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Chapter 5. Physiological and molecular adaptations to strength training

Abstract. High muscle contraction forces that lead to gains in muscle function, size, and strength
characterize resistance exercise training. The purpose of this chapter is outline the adaptations in
myofiber size and metabolism that occur by stimuli of hormones and local growth factors,
mechanical and metabolic stress of muscle tissue, and myofibrillar disruptions induced by a
resistance exercise bout. The chapter will highlight the network of intracellular pathways (including
mTOR signaling) that ultimately lead to increases in gene expression and protein synthesis.
Accumulation of acute exercise responses by systematic training over time modulate muscle
proteome that can be observed as changes in skeletal muscle phenotype.
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(Body text)

Resistance exercise training (RT) can be functionally defined as the progressive overload of a skeletal
muscle that is characterized by high muscle contraction force and anaerobic ATP resynthesis. Long-
term RT elicits a range of physiological adaptations that contribute to changes in muscle function.
Specifically, RT stimulates adaptive machinery responsible for increased maximal contractile force
output that is primarily promoted by the combined effect of enhanced muscle activation and muscle
fiber hypertrophy 1. Skeletal muscles play an essential role in locomotion and in the control of whole
body metabolism and, hence, RT is widely employed by athletes to improve sport-specific
performance, by general population to promote health, lean body mass and general fitness, and in
rehabilitation to prevent loss of muscle mass and strength in pathological states 2, 3.

Skeletal muscle can exhibit remarkable plasticity in response to RT. Adjustments within the muscle
milieu to mechanical and metabolic demands of RT act to attenuate cellular stress during
subsequent exercise sessions 4. The major morphological adaptation that is specific to RT is a marked
increase in muscle cross-sectional area (CSA) of exercised muscles. However, the design of the RT
program (i.e. volume, intensity, and frequency of RT sessions, mode of muscle actions used,
progression, periodization, variety of RT stimulus, and integration of RT to other fitness training)
specifically influences the subsequent chronic physiological adaptations 5. Also factors such as
heredity, sex, biological age, exercise training history, health status and possible medication, diet
and nutritional supplements, personal lifestyle and habitual physical activity/inactivity, other
physical and psychological stressors (e.g. work-related) and coping with mental stress, training
adherence as well as environmental factors can influence chronic outcomes of RT 4, 6.

Changes in muscle size

Increases in skeletal muscle size (i.e. hypertrophy) are the most striking adaptations that occur in
response to RT. Muscle hypertrophy is detectable after few weeks from the beginning of the regular
RT and proceeds in a linear manner at least for the first few months of training 1. Typically, on
average 6-9 % increases in muscle size are observed in quadriceps muscles following few months of
RT in previously untrained individuals. 7 Reaching the individual maximum in muscle mass gains,
however, may require several years of systematic RT.

In research, greater hypertrophy is typically observed in upper body muscles compared to lower
extremity muscles, possible due to higher locomotive activity in leg muscles that may reduce the



potential for further muscular responses induced by the exercise stimulus 1. Age and sex may not
have substantial effects on the initial RT-induced muscle hypertrophy 1, 8, 9. However, in women and
in older individuals muscle hypertrophy may remain only modest over the years of systematic RT
when their responses are compared to those observed in younger adult men. RT-induced muscle
hypertrophy occurs specifically in trained muscles and is depending on the design of the RT program.
In an untrained state, various kinds of training regimens can induce muscle hypertrophy during the
first months of training 10. For maximizing muscle growth by long-term RT, however, the RT program
should principally include multiple sets per exercise with 6-12 heavy repetitions per set and
relatively short rest intervals between the sets. Furthermore, several different kinds of exercises
should be employed per muscle group in the context of split training routine 5, 11, 12.

Changes in myofiber size and fiber type transitions

Skeletal muscle hypertrophy induced by RT occurs through an increased protein content of
individual muscle fibres. Most of the skeletal muscle fibre cytoplasm is occupied by myofibrils with
the most abundant proteins being myosin and actin filaments. Thus, RT-induced fibre hypertrophy is
primarily a result of the biosynthesis and accumulation of new contractile myofilaments, with
concomitant expansion of fibre volume 13-15. The possible mechanism of fiber growth is an increased
CSA and proliferation of myofibrils that results in increased contractile material arranged in parallel
and, consequently, an increase in force production capacity. These increases appear especially in
fast-twitch type II fibres following RT 1.

