distributional results follow:

1. It is well known that the marginal density of Y :=
√
X is Rician with prob-

ability distribution

Pt,σ2(Y ∈ dy) =
y

σ2
exp

(
−t− y2

2σ2

)
I0

(
y

σ

√
2t

)
dy.

If t = S2/(2σ2), then the density is in coincidence with Equation (4.1).
2. The conditional distribution of N given Y is

Pt,σ2(N = n|Y = y) = I0

(
y

σ

√
2t

)−1(
y2t

2σ2

)n
(n!)−2. (5.2)

In particular, we have Pt,σ2(N = 0|Y = 0) = 1.

Let µ > 0, we consider two i.i.d. random variables N and N
′ with Poisson(µ)

distribution and define a new probability distribution

pµ(n) := Pµ(N = n|N = N
′
) = I0(2µ)−1 µ

2n

(n!)2
, n ∈ N. (5.3)

The scaling factor I0(2µ) is a consequence of the identity

I0(2µ) = 0F1(1, µ2) =
∞∑
n=0

µ2n

(n!)2
, (5.4)

where 0F1(1, z) is the Gaussian hypergeometric function, see Gradshteyn and
Ryzhik (2007). We call pµ(n) the reinforced Poisson distribution with parameter
µ. Let µ = (yS)/(2σ2), we get Equation (5.2), and this distribution can be used to
generate the augmented data N .

Let β = {θθθ, σ2} as in Chapter 4.3, for each data point y we augment n, which
is unobserved, and then the original nonlinear regression model will be trans-
ferred to a model with the complete-likelihood

L

(
t(β)|x(y), n, Z

)
=

(tx)n

(n!)2(2σ2)n+1
exp

(
−t− x

2σ2

)
. (5.5)

As we interpreted before, this complete-likelihood comprises two parts: one is
from the Gamma distribution which does not depend on the parameter θθθ, and
the other one is from the Poisson distribution. When the tensor θθθ is considered as
a parameter vector, explicitly the other parameters are assumed to be known and
considered as constants. Then the complete-likelihood actually is reduced into a
GLM framework with the Poisson response N by omitting the Gamma part. The
Poisson likelihood is standard in GLM, and here we obtain the model

g(E(N |others)) = log(2σ2t)/2 = Zθθθ,

where the mean of the response t is E(N |others) = a
′
(ξ) and S = exp(Zθθθ).
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DA in phase data space The signal measurement in Equation (4.1) can also be
represented in the phase data space through a transformation from the real and
the imaginary images to the arctangent of their ratio, see Henkelman (1985), Zhu
et al. (2007), Mori (2007).

Let ϕ be the phase data

ϕ := arg

(
S + ε1 + iε2

)
∈ [0, 2π)

such that

S + ε1 = Y cos(ϕ), ε2 = Y sin(ϕ).

It follows from the chain rule that the joint density of ϕ and Y for fixed S and σ2

is given by

pS,σ2(y, ϕ) =
y

2πσ2
exp

(
− 1

2σ2

(
y cos(ϕ)− S)2 − 1

2σ2
y2 sin(ϕ)2

)
(5.6)

=
y

2πσ2
exp

(
− 1

2σ2

(
y2 + S2 − 2Sy cos(ϕ)

))
= pS,σ2(y)pS,σ2(ϕ|y).

Then we have:

1. Equation (5.6) is the signal model in phase data space, which is a convenient
representation in physics.

2. The conditional density

pS,σ2(ϕ|y) =
1

2πI0(Sy/σ2)
exp

(
Sy

σ2
cos(ϕ)

)
, ϕ ∈ [0, 2π), (5.7)

is an instance of the symmetric von Mises distribution on the circle, see
Fisher et al. (1987) [Chapter 4.3.2]. Note also that for y = 0 we obtain
the Gaussian likelihood

pS,σ2(εr = −S, εi = 0) =
y

2πσ2
exp

(
− S2

2σ2

)
,

and in such a case the augmentation is not needed.
3. When the MR signal is S = exp(Zθθθ),

L(β|y, ϕ, Z) =
y

2πσ2
exp

(
− 1

2σ2

(
y2 + exp(2Zθθθ)− 2 exp(Zθθθ)y cos(ϕ)

))
,

(5.8)

which is the complete-data likelihood of a GLM with Gaussian response up
to a constant depending on the observation and log link function

g(E(Y, ϕ|β, Z)) = log(µ) = Zθθθ,

conditionally on cosϕ, and the mean of the response, µ = exp(Zθθθ).
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5.2 The EM algorithm for fast estimation

The EM algorithm (Sundberg , 1974, Dempster et al. , 1977, Robert and Casella ,
2004) is usually considered as an efficient alternative to overcome difficulties in
maximizing the likelihood, especially concerning latent variables as in mixture
modeling. It is particularly straightforward when applied to models belonging
to the exponential family (Sundberg , 1974). This thesis elaborates the original
implementation of the EM algorithm in DTI in connection with data augmenta-
tion.

The general idea of the EM algorithm under missing data models can be
summarized as follows. Consider a statistical model

(
pϑ(y), ϑ ∈ β

)
, where β ⊆

Rd, and the likelihood of the observed data y = (y1, . . . , yn) is expressed as the
marginal of the joint likelihood

pϑ(y) =

∫
Z
pϑ(z, y) dz.

Here z = (z1, . . . , zn) ∈ Z and zi are interpreted as latent variables. When Z
is discrete, we replace integrals by sums. In the EM algorithm, starting with an
initial value ϑ(0) ∈ β, we calculate the expectation of the log-likelihood function
with respect to the conditional distribution of z given y under the current estimate
of the parameter ϑ at step k

Eϑ(k)
(
log pϑ(z, y)

∣∣y), (5.9)

being the expectation step. In the maximization step, we compute

ϑ(k+1) = arg max
ϑ∈β

{
Eϑ(k)

(
log pϑ(z, y)

∣∣y)} = arg max
ϑ∈β

{∫
Z

log pϑ(z, y)pϑ(k)(z|y)dz

}
(5.10)

(Dempster et al. , 1977), where the integration is with respect to the conditional
density

pϑ(k)(z|y) =
pϑ(k)(z, y)

pϑ(k)(y)
.

By Jensen’s inequality, the Kullback relative entropy of the conditional distribu-
tion pϑ(z|y) related to pϑ(k)(z|y), given by

K(ϑ(k), ϑ|y) := Eϑ(k)
(

log

(
pϑ(k)(z|y)

pϑ(z|y)

)∣∣∣∣y) =

∫
Z

log

(
pϑ(k)(z|y)

pϑ(z|y)

)
pϑ(k)(z|y)dz ,

is non-negative, which implies

log pϑ(y)− log pϑ(k)(y) ≥∫
Z

log
(
pϑ(z, y)

)
pϑ(k)(z|y)dz −

∫
Z

log
(
pϑ(k)(z, y)

)
pϑ(k)(z|y)dz , (5.11)
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and consequently

log pϑ(k+1)(y) ≥ log pϑ(k)(y) .

In other words, the EM step do not decrease the marginal likelihood of y. It fol-
lows also from Equation (5.11) that fixing a ϑ-subvector and maximizing with
respect to the remaining ϑ-coordinates do not decrease the marginal likelihood
of y. The EM algorithm is iterated until convergence to a fixed point ϑ(∞), a lo-
cal maximum of the marginal likelihood pϑ(y). When the local maximum is the
global one, ϑ̂ML = ϑ(∞) is the maximum likelihood estimator of the parameter.
In fact, it turns out that the limiting results from the EM coincide with the ML
estimates. The advantage of the EM algorithm is that, for some smart choices
of the augmented data z and the joint density pϑ(z, y), the maximization step in
Equation (5.10) can be calculated more easily than maximizing the marginal like-
lihood pϑ(y) directly, especially in cases where the latter is hard to evaluate. In
cases where pϑ(z, y) can be maximized using a standard software, the algorithm
is easy to implement. A minor drawback is that a large number of iterations are
needed.

5.3 EM in diffusion MRI

We illustrate the advantages of the EM algorithm in DTI by the Poisson data aug-
mentation. In details, the data augmentation is in accordance with the likelihood
of the signal measurement in Equation (5.5): Let t = S2

0 exp(2Zθθθ)/2σ2, the com-
plete data log-likelihood is then expressed as

Q := log
(
pt,σ2(N = n, y)

)
= c(y, n) + n log(t)− (n+ 1) log(σ2)− t− y2

2σ2
, (5.12)

where c(y, n) = n log(y2) − 2 log(n!) − (n + 1) log(2) does not depend on (t, σ2)

and will be omitted in the M step. The EM algorithm proceeds in two steps when
maximizing the likelihood: in the E step, given the current parameter estimates
(θθθ(k), S2

0
(k)
, σ2(k)

), we update the conditional expectation of the augmented data
by

E
t(k),σ2(k)

(
N
∣∣y) =

τ (k) I1

(
2τ (k)

)
I0

(
2τ (k)

) with τ (k) = y

√
t

2σ2(k)
.

In the M step, σ2 and S2
0 are updated by the recursions by the modes from their

marginals. In the E step, we can update the tensor parameter θθθ by applying the
Fisher scoring method, for more details see PII. Moreover, the EM algorithm also
works in the Bayesian framework to find point estimates, and we can invoke the
maximum a posteriori (MAP), more discussion can be found in PII.



6 BAYESIAN MODELING, COMPUTATION AND
REGULARIZATION

Bayesian theory stems from the Bayes formula

p(β|y) =
p(β, y)

p(y)
=
p(β)p(y|β)

p(y)
, (6.1)

where β stands for the vector of unknown quantities and y for data. When using
this formula, the right hand side needs to be specified despite that the normal-
izing constant p(y) =

∫
p(β)p(y|β)dβ may remain unknown. Therefore, in most

cases we use the non-normalized form

p(β|y) ∝ p(β)p(y|β), (6.2)

see e.g. Gelman et al. (2014), Robert and Casella (2004), Bernardo and Smith
(1994). Additionally, the Bayes formula implies the derivation of two posterior
densities expressed in Equation (5.2) and Equation (5.7) from the previous chap-
ter. In particular, in terms of the reinforced Poisson distribution it represents the
conditional distribution in Equation (5.2). It is defined by virtue of the fact that,
after normalization any convergent series with positive terms becomes a proba-
bility distribution, and in this case we know the normalizing constant.

Compared with the frequentist statistical inference, such as the maximum
likelihood method, the key difference to the Bayesian approach is that in the lat-
ter the inference on the parameters is based on the posterior density p(β|y), de-
pending not only on the likelihood but also on the prior and assumptions on the
unknown parameter encoded by the prior distribution p(β).

6.1 Prior selection

Specification of the prior for the unknown parameters is necessary in building a
Bayesian model. In what follows we are going to consider three classes of priors
in Bayesian modeling, which are used in this thesis, see PI.
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Conjugate priors. When the prior knowledge is allowed, the primary choice of
the prior distribution is from a conjugate family1. This is because the conjugate
priors lead to computational tractability, achieving the property that the prior is
chosen such that both the prior and the posterior belong to the same family of
distributions. This choice depends on the likelihood. This principle stems from
the Bayes formula in Equation (6.2) that conjugate priors give a closed-form pos-
terior, avoiding the tedious computation of the normalizing constant. However,
conjugate priors exist only when the likelihood belongs to an exponential family,
see e.g. Robert and Casella (2004) [Chapter 1.6], Schervish (1995) [Chapter 2].

Let the signal intensity be S = S0 exp(Zθθθ), so that we can distinguish the
non-diffusion weighting signal S0 separately from the tensor θθθ. Recall the Poisson
DA model in count data space: the joint likelihood in Equation (5.5), and consider
S0 as the parameter of interest, while the other parameters are assumed to be
fixed. Then the likelihood is reduced to the Poisson part

L(S2
0 |θθθ, σ2, Ni, Zi, i = 1, · · · ,m) = const× (S2

0)a exp(−bS2
0), (6.3)

with

a =
m∑
i=1

Ni, b =
1

2σ2

m∑
i=1

exp(2Ziθθθ).

When p(yi, Ni, i = 1, · · · ,m|S2
0) = L(S2

0 |θθθ, σ2, Ni, Zi, i = 1, · · · ,m) is viewed as
a function of S0, which is the Gamma density with hyperparameter ζ = (a, b),
belonging to the exponential family. We can choose the prior p(S2

0) ∼ G(c1, c2),
where G stands for the gamma distribution. Here c1 and c2 denote the shape
and inverse scale parameters, respectively. By the conjugate property, the full
conditional posterior of S2

0 given the other parameters is

p(S2
0 |θθθ, σ2, Ni, Zi, i = 1, · · · ,m) ∼ G(a+ c1, b+ c2), (6.4)

again a Gamma distribution, and we know the normalizing constant analytically.
In the case the prior information on S2

0 is weak, one can choose the hyperpa-
rameters c1 and c2 to be small positive constants, leading to a relatively flat prior
distribution over a large range. Then the posterior distribution is dominated by
the likelihood. On the other hand, in order to model a large dataset more accu-
rately, it is natural to involve multiple parameters and build a hierarchical model
so that we have enough parameters to explain the variation. In doing that, we
can assign prior distributions also to the hyperparameters.

1 Conjugate families can be denoted by P = {β 7→ π(β|ζ) : ζ ∈ E}, where E denotes a
Euclidean space, and ζ is a hyperparameter vector, including such as shape and scale pa-
rameters, or mean, for instance. The conjugate property is if p(β) = f(β|ζ0) ∈ P for some
ζ0, then the posterior will be formed by p(β|y) = f(β|ζ1), and ζ1 ∈ E depends on the re-
sponse y, see Koistinen (2010) for a detailed discussion or Bernardo and Smith (1994) for
a rigorous definition.
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Non-informative priors A key feature in the Bayesian learning process is that
it combines the prior and the likelihood. Therefore, the specification of the prior
plays a crucial role in modeling, representing the prior beliefs about the under-
lying problem. Non-informative priors attempt to avoid subjective elicitation
(information) about the parameters of interest into the model, see e.g. Robert
and Casella (2004), Box and Tiao (1992). Further, improper priors form a non-
informative class, commonly appearing in Bayesian modeling, with infinite mass∫
p(β)dβ = +∞. Note that the prior is allowed to be improper but the posterior

should always be a proper probability distribution.
In DTI we set σ2 to have a scale-invariant improper prior with density

p(σ2) ∝ 1/σ2. By Bayes theorem, the full conditional posterior density of σ2, given
θθθ, S0 and the augmented data Ni is

p(σ2|θ, S0, Ni, yi, Zi, i = 1, · · · ,m) ∝

exp

(
− 1

2σ2

m∑
i=1

{y2
i + exp(2Ziθθθ)S

2
0}
)

(σ2)
−
(

1+
m∑
i=1

(2Ni+1)
)
, (6.5)

which is an inverse Gamma distribution with shape and rate parameters

m∑
i=1

(2Ni + 1) and
1

2

m∑
i=1

(
y2
i + exp(2Ziθθθ)

)
, respectively.

Furthermore, the improper prior p(σ2) ∝ 1/σ2 can also be considered as a con-
jugate prior of the inverse Gamma form in the extreme case that the values of
the shape and inverse scale parameters tend to zero. By virtue of the conjugate
properties through the joint likelihood in Equation (5.5) viewed as a function of
σ2, we get the inverse Gamma as the full conditional posterior distribution of σ2

that belongs to the same family distributions as the prior. It should be noticed
that an improper prior may lead to a non-integrable (joint) posterior distribution.

Informative priors An informative prior transmits definite, or at least reason-
able information to the model. Basser and Pajevic (2003) suggested a multivariate
normal density for tensor matrix D, which preserves the algebraic relations and
geometric structure of the tensor elements. In their work, the distribution of the
tensor matrix D was addressed to be isotropic iff it has a density of the form

π(D) =
η5/2
√
η + 3λ

(π
√

2)3
exp

(
−1

2

(
ηtr(D2) + λ{tr(D)

}2
))

, (6.6)

where the hyperparameters η and λ should follow the constraints η > 0 and
λ > −η/3, and “tr” stands for the matrix trace. On the basis of this suggestion,
an isotropic centered Gaussian prior N (0,Ω−1) can be specified for the tensor
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parameter θθθ ∈ R6, where the precision matrix

Ω =



λ+ η λ λ 0 0 0

λ λ+ η λ 0 0 0

λ λ λ+ η 0 0 0

0 0 0 2η 0 0

0 0 0 0 2η 0

0 0 0 0 0 2η

 . (6.7)

is controlled by the hyperparameters η and λ.
From the statistical perspective, the specification of the prior being normally

distributed is widely used because of its important properties, see Fukunaga
(2013) for more details. Moreover, the Gaussian prior obtains maximum entropy
(see e.g. Friedman et al. (2001) ) among all distributions with support Rd and
with given covariance matrix Ω: It minimizes the amount of prior information
transmitted to the posterior. The prior can be easily extended for the tensor with
any higher order (d ≥ 6), see an example with the case of 4th order tensor in PI.

6.2 Markov chain Monte Carlo sampling

Bayesian modeling renders insight into how to interpret parameters of interest
in a regression problem via either point estimates or the probability distributions
of the parameters, which is achieved by simulation schemes. We shall start with
the latter one based on the fully Bayesian approach and discuss related sampling
algorithms.

Markov chain Monte Carlo (McMC) is a class of dynamic algorithms for
simulating samples from a target distribution. It involves three basic set-up con-
cepts:

1. Let us first define the transition (probability) kernel of a homogeneous Mar-
kov chain {Θ(t)} on the state space S as K(β, dα) = P (Θ(t+1) ∈ dα|Θ(t) = β)

for α, β ∈ S. The transition kernel is said to be reversible w.r.t. the proba-
bility distribution π if the Markov chain satisfies the local detailed balance
condition

π(dα)K(α, dβ) = π(dβ)K(β, dα), α, β ∈ S. (6.8)

This implies that π is an invariant (stationary) distribution and the global
balance condition

∫
α∈S

π(dα)K(α, dβ) = π(dβ) holds (Chung , 1967, Häg-

gström , 2002, Banerjee et al. , 2004). Note that the local balance implies
the global balance, but the opposite implication does not hold.

2. If the kernel K is π−irreducible and aperiodic with the invariant distribu-
tion π, then for π-almost all β,

lim
t→∞

Kt(β, dα) = π(dα) in total variation,
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see Tierney (1994) [Theorem 1]. By Nummelin (1984) [Proposition 6.3],
the chain is ergodic. About irreducibility and aperiodicity, rigorous mathe-
matical definitions can be found e.g. in Tierney (1992), Nummelin (2002),
Roberts and Rosenthal (2004). Moreover, the ergodic theorem ensures that
the sample path average converges to the expectation under the distribution
π when it is finite,

1/T
T∑
t=0

f(Θ(t))→ Eπ(f), as T →∞, (6.9)

see Tierney (1994) [Theorem 3]. It should be noticed that although the law
of large numbers (LLN, see e.g. Durrett (2010)) follows from the ergodic
theorem, here we do not need the sequences f(Θ(t)) to be independent.

3. Working with an McMC algorithm involves several issues: 1) the choice of
the kernel K; 2) the length of the burn-in period, which brings the Markov
chain close to the equilibrium after starting from an arbitrary state, and
should be ignored when computing the empirical average; 3) the practi-
cal running time T : if the choice of T is not large enough, the chain may
not mix well enough, whilst if T is too large, then the computational burden
will be considerable; 4) the simulation variance that controls the accuracy
of the estimates of expectations obtained through McMC. This is why we
commonly see variance reduction techniques also to be embarked in some
McMC strategies. Adaptive McMC is among such techniques.

In summary, McMC may be interpreted as that the transition kernel Kt is ergodic
with limiting distribution π, for any initial stage Θ(0) of the chain, the empirical
mean expressed in Equation (6.9) converges to the expectation w.r.t. the equilib-
rium distribution π. This is achieved by a long and realizable chain (Besag et al. ,
1995).

6.3 Gibbs sampler

Two popular McMC methods involved in this thesis are Gibbs sampler and the
Metropolis-Hastings algorithm. Gibbs sampler (Geman and Geman , 1993) is the
best known among the McMC algorithms. The idea behind Gibbs sampling is
that at each recursive cycle, we draw a sample βj from its full conditional dis-
tribution given the other components β−j := {β1, · · · , βj−1, βj+1, · · · , βn}, where
n is the number of components of β. For instance, in DTI we draw (S2

0)t+1 and
(σ2)t+1 at state t from their full conditional posteriors. The reader should be aware
that Gibbs sampling may contain a dangerous situation that “Gibbs sampler will
lead to seemingly reasonable inferences about a nonexistent posterior distribu-
tion”. Hobert and Casella (1996) argued and pointed out that this has appeared
in some published works. This danger appears mainly when the prior is im-
proper, in which situation a mathematical demonstration of the propriety of the
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(joint) posterior is necessary. An example regarding to the prior distribution of
the tensor can be found in PI.

6.4 Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) algorithm (Metropolis et al. , 1953, Hastings ,
1970) is an alternative way of setting up an McMC method, which is a univer-
sal tool in statistical inference for exploring high-dimensional probability dis-
tributions. The idea behind MH is to generate a Markov chain by an accep-
tance/rejection rule, converging to the target distribution.

Let π(Θ) = c−1p(Θ|y) be the target probability density for a parameter Θ ∈
Rd, where the normalizing constant

c =

∫
Rd

p(Θ)p(y|Θ)dΘ <∞

may be unknown. Starting from state (t), we draw a proposal Θ′ from a user-
defined proposal density q(Θ(t)|Θ′) as a suggested value in the successive state of
a Markov chain in the parameter space, and calculate the MH acceptance ratio

r(Θ(t),Θ′) := min

{
p(Θ′|y)q(Θ(t)|Θ′)
p(Θ(t)|y)q(Θ′|Θ(t))

, 1

}
. (6.10)

With probability r(Θ(t),Θ′) the proposed value is accepted and set to be Θ(t+1) =

Θ′; otherwise we keep the old value Θ(t+1) = Θ(t).
It is straightforward to check that the resulting density of the transition ker-

nel

k(Θ(t),Θ′) = r(Θ(t),Θ′)q(Θ′|Θ(t)) + (1− A(Θ(t)))δΘ(t)(Θ′),

with δΘ(t) denoting the point mass at Θ(t) and A =
∫
r(Θ(t),Θ′)q(Θ′|Θ(t))dΘ′, satis-

fies the detailed balance condition

π(Θ(t))r(Θ(t),Θ′)q(Θ′|Θ(t)) = π(Θ′)r(Θ′,Θ(t))q(Θ(t)|Θ′),

and that the Markov chain (Θt) generated by MH is reversible w.r.t. the target dis-
tribution π(β), see Robert and Casella (2004) [Chapter 7], Tierney (1992), Num-
melin (2002).

One main issue in the MH algorithm is the choice of the proposal density.
Namely, the construction of McMC proposals with good mixing properties, espe-
cially in high-dimensional cases, crucially determines the success of the McMC
procedure. Robert and Casella (2004) provide further discussion about this is-
sue. In DTI, we suggested a Gaussian proposal

q(θθθ|θ̂θθ) ∝ exp

(
−1

2
(θθθ − θ̂θθ)>

(
Ω + I(θ̂θθ)

)
(θθθ − θ̂θθ)

)
(6.11)
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for updating the tensor parameter θθθ. This follows the rather convenient scheme
in Bayesian framework, where the posterior distribution of the tensor is assumed
to be unimodal and symmetric.

To summarize, Gibbs sampler has a natural appeal due to its easier form
than the MH algorithm and can be less efficient than the MH in computation.
What is most important, the Gibbs algorithm needs the full conditional poste-
riors from which we can directly draw samples, whilst the MH needs only the
unnormalized posterior. MH is a rather universal method and allows a fairly
wide range of choices for the instrumental distribution (the proposal), especially
when the full conditionals are unknown. However, as we indicated, to find an
ideal proposal for getting good mixing properties is sometimes challenging. Fur-
thermore, Gibbs sampler can be viewed as a special case of the MH algorithm,
setting the proposal to be equivalent with the full conditionals, in which case the
acceptance rate will be equal to 1. In addition, both algorithms can be combined
together as a hybrid strategy reaching the same limiting (equilibrium) distribu-
tion to solve complicated problems as described in our example.

6.5 Adaptive McMC

As was previously mentioned, it is not an easy task to find a good proposal for a
particular problem concerning complex and high-dimensional problems. A com-
mon statistical recipe is to use the random walk Metropolis (RWM) algorithm,
due to its easy and efficient implementation. However, a multivariate normal
proposal, q(θθθ(t+1)|θθθ(t)) ∼ N (θθθ(t),Σ(t)) with θθθ ∈ Rd, as we illustrated, does not be-
long to the RWM. It may occur that if the variation allowed by the proposal is
too small, the convergence rate is very slow and the chain does not achieve the
stationary state in a reasonable time. Instead, if the variation in the proposal is
too large, then the amount of rejection is untenable. In both cases the inference on
the simulated chain is unreliable, see e.g. by Atchadé et al. (2009). Gelman et al.
(1996, 2014) suggested to use adaptive algorithms, where the proposal distribu-
tion is allowed to depend on the whole past of the process. For example, we may
choose the covariance matrix in the Gaussian proposal as Σ(t) = (2.382)/d · Σ̂(t),
where Σ̂(t) is the empirical covariance matrix. This choice is proved to be optimal
for some toy models in Roberts et al. (1997), Roberts and Rosenthal (2001).

6.6 Variational Bayes approximation

Variational Bayes (VB) is an approximative method for posterior computation.
Unlike in McMC, approximating the target distribution by the empirical distri-
bution of a Markov chain exploring the state space that typically needs long iter-
ations, VB on the other hand intends to solve an optimization problem leading to
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marginal posterior approximations. It is often preferred as an efficient algorithm
employed in high-dimensional regression problems in connection with big data,
for instance as a tractable signal processing algorithm to infer on parameters.
The idea of the mean-field variational Bayes framework (VB) is to approximate
the joint posterior distribution of the parameter β = (β1, . . . , βm),

p(β|y) = p(β)p(y|β)/p(y),

simply by a product of probability distributions q̂(β) = q̂1(β1)q̂2(β2) · · · q̂m(βm).
Note that this factorized solution usually appears in the EM based VB algorithm
(see e.g. Beal et al. (2002)) to make the variational optimization problem easy
to solve, but it is not a general restriction in the VB algorithm. The fixed-form
variational Bayes (Saul and Jordan , 1996, Salimans and Knowles , 2013) as an
alternative choice can be adopted in a wide variety of models without such a
factorization.

The VB marginals q(β) in the approximation of p(β|y) are achieved mini-
mizing the Kullback divergence (KL)

K
(
p(·|y) ‖ q(·)

)
=

∫
q(β) log

(
q(β)

π(β|y)

)
dβ, (6.12)

see Kullback and Leibler (1951). The minimum is obtained by solving iteratively
the VB-marginal recursions

q̂
(t+1)
j (βj) ∝ exp

(∫
log p(y, β)

∏
i∈{−j}

q̂
(t)
i (βi)dβ1 · · · dβj−1 dβj+1 · · · dβm

)
, (6.13)

as in Šmídl and Quinn (2006). This equation states that the essence of VB is to ap-
proximate the marginal posterior p(βj|y) by the VB marginal q̂j(βj). The method
therefore sacrifices estimation accuracy through the (usually) facilitative approx-
imative form of the marginals, the VB marginal, to gain in computational effi-
ciency. The detailed explanation and derivation of the VB updating algorithm can
be found in a wide choice of literature e.g. Ormerod and Wand (2010), Jaakkola
and Jordan (2000).

Prerequisites for VB Equation (6.13) can be further written as

q̂j(βj) ∝ exp

(
Eβ−j

log p(βj|y, β−j)
)
.

Apparently, the right hand side in this expression is in connection with Gibbs
sampler through the full conditionals p(βj|y, β−j). The vital prerequisite for which
the algorithm can work is the tractability of the VB marginals. In other words,
we are able to compute the moments or expectations of VB parameters β−j that
appear in q̂j(βj). Secondly, the full conditionals p(βj|y, β−j) should be either
tractable or one should be capable of dealing with those. In the latter case, the
data augmentation and/or the Laplace approximation may help in configuring



60

the intractable full conditionals, see our example in the next paragraph. Thirdly,
it is worthwhile to point out that improper priors may lead the VB approxima-
tion to have an unwanted performance, which may yield unreliable inference or
a convergence failure, see Zhao (2013) [Chapter 3] for concrete examples. There-
fore, it is necessary to check the propriety of the posterior before employing the
algorithm.

Stopping criteria Without a proper tolerance, the VB algorithm can be even less
efficient than the McMC. The stopping criteria for the VB algorithm is based on
the left hand side in the information inequality∫

log

(
p(β, y)

q̂(t)(β)

)
q̂(t)(β)dβ ≤ log p(y)

with the joint distribution of the parameters, the response p(β, y) = π(β)p(y|β),
and the marginal density of the response p(y). The left hand side should be in-
creasing between consecutive iterations, and when it does not increase anymore
up to numerical tolerance, the algorithm can be stopped. In PIV we proposed a
VB algorithm with DKI in diffusion MRI.

6.7 Bayesian regularization and GMRF

A salient goal in this context is to restore the diffusion tensor derived images from
the original degraded diffusion MRI data by removing the oscillation caused by
artefacts from structural noise such as bulk movement and random noise, and
to preserve important structural information of the images. The Bayesian regu-
larization as one of denoising tools in image studies is easy to apply in Bayesian
framework with any model of signal decay where the data have the Rician distri-
bution.

Bayesian regularization as a smoothing technique, in the spirit suggested
by Geman and Geman (1993), has been successfully applied in image restora-
tion, see e.g. Frandsen et al. (2007), Krissian and Aja-Fernández (2009). In this
approach the most commonly used prior model that describes the relevant image
attributes, e.g. interdependencies between associated pixels in a given neigh-
borhood system, is the Markov random field (MFR), or the so-called Gibbs-type
distribution 2. The accurate definition and interpretation of MRF can be found
e.g. in Hammersley and Clifford (1971), Cross and Jain (1983), where the au-
thors formulate three postulates: positivity, Markov property through a neigh-
borhood condition, consistency condition and homogeneity. The principal prop-
erty of MRF is conditional independence. The notations stem from the graph

2 A Gibbs distribution may be represented by a probability function π(w) =
1
T1

exp(−U(w)/T2), where T1 and T2 are two normalizing constants, U(·) refers to the en-
ergy function, see Hammersley and Clifford (1971), Geman and Geman (1993), Geman and
Graffigne (1986), Frandsen et al. (2007) for a detailed explanation and specific examples.



61

theory, see e.g. Golumbic (2004). For any set W , we define the exterior bound-
ary of W by ∂W := {w ∈ V \ W : ∃v ∈ W with w ∼ v}, where V is the set
of all the pixels (also called lattices in mathematics, nodes or vertices in graph the-
ory) in a given image, and W ⊆ V . The closed neighborhood 3 W is defined as
W := W ∪ ∂W . Additionally, we use ∂{v} := {w ∈ V : w ∼ v} to indicate the
neighborhood of v. Here “∼” stands for a neighborhood relation, V \W denotes
a set {v ∈ V : v /∈ W}. Local and global Markov properties given by

θθθW ⊥⊥ θθθV \W | θθθ∂(W )

are in fact equivalent according to the Hammersley-Clifford terminology (Ham-
mersley and Clifford , 1971, Besag , 1974, Clifford , 1990).

Gaussian Markov random fields (GMRF) The Gaussian assumption is exten-
sively used in statistical models and is the most common choice in a MRF due to
its convenient computational and tractable properties. When the tensor param-
eter θθθ = (θ1, · · · , θn) ∈ Rn has a multivariate normal distribution with mean µ

and precision matrix (inverse covariance matrix) Q, then a GMRF w.r.t a finite
undirected graph G = (V, E) is defined by

π(θθθ) = (2π)−n/2det(Q)1/2 exp(−1/2(θθθ − µ)TQ(θθθ − µ)T ),

see also Rue and Held (2005) [Chapter 2], where V is the set of all voxel of interest,
E denotes the set of edges {(v, w) ∈ E , with v, w ∈ V, v 6= w}, and det is the
determinant matrix operator. Moreover, the precision matrix Q > 0 and Qvw 6=
0⇔ {v, w} ∈ E for all v 6= w, and in DTI n = 6.

6.8 Nearest neighboring system in 3D neural networks

In a true scenario, neighboring pixels usually form an ensemble of similar inten-
sity. The most common neighborhood structure is the nearest neighboring, see
e.g. Hans et al. (2007). In this thesis, we count the nearest six pixels as neighbors
of v and in the three-dimensional (3D) spatial space, depicting in Figure 16. The
triangle nearest neighbors therefore do not fall into our neighborhood configu-
rations, see more details in PI. Additionally, Figure 16 illustrates a simple graph
where the set of cliques 4 consists of all adjacent pairs of edges.

In our neighboring system, we apply the neighborhood structures to blocks
of pixels, i.e., a cubic lattice contains a set of pixels, and we restrict the blocks
always to be rectangular. In Bayesian analysis, we can set a tuning parameter to
control the size of the block, which is within the range from one single pixel to the

3 The closed neighborhood is that for any lattice v ∈ W , v per se is included in the neighbor-
hood system.

4 A clique is the building block to configure a MRF, its elaboration can be found in e.g. Ham-
mersley and Clifford (1971), Geman and Geman (1993), Clifford (1990).
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FIGURE 16 Neighborhood structure of one pixel. The black circle indicates the pixel v,
the blue color points are the neighbors of v. The black-red lines show the
edges in this simple graph, where the dashed lines connect the neighboring
pixels from the front and the back in the 3D network.

cubic lattice containing all the pixels from a given image. However, the reader
should bear in mind that the realistic neighborhoods must be small enough to
ensure feasible computational loads and big enough to reach the goal of image
restoration (Cross and Jain , 1983, Geman and Geman , 1993).

6.9 GMRF for DT

In diffusion tensor profile, these voxels are mutually connected and locate on
several consecutive slices (layers) of the brain. Water molecules diffuse along
the underlying fibres across several voxels and, as a consequence, the tensors
are not independent. The correlation between two tensors / blocks of tensors
depends not only on the distance but also on the location. This is why we need
neighboring configurations to detect the tensors from the MR images which are
corrupted and/or contain missing observations. Figure 17 illustrates tensor fields
of 2nd order and 4th order, respectively, from a region of interest (ROI) without
(left) and with (right) regularization. Both pairs of figures show the regularization
effects, which are more obvious in the 4th order tensor field than in the 2nd order
one.

An isotropic Gaussian pairwise difference prior for DT The neighboring sys-
tem can be simply interpreted by a homogeneous (stationary and isotropic) Gaus-
sian Markov random fields (GMRF), see Banerjee et al. (2004). Under the basis
of the formalization of the isotropic Gaussian prior in Equation (6.6), we propose
a proper isotropic prior for a GMRF of 3 × 3 symmetric matrices (D(v) : v ∈ V )



63

FIGURE 17 The upper two figures describe the 2nd order tensor fields (with zoom) of
a ROI from a slice of a healthy human brain without (left image) and with
(right one) regularization. The bottom two figures are the 4th order ten-
sor fields from the same ROI of 4th order. The color-coded representation
shows the main direction of the principal eigenvalue of the tensor: red, left-
right; green, anterior-posterior; blue, superior-inferior.
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for the 2nd order tensor fields in the 3D spatial space, which is given by

π(D(v) : v ∈ V ) =

(2π)−|V |d/2 det(Ω)|V |/2 det(IV + ρLV )d/2 exp

(
−1

2
θ>
{

(IV + ρLV )⊗ Ω
}
θ

)
(6.14)

∝ exp

(
−1

2

∑
v∈V

{
ηTrace(D(v)2) + λ

{
Trace(D(v))

)2}
− ρ

2

∑
v∼w

(
ηTrace({D(v)−D(w)}2) + λ

{
Trace(D(v)−D(w))

}2
))

, (6.15)

where ρ ≥ 0 tunes the dependence between tensors at different voxels, LV de-
notes the Laplacian matrix of the graph V , and |V | counts the number of nodes in
the set V . We can omit the normalizing constant

(2π)|V |d/2det(Ω)|V |/2 det(IV + ρLV )d/2

in the calculation. An analogous construction can be found in Kaipio and Som-
ersalo (2006) termed as the least-squares Tikhonov regularization for penalizing
the likelihood. Bayesian regularization has been applied in PI and PIV, where
we have more details.
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7 CONCLUSION AND DISCUSSION

7.1 Two schemes of DA

In this thesis, we propose two different schemes of data augmentation on the
same problem. It is a natural concern for the distinction of the two strategies
with detailed statistical interpretation, though they are intended to solve the same
problem.