Skeletal myofibers develop distinct phenotypic characteristics during the postnatal period, and
therefore the distribution of fiber types is genetically determined. Muscle fibers are characterized as
type 1 (slow-twitch) and 2A and 2X (fast-twitch) according to the predomination of their myosin
heavy chain (MHC) polymorphisms. Although the fiber-type profile is genetically established, fibers
may be remodeled throughout the lifespan by diverse physiological stimuli such as the training
status 16. Many human studies have demonstrated that prolonged RT promotes the conversion of
muscle fibers from the glycolytic type 2X fibers to the more oxidative type 2A fibers, whereas the
proportion of type I fibres remains rather unchanged 17. During fiber-type transformation, the
expression of MHC isoforms and mitochondrial density, oxidative phosphorylation (OXPHOS)
activity, vasculature, and fatigue resistance are switched accordingly. The ability to “shift” skeletal
muscle fibers from a more glycolytic fiber to a more oxidative fiber is critical for energy availability to
support skeletal muscle contractile activity during the exercise 18.

Changes in muscle architecture

Muscle architecture is defined as the structural arrangement of muscle fibers and connective tissue
elements within the muscle relative to the line of force generation at the macroscopic level. Muscle
architecture is an important determinant of muscle’s mechanical function by affecting the force-
velocity relationship. 19 Key components of this relationship are fiber length and pennation angle.
Muscle fascicles are bundles of muscle fibers and the angle in which they attach to tendon or
aponeurosis (i.e. pennation angle) can be investigated by ultrasound techniques in vivo.
Physiological CSA (i.e. the area of the cross section of a muscle perpendicular to its fibers) is closely
related to the force produced by the muscle and is largely determined by the pennation angle. On
the other hand, muscle velocity is proportional to muscle fiber length 20.

Several studies have shown that RT-induced structural remodeling of the contractile machinery can
increase pennation angles to a certain extent in the hypertrophied muscles 21. These architectural
changes in trained muscles affect the manner how force is transmitted from contracting muscle



fibers to tendons and bones. RT-induced increases in pennation angles allows greater contractile
material deposition (i.e. addition of sarcomeres in parallel) that further increases physiological CSA
and, consequently, enabling an increase in the force generating capacity of the muscle.
Mathematically, extensive increases in pennation angle can negatively affect force production of the
contracting muscle due to unfavorable arrangement of muscle fibers relative to the axis of force
generation to tendon. Thus, when pennation angle increases by excessive hypertrophy, force
produced per physiological CSA may decrease 22. On the other hand, increases in myofibrillar size
without changes in muscle architecture (i.e. increase in myofibrillar packing density or lateral force
transmission) may explain changes in specific tension (i.e. force exerted by the fibers per unit of
physiological CSA). That may partly explain why initial strength gains by RT can be achieved without
measurable increase in muscle CSA 22, 23.

Satellite cells and myonuclei addition

Skeletal muscle satellite cells are quiescent myogenic precursor cells, located adjacent to muscle
beneath the basal lamina but outside the sarcolemma. The role of satellite cells in muscle
regeneration is well established. Satellite cells can be activated in response to traumatic lesions
requiring muscle regeneration. Once activated, satellite cells proliferate and/or fuse together with
preexisting fibers to regenerate muscle tissue 24.

Also, increased muscle activity during exercise can induce activation and proliferation of satellite
cells. Subsequent fusion with an existing myofiber results in the addition of a myonucleus to the
fiber syncytium, thereby increasing the total number of myonuclei. The number of myonuclei is a
critical determinant of protein synthesis capacity by providing the amount of DNA necessary to
sustain gene transcription 25. The proposed role of the satellite cells in muscle hypertrophy revolves
around the concept of a myonuclear domain, meaning that a single myonucleus supports a certain
volume of cytoplasm 24, 26. Myofibers are composed of many myonuclear domains and the
myonuclear domain size is considered as virtually constant. Satellite cells provide a source for new
myonuclei at a rate sufficient to maintain an almost constant myonuclei to-cytoplasmic ratio during
skeletal muscle hypertrophy in response to chronic RT. Indeed, several studies have demonstrated
that muscle fiber hypertrophy is accompanied by a concomitant increase in satellite cell and/or
myonuclear content during chronic RT in humans 25.

It appears, however, that at least modest muscle hypertrophy can be achieved without the addition
of new myonuclei. Thus, the existing myonuclei may have the intrinsic ability to increase their RNA
and protein synthesis capacity to such an extent that additional myonuclei are not required to
support initial muscle fiber growth 2, 27. However, there may exist a ceiling size of the myonuclear
domain area beyond which a fiber will not be able to continue hypertrophy extensively unless more
myonuclei are incorporated into the growing fiber 24. Furthermore, it has been suggested that
satellite cells occasionally need to fuse to the muscle fibers to maintain adult muscle mass. It is
currently not well known whether other circulating stem cell populations with myogenic potential,
together with satellite cells, are activated during the RT-induced hypertrophic response 25.

Activation of satellite cells and their myonuclear addition has been proposed to play a pivotal role in
the phenomenon of “muscle memory” in RT that may be very long lasting in humans. According to
the suggested theory, previously untrained fibers recruit myonuclei from activated satellite cells to
support hypertrophic growth. During the subsequent detraining and muscle atrophy, myonuclei are
protected against the elevated apoptotic activity and the higher number of myonuclei is retained.
When muscles are subjected to hypertrophic re-training, muscles grow faster compared to initial RT
period. However, convincing evidence of this theory is still lacking in humans 28.



Connective tissue adaptations to resistance training

Collagen rich connective tissue constructs tendons and ligaments. In addition, connective tissue
exists around and within skeletal muscle. Tendons play a main role in transmitting contractile force
to bone and producing elastic energy, while ligaments stabilize joints preventing excessive
movements that could damage the joint. Intramuscular connective tissue contributes to passive
stiffness in the musculature and force transmission between muscle fibers. Adaptations in the
connective tissues occurs specifically only in structures that are exposed to loading 29, 30.

As skeletal muscles become stronger by RT, intramuscular connective tissues as well as tendons and
ligaments also adapt to support increased muscular strength by increasing CSA 31, 32. The turnover
and, thus, renewal of tissue is somewhat slower in connective tissue in the musculoskeletal system
compared to that of contractile proteins in the skeletal muscle cells itself. Therefore, tendons appear
to hypertrophy at a somewhat slower rate compared to muscles by RT 33, 34. However, increases in
tendon stiffness can occur before tendon hypertrophy. That is possibly due to adaptations in internal
structures of the tendon, e.g. modulation of cross-link composition between collagen molecules that
improve mechanical properties of the tendon 35, 36. Increased tendon stiffness may enhance the
utilization of elastic energy during stretch shortening cycles and increase the rate of force
development during the explosive (fast) muscle actions 33, 37.

Bone mass, density and architecture are modified to sustain strains produced by the mechanical
load. Osteocytes are involved in the turnover of bony matrix through various mechanosensory
mechanisms. Bone adapts to external stress specifically at the loaded sites when the magnitude of
peak strain is adequate. The most effective intervention for improving bone mineral density (BMD)
appears to be exercise characterized by relatively large loading magnitudes and rates. Long-term RT
of sufficient intensity and volume has been shown to increase BMD 38-41.

Metabolic adaptations to resistance training

Heavy resistance exercise (i.e. several sets with submaximal loads and short rest periods between
the sets) can induce acute decrease in ATP, phosphocreatine (PCr) and glycogen storages and
marked increase in the concentration of blood lactate, indicating a high rate of anaerobic glycolysis.
Consequently, depleted glycogen storages may partly induce post-exercise muscle fatigue 42-44.