1. Firstly, the two DA schemes operate in the different data spaces.
2. DA in the count data space reduces the nonlinear regression problem par-

tially into the GLM framework, meaning that the complete-data likelihood
expressed in Equation (5.5) is not the rigorous one of GLMs: When the ten-
sor θθθ is considered as the only unknown parameter, the likelihood then falls
into the GLM framework with Poisson response; whereas in the phase data
case, the Rician likelihood has completely transferred into a GLM frame-
work with the complete-likelihood in Equation (5.8) by augmenting the
phase data ϕ.

3. We have derived the conditional probability distributions of both augmen-
ted data, expressed in Equation (5.2) and Equation (5.7). The relevance of
these two schemes depends on the objectives of data analysis, i.e., whether
we are interested in the point estimation (e.g. image estimation) or in the
posterior distribution of parameters of interest (e.g. the tensor probability
distribution). If the goal is prone to the former, the augmented data could
be fully ignored. For example, in the EM algorithm we are only interested
in the mean (conditional expectation) value of the latent variable in order
to find the modes of the unknown parameters. From the Bayesian point of
view, both the latent variable and the unknown parameters are uncertain
and are treated similarly. This means that we need a generating mechanism
to calculate the posterior distribution of each unknown. The exposition and
advantages of DA provide that the elaboration of specific algorithms are
needed in parameter estimation.
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7.2 Comparison

We have proposed different methods for tensor estimation in both frequentist and
Bayesian framework. Each method has its own merits, the general comparison in
statistical viewpoint is given below.

McMC vs VB We conclude this chapter with a further discussion of the dif-
ferences between the McMC and VB. The aim of McMC is to generate Markov
chains on the state space and explore the state space by computing empirical
averages under the joint posterior distribution of the unknown parameters and
latent variables, while the VB algorithm converges to a fixed point distribution by
approximating the posterior marginals. The algorithm is stopped after reaching
suitable tolerance(s). These are essential differences between the McMC and the
VB methods. Moreover, the success of the MH procedure depends crucially upon
the proper choices of the proposals, whilst the VB algorithm intends to speed up
computation. But both algorithms need the posterior to be proper. Incidentally,
in this chapter we use the terminology: the joint, conditional, and marginal pos-
terior, which had been well-defined in pervasive Bayesian statistics literature, e.g.
in Gelman et al. (2014) [Chapter 5].

McMC vs EM In the data augmentation version, the EM algorithm related to
the McMC can be seen as a precursor of Gibbs sampler (Robert and Casella , 2004).
The EM has, however, essential differences related to the McMC: the McMC is ex-
ploring the state space to compute empirical averages under the joint posterior
distribution of the unknown parameters and latent variables, whereas the EM in
MLE and MAP is a deterministic algorithm. The latter converges to a maximizer
of the posterior distribution and is reduced to the MLE when the prior is flat. The
augmented data N do not need simulation in these two strategies. While analyz-
ing the joint posterior distribution by McMC is computationally intensive due to
all the unknowns including the latent variables, and we need to draw samples
from their full conditionals or from the approximated forms. On the other hand,
McMC renders full inference about the uncertainty of the unknown parameters
via the joint posterior probability distribution. By the analogy, when compar-
ing the frequentist and Bayesian inference, the advantages of the latter is that we
can include restrictions to the parameters in forms of probability distributions,
e.g. regularization can be simultaneously added into the model in a probabilistic
manner. The EM algorithm also works in the Bayesian framework with different
perspectives. If our focus is on point estimates, we can invoke the maximum a
posteriori (MAP) estimation to achieve the objective by maximizing the posterior
density. EM-MAP had been implemented in PII.
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7.3 Summary of the data and the included papers

7.3.1 Real data

The real data used in this thesis are collected by using either the T2 weighted or
the mixed spin echo sequences. The HARDI data used in this thesis are mainly
from multiple shells. The authors have no conflicts of interest to disclose.

7.3.2 Summary

The summary of the included papers is given below, where we use the terminol-
ogy listed at the end of this chapter.

PI Bayesian McMC. Data augmentation in Rician noise model and Bayesian
Diffusion Tensor Imaging.

The main contributions:

– Poisson data augmentation, transforming the nonlinear regression model
under the Rician noise model into the GLM framework.

– Bayesian modeling and McMC method for diffusion tensor estimation in
DTI and HARDI.

– Regularization technique for modeling the tensor dependence by introduc-
ing an isotropic prior of the tensor fields by GMRF.

Advantages of this work are:

1. The proposed estimation scheme is under the Rician noise model by data
augmentation, which therefore can work on the DW-MRI data in a wide
range of the frequency domain.

2. We analyze the probability distribution of each parameter restricted by the
prior knowledge.

3. A Bayesian regularization scheme is simultaneously introduced into the
model for image denoising.

4. The method is implemented on both synthetic and real data with compari-
son under the assumptions of tensor independence and dependence.

Shortage:

1. This work does not impose the positivity constraint in the tensor estimation.

PII EM in MLE & MAP. Fast Estimation of Diffusion Tensors under Rician
noise by the EM algorithm.

The main contributions:
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– This work presents a detailed estimation scheme by the EM (greedy) algo-
rithm in MLE and MAP under the 2nd and 4th order tensor models.

– We clarify the difference between the Bayesian and the frequentist method.
– We explain that our EM-MLE is faster than the traditional ML method in

theory and in computation.
– We compare our EM algorithm with the EM algorithm in phase space re-

cently presented in the literature, and clarify the difference.
– We apply a stabilized Fisher scoring method for fast convergence of the ten-

sor coefficients.
– We extend our method from the signal compartment model presented in the

work to the multicompartment case.
– The method is implemented and the precision is experimented under the

2nd and 4th order tensor models on synthetic and real data.

Advantages of this work are:

1. The proposed scheme is under the Rician noise modeling via the Poisson
data augmentation. Therefore, it can work on the DW-MRI data in a wide
range of the frequency domain.

2. The method has dramatically reduced the computational burden compared
with the traditional MLE method, and can proceed in parallel computation
across each voxel.

Shortages:

1. The method is under the assumption of tensor independence without regu-
larization.

2. This work again does not impose the positivity constraints into the tensor
parameters.

PIII EM in MLE. An improved EM algorithm for solving MLE in constrained
diffusion kurtosis imaging of the human brain.

The main contributions:

– This work introduces von Mises data augmentation, transforming the non-
linear regression model into the GML framework under the Rician noise
model in diffusion kurtosis imaging (DKI).

– We propose an EM algorithm in MLE working in DKI, which is one of the
advanced diffusion weighting imaging techniques.

– A constrained stabilized Fisher-scoring algorithm is fully presented by us-
ing the barrier method, in which the specific constraints in DKI have been
imposed into the algorithm, including positivity of the tensor parameters.

– The improvements and accuracy of the estimation scheme have been illus-
trated by implementing the proposed method on both synthetic and real
data by comparing the weighted least squares (WLS) and MLE methods.
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Advantages of this work are:

1. The method considers all the necessary constraints in DKI, and it is the
fastest among the MLE methods.

2. From model per se, DKI can detect the degree of deviation of Gaussianity
of diffusion in vivo, providing much more important structural information
by the image contrasts.

3. The proposed estimation scheme can work in parallel computation across
each voxel, which is therefore practically feasible.

Shortages:

1. The method again is under the assumption of tensor independence without
regularization.

2. The method can only work with the b-value less than 3000 mm2/s, and the
data must at least contain three different b-values. These drawbacks are
coming from DKI model per se.

PIV Bayesian VB. Variational Bayes estimation in constrained kurtosis diffu-
sion imaging under a Rician noise model.

Main contributions:

– We introduce a Bayesian regularization model in DKI, where the tensor de-
pendence is modeled by including an isotropic prior of the quadratic pa-
rameters with respect to the tensor coefficients by the GMRF. The positivity
constraints in DKI therefore have been imposed directly into the model.

– We implement the Variational Bayes algorithm, which is fully established
for DKI estimation by von Mises data augmentation under the Rician noise
model.

– A constrained stabilized Fisher scoring method is applied for updating ten-
sor parameters, where we use twice the Laplace approximation and the
delta method to construct the estimation scheme via the VB algorithm.

– The method is implemented for both cases (refer to dementia with Lévy
bodies) and control data. A test study has been also conducted by using
real data.

Advantages of this work are:

1. The proposed scheme has imposed all the natural constraints in DKI.
2. The Bayesian strategy aims for analyzing the posterior probabilities of the

parameters of interest. Therefore, the results are expected to be more accu-
rate than the frequent methods. We use the VB algorithm to estimate the
optimum of each posterior distribution, which led to computational feasi-
bility in the estimation.
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3. Regularization scheme was simultaneously constructed in the modeling un-
der the Bayesian framework, which from the smoothness viewpoint is more
efficient and less uncertain compared with the common penalized frequent
methods.

4. We analyzed the case and control data of the human brain by the proposed
method in this advantage imaging protocol.

Shortages:

1. The proposed scheme can not be applied parallelly across voxels, but it is
possible to conduct parallel computation among the blocks of tensors which
have certain large distance.

2. Since the work is describing a new method in DKI, it is inevitable that only
the DW-MRI data with the b-value less than 3000 mm2/s and containing at
least three different b-values can be considered.
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Ruszczyński, A.P. 2006. Nonlinear Optimization, vol.2. Princeton University Press.

Salimans, T., and Knowles, D.A. 2013. Fixed-form variational posterior approx-
imation through stochastic linear regression. International Society for Bayesian
Analysis, 8(4): 837-882.

Salvador, R., Pena, A., Menon, D.K., Carpenter, T.A., Pickard, J.D., Bullmore, E.T.,
2004. Formal characterization and extension of the linearized diffusion tensor
model. Human Brain Mapping, 24(3), 144-155.



81

Aja-Fernández S. and Vegas-Sanchez-Ferrero G. , 2016. Statistical analysis of noise
in MRI. Springer

Saul, L.K. and Jordan, M.I., 1996. Exploiting tractable substructures in intractable
networks. Advances in Neural Information Processing Systems, 486-492.

Schervish, M.J.,1995. Theory of Statistics. New York, Springer-Verlag.

Schultz, T. and Seidel, H.P., 2008. Estimating crossing fibers: A tensor decompo-
sition approach. IEEE Transactions on Visualization and Computer Graphics, 14(6):
1635-1642.

Slichter, C., 2013. Principles of Magnetic Resonance. Springer Science & Business
Media.

Sundberg, R., 1974. Maximum likelihood theory for incomplete data from an ex-
ponential family. Scandinavian Journal of Statistics, 49-58.

Sundgren, P.C., Dong, Q., Gomez-Hassan, D., Mukherji, S.K., Maly, P., Welsh,
R., 2004. Diffusion tensor imaging of the brain: review of clinical applications.
Neuroradiology, 46(5): 339-350.

Stejskal, E.O. and Tanner, J.E., 1965. Spin diffusion measurements: spin echoes in
the presence of a time-dependent field gradient. The Journal of Chemical Physics,
42(1): 288-292.

Stieltjes, B., Brunner, R.M., Fritzsche, K., Laun, F., 2013. Diffusion Tensor Imaging:
Introduction and Atlas. Springer Science & Business Media.

Tabesh, A., Jensen, J.H., Ardekani, B.A., Helpern, J.A., 2011. Estimation of tensors
and tensor-derived measures in diffusional kurtosis imaging. Magnetic Reso-
nance in Medicine, 65(3): 823-836.

Tanner, M.A. and Wong, W.H., 1987. The calculation of posterior distributions by
data augmentation. JASA, 82(398): 528-540.

Thomalla, G., Glauche, V. and Weiller, C. Röther J., 2005. Time course of walle-
rian degeneration after ischaemic stroke revealed by diffusion tensor imaging.
Journal of Neurology, Neurosurgery & Psychiatry, 76(2): 266-268.

Tierney, L., 1992. Exploring posterior distributions using Markov chains. DTIC
Document, 563-570.

Tierney, L., 1994. Markov chains for exploring posterior distributions. The Annals
of Statistics, 22(4): 1701-1728.

Torrey, H., 1956. Bloch equations with diffusion terms. Physical Review, 104: 563-
565.



82

Tournier, J., Calamante, F. and Connelly, A., 2012. MRtrix: diffusion tractography
in crossing fiber regions. International Journal of Imaging Systems and Technology,
22(1), 53-66.

Tuch, D.S., Weisskoff R.M., Belliveau, J.W., Wedeen V.J., 1999. High angular reso-
lution diffusion imaging of the human brain. Proceedings of the 7th Annual Meet-
ing of ISMRM, Philadelphia, 321.

Tuch, D.S., 2002. Diffusion MRI of complex tissue structure. Ph.D. thesis, MIT.

Tuch, D.S., Reese, T.G. Wiegell, M.R., Wedeen, V. J., 2003. Diffusion MRI of com-
plex neural architecture. Neuron, 40(5): 885-895.

Tutz, G., 2011. Regression for Categorical Data, vol.34. Cambridge University Press.

Veraart, J., Van Hecke, W. and Sijbers, J., 2011. Constrained maximum likelihood
estimation of the diffusion kurtosis tensor using a Rician noise model. Magnetic
Resonance in Medicine, 66(3): 678-686.

Watson, R., Blamire, A.M. and Colloby, S.J. Wood, J.S., Barber, R., He, J.B. and
O’brien, J.T., 2012. Characterizing dementia with Lewy bodies by means of dif-
fusion tensor imaging. Neurology, 79(9): 906-914.

Wozniak, J.R., Mueller, B.A., Bell, C.J., Muetzel, R.L., Lim, K.O., Day, J.W., 2013.
Diffusion tensor imaging reveals widespread white matter abnormalities in
children and adolescents with myotonic dystrophy type 1. Journal of Neurology,
260(4): 1122-1131.

Yablonskiy, D.A., Bretthorst, G. L. and Ackerman Joseph, J.H., 2003. Statistical
model for diffusion attenuated MR signal. Magnetic Resonance in Medicine, 50(4):
664–669.

Yamashita, N. and Fukushima, M., 2001. On the rate of convergence of the
Levenberg-Marquardt method. Topics in Numerical Analysis, 239-249.

Zhao, H., 2013. Variational Bayesian Learning and its Applications. Ph.D. thesis.
University of Waterloo.

Zhu, H., Zhang, H., Ibrahim, J.G., Peterson, B.S., 2007. Statistical analysis of dif-
fusion tensors in diffusion-weighted magnetic resonance imaging data. Journal
of the American Statistical Association, 102(480): 1085-1102.

Zhu, X., Gur, Y., Wang, W., Fletcher, P.T., 2013. Model selection and estimation of
multi-compartment models in diffusion MRI with a Rician noise model. Infor-
mation Processing in Medical Imaging, 644-655.

Øksendal, B., 2003. Stochastic Differential Equations. An Introduction with Applica-
tions. Springer.



83

Özarslan E. and Mareci T.H., 2003. Generalized diffusion tensor imaging and an-
alytical relationships between diffusion tensor imaging and high angular reso-
lution diffusion imaging. Magnetic Resonance in Medicine, 50(5): 955-965.

Özarslan, E., Shepherd, T.M., Vemuri, B.C., Blackband, S.J., Mareci, T.H., 2006.
Resolution of complex tissue microarchitecture using the diffusion orientation
transform (DOT). NeuroImage, 31(3): 1086-1103.

Šmídl, V. and Quinn, A., 2006. The Variational Bayes Method in Signal Processing.
Springer Science & Business Media.



ORIGINAL PAPERS 

I

DATA AUGMENTATION IN RICIAN NOISE MODEL  
AND BAYESIAN DIFFUSION TENSOR IMAGING 

by 

Gasbarra, D, Liu, J & Railavo, J. 2019 

Submitted manuscript 



Data augmentation in Rician noise model and

Bayesian Diffusion Tensor Imaging

DARIO GASBARRA ∗, JIA LIU † AND JUHA RAILAVO ‡.

Abstract

Diffusion Magnetic Resonance Imaging is a powerful technique for detecting
anisotropies in the diffusion of water molecules that corresponds to nervous fibers
in the living brain. In this process, spectral data from the displacement distribu-
tion of water molecules are collected by a magnetic resonance scanner. The signals
are corrupted by a Rician noise, which leads to a non-linear regression problem.
Diffusion tensor imaging is the simplest approach postulating a Gaussian displace-
ment distribution at each volume element. The common inference is based on the
linearized log-normal regression model that can only fit the spectral data at low fre-
quencies. This solution, however, fails to treat with the high frequency data contain-
ing detailed information of the water displacement with low signal to noise ratios.
In this paper, we propose to use Poisson data augmentation to represent the Rician
likelihood, and directly work with the Rician noise model and cover the full spectral
range. We propose a Bayesian hierarchical model and a Markov chain Monte Carlo
method in performance of tensor estimation with the 2nd and 4th of tensor models
in diffusion MRI. A regularization scheme is suggested in Bayesian framework for
image smoothness. The method has implemented with real data of human brain.

Key words and phrases: Brain Imaging, Bayesian Smoothing, Data Augmentation,
Generalized Linear Model, Gaussian Random Field, Image Regularization, Inverse
Problem, Markov Chain Monte Carlo, Poissonization.

1 Introduction

Diffusion as a physical phenomenon has been an essential part of the history and devel-
opment of magnetic resonance imaging. Hahn (1950) observed the effect of diffusion to
spin-echoes, Carr and Purcell (1954) studied the effects of diffusion on free precession,
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and Torrey (1956) modified the Bloch equations to include diffusion term with spatially
varying magnetic field. Stejskal and Tanner (1965), in their seminal paper, introduced
the pulsed gradient spin echo sequence and showed the potential of diffusion related
signal attenuation to probe the motion of molecules and to define the diffusion coef-
ficient. In 1973 P. Lauterbur (who shared the Nobel Prize with Sir Peter Mansfield in
2003) made history publishing his groundbreaking paper entitled “Image formation by
induced local interactions: Examples employing nuclear magnetic resonance ”. In his
experiment Lauterbur superimposed a magnetic field gradient on the static uniform
magnetic field. Because of the Larmor principle, different parts of the sample would
have different resonance frequencies and so a given resonance frequency could be asso-
ciated with a given position. He also pointed out that it is possible to measure molecu-
lar diffusion from the decay of the MR-signal. Diffusion weighted magnetic resonance
imaging was introduced by Le Bihan et al. (1986), measuring the displacement of pro-
tons. Moseley et al. (1990) observed that diffusion in the white matter was anisotropic.
In anisotropic media the mobility of the molecules is orientation dependent and can
not be represented by one single diffusion coefficient. The three dimensional process
of diffusion modeled by diffusion tensors was introduced by Basser et al. (1994). In
neuroimaging, we measure restricted diffusion within neuron cells, and the principal
diffusion eigenvector corresponds to the direction of a nervous fiber.

The Rician distribution is the law of the square root of a non-central χ2 random
variable. It appears in several applied fields, including signal processing, and also in
mathematical finance as the transition density of the Bessel process, modeling stochas-
tic volatility and short rate (Baldeaux and Platen, 2013). It is well known that the noise
in an MR measurement has a Rician distribution instead of Gaussian (Jones and Basser,
2004; Henkelman, 1985; Zhu et al., 2007; Assemlal et al., 2009; Landman et al., 2007).
Several authors e.g., Zhu et al. (2007); Salvador et al. (2005) add the noise-induced bias
into the measurement so that a simple Gaussian noise model can be fitted to the data.
But none of them can easily gain the potential important information (e.g., Mori and
Tournier, 2014; Burdette et al., 2001) from the high-frequency data, because in the high
b-value range the corrected data does not fit the Gaussian distribution. The Rician noise
model was used in e.g., Gudbjartsson and Patz (1995); Andersson (2008); Lauwers et al.
(2010), but in all these cases the methods dealing with Rician noise are computationally
intensive. In this work we will deal directly with the Rician likelihood by using data
augmentation, reducing the non-standard regression problem to the standard Poisson
regression. This novel approach applies to the full spectral range, including the obser-
vations in the low SNR regime which after discretization are recorded as zeros. In Liu
et al. (2016) the EM algorithm based on the same data augmentation was used to com-
pute the Maximum Likelihood (MLE) and Maximum A Posteriori (MAP) estimators.
Here we follow the Bayesian approach and, after building a hierarchical model assign-
ing an isotropic Gaussian prior to the diffusion tensor, we use Markov chain Monte
Carlo to analyze the posterior distribution. The proposed method applies directly to
diffusivity models of increasing complexity as higher order tensor models. Another



major difference compared with Liu et al. (2016) is that in this work we also model the
voxel dependence for the image regularization.

The paper is structured as follows: the nonlinear regression problem with Rician
noise model is described in Section 2. The main contribution of the paper, data aug-
mentation by Poissonization is introduced in Section 2.2. In Section 3, after a general
discussion on McMC methods, we construct the Bayesian hierarchical model for a sin-
gle tensor (Section 3.2), and the Gibbs-Metropolis algorithm for sampling posterior dis-
tribution (Section 3.3). In Sections 4.4 and 4.5, we reformulate different tensor models
into our Bayesian framework. Section 5.1 conduct simulation studies to compare the
performance of our method and the other popular methods in DTI from several syn-
thetic datasets. The implementation of these methods is illustrated in Section 5.2 with
an analysis of human brain data.

2 Generalized linear modeling with Rician likelihood

2.1 Rician noise

We shall consider signal-observation pairs (S, Y ) with S ∈ R and

Y = |S + εx + iεy| =
√

(S + εx)2 + ε2y , (2.1)

where (εx, εy) are independent with Gaussian distribution N (0, σ2), and ε = (εx + iεy)

is a complex Gaussian noise. It follows that Y has a Rician distribution with density

pS,σ2(y) =
y

σ2
exp

(
−y2 + S2

2σ2

)
I0

(
yS

σ2

)
, (2.2)

where

I0(z) =
1

π

π∫
0

exp(z cos t)dt (2.3)

is the modified Bessel function of first kind. When the signal to noise ratio (SNR) |S|/σ
is large enough, the Rician likelihood Equation (2.2) is well approximated by a log-
normal density with mean log(S) and variance σ2S−2. In such case S and σ2 are esti-
mated by using iterated Weighted Least Squares (WLS) (see Zhu et al., 2007; Koay et al.,
2006). We will consider instead the low SNR regime and work directly with the Rician
likelihood.

2.2 Poissonization and data augmentation

Lemma 2.1. Consider random variables (N,X), where N is Poisson distributed with mean
t > 0 , and given N , X has a conditional distribution Gamma(N + 1, 1/(2σ2)), that is

Pt,σ2(N = n,X ∈ dx) = Pt(N = n)Pσ2(X ∈ dx|N = n)

=
(tx)n

(n!)2(2σ2)n+1
exp

(
−t− x

2σ2

)
dx . (2.4)



Then

1. Y :=
√
X has a Rician marginal with density

Pt,σ2(Y ∈ dy) =
y

σ2
exp

(
−t− y2

2σ2

)
I0

(
y

σ

√
2t

)
dy.

2. The conditional distribution of N given Y is given by

Pt,σ2(N = n|Y = y) = I0

(
y

σ

√
2t

)−1(
y2t

2σ2

)n

(n!)−2. (2.5)

In particular Pt,σ2(N = 0|Y = 0) = 1.

Proof 1. 1 is well known. After a change of variable sum over n by using the representation

I0(2z) = 0F1(1, z
2) =

∞∑
n=0

z2n

(n!)2
(2.6)

(Gradshteyn and Ryzhik, 2015), where 0F1(1, z) is a Gaussian hypergeometric function. Equa-
tion (2.5) is a consequence of the Bayes formula.

We shall give a name to the distribution Equation (2.5). In Appendix Equation (A)
we discuss random sampling from it.

Definition 2.2. For τ > 0, consider two i.i.d. random variables N,N ′ with Poisson(τ ) distri-
bution, and define the probability distribution

pτ (n) := Pτ (N = n|N = N ′) = I0(2τ)
−1 τ2n

(n!)2
, n ∈ N.

We call (pτ (n) : n ∈ N) the reinforced Poisson distribution with parameter τ .

2.3 Non-linear regression and reduction to GLM

In the follow-up we assume a non-linear regression model with Rician noise and sig-
nals Si = exp(Ziθ), i = 1, . . . ,m, where Z ∈ m × (d + 1) is a known design matrix,
while θ = (θ0, θ1, . . . , θd)

� ∈ R
d+1 and σ2 are the unknown parameters.

From a statistician’s point of view, a non-linear regression problem is most conve-
niently framed in the context of Generalized Linear Models (GLM), where the measure-
ments have probability density of the form

pZθ,φ(y) = fτ,φ(y) = c(y, φ) exp

(
yτ − a(τ)

φ

)
, (2.7)

see McCullagh and Nelder (1989). The function a(τ) in Equation (2.7) specifies an ex-
ponential family of distributions for the response Y , and τ is determined implicitly by
the relation g(μ) = Zθ, where μ = Eτ,φ(Y ) = a′(τ) is the expectation and g(μ) is the
link function. Unfortunately, this assumption is not satisfied by the Rician likelihood
in Equation (2.2). In order to reduce the non-linear regression problem to the frame-
work of generalized linear models, by using Equation (2.4), we propose a novel data



augmentation strategy for parameter estimation under the exact Rician likelihood. For
each data point (Yi, Zi), we introduce an unobservable variable Ni which follows a
GLM with Poisson response corresponding to a(τ) = exp(τ), φ = 1, and link function
g(μ) = log(2σ2μ)/2, and by Lemma 2.1 we obtain

Corollary 2.3. In the settings of Lemma 2.1 with t = exp(2Zθ)/(2σ2) we have the following.

• The marginal distribution of Y has a Rician density of Equation (2.2).

• The conditional distribution Pt(N = n|Y = y) is a reinforced Poisson distribution pτ (n)

with parameter

τ =
y exp(Zθ)

2σ2
.

3 Bayesian Inference

3.1 Use of improper priors

We discuss first the integrability of the Rician likelihood 2.2 with respect to a flat im-
proper prior for θ = (θ0, θ1, . . . , θd) ∈ R

d+1.

Proposition 3.1. The following conditions are equivalent.

1. ∫
Rd+1

m∏
j=1

{
Yj

σ2
exp

(
−Y 2

j + exp(2Zjθ)

2σ2

)
I0

(
Yj exp(Zjθ)

σ2

)}
dθ < ∞.

2.

inf
θ∈R(d+1)

max
1≤j≤m

{
Zjθ

}
> 0 . (3.8)

3. The convex cone generated by the Z-rows covers the whole space Rd+1.

Proof. Directly from the inequalities

exp

(
−
(
Y − S

)2
2σ2

)
≥ exp

(
−Y 2 + S2

2σ2

)
I0

(
Y S

σ2

)
≥ exp

(
−
(
Y + S

)2
2σ2

)
,

for Y, S ≥ 0 . � (3.9)

The problem arises from the signal model Sj = exp(Zjθ). With a linear model Sj = Zjθ,
the Rician likelihood would be always integrable under the flat prior dθ.

Consider now the improper prior π(dσ) = σ−2dσ2 for the noise variance. We have∫ ∞

0

m∏
j=1

{
Yj

σ2
exp

(
−Yj + exp(Zjθ)

2σ2

)
I0

(
Yj exp(Zjθ)

σ2

)}
σ−2dσ2 ≤

m∏
j=1

Yj

∫ ∞

0

exp

(
− 1

2σ2

m∑
j=1

(
Yj − exp(Zjθ)

)2)
σ−2(1+m)dσ2 =

( m∑
j=1

(
Yj − exp(Zjθ)

)2)−m

(m− 1)!2m
m∏
j=1

Yj ,



which is bounded w.r.t θ when the linear system Zθ = log Y does not have solution,
as it is the case with probability 1 when rank(Z) < m. In such case the posterior
distribution will be proper when the prior of θ is proper, and also with a flat θ-prior
under condition Equation (3.8).

3.2 Prior Specification and Hierarchical Model

In the follow-up we shall consider the (d+1)-dimensional non-linear regression model
with design matrix [1�Z] and parameter (θ0, θ1, . . . , θd)

� producing the signals Si =

S0 exp(Ziθ), i = 1, . . . ,m, with S0 > 0. The intercept θ0 = logS0 plays a special role
and it is assigned a conjugate prior. Namely,

• S2
0 has a Gamma prior with shape and rate parameters aS , bS > 0, respectively.

• θ ∈ R
d has a Gaussian prior with precision matrix Ω and mean μθ ∈ R

d.

• σ2 has an inverse Gamma prior with shape and rate parameters aσ, bσ ≥ 0, re-
spectively. We include also the case with aσ = bσ = 0, which corresponds to the
scale invariant prior with density π(σ2) ∝ 1/σ2. We have shown in 3.1 that such
an improper prior combined with the likelihood produces a proper posterior dis-
tribution.

Given the parameters (θ, S0, σ
2), the augmented data pairs {(Ni, Xi) : i = 1, . . . ,m}

are conditionally independent with conditional distributions

• [
Ni

∣∣θ, S0, σ
2
] ∼ Poisson

(
S2
0 exp(2θ · Zi)/(2σ

2)

)
,

• [
Xi

∣∣Ni, σ
2
] ∼ Gamma

(
Ni + 1, 1/

(
2σ2

))
, and Yi =

√
Xi.

3.3 Gibbs-Metropolis algorithm

We describe in details the Markov chain Monte Carlo (McMC) algorithm sampling ef-
ficiently the parameters and the augmented data from the posterior distribution
p(θ, S0, σ

2, N |Y ). For the general theory of McMC we refer to Robert and Casella (2005).
We combine sequentially several block updates, where in turn a subset of parameters
is updated keeping the remaining ones fixed. When it is feasible, we sample the pa-
rameters from their full conditional distribution (Gibbs’ update). For the regression
parameter θ, we use Laplace approximation to construct a Gaussian proposal distribu-
tion approximating the full conditional.

Updating N The auxiliary random variables Ni are updated by sampling from the
full conditional distribution. Conditionally on θ, S0, σ

2 and the measurements (Yi, Zi),
the r.v.’s Ni are conditionally independent reinforced Poisson distributed with param-
eters

τi =
Yi exp(Ziθ)S0

2σ2
, i = 1, . . . ,m,



respectively. In Appendix A we discuss Monte Carlo sampling from the reinforced
Poisson distribution.

Remark 3.2. The augmented data N is generated “on the fly” from the full conditional distri-
bution above when needed. It is not necessary to store N into the computer memory.

Updating θ Conditionally on N = (Ni : i = 1, . . . ,m), S2
0 and σ2, the parameter θ is

independent of the observations Yi, the full conditional distribution being proportional
to

p(θ|σ2, N) ∝ exp

(
−1

2
(θ − μθ)

�Ω(θ − μθ) +

(
2

m∑
i=1

NiZi

)
θ − S2

0

2σ2

m∑
i=1

exp(2Ziθ)

)
.

(3.10)

We choose a Gibbs-Metropolis update with Gaussian proposal distribution

q(θ|θ̂) ∝ exp

(
−1

2
(θ − θ̂)�

(
Ω+ J(θ̂)

)
(θ − θ̂)

)
, (3.11)

where have employed the Laplace approximation of Equation (3.10) around its mode
θ̂. Here σ2 and N are fixed and the precision matrix is the Fisher information

J(θ) = Eθ

(
∇θ log p(N |θ, S0σ

2)�∇θ log p(N |θ, S0σ
2)

)
=

2S2
0

σ2

m∑
i=1

exp(2Ziθ)Z
�
i Zi.

To find the mode θ̂, we use the iterative Fisher scoring algorithm (see McCullagh and
Nelder, 1989; Lange, 2013, Chapter 10), and the details can be found in Liu et al. (2016).
The Hastings log-ratio for θ̃ sampled from the proposal distribution q(·|θ̂) is given by

log

(
p(θ̃|σ2, N)q(θ|θ̂)
p(θ|σ2, N)q(θ̃|θ̂)

)
=

(
θ̂�

(
Ω+ J(θ̂)

)− μ�
θ Ω− 2

m∑
i=1

NiZi

)
(θ − θ̃)

+
S2
0

2σ2

m∑
i=1

{
exp(2Ziθ)− exp(2Ziθ̃)

}
+

1

2
θ̃�J(θ̂)θ̃ − 1

2
θ�J(θ̂)θ .

Remark 3.3. Computing the Laplace approximation Equation (3.11) to the full conditional
density Equation (3.10), is crucial in order to get high acceptance rates in McMC. Without
data augmentation, the GLM-likelihood in Equation (3.10) should be replaced by a product of
Rician likelihoods. It is also possible to compute by Fisher scoring the Laplace approximation of
the full conditional under such Rician likelihood. However, for large sample size m, it could be
not computationally affordable to do that at every McMC update of every single tensor.

The algorithm is based on the assumption that the Fisher scoring algorithm con-
verges to same global maximum θ̂ for all initial values θ. However, with a finite number
of iterations, the approximate mode θ̌ obtained by starting the Fisher scoring algorithm
from the proposal value θ̃ will be slightly different than the approximate mode θ̂ ob-
tained starting from the initial value θ. In order to correct for this discrepancy we have
to run the Fisher scoring algorithm a second time starting from the proposed value θ̃



and reaching another approximate maximum θ̌. In this case we redefine the Hastings
log-ratio as

log

(
p(θ̃|σ2, N)q(θ|θ̌)
p(θ|σ2, N)q(θ̃|θ̂)

)
=

1

2
log

(
det(Ω + J(θ̌))

det(Ω + J(θ̂))

)

+

(
μ�
θ Ω+ 2

m∑
i=1

NiZi

)
(θ̃ − θ) +

S2
0

2σ2

m∑
i=1

{
exp(2Ziθ)− exp(2Ziθ̃)

}
− 1

2
θ̃�Ωθ̃ +

1

2
θΩθ +

1

2
(θ̃ − θ̂)�

(
Ω0 + J(θ̂)

)
(θ̃ − θ̂)− 1

2
(θ − θ̌)�

(
Ω+ J(θ̌)

)
(θ − θ̌) .

Updating S0 We see that

p(N |θ, S0, σ
2) ∝ (S2

0)
a exp

(−bS2
0

)
with

a =
m∑
i=1

Ni, b =
1

2σ2

m∑
i=1

exp
(
2Ziθ

)
,

and the conjugate prior π(S2
0) ∝ Gamma(aS , bS). Then S2

0 is Gamma(aS + a, bS + b)-
distributed conditionally on θ,N and σ2. We sample ξ from this Gamma distribution
and set S0 =

√
ξ. For small values of the shape parameter we sample log(S0) by using

the rejection sampling algorithm of Liu et al. (2017), described in Appendix B.

Updating S0 without data augmentation We derive an alternative proposal distribu-
tion for S0 by substituting in the full conditional distribution [S0|θ, σ2, N, Y ] the aug-
mented data (Ni) with the current values of the conditional expectations
E(Ni|Yi, S0, θ, σ

2). For fixed σ2 and θ, define

τi(S0) =
S0 exp(Ziθ)Yi

2σ2
and w(τ) = τ

I1(2τ)

I0(2τ)
.