Depending of the exercise-induced myofibrillar disruptions and volume of the loading protocol used
and the content of carbohydrates in diet, glycogen storages may be replenished within a couple of
days following exercise 45-48. As a result of chronic RT, the activity of anaerobic enzymes (e.g. creatine
phosphokinase, myokinase, and phosphofructokinase) has been shown to increase. Furthermore,
intramuscular PCr and glycogen concentrations increase 49, 50. Chronic RT may also increase skeletal
muscle oxidative capacity 51, 52. These adaptations may lead to improvements in energy metabolism
and especially in glycolytic capacity in trained muscle by long-term RT 2.

Skeletal muscle is the main tissue for glucose disposal accounting for up to 80% of insulin mediated
glucose uptake in the postprandial state. During the resistance exercise bout, glucose uptake
increases significantly in loaded muscles 51, 53. Research evidence suggests that chronic RT is effective
in improving insulin sensitivity when the intensity is above 50% of 1RM and adaptations occur
predominantly locally in the trained skeletal muscles 54, 55. One of the main mechanisms behind RT-
induced muscular adaptations of improving insulin sensitivity is thought to be an increased glucose
transport into the myocytes by increased glucose transporter type four (GLUT 4) production, which
is the primary transporter facilitating diffusion of circulating glucose into the skeletal muscle cells 56,

57.



Capillary growth likely occurs in parallel with enlargement of muscle fibers and, thus, capillary
density is predominantly maintained in hypertrophied muscles with RT 58. Mitochondrial content is
mainly maintained or reduced following RT 59. Chronic RT may induce no change or improvements in
blood pressure 60-62 and blood lipid profile, of which reductions in LDL cholesterol appears to be a
recurrent finding with RT 63-65. In terms of cardiac morphological changes, resistance-trained athletes
may have normal internal diameters but significantly thicker left ventricular wall, referred as to a
concentric hypertrophy, although the research findings are not consistent 66-69. Generally, long-term
RT is beneficial for body composition by inducing increases in fat-free mass and decreases in fat
mass, which may result in an increased resting metabolic rate 70-72.

Molecular adaptations to resistance training

Skeletal muscle demonstrates a remarkable malleability to respond and adapt to contractile activity.
The physiological stress by a resistance exercise bout is thought to disrupt cellular homeostasis. Cells
react to stress by altering cellular functions to restore homeostasis during and after the exercise
bout. Repeated disruptions of homeostasis, followed by sufficient recovery, generate gradually
structural and functional adaptations in muscle tissue associated with long-term RT (“progressive
overload principle”) 73, 74.

From a molecular perspective, RT adaptations are based on the accumulation of specific proteins
that alter cellular properties. Remodeling of skeletal muscle starts by loading-specific stimuli that
affect the activation of a complex network of intracellular signaling pathways. These signals mediate
alterations in enzyme activities, gene expression, and protein biosynthesis, which finally will
modulate muscle proteome (Figure 4.1). Thus, the functional outcomes of RT, such as muscle mass
gains and metabolic improvements, are coupled to the specificity of molecular responses 2, 75.
Although acknowledging that the molecular network regulating skeletal muscle adaptations to RT is
vast and affected by numerous factors, this chapter only briefly reviews a few mechanisms that have
been suggested to be key players in adaptation to RT in humans.

Stimuli for muscle adaptations to resistance training

Mechanical stress

The mechanical tensile stress (stretch) is one important stressor associated with RT. All forms of
muscular activity, whether eccentric or concentric, result in tension (force) through the active
muscle(s). Tension associated with RT disturbs the integrity of skeletal muscle, causing
mechanochemically transduced molecular and cellular responses (mechanotransduction), favoring
anabolism in myofibers and satellite cells. Mechanical stress can induce intracellular responses also
independently of growth factors 76-79.

Mechanical stress induced by high force contractions during the resistance exercise is sensed in
loaded muscles by various mechanisms. Mechanical stress induces the release of growth factors,
such as IGF-I and hepatocyte growth factor (HGF), from the extracellular matrix. HGF can interact
with satellite cells and activate signaling events leading to satellite cell proliferation 80-82. Muscle
contractions transiently disrupt the sarcolemma (the lipid bilayer that surrounds a muscle cell)
integrity, which increases the concentration of membrane lipid phosphatidic acid (PA), leading to the
activation of signaling pathways inducing hypertrophy 83-85. Mechanical stress generated in
sarcomeres is transferred to the extracellular matrix via costameres, which is a protein complex that
connects peripheral myofibrillis via the z-disks with the sarcolemma. The costamere comprises a
dystrophin/glycoprotein complex and focal adhesion complex, which includes the transmembrane
receptor integrin. Activation of integrin can induce hypertrophic signal transduction pathways



through focal adhesion kinases (FAK) 86-90. The acute increase in intracellular hydration (cell swelling)
may occur during the resistance exercise due to lactate accumulation, contributing to the osmotic
gradient in skeletal muscle. Increased intracellular pressure may threaten the structural integrity of
the cell membrane and, thus, initiate anabolic intracellular signaling response via activation of
integrin and focal adhesion proteins 91-93. Titin is a flexible intrasarcomeric protein that contributes
to force transmission and defines the passive stiffness of skeletal muscle. Titin is a likely candidate to
sense alterations of mechanical load and interact with diverse cellular signaling pathways inducing
hypertrophy 94, 95. Stretch activated channels (SACs) are calcium and sodium permeable channels
which open due to mechanical stress to the sarcolemma. SACs may act as mechanosensor by
allowing an influx of calcium ion (Ca2+) into the myofiber that activates Ca2+ dependent hypertrophic
intracellular signaling pathways 96-98.

Metabolic stress

In addition to mechanical stress, also metabolic stress associated with RT can promote muscle
adaptations 99. A high rate of ATP turnover during muscle contractions and consequent accumulation
of AMP, the release of Ca2+ from the sarcoplasmic reticulum, and local hypoxia in exercising muscles
may stimulate energy-sensing signaling pathways regulating energy metabolism during the
resistance exercise 2, 74, 76. Generally, metabolic stress increases during resistance exercise in an
intensity/volume-dependent manner. Presumably, high metabolic stress together with high
mechanical strain could be achieved by a hypertrophy-oriented resistance exercise protocol of 6-12
repetitions per set with each set performed until failure, and with relatively short rest periods
between the sets 100, 101.

Hypoxia. Local tissue hypoxia may occur during resistance exercise. Hypoxia is a major cellular
stressor and oxygen sensing is well established in the regulation of adaptive processes in cells 102.
HIF-1 is considered as the master regulator of signal transduction pathways sensitive to the changes
in intracellular partial pressure of oxygen (PiO2). Activation of HIF-1 induces transcription of target
genes involved in promotion of glucose metabolism and glycolysis, erythropoiesis, and angiogenesis
2, 74.

REDOX state. Skeletal muscle significantly generates reactive oxygen species (ROS), reactive
nitrogen species (RNS), and nitric oxide (NO) during contractile activity. The generation of ROS is
dependent on cellular antioxidant capacity and ROS regulates its own defense by promoting cellular
antioxidants to maintain redox balance at rest and during the exercise 103, 104. During resistance
exercise, ROS production is likely increased, and it has been suggested to be an important signal in
muscle remodeling to a more oxidative phenotype 105, 106. In the context of human muscle
hypertrophic responses to RT, NO may mediate the activation of satellite cells and ROS, if not
expressed excessively, mediate activation of several intracellular signaling pathways, such as IGF-I
and Mitogen-Activated Protein Kinase (MAPK) cascades, that could be required for muscle growth 82,

107, 108.

Calsium flux. Calcium facilitates the cross-bridge interaction between myosin and actin filaments
during myofibrillar contraction. During muscle contractions, amplitude and duration of calcium
oscillations depends on the level of force output by the muscle. Alterations of intracellular Ca2+

concentrations in myofibers modulate signaling activity of calcineurin and calmodulin-dependent
protein kinase (CaMKII). Ca2+ signaling influences glucose transport, lipid uptake and oxidation, and
regulates activity dependent muscle gene expressions that alter fiber type distribution by promoting
slow fibre formation 109, 110.