The proposal is obtained by taking the square root of S̃2
0 sampled from the gamma

distribution

q(S2
0 → S̃2

0) ∝ (S̃2
0)

(
aS−1+

m∑

i=1
w(τi(S0))

)
exp

(
−S̃2

0

(
bS +

1

2σ2

m∑
i=1

exp(2Ziθ)

))
.

The Hastings log-ratio for the transition S0 → S̃0 is given by
m∑
i=1

{
log I0

(
2τi(S̃0)

)− log I0
(
2τi(S0)

)}

+ log Γ

(
aS +

m∑
i=1

W (τi(S0))

)
− log Γ

(
aS +

m∑
i=1

W (τi(S̃0))

)

+

{
2 log(S0) + log

(
bS +

1

2σ2

m∑
i=1

exp(2Ziθ)

)} m∑
i=1

w(τi(S̃0))

−
{
2 log(S̃0) + log

(
bS +

1

2σ2

m∑
i=1

exp(2Ziθ)

)} m∑
i=1

w(τi(S0)) .



Updating σ2 The variance parameter is updated in the Gibbs step. Conditionally on
the augmented data (Ni, Yi, Zi) and the parameter θ, the conditional density of σ2 up
to a multiplicative constant is given by

p(σ2|θ, S0, Ni, Yi, Zi, i = 1, . . . ,m) ∝

exp

(
− 1

σ2

{
bσ +

1

2

m∑
i=1

{
Y 2
i + exp(2Ziθ)S

2
0

}})
(σ2)

−
(
aσ+1+

m∑

i=1
(2Ni+1)

)
,

which corresponds to the inverse gamma distribution with shape and rate parameters

(
aσ +

m∑
i=1

(2Ni + 1)

)
and

(
bσ +

1

2

m∑
i=1

(
Y 2
i + exp(2Ziθ)S

2
0

))
, respectively.

Remark 3.4. Note that the noise variance σ2 appears in both augmented likelihood factors

p(Ni|Z, θ, S0, σ
2)p(Yi|Ni, σ

2),

which makes the pair (S0, σ
2) identifiable.

Updating σ2 without data augmentation Alternatively, for fixed S0 = S0(v) and
θ = θ(v), let Si = S0 exp(Ziθ), and let

Wi(σ
2) =

I1

(
YiSiσ

−2

)

I0

(
YiSiσ−2

) .

Then we propose σ̃2 from the inverse Gamma proposal distribution

q(σ2 → σ̃2) ∝ σ̃−2(m+aσ+1) exp

(
− 1

σ̃2

(
bσ +

m∑
i=1

{
Y 2
i + S2

i

2
− YiSiWi(σ

2)

}))
,

with the Hastings log-ratio for accepting the move σ2 → σ̃2 given by

(m+ aσ)

{
log

(
bσ +

m∑
i=1

{
Y 2
i + S2

i

2
− YiSiWi(σ̃

2)

})

− log

(
bσ +

m∑
i=1

{
Y 2
i + S2

i

2
− YiSiWi(σ

2)

})}
+ σ−2

0

m∑
i=1

YiSiWi(σ̃
2)

− σ̃−2
m∑
i=1

YiSiWi(σ
2) +

m∑
i=1

{
log I0(YiSiσ̃

−2
)− log I0

(
YiSiσ

−2
)}

.

4 Diffusion Tensor Imaging

In the follow-up we apply the method to Diffusion Tensor Imaging (DTI), with a special
emphasis on the choice of the rotation invariant Gaussian priors for the tensor param-
eter θ.



4.1 The 2nd-order Tensor Model

Without going into the physics of DTI, we sketch the diffusion data acquisition from the
statistical point of view. After applying two consecutive and opposite gradient pulses
with amplitude |q| in the direction u = q/|q| ∈ S2,∗ with time delay t, MR produces at
every spatial location v a signal

Sv(q) = Sv(0)Ev

(
exp

(
i q ·Vt

))
=

Sv(0) exp

(
−1

2
qDvq

�
)

= Sv(0) exp

(
−buDvu

�
)
, (4.12)

where Sv(0) is the concentration of water molecules at v, the control q is a 3-dimen-
sional pulse gradient, and b = |q|2/2. In Equation (4.12) appears the characteristic
function of a centered Gaussian random vector Vt with covariance matrix Dv

†, which
is interpreted as the displacement of a water molecule with initial position v in the
time interval [0, t] between the two pulses. The symmetric and positive definite matrix-
valued field (Dv) describes the geometry of the media and it is the object of interest.
Note that for an eigenvector q with eigenvalue g > 0 satisfying Dq = gq, the MR signal

S(q) = S(0) exp
(−g

2
|q|2) (4.13)

is highest when q belongs to the eigenspace of the smallest eigenvalue of D, and lowest
in the principal direction. In neuroimaging, we measure restricted diffusion within
neuron cells, and the principal diffusion eigenvector corresponds to the direction of
the neurons in the voxel v. The MR-signals Sv(q) are measured with additive complex
Gaussian noise Equation (2.1), and magnitude measurements Yv(q) are recorded. It
is assumed that these are independent and Rician distributed with signal and noise
parameters Sv(qi) and σ2

v , respectively. Since MR-images may contain local artefacts,
it is safer to assume that the noise level varies with the spatial location v. Note also
that the MR-data is digitalized. Small values of the measurements, which are possible
at high b-value, are coded as zeros. In order to use the log-normal approximation and
to estimate the parameters by WLS, these zero values should be discarded, inducing
sampling bias. With our method we don’t need to do that, simply the latent variables
take value Ni = 0 when Yi = 0 (Lemma 2.1) and contribute to the augmented likelihood
accordingly.

In this simple 2nd-order tensor model it is convenient to parametrize the signal as
S(q) = S0 exp(Zθ), where

θ = (θ1, . . . , θd)
� :=

(
Dxx, Dyy, Dzz, Dxy, Dxz, Dyz

)�
is the vector of tensor parameters, and the design matrix Z has rows

Z(q) = −(
q2
x/2,q

2
y/2,q

2
z/2,qxqy,qxqz,qyqz

)
.

∗S2 ⊂ R
3 denotes the unit sphere.

†In the neuroimaging literature another convention is used, where D = E
(
V�

t Vt
)
/2 is referred as diffu-

sion tensor and b = |q|2.



Isotropic Gaussian Prior for the 2nd-Order Tensors Note that Equation (3.8) is never
satisfied in the DTI experiment: to see that, consider θ = (θ0, θD) ∈ R

d+1 such that
θD ∈ R

d parametrizes a positive 2nd-order tensor D and

log(S0) = θ0 <
1

2
min

{
qjDq�

j : 1 ≤ j ≤ m
}
.

Therefore, in order to obtain a proper posterior distribution, it is necessary to use a
proper prior distribution for both the tensor parameter θD and intensity S0. In DTI it
is natural to assign a diffusion tensor prior which is invariant under rotations of the
coordinate system. In Basser and Pajevic (2003), Jeffreys (1962), Gasbarra et al. (2017),
it is shown that the distribution of zero mean 3×3 symmetric Gaussian random matrix
D = (Di,j : 1 ≤ i ≤ j ≤ 3) is isotropic if and only if it has a density of the form

p(D) =
η5/2

√
η + 3λ

(π
√
2)3

exp

(
−1

2

(
ηTrace(D2) + λ{Trace(D)

}2
))

(4.14)

with η > 0 and λ > −η/3, and Equation (4.14) follows from the characterization of an
isotropic Gaussian random field in terms of the distribution of its spherical harmonic
coefficients.

For the vector θ = (D11, D22, D33, D12, D13, D23), this corresponds to a Gaussian
distribution with zero mean and precision matrix

ΩD =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ+ η λ λ 0 0 0

λ λ+ η λ 0 0 0

λ λ λ+ η 0 0 0

0 0 0 2η 0 0

0 0 0 0 2η 0

0 0 0 0 0 2η

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.15)

In particular E(D2
ij) = (2η)−1 when i �= j, and E

(
DiiDjj

)
=

(
δij − λ/(η + 3λ)

)
η−1,

with negative correlations for λ > 0.

4.2 Modeling diffusivity with the 4th-order tensors

Several authors, Basser and Pajevic (2007); Mori and Tournier (2014); Ghosh et al.
(2009); Moakher (2009); Ghosh et al. (2012) argue that the 2nd-order tensor model Equa-
tion (4.12) fails to capture complex tissue structures such as fibers crossing and branch-
ing in a single voxel. In fact, while we have a diffusion matrix at every spatial location
in the time scales we are considering, the scale of water diffusion is of smaller order
than the spatial resolution of the image. The 2nd-order tensor model assumes that
the diffusion matrix is constant within one voxel. In reality a voxel contains a whole
population of cellular structures, corresponding to a population of diffusion tensors.
Instead of measuring the characteristic function of a centered Gaussian random vector,
the MR-experiment measures the characteristic function of a Gaussian mixture, and



consequently Equation (4.12) should be replaced by

Sv(q)

Sv(0)
= Ev

(
exp

(
i q ·Vt

))
=

∫
M+

exp

(
−1

2
q�Dq

)
dQv(D) , (4.16)

which is the characteristic function of the random displacement Vt of a water molecule
randomly selected within the voxel. Here Qv is a probability distribution for the pop-
ulation of diffusion tensors living in the space M+ ⊂ R

6×6 of symmetric and positive
definite matrices. We see from Equation (4.16) that the signal Sv(q) must be a decreas-
ing w.r.t. |q|. In order to model the exponential decay, we introduce the diffusivity

dv(u) =
2
(
logSv(0)− logSv(q)

)
|q|2 ,

where u = q/|q| is the gradient direction. In the 4-th order tensor model it is assumed
that the signals are given by

S(q) = S0 exp
(−bd(u)

)
= S0 exp

(
Zθ

)
, q ∈ R

3, (4.17)

with diffusivity

d(u) = D : (u⊗ u⊗ u⊗ u) :=

3∑
i1=1

3∑
i2=1

3∑
i3=1

3∑
i4=1

Di1i2i3i4ui1ui2ui3ui4 , u ∈ S2, (4.18)

a homogeneous polynomial of degree 4, parametrized by the totally symmetric 4-th
order tensor

D =
(
Di1i2i3i4 : 1 ≤ i1 ≤ i2 ≤ i3 ≤ i4 ≤ 4

)
.

In the left-hand side of Equation (4.17) the tensor parameter are given by

θ =
(
D1111, D2222, D3333, D1122, D1133, D2233,

D1123, D1223, D1233, D1112, D1113, D1222, D2223, D1333, D2333

)�
,

and the design matrix Z ∈ R
m×15 has rows

− (u4
1, u

4
2, u

4
3, 6u

2
1u

2
2, 6u

2
1u

2
3, 6u

2
2u

2
3,

12u2
1u2u3, 12u

2
2u1u3, 12u

2
3u1u2, 4u

3
1u2, 4u

3
1u3, 4u

3
2u1, 4u

3
2u3, 4u

3
3u1, 4u

3
3u2)b.

Isotropic Gaussian Prior for the 4th-order Tensors In Basser and Pajevic (2007), the
4th-order tensor in dimension 3 is shown to be isomorphic to a 2nd-order tensor in
dimension 6 under the isomorphism

D �−→ D̂ :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D1111 D1122 D1133

√
2D1112

√
2D1113

√
2D1123

D1122 D2222 D2233

√
2D1222

√
2D1223

√
2D2223

D1133 D2233 D3333

√
2D1233

√
2D1333

√
2D2333√

2D1112

√
2D1222

√
2D1233 2D1122 2D1123 2D1223√

2D1113

√
2D1223

√
2D1333 2D1123 2D1133 2D1233√

2D1123

√
2D2223

√
2D2333 2D1223 2D1233 2D2233

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(4.19)



The six eigenvalues and eigentensors of the 4-th order tensor D, correspond to the
eigenvalues and eigenvectors of the matrix D̂. Furthermore, it is shown in Ghosh et al.
(2012), that Trace(D̂)2,Trace(D̂2) and the polynomial

g(D) = D1111(D2222 +D3333) +D2222D3333 + 3

{
D2

1122 +D2
1133 +D2

2233

}

+ 2

{
D1122D3333 +D1133D2222 +D2233D1111 +D1122(D1133 +D2233) +D2233D1133

}

+ 4

{
D1233(D1233 −D1222 −D1112) +D1223(D1223 −D1113 −D1333)

+D1123(D1123 −D2333 −D2223)−D1222D1112 −D1113D1333 −D2223D2333

}
(4.20)

are invariant under 3D-rotations and span the space of isotropic homogeneous poly-
nomials of degree 2 in the variables D. Here we give the general form of a zero-mean
isotropic Gaussian distribution for the 4th-order tensor, with density

π(D) = 23
√

(γ + η)9(3η − 4γ)5(3η + 8γ + 15λ)

π15
exp

(
−1

2

{
ηTrace(D̂2)

+ λ Trace(D̂)2 + γg(D)

})
. (4.21)

Again Equation (4.21) follows from the characterization of isotropic Gaussian random
fields in terms of the law of their spherical harmonic coefficients, see e.g., Barmpoutis
et al. (2009); Özarslan and Mareci (2003).

Under Equation (4.21), the random coefficients
(D1111, D2222, D3333, D1122, D1133, D2233) are Gaussian zero mean and precision matrix

Ω
′
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

η + λ λ+ γ λ+ γ 2λ 2λ 2λ+ 2γ

λ+ γ η + λ λ+ γ 2λ 2λ+ 2γ 2λ

λ+ γ λ+ γ η + λ 2λ+ 2γ 2λ 2λ

2λ 2λ 2λ+ 2γ 6η + 6γ + 4λ 4λ+ 2γ 4λ+ 2γ

2λ 2λ+ 2γ 2λ 4λ+ 2γ 6η + 6γ + 4λ 4λ+ 2γ

2λ+ 2γ 2λ 2λ 4λ+ 2γ 4λ+ 2γ 6η + 6γ + 4λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(4.22)

and are independent from (D1112, D1113, D1222, D2223, D1333, D2333D1123, D1223, D1233),



which are Gaussian with zero mean and precision matrix

Ω
′′
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4η 0 −4γ 0 0 0 0 0 −4γ

0 4η 0 0 −4γ 0 0 −4γ 0

−4γ 0 4η 0 0 0 0 0 −4γ

0 0 0 4η 0 −4γ −4γ 0 0

0 −4γ 0 0 4η 0 0 −4γ 0

0 0 0 −4γ 0 4η −4γ 0 0

0 0 0 −4γ 0 −4γ 12η + 8γ 0 0

0 −4γ 0 0 −4γ 0 0 12η + 8γ 0

−4γ 0 −4γ 0 0 0 0 0 12η + 8γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(4.23)

The covariance matrix of D is positive definite under the constraints

η > 0,
3

4
η > γ > −η, λ > −

(
1

5
η +

8

15
γ

)
.

Positivity constraint for the 4th-order tensors. Because the diffusivity function mod-
els signal decay, the 4-th order tensor must satisfy the positivity constraint

D : (u⊗ u⊗ u⊗ u) ≥ 0, ∀u ∈ S2 ,

implying that the 6 × 6 matrix D̂ in Equation (4.19) has positive eigenvalues. This is a
sufficient but not a necessary condition: it is enough to have positivity on the algebraic
variety {

(u2
1, u

2
2, u

2
3, u1u2, u1u3, u2u3) : (u1, u2, u3) ∈ R

3
} ⊂ R

6 .

When D̂ is negative definite, we should check the sign of the Z-eigenvalue of the dif-
fusivity, which was introduced by Qi et al. (2010) as the solution of the constrained
optimization problem

λ = min
{
d(u) : u ∈ R

3, |u| = 1
}
.

4.3 Positivity constraints in McMC

In general, there are two simple ways to include a constraint C ⊂ R
d in a McMC algo-

rithm. In order to approximate the constrained expectation

Eπ(g(ξ)|ξ ∈ C) =
Eπ(g(ξ)1(ξ ∈ C))

π(C)
=

∫
Rd g(x)1C(x)f(x)dx∫

Rd 1C(x)f(x)dx
,

one has to choose:

• include the constraint into the target distribution obtaining a new target density
proportional to f̃(x) = f(x)1C(x). In practice this means starting from a state
ξ0 ∈ C, and rejecting every proposed state which does not satisfy the constraint.
The resulting Markov chain takes values in the constraint set C.



• alternatively, include the constraint in the test function and sample from the un-
constrained Metropolis-Hastings algorithm. By the law of large numbers, with
probability 1

Eπ(g(ξ)|ξ ∈ C) = lim
T→∞

T∑
t=0

g(ξt)1C(ξt)

T∑
t=0

1C(ξt)

.

The second method has the advantage of simplicity, it is not even required to start
the Markov chain from ξ0 ∈ C, and the unconstrained Markov chain may have better
mixing properties than the constrained one. The drawback is that the samples not
satisfying the constraint are lost.

4.4 Bayesian regularization of the tensor field

Bayesian regularization is an image-denoising technique, introduced by Geman (1984),
which has been already applied in DTI studies (Frandsen et al., 2007). It is assumed that
under the prior distribution the spatial parameters of the model are not independent
but form a correlated random field. This is a reasonable assumption in our context:
even when a priori we do not have any information about the main tensor direction
at a given voxel, we know that often tensors from neighbour voxels are similar, just
because a nervous fiber possibly continues from one voxel to the next. The prior de-
pendence is taken into account according to Bayes formula and it has a smoothing
and denoising effect on the posterior estimates. An alternative is to estimate first the
parameters independently at each voxel, and then interpolate the preliminary tensor
estimators to obtain a smoothed estimator. The advantage of Bayesian regularization
is that estimation and regularization are performed in a single procedure by using all
the available information.

We construct a proper isotropic Gaussian prior for a Markov random field of (3×3)

symmetric matrices (D(v) : v ∈ V ) where V is the set of voxels, provided with the



neighbourhood relation v ∼ w in the Z
3 lattice. Define the (proper) prior density

π(D(v) : v ∈ V ) =

(2π)−|V |d/2 det(Ω)|V |/2 det(IV + ρLV )
d/2 exp

(
−1

2
θ�

{
(IV + ρLV )⊗ Ω

}
θ

)

∝ exp

(
−1

2

∑
v∈V

{
ηTrace(D(v)2) + λ

{
Trace(D(v))

)2}−
ρ

2

∑
v∼w

(
ηTrace({D(v)−D(w)}2) + λ

{
Trace(D(v)−D(w))

}2
))

= exp

(
−ρ

∑
v∼w

3∑
i=1

{
(η + λ)

2
(Dii(v)−Dii(w))

2

+
∑
j<i

(
λ(Dii(v)−Dii(w))(Djj(v)−Djj(w)) + η(Dij(v)−Dij(w))

2

)}

−
∑
v∈V

3∑
i=1

{
(η + λ)

2
Dii(v)

2 +
∑
j<i

(
λDii(v)Djj(v) + η(Dij(v))

2

)})

(4.24)

with hyperparameters η ≥ 0, λ > −η/3 and ρ ≥ 0, which tune the dependence be-
tween tensors at different voxels. LV denotes the Laplacian matrix of the graph V .

As in Section 2.2, for each voxel v we introduce:

• A regression parameter vector

θ(v) =
(
θ1(v), θ2(v), θ3(v), θ4(v), θ5(v), θ6(v)

))
= (D11(v), D22(v), D33(v), D12(v), D13(v), D23(v)

)
.

• An independent intensity parameter S0(v) with Sv(0)
2 ∼ Gamma(c1, c2).

• A noise parameter σ2(v) > 0 with scale-invariant improper prior ∝ (
σ2(v)

)−1

and

• a random vector N(v) = (Nk(v) : k = 1, . . . ,m) which follows the generalized
linear model of Corollary 2.3 with Poisson response distribution and logarithmic
link function, covariate matrix Z ∈ m× d and parameters θ(v), S0(v), σ

2(v).

Here (σ(v) : v ∈ V ) are independent and (N(v) : v ∈ V ) are conditionally independent
given (θ(v) : v ∈ V ).

As before, we compute the Laplace approximation for the log-likelihood at each
voxel v. When we combine this Gaussian log-likelihood approximation with the pair-
wise-difference Gaussian prior by using Bayes formula, we obtain an approximating
Gaussian posterior for θ(v), which we will use as the proposal distribution in the Gibbs-
Metropolis update. We may consider the single site update, where θ(v) is updated
voxelwise conditionally on N(v) and the values θ(w) at neighbour voxels v ∼ w. Al-
ternatively we can construct a Gaussian approximation to the full conditional as a joint
proposal in a simultaneous update for a block (θ(v) ∈ W ), where W ⊆ V is a connected



subset of voxels. The size of a block can vary from a single site to the whole brain. For
example, we may define a block as a ball with given center and radius under the graph
distance, which is the length of the shortest path between two voxels. We denote the
exterior boundary of W by

∂W := {w ∈ V \W : ∃v ∈ W with w ∼ v}

and set W := W ∪ ∂W , ∂{v} := {w ∈ V : w ∼ v} denotes the neighbourhood of v, and
deg(v) = #∂{v} is the degree of v. We update the variable (θ(w) : w ∈ W ) conditional
on the observations (N(w) : w ∈ W ) and (θ(v) : v ∈ ∂W ).

The prior of (θ(w) : w ∈ W ∪ ∂W ) is Gaussian and the likelihood of θ(w) with re-
spect to the augmented data N(w) is approximated by the Gaussian density
N (θ̂(w), Ĵ(w)−1), where θ̂(w) and Ĵ(w) are functions of N(w), S0(w), σ

2(w) and the de-
sign matrix Z, computed by using Fisher scoring under the Poisson GLM as in Section
3.3. The corresponding Gaussian posterior distribution q(θ(w) : w ∈ W ) will be used
as a proposal in the Metropolis block update, and satisfies

log q(θ(w) : w ∈ W ) =

const − ρ

2

∑
w∼v:v∈W,w∈W

(
ηTrace({D(v)−D(w)}2) + λ

{
Trace(D(v)−D(w))

}2
)

− 1

2

∑
v∈W

{
(θ(v)− θ̂(v))�Ĵ(v)(θ(v)− θ̂(v)) + θ(v)�Ωθ(v)

}

= const − 1

2

∑
v∈W

θ(v)�
((

1 + deg(v)ρ
)
Ω+ Ĵ(v)

)
θ(v) + ρ

∑
v∼w:v,w∈W

θ(v)�Ωθ(w)

+
∑
v∈W

θ(v)�
(
Ĵ(v)θ̂(v) + ρΩ

( ∑
w∈∂{v}\W

θ(w)

))

= const − 1

2

∑
v,w∈W : w=v or w∼v

(θ(v)− μ̂(v))� Ψ̂v,w (θ(w)− μ̂(w)) ,

where the constant term does not depend on (θ(v) : v ∈ W ) and may change from line
to line, and after completing the squares we have defined

μ� =(Ψ̂)−1ξ̂� with ξ̂(v)� = Ĵ(v)θ̂(v) + ρΩ

( ∑
w∈∂{v}\W

θ(w)

)
and

Ψ̂v,w =

(
deg(v)1(v = w)− 1(v ∼ w)

)
ρΩ+ 1(v = w)

(
Ω+ Ĵ(v)

)
that is a band diagonal precision matrix with (d × d) blocks and v, w ∈ W . This corre-
sponds to a Gaussian proposal distribution q(θ(w) : w ∈ W ) with mean (μ̂(w) : w ∈ W )

and covariance (Ψ̂)−1.



Prior contribution The prior contribution is derived as the proposal contribution by
conditioning on the values (θ(v) : v ∈ ∂W ) without including data. We obtain

log π(θ(w) : w ∈ W ; θ(v), v ∈ ∂W ) = const

− ρ

2

∑
v∼w:v∈W,w∈W

(θ(v)− θ(w))�Ω(θ(v)− θ(w))− 1

2

∑
v∈W

θ(v)�Ωθ(v)

= const − 1

2

∑
v,w∈W

θ(v)�Φv,wθ(w) + ρ
∑
v∈W

θ(v)�Ω
( ∑

w∈∂{v}\W
θ(w)

)

with Φv,w : =

((
1 + deg(v)ρ

)
1(v = w)− ρ1(v ∼ w)

)
Ω, v, w ∈ W.

These expressions determine the Hastings ratio for this Gibbs-Metropolis update (here
omitted).

4.5 Updating the regularization parameters of the 2nd-order tensor

field

The precision matrix of the Gaussian random field (θ(v) : v ∈ V ) is the Kronecker
product (IV + ρLV )⊗ Ω, where

LV (v, w) = deg(v)1(v = w)− 1(v ∼ w)

denotes the Laplacian matrix of the graph (V,∼) (see Lovász and Vesztergombi (2002)),
and Ω was given in Equation (4.15). Since

det((IV + ρLV )⊗ Ω) = det(IV + ρLV )
d det(Ω)|V |,

the likelihood for λ, η based on
(
θ(v) : v ∈ V

)
is proportional to

(
η5/2

√
η + 3λ

)|V |
exp

(
−ρ

2

∑
v∼w

(
ηTrace({D(v)−D(w)}2)

+ λ
{

Trace(D(v)−D(w))
}2 − 1

2

∑
v∈V

(
ηTrace

(
D(v)2

)
+ λ

{
Trace(D(v))

}2
)

,

with constraints η > 0 and λ > −η/3, ρ ≥ 0.
In order to factorize the likelihood we reparametrize with δ = (η + 3λ), obtaining

η|V |5/2 exp
(
−η

{
ρ
∑
v∼w

(
1

2
Trace({D(v)−D(w)}2)− 1

6

{
Trace(D(v)−D(w))

}2
)
+

+
∑
v∈V

(
1

2
Trace(D(v)2)− 1

6

{
Trace(D(v))

}2
)})

× δ|V |/2 exp
(
−δ

6

(
ρ
∑
v∼w

{
Trace(D(v)−D(w))

}2
+

∑
v∈V

{
Trace(D(v))

}2
))

.

Assuming independent gamma priors for η, δ,

π(η) ∼ Gamma(c′1, c
′
2), π(δ) ∼ Gamma(c1′′, c2′′),



we obtain the full conditional distribution of (δ, η) as the product of two Gamma den-
sities,

π(δ|θ) ∼

Gamma
(
c1

′′ +
|V |
2

, c2
′′ +

ρ

6

∑
v∼w

{
Trace(D(v)−D(w))

}2
+

1

6

∑
v∈V

{
Trace(D(v))

}2
)
,

π(η|θ) ∼ Gamma
(
c′1 +

|V |5
2

,

c2
′ + ρ

∑
v∼w

(
1

2
Trace({D(v)−D(w)}2)− 1

6

{
Trace(D(v)−D(w))

}2
)
+

∑
v∈V

(
1

2
Trace(D(v)2)− 1

6

{
Trace(D(v))

}2
))

.

In McMC, we update the regularization parameters by sampling (η, δ) independently
from these full conditional distribution and setting λ = (δ − η)/3.

4.6 Updating the parameters of the 4th-order tensor field

The likelihood for λ, η, γ based on
(
θ(v) : v ∈ V

)
is proportional to

1
(
η > 0

)
1
(
3/4η > γ > −η

)
1
(
λ+ η/5 + γ8/15 > 0

)
{
(γ + η)9(3η − 4γ)5(3η + 8γ + 15λ)

}|V |/2
exp

(
−ρ

2

∑
v∼w

(
ηTrace({D̂(v)− D̂(w)}2)

+ λ
{

Trace(D̂(v)− D̂(w))
}2

+ γg
(
D(v)−D(w)

))

− 1

2

∑
v∈V

(
ηTrace(D̂(v)2) + λ

{
Trace(D̂(v))

}2
+ γg(D(v))

))
,

where the polynomial g(D) was given in Equation (4.20). In order to factorize the
likelihood we reparametrize it as

α = (γ + η), β = (3η − 4γ), δ = (3η + 8γ + 15λ)

with α, β, δ > 0. The linear system has a solution

η =
β + 4α

7
, λ =

7δ + 5β − 36α

105
, γ =

3α− β

7
, (4.25)



and the corresponding likelihood is proportional to

α|V |9/2 exp
(
−αρ

14

∑
v∼w

{
4Trace({D̂(v)− D̂(w)}2 − 12

5

{
Trace(D̂(v)− D̂(w))

}2

+ 3g
(
D(v)−D(w)

)}− α

14

∑
v∈V

{
4Trace(D̂(v)2)− 12

5

{
Trace(D̂(v))

}2
+ 3g

(
D(v)

)})

× β|V |5/2 exp
(
−βρ

14

∑
v∼w

{
Trace({D̂(v)− D̂(w)}2) + 1

3

{
Trace(D̂(v)− D̂(w))

}2

− g
(
D(v)−D(w)

)}− β

14

∑
v∈V

{
Trace(D̂(v)2) +

1

3

{
Trace(D̂(v))

}2 − g
(
D(v)

)})
×

δ|V |/2 exp
(
−δρ

30

∑
v∼w

{
Trace(D̂(v)− D̂(w))

}2 − δ

30

∑
v∈V

{
Trace(D̂(v))

}2
)

.

We assume independent gamma priors for α, β, δ,

π(α) ∼ Gamma(c1, c2), , π(β) ∼ Gamma(c′1, c
′
2), π(δ) ∼ Gamma(c′′1 , c

′′
2),

and obtain the full conditional distribution of (α, β, δ) as the product of these Gamma
densities:

π(α|θ) ∼ Gamma
(
c1 +

9

2
|V |, c2 + ρ

14

∑
v∼w

{
4Trace({D̂(v)− D̂(w)}2−

12

5

{
Trace(D̂(v)− D̂(w))

}2
+ 3g

(
D(v)−D(w)

)})

+
1

14

∑
v∈V

{
4Trace(D̂(v)2 − 12

5

{
Trace(D̂(v))

}2
+ 3g

(
D(v)

)}))

π(β|θ) ∼ Gamma
(
c′1 +

5

2
|V |, c′2 +

ρ

14

∑
v∼w

{
Trace({D̂(v)− D̂(w)}2)+

1

3

{
Trace(D̂(v)− D̂(w))
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(
D(v)−D(w)
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+
1

14

∑
v∈V
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Trace(D̂(v)2) +

1

3

{
Trace(D̂(v))

}2 − g
(
D(v)

)}))

π(δ|θ) ∼ Gamma
(
c1

′′ |V |
2

, c2
′′+

ρ

30

∑
v∼w

{
Trace(D̂(v)− D̂(w))

}2
+

1

30

∑
v∈V

{
Trace(D̂(v))

}2
)

.

In the McMC algorithm, (α, β, δ) are updated independently by sampling from these
full conditionals. The corresponding parameters (η, λ, γ) are then obtained from Equa-
tion (4.25).

When the diffusivity function is assigned voxelwise as

dv(u) =
n∑

�=0

2�∑
m=−2�

θ2�,m(v)Y2�,m(u), v ∈ V, u ∈ S2,



with common truncation level n, we define the (improper) regularization prior for the
random field by assigning a Gaussian prior to the coefficients’ pairwise differences as
follows:

π
(
θ2�,m(v) : 0 ≤ � ≤ n,−2� ≤ m ≤ 2�

) ∝ n∏
�=0

a
−(4�+1)|V |
2�

exp

(
−1

2

n∑
�=0

a−2
2�

2�∑
m=−2�

{
ρ
∑
v∼w

{
θ2�,m(v)− θ2�,m(w)

}2
+

∑
v∈V

θ2�,m(v)2
})

.

The Bayesian computations of Sections 3.3 and 4.4 apply directly with parameter

θ(v) =
(
θ2�,m(v) : 0 ≤ � ≤ n,−2� ≤ m ≤ 2�

)� ∈ R
d, d = (2n+ 1)(n+ 1),

design matrix Z ∈ R
m×d with rows

Z(q) =
(−bY2�,m(u) : 0 ≤ � ≤ n,−2� ≤ m ≤ 2�

)
, u = q/|q|, b = |q|2/2 ,

and diagonal precision matrix Ω ∈ R
d×d with diagonal entries

(
a−2
0 , a−2

2 , a−2
2 , a−2

2 , a−2
2 , a−2

2 , . . . , a−2
2n , . . . , a

−2
2n︸ ︷︷ ︸

(4n+ 1) times

)
.

Assuming an independent Gamma prior for the angular power spectrum coeffi-
cients, given as

π(a22�,m) ∼ Gamma(c2�, c′2�) 0 ≤ � ≤ n,

we obtain the full conditional distribution for the precision coefficients as

π(a−2
2� |θ2�,m(v) : v ∈ V,−2� ≤ m ≤ 2�) ∼ Gamma

(
c2� + (2�+ 1/2)|V |,

c′2� +
1

2

2�∑
m=−2�

{
ρ
∑
v∼w

{
θ2�,m(v)− θ2�,m(w)

}2
+

∑
v∈V

θ2�,m(v)2
})

.

In McMC the angular power spectrum is then updated by sampling independently
from these full conditionals and taking the inverse.

5 Results

5.1 Simulation study

We first use simulated data to evaluate the aforementioned method. Synthetic data
sets were simulated by randomly selecting a positive tensor under different profiles,
the 2nd- and the 4th-order, where we fixed the values of the concentration of water
molecules (non-attenuation diffusion) S0 and the noise variance σ2. The reference is
from real data to resemble the real scenario. We simulated several datasets by choosing
different tensor profiles and the noise level σ2, then compared the performance among



the current most popular methods in DTE, WLS and MLE and the proposed Bayesian
method (Bayes). Every dataset contains 1440 measurements which were sampled from
32 distinct gradients (see Table 7) and 15 distinct increasing b-values up to 14000s/mm2

(see Table 5), and the sampling was repeated three times. The ground truth (GT) of high
(H-) and low (L-) Rician noise (RN) are 93,0405 and 12,8821, respectively.

We calculated bias between GT and the estimates to evaluate the accuracy and pre-
cision of the methods by different criteria: We computed the L1 norm between GT and
log Ŝ0, σ̂2. For the 2nd-order tensor parameter matrix D0 (GT) and D̂ (estimate), we
compared the centered Gaussian displacement distributions N (0, D0), N (0, D̂), with
respective densities f0,f̂ , by using the L2 norm, Kullback-Leibler divergence (KL)

KL(f0, f̂) =

∫
R3

log

(
f0(x)

f̂(x)

)
f0(x)dx

=
1

2

{
log(det(D̂))− log(det(D0)) + Trace(D̂−1D0)− 3

}
,

the symmetric Kullback-Leibler divergence (SKL)

SKL(f0, f̂) =
(
KL(f0, f̂) +KL(f̂ , f0)

)
/2 ,

and the Hellinger distance (HL)

HL(f0, f̂) =

∫
R3

(√
f0(x)−

√
f̂(x)

)2

dx

= 2− 2 det
(
(D−1

0 + D̂−1)/2
)−1/2(

det(D0) det(D̂)
)−1/4

.

Table 1 and 2 illustrate that WLS works well only when the data are less noisy and
when the diffusivity is modeled by the 2nd-order tensor. With a truncated dataset, WLS
performed better than that with the whole dataset. However, in reality the diffusion
MR data are much noisy than the experiment of the low-noise case, and the diffusiv-
ity profile is much more complicated than the 2nd-order tensor. Advanced models of
diffusion, hence, are needed. Table 2 reveals that when using the whole dataset, WLS
is no longer a good choice in comparison to the other alternatives, its estimates of the
noise level are strongly biased. MLE under the Rician noise model has overall nice
performance as shown in the tables. However, in practice MLE may be very slow to
get convergence, and may encounter unstable scenario when the algorithm converges
at the local optimum. Our proposed Bayesian approach gives the best performance
among the three methods in our experiments, especially in the case with the 4th-order
tensor models. These estimators describe the empirical mean values of the posterior
rather than the point estimates from maximum a posterior (MAP), see e.g., Andersson
(2008) or the other examined methods. Therefore, our method is much more stable
regardless and can work with a wide range of data and different diffusivity models.
Additional information in Table 1 and 2 includes and units of SKL and HL, they are
×10−4mm2/s (6∗∗), and of HL is ×10−8mm2/s (15∗∗), respectively, and the number
with double asters describes the number of tensor elements that was considered with
the metrics.