Myofibrillar disruptions and inflammation processes

Resistance exercise results at least to some extent in localized muscular damage, of the loaded
muscles, depending on the volume and intensity of the exercise and the training history of the
participant. Regular RT typically causes mild muscle damage (myofibrillar disruptions) and full
recovery normally occurs within a few days 111. Misalignment of the myofibrils and Z-line streaming
are common characteristic following resistance exercise, especially if the training regimen involves
predominantly eccentric muscle actions. It has been proposed that due to the specific neural
activation strategy for eccentric contractions, as compared to concentric, fewer motor units are
recruited for a given load. This would result in a greater requirement of force per active motor unit,
predisposing recruited muscle fibres to disrupt especially following unaccustomed eccentric exercise
112-114. Eccentric training, however, has been shown to be especially effective in promoting muscle
hypertrophy and strength gains 115.

Resistance exercise-induced myofibrillar disruptions are likely caused by physical stress upon the
muscle fibres (i.e. mechanical stress) and the result of metabolic deficiencies, possibly through the
loss of Ca2+ homeostasis (i.e. metabolic stress) 111. Exercise-induced myofibrillar disruptions may
elicit a local acute inflammatory response to promote clearance of damaged tissue and muscle
regeneration. Inflammatory responses result in movement of fluid, plasma proteins and leukocytes
to the site of cellular disruption that is manifested as delayed onset of muscle soreness, muscle
stiffness and swelling, and transient decrease of force-generating capacity in loaded muscles 116-118.

The infiltration of immune cells to the damaged muscles may be observed within 2–3 days following
injury. The inflammatory response promotes clearance of damaged tissue and the regeneration of
the damaged muscle fibres. The acute inflammatory response after the exercise includes infiltration
of neutrophils and local release of proinflammatory cytokines, such as Il-1, Il-6 and TNF-alpha, which
mediate protein breakdown 119. Released cytokines may also stimulate proliferation of satellite cells
120. Subsequent secondary inflammation includes a significant infiltration of monocytes
(i.e.precursors to macrophages) within the damaged muscle fiber to induce further phagocytic
activity. Eventually, muscle tissue remodeling occurs during the regenerative phase following the
exercise 111, 121.

Systemic and local mediators of muscle plasticity: Hormones, growth factors and myokines

Systemic hormones such as testosterone, growth hormone (GH), insulin, insulin-like growth factor
(IGF-1) and cortisol can affect muscle mass and growth throughout lifespan. Depending on acute
program variables, resistance exercise can elicit transient post-exercise increase in circulating
hormone concentrations 122, 123. Endocrine responses during the exercise may be primarily due to
regulation of whole body energy metabolism providing glucose and free fatty acids for energy in
working muscles 124, 125. Hormones can induce their cellular effects through receptor interactions and
systemic elevations of circulating hormones presumably increase the likelihood of interactions with
receptors located within the muscle tissue and, thus, potentially effects on the responses of RT 123.
However, normal physiological fluctuations in hormones appear to play a preserving, rather than
stimulatory, role in the regulation of muscle size 126. In many studies, resting hormonal
concentrations have not shown a significant change during RT despite increases in muscle strength
and hypertrophy 122, 123. However, changes in testosterone and cortisol concentrations may reflect in
some cases changes in training load and, thus, overall stress and recovery status in athletes 127.

The anabolic effects of IGF-I in skeletal muscle have been clearly demonstrated but systemic IGF-I
has only a limited influence on the hypertrophic response. However, local (autocrine/paracrine)



expressions of growth factors, such as IGF-I, within the loaded muscles in response to resistance
exercise play probably an important role in skeletal muscle hypertrophy. IGF-I induces proliferation
of satellite cells and enhance contractile protein accumulation in myofibers by activating IGF-I
receptors in the cell membrane 24. In contrast to IGF-I, myostatin is a major negative regulator of
skeletal muscle growth. Myostatin is classified as a “myokine”, i.e. it is produced and secreted by
contracting muscle fibers, and subsequently exert auto-, para- and/or endocrine effects. Myostatin
inhibits satellite cell activation, repress expression of myogenic regulatory factors and promote
proteolysis. Myostatin effects target cells through the Smad2/3 signaling cascade by binding to
Activin type II receptors 76. In addition to myostatin and IGF-I, many other extracellular signaling
molecules may potentially modulate skeletal muscle phenotype during resistance training 128-132.