Table 1. The 2nd-order tensor

L-RN logS0 σ2 tensor (6∗∗) (15∗∗)
H-RN L1 L1 L2 KL SKL HL
noise level

WLS∗ 0.0011 1.7909 0.1357 3.7778e-05 3.7762e-05 1.8881e-05
0.0072 7.1720 0.4842 7.7865e-04 7.7317e-04 3.8647e-04

WLS 0.0023 6.8408 0.1570 4.9507e-05 4.9310e-05 2.1298e-04
0.0068 7.1175 0.3817 4.6489e-04 4.6302e-04 2.4654e-05

MLE 0.0019 0.2132 0.1410 4.0466e-05 4.0299e-05 2.0149e-05
0.0095 1.2774 0.3864 4.8262e-04 4.8428e-04 2.4210e-04

Bayes 0.0025 0.1272 0.1558 4.9205e-05 4.8991e-05 2.4495e-05
0.0061 0.8414 0.3387 4.0938e-04 4.0716e-04 2.0355e-04

Unit of SKL is ×10−4mm2/s, and of HL is ×10−8mm2/s, and e-04= ×10−4.
∗ denotes the observations only containing the b−values less than 1000s/mm2.

∗∗ is the number of tensor elements.

Table 2. The 4th-order tensor

L-RN logS0 σ2 tensor (6∗∗) (15∗∗)
H-RN L1 L1 L2 KL SKL HL
noise level

WLS∗ 3.3340e-04 0.9630 1.7471 0.0019 0.0018 9.0423e-04
0.0072 5.5631 2.0119 7.9230e-04 7.8115e-04 3.9043e-04

WLS 8.6455e-04 6.6124 1.4690 0.0018 0.0018 8.8450e-04
0.0067 47.2370 2.7179 0.0041 0.0038 0.0020

MLE 4.2162e-04 0.1622 1.4143 0.0016 0.0016 8.0334e-04
0.0095 1.5472 2.2944 0.0012 0.0011 5.6655e-04

Bayes 8.5112e-04 0.2589 0.8443 4.9160e-04 4.8667e-04 2.4328e-04
6.8639e-04 0.8969 1.2465 5.4696e-04 5.3996e-04 2.6991e-04

Unit of SKL is ×10−4mm2/s, and of HL is ×10−8mm2/s, and e-04= ×10−4.
∗ denotes the observations only contain the b−values less than 1000s/mm2.

∗∗ is the number of tensor elements.

Computational cost for large-scale data is a common problem in image analysis.
Below we illustrate the computational burden (per voxel) in the cases of low and high
noise levels, respectively, under the 2nd- and 4th-tensor models by the proposed Bayes-
ian method. In Discussion we will discuss the importance and advantages of Bayesian
modeling in DTI.



Table 3. Statistics of McMC convergence

2nd- order 4th- order
L H L H

nburn/nprec
7/1832 6/1673 7/1981 7/2010

std
0.0014 0.0042 0.0015 0.0041
0.1035 0.2843 0.5915 0.9778
0.0417 0.2843 0.6195 1.0340
0.0445 0.1219 0.6130 0.9793
0.1056 0.2781 0.1386 0.2348
0.0450 0.1156 0.1354 0.2298
0.1020 0.2740 0.1197 0.2254
0.3839 2.9403 0.0451 0.1044

0.0489 0.1198
0.0367 0.0939
0.1432 0.3040
0.1259 0.2759
0.1692 0.3356
0.1609 0.3356
0.1877 0.3556
0.4079 2.8126

Table 4. List of the computational performance under the 2nd- and 4th-order tensor models

2000 cycles/voxel 2nd-order CT 4th-order CT

CPU time (s) L/H 11.2998/14.9668 33.5773/45.3714

Table 5. b-values (s/mm2)

62 249 560 996 1556

2240 3049 3982 5040 6222

7529 8960 10516 12196 14000



5.2 Real data

In the follow-up, we illustrate the performance of our method with a real data example.

The dataset The data consists of 4596 diffusion MR-images of the brain of a healthy
human volunteer, taken from four 5mm-thick consecutive axial slices, and measured
with a Philips Achieva 3.0 Tesla MR-scanner. The image resolution is 128 × 128 pixels
with size 1.875× 1.875mm2. After masking out the skull and the ventricles, we remain
with a region of interest (ROI) V containing 18764 voxels. In the protocol we used all
the combinations of the 32 gradient directions listed in Table 7, with the b-values in
Table 5, varying in the range 0 − 14000s/mm2, with 2 − 3 repetitions, for a total of
23 323 644 data points.

McMC implementation The data is analyzed under the 2nd- and 4th-order ten-
sor models, with and without Bayesian regularization, estimating the regularization
parameters in the first case. In the Markov chain Monte Carlo we do not impose posi-
tivity constraints on the tensors as we discussed in Section 4.3, since we want to count
the voxels where the posterior expectation of the tensor is non-positive. To begin with,
we compute independently at each voxel v a preliminary estimator for the tensor and
noise parameters θ(v), σ2(v), obtaining the initial state of the Gibbs-Metropolis Markov
chain. This is done under the log-Gaussian approximation discussed in Section 2, by
the method of weighted least-squares, and using only observations in the low b-value
range (b < 5000 s/mm2). For the regularized model, at each McMC-cycle we divide V

into blocks, where each block is the intersection of V with a ball of radius r = 7 under
the graph distance, and can contain up to 342 voxels. Since blocks are separated by
at least one voxel, the parameters from different blocks are conditionally independent
given the exterior boundary values, and it is possible to update the blocks in parallel.
The centers of the blocks are then cyclically shifted at each McMC cycle, and at the end
of each cycle we also update the regularization parameters. The Markov chain was
running for 25050 and 22100 cycles respectively, under the 2nd- and 4th-order tensor
models, which took 257 and 225 CPU hours on a 15-core Intel Xeon E5-2670 processor.

Monitoring the McMC Before computing empirical averages, we waited for the
Markov chain to reach stationarity. The computational time thus depends on how
many iterations are needed after burn-in so that the chains get convergence by calling
McMC. In Bayesian statistics, we can compute the Monte Carlo (MC) error to determine
the number of iterations. Burn-in usually can be dramatically shorten by improving the
initials, for example results from MLE or penalized MLE. Our test experiments show
that the average burn-in period of one voxel is around 8 cycles and 2000 draws after-
wards to get stationarity regardless the tensor models. In this real example, we run
6000 cycles plus 1000 burn-in of all voxels under different tensor models. The compu-
tational time at each voxel is dramatically affected by the chosen tensor model as well



as the noise level at that voxel, typically ranging from 10 to 100 seconds. In the up-
dated procedure of McMC, we monitor the log-posteriors in Figure 2, where the traces
are from two randomly picked up voxels. The upper indexes indicate the location of
the voxels. The chains converge rapidly to stationarity.

The burn-in period used is 1000 cycles for all the selected tensor models. After
burn-in, we draw 6000 cycles with the 2nd- and 4th-order tensor models and monitor
the logarithmic likelihood, prior and posterior of the samples from two single voxels,
and they converged rapidly to stationarity as shown in Figure 1. Such phenomena are
not uncommon in high dimensional models, for example the 4th-order tensor models,
when MLE is used to construct the initial configuration (see e.g., Figure 3 in Besag et al.
(1995)).

To see this effect in a toy model, just consider a Gaussian vector X ∈ R
n with i.i.d.

coordinates Xi ∼ N (θ, σ2), which satisfies

sup
x∈Rn

{
log pn(x)

}− EP

(
log pn(X)

)
=

n

2
. (5.26)

In high dimension, under the posterior distribution the typical configuration and the
maximum a posteriori (MAP) configuration can be very different, with a set of typical
configurations containing most of the probability mass, while the probability mass con-
centrated around the MAP-configuration is negligible. Since we start the Markov chain
from the maximum likelihood estimator under the approximative log-normal model,
at the beginning the orientation of all tensors (but not their eigenvalues) are close to
optimal also under the exact Rician likelihood model. Then the tensor eigenvalues and
noise parameters move rapidly towards configurations with highest posterior proba-
bility. After this phase, it takes a while for the tensor orientations to mix-up. Since the
acceptance probabilities are not uniform between blocks and we are estimating simul-
taneously the regularization parameters, the total log-posterior density shows a slow
decay before reaching stationarity.

For comparison, we plot in Figure 2 the McMC trace of the Rician log-likelihood for
a single voxel under the 2nd- and 4th-order tensor models, without Bayesian regular-
ization, which converges rapidly to stationarity.

Acceptance probabilities In Figure 3 we show the acceptance probabilities for the
Gibbs-Metropolis block update of the tensor parameters, estimated for each voxel un-
der the regularized 2nd- and 4th-order tensor models. Note that, although we use large
block updates with more than 300 voxels in each block, the acceptance probabilities are
remarkably high in most of the voxels (see the histograms). It means that in most cases
our Gaussian approximation is very close to the exact full conditional distribution of
the tensor parameters in a block. Note also that in Figure 3a (which corresponds to the
2nd-order tensor model) there are some regions with relatively low acceptance prob-
ability. In such areas one should use update blocks of smaller size. These regions
of low acceptance probability are either artefacts, where data are corrupted, or con-
tain complex structures where the 2nd-order tensor model does not fit well the data,



(a) The 2nd-order tensor model, 25050 cycles

(b) The 4th-order tensor model, 22100 cycles

Figure 1. McMC traces of total posterior density, likelihood and prior (in logarithmic scale), and
regularization parameters λ, η and γ, for the 2nd- and 4th-order tensor models.



(a) The 2nd-order tensor model, 6000 cycles (b) The 4th-order tensor model, 6000 cycles

Figure 2. McMC trace of the Rician log-likelihood for a single voxel, under the 2nd- and 4th-
order tensor models (without Bayesian regularization)

and a higher order model would be more appropriate. We see two low acceptance
probability regions situated symmetrically on the left and right sides of the ventricles.
Anatomically this corresponds to the corona radiata where fiber bundles from multiple
directions are crossing. By comparing with Figure 3b we see that in these regions the
acceptance probability improves under the (regularized) 4th-order tensor model. For
the diffusion model without regularization, the independent tensor updates have high
acceptance probabilities at all voxels with both the 2nd- and 4th-order tensor models
in Figure 5.

(a) Acceptance probability, the 2nd-order ten-
sor model

(b) Acceptance probability, the 4th-order tensor
model

Figure 3. Acceptance probabilities in gray level scale (black=0,white=1) for the 2nd- and 4th-
order regularized tensor models.



Figure 4. Acceptance probabilities across voxels for tensor block updates, under the 2nd- and
4th-order regularized tensor models.

Figure 5. Acceptance probabilities across voxels for tensor independent updates, without regu-
larization, under the 2nd- and 4th-order models.



Deviance Information Criterion The deviance information criterion (DIC), introdu-
ced by Spiegelhalter et al. (2002), is a measure of the relative quality of models for given
data used in Bayesian model selection as an alternative to Bayes factors. Unlike Bayes
factors, DIC is well defined also when improper priors are assumed, as it is the case in
our settings. It is defined as

DIC = 2Eπ

(
D(θ)

∣∣data
)−D

(
Eπ(θ|data)

)
,

where D(θ) = −2 log p(data|θ) is the deviance, and we take conditional expectations
with respect to the posterior distribution of the parameters θ. Defined in analogy with
the toy example of Equation (5.26), the effective number of parameters

neff := D
(
Eπ(θ|data)

)− Eπ

(
D(θ)

∣∣data
)

appears as a penalization term in the expression

DIC = −Eπ

(
log p(data|θ)∣∣data

)
+ neff .

This allows for model comparisons, lower DIC meaning a better fit to the data rela-
tively to the effective number of parameters. In Figure 6 the DIC is computed indepen-
dently at each voxel under the 2nd- and 4th-order tensor models (without regulariza-
tion). Note that the voxels with the highest DIC corresponds to artefacts where data
are corrupted, and the area of high DIC correspond to complex white matter struc-
tures. We also calculated the overall DIC for all voxels under the 2nd- and 4th-order
tensor models with regularization. The respective values DIC= −1.5554 × 108 and
DIC= −1.5525×108, indicate that when we penalize the model by the effective number
of parameters, overall the 2th-order tensor model fits our data better than the 4th-order
model. In Figure 7 the posterior expectation of the noise parameters σ2(v), are shown.
When these are interpreted as residual variances in model fitting, we see that they are
consistent with the DIC.

Diffusivity profiles Figure 8 shows the diffusivity profiles based on the posterior
estimates of the tensors at all voxels in a region of interest. For each direction u ∈ S2

and spatial location v ∈ V ⊂ R
3, we plot the point (v+dv(u)u) ∈ R

3, where dv(u) is the
posterior expectation of the diffusivity. In order to observe the differences between the
2nd- and 4th-order tensor models, in Figure 9 we zoom into the ROI (a) and (b), and
see that the 4th-order tensor model captures the fiber-crossings which the 2nd-order
model cannot capture. At the fiber-crossing locations, under the 2nd-order model the
two largest eigenvalues of the estimated tensor have similar sizes, with a donut-shaped
diffusivity profile.

Bayesian regularization In Figure 10 we compare diffusivity profiles from a region
of interest without and with regularization, under the 4th-order tensor model. With
regularization, the differences in shape and direction between neighbouring tensors



(a) (b)

Figure 6. DIC maps under the 2nd- (Figure 6a) and 4th-order (Figure 6b) tensor models, without
regularization. Lower (darker) values correspond to better model fit.

(a) (b)

Figure 7. Posterior mean of the noise variance field σ2(v) under the 2nd- (Figure 7a) and 4th-
order (Figure 7b) tensor models.



(a) The 2nd-order tensor profile

(b) The 4th-order tensor profile

Figure 8. Estimated diffusivity profiles from a ROI, under the 2nd- and 4th-order tensor model.
The color-code represents the main direction of the principal eigenvalue of the 2nd-order ten-
sor: Red, left-right; Green, anterior-posterior; Blue, superior-inferior. These figures are drawn
with the MATLAB package FanDTasia written by Barmpoutis A. (Barmpoutis and Vemuri, 2010;
Barmpoutis et al., 2009).



(a) The 2nd-order tensor profile (b) The 4th-order tensor profile

Figure 9. Estimated diffusivity profiles under the 2nd- and 4th-order tensor models in ROI (a),
showing crossing fibers between the corticospinal tract and superior longitudinal fibers, and ROI
(b), showing fiber crossing near the corpus callosum, both selected from Figure 9.

Table 6. Posterior mean and standard deviation of regularization parameters under the 2nd-
and 4th-order tensor models.

order η̄

√
η2 − (η̄)2 λ̄

√
λ2 − (λ̄)2 γ̄

2 0.2394 0.0012 -0.0758 3.9352× 10−4

4 0.4155 0.0021 -0.16 0.0012 0.1469

order
√
γ2 − (γ̄)2 a−2

0 a−2
2 a−2

4

2 0.0029 0.1429
4 0.0016 0.0029 0.153 1.762

get smoothed. This also implies noise reduction: the tensor information from data
corrupted by artefacts is corrected by the information from the neighbours. For the
2nd-order tensor model, the regularization effect in the same region was not that ev-
ident. Since the regularization parameters are not fixed but estimated from data, we
cannot always expect an increase from the smoothness level determined by data. In
order to achieve a pre-specified level of smoothness we should either fix the regular-
ization parameters or assign them a strongly informative prior. The posterior mean and
standard deviation of the regularization parameters are shown in Table 6. The poste-
rior estimates of the inverse angular power spectrum under the the 2nd- and 4th-order
tensor models are consistent.

Fractional Anisotropy and Mean Diffusivity. Fractional anisotropy (FA) measures
the degree of anisotropy, while mean diffusivity (MD) is the average of the diffusivity



Figure 10. Diffusivity profiles from a ROI under 4th-order tensor model, estimated with and
without regularization.

d(u) function over the unit sphere. Both measures are used as biomarkers to study
brain pathologies. These quantities are expressed in terms of the eigenvalues of the
2nd-order tensor as

MD = (λ1 + λ2 + λ3)/3, FA =

√
3((λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2)√

2(λ2
1 + λ2

2 + λ2
3)

.

A 4th-order tensor has a map to a 2nd-order tensor as follows according to truncated
spherical harmonic expansion of the diffusivity, see details in e.g., Özarslan and Mareci
(2003), that is,

D11 =
3

35
(9D1111 + 8D1122 + 8D1133 −D2222 −D3333 − 2D2233)

D22 =
3

35
(9D2222 + 8D1122 + 8D2233 −D1111 −D3333 − 2D1133)

D33 =
3

35
(9D3333 + 8D1133 + 8D2233 −D1111 −D2222 − 2D1122)

D12 =
6

7
(D1112 +D2223 +D1233)

D13 =
6

7
(D1113 +D1333 +D1223)

D23 =
6

7
(D2223 +D2333 +D1123),

and the mean diffusivity can be also expressed in terms of the 4th-order tensor coeffi-
cients as

MD =
1

5
(D1111 +D1122 +D1133 + 2D2222 + 2D3333 + 2D2233 =

1

5
trace(D̂), (5.27)

where D̂ was defined in Equation (4.19). In Figure 11 and 12 we compare the respec-
tively the Bayesian estimates of FA and MD derived under the 2nd- and 4th-order
tensor models.



(a) (b)

Figure 11. Bayesian FA estimates under the the 2nd-order ( Figure 11a) and 4th-order ( Fig-
ure 11b) tensor models. As in the previous figures, the color-code shows the orientations of
the principal eigenvalue of the 2nd-order tensor, with intensities proportional to the fractional
anisotropy.

(a) (b)

Figure 12. The mean diffusivity (MD) maps from the results for both the 2nd- ( Figure 12a) and
4th-order ( Figure 12b) diffusion tensor.



6 Discussion

Data augmentation The substantial contribution of this work is the derivation and
implementation of a whole statistical strategy of data augmentation. Rician noise,
which models the magnitude of a real valued signal perturbed by additive complex
Gaussian noise, appears in a wide range of applications in statistics and signal process-
ing. An interesting problem in DTI is to estimate the transition distribution of water
molecules diffusing inside the brain cells, by using spectral data which is corrupted
by Rician noise. It gives us an opportunity to demonstrate the entire strategy of data
augmentation. By using the novel representation of the Rician likelihood, we are able
to reduce nonlinear regression problems with Rician noise to generalized linear models
with Poissonian noise. Much effort has been devoted to improve the accuracy of the
tensor estimation by modeling the noise components appropriately. However, most of
early studies are based on a log-normal regression model that assumes the complex
Rician noise is additive and has a Gaussian distribution. The model, hence, does not fit
the data with high b-values and with low SNR, and does not work with zero measure-
ments.

A fully Bayesian approach A fully Bayesian approach, which provides a way of cal-
culating the full conditional posterior distribution of each parameter of interest, is an-
other contribution of this work. The crucial difference between our method and com-
pleting Bayesian methods, such as Andersson (2008), is that we are going to explore
the information on the uncertainty of the parameters and further provides better un-
derstanding of the estimators by confidence intervals, autocorrelation of marginal co-
variance, etc. This approach to our knowledge is the best solution in DTI to learn the
anatomically or physiologically relevant parameters, such as fractional anisotropy de-
rived from the tensor estimates and the eigenvalues that interpret the fiber directions
and take essential roles to probe the tractography of brain connectivity. Furthermore,
we introduce a Fisher-scoring algorithm in our Poisson regression model, which gives
robust and fast convergence in the MH updates for estimating the tensor parameters.
The algorithm hence has helped to shorten the computational execution time and ease
the implementation of the Bayesian McMC scheme in our experiments. In addition, the
simulation results show that our method provides significantly less biased estimates,
especially of the noise variance σ2 than the alternatives, and the quality of the noise es-
timates may play crucial role in noise reduction of MRI. Our method also has the best
performance among the high angular resolution cases, when compared to the other
methods. In conclusion, this Bayesian approach can be considered as a benchmark to
evaluate the performance by other methods and of the new derives by qualifying the
uncertainty of the parameters.

Model extension and regularization In this work we implement the 2nd- and 4th-
order diffusion tensor models. The proposed methods, however, can be easily imple-



mented with most other models of diffusivity in diffusion MRI with proper repara-
metrization. The Bayesian approach proposed in this work provides an opportunity
to model the interactions between voxels or blocks of voxels simultaneously. The re-
sults will help us to 1) reduce the noise of DTI based images, and 2) understand the
correlations between tensors at voxel level and ROIs in anatomy.

7 Conclusion

Rician noise, which models the magnitude of a real valued signal perturbed by additive
complex Gaussian noise, appears in a wide range of applications in statistics and signal
processing. By using a novel representation of the Rician likelihood, we are able to
reduce nonlinear regression problems with Rician noise to generalized linear models
with Poissonian noise. This representation turns out to be very useful in diffusion
tensor imaging, where the problem is to estimate the transition distribution of water
molecules diffusing inside the brain cells, by using spectral data corrupted by Rician
noise. In this work we parametrize these transition distributions with diffusion tensors
of either the 2nd- or 4th-order.

Although Bayesian regularization has already been used in the diffusion-MRI lit-
erature, until now McMC was not seen as a viable alternative for the analysis of high
b-value diffusion-MR data. To obtain diffusion images, we need to process big data.
Standard McMC strategies like single site updates and random walk proposals were
not efficient enough to produce whole brain images under the Rician noise model.
By exploiting the properties of generalized linear models, we are able to construct a
Gaussian approximation to the full conditional distribution and update simultaneously
large blocks of tensor variables with high acceptance rates. It is clear that our fully
Bayesian approach, as well as all methods based on penalized maximum likelihood, is
computationally extensive compared with multi-stage procedures where first the ten-
sors are estimated independently, and only in a second step smoothing and interpola-
tion procedures are applied. However second-stage smoothing has its drawbacks, for
example it depends on the choice of the tensor metrics, it can induce unwanted effects
as tensor swelling (Dryden et al., 2009). Nowadays there are affordable options for ac-
celeration, for example adopting parallel computation on a large computer cluster, and
computing with Graphical Processor Unit (GPU) (Hernandez et al., 2013). On the other
hand, the acquisition of MR-diffusion data is very costly and we cannot keep a subject
for hours inside the scanner, in order to get the most out of the data it makes sense to
use more computational resources and perform an accurate Bayesian computation un-
der the true noise model combining estimation and adaptive regularization in a single
procedure.
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Appendix

A Sampling from the reinforced Poisson distribution

1. The standard way by using the cumulative distribution function:

X(ω) = min

{
n :

n∑
k=0

τ2k

(k!)2
≥ 0F1(1, τ

2) ω

}
,

with ω uniformly distributed in [0, 1]. This requires evaluation of the normalizing
constant 0F1(1, τ

2).

2. A direct but unefficient rejection method:

Generate N ∼ Poisson(τ), accept it and set X = N with probability Pτ (N
′ =

N |N) = exp(−τ)τN/N ! where N ′ is an independent copy of N , otherwise repeat
until acceptance.

3. An improved rejection sampler, the one actually used. Generate independently
N ∼ Poisson(α) and ω uniform in [0, 1],
until

τ2N

(N !)2
1

πα(N)
=

(τ2/α)N

N !
exp(α) ≥ C(α, τ) ω

where

C(α, τ) := max
n

{
exp(α)

(τ2/α)n

n!

}
=

(τ2/α)n
∗

n∗!
exp(α) (A.1)

and n∗ = �τ2/α� is the mode of a Poisson distribution with parameter τ2/α, and
�·� denotes the floor function. Return X = N .

For large τ , assuming a priori that at optimality α � τ2, by using Stirling’s
approximation log(n!) ≈ (n log(n) − n), we find that the proposal parameter
α(τ) = τ is approximately optimal.



B Sampling from the log-gamma distribution with small

shape parameter.

When the shape parameter is very small, the standard algorithms sampling from a
gamma distribution are not reliable. In such cases we use the rejection sampling algo-
rithm for the log-gamma distribution proposed by Liu et al. (2017), described below.

Let X be gamma distributed with shape parameter 0 < a < 1 and scale parameter 1,
then Y = log(X) is approximated in distribution by a−1 log(U) = a−1Z with U uniform
in [0, 1] and Z = log(U) 1-exponential.

We consider a rejection sampling algorithm for Y with target density

p(z) = Γ(a)−1 exp
(−z − e−z/a

)
and proposal density

q(z) =
1

1 + w
1(z ≥ 0)e−z +

wλ

1 + w
eλz1(z < 0)

with

λ = a−1 − 1 > 0, w =
a

(1− a)e
> 0.

This is a two sided mixture of exponentials, with parameter 1 on the positive side and
λ on the negative side, satisfying the envelope condition

p(z)

q(z)
≤ 1 + w

Γ(a)
.

The rejection sampling is implemented as follows: sample independently a proposal
value Z ∼ q and U uniform in [0, 1], and accept the sample when

p(Z)Γ(a) ≥ q(Z)(1 + w)U ,

equivalently

exp(−Z/a) ≤ − logU + (1− Z/a)1(Z < 0) ,

continuing until a proposed value is accepted.



Table 7. For each b-value, the MR-signal was measured in these 32 gradient directions.

ux uy uz

-0.5000 -0.5000 -0.7071
-0.5000 -0.5000 0.7071
0.7071 -0.7071 -0.0000
-0.6533 -0.2706 -0.7071
-0.2087 -0.6756 -0.7071
0.0197 -0.7068 -0.7071
0.4212 -0.5679 -0.7071
0.6899 -0.1549 -0.7071
-0.6535 -0.2707 -0.7069
-0.2929 -0.7071 -0.6436
0.2945 -0.7064 -0.6436
0.5150 -0.4861 -0.7061
0.7071 -0.2929 -0.6436
-0.7071 -0.4725 -0.5261
-0.4725 -0.7071 -0.5261
0.5555 -0.6439 -0.5261
0.7071 -0.4725 -0.5261
-0.7071 -0.7071 -0.0002
-0.7071 -0.4725 0.5261
0.7071 -0.4725 0.5261
0.4725 -0.7071 0.5261
-0.7071 -0.7071 0.0078
-0.6364 -0.4252 0.6436
-0.7060 -0.7060 0.0547
-0.2929 -0.7071 0.6436
0.2929 -0.7071 0.6436
0.7071 -0.7071 0.0078
0.7071 -0.2929 0.6436
-0.7063 -0.7063 0.0489
0.0347 -0.7063 0.7071
0.7071 -0.7071 0.0115
0.7071 0.0000 0.7071
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a b s t r a c t

Diffusion tensor imaging (DTI) is widely used to characterize, in vivo, the white matter of the central nerve

system (CNS). This biological tissue contains much anatomic, structural and orientational information of

fibers in human brain. Spectral data from the displacement distribution of water molecules located in

the brain tissue are collected by a magnetic resonance scanner and acquired in the Fourier domain.

After the Fourier inversion, the noise distribution is Gaussian in both real and imaginary parts and, as a

consequence, the recorded magnitude data are corrupted by Rician noise.

Statistical estimation of diffusion leads a non-linear regression problem. In this paper, we present a fast

computational method for maximum likelihood estimation (MLE) of diffusivities under the Rician noise

model based on the expectation maximization (EM) algorithm. By using data augmentation, we are able

to transform a non-linear regression problem into the generalized linear modeling framework, reducing

dramatically the computational cost. The Fisher-scoring method is used for achieving fast convergence of

the tensor parameter. The new method is implemented and applied using both synthetic and real data in

a wide range of b-amplitudes up to 14,000 s/mm2. Higher accuracy and precision of the Rician estimates

are achieved compared with other log-normal based methods. In addition, we extend the maximum like-

lihood (ML) framework to the maximum a posteriori (MAP) estimation in DTI under the aforementioned

scheme by specifying the priors. We will describe how close numerically are the estimators of model

parameters obtained through MLE and MAP estimation.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Diffusion tensor imaging (DTI) is a powerful tool to detect, in

vivo, the white matter anatomy and structures of the brain. The raw

MR-data are collected by a magnetic resonance scanner and con-

sist of spectral measurement from the displacement distribution

∗ Corresponding author. Tel.: +358 294151407.

E-mail address: jia.liu@jyu.fi (J. Liu).

of water molecules constrained into cellular structures. Diffusion

anisotropy characterizes the nervous fibers.

After the Fourier inversion, the MR-signals are corrupted by a

complex Gaussian noise, and consequently, the recorded measure-

ment magnitudes, referred as diffusion weighted magnetic reso-

nance imaging (DW-MRI) data, will follow the Rician distribution.

The complex noise is composed of two components, where the real

and imaginary parts are still independently Gaussian (Henkelman,

1985; Koay et al., 2009; Zhu et al., 2007). The simplest method for

diffusion tensor estimation (DTE) is based on the linearized log-

normal regression model, where the residual variance is assumed

http://dx.doi.org/10.1016/j.jneumeth.2015.09.029

0165-0270/© 2015 Elsevier B.V. All rights reserved.
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to be either constant (the least squares) or depending on the

signal amplitude (the weighted least squares). These Gaussian

noise models fail to fit the high frequency data, which carry

information about the higher order diffusion characteristics. In

the existing literature (Rajan et al., 2011; Veraart et al., 2011;

Andersson, 2008) on the ML-estimation of diffusion tensors under

the Rician noise, the maximization algorithm involves repeated

computation of modified Bessel functions. By using data augmen-

tation we are able to replace the Rician likelihood by a Poisson

likelihood which is standard in the generalized linear modeling

(GLM) framework.

Such simplification reduces dramatically the computational

burden of the Fisher-scoring maximization algorithm. This applies

also at high b-amplitudes, where in the low signal regime mea-

surements below a threshold are customarily coded as zeros.

In the standard LS or WLS approaches, zero-measurements are

problematic since they cannot be fitted by a log-normal distri-

bution, and simply discarding them induces selection bias. The

appropriately modeled noise level provides capability of data cor-

rection in further insights, e.g. removing artefacts from the raw

data.

This paper is structured as follows. Section 2 describes the noise

in MRI and data augmentation, specifying the statistical model for

DTE. In Section 3 we discuss the implementation of the EM and

the Fisher-scoring algorithms in the DTI context. In addition, we

also specify priors for the parameters and discuss the computation

of the maximum a posteriori estimator (MAPE) under the same

scheme. Section 4 illustrates the results from both synthetic and

real data. Section 5 details the method comparisons. In Section 6

we conclude with an overview of the methods and the undergoing

developments. Theoretical details are left for the appendices.

2. GLM for MRI observations

2.1. Rician noise in MRI

In magnetic resonance imaging (MRI), we usually need to take

the noise in the raw MR-acquisitions into account. The complex

valued noise ε is composed of two i.i.d. Gaussian random variables

with zero mean and variance �2, one for the real and the other

one for the imaginary component. After the Fourier inversion, the

signal intensity S ≥ 0 is corrupted by a complex Gaussian noise, and

Y = |S + ε| will be observed. Consequently, the observed MR-signal

magnitudes follow a Rician distribution resulting in the likelihood

function

pS,�2 (y) = y

�2
exp

(
−y2 + S2

2�2

)
I0

(
yS

�2

)
, (1)

where I˛ is the ˛-order modified Bessel function of first kind. For

˛ = 0 it has also the following representation in terms of Gaussian

hypergeometric series (Jeffrey and Zwillinger, 2007):

I0(2�) = 0F1(1, �2) =
∞∑

n=0

�2n

(n!)2
. (2)

Let t = S2/(2�2), then Eq. (1) gives

Pt,�2 (Y ∈ dy) = y

�2
exp

(
−t − y2

2�2

)
I0

(
y

�

√
2t
)

dy (3)

with � = yS/(2�2) = √
2ty/(2�).

2.2. Data augmentation

We follow the strategy presented in Gasbarra and Liu (2014)

implementing augmented data N from a Poisson distribution with

mean t > 0. The likelihood for the observed data can be transformed

from the Rician likelihood equation (3) to a joint augmented density

Pt,�2 (N = n, Y2 ∈ dy2) = Pt,�2 (N = n, X ∈ dx)

= Pt(N = n)P�2 (X ∈ dx|N = n)

= (tx)n

(n!)2(2�2)
n+1

exp

(
−t − x

2�2

)
dx, (4)

where X is from the conditional distribution Gamma(N + 1, 1/(2�2))

given N. Eq. (4) provides a transformation from a non-linear regres-

sion problem to the GLM framework

f�,�(z) = c(z, �) exp

(
z� − a(�)

�

)
(5)

with z corresponding to the response in general, see McCullagh and

Nelder (1989) for more details.

3. Method

3.1. DW-MRI and parametrization

In DW-MRI, the signal is modeled as the first equality

S(q) = S0 exp (−bd(g)) = S0 exp
(

Z�
)

, (6)

where the control vector q ∈ R3 is determined by the sequence

of gradient pulses, b = |q|2, and g = q/|q| ∈ S2 is a vector of unit

length. The MR-signal decays exponentially with respect to the

b-amplitude. Depending on the gradient direction g the decay is

modeled by the reflection symmetric diffusivity function d : S2 →
R

+.

Great efforts have been devoted to modeling the diffusivity, and

in general we can have parametrization as the second equality

in Eq. (6). In the simplest model the diffusivity is expressed by a

symmetric and positive definite rank-2 tensor D ∈ R3×3, giving

log S(q) = log S0 − bg�Dg = log S0 + Z�,

where in the left hand side the diffusion tensor is parametrized as

� = (�1, . . ., �6)
�

:=
(

Dxx, Dyy, Dzz, Dxy, Dxz, Dyz

)�

with a design matrix

Z = Z(q) = −b(g2
x , g2

y, g2
z , 2gxgy, 2gxgz, 2gygz).

In high angular resolution models (HARDI) (see, e.g. Barmpoutis

et al., 2009), the diffusivity is modeled with a totally symmetric

Cartesian tensor D of order n ∈ N, as

d(g) :=
3∑

�1=1

3∑
�2=1

· · ·
3∑

�2n=1

D�1,�2,...,�2n
g�1

g�2
· · ·g�2n

.

3.2. EM in MLE

In the optimization of the likelihood, we employ the EM

(expectation-maximization) algorithm, which is one among the

iterative methods in the MLE or in the maximum a posteriori

estimation (MAPE). The EM algorithm proceeds in two steps and

shortens the computational complexity by using augmented data.

In terms of our case, in the E-step we calculate the expectation of

the log-likelihood w.r.t. the conditional distribution of N given by

the observations and other parameters with fixed values. In the

M-step, we find the ML parameter of S2
0

and �2 by maximizing the

augmented log-likelihood quantities. The computational details are

listed in Appendix A.
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Note that the data are obtained by given different b  values and

gradients in the experiment, being discrete complex numbers, and

therefore, we use sums instead of integrals in the algorithms. The

log-likelihood from Eq. (4) is then expressed as

Q : = log(pt,�2 (N  = n, Y))

= c(Y, N) + N log(t) − (N + 1) log(�2) − t  − Y2

2�2
, (7)

where c(Y,  N) = N log(Y2) − 2 log(N  !) − (N  + 1) log(2) does not

depend on (t, �2) and will be omitted in the M-step. From Section

3.1, we have t = S2
0

exp(2Z�)/2�2.

In the EM-iteration, given the  current parameter estimates

(�(k), S2
0

(k)
, �2(k)

),  we update the conditional expectation of the  aug-

mented data by

〈N〉(k) := E
t(k),�2(k) (N|Y) =

�(k) I1
(

2�(k)
)

I0
(

2�(k)
) with

�(k) = YS(k)
0

exp(Z�(k))

2�2(k)
.

In the M-step we update �2 and S2
0

by the recursions

(
�(k+1)

)2

=

(
m∑

i=1

(
(S(k)

0
)
2

exp
(

2Zi�
(k)
)

+  Y2
i

))
/

(
2m +  4

m∑
i=1

〈Ni〉(k)

)
(8)

and(
S(k+1)

0

)2

= 2
(

�(k)
)2

(
m∑

i=1

〈Ni〉(k)

)
/

(
m∑

i=1

(
exp (2Zi�

(k)
))

,  (9)

where m is the number of acquisitions at each voxel. For the  tensor

parameter �, we employ a stabilized Fisher scoring method: given

the stabilizing parameter ˛  ∈ [0,  1], we iterate the  recursion

� → � +
(

(1  − ˛)J(�) + ˛S(�)
�S(�)

)−1S(�), (10)

until convergence to a fixed point (Lange, 2013). In Eq. (10) the

score S(�) is given by

S(�) = 2

m∑
i=1

Zi〈Ni〉(k) −
(

S(k)
0

/�(k)
)2

m∑
i=1

exp(2Zi�)Z�
i ,

and the corresponding Fisher information is

J(�) = 2

(
S(k)

0
/�(k)

)2
m∑

i=1

exp(2Zi�)Z�
i Zi.

The initials of the EM algorithm can be  obtained through the

least squares (LS) from a truncated dataset with the diffusion

weighting ranging from 0 to 1000 s/mm2 in order to fit the Gaussian

model (see Jones and Basser, 2004; Barber et  al., 1998).  To pursue

higher quality of the initials, we could further apply the  weighted

least squares (WLS) described in (Zhu et al., 2007). In  Appendix B we

compare the differences between our EM algorithm and the direct

optimization of the Rician likelihood in Eq. (1), which is commonly

used to compute the MLE in DTI. It should be  noted that the well-

known EM algorithm is needed because of the latent augmented

variables; it does not decrease the marginal likelihood of the data.

3.3. EM in MAPE

In the Bayesian framework, the maximum a posteriori estima-

tion (MAPE) aims to obtain the  point estimates by maximizing

the posterior density. The advantage of MAPE over the likelihood

approach is that the prior knowledge of the  unknown parameters

of interest with respect to (w.r.t.) the  observed measurements can

be transferred into the modeling framework by  the prior distri-

bution. Specifically, we can include restrictions to the  parameters

in terms of probability distributions, for instance regularization

can be simultaneously included into the model by adding the

knowledge of tuning parameters. Compared with the likelihood

approach, Bayesian strategy typically yields less uncertainty and

better knowledge of the parameters (the posterior) as  it is analyz-

ing the  probability distribution of every parameter of interest. The

difference between MLE  and MAPE in  this scenario is in the prior

probability 	(�). Given the data y, the  normalizing constant in the

posterior density 	(�|y) does not depend on the parameter �.  We

find the  MAPE by maximizing the joint density 	(�)p�(y), and this

is achieved by iterating the EM-recursion

�(k+1) =  argmax
�  ∈ 


{E�(k) (log p�(z, y)|y) + log 	(�)} (11)

with the  penalization log 	(�) until convergence to a fixed  point.

The log-prior penalization term has a regularizing effect, which

vanishes asymptotically as the  sample size increases (Andersson,

2008).

In DTE, we can assign conjugate priors in light of Section 3.2

for �2 and S2
0
. Since we  have only weak knowledge of the ten-

sor parameter �, we  may  choose non-informative priors which are

either scale- or shift-invariant (Jaynes, 2003).  A simple Bayesian

hierarchical model is obtained after the  following choices:

• �2 has  scale invariant improper prior with density 	(�2) ∝ 1/�2,
• S2

0
∼Gamma(c1, c2), where c1, c2 are very small.

• �  ∈ Rd has the  isotropic centered Gaussian prior N(0,  ˝−1),  where

 ̋ is a d × d precision matrix.

The penalized EM-updates for  MAPE are  given by

(
�(k+1)

)2

=

(
1

2

m∑
i=1

((
S(k)

0

)2

exp
(

2Zi�
(k)
)

+  Y2
i

))
/

(
m∑

i=1

(2〈Ni〉(k) + 1)  +  1

)
(12)

and(
S(k+1)

0

)2

=
(

m∑
i=1

〈Ni〉(k) + c1

)
/

(
1(

�(k)
)2

m∑
i=1

(exp(2Zi�
(k))  + c2

)
.

(13)

Additionally, this gives the modified score and Fisher scoring

S̃(�) = S(�) − ˝�  and J̃  = J(�) +  ˝,  respectively.

Under our Bayesian model with weak priors the MAP estimation

equations (12) and (13) are  similar as the ML updates Eqs. (8) and

(9). Indeed, usually
∑m

i=1
〈Ni〉  
 1, and we  can omit the difference

between Eqs. (8) and (12). Then when c1 and c2 are small enough,

the difference between the likelihood and posterior mode of S0,

expressed in Eqs. (9) and (13) respectively, can also be  ignored. The

only difference when updating � is that we  have considered the cor-

rection between the elements of a tensor represented by the prior

distribution, the inverse covariance matrix, ˝.  Such a correction

may  be ignorable.

Remark. By the normalized likelihood, the MLE  can be treated as

a special case of the MAPE where the precision of  the parameters

depend on the  chosen prior. If the  effects of the priors are weak

enough to be  ignored, then the posterior distribution is asymp-

totically approximated by the likelihood. The consequence is that

numerically the  MAP tend to the ML estimates numerically. Such
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Fig. 1. The thick curve represents the generated data and the red curve gives the corresponding true signal intensities. (a) and (b) describes the generated data and the

corresponding true signal intensities under the Rician noise model from the low and the high noise case, respectively. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

remark is not unusual (see Sparacino et al., 2000) but nearly has

never appeared in the DTI literature.

4. Results

4.1. Synthetic data

4.1.1. Experiment 1
We first simulate four datasets by choosing a positive tensor

of 2nd order and of 4th order, respectively from the same voxel

with fixed S0 (5.4595 in logarithmic level) and two different noise

variance �2. The synthetic data in the experiment arise from mod-

els with parameter values (the same gradients, b values and the

number of replication which had been used to collect a real human

dataset) resembling the real scenario. Each dataset contains 1440

(32 × 15 × 3) measurements corresponding to 32 distinct gradi-

ents and 15 distinct increasing b values (knots), and then being

repeated three times. Furthermore, the b knots gradually increase

every 32 gradients up to 14,000 s/mm2 with in total 480 experi-

mental parameters. The ground truth (GT) of high (H-) and low (L-)

Rician noise � are 93.0405 and 12.8821, respectively. Thus we get

the (nondiffusion weighted) non-dw SNR (:= S0/�) being 2.5256

and 18.2408, respectively, which fall into the wide range of clinic

settings (<25) (Veraart et al., 2011). Firstly, we give an overview of

the data which are used in this experiment under the signal 2nd

order tensor model in Fig. 1. Fig. 1a and b describes the generated

data and the corresponding true signal intensities under the Rician

noise model from the low and the high noise case, respectively,

where we only take the first replication (480 measurements) as an

example due to the similar behavior of the other two repeats. From

Fig. 1b, we can see that data depicted by the blue curve are much

more noisy than that in Fig. 1a. The corresponding diffusion pro-

file of the 2nd order tensor is shown in Fig. 2, where the diffusion

profile under the signal 2nd order tensor model represented as an

ellipsoid can somehow explain the extent of the departure from

normality in the movements of water molecules. In addition, we

plot the corresponding diffusion profile of the 4th order tensor in

this experiment in Fig. 3, which is also considered to account for

possible departures of the observed diffusion from normality.

To compare the performance, we plot the ML estimated signals

and the corresponding GT as a function of b values shown in Fig. 4,

where we only consider the first 480 measurements as an illustra-

tion. The signals are calculated by averaging the 32 gradients for

Fig. 2. Scatter plot of the diffusion profile under the selected 2nd order tensor.

Fig. 3. Scatter plot of the diffusion profile under the selected 4th order tensor.
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Fig. 4. (a) represents the signals S(b) = S0 exp(Z�) calculated from the  estimated dif-

fusion profile by the proposed MLE  method. The thick-blue line depicts the signal

intensities of the GT from the 4th order tensor. The green-start line and the cyan cir-

cles show the results under the 4th order tensor model from the datasets of the  high-

and low-noise levels, respectively. The triangular-black line and the red crosses are

the results under the single 2nd order tensor model from the datasets of the high-

and the low-noise levels, respectively. (b) is  the corresponding results in log scale.

(For interpretation of the  references to color in  this figure legend, the  reader is

referred to the web  version of this article.)

each distinct b value. In Fig. 4a the  signals of ground truth are  from

the 4th order tensor. However, in reality the ground truth should be

unique no matter what choice of angular resolution of the  tensor is.

Actually in  this experiment the  signals from the  ground truth from

2nd and 4th order have very small difference (the max  modulus (m.)

deviation in logarithmic scale is less than 0.1, and the  mean m.  devi-

ation is 0.0374). In order to distinguish the results from different

datasets, we plot the results in log scale in Fig. 4b, where we legend

the logarithmic signals from the 4th order tensor as GT due to the

very small differences mentioned above. The GT are displayed by

the thick blue line. As Fig. 4b points out, the results from the  dataset

under the single 4th order tensor model at the  high noise level

has ‘large’ deviation from the GT, but the  estimates from the other

cases fit the GT quite well. Furthermore, we calculate the empiri-

cal signal to noise ratio (SNR := (S/SDv)  = (mean(Sg(b, g))/�)), and

only consider one replication. Here instead of averaging the signal

intensities of the  whole acquisitions as defined in Griffanti et  al.

(2012), we average the 32 gradients (g) at each distinct b  values

for representing the changes of the SNR when b value is increasing.

To distinguish the difference, we again plot the  results from the

first 480 measurements in logarithmic level depicted in Fig. 5. It  is

Fig. 5. Empirical logarithmic SNR as a functions of log(b) values. The GT  are repre-

sented  by the  thick-blue lines, of which the  upper curve is from the low non-dw

SNR  corresponding the low  noise level with � = 12.8821, while the bottom one has

the  high noise level with � =  93.0405. The red-circle lines are the fitted profile under

the  single 2nd  order tensor model, and the green-star lines show the empirical SNR

under the  single 4th order tensor model. (For interpretation of the references to

color  in this figure legend, the reader is referred to the web  version of this article.)

shown that in the high-noise level case, the results under the  single

4th order tensor model have a bit larger bias when b  ≥ 3000 s/mm2.

4.1.2. Experiment 2
For comparison of the  methods, we generate 100 datasets from

the high (Figs. 6–8) noise case and another 100 datasets from the

low (Figs. 9 and 10) noise case under the same 4th order ten-

sor as in Experiment 1 and compare the  sample means of SNR

(SNR := (S/SDv)  = (mean(Sg,r(b, g, r))/�))  of the whole 1440 mea-

surements in each sample data with the  corresponding GT from the

different methods, where the mean of the signals in the numera-

tor  is calculated by averaging the 32 gradients (g)  and the  total

Fig. 6. Sample mean of SNR as a function of b values. The sample means are cal-

culated  from 100  simulated datasets. The SNR are calculated from the estimates

estimated by the different methods. The thick-blue curve represents the SNR of the

GT. The red-dash line and the black-star line are the estimators by the  LS and the WLS

with the truncated datasets, respectively. The cyan-circle line is the  results through

the WLS, and the green-cross line is empirical values by our MLE  method. (For inter-

pretation of the references to color in  this figure legend, the  reader is referred to the

web version of this article.)
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Fig. 7. Sample mean of signal intensities. Again the thick-blue curve represents the

GT. The red-dash line and the black-star line are the results by the LS and the WLS

methods with the truncated datasets, respectively. The green-cross line shows the

results by our MLE method. We did not show the results by the WLS from the whole

dataset as the bad performance in Fig. 6. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)

number of replications (r) from the whole measurements. Note that

here we also average the number of replication in each dataset.

Fig. 6 represents the results from the datasets generated by the

high-noise level, where “*” denotes that only the low frequencies

(b values less than 1000 s/mm2) are considered in the estimation.

This figure reveals that the fitting profile by our method is the

best, while the WLS results from the whole data space are much

worse than the others. To compare the further performance, we

compute the sample mean of signal intensities, and as an exam-

ple, we pick up from the first replication those intensities with a

low b value. The result is in Fig. 7, from which, we can see that our

results are slightly over-estimated from the high-noise level data,

but still being the best. The results from the other two methods

are under-estimated. In addition, we compute the sample mean

Fig. 8. MSE of sample mean of averaged signal decay as a function of the distinct b
values from the first 480 measurement. The red-circle line and the black-star line the

results by the LS and the WLS methods with the truncated datasets (b ≤ 1000 s/mm2),

respectively. They are almost overlapping. The green-cross line shows the results

by our MLE method. We did not show the WLS results from the whole dataset due

to the bad performance in Fig. 6. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

Fig. 9. Sample mean of signals intensities. The plots illustrate the means of signal

intensities at b = 62 and 14,000 s/mm2, respectively, of each gradient from the first

replication estimated by the four methods. The red-dash line and the black-star

line are the results by the LS and the WLS methods with the truncated datasets,

respectively. The green-cross line show the results by our MLE method, and cyan-

circle line is the results through the WLS. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

of signal decay S(b)/S(0) : = exp(Z�) by the tensor coefficients aver-

aging the gradients for obtaining the mean square errors. Fig. 8

describes the mean square error of signal decay in log level as a

function of b values. Note that the results by the LS* and the WLS* are

extrapolated to the high-frequency region by using the same design

matrix Z and their tensor estimates. This figure reveals that even in

the region of low b values (b = 800–1000 s/mm2), our method still

performs better than the others.

Figs. 9 and 10 correspond with Figs. 7 and 8 from the 100 sample

data generated by the low noise. Fig. 9a reveals that the estimated

signal intensities from our method are roughly similar than the

results from the LS* and the WLS* when the b value equals to

62 s/mm2. In Fig. 9b again the signal intensities by the LS* and
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Fig. 10. MSE  of sample mean of averaged signal decay as a function of the  distinct b
values from the first 480 measurement. The red-circle line and the black-star line the

results by the LS and the  WLS  methods with the truncated datasets (b ≤ 1000 s/mm2),

respectively. They are almost overlapping with the results by the WLS. The green-

cross line show the results by our MLE  method. (For interpretation of the  references

to color in this figure legend, the reader is referred to the web version of this  article.)

the WLS* are extrapolated to the high-frequency region by the

estimated diffusion profile, and our method shows a better fitted

profile than the others. Fig. 10 describes the mean square error of

signal decay as a function of b  values. Since the difference is visi-

ble, we do not need rescale the results in the log level. This figure

reveals at b ≤ 1000 s/mm2, the LS*, WLS* and the  WLS  methods per-

form quite similarly, and the results by our method represent the

smallest MSE  in the  whole region of the  frequencies.

All the synthetic experiments were carried out on a 64-bit 4 core

computer with 16 Gb RAM, and the CPU of each core is 3.40 GHz

with MATLAB. The average computational time of the  aforemen-

tioned MLE  method under the 4th order tensor model is 0.5435 s (an

example record from the  100 datasets under low noise case), which

is extremely shorter than the  minutes running time per voxel from

the current standard methods such as MATLAB Nelder–Mead based

or gradient-based estimators (see Ghosh et al., 2014; Landman

et al., 2007).

4.2. Real data

The data consist of 4596 diffusion MR-images of the brain of

an healthy human volunteer, taken from four 5 mm-thick consec-

utive axial slices, and measured using a Philips Achieva 3.0 Tesla

MR-scanner. The image resolution is 128 × 128 pixels of size

1.875 × 1.875 mm2. After masking out the skull and the ventri-

cles, we remain with a region of  interest (ROI) containing 18,764

voxels. In the protocol, we used all  the combinations of the 32 gra-

dient directions with the b-values varying periodically in the range

0–14,000 s/mm2, with 2–3 repetitions, for a total of 23,323,644

data points. The average computational cost per voxel by  our

method under the  4th order tensor model from this dataset is

1.8331 s. We  illustrate the results mainly under the 4th order tensor

model. Fig. 11 shows the mean diffusivity (MD) and the  fractional

anisotropy (FA) of diffusion from two consecutive slices, where FA

is computed from the  results under the 2nd order tensor model,

given by

FA =
√

3((�1 − E[�])2 + (�2 − E[�])2 + (�3 − E[�])2)√
2(�2

1
+ �2

2
+  �2

3
)

. (14)

The average values of  FA from these two ROI are 0.2769 and 0.2861,

respectively. The color in FA represents the orientations of the

fibers. Under the 4th order tensor model, MD is expressed as

MD  = 1

5
(D1111 + D2222 + D3333 + 2D1122 + 2D1133 + 2D2233)

= 1

5
trace(D). (15)

The average values of MD  from Slice 3 and 4 are 6.248e−03 mm2/s,

6.045e−03 mm2/s, respectively, and we have the  same estimated

values of MD  under the 2nd order tensor model.

We also plot the Rician noise map  of �  from the  two  consecutive

slices shown in Fig. 12, where the artefacts are clearly depicted

by white color representing very high noise, which reveal the true

scenario from the  raw MR  images, and are confirmed independently

by our estimation.

Visualization of angular resolution of DTI data under different

tensor models from the region of interest (ROI) of two  consec-

utive slices are displayed in Fig. 13, where the  ROI  is near the

hippocampus and the  empty spaces inside of left parts of the dif-

fusion profiles (DP) are the masked ventricle. DP under the 4th

order tensors provide detailed information of diffusion through

the higher angular resolution. In addition, the colors represent the

principle orientations of diffusion at each voxel. These tensor pro-

files are plotted by MATLAB fanDTasia toolbox (Barmpoutis et  al.,

2007).  We  also conduct the  experiment with the real data on the

64-bit 4 core computer with 16 Gb  RAM, and the CPU of each core is

3.40 GHz with MATLAB. The total running time is 2.9733e+04 and

3.4395e+04, equally 1.5846 and 1.8331 s per voxel in average under

the 2nd and 4th order tensor model, respectively.

Note that the algorithms presented in this work are under

the assumption of voxel independence, therefore, the algorithms

are parallelizable across voxels. The code related to the proposed

method and the above results is available by  request, which can

also work on the cluster by  parallel computation pixel by pixel.

5. Method comparisons

5.1. Comparison between our EM method and the traditional
MLE (Andersson, 2008)

In this section, we discuss the differences between our data-

augmentation based on the EM algorithm and on the  typical MLE

method through direct maximization at the  Rician log-likelihood

Qr. Detailed calculation can be  found in  Appendix B.

1. We  do not need to calculate all the elements of the Hessian as  we

can directly find the modes of S2
0

and �2 by  data augmentation.

A  small improvement appears in the reparametrization of  S0 or

log S0 by  S2
0
.

2. In  the E-step we compute

〈Ni〉  =  E
�(k),�2(k)

,S2
0

(k) (Ni|Yi), (16)

which does not depend on the parameters �, �2 and S2
0
. In  the  M-

step we use Eq. (16), the recursive values from �(k),  �2(k)
,  S2

0

(k)
,

instead of solving the  intractable formula w.r.t. those param-

eters. This dramatically reduces the computation of the score

from Eqs. (B.2)–(B.3)) to Eqs. (A.3)–(A.4)), respectively.

3. The EM algorithm allows us to use empirical values from Eq. (16)

to compute the Fisher information. Our Fisher information J(�)

which fits the whole range of SNR and is slightly bigger than the

approximated one, Ir(�), expressed in (Eq. (B.4)), which requires

heavy mathematical calculations to deal with different expecta-

tions (see Andersson, 2008 for more details). In  addition, when

computing the score of � in Eq. (10), we do not need to update
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Fig. 11. MD and FA maps from two consecutive slices, where the estimated FA are computed under the 2nd order tensor model. The color in FA represents the orientations

of the fibers: red, left–right; green, anterior–posterior; blue, superior–inferior. The color coded FA maps are drawn by using the software ExploreDTI (Leemans et al., 2009).

The corresponding MD maps are from the results under the 4th order tensor model, where the white spots corresponding to the corrupted data (artefacts) with measured

magnitudes increasing to high b values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Rician noise map from two consecutive slices. The white curves in the left bottom of the slices depict the artefacts corresponding to very high noise.
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Fig. 13. Visualization of the 4th order diffusion tensor profiles from two consec-

utive slices of a ROI. The color-code represents the main principal direction of

the diffusion: red, left–right; green, anterior–posterior; blue, superior–inferior. (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

the items containing Ni as they are fixed values from Eq. (16). All

those lead to reduced computation in practice.

5.2. Comparison between our EM method and the EM method
described, e.g. in Solo and Noh (2007) and Zhu et al. (2013)

Firstly, the theory part of the comparing EM method can be

found in Appendix C.

1. In terms of the EM algorithm, both methods are likely in com-

putation. Since the augmented data are calculated in the E-step

by the knowns and parameters in the current iteration given by,

respectively

〈N〉(k) := E
S(k),�2(k) (N|Y) =

�(k) I1
(

2�(k)
)

I0
(

2�(k)
) ,

〈cos(ϕ)〉(k) = E
S(k),�2(k) (cos(ϕ)|Y) = I1(2�(k))

I0(2�(k)
with

�(k) = YS(k)
0

exp(Z�(k))

2�2(k)
.

In the M-step, we calculate the partial derivative of Q w.r.t. �2 and

S0. Such derivatives are straightforward to compute as presented

in Zhu et al. (2013). Then the computation till now from both

methods should be roughly similar. The difference is that, in our

EM algorithm, we update �, the tensor parameter by a stabilized

Fisher scoring method.

2. In theory, the augmentation in the two EM algorithms have

essential difference, that is, they are working in different space.

The implemented augmentation is in the natural integer space,

while the introduced augmentation in Appendix C works on the

phase data space.

3. In terms of Bayesian strategy, both methods can be totally differ-

ent, because we can include the prior knowledge of the argument

data through the prior distributions, then N will be generated

from the reinforced Poisson distribution (see (Gasbarra and Liu,

2014)) and cos(�) will be obtained from the Von Mises distribu-

tion given in Eq. (C.1).

6. Discussion

Our method substantially differs from the previous ones in the

literature and the advantages are summarized by the following

points: (1) We implement the recently developed data augmenta-

tion method (Gasbarra and Liu, 2014), which allows the non-linear

regression problem to be transformed into the GLM framework in

DTE. (2) Subsequently, the computation is dramatically reduced

due to the tractable modes of parameters of interest in the sense

of point estimation. In addition, when employing Fisher-scoring

scheme we simplify the complexity of the Fisher information. (3)

Our Rician noise model can be combined with any tensor model in

different representation, such as spheric harmonic expansion, by

reparametrization. (4) Either ML or MAP estimation yields more

accurate estimates than the LS and the WLS do. In addition, high

frequencies from the low SNR data and the zero measurements are

also included into the estimation. These data are known to contain

detailed anatomical information of the complex tissue in vivo. (5)

Our method leads to significantly less biased estimates of the noise

level, which plays a key role in denoising the MRI and cleaning the

artefacts.

Positivity constraints. The physical feature of diffusion requires

the tensor to be positive definite. Our model allows to check the

positivity of diffusivity in the tensor updates under the scheme of

Fisher-scoring method. For the rank-2 tensor model, the constrain-

ing is fairly easy to do by computing the eigenvalues of the tensor

matrix D. For HARDI, Barmpoutis et al. (2009) propose the Gram

matrix approach, using the quartic form to guarantee the positivity.

Other methods such as Qi et al. (2010) address the constraint by

calculating the Z-eigenvalue polynomials.

MLE vs. MAPE. In this work, we did not list the results from MAPE

but we emphasize the differences between these two methods.

Bayesian methods have advantages in the learning process, mean-

ing that they may gain extra information from the prior knowledge.

When the prior is weak, like in our case, we learn things from the

data, what we actually do when approaching the problem through

frequentist statistical modeling. In order to learn the uncertainty of

the diffusion parameters, a fully Bayesian approach is highly rec-

ommended to characterize the posterior parameter distributions

rather than point estimation.
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Appendix A. MLE by the EM algorithm in DTI

We consider the Rician noise model with the Poissonian data

augmentation of Section 2. The latent augmented variable N con-

ditionally on X, Z is given by

pt,�(N = n|X, Z) = 1

I0(2�)

exp(−2�)�2n

(n!)2
,

n ∈ N with � =
√

Xt

2�2
and X = Y2.

It follows Gasbarra and Liu (2014) that this discrete distribution is

referred as reinforced Poisson distribution with parameter �.

In the EM algorithm we need to compute the conditional expec-

tation of N conditionally on X and the design matrix Z. Given the

current values t(k), �2(k)
, then

〈N〉(k) : = E
t(k),�2(k) (N|X, Z) =

∞∑
n=1

npt,�(N = n|X, Z)

= �(k)/2
d

d�(k)
log 0F1(1, (�(k))

2
)

= �(k)/2
d

d�(k)
log J0(2�(k)

√
−1)

= �(k)J−1(2�(k)
√−1)

J0(2�(k)
√−1)

= �(k) I1(2�(k))

I0(2�(k))
,

with

t(k) = t(S2
0

(k)
, �(k), �2(k)

) = S2
0

(k)
exp(2Z�(k))

2�2(k)
,

�(k) =
√

Xi

2�2(k)
exp(Zi�

(k))S0
(k).

Note that 0F1(1, �2) = J0(2�
√−1) = I0(2�), where J0(z) is the zero-

order Bessel function of first kind, I0(z) is the zero-order modified

Bessel function of first kind, which satisfies

J′v(x) = Jv−1(x) − 


x
Jv(x),

and

J−n(x) = (−1)nJn(x), In(z) = i−nJn(zi).

In the M-step, we maximize the parameters of the augmented

log-likelihood Q from Eq. (4) w.r.t. (�, �2, S2
0
). Omitting the items

not depending on these parameters, Q can be expressed as

m∑
i=1

(
log(S2

0) − 2 log(�2) + 2Zi�
)

〈Ni〉(k) − m log(�2)

− 1

2�2

m∑
i=1

(
S2

0 exp(2Zi�) + Xi

)
. (A.1)

It is easy to see in Eq. (A.1) that the log likelihood w.r.t. �2 and S2
0

are inverse Gamma and Gamma distributions, respectively. Hence,

we update these two parameters by their modes:

�̂2
ML := argmax

�2
g

(Q ) =
∑m

i=1
(Xi + exp(2�̂Zi)Ŝ0

2
)

2
∑m

i=1
(2〈Ni〉 + 1)

(A.2)

and

Ŝ2
0ML

:= argmax
S2

0

(Q ) = 2�̂2
ML

∑m
i=1

〈Ni〉∑m
i=1

exp(2Zi�̂)
. (A.3)

To apply the Fisher scoring method, the score of � is

S(�) = 2

m∑
i=1

〈Ni〉Zi − Ŝ2
0ML

�̂2
ML

m∑
i=1

exp(2Zi�)Zi, (A.4)

and the Fisher-information is given by

J(�) = E

[
− ∂2

Q

∂�h∂�k

]
= Ŝ2

0ML

�̂2
ML

m∑
i=1

exp(2Zi�)ZiZ
T
i . (A.5)

Appendix B. Maximization of Rician log-likelihood

Without data agumentation, we have to directly maximize the

Rician log-likelihood QRician, in short Qr thereafter, by using some

typical MLE method, such as gradient descent. Then the first (the

score) and second derivatives of Qr are usually required. The log-

likelihood Qr is

Qr = const. − m log(�2) − 1

2�2

m∑
i=1

(
Y2

i + exp(2Zi�)S2
0

)
+

m∑
i=1

log I0

(
Yi exp(Zi�)

√
S2

0

�2

)
,

where Ik(�) are modified Bessel functions of first kind satisfying

I′0(�) = I1(�), I
′′
0(�) = I′1(�) = (I0(�) + I2(�))/2.

The score of �2 and S2
0

are respectively given by

∂Qr

∂�2
= − m

�2
+ 1

2�4

m∑
i=1

(
Y2

i + exp(2Zi�i)S
2
0

)
− 1

�4

m∑
i=1

g
(

Yi exp(Zi�)S0�−2
)

Yi exp(Zi�)S0 (B.1)

and

∂Qr

∂S2
0

= − 1

�2

m∑
i=1

exp(2Zi�i)

+ 1

2�2
√

S2
0

m∑
i=1

g
(

Yi exp(Zi�)S0�−2
)

Yi exp(Zi�). (B.2)

The score of � is given by

∂Qr

∂�k

= − S2
0

�2

m∑
i=1

exp(2Zi�i)Zik

+ 1

�2

m∑
i=1

g
(

Yi exp(Zi�)S0�−2
)

Yi exp(Zi�)S0Zik. (B.3)
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The Hessian of � is

∂Q 2
r

∂�h∂�k

=  −2S2
0

�2

m∑
i=1

exp(2Zi�i)ZihZik

+ S0

�2

m∑
i=1

Yi exp(Zi�)ZikZih

{
g
(

Yi exp(Zi�)S0�−2
)

+g′ (Yi exp(Zi�)S0�−2
) Yi exp(Zi�)S0

�2

}

=
m∑

i=1

ZihZik

(
−4t2

i + �i(g(�i) + �ig
′(�i)

)
=

m∑
i=1

ZihZik

(
−4t2

i + �2
i − �2

i

(
I1(�i)

I0(�i)

)2
)

.

where we use

ti = S2
0

exp(2Zi�i)

2�2
,  �i = Yi exp(Zi�)S0

2�2
,  g(�) = d

d�
log I0(�) = I1(�)

I0(�)
,

g′(�) = d2

d�2
log I0(�) = 1

2

(
1 + I2(�)

I0(�)

)
−
(

I1(�)

I0(�)

)2

= 1 − I1(�)

�I0(�)
−
(

I1(�)

I0(�)

)2

with

I2(�) = I0(�) − 2I1(�)

�
.

For SNR >  10, the corresponding Fisher-information matrix is

approximated by

Ir(�) = E

[
− ∂Q 2

r

∂�h∂�k

]
≈

m∑
i=1

ZihZik

(
S2

0

�2
exp(2Zi�) − 1

2

)
, (B.4)

where (see Andersson, 2008)

E

[
�2

i

(
I1(�i)

I0(�i)

)2
]

≈
(

S2
0

�2
exp(2Zi�)

)2

+ S2
0

�2
exp(2Zi�) − 1

2
.

Appendix C. Theory of the EM algorithm by  the phase data

Consider the  Rician noise model in Eq. (1), and define the phase

ϕ := arg (S  + ε1 + iε2) ∈ [0,  2	)

such that

S + ε1 = Y  cos(ϕ), ε2 = Y sin(ϕ).

It follows from the  Bayes formula that the joint density of ϕ and Y
for fixed S and �2 is  given by

pS,�2 (y, ϕ)
y

2	�2
exp

(
− 1

2�2
(Y cos(ϕ) − S)2 − 1

2�2
Y2 sin (ϕ)2

)
= y

2	�2
exp

(
− 1

2�2
(Y2 + S2 − 2SY cos(ϕ))

)
= pS,�2 (y)pS,�2 (ϕ|Y),

or alternatively, similar formula can be found in Koay and Basser

(2006) without using the Bayes theorem. Here the conditional den-

sity

pS,�2 (ϕ|Y) = 1

2	I0(SY/�2)
exp

(
SY

�2
cos(ϕ)

)
,  ϕ  ∈  [0,  2	), (C.1)

is an instance of the  symmetric Von Mises distribution on the circle.

See Section 4.3.2. in Fisher et al. (1987). Note also that if the data

Y = 0,  we get we  get a Gaussian likelihood

pS,�2 (εr =  −S, εi = 0) = y

2	�2
exp

(
− S2

2�2

)
,

and in such a case the augmentation is not needed.

Appendix D.  EM with latent phase measurements in
multicompartment models

Zhu et al. (2013) introduces a related EM algorithm based on

data augmentation with the complete complex-valued measure-

ments Y = (Yij : 1 ≤ i ≤ N, 1 ≤ j ≤ M)  for the individual diffusion com-

partments, and incomplete magnitude measurements Si =|
∑

jYij|.
The E-step gives

Q (�|�(k)) =  E
[
�(�|Y)|S, �(k)

]
=
∫

�(�|Y)p(Y|S, �(k))dY

= const. − (M +  1)N log(�2)

+ M + 1

2�2

N∑
i=1

M∑
j=0

E
[
2
ijR(Yij) − |Yij|2 − 
2

ij|Si,  �(k)
]

where 
  =  
(�) and R(z) denotes the real part of a complex z. Since

E
[
R(Yij)|Si, �(k)

]
= E

[
E
[
R(Yij)|R(Yi)

]
|Si,  �(k)

]
= 
(k)

ij
+ 1

M + 1
E
[
R(Yi)|Si, �(k)

]
− 
(k)

i

M + 1
,

and E
[
R(Yi)|Si, �(k)

]
=

SiI1

(
Si


(k)

i
/�2

)
I0

(
Si


(k)

i
/�2

) ,

where 
(k) =  
(�(k)), we obtain up to additive and multiplicative

constants which do not depend on �,  we  obtain Eq. (7) in Zhu et  al.

(2013):

Q (�|�(k)) = const.

+ const.
∑

i,j

⎧⎨⎩2
ij

⎛⎝ Si

M +  1

I1

(
Si


(k)

i
/�2

)
I0

(
Si


(k)

i
/�2

) − 
(k)

i

M + 1
+ 
(k)

ij

⎞⎠−  
2
ij

⎫⎬⎭ .

(D.1)

In the  M-step it is used the gradient of (D.1), given by

∂Q (�|�(k))

∂�

= const.
∑

i,j

⎛⎝ Si

M + 1

I1

(
Si


(k)

i
/�2

)
I0

(
Si


(k)

i
/�2

) − 
(k)

i

M +  1
+  
(k)

ij
− 
ij

⎞⎠ ∂
ij(�)

∂�

We  note that one could use simply the EM algorithm with for a sin-

gle component (M = 0) with latent data (Yi : i = 1, . . .,  n), optimizing

in the M-step

Q (�|�(k)) = const. +  const.
∑

i

⎧⎨⎩2
iSiI1

(
Si


(k)

i
/�2

)
I0

(
Si


(k)

i
/�2

) − 
2
i

⎫⎬⎭
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with gradient

∂Q (�|�(k))

∂�
= const.

∑
i

⎧⎨⎩SiI1

(
Si


(k)

i
/�2

)
I0

(
Si


(k)

i
/�2

) − 
i

⎫⎬⎭ ∂
i(�)

∂�

Since the phase augmentation under the single compartment

model is quite similar in the computation by applying the pro-

posed EM-MLE scheme, therefore, it is straightforward to extend

our methods to the multiple compartment case.
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Abstract

Background: Diffusion kurtosis imaging (DKI) as an advanced medical imaging tech-

nique extends the parametric model for diffusion tensor imaging (DTI) by including

the diffusional kurtosis term which describes non-Gaussian properties of water diffu-

sion due to micro-structural tissue barriers. The model allows the tensor parameters to

be estimated constrained on the physical relevance of water diffusion, which leads to a

nonlinear regression problem including nonlinear constraints in the estimation.

New methods: We propose an efficient computational method, the expectation-maxi-

mization (EM) algorithm based on the maximum likelihood estimation with constraints

(CMLE) for the DKI estimation. We consider the Rician noise-corrupted signal model

by introducing Von-Mises data augmentation and accommodated all the constraints in

DKI. A constrained Fisher-scoring numerical method is suggested for tensor optimiza-

tion. Two extended algorithms, constrained weighted the least square (CWLS) with

interior method (CWLS-IP) and constrained nonlinear least squares algorithm (CWLS-

LLS) are also proposed.

Results: The method improves the efficiency of the traditional Rician MLE based

methods. The results show promising performance by means of conducting the pro-

posed method both on synthetic and real data from human brain.