Amino acids

Protein availability is a potent modulator of acute molecular responses to resistance exercise.
Essential amino acids, especially the branched-chain amino acid leucine, can independently
stimulate signaling pathways that subsequently increase protein synthesis rates. Thus, essential
amino acids not only act as a substrate but also a signal to promote protein synthetic responses 110,

133. Dietary protein intake appears to stimulate protein synthesis in a dose-dependent and saturable
manner. Ingestion of 20 g of an isolated high-quality protein source, or 30 g of protein as part of a
mixed meal, has been recommended to achieve maximal protein synthetic response 134, 135.

Insert Figure 4.1 here

Figure 4.1. Schematic overview of physiological stimuli by resistance exercise leading to adaptive
responses. Depending on program variables, resistance exercise results in a specific milieu of
mechanical and metabolic stimuli within the contracting muscle as well as systemic and local release
of signaling molecules that lead to the activation of networks of signaling pathways and altered
activity of cellular enzymes. These resistance exercise stimuli, together with nutrient availability,
induce protein synthesis and tissue regeneration following the exercise. By chronic resistance
training, positive net protein synthesis leads to muscle hypertrophy.

Regulation of protein synthesis and degradation

A bout of resistance exercise results in an increased rate of protein synthesis during recovery and a
proportionately smaller and briefer increase in the protein degradation rate 136, 137. An acute bout of
resistance training increases skeletal muscle protein turnover for up to 48 h after completion of
exercise 138. Increases in protein synthesis are suggested to be a result of an increased efficiency of
translation per molecule of RNA 139. The positive net protein synthetic response following resistance
exercise results in an accretion of muscle protein over time 140, 141. Protein synthesis must exceed
protein breakdown for an extended period (i.e. few weeks) until RT-induced muscle size changes are
detectable 142. It seems that unaccustomed exercise bouts lead to exaggerated local and systemic
stress responses (e.g. dysregulated redox balance) and, thus, induce increases in protein synthesis 75.
However, repeated bouts of exercise blunt protein synthetic response, resulting in an attenuated
increase in protein synthesis in the trained state 143, 144.

mTOR signaling. The most well-described mechanism by which dietary protein and exercise
modulates skeletal muscle protein synthesis and subsequently fiber hypertrophy, is the mechanistic
target of rapamycin complex 1 (mTORC1) signaling pathway 145, 146. The activation of mTORC1 is
mediated via insulin/IGF-1 receptor activation by hormones and growth factors and the activation of
the downstream phosphatidyl inositol-3 kinase (PI3K) - Akt pathway 147. mTORC1 can be activated



also independently of Akt via contractile activity (mechanotransduction) and essential amino acid
provision 148-150.

Activation of mTORC1 triggers downstream signaling through p70 ribosomal S6 kinase (p70 S6K1),
that is a key regulator of protein synthesis through canonical pathways of protein translation and
ribosome biogenesis 151, 152. p70 S6K1 exerts its effect through ribosomal protein S6 (rpS6),
eukaryotic elongation factor 2 kinase (eEF2), and eukaryotic initiation factor 4E-binding protein (4E-
BP1), which collectively increases mRNA translational efficiency and ultimately protein synthesis for
cellular hypertrophy 153, 154. Increases in resistance exercise volume has been shown to induce
pronounced activation of mTOR signaling proteins 155-158. (Figure 4.2)

AMPK Signaling. The high rate of ATP turnover during the resistance exercise leads to a cellular
energy deficit and increases in the AMP/ATP ratio. AMP-activated protein kinase (AMPK) senses the
increase in energy turnover when muscle tissue is activated and acts as a signal transducer for
metabolic adaptations 159, 160. Acute exercise increases AMPK enzymatic activity in an intensity-
dependent manner, reflecting effects of exercise on ATP turnover. Furthermore, contraction-
induced Ca2+ release and ROS production leads to the activation of AMPK. As expected, resistance
exercise has been shown to acutely increase AMPK activity in skeletal muscle 161-163.