Comparison with Existing Methods:: We compare our EM method (EM-IP) with

CWLS-IP, CWLS-LLS and the competing alternatives including the weighted least
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squares (WLS), the constrained maximum likelihood estimation with sequential qua-

dratic programming (MLE-SQP) and constrained weighted the least square with SQP

(CWLS-SQP).

Conclusions: Our EM method perform much better than the alternatives especially for

data retrieved from a low regime of signal to noise ratio (SNR) and from the high b

values.

Highlights.

• We originate Von Mises data augmentation in diffusion MRI and propose an

efficient EM method for the DKI estimation under the Rician noise-corrupted

signal model and extend other methods.

• The constraints in DKI are accommodated by means of a constrained Fisher-

scoring algorithm with precise formulas of Hessians.

• We extended the heuristic algorithm and proposed a nonlinear least squares so-

lution (CWLS-LLS) for good initial values in the optimization, and proposed

CWLS-IP for fast computation.

• Our EM method shows promising performance in a wider region of SNR and for

the data with high b values.

Keywords: Barrier Method, Constrained Fisher Scoring, Data Augmentation,

Diffusion Kurtosis Imaging (DKI), Maximum Likelihood Estimation (MLE),

Non-Gaussianity, Positivity, Rician, Ternary Quartics (TQ), Von Mises.

1. Introduction

Diffusion tensor imaging (DTI) introduced by [1, 2, 3] is a sophisticated diffusion

magnetic resonance imaging (MRI) reconstruction technique which enables the ob-

server to explore in vivo the structural information and geometric organization of the

brain anatomy at the microscopic level. It models the three-dimensional (3D) diffusion
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process by means of the low angular resolution (rank-2) tensor matrix, where the prob-

ability distribution of the water diffusion is assumed to be Gaussian. The assumption,

however, is argued to diverge significantly from reality when the model is applied to

genuine biological tissues. An example is the human brain containing an appendage of

complex tissues rich in microstructures such as cell membranes, boundaries and other

complex compartments. Evidence of the spatially diffusional non-Gaussianity is dis-

covered in the white matter of the human brain. Tuch et al. [4, 5] propose the high

angular resolution diffusion imaging (HARDI) which does not rely on the assumption

of the Gaussian distribution in the diffusion. This technique has been further extended

by [6] and [7] for describing the diffusivity profile by means of high rank Cartesian

tensors and tensor-based spherical harmonic representation, respectively. The diffu-

sion kurtosis imaging (DKI) [8, 9, 10] in connection with the multi-diffusional tensor

imaging techniques DTI and HARDI, has recently become popular in quantifying the

degree of diffusional deviation from Gaussianity. It is referred as a natural extension

of DTI by adding a high angular resolution diffusional term

S(b) = S0 exp(−bDapp +
1

6
b2D2

appKapp), (1)

see for instance [11, 12, 13], where S0 is the signal intensity without diffusion weight-

ing known as unattenuated signal, S(b) is the true signal magnitude and b is the diffu-

sion weighting amplitude or the so-called the b value,

Dapp := gT Dg =
3

∑
�1,�2=1

g�1
g�2

D�1,�2

is called the apparent diffusional coefficient with pulse gradient g and tensor matrix D,

and

Kapp =

(
tr(D)

Dapp

)2 3

∑
�1,�2,�3,�4=1

g�1
g�2

g�3
g�4

W�1,�2,�3,�4

is the apparent diffusion kurtosis. Here ”tr” denotes the trace of the matrix operator,

and tr(D) = 1/3
3

∑
i=1

tr(Dii). The definition of the kurtosis tensor W�1,�2,�3,�4
can be

found for instance in [8]. The model contains implicitly three constraints (see also

[14, 15] ) which are:
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# 1. The physical relevance and biological plausibility require that D is positive defi-

nite.

# 2. Kapp ≥ 0 is most likely the lower bound constraint of the apparent diffusion kur-

tosis, although in theory Kapp ≥−2. It further implies that the fourth symmetric

kurtosis tensor W should be positive definite in three dimensions (3D). Further,

Kapp ≥ 0 requires Dapp ≥ 0, which in general is guaranteed by # 1.

# 3. The upper bound constraint is Kapp ≤ 3/(bDapp).

The first two constraints originate from the physical relevance that the diffusivity func-

tion should be positive. The third constraint is inherited from the assumption that

the signal intensity S(b) is a monotonically decreasing function in the b amplitudes.

The model thus can only utilize the b value less than 3000 s/mm2. When comparing

DTI and HARDI, DKI additionally requires at least three distinct b values and 15 dif-

fusional directions, but may bring auxiliary information of diffusional heterogeneity

which could contribute to the diagnosis of neuropathologies [16, 17, 10]. Although

DKI has limitations in connection with the b value, data captured in that region

( b ≤ 3000s/mm2) are much more feasible in clinical imaging protocols.

In [18], we proposed a Poisson data augmentation that works in connection of the

Rician likelihood in count data space to detect the water diffusion by means of dif-

fusion tensors using both DTI and HARDI. The methodology is designed especially

for data retrieved from the low regime of signal to noise ratio (SNR) and with high

b values, though the algorithm did not consider the positivity of the tensor matrices

with DTI. This work continues [18], introducing an alternative idea of data augmen-

tation, that is, the Von Mises data augmentation to solve the regression problem with

Rician likelihood in diffusion MRI. In doing that we can directly work with general-

ized linear modeling (GLM) under the Rician noise model in the phase data space. We

propose a new expectation-maximization (EM) algorithm that considers all constraints

with an advanced model of diffusion, diffusion kurtosis imaging. A constrained sta-

bilized Fisher-scoring algorithm is proposed in connection with the Von Mises data

augmentation to obtain optimal solution and fast convergence in the estimation of the

tensor parameters. The method, therefore, can also be applied for DTI and HARDI
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straightforwardly. Additionally, we use the barrier method, see for instance [19], to

deal with the nonlinear constraint # 3. To sum up, in this work we propose an efficient

computational method with DKI to solve a nonlinear constrained regression problem.

The comparison of the methods, such as precision as a function of the b value mea-

sured in terms of mean square error, precision as a function of signal to noise ratio

measured in terms of mean square error and computational time per voxel have been

well demonstrated in the simulation study.

The paper is structured as follows: Section 2 reviews the Rician noise model, gen-

eralized DTI and some general ideas of the positivity constraints. In Section 3, we give

an exposition of Von Mises data augmentation and illustrate how it works with DKI.

In the following section, we focus on the EM and the constrained Fisher-scoring algo-

rithms in DKI. The proposed methods have been implemented on both synthetic and

real data in Section 5 and 6, respectively with a discussion in Section 7.

2. Rician likelihood and constrained DKI

2.1. MR noise and Rician magnitude

We consider first the model for an observation in a single voxel with a given acqui-

sition. The noise ε in the raw MR-acquisition model is composed of two i.i.d. Gaussian

random variables, εr and εi, with zero mean μ and common variance σ2, which orig-

inate from the real and imaginary components, respectively. The joint density of the

MR noise is expressed as pμ,σ2(εr, εi) =
1

2πσ2 exp

(
− ε2

r +ε2
i

2σ2

)
, see also [20]. The ob-

servation is the corrupted signal intensity (corrupted by the complex-valued noise) and

is defined as Y =
√

(S+ εr)2 + ε2
i . It has the Rician distribution with the probability

density function

pS,σ2(y) =
y

σ2
exp

(
−y2 +S2

2σ2

)
I0

(
yS
σ2

)
1(y ≥ 0), (2)

[21, 22, 23], where S ∈ R
+ is the magnitude of the true (noise-free) signal, Iα(·) is the

α-order modified Bessel function of the first kind, and 1(·) is the indicator function.
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2.2. Generalized DTI and Constrained DKI

DTI is a simple but an elegant technique to model the diffusion. The model is

simply expressed as S(b) = S0 exp(−bgT Dg), where b states the multi-shells of b value

and g indicates the gradient vector from the unit sphere. For rank n (n > 2 and n ∈ 2N)

tensor, the model can be extended as

S(b) = S0 exp(−bD(n)
app), and D(n)

app :=
3

∑
�1=1

3

∑
�2=1

· · ·
3

∑
�n=1

D�1,�2,...,�ng�1
g�2

· · ·g�n ,

which is referred as Generalized DTI [7]. It formulates the diffusivity profile by means

of a high rank n > 2 Cartesian tensor in HARDI. We can further parametrize

−bD(n)
app = Zθ that results in a nonlinear regression model of diffusive signal attenu-

ation S = S0 exp(Z(b,g)θ), where θ is the tensor parameter and Z denotes a design

matrix.

The observations in a single voxel are obtained under of a chosen design matrix

that consists of m acquisitions. In DTI, the six distinct elements of D are defined

as θD = (θ1, . . . ,θ6)
� :=

(
D11,D22,D33,D12,D13,D23

)�
. The corresponding design

matrix, composed of m acquisitions is given by

ZD = Z(b,g) =−b

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g2
11 g2

21 g2
31 2g11g21 2g11g31 2g21g31

...
...

...
...

...
...

g2
1 j g2

2 j g2
3 j 2g1 jg2 j 2g1 jg3 j 2g2 jg3 j

...
...

...
...

...
...

g2
1m g2

2m g2
3m 2g1mg2m 2g1mg3m 2g2mg3m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3)

Using this parametrization, DKI in Eq. (1) can be further expressed as

S(b) =

S0

m

∑
j=1

exp

(
−b

3

∑
�1,�2=1

g�1
g�2

D�1,�2
+

b2

6
(

3

∑
�1=1

D�1�1

3
)2 (4)

3

∑
�1,�2,�3,�4=1

g�1
g�2

g�3
g�4

W�1,�2,�3,�4

)
= S0

m

∑
j=1

exp(ZD j θD +ZWj θW (tr(D)
2
;W )),

where the jth row of the design matrix ZW ∈ R
m×15 is ZWj =

b2

6 (g
4
1 j,g

4
2 j,g

4
3 j,6g2

1 jg
2
2 j,

6g2
1 jg

2
3 j,6g2

2 jg
2
3 j,12g2

1 jg2 jg3 j,12g1 jg2
2 jg3 j,12g1 jg2 jg2

3 j,4g3
1 jg2 j,4g3

1 jg3 j,4g3
2 jg1 j,

4g3
2 jg3 j,4g3

3 jg1 j,4g3
3 jg2 j), j = 1 · · ·m.
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2.3. Constrained DKI

Since D is a 3×3 symmetric positive definite matrix, by the Cholesky decomposi-

tion we have D =UUT and U =

⎛
⎜⎜⎜⎝

L1

L4 L2

L5 L6 L3

⎞
⎟⎟⎟⎠ , which is a lower triangular matrix.

Without changing the design matrix ZD, the tensor parameter θD can be reparametrized

as a function of L = (L1,L2,L3,L4,L5,L6) so that

θD(L) = (L2
1,L

2
2 +L2

4,L
2
3 +L2

5 +L2
6,L1L4,L1L5,L4L5 +L2L6).

The corresponding Jacobian matrix is

JL =
∂θD

∂L j=1,··· ,6
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2L1

2L2 2L4

2L3 2L5 2L6

L4 L1

L5 L1

L6 L5 L4 L2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5)

The constraint # 2 (see page 3) implies that Wapp is non-negative. We apply the

ternary quartic (TQ) to guarantee the positivity condition as in [14], and express the

non-negative apparent kurtosis coefficients as

Wapp =
3

∑
i=1

(
vT qi

)2

= vT QQT v = vT Gv, (6)

where v = [g2
1,g

2
2,g

2
3,g1g2,g1g3,g2g3]

T , and Q = [q1|q2|q3] is a 6×3 matrix, contain-

ing three 6× 1 vectors qi. The Gram matrix G = QQT is a 6× 6 positive symmetric

matrix composed of the all fifteen kurtosis tensor elements plus six free parameters

(see [24] for details). Let θQ := tr(D)

⎛
⎜⎜⎜⎝

q1

q2

q3

⎞
⎟⎟⎟⎠ , and Pj =

b2

6

⎛
⎜⎜⎜⎝

vvT

vvT

vvT

⎞
⎟⎟⎟⎠ be an

18×18 matrix at the signal acquisition j. Then Eq. (4) can be written as

S =S0

m

∑
j=1

exp

(
ZD j θD(L)+θ T

Q PjθQ

)
. (7)
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3. Data augmentation

The idea of data augmentation (DA) arises from the missing data model where the

likelihood is of the form

g(y|θ) =
∫

n
f (y,n|θ)dn,

see for instance [25, 26, 27]. The model contains missing data N. The likelihood

f (y,n|θ) is called the complete-data likelihood. DA relies on the idea that in some

instances it is easier to deal with f (y,n|θ) than with g(y|θ). In this work, we propose

a DA scheme, an alternative to [18], in order to ease the computational problem in

connection with the nonlinear regression model of Eq. (2).

3.1. Von Mises data augmentation

The Rician likelihood in Eq. (2) for a given signal can be represented in the phase

data space through a transformation from the real and imaginary images to the arctan-

gent of their ratio, see [20, 23, 28].

Let ϕ be the phase data

ϕ := arg

(
S+ εr + iεi

)
∈ [0,2π)

such that

S+ εr = Y cos(ϕ), εi = Y sin(ϕ).

By change of variables, the joint density of ϕ and Y for fixed S and σ2 is given by

pS,σ2(y,ϕ) =
y

2πσ2
exp

(
− 1

2σ2

(
ycos(ϕ)−S)2 − 1

2σ2
y2 sin(ϕ)2

)
(8)

=
y

2πσ2
exp

(
− 1

2σ2

(
y2 +S2 −2yScos(ϕ)

))

= pS,σ2(y)pS,σ2(ϕ|y).

Then we have:

1. Eq. (8) is the Rician noise model presented in the phase data space.
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2. The conditional density

pS,σ2(ϕ|y) = 1

2πI0(yS/σ2)
exp

(
yS
σ2

cos(ϕ)
)
, ϕ ∈ [0,2π), (9)

is an instance of the symmetric Von Mises distribution on the circle, see Chapter

4.3.2 in [29]. Note also that for y = 0 we obtain the Gaussian likelihood

pS,σ2(εr =−S,εi = 0) =
1

2πσ2
exp

(
− ε2

r

2σ2

)
,

in which case augmentation is not needed.

3. Using the parametrization S = exp(Zθ), the complete-data likelihood

f (y,ϕ|θ ,Z) = y
2πσ2

exp

(
− 1

2σ2

(
y2 + exp(2Zθ)−2exp(Zθ)ycos(ϕ)

))
(10)

w.r.t. θ has a Gaussian response up to a constant depending on the observation

and a log link function

g(E(Y,ϕ|θ ,Z)) = log(μ) = Zθ

conditionally on cosϕ , and the mean of the response, μ = exp(Zθ).

Consequently, the nonlinear regression problem in Eq. (2) has been transferred

into the generalized linear modeling (GLM) [30] framework augmenting the data

y by the phase data ϕ .

4. EM in the constrained DKI

In the maximum likelihood estimation (MLE), we employ the EM algorithm in

connection with data augmentation to find the optimal solutions of the unknown pa-

rameters in the constrained DKI. The theory of the EM algorithm can be found, for

example, in [31, 32, 33]. After initializing the parameters, the EM algorithm typically

proceeds in two steps: in the E-step we calculate, under the current parameter values,

the expectation of the log-likelihood w.r.t. the conditional distribution of the latent vari-

able given the observations; in the M-step, we update the parameters by maximizing

the complete log-likelihood. We name the proposed method EM-IP, because we apply

the interior point method in the optimization.

9



In detail, we directly work with the complete-data log-likelihood in Eq. (10) for m

acquisitions in the design matrix by introducing a Von Mises distributed latent phase

variable ϕ . After omitting the constant, the complete-data log-likelihood of the con-

strained DKI under the Rician likelihood model is given by

m log(σ−2)− 1

2σ2

m

∑
j=1

{
Y 2

j +S2
0 exp

(
2ZD j θD +2θ T

Q PjθQ

)

−2cos(ϕ j)YjS0 exp

(
ZD j θD +θ T

Q PjθQ

)}
, (11)

where the sum is over the m acquisitions in a voxel.

To simplify the notations, we define ζ (k)
j := exp(ZD jθ

(k)
D ),ψ(k)

j := exp

(
(θ (k)

Q )T Pjθ
(k)
Q

)
and τ(k)j := Yj

〈
cos(ϕ j)

〉(k)
, where < ·> is a shorthand notation for the expectation.

In the E-step, given the current parameter estimates (θ (k)
D ,θ (k)

Q ,S(k)0 ,(σ2)(k)), we update

for each acquisition j the conditional expectation of cosϕ j given data Yj using Eq. (9),

and obtain

〈
cosϕ j

〉(k)
=

I1

(
YjS

(k)
0 ζ (k)

j ψ(k)
j (σ−2)(k)

)

I0

(
YjS

(k)
0 ζ (k)

j ψ(k)
j (σ−2)(k)

) ∈ [−1,1]. (12)

This formula is fairly easy to derive from the first moment of the Von Mises distribu-

tion, see Appendix B.

The likelihood in Eq. (11) w.r.t. the parameters σ−2 (known as the profile likeli-

hood) is the Gamma likelihood with shape and rate parameters given by (m+1) and

1
2

{
Y 2

j + (S(k)0 )2(ζ (k)
j )2(ψ(k)

j )2 − 2S(k)0 τ(k)j ζ (k)
j ψ(k)

j

}
, respectively. The profile likeli-

hood of S0 is Gaussian with mean ∑m
j=1 τ(k)j ζ (k)

j ψ(k)
j /∑m

j=1(ζ
(k)
j )2(ψ(k)

j )2.

In the M-step, we update S0 and σ2 by their modes in the recursions according to

S(k+1)
0 =

∑m
j=1 τ(k)j ζ (k)

j ψ(k)
j

∑m
j=1(ζ

(k)
j )2(ψ(k)

j )2
(13)

and

(σ−2)(k+1) = 2m/
m

∑
j=1

{
Y 2

j +(S(k)0 )2(ζ (k)
j )2(ψ(k)

j )2 −2S(k)0 τ(k)j ζ (k)
j ψ(k)

j

}
, (14)

respectively.
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4.1. Constrained Fisher scoring (CFS)

In the estimation, the marginal log-likelihoods of the parameters L or θQ derived in

Eq. (11) are not of the standard form that result in intractable computational problems.

To solve the problem we use the Laplace approximation for the profile log-likelihood

f (L|y,ϕ,Z) and f (θD|y,ϕ,Z) and propose a stabilized constrained Fisher scoring algo-

rithm for optimizing the two functions.

Define Θ := (L,θQ). After omitting the terms in Eq. (11) which do not depend on

L and θQ, the maximization of the log-likelihood with constraints is reduced to

minimizing

f (Θ) :=
1

2σ2

m

∑
j=1

{
(S0)

2(ζ j)
2(ψ j)

2 −2S0τ jζ jψ j

}
, (15)

with the constraint

g(Θ) := 2θ T
Q PjθQ +ZD j θD(L)≤ 0,

where the nonlinear constraint g(Θ) is derived from Kapp ≤ 3/(bDapp) so that zero b

value can be also considered in the estimation.

4.2. Regularization

The Fisher scoring (FS) can sometimes ease dramatically the computation. For

example, in our case when updating L, the computation of Fisher information is much

easier than to compute directly the second derivatives, see Appendix C for details. The

updating scheme of the FS may be written as

Θ ← Θ+αS(Θ)I (Θ)(−1), (16)

where α ∈ (0,1) is the step parameter. The Fisher score is S(Θ) =� f (Θ). When we

impose the third constraint g(Θ) on the nonlinear problem in Eq. (15), the score of Θ

becomes SΘ := S(Θ,λ )� f (Θ)+
m
∑
j=1

�λ jg(Θ) and the corresponding Fisher informa-

tion is

I (Θ) =

⎛
⎝I (L,λ )

I (θQ,λ )

⎞
⎠ .
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In order to avoid the singularity or the ill-condition of the Fisher information, we

apply the Levenberg-Marquardt (LM) method, combining the gradient descent method

and the Fisher-scoring method to stabilize the algorithm. Updating Θ then is

Θ → Θ+

[
I (Θ)+ γ1

]−1

S(Θ), (17)

where 1 is an identity matrix. Further, we choose the LM parameter γ = ‖S(Θ)‖,

being among a few optimal choices of the Levenberg-Marquart parameter, see [34, 35],

where ‖ ·‖ is the norm. To speed up the computation, we only apply this regularization

scheme, when I (L(k),λ (k)) and I (θ (k)
Q ,λ (k)) are singular or close to singular.

CFS can be achieved by means of many optimization algorithms, which are modifi-

cations of the Newton method, where the constraints are considered in the calculations.

In this work we apply the barrier method to solve the constrained nonlinear optimiza-

tion problem represented in Eq. (15).

4.3. Constrained weighted least squares (CWLS) by CFS, CWLS-IP

To extend the idea, we adopt CFS and the regularization scheme as presented in

Section 4.1 and 4.2 in the most commonly used computational method in diffusion

MRI, the weighted least squares (WLS), for estimating Θ in the constrained DKI. We

apply the interior penalty algorithm for the optimization and named the method as

CWLS-IP.

The Fisher information is then

Icwls(Θ,λ ) =

⎛
⎝Icwls(L,λ )

Icwls(θQ,λ ),

⎞
⎠

12



where

Icwls(L,λ ) =−JT
L

( m

∑
j=1

w j

(
logYj − logS0 −ZD j θD(L)−θQPjθQ

)
ZT

D jZD j

)
JL

−
m

∑
j=1

λ jMj,

and

Icwls(θQ,λ ) =−4
m

∑
j=1

w j

(
logYj − logS0 −ZD j θD(L)−θQPjθQ

)
θ T

Q PT
j θQPj

+2
m

∑
j=1

w j

(
logYj − logS0 −ZD j θD(L)−θQPjθQ

)
Pj −4

m

∑
j=1

λ jPj.

5. Constrained nonlinear least squares algorithm (CWLS-LLS)

We extends the heuristic algorithm proposed by [13], using a simply way to obtain

the estimates that almost satisfy all the constraints in DKI, and meanwhile we get good

and reasonable starting values in the proposed EM algorithm. In other words, the

estimates Θ(0) of parameter Θ = (L,θQ) by CWLS-LLS fit the constraints in DKI and

are as close to the WLS estimates as possible. The positive constraints by CWLS-LLS

are controlled directly by the quadratic model using TQ in Eq. (6).

Let us take the estimates (log Ŝ0, θ̂D, θ̂w) by WLS;

1. Check the eigenvalues (Λi, i = {1, · · · ,3}) of the 3×3 tensor matrices, D(θ̂D):

If any Λi ≤ 0, set it to have a negligible constant value, a ∈ R+.

If Λi is changed, reconstruct D(θ̂D) and update θD, fix θD and logS0 and then

apply WLS to update θW and σ2.

2. Set κ = ZW θ̂W , and

if any κ j >−1

2
ZD j θ̂D, set κ j =−1

2
ZD j θ̂D.

If any κ j is changed, θW is known via new κ and apply WLS to update (logS0,θD

and σ2).
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3. (Option) Repeat Step 1 and 2 a few iterations (e.g., 10-100) to increase the ac-

curacy of the estimates that satisfy the constraints if any Λi is updated by Step

2.

4. Apply the nonlinear least squares method (LLS) on

κ̂ =
b2

6

3

∑
j=1

(
vT q∗

i

)2

to obtain θ (0)
Q , where Q∗ = tr(D)Q, see Eq. (6). Apply the Cholesky decompo-

sition to get L(0).

Step 1 results in # 1 to be satisfied and preserve the directions of the positive curvature

in the original tensor matrices as much as possible. Step 2 is used to reach # 3 at each

acquisition. Step 3 intends to increase the accuracy of the estimates that satisfy the

constraints 1 and 2. Step 4 is using TQ to meet #2, where a simple option of the initial

values of LLS can be the square root of θ̂W obtaining the first 15 elements of Q(0), and

the remaining three elements are from random samples.

6. Simulation and case studies

We use both synthetic and real data to implement the proposed methods, the new

EM algorithms (EM-IP), CWLS by IP (CWLS-IP) and CWLS-LLS, and compare with

other popular alternatives: WLS, CWLS-SQP and the constrained MLE algorithm by

sequential quartic programming algorithm (SQP, MLE-SQP) proposed in [14] through

their results. We implemented MLE-SQP using our parametrization described in Sec-

tion 2.3 directly on the Rician noise model with likelihood function of Eq. (2), where

we fixed σ2 and S0 and applied the fmincon with SQP as described in [14] with

the target, the minus logarithmic likelihood for optimizing Θ. All the implementation

were carried out in the MATLAB environment with version R2018a. Proposal scaling

is needed for dealing with numerical problems encountered with Rician noise model.

6.1. Simulation 1

In this study we simulate the (noise-free) MR signals using three models: Model 1.

S(b) = exp(− 1
2 bDapp), Model 2. S(b) = exp(− 1

4 bDapp) and Model 3.
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S(b) = exp(− 1
12 bDapp), where we use simple notation Dapp instead of D(2)

app as defined

in Section 2.2. The selected three models were constructed by the DKI model when

Kapp hits the upper bound, half and 1/6 the upper bound, respectively. In this way,

the ground truth (GT) of Kapp,θW can then be calculated analytically. The anisotropic

(positive) diffusion tensors were randomly chosen from a public access data resource

http://academicdepartments.musc.edu/cbi/dki/dke.html. The

last accessible date is 31.12.2018.

We use Philips 32 directions as the gradient scheme, and chose six b values (knots):

62, 249, 560, 996, 1556, 2240 s/mm2 which were partially from the one that we used

to acquire real datasets on human brain and are in an appropriate range with DKI.

The noise-free signals were generated from the chosen models (Model 1, 2 or 3) with

all the 32 gradient directions isotropically distributed over each shell determined by the

different b knot. Hence, the dimension of the design matrix ZD is 192×6. We generated

the Rician noise MR data by corrupting the noise-free signals with three different noise

levels: 20,100 and 400 that are reasonable when collecting the human brain data, see

[36]. For comparison, we fixed the non-attenuation diffusion to be S0 = 800, and used

a simple formula for signal to noise ratio, that is, SNR=S0/σ for b ∼ 0s/mm2 images.

Hence three SNR = 2,8 and 40 were studied in the experiments.

We first randomly picked up one anisotropic tensor and used Model 1 to generate

synthetic data shown in Fig 1. In order to show our results are not occasional, we did

further implementation: We chose 100 tensors from the public resource and simulated

data with Model 1, 2 and 3, respectively. The diffusivity profile of the selected tensor

and the 2D field of the 100 tensors are shown in Fig. 2.

6.2. Simulation 2

The design of this experiment is similar to the one in [15], where the signals were

simulated from the biexponential model, see Appendix E, Table A. Data contain 180

voxels from six regions of interest (ROI) which are of different types: gray matter next

to cerebration fluid (GM/CSF), gray matter next to white matter (GM/WM), thalamus

(TH), putamen and globus pallidus (PU/GP), internal capsule white matter (ICWM),

frontal white matter (FWM). Each ROI contains 30 voxels in total. Three shells of
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Figure 1: Data were generated by Model 1. The thick blue line describes the noise-free signals (GT),

the green circle, dark dash and red star lines represent the Rician noise data with SNR being 2,8 and 40,

respectively.

b values = 500, 1000, 1500 s/mm2 and 18 distinct gradients computed by the elec-

trostatic energy minimization algorithm (see Appendix E Table B) were used in the

simulation of data. The b knots were increased every 18 gradient directions, hence,

for each voxel we have 54 acquisitions. The ground truth (GT) was calculated by the

least squares method from the noise-free signals. For comparison, SNRs were chosen

within the range [8,40] and were monotonically increasing after every 20 voxels. In the

simulation, we fixed S0 = 1. The Rician distributed data were attained by corrupting

the signals with noise corresponding to the SNR of the design.

6.3. Real data

We have one subject of a normal volunteer in the case study. The normal brain

dataset consists of 2204 diffusion MR-images of the brain, in the form of four 4mm-

thick consecutive axial slices measured by a Philips Achieva 3.0 Tesla MR-scanner.

The distance between adjacent slices is 5mm, and TE/TR is 100ms/25083ms. The

image resolution is 128× 128 pixels of size 1.875× 1.875 mm2. In the protocol, we

used all the combinations of the 32 gradient directions with the b value varying in the

range 0, 62, 249, 560, 996, 1556, 2240 s/mm2, and the gradients are equally distributed

on each shell with 3 repetitions. After masking out the skull and the ventricles, we

remain with a region of interest (ROI) containing 18764 voxels to be analyzed.
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a) An anisotropic tensor profile b) The 2D tensor field

Figure 2: Fig. 2a shows a tensor profile drawn on a unit shpere where the color represents the location in

the sphere. Fig. 2b depicts a 2D tensor field and was plotted by using the MATLAB fanDTasia ToolBox

[37, 38].

7. Results

Next we compare the proposed new methods, EM-IP, CWLS-IP and CWLS-LLS

with the completing alternatives, WLS, CWLS-SQP and MLE-SQP.

7.1. Simulation 1

Fig. 3 shows the mean square error (MSE) of the estimated signal decay, Ŝdecay =

exp(ZDθ̂D +Zwθ̂w), as a function of the b value averaged over the 32 gradient direc-

tions by six different methods: WLS, CWLS-LLS, EM-IP, MEL-SQP, CWLS-SQP

and CWLS-IP from one randomly selected voxel, where we fixed S0 for comparison,

and data were generated on basis of Model 1. When applying MLE-SQP, CWLS-SQP,

CWLS-IP and EP-IP, we used the estimated values of Θ and σ2 by CWLS-LLS as

initials. We use consistent lines to describe different methods: WLS and CWLS-LLS

are described by the red cross and the thick dark cross lines, the cyan diamond and the

magenta aster lines indicate the results by EM-IP and MLE-SQP, and the thick green

dashed circle and black circle lines show MSE of signal decay using CWLS-SQP and

CWLS-IP, respectively. According to Fig. 3a, all the methods perform very well when
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Figure 3: MSE of estimated signal decay (Ŝdecay = exp(ZDθ̂D +Zwθ̂w)) as a function of the b value from a

randomly selected voxel averaged over the 32 gradient directions for every shell. Ŝdecay by WLS and CWLS-

LLS were computed according to Eq. (4) and are described by the red cross and the thick dark cross lines,

respectively. We computed Ŝdecay by the other methods through Eq. (7), and use the cyan diamond and the

magenta aster lines to indicate the results by EM-IP and MLE-SQP, and the thick green dashed circle and

black circle lines to show MSE of Ŝdecay using CWLS-SQP and CWLS-IP, respectively.

SNR is high. The results by EM-IP shows outstanding performance when the b value

is increasing and are more stable and closer to GP than the alternatives in the cases of

three different noise levels. The results by CWLS-LLS are as good as that by MLE-

SQP from this experiment for all three different SNRs. When SNR= 2, the estimates by

WLS, CWLS-SQP, CWLS-IP indicate a large deviation from GT, whereas the results

by MLE-SQP, CWLS-LLS and EP-IP are equally good.

We did more experiments where we used different synthetic data as described in

Section 6.1 to examine 100 voxels, and extended SNR down to 1 as we are more inter-

ested in data retrieved in the low regime of SNR. Fig. 4 described MSE of Ŝdecay again

as a function of the b value averaged over the 32 gradient directions for each shell but

in average of 100 voxels, and we assume the voxels are independent of each other. For
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Figure 4: MSE of estimated signal decay (Ŝdecay = exp(ZDθ̂D+Zwθ̂w)) as a function of the b value in average

of 100 randomly selected voxels. For each voxel, Ŝdecay were obtained by averaging over all the 32 gradient

directions per shell. Ŝdecay by WLS were computed according to Eq. (4) and the result is described by the

red cross lines, respectively. We computed Ŝdecay by the other methods through Eq. (7), and use the cyan

diamond and the magenta aster lines to indicate the results by EM-IP and MLE-SQP, and the thick green

dashed circle and black circle lines to show MSE using CWLS-SQP and CWLS-IP, respectively.

comparison, the initial values of the methods: MLE-SQP, CWLS-SQP, CWLS-IP and

EP-IP were obtained from the results by WLS. Though CWLS-LLS can provide less

biased estimates as the case pointed out in Fig. 3, it is unstable in some cases. Hence,

we did not show the results by CWL-LLS, as some of them are beyond the regions

of the illustrations in Fig. 4. Since the CWLS methods are not based on the correct

noise model, they may yield unreliable results, especially when SNR remains in a low

regime, which is in agreement with Fig. 4. Also CWLS-SQP (the black circle lines)

and CWLS-IP (the thick green dashed circle lines) have roughly similar performance

with the first eight datasets, and CWLS-IP shows slightly better achievement, when the
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Table 1: Comparison of computational time of EM-IP, MLE-SQP, CWLS-IP, CWLS-SQP.

Simulation 1/ DATA2 EM-IP MLE-SQP CWLS-IP CWLS-SQP

mean 3.5185 2.1462 31.6826 9.2253

max 103.9635 80.5856 105.4403 90.7987

min 0.0625 1.0897 5.8607 0.8128

values of SNR are low. CWLS-SQP gave unreliable results, which is the case in the

ninth subplot of Fig. 4. For all the nine illustrations, EM-IP has given the best and

stable performance among the alternatives.

In order to compare the computational efficiency, in this experiment we applied a

reduced EM algorithm of the proposed method, EM-IP, that we simultaneously update

Θ and
〈
cosϕ j

〉
, though

〈
cosϕ j

〉
is thought as a known term from E-step when calculat-

ing the score and Hessian matrices, see details in Appendix A, and then we correct the

noise level σ by Eq. (14). In such a way, the nonlinear optimization with constraints

regarding to optimize Θ only needs run once. We monitor the running time (RT) on

average (per voxel), minimum, mean and maximum in seconds for the nine datasets in

average, and each dataset contains 100 voxels. The records are listed in Table 1 and

was obtained from Cluster, running in parallel in the MATLAB 2018a environment.

Table 1 records for all the nine examined datasets, the computation can be done within

2 minutes for all the voxels with different SNR by four listed methods. With Con-

strained Fisher scoring described in Section 4.1, computation can be more expensive

when using the data that simulated with low SNR, but the results are more reliable and

stable. In average, MLE-SQP is more efficient and typically yielded better estimates

when the b value is high and when SNR is low, but it can be unstable at a few number

of voxels, resulting in larger bias than the results by the other alternatives, especially

from the data with the low b value and in the high regime of SNR as shown in Fig. 4.

In average, EM-IP is the second efficient method among the four illustrations.

7.2. Simulation 2

We plot the mean square error (MSE) of the DKI-derived scalar metrics and com-

pare the performance of the six methods shown in Fig. 5. Figure 5a, 5b, 5c and 5d
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depict MSE for MD, DT, MK, KT, respectively, from CWLS-LLS (the thick black

cross lines), CWLS-SQP (the thick green dashed circle), CWLS-IP (the black circle

lines), MLE-SQP (the magenta aster lines) and EM-IP (the cyan diamond lines). All

the subfigures reveal a small precision between the estimates and GT over the selected

region of SNR. The precision of all the methods tend to be very small for the results of

MD (×10−7) and DT (×10−6) as shown in Figure 5a and 5b. We did not show the re-

sults by WLS as it does not consider any constraints in DKI. Instead, we describes the

results by CWLS-LLS, CWLS-SQP and CWLS-IP that include the three constraints

in DKI, despite the fact that they are all based on the log-normal noise model. MLE-

SQP provides less precisioned estimates in the first two subfigures (a and b), because it

uses the constraints and the accurate noise model. Our proposed EM method (EM-IP)

gives the best performance among the five methods in all the listed metrics. We did not

show the results with CWLS-LLS in Figure 5c and 5d as they are beyond the region.

Moreover, MSE for MK and KT using MLE-SQP, described in these two figures, de-

scribe larger precisioned estimates in some cases of SNR than that of CWLS-IP and

CWLS-SQP. The results obtained using CWLS-IP show slight less precision than that

by CWLS-SQP. Overall, all the listed methods perform quite well, especially in the

high regime of SNR, and our proposed method EM-IP leads to very stable and precise

estimates over the selected region of SNR.

Furthermore, we recorded the mean of the percentage of constraints violation at

each value of SNR which is described in Fig. 6. It reveals that when SNR increases,

the percentage of violation decreases for constraints # 2 and # 3. We got no violation

for constraint # 1 in this dataset which imply that all the diffusion tensors estimated

using WLS are positive.

7.3. Real data

We first show the anatomic information of the subject of human brain through the

metric maps of MD in Fig. 7, FA in Fig. 8 as well as MK in Fig. 9 estimated by the

proposed methods, CWLS-IP and EM-IP, respectively. In each of the three figures, the

subplots of the first lines depict the results by CWLS-IP, and the results shown on the

second lines were obtained by EM-IP. Fig. 7 points out that the results by CWLS-IP are
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Figure 5: Mean square error (MSE) of mean diffusivity (MD, Fig. 5a), diffusion tensors (DT, Fig. 5b),

mean kurtosis (MK, Fig. 5c) and kurtosis tensors (KT, Fig. 5d). The cyan diamond and the magenta aster

lines indicate the results by EM-IP and MLE-SQP, and the thick green dashed circle and black circle lines

show MSE using CWLS-SQP and CWLS-IP, respectively.

Figure 6: The constraints violation as a function of SNR. The red cross, the blue star and the green circle

lines record the percentage of violation of constraint # 1, # 2, # 3, respectively. The percentage of violation

for constraints # 2 and # 3 decreases in the increase of SNR.
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higher than that by EM-IP from each ROI (slice). The results of voxels in slice 2 shows

large differences by these two methods. The estimated values of FA are between (0,1)

as described in Fig. 8 by both methods, and the images of FA maps by EM-IP provides

more clear visualization of the structural information of ROIs. After comparison at

the same scales, the image contrasts by EM-IP represent more clearly the structural

information of the brain than those achieved by means of CWLS-IP, especially in Fig.

8 and Fig. 9. Moreover, we also computed mean and standard deviation (std) of MD,

FA and MK by the proposed method EM-IP and listed the results in Table 2.

We also monitored constraint violations (CV) and show the spatial layout of CV on

the FA maps as in Fig. 11, where CV is evaluated in all 32 encoding directions. As

an illustration, we show the results from slice 1 and slice 2, which contain 4819 and

4719 voxels, respectively. The intensities of CV # 1, # 2 and # 3 are on both slices in

the range of [0,16] [0,32] and [0,7], respectively. The percentages of CV # 1, # 2 and

# 3 in voxels are 0.35% (16/4537), 19.53% (886/4537), 1/4537 and 0.34% (16/4719),

19.37% (914/4719), 1/4719 on slice 1 and on slice 2, respectively.

Figure 7: The metric maps of MD obtained by CWLS-IP and EM-IP from four consecutive slices of human

brain. The values of estimated MD are between (0,18) ×10−3mm2/s by CWL-IP and are between (0,10)

×10−3mm2/s by EM-IP for the same ROIs, respectively.
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Figure 8: The metric maps of FA obtained using CWLS-IP and EM-IP from four consecutive slices of human

brain. The values of estimated FA are between (0,1) by both methods.

Figure 9: The metric maps of MK obtained using CWLS-IP and EM-IP from four consecutive slices of

human brain. The values of estimated MK are between (0,8). The subfigures of the first lines are with

CWLS-IP, and the plots of the second line were obtained by EM-IP.
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Figure 10: The estimated noise level (σ̂ ) by EM-IP. The values are in the region between 50 and 450 for

four ROIs from the subject of human brain.

Figure 11: Spatial distributions of constraint violations (CV) on the FA maps of two illustrated slices. The

red circles show CV # 2 and the green stars depict CV # 1. We mark CV # 3 by a blue rectangle as it has

very low percentage on these two slices.
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Table 2: Mean and standard deviation (std) of MD, FA and MK by EM-IP.

real data Slice 1 Slice 2

mean std mean std

MD 1.5548×10−3 3.063×10−3 1.0479×10−3 5.184×10−4

FA 0.2553 0.1737 0.2647 0.1817

MK 0.6855 0.4504 0.7401 0.5736

real data Slice 3 Slice 4

mean std mean std

MD 1.0856×10−3 5.649×10−4 1.0771×10−3 5.337×10−4

FA 0.2753 0.1860 0.2844 0.2081

MK 0.7866 0.5884 0.7951 0.6735

8. Discussion

The contributions of the Fisher scoring algorithm with the correct forms of the

Hessian matrices lead to much reliable results without any increase of computational

burden being in agreement with the results produced by CWLS-IP and EM-IP with

comparison of MLE-SQP and CWLS-SQP, respectively. Especially in our case, θD is a

function of L, which provides a possibility to calculate the essential Fisher information

for updating the parameter L in the Fisher scoring method. Compared with the observed

information (or so-called empirical Fisher information) J (L), the algebraically simple

formula of the Fisher information will lead to substantially less demanding computa-

tion. The stability of the algorithm can be achieved by means of proper regularization.

In terms of computation efficiency, in the simulation studies we introduced a “re-

duced” EM algorithm that we update Θ and
〈
cosϕ j

〉
simultaneously though

〈
cosϕ j

〉
is considered as a known term from E-step. In such a way, the constrained nonlinear op-

timization can only run once without increasing computational burden, and the noise

can be corrected afterwards. There are only a few works, for instance [18, 36] with

studies on the noise in diffusion MRI. The Von Mises data augmentation described in

this paper provides an alternatively efficient way to correct the noise in diffusion MRI.

In the study of real data, we depict the scalar metric maps of MD, FA and MK,
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which are commonly used to explore the anatomic information of the brain. MD

describes the diffusion anisotropy in terms of diffusivity, FA measures the diffusion

anisotropy of water molecules at each voxel, and MK describes the degree of discrep-

ancy of the diffusion displacement distribution from the Gaussian distribution. These

maps together can detect nearly all types of fibers in the white matter and give detailed

structural information of brain anatomy.

The proposed CWLS-LLS are sometimes surprisingly as good as other methods

that considered all the constraints in DKI, this is probably because in the iteration step

of CWLS-LLS, Step 3 breaks the Gaussian assumption and forces the estimates fit the

Rician model in Eq. (2) as close as possible. The method has much less computa-

tion burden compared with others. However, it is unstable in general, hence, further

investigation and improvements are needed.

This work has some limitations that should be taken into account in the future work:

1) The number of cases in real data was small and only from a healthy volunteer. 2)

We did not analyze inside individual brain regions in more detail but rather focus on

statistical analysis of the methods proposed in this work. 3) In this work, we assumed

each voxel is independent of the other, hence correlations between spatial neighbor-

hood of the voxels have not been considered in the estimation. For this limitation, we

have proposed a general method, which can be extended to this work, see [39].

9. Conclusion

In this work, we proposed several methods: EM-IP, CWLS-IP and CWLS-LLS for

the estimation with constrained DKI diffusion MRI. EM-IP has shown better perfor-

mance in our studies compared with the alternatives and other popular methods. Using

the state-of-the-art statistical methodology of data augmentation, we are able to work

with a generalized linear model (GLM) of the joint likelihood derived from the Rician

density. The positivity constraints are imposed by the Cholesky decomposition and

the new parametrization of the ternary quadratic (TQ) of rank 2 and kurtosis tensors,

respectively. The whole scheme is not only for updating the tensor parameters simul-

taneously but also for updating the noise parameters and the unattenuated signal. To
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apply this scheme for other simpler models such as DTI, the multi-tensor model or

other DWI alternatives are straightforward. The new augmentation method leads to

less biased estimators, which was expected due to theoretical reasoning and had been

supported by the experiments.
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Appendix

Appendix A. Fisher information of L and θQ, and the barrier method

The Fisher information is

I (L(k),λ (k)) = E
[−H(L(k),λ (k))] =−E

[�2 f (L)+
m

∑
j=1

λ j �2 g j(L)
]

=−
[

JT
L (�2 f (θD))JL +� f (θD)

∂ 2θD(L)
∂Lk∂Lh

]
−

m

∑
j=1

λ jMD j

=−(σ−2)(k)
m

∑
j=1

{
JT

L

(
2(S(k)0 )2(ζ (k)

j )2(ψ(k)
j )2ZT

D jZD j −S(k)0 τ(k)j ζ (k)
j ψ(k)

j ZT
D jZD j

)

JL

}
−

m

∑
j=1

λ jMD j ,
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where λ is the Lagrangian multiplier,

MD j :=�2 g j(L)

=

[
ZD j

∂ 2θD(L)
∂Lk∂Lh

]
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2ZD1 j ZD4 j ZD5 j

2ZD2 j ZD6 j

2ZD3 j

ZD4 j 2ZD2 j ZD6 j

ZD5 j ZD6 j 2ZD3 j

ZD6 j 2ZD3 j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and [−H(L,λ )] is known as the empirical information. The gradient � f (L) ∈ R
d of

f (L) at the current recursion is

� f (L(k)) = (σ−2)(k)
m

∑
j=1

{
(S(k)0 )2(ζ (k)

j )2(ψ(k)
j )2JLZT

D j
−S(k)0 τ(k)j ζ (k)

j ψ(k)
j JLZT

D j

}

and

�g(L(k)) = ZD jJ
(k)
L .

In order to ease the computation in the update of θQ, we simply compute the empirical

Fisher information

I (θ (k)
Q ,λ (k)) =−H(θ (k)

Q ,λ (k)) =−�2 f (θQ)−
m

∑
j=1

λ j �2 g j(θQ)

=−(σ−2)(k)
m

∑
j=1

{
8(S(k)0 )2(ζ (k)

j )2(ψ(k)
j )2θ T

Q PT
j PjθQ +2(S(k)0 )2(ζ (k)

j )2(ψ(k)
j )2Pj

−4S(k)0 τ(k)j ζ (k)
j ψ(k)

j θ T
Q PT

j PjθQ −2S(k)0 τ(k)j ζ (k)
j ψ(k)

j Pj

}
−

m

∑
j=1

4λ jPj,

where the gradient of f (θQ) is

� f (θQ) = (σ−2)k
m

∑
j=1

{
2(S(k)0 )2(ζ (k)

j )2(ψ(k)
j )2PjθQ −2S(k)0 τ(k)j ζ (k)

j ψ(k)
j PjθQ

}
,

and

�g(θQ) = 4(θ T
Q )

(k)Pj.

The barrier method [19, 40], also known as the primal-dual interior point method

(IP), is among a few successful algorithms in solving such a kind of optimization prob-
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lems, where the inequality constraints are imposed by a barrier ν , so that

g j(Θ)−ν j = 0, j = 1, · · · ,m. ν j ≥ 0.

The scheme for solving the parameters Θ,λ and ν is then

SJ(−1)
ac , (.1)

where S is the matrix containing the score of Θ,λ and ν , and Jac is a Jacobian matrix

given by

Jac(Θ,λ ,ν) =

⎛
⎜⎜⎜⎝

I (Θ,λ ) 0 A(Θ)�

0 diag(λ ) diag(ν)

A(Θ) Im×1 0

⎞
⎟⎟⎟⎠ ,

where diag(·) is a diagonalizing operator to construct the vector to be a m×m matrix,

and A(θ) :=�g(θ) is a d ×m matrix.

Appendix B. Calculation of < cosϕ j >

By the moment generating function of the Von Mises distribution, we have

ES,σ2

(
exp(λ cos(ϕ))

∣∣Y)= I0(λ +Y S/σ2)

I0(Y S/σ2)
, =⇒

ES,σ2

(
cos(ϕ)

∣∣Y)= ∂
∂λ

I0(λ +Y S/σ2)

I0(Y S/σ2)

∣∣∣∣
λ=0

=
∂
∂ z

log I0(z)
∣∣∣∣
z=Y S/σ2

=
I1(Y S/σ2)

I0(Y S/σ2)
,

where S is the signal and Ik(z) is the modified Bessel function of first kind. This gives

〈
cosϕ j

〉
=

I1

(
YjS0 exp(Z jθ)σ−2

)
I0

(
YjS0 exp(Z jθ)σ−2

) .
Appendix C. Fisher scoring method for L

Let’s ζ (k)
j = exp(ZD jθ

(k)
D ),ψ(k)

j = exp

(
(θ (k)

Q )T Pjθ
(k)
Q

)
and τ(k)j = Yj

〈
cos(ϕ j)

〉(k)
.

The score of θD is the first derivative of Eq. (15) w.r.t. θD given as

�q(θD) = (σ−2)(k)
m

∑
j=1

{
(S(k)0 )2(ζ (k)

j )2(ψ(k)
j )2ZT

D −S(k)0 τ(k)j ζ (k)
j ψ(k)

j ZT
D

}
, (.1)

30



and the Hessian matrix are

�2 q(θD) = (σ−2)(k)
m

∑
j=1

{
2(S(k)0 )2(ζ (k)

j )2(ψ(k)
j )2ZT

DZD −S(k)0 τ(k)j ζ (k)
j ψ(k)

j ZT
DZD

}
,

(.2)

and the observed information (θD) =−�2 q(θD) is defined as the Hessian multiplied

by -1.

The score of L expresses

�q(L) = (σ−2)(k)
m

∑
j=1

{
(S(k)0 )2(ζ (k)

j )2(ψ(k)
j )2ZT

DJL −S(k)0 τ(k)j ζ (k)
j ψ(k)

j ZT
DJL

}
, (.3)

and the corresponding Hessian matrix is

�2 q(L) = JT
L (�2q(θ))JL +�q(θD)

∂ 2θD(L)
∂Lk∂Lh

(.4)

= (σ−2)(k)
m

∑
j=1

{
JT

L

(
2(S(k)0 )2(ζ (k)

j )2(ψ(k)
j )2ZT

D jZD j −S(k)0 τ(k)j ζ (k)
j ψ(k)

j ZT
D jZD j

)
JL

}

− (σ−2)(k)
m

∑
j=1

{(
(S(k)0 )2(ζ (k)

j )2(ψ(k)
j )2 −S(k)0 τ(k)j ζ (k)

j ψ(k)
j

)
Mj

}
, (.5)

where

Mj = ZD j
∂ 2θD(L)
∂Lk∂Lh

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2Z1 j Z4 j Z5 j

2Z2 j Z6 j

2Z3 j

Z4 j 2Z2 j Z6 j

Z5 j Z6 j 2Z3 j

Z6 j 2Z3 j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The Fisher information is given by

〈
I (L)(k)

〉
:= E

[−�2 logπ(y;θD(L))
]
=

− (σ−2)(k)
m

∑
j=1

{
JT

L

(
2(S(k)0 )2(ζ (k)

j )2(ψ(k)
j )2ZT

D jZD j −S(k)0 τ(k)j ζ (k)
j ψ(k)

j ZT
D jZD j

)
JL

}
,

with the expectation at θ̃D, the current value of θD,

E
[�q(θD)

]
= 0 and

E
[�2q(θD)

]
= (σ−2)(k)

m

∑
j=1

{
(S(k)0 )2(ζ (k)

j )2(ψ(k)
j )2ZT

D −S(k)0 τ(k)j ζ (k)
j ψ(k)

j ZT
D

}
.
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Note that θD is a function of L which provides the possibility to calculate the essential

Fisher information which is the expected value of (or minus) Hessian matrix for updat-

ing L in the Fisher scoring method. Compared with the observed information I (L),

the algebraically simpler formula of the Fisher information will substantially reduce

computation, and the algorithm is much more stable regarding the singularity than the

observed information matrix. Details can be found in [41].

Appendix D. The Gram matrix

We extract θ̂W from the Gram matrix [42] computed by G∗ = Q̂T Q̂, that given by

G∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θW (1) a b θW (10) θW (11) 2d

a θW (2) c θW (12) 2e θW (13)

b c θW (3) 2 f θW (14) θW (15)

θW (10) θW (12) 2 f 4θW (4)−2a θW (7)−2d θW (8)−2e

θW (11) 2e θW (14) θW (7)−2d 4θW (5)−2b θW (9)−2 f

2d θW (13) θW (15) θW (8)−2e θW (9)−2 f 4θW (6)−2c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where Q̂ is a 6×3 matrix constructing by all the elements in θ̂Q,

and θW (1) = G∗(1,1),θW (2) = G∗(2,2),θW (3) = G∗(3,3),θW (4) = 1/4G∗(4,4)

+1/2G∗(1,2),θW (5) = 1/4G∗(5,5)+1/2G∗(1,3),θW (6) = 1/4G∗(6,6)

+1/2G∗(2,3),θW (7) = G∗(4,5)+2G∗(1,6),θW (8) = G∗(4,6)+2G∗(2,5),

θW (9) = G∗(5,6)+2G∗(3,4),θW (10) = G∗(4,1),θW (11) = G∗(5,1),

θW (12) = G∗(4,2),θW (13) = G∗(6,2),θW (14) = G∗(5,3),θW (15) = G∗(6,3).

Appendix E.

The values of these six ROIs were taken from [43] with the biexponential diffusion

model.

This set of gradient directions was taken from [44], point set 1, which was

computed by electrostatic energy minimization algorithm and shown the advantage of

maintaining the optimal cover.
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Table E.3: Parameters from normal human brains

ROI Din[mm2/s×10−3] Dex[mm2/s×10−3] fin

GM/CSF 1.479 ± 0.166 0.466 ± 0.017 0.490 ± 0.012

GM/WM 1.142 ± 0.106 0.338 ± 0.027 0.622 ± 0.038

TH 1.320 ± 0.164 0.271 ± 0.040 0.617 ± 0.069

PU/GP 1.609 ± 0.039 0.257 ± 0.026 0.648 ±0.028

FWM 1.155 ± 0.046 0.125 ± 0.026 0.648 ± 0.050

ICWM 1.215 ± 0.024 0.183 ± 0.009 0.637 ± 0.020
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Abstract

The analysis of diffusion MR-data is often based on the simplifying assumption that

the diffusion of water molecules follows locally a centered Gaussian distribution. How-

ever, diffusional non-Gaussianity is a common scenario in biological tissues due to po-

tential barriers and compartments. Diffusion kurtosis imaging (DKI) is an extension

of diffusion tensor imaging (DTI), quantifying both Gaussian and non-Gaussian diffu-

sivity by means of 2nd-order tensors and 4th-order kurtosis tensors, and is considered

highly useful in the diagnosis of brain disorders. The model contains three physical

constraints on the diffusivity. The correct Rician likelihood is preferred in the estima-

tion, especially for the MRI-data in the regime of low signal to noise ratio, in order to

obtain more reliable and accurate estimates.

Diffusion MRI-data are subject to noise and artefacts. A general method for image

denoising is image regularization, where the parameter estimators at each voxel depend

also on the estimators at its neighbours. Often the regularization step is applied at the

second stage after estimating the tensor parameters from data. An alternative approach

is to perform the estimation and regularization steps simultaneously.

In this work we propose an original and efficient Bayesian computational method

for DKI including an imaging regularization technique. We use Von Mises data aug-

mentation to reduce the computational difficulties from the Rician likelihood. We built

a Bayesian model for approximative posterior inference of the DKI parameters and ap-
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plied the variational Bayes (VB) method for posterior computation. A regularization

technique is suggested for smoothing the images. The three constraints in DKI are con-

sidered in the methodology. Experiments are conducted on synthetic data to evaluate

the performance of the proposed method and on real data from a case-control study

regarding Lévy body dementia.

Keywords: Data Augmentation, Delta Method, Diffusion Kurtosis Imaging, Gaussian

Markov Random Field, Lévy Body Dementia, Non-Gaussian Diffusion, Nonlinear

Constraints, Regularization, Rician Likelihood, Tensor Positivity, Variational Bayes,

Von Mises Distribution.

1. Introduction

Diffusion MRI is capable of measuring the displacement diffusion of water mol-

ecules and provides a unique insight into image contrasts reflecting anatomical ar-

chitectures inside the organic tissue. Diffusion tensor imaging (DTI), introduced by

Basser et al. (1993, 1994) is an established noninvasive imaging technique based on

the diffusion weighted MR measurements. It extracts the neurostructural information

by characterizing the Gaussian diffusion anisotropy through a three-dimensional (3D)

2nd-order tensor Θ at each volume element (voxel). The probability distribution of wa-

ter diffusion, however, is extremely difficult to model due to the complex microstruc-

ture of the underlying biological tissues. Among all the biological tissues, the human

brain is the most interesting media, which is rich in microstructures such as cell mem-

branes, boundaries and other complex compartments, and hence the water diffuses in a

non-Gaussian way. Tuch et al. (1999); Tuch (2002) proposed the High order Angular

Resolution Imaging (HARDI) to overcome the limitations of DTI, that is, in HARDI

the probability distribution of water diffusion is not restricted to be jointly Gaussian,

and is hence widely used to characterize non-Gaussian diffusion processes.

Among the recent popular imaging protocols, the diffusion kurtosis imaging (DKI)

Jensen et al. (2005); Helpern et al. (2009); Jensen and Helpern (2010) is an extension

of DTI combining the advantages of HARDI. It attempts to quantify the degree of

diffusional non-Gaussianity by introducing a 4th-order tensor (W ), using a statistical

2



metric of ”peakedness” named kurtosis. The DKI model (Jensen et al., 2005; Jensen

and Helpern, 2010) for signal intensity is given by

S = S0 exp

(
−b Θ(g)+

b2 tr(Θ)
2

6
W (g)

)
, (1)

where S0 is the baseline signal without diffusion weighting or the so-called baseline

signal intensity, b is the factor of diffusion weighted sequences summarizing the impact

of the gradient strength on the diffusion weighted images, and g indicates the gradient

direction as a vector on the unit sphere. The diffusion component Θ(g) and the kurtosis

component W (g), are respectively quadratic and quartic forms, symmetric in the g-

coordinates.

Since DKI is a gradient based imaging technique in order to identify the parameters

Θ and W in Eq. (6), the acquisitions are required at least in 15 different gradient

directions with three distinct b-values. Furthermore, to be consistent with the physical

relevance of the diffusion phenomenon, the following constraints are imposed, see also

Veraart et al. (2011); Ghosh et al. (2014):

• The diffusion tensor Θ should be positive definite (#1).

• The lower (#2) and upper (#3) bounds of W (g) are

0 ≤W (g)≤ 3Θ(g)

tr(Θ)
2
, (2)

in order to obtain a signal decreasing with respect to the b-values in the acquisi-

tion range.

The positivity constraint for Θ can be taken into account by using the Cholesky

parametrization Θ = LL�. Several authors have proposed solutions to guarantee higher

order tensor positivity: Barmpoutis et al. (2007); Barmpoutis and Zhuo (2011) use a

sum of squares of quadratic forms to represent the 4th-order tensor; Qi et al. (2010)

propose a positive semi-definite diffusion tensor model working on the smallest eigen-

value of the diffusivity function for the tensor matrix of any higher order; and Ghosh

et al. (2009, 2014) introduce the strategy of ternary quartic (TQ) based on Hilbert’s

Theorem Hilbert (1888) to parameterize the non-negative 3D kurtosis tensor by means

3



of a sum of three squares of quadratic forms. These ideas allow us to reconstruct the

DKI which preserves the positive semi-definiteness for W (g). However, for the up-

per bound, we need to evaluate the constraint at every acquisition in the computation.

In DKI, parameter estimation becomes a computationally expensive constrained opti-

mization problem. The most popular and fast methods include constrained least squares

method by Tabesh et al. (2011) and the constrained weighted least squares (CWLS),

see Ghosh et al. (2014); Liu (2015). For all these methods it is assumed that the ob-

servation noise is Gaussian, which however is far beyond the truth in the regime of

low signal to noise ratio (SNR). In order to access information in the low SNR region,

maximum likelihood estimation (MLE) based methods are also introduced in Veraart

et al. (2011); Ghosh et al. (2014), where the Rician structure of the noise is accounted

for, improving the accuracy of the diffusion and kurtosis tensor estimators. Liu (2015)

also proposes the use of the expectation-maximization (EM) algorithm in the DKI es-

timation and compared the method with MLE. All these methods accounting for the

Rician likelihood can only produce point estimates with frequentist confidence inter-

vals. Furthermore, all these works assume independence between the voxels and, as

a consequence, the mutually neighbouring information is completely ignored in the

estimation.

In this paper, we propose a Bayesian estimation method under Rician likelihood,

which considers all the three constraints in the DKI estimation. We apply the varia-

tional Bayes method (VB) to approximate the posterior probability distributions of all

the parameters of interest and assess the uncertainty in the estimators. A smoothing

scheme is introduced in order to access the mutual voxel-wise neighbouring informa-

tion. The three main contributions of this paper thereby include: 1) Bayesian modeling

in DKI; 2) A VB method for posterior approximation and for global optimization; 3)

Image regularization by the Gaussian Markov Random Field (GMRF). In addition, we

present a case-control study with subjects affected by Lévy Body Dementia Disease

(LBD).

Section 2 overviews the DKI model and the Rician noise structure of the signal.

In Section 3, we introduce the Bayesian modeling. Our VB method and imaging reg-

ularization technique are outlined in Section 4 and 5, respectively. We applied our

4



methods on both synthetic and real data in Section 6. The paper ends with a discussion

in Section 6.

2. Theory

2.1. Preliminaries

The convenient definition of kurtosis of a distribution is

Kur =
M4

M2
2

−3, (3)

where Mn denotes the n-th central moment. Diffusion weighted imaging (DWI) is

based on the Fourier relationship between the signal decay and the distribution of water

molecules displacement. The signal decay thus can measure the average of diffusion

displacement of water molecules and is defined as the expectation of the signal phase

w.r.t. the diffusion distribution function (CDF) P(x, t) of the diffusion displacement

x(t) ∈ R
3 over the time t between the dephasing and rephasing of the gradient pulses

(see Jensen et al. (2005); Mori (2007); Zhu et al. (2007); Descoteaux et al. (2011)). It

can be written as

S/S0 = 〈φ(x(t))〉=
∫

x∈R3
φ(x)dP(x, t), (4)

where the signal phase is defined as φ(x) = exp(i|G|γδ g · x), with gradient scheme

(δ ,G) including the gradient amplitude |G|, and direction g = G/|G|, the duration of

the gradient pulse δ , the proton gyromagnetic ratio γ and the signal intensity without

diffusion weighting S0. Here (g · x) is the inner product, and in addition, the angle

bracket stands for the expectation.

The characteristic function Eq. (4), can be interpreted as the characteristic function

of the random vector x(t). We expand Eq. 4 into the Taylor series, obtaining the signal

decay

S/S0 = E
(
exp(i|G|γδ x(t) ·g))= ∑

n≥0

(−1)nγ2nδ 2n|G|2n

(2n)!
〈(x(t) ·g)2n〉 ∈ [0,1] , (5)

where the odd moments 〈(x(t) · g)2n+1〉 vanish since P(x, t) is reflection symmetric.

Let σ2(t) denote the variance of (x(t) ·g) which determines the width of the diffusion
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distribution as the mean square travel distance of water molecules in direction g. By

Einstein’s equation, σ2(t) = 2tDapp, where

Dapp := gT Θg =
3

∑
�1,�2=1

g�1
g�2

Θ�1,�2
,

is the apparent diffusion coefficient, see for instance Jensen et al. (2005). We expand

the logarithm of Eq. (5) retaining only the terms up to 4-th order, obtaining the approx-

imation

log(S/S0)	−γ2δ 2|G|2
2

〈(x(t) ·g)2〉+ γ4δ 4|G|4
4!

(〈(x(t) ·g)4〉−3〈(x(t) ·g)2〉2
)

=−γ2δ 2|G|2tDapp +
γ4δ 4|G|4t2D2

app

6

( 〈(x(t) ·g)4〉
4t2D2

app
−3

)
.

This justifies the DKI signal model

S(b)/S0 = exp

(
−bDapp +

1

6
b2D2

appKapp

)
∈ R, (6)

see Jensen et al. (2005); Helpern et al. (2009); Jensen and Helpern (2010), derived

by assuming that the pulse during time δ is short enough, so that the Stejskal-Tanner

sequence has the approximation b≈ t(γδ |G|)2, see for instance Qi et al. (2009); Tabesh

et al. (2011); Steven et al. (2014). Following Eq. (6),

Kapp =
〈(x(t) ·g)4〉

4t2D2
app

−3 =

(
tr(Θ)

Dapp

)2

Wapp, (7)

is the apparent diffusion kurtosis, tr(Θ) = tr(Θ)/3 is the mean diffusivity, and

Wapp =
3

∑
�1,�2�3�4=1

W�1,�2�3�4
g�1

g�2
g�3

g�4

is the totally symmetric 4th-order kurtosis tensor W , see e.g., Qi et al. (2009); Tabesh

et al. (2011); Steven et al. (2014). Replacing Kapp in Eq. (6) by Wapp in Eq. (7), we get

the DKI model in Eq. (1) in coincidence with the one described in Section 1. Hence

the 2nd (# 2) and 3rd (# 3) constraints in DKI corresponding to Kapp is

0 ≤ Kapp ≤ 3/(bDapp),

which is equivalent to the constraints in Eq. (2).
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2.2. Rician Likelihood and Data Augmentation

We first introduce the noise model for the raw MRI-acquisitions. The noise in MRI

is complex-valued and is composed of two i.i.d. Gaussian random variables, εr and

εi, with zero mean and variance σ2 specified for the real and imaginary components,

respectively. The joint density of the MRI-noise is expressed by

pS,σ2(εr, εi) =
1

2πσ2
exp

(
−ε2

r + ε2
i

2σ2

)
, (8)

see Andersen (1996); Koay and Basser (2006); Zhu et al. (2007). The MRI-measure-

ment Y is the magnitude of the signal intensity S ≥ 0 corrupted by complex-valued

noise, expressed as

Y = |S+ ε|=
√

(S+ εr)2 + ε2
i .

Let ϕ be the phase data defined as ϕ := arg

(
S + εr + iεi

)
∈ (−π,π] such that

S+ εr = Y cosϕ and εi = Y sinϕ . By the change of variables formula the joint density

of Y and ϕ with parameters S and σ2 is given by

pS,σ2(y,ϕ) =
y

2πσ2
exp

(
− (ycosϕ −S)2 + y2(sinϕ)2

2σ2

)

=
y

2πσ2
exp

(
−y2 +S2 −2yScosϕ

2σ2

)

= pS,σ2(y)pS,σ2(ϕ|y). (9)

The marginal density of Y has a Rician distribution with likelihood function

pS,σ2(y) =
y

σ2
exp

(
−y2 +S2

2σ2

)
I0

(
yS
σ2

)
1(y ≥ 0), (10)

see Henkelman (1985); Gudbjartsson and Patz (1995). I0(·) is the zero-order modified

Bessel function of the first kind and 1(·) is the indicator function. The conditional

density

pS,σ2(ϕ|y) = 1

2πI0(Sy/σ2)
exp

(
yS
σ2

cosϕ
)
, ϕ ∈ (−π,π], (11)

is an instance of the Von Mises distribution on the unit circle symmetric around zero,

see Fisher (1993). Note that, although in theory the zero magnitude is obtained with

zero probability, in reality we can still acquire y = 0 due to numerical truncation. In

such a case, the noise terms only contain the real Gaussian component and the data

have a Gaussian likelihood.
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2.3. Parametrization in DKI

We parametrize the DKI model as follows: for an acquisition with given b-value

and gradient g, the log-signal is given by

logS = logS0 −bg�Θg+
3

∑
i=1

(
bg�Ψ(i)g

)2
, (12)

where S0 is the baseline unweighted signal, Θ and Ψ(i), i = 1,2,3, are 3×3 symmetric

matrices, parametrizing the kurtosis tensor as a ternary quartic as in Ghosh et al. (2009).

Equivalently

logS− logS0 = Zθ +Zψψ�Z� = Zθ +Trace
(
ψ�Z�Zψ

)
= Zθ+ ‖ Zψ ‖2, (13)

where

Z = Z(b,g) =−b
(
g2

1,g
2
2,g

2
3,2g1g2,2g1g3,2g2g3

)
, (14)

θ = vec(Θ) = (Θ11,Θ22,Θ33,Θ12,Θ13,Θ23)
�

and ψ is a 6×3 symmetric matrix with colums

ψ•i = vec(Ψ(i)) = (Ψ(i)
11 ,Ψ

(i)
22 ,Ψ

(i)
33 ,Ψ

(i)
12 ,Ψ

(i)
13 ,Ψ

(i)
23)

�, i = 1,2,3.

When the diffusion tensor Θ is positive definite, it can be further parametrized by

using its Cholesky decomposition Θ = LLT , with L upper triangular. Correspondingly,

θ = θ(L) = (L2
11,L

2
12 +L2

22,L
2
13 +L2

23 +L2
33,L11L12,L11L13,L12L13 +L22L23). (15)

Combining Eq. (9) and Eq. (13), we then get the augmented log-likelihood for the DKI

parameters under the complex noise model:

log pθ ,ψ,S0,σ2(Y,ϕ) = log(Y )− log(2π)− log(σ2) (16)

− 1

2σ2

{
Y 2 +S2

0 exp
(
2Zθ +2 ‖ Zψ ‖2

)−2exp
(
Zθ+ ‖ Zψ ‖2

)
Y S0 cosϕ

}
,

where the exponential function is defined componentwise.
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3. Bayesian modeling

In Bayesian theory, all the unknown parameters are treated as random variables

with an assumed prior distribution. This is the essential difference between the Baye-

sian and the frequentist methods. Statistical inference is then based on the posterior

distribution conditionally on the observed data, derived by the Bayes rule

p(ξ |y) = p(ξ ,y)
p(y)

=
p(ξ )p(y|ξ )

p(y)
, (17)

see for instance Lindley (1972); Gelman et al. (2014); Berger (2013), where the poste-

rior density p(ξ |y) depends not only on the likelihood but also on the prior, encoding

the pre-existent knowledge about the unknown parameters.

The variational Bayes method approximates the posterior without the computation

of the normalizing constant p(y). To apply this method in DKI, we need to construct a

Bayesian model by specifying the prior for the parameters. For the single voxel case,

the parameters are θ ,ψ,σ2 and S0. A Bayesian hierarchical prior model is constructed

as follows:

• S0 has a constrained Gaussian prior

π(S0) =
1

Φ(μ0/η0)
exp

(
− 1

2η2
0

(S0 −μ0)
2

)
1(S0 ≥ 0).

• The noise parameter σ2 has an inverse Gamma prior with density

π(σ2) =
β α

Γ(α)
σ−2(α+1) exp

(−β/σ2
)

with α,β > 0. We can also use the scale invariant improper prior π(σ2) ∝ σ−2,

corresponding to α = β = 0. Although the prior does not integrate on [0,∞), the

posterior of σ−2 will be integrable when θ has a proper prior and the number of

acquisitions is m > rank(Z), see Gasbarra et al. (2014) for the details.

• We specify independent zero-mean rotation invariant Gaussian priors for the 3×
3 symmetric matrices Θ and Ψ(i), i = 1,2,3. The prior for Θ is

π(Θ) =
η5/2

√
η +3λ

(π
√

2)3
exp

(
−1

2

(
ηTrace(Θ2)+λ{Trace(Θ)

}2
))

(18)
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as in Basser and Pajevic (2003), where η > 0, λ >−2η/3 are hyperparameters.

Equivalently, θ = vec(θ) and the column vectors ψ•i = vec(Ψ(i)), i = 1,2,3,

have i.i.d. zero-mean Gaussian priors with precision matrix

Ω =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ +2η λ λ 0 0 0

λ λ +2η λ 0 0 0

λ λ λ +2η 0 0 0

0 0 0 2η 0 0

0 0 0 0 2η 0

0 0 0 0 0 2η

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (19)

The Bayes formula combines the above log priors with the augmented log-likeli-

hood Eq. (16) into the log-posterior and gives

log p(θ ,ψ,S0,σ2,ϕ|Y ) = const.+ logπ(S0)− 1

2
θ�Ωθ − 1

2
Trace

(
ψ�Ωψ

)
− (m+1) log(σ2)− S2

0

2σ2

m

∑
j=1

{
Y 2

j + exp
(
2Z jθ +2 ‖ Z jψ ‖2

)}

+
S0

σ2

m

∑
j=1

exp
(
Z jθ+ ‖ Z jψ ‖2

)
Yj cosϕ j, (20)

where m is the number of acquisitions and Z j = Z(b j,gj), j = 1, . . . ,m.

4. Variational Bayes approximation

The idea of the mean-field variational Bayes framework (VB) is to approximate the

posterior distribution of the parameter ξ = (ξ1, . . . ,ξn) given the response y,

p(ξ |y) = p(ξ )p(y|ξ )/p(y),

simply by a product of probability distributions

q̂(ξ ) = q̂1(ξ1)q̂2(ξ2) · · · q̂n(ξn),

corresponding to independence of the components ξk under the approximative distribu-

tion q̂(ξ ). The VB approximation is found by minimizing the Kullback-Leibler (KL)

divergence

KL
(

p(·|y) ‖ q(·))= ∫
q(ξ ) log

(
q(ξ )

p(ξ |y)
)

dξ , (21)
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using recursion, see Kullback and Leibler (1951) for instance. The VB-marginal recur-

sions are

q̂(t+1)
k (ξk) ∝

∫
log p(y,ξ )∏

h 
=k
q̂(t)h (ξh)dξ1 . . .dξk−1 dξk+1 . . .dξn, (22)

as in Šmı́dl and Quinn (2006). The detailed explanation and derivation of the VB

updating algorithm can be found in Jaakkola and Jordan (2000); Ormerod and Wand

(2010) .

4.1. VB-marginals in constrained DKI

We shall use the VB method to approximate the joint posterior distribution

p(σ2,θ ,ψ,S0,ϕ1, . . . ,ϕm|Y1, . . . ,Ym), (23)

whose logarithm is given in Eq. (20), by a product distribution with factorization

q̂θ (θ)q̂ψ(ψ)q̂S0
(S0)q̂σ2(σ2)q̂1(ϕ1) . . . q̂m(ϕm).

The VB-marginals of the unknown parameters in DKI are calculated by Eq. (22). In

what follows the VB-expectations, denoted by the angle bracket
〈·〉, can be computed

as shown at the end of this subsection.

We start from the VB-marginal of the baseline signal intensity given by

q̂(S0) ∝

1(S0 ≥ 0)exp

(
− (S0 −μ0)

2

2η2
0

− S2
0

〈
σ−2

〉
2

m

∑
j=1

〈
exp

(
2Z jθ

)〉〈
exp

(
2 ‖ Z jψ ‖2

)〉

+S0

〈
σ−2

〉 m

∑
j=1

Yj
〈
cosϕ j

〉〈
exp

(
Z jθ

)〉〈
exp

(‖ Z jψ ‖2
)〉)

,

which is the constrained Gaussian density with mean

μ̂ =

(
μ0η−2

0 +
〈
σ−2

〉 m

∑
j=1

Yj
〈
cosϕ j

〉〈
exp

(
Z jθ

)〉〈
exp

(‖ Z jψ ‖2
)〉)

η̂2

and variance

η̂2 =

(
η−2

0 +
〈
σ−2

〉 m

∑
j=1

〈
exp

(
2Z jθ

)〉〈
exp

(
2 ‖ Z jψ ‖2

)〉)−1

11



constrained on R
+. In order to derive the other VB-marginals, we compute the first

two moments of the constrained Gaussian variable S0 ∼ N
(
μ̂, η̂2

)
given by

〈
S0|1(S0 ≥ 0)

〉
= μ̂ + η̂

φ(μ̂/η̂)

Φ(μ̂/η̂)

and

〈
S2

0|1(S0 ≥ 0)
〉
= μ̂2 + η̂2 + μ̂η̂

φ(μ̂/η̂)

Φ(μ̂/η̂)
,

where φ(t) and Φ(t) are the density (PDF) and cumulative distribution (CDF) functions

of the standard Gaussian distribution, respectively. The expectations above can be de-

rived either by using the Fubini theorem, see the details in Appendix C, or by using the

moment generating function of the one-dimensional constrained Gaussian distribution,

see Nadarajah and Kotz (2008).

The VB-marginal of ϕ j is given by

q̂(ϕ j) ∝ exp

(
Yj cosϕ j

〈
σ−2

〉〈
S0

〉〈
exp

(
Z jθ

)〉〈
exp

(‖ Z jψ ‖2
)〉)

, ϕ j ∈ (−π,π],

which is a symmetric Von Mises distribution with parameter

κ̂ j = Yj
〈
σ−2

〉〈
S0

〉〈
exp

(
Z jθ

)〉〈
exp

(‖ Z jψ ‖2
)〉
, such that

〈
cosϕ j

〉
=

I1

(
κ̂ j
)

I0

(
κ̂ j
) ,

where Iz is the modified Bessel function of the first kind.

The VB marginal of σ2 is an inverse gamma distribution with shape parameter m and

rate parameter

ν̂ =
1

2

m

∑
j=1

{
Y 2

j +
〈
S2

0

〉〈
exp

(
2Z jθ

)〉〈
exp

(
2 ‖ Z jψ ‖2

)〉

−2Yj
〈
cosϕ j

〉〈
S0

〉〈
exp

(
Z jθ

)〉〈
exp

(‖ Z jψ ‖2
)〉}

with density

q̂(σ2) ∝ σ−2(m+1) exp
(−ν̂σ−2

)
,

such that 〈σ−2〉= m/ν̂ .
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4.2. Laplace approximation and the delta method

The exact VB-marginals of the diffusion tensor parameters up to a normalizing

constant is given by

q̂(θ) ∝ exp

(
− 1

2
θ�Ωθ −

〈
S2

0

〉〈
σ−2

〉
2

m

∑
j=1

exp
(
2Z jθ

)〈
exp

(
2 ‖ Z jψ ‖2

)〉

+
〈
S0

〉〈
σ−2

〉 m

∑
j=1

exp
(
Z jθ

)
Yj
〈
cosϕ j

〉〈
exp

(‖ Z jψ ‖2
)〉)

, (24)

and for the kurtosis tensor parameters we have

q̂(ψ) ∝ exp

(
− 1

2
Trace(ψ�Ωψ)−

〈
S2

0

〉〈
σ−2

〉
2

m

∑
j=1

exp
(
2Z jψψ�Z�

j
)〈

exp
(
2Z jθ

)〉

+
〈
S0

〉〈
σ−2

〉 m

∑
j=1

exp
(
Z jψψ�Z�

j
)
Yj
〈
cosϕ j

〉〈
exp

(
Z jθ

)〉)
. (25)

These exact VB-marginals are non-standard distributions which can not be integrated

analytically. Direct implementation of the VB-model is not possible, and a further

numerical approximation is needed.

We impose the following restriction on the VB-marginals of the tensor and kurtosis

parameters θ and ψ by assuming that the marginals of θ and ψ have an approxima-

tion in terms of multivariate Gaussian distributions with mean θ̂ and ψ̂ , respectively,

satisfying the DKI model constraints:

a) θ̂ corresponds to a positive definite symmetric matrix Θ̂ with the Cholesky de-

composition Θ̂ = L�L.

b) Z jθ̂ +2 ‖ Z jψ̂ ‖2≤ 0 ∀ j = 1, . . . ,m.

The mean tensor and kurtosis parameters θ̂ and ψ̂ of the approximative Gaussian

marginals are found by maximizing the exact VB-marginals (24) and (25) respectively

under the DKI constraints, keeping the other VB-marginals fixed, and the covariances

are determined by the second order terms in the Laplace approximation.

Since the mapping L → θ(L) in Eq. (15) between upper-triangular matrices L and

the positive tensor parameters θ is one-to-one, by the delta method (see e.g., Casella

and Berger (2002)) the image probability distribution of L has also a Gaussian approx-

imation.
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The Laplace approximation of q(L) is approximated by the Gaussian distribution

N (L̂, Σ̂L), where L̂ is the q(L) mode and Σ̂L is the Hessian matrix at the mode. By

applying the delta-method we obtain the Laplace approximation of q(θD), given by

q(θD)
d−→ N (L̂T L̂, Σ̂D) with Σ̂D = ĴT

L Σ̂LĴL and

JL =

(
∂θi

∂L j

)
i, j=1,··· ,6

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2L11

2L22 2L12

2L33 2L13 2L23

L12 L11

L13 L11

L23 L13 L12 L22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (26)

In the computation of the other VB-marginals, we need the exponential moments

〈
exp(tZ jθ)

〉
= exp

(
tZ jθ̂ +

t2

2
Z jΣ̂θ Z�

j

)
, j = 1, . . . ,m, t = 1,2 .

We use the same idea to construct the approximative Gaussian VB-marginal for the

kurtosis parameters, with vec(ψ) ∼ N
(
vec(ψ̂), Σ̂ψ

)
. In the expression for the other

VB-marginals for t = 1,2 we need the exponential moments

〈
exp

(
t ‖ Z jψ ‖2

)〉
= det(Id−2tΣ̂ψ A j)

− 1
2 exp

(
1

2
vec(ψ̂)�Σ̂−1

ψ
{
(Id−2tΣ̂ψ A j)

−1 − Id
}

vec(ψ̂)

)
,

where

A j = Id3×3 ⊗
(
Z�

j Z j
) ∈ R

18×18

is a tensor product of matrices and Id is the identity matrix, and we assume that the

matrices

(
Id−4Σ̂ψ A j

) ∈ R
18×18 j = 1, . . . ,m,

are positive definite, see Appendix B for a detailed explanation.

In practice this condition can be violated when the data do not contain enough

information and the variances in the marginal distribution of the kurtosis parameters

are too large. In such a case it may be necessary to collect more data.
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The stopping criteria. The KL divergence

0 ≤ KL(q̂(ξ )||p(ξ |y)) =
∫

log

(
q̂(t)(ξ )
p(ξ |y)

)
q̂(t)(ξ )dξ =

n

∑
i=1

∫
log(q̂i(ξi))q̂i(ξi)dξi −

∫
log(p(ξ1, . . . ,ξn,y))

n

∏
i=1

q̂i(ξi)dξi + log p(y)

does not increase between consecutive VB-updates. Therefore, the VB algorithm can

be stopped when the decrease of the KL divergence is negligible, see Ormerod and

Wand (2010); Šmı́dl and Quinn (2006). For our model, up to an additive constant, the

KL divergence is given by

KL(q̂(ξ )||p(ξ |y)) = const+
μ̂

2η̂
φ
(
μ̂/η̂

)
Φ
(
μ̂/η̂

) − log
(
η̂Φ

(
μ̂/η̂

))− 1

2
log |Σθ |

− 1

2
log |Σψ |+ 1

2
μ�

θ Ωμθ +
1

2
Trace(ΩΣθ )+

1

2
Trace

(
μ�

ψ Ωμψ
)
+

1

2
Trace(Σψ : Ω)

+
〈S2

0〉〈σ−2〉
2

m

∑
j=1

{
Y 2

j + 〈exp
(
2Z jθ

)〉〈exp
(
2 ‖ Z jψ ‖2

)〉},
see the detailed calculation in Appendix D.

4.3. Upper bound of Kapp and nonlinear optimization

In order to find numerically the VB marginals of the diffusion and kurtosis ten-

sor parameters θ and ψ we need to find the modes of their Laplace approximations.

We also need to take into account the upper bound on Kapp, which yields nonlinear

constraints

2 Z jψψ�Z�
j +Zθ ≤ 0 j = 1, . . . ,m

at every acquisition.

Constrained optimization w.r.t. θ ,ψ is achieved by using the method proposed

in Liu (2015). Note that in this approach only the modes θ̂ , ψ̂ of the Gaussian VB-

marginals satisfy the constraints, and the VB-expectations are computed by integrating

from these unconstrained distributions.

5. Image regularization

The brain white matter has highly organized structure and diffusion tensor orienta-

tions coincide with axon directions. Water molecules diffuse mostly along the direction
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of the underlying axon fibres and, as a consequence, the tensors at different locations

should not be considered as statistically independent. The correlation between two ten-

sors / blocks of tensors depends on the distance where they locate physically. In order

to estimate consistent diffusion images, it is useful to use at every single voxel the infor-

mation from neighbouring voxels, especially when data are corrupted and / or contain

missing observations. The parameters for multiple voxels are then θ(v),ψ(v),σ2
v and

S0(v),v∈V , where V ⊆Z
3 is the region of interest (ROI). To simplify the notations, we

omit the subscripts v denoted the position of a voxel in σ2
v and S0(v). We thus consider

the neighbourhood relation v ∼ w on the values (θ(v) : v ∈ ∂W ) and specify a prior

contribution, a joint density of θ(v) and θ(w) to replace Eq. (18), which is given by

logπ(θ(w) : w ∈W ;θ(v),v ∈ ∂W )

= const − ρ
2

∑
v∼w:v∈W,w∈W

(θ(v)−θ(w))�Ω(θ(v)−θ(w))− 1

2
∑

v∈W
θ(v)�Ωθ(v),

(27)

where ρ ≥ 0 tunes the strength of dependence between the neighbour tensors.We de-

note the exterior boundary of W by

∂W := {w ∈V \W : ∃v ∈W with w ∼ v}

and set W :=W ∪∂W , see Gasbarra et al. (2014); Kaipio and Somersalo (2006).

We extend the idea and construct the GMRF prior for the 4th-order positive tensor

using the kurtosis ψ(v) as an illustration, which is given by

logπ(vec(ψ(w)) : w ∈W ;θ(v),v ∈ ∂W ) = const − ρ
2

∑
v∼w:v∈W,w∈W

Trace

(
(ψ(v)−ψ(w))�Ω(ψ(v)−ψ(w))

)
− 1

2
∑

v∈W
Trace

(
ψ(v)�Ωψ(v)

)
. (28)

In this way regularization is implementable simultaneously in the VB estimation.

The regularization parameters η and λ are assumed to be known. Alternatively,

we could treat them as unknown parameters with a given prior, and extend the VB

algorithm computing their VB-marginals.
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6. Results

The result section contains two parts. In the first part, we apply the proposed

method in the study of simulated data for which we know the ground truth (GT). The

2nd part is a case-control study on real human brain data.

6.1. Simulated data

We use simulated data publicly available at

http://projects.iq.harvard.edu/sparcdmri/Challenge_Data.

This data are acquired based on a single slice of a physical phantom with dimension

of 13× 16 and with thickness of 7 mm. TE/TR (Echo Time /Repetition Time) are

41/3400 ms. The b-values are 1000, 2000, 3000 and 60 gradient directions per shell

are used to acquire the diffusion-weighted signal. The encoding directions distribute

unequally on the three shells. The data also include one measurement with b = 0. The

b-value increases in each of 60 directions from 1000 to 3000s/mm2. The number of

acquisitions for each voxel is 181. There are 208 voxels in total, where we masked out

40 voxels that have isotropic diffusion and study only the remaining 168 voxels. The

ground truth of FA in a single fiber region is around 0.8, and the average signal to noise

ratio (SNR) is about 9.5. More information about the data can be found in Ning et al.

(2015).

We first plot the spatial distribution of constraint violations (CV) on the baseline

image from the measurements with b = 0. Fig. 1 points out there are 5 voxels that

violate the constraints #3 and 4 violate #1, in which four of them overlap. We evaluated

CV in all the 60 encoding directions from the results by the unconstrained weighted

least squares method (WLS) and found out that all voxels violate constraint #2 with

intensity between [0, 38]. For all the 168 voxels, the percentage of violation is between

43.33% ∼ 63.33%.

We then applied the proposed VB method without and with regularization for the

estimation in DKI, respectively. In the scheme of regulation, we chose the block size

to be 1, that is, the neighbourhood of a voxel is constructed by its nearest neighbours

in 3D lattice. We also fixed the hyperparameters as λ = 0 and η = 1.
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Figure 1: Spatial layout of the voxels which violate the constraint(s). The red circles indicate CV #3 and the

blue stars depict CV #1. All the voxels violate constraint #2 and are not shown in this figure.

We compute the orientation diffusion functions (ODF) at each voxel under the DKI

model and show ODF in Fig. 2. It reveals that the image in Fig. 2b, obtained by the

regularization schemes, is much smoother than the one in Fig. 2a resulting from the

independent VB scheme. In order to evaluate the accuracy of the proposed method and

Figure 2: Image of the orientation diffusion functions (ODF) at each voxel with voxel size 168. Fig. 2a and

Fig. 2b represent the results from the independent and the smooth VB schemes, respectively. The ellipsoid

indicates that there is one fiber bundle at a voxel and the cross shape describes two fiber bundles at one voxel.

The images are plotted with the MATLAB fanDTasia ToolBox by Barmpoutis and Vemuri (2010).
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to compare the performance of the both schemes, we analyse the diffusion anisotropy

of water molecules at each voxel using mean of diffusivity (MD), fractional anisotropy

(FA) and the diffusion and the degree of non-Gaussianity of diffusion displacement dis-

tribution by mean kurtosis (MK). The scalar metrics are computed from the estimates

of Θ and W with formula

MD =
1

3
Trace(Θ), FA =

√
3Var(x)

2(x2
1 + x2

2 + x2
3)
,

MK =
1

4π

∫
S 2

W (g)d(g),

where x1,x2 and x3 are eigenvalues of tensor matrix Θ and MK is defined as the average

of the observed kurtosis (and in practice, we use the estimated kurtosis) over all the

directions on the unit sphere, see Tabesh et al. (2011). The calculation of MD, FA and

MK were implemented in MATLAB and are visualized in Fig. 3 (MD), Fig. 4 (FA) and

Fig. 5 (MK), respectively. The MK map retrieved from the regularized scheme shows

higher degree of deviation from the Gaussian distribution than that obtained from the

independent scheme, and vice versa in terms of the MD-parametric maps. This is in

coincide with GT that the number of fiber bundles in the ROI is taken the values among

(0, 1, 2, 3), although in DKI we only consider the number of fiber bundles up to 2.

The FA maps show less difference between the two schemes. The average values of

FA from the regularized scheme are 0.8472 and from the independent scheme 0.8545.

We list the mean values of the scalar metrics in Table 1, where we also compute the

mean of SNR (S0/σ ). It is apparent that the mean of the estimated SNR values differ

between the two schemes, and the value from the regularized scheme is underestimated

and the scheme without regularization is overestimated, but they are both close to GT

(9.0).

Table 1: Mean value of estimated scalar statistics over the ROI.

Mean values MD (×mm2/s) FA MK SNR (S0/σ )

independence 5.3557 0.8545 0.1510 9.1258

regularization 2.7021 0.8472 0.6333 8.8512
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Figure 3: The MD maps with voxel size 168. Fig. 3a describes the estimates without regularization with

values in [1, 7] ×10−3mm2/s. Fig. 3b represent the results from the regularized VB scheme with values in

[0.5, 3.5] ×10−3mm2/s.

Figure 4: The FA maps with voxel size 168. Fig. 4a and Fig. 4b show the VB-estimators without and with

regularization, respectively.
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Figure 5: The MK maps with voxel size 168. Fig. 5a and Fig. 5b show the VB-estimators without and with

regularization, respectively.

6.2. Real data

In the follow-up, we applied the proposed method to real data of human brain data

from three subjects. The first two were healthy controls, and the third one was a case

of LBD. The three datasets were acquired from multiple shells with the same gradi-

ent scheme, where the b-values were varying in the range 62, 249, 560, 996, 1556,

2240 s/mm2 and 32 distinct gradient directions have been used, see Appendix A. All

the datasets included one measurement with zero b-value. The data were collected by

a Philips Achieva 3.0 Tesla MR-scanner from roughly same ROI including the cor-

pus callosum, and the image resolution was 128× 128 pixels of size 1.875× 1.875

mm2. The first dataset contains five consecutive axial slices with thickness 5mm,

and the value of TE/TR is 59.5ms/7084.4ms. The other two datasets from the same

age group contain five consecutive axial slices with thickness 4mm, and TE/TR is

100ms/25083ms.

Control data. The data contain two subjects acquired respectively from a 46 year old

and an 85 year old healthy Finnish male volunteers, where the second subject was

from the same age group of the case data. In the acquisition protocol, we used all the

combinations of 32 gradient directions with the b-values varying in the range 0, 62,

249, 560, 996, 1556, 2240 s/mm2. After masking out the skull and the ventricles, the

first dataset remains 18764 voxels and a total of 3 621 452 data points in the analysis.
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The second subject has 21091 voxels with in total 4 070 563 data points to be analyzed.

We calculated the data points by #voxel × (1 + # unique gradients × # unique b-values),

where “1 ” is from zero b-value and # refers to “the number of ”. As an illustration, we

plotted the parametric maps of estimated MD, MK and FA from the first two slices of

both datasets shown in Figure 6 and 7. The number of voxels in slice 1 and 2 are 4537

and 4719, and are 4143 and 4573 from the first and the second subjects, respectively.

About the first subject (the healthy volunteer with age 46), the estimates of MD are

in [0, 8]×10−3mm2/s, MK estimates are in the range [0, 4] and the average estimated

FA of all selected voxel is 0.2698. The second healthy volunteer has estimated values

of MD are in [0, 6]×10−3mm2/s, of MK are in the range [0, 1.5]. The average of

the estimated FA for all selected voxel is 0.2995. The color coded FA maps represent

different orientations of the fibers in the brain. We use green, red and blue colors to

depict three left-right, front-back and top-bottom orientations, respectively.

Case data. The dataset consists of diffusion-MR brain images of an 89 year old Fin-

nish man diagnosed with LBD. After masking out the skull and the ventricles, we

remain with a ROI containing 26104 voxels, with a total of 5 873 175 data points. For

comparison, we also show the scalar-metric maps of the estimated MD, MK and FA

from the first two slices, described in Fig. 8. The number of voxels in slice 1 and 2 are

4859 and 5212, respectively. The estimated values of MD are in [0, 4.7 ] ×10−3mm2/s

and of MK is in the range [0,2]. We corrected 34 voxels containing negative values of

MD using the LS method and marked their spatial layout by the red stars shown in Fig.

8a. The average of estimated FA is 0.2883.

7. Conclusion and Discussion

We are motivated by exploring possible ways to improve the diagnosis of one brain

disorder, LBD, which so far is not clear in clinic. The proposed method in this paper

provides a possible solution to estimate parameters with constrained DKI in diffusion

MRI. The merits of the method is that can work for the data retrieved from low SNR.

The method also considers the interactions between voxels, which hence can be used
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(a) MD with regularization from DATA 1

(b) MK with regularization from DATA 1

(c) FA with regularization from DATA 1

Figure 6: The MD, MK and FA maps from the first two slices of the healthy brain. The color coded FA maps

also represent different fiber orientations in the brain. We use green color to indicate the left-right directions,

the blue for the top-bottom and the red for the front-back. The color coded FA maps are obtained by using

ExploreDTI Leemans et al. (2009) in the MATLAB environment.
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a

b

c

Figure 7: The MD, MK and FA maps from the first two slices of the healthy brain. The color code in

the FA map describes the orientations of the fiber bundles: red, left-right; green, anterior-posterior; blue,

superior-inferior. In Fig. 7a, the blue star describes the spatial distribution of the voxels having high values

of MD which are far away from the visible region.
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a

b

c

Figure 8: MD, MK and FA maps of the first two slices from the case brain. The color code in the FA map

represents the different orientations of the fibers in the brain. We use green color to indicate the left-right

directions, the blue for the top-bottom and the red for the front-back. The color coded FA maps are obtained

by using ExploreDTI Leemans et al. (2009) in the MATLAB environment. In Fig. 8a, the blue star describes

the spatial distribution of the voxels having high MD values which are far away from the visible region.
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in correction of noise level σ for image denoising and smoothing as illustrated in Fig.

2.

Studies on central nervous system and diagnosis of neurological diseases are im-

portant. DKI is an extension of traditional diffusion imaging techniques, character-

izing both Gaussian and non-Gaussian probability distributions of water diffusion in

vivo. Such a characteristic is capable of extracting independent and complementary

information from complex structural tissues including cell barriers and relative com-

partments in different areas of the brain such as cortex and thalamus. DKI may be

thought of a q-space formalism Ghosh et al. (2014), but it is naturally derived from

the characteristic function of the signal decay under the Fourier transform by a trun-

cated Taylor expansion. This well-defined quantity provides further insight on diffu-

sional non-Gaussianity in terms of kurtosis. In this work we use Rician noise model

to conduct the estimation with DKI in diffusion MRI. Using the correct noise model

has the benefit of removing the bias, especially for the data retrieved in the low SNR

regime compare with the common used solutions of weighted least squares. Using the

state-of-the-art statistical methodology of data augmentation, we are able to work with

generalized linear models when using the joint likelihood derived from the Rician den-

sity. The positivity constraints of kurtosis are imposed by the new parametrization in

Section 2.3. Our second contribution is to describe a new computational method, the

VB algorithm for the DKI estimation in the Bayesian framework and this method is

more efficient than the Markov chain Monte Carlo method proposed in Gasbarra et al.

(2014). It is now rather straightforward to extend the full scheme with other models of

diffusion weighted signal decay.

The reason to use Bayesian modeling is that it provides many benefits in diffusion

tensor estimation compared with the alternatives: we utilize the posterior distributions

of all parameters of interest. This framework is capable of estimating not only the

modes but also numerous statistics. In concreteness, from the tensor-variate posterior

imposed by the prior, the proper specification of the tensor distribution, and conditioned

on the given data, we are able to view the modes but also tensor moments and derived

quantities, and to assess the uncertainty of all the model parameters. These statistics

will help us to perform hypothesis testing for diffusion tensor-derived quantities in
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the clinic practice and in material science. Furthermore, using Bayesian settings to

interpret the kurtosis model, we are allowed to introduce and apply the variational

approximation in the Bayesian analysis of DT-WRI data. The method will help us to

reduce computation burden when more complicated signal models are encountered.

In addition, the Bayesian framework allows us to model the interactions (or represent

the dependence) between the tensors and the neighbouring simultaneously. The model

should reduce the noise automatically by including information from the neighbours

and provide averaging microstructural information on the different tissues of the brain,

which may lead to significant applications in the clinic practice. In near term, we hope

to provide such kind of detailed modeling and experimental results.
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Appendix

A. Gradient directions for real data

For each b-value, the MR-signal was measured in these 32 gradient directions.
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ux uy uz ux uy uz

-0.5000 -0.5000 -0.7071 0.7071 -0.4725 -0.5261

-0.5000 -0.5000 0.7071 -0.7071 -0.7071 -0.0002

0.7071 -0.7071 -0.0000 -0.7071 -0.4725 0.5261

-0.6533 -0.2706 -0.7071 0.7071 -0.4725 0.5261

-0.2087 -0.6756 -0.7071 0.4725 -0.7071 0.5261

0.0197 -0.7068 -0.7071 0.7071 -0.7071 0.0078

0.4212 -0.5679 -0.7071 -0.6364 -0.4252 0.6436

0.6899 -0.1549 -0.7071 -0.7060 -0.7060 0.0547

-0.6535 -0.2707 -0.7069 -0.2929 -0.7071 0.6436

-0.2929 -0.7071 -0.6436 0.2929 -0.7071 0.6436

0.2945 -0.7064 -0.6436 0.7071 -0.7071 0.0078

0.5150 -0.4861 -0.7061 0.7071 -0.2929 0.6436

0.7071 -0.2929 -0.6436 -0.7063 -0.7063 0.0489

-0.7071 -0.4725 -0.5261 0.0347 -0.7063 0.7071

-0.4725 -0.7071 -0.5261 0.7071 -0.7071 0.0115

0.5555 -0.6439 -0.5261 0.7071 0.0000 0.7071
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B. Exponential moments of quadratic forms of Gaussian random variables

For ψ ∼ N (ψ̂, Σ̂), where ψ̂ ∈ R
d and A is a d ×d symmetric matrix,

E
(
exp

(
ψ�Aψ/2

))
= (2π)−

d
2 det(Σ̂)−

1
2

∫
Rd

exp

(
1

2

{
(ψ�Aψ − (ψ − ψ̂)�Σ̂−1(ψ − ψ̂)

})
dψ

= (2π)−
d
2 det(Σ̂)−

1
2 exp

(
− ψ̂�Σ̂−1ψ̂

2

)∫
Rd

exp

(
−ψ�(Σ̂−1 −A)ψ

2

)
)

exp
(
ψ̂�Σ̂−1ψ

)
dψ

= det(Σ̂)−
1
2 det(Σ̂−1 −A)−

1
2 exp

(
1

2

{
ψ̂�Σ−1(Σ̂−1 −A)−1Σ̂−1ψ̂ − ψ̂�Σ̂−1ψ̂

})

= det(Id− Σ̂A)−
1
2 exp

(
1

2
ψ̂�Σ̂−1

{
(Id− Σ̂A)−1 − Id

}
ψ̂
)
,

when (Id− Σ̂A) is positive definite, otherwise E
(
exp

(
ψ�Aψ/2

))
= ∞.

C. One-dimensional constrained Gaussian moments

Denote by Φ(t) and ϕ(t) respectively the cumulative distribution function and the

probability density of the standard Gaussian r.v. G ∼ N (0,1). Consider the random

variable S := μ +ηG which is Gaussian N (μ,η2) distributed. Then

P(S > 0) =P(ηG+μ > 0) = P(G >−μ/η) = P(G < μ/η) = Φ(μ/η)

due to the symmetry of the distribution of G.

For a test function H(t) with weak derivative h(t) = dH
dt (t) we have the Gaussian

integration by parts formula

E
(
h(S)

)
= η−2E

(
H(S)(S−μ)

)
. (C.1)

Since φ ′(x) = −xφ(x) for the standard Gaussian density and N(μ,η2) has density
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η−1φ
(

x−μ
η

)
, we have

E
(
h(S)1(a < S < b)

)
= η−1

∫ b

a
h(x)φ

(
x−μ

η

)
dx =

η−1H(b)φ
(

b−μ
η

)
−η−1H(a)φ

(
a−μ

η

)
−η−2

∫ b

a
H(x)

d
dx

{
φ
(

x−μ
η

)}
dx

= η−1H(b)φ
(

b−μ
η

)
−η−1H(a)φ

(
a−μ

η

)
−η−2

∫ b

a
H(x)φ ′

(
x−μ

η

)
η−1dx

= η−1H(b)φ
(

b−μ
η

)
−η−1H(a)φ

(
a−μ

η

)
+η−1

∫ b

a
H(x)

x−μ
η2

φ
(

x−μ
η

)
dx.

When a →−∞ and b →+∞ by taking limit H(t)φ
(

t−μ
η

)
→ 0 as t →±∞, we have

E
(
h(S)

)
= η−1

∫ b

a
h(x)φ

(
x−μ

η

)
dx =

η−1
∫ ∞

−∞
H(x)

x−μ
η2

φ
(

x−μ
η

)
dx = η−2E

(
H(S)(S−μ)

)
.

Consider now Eq. (C.1 ) with H(s) = 1(s > 0) and h(s) = δ0(s), the Dirac δ -function

with a point mass at 0,

η2E
(
δ0(S)

)
= E

(
1(S > 0)(S−μ)

)⇐⇒
ηφ(μ/η) = E

(
1(S > 0)S

)−μΦ(μ/η).

Since

E
(
δ0(S)

)
=

1√
2πη2

∫
R

δ0(x)exp

(
− (x−μ)2

2η2

)
dx = η−1φ(μ/η),

we obtain

E
(
S|S > 0) =

E
(
1(S > 0)S

)
P(S > 0)

= μ +η
φ(μ/η)

Φ(μ/η)
.

Take now the test functions

H(s) = s+ = max{s,0}= 1(s > 0)s, h(s) = δ0(s)s+1(s > 0).

It follows from Eq. (C.1 ) that

E
(
δ0(S)S

)
+P

(
S > 0

)
= η−2E

(
1(S > 0)S(S−μ)

)⇐⇒
0+η2Φ(μ/η)+μE

(
1(S > 0)S

)
= E

(
1(S > 0)S2

)⇐⇒

E
(
S2
∣∣S > 0

)
=

E
(
1(S > 0)S2

)
P
(
S > 0

) = η2 +μ2 +ημ
φ(μ/η)

Φ(μ/η)
,
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where

E
(
δ0(S)S

)
=

1√
2πη2

∫
R

δ0(x)exp

(
− (x−μ)2

2η2

)
xdx = η−1φ(μ/η)×0 = 0.

D. The KL divergence

The KL divergence between q(ξ ) and p(ξ |y) is given by

m

∑
i=1

∫
log(q̂i(ξi))q̂i(ξi)dξi −

∫
log(p(ξ1, . . . ,ξm|y))

m

∏
i=1

q̂i(ξi)dξi,

which is non-increasing between consecutive VB steps.

In details,

∫
log(q̂(θ))q̂(θ)dθ =−1

2
log |Σθ |−3

(
1+ log(2π)

)
,∫

log(q̂(ψ))q̂(ψ)dψ =−1

2
log |Σψ |−9

(
1+ log(2π)

)
,

∫
log(q̂(σ2))q̂(σ2)dσ2 = log(ν̂)+ logΓ(m)+m− (1+m)

Γ′(m)

Γ(m)
,

∫
log(q̂(S0))q̂(S0)dS0 =

μ̂
2η̂

φ
(
μ̂/η̂

)
Φ
(
μ̂/η̂

) − log(η̂)− logΦ
(
μ̂/η̂

)− 1+ log(2π)
2

,

∫
log(q̂(ϕ j))q̂(ϕ j)dϕ j = 〈cosϕ j〉κ̂ j =

κ̂ jI1(κ̂ j)

I0(κ̂ j)
,

∫
log p(θ ,ψ,S0,σ2,ϕ|Y )q̂(θ)q̂(ψ)q̂(σ2)q̂(S0)

m

∏
j=1

q̂(ϕ j)dϕ jdS0dσ2dψdθ = const

+ 〈logπ(S0)〉− 1

2
μ�

θ Ωμθ − 1

2
Trace(ΩΣθ )− 1

2
Trace

(
μ�

ψ Ωμψ
)− 1

2
Trace(Σψ : Ω)

− (m+1)〈log(σ2)〉− 〈S2
0〉〈σ−2〉

2

m

∑
j=1

{
Y 2

j + 〈exp
(
2Z jθ

)〉〈exp
(
2 ‖ Z jψ ‖2

)〉}

+ 〈S0〉〈σ−2〉
m

∑
j=1

〈exp
(
Z jθ

)〉〈exp
(‖ Z jψ ‖2

)〉〈cosϕ j〉Yj,

where

〈log(σ2)〉= log(ν̂)− Γ′(m)

Γ(m)
.
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By putting the terms together, the KL divergence is expressed as

const+
μ̂

2η̂
φ
(
μ̂/η̂

)
Φ
(
μ̂/η̂

) − μ̂0

2η̂0

φ
(
μ̂0/η̂0

)
Φ
(
μ̂0/η̂0

) + log(η̂0/η̂)+ logΦ
(
μ̂0/η̂0

)− log

Φ
(
μ̂/η̂

)− 1

2
log |Σθ |− 1

2
log |Σψ |+ 1

2
μ�

θ Ωμθ +
1

2
Trace(ΩΣθ )+

1

2
Trace

(
μ�

ψ Ωμψ
)

+
1

2
Trace(Σψ : Ω)+

〈S2
0〉〈σ−2〉

2

m

∑
j=1

{
Y 2

j + 〈exp
(
2Z jθ

)〉〈exp
(
2 ‖ Z jψ ‖2

)〉}.
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