Overall, AMPK activation acts to conserve ATP by inhibiting biosynthetic and anabolic pathways,
while simultaneously stimulating catabolic pathways to restore cellular energy stores. In skeletal
muscle during the exercise, AMPK activation modulates cellular metabolism acutely through
phosphorylation of metabolic enzymes that suppresses glycogen and protein synthesis, but
promotes lipid metabolism and glucose uptake 159, 160, 164. Protein synthesis is an energy-consuming
process and, in agreement with the role as an energy sensor, activation of AMPK can suppress
protein synthesis by inhibiting directly mTORC1 activity or indirectly through mTOR upstream kinase
tuberin (TSC2) activation 162, 165, 166. AMPK can also inhibit protein synthesis through activation of
eukaryotic translation elongation factor 2 kinase (eEF2K), leading to inhibition of protein translation
by eEF2 4, 167. Like AMPK, also energy sensors REDD1 (regulated in DNA damage and development 1)
that is activated by ATP depletion and hypoxia can inhibit mTORC1 and subsequently protein
synthesis 4, 168. Chronic AMPK activation alters metabolic gene expression and induces mitochondrial
biogenesis, leading to promotion of an oxidative muscle phenotype. The long-term regulatory
actions are mediated via direct phosphorylation of transcription factors and the transcriptional
coactivator PGC-1α 169, 170.

Protein degradation by the ubiquitin-proteasome system is regulated via muscle-specific E3
ubiquitin ligases, muscle atrophy F box (atrogin-1/MAFbx) and muscle RING finger 1 (MuRF1). They
are involved in ubiquitination of specific proteins that are transferred to the 26S proteasome for
subsequent degradation 171. For example, MuRF1-dependent ubiquitination regulates the
degradation of contractile proteins, such as myosin heavy chains 172. Transcriptional upregulation of
atrogin-1/MAFbx and MuRF1 are increased by activation of the forkhead box O (FOXO) family of
transcription factors 173. Anabolic and energy sensitive processes regulate the ubiquitin-proteasome
pathway activity. Akt, an upstream mediator of mTORC1 activity, inactivate FOXOs and, thus, inhibits
proteolysis. Contrarily, AMPK activation promotes FOXOs activity 110, 174. Also, inflammatory response
via the NF-κB pathway and myostatin promote proteolysis through ubiquitin proteasome system 175-

178.

Autophagy refers to a process of non-selective degradation of cytosolic components by the
lysosome. Autophagy is beneficial to maintain cellular homeostasis at rest as well as during the
exercise and post-exercise recovery 107, 179. Resistance exercise may induce certain damage to loaded



myofibers and autophagy enables removal of damaged organelles and proteins through the
lysosomes. It appears that adaptation to exercise training is reliant on proper activation of
autophagy, and acute physical exercise has been shown to be a potent inducer of autophagy in
skeletal muscle 180-183. Activity of autophagy is regulated through unc-51-like kinase 1 (ULK1).
Activated mTORC1 can inhibit autophagy while AMPK stimulates autophagy by regulation of ULK1
activity 162, 179, 184, 185. Besides the autophagy-lysosomal system, non-lysosomal proteases like the
calcium-dependent calpain family and caspase class of proteins are involved in proteolysis 105, 186, 187.
For example, the sarcomeric damage caused by exercise initiates a calpain-mediated degradation of
disrupted sarcomeric filaments, such as titin 94.

Insert Figure 4.2 here

Figure 4.2. Simplified overview of mTOR and AMPK signaling pathways regulating skeletal muscle
size and function by resistance exercise. Putative resistance exercise-induced stimuli (amino acids and
contractile activity induced mechanic and metabolic stress, and release of systemic and local
signaling molecules), activate specific intracellular signaling networks (including, but not limited to
mTOR and AMPK signaling) that mediate acute and chronic skeletal muscle responses to resistance
exercise training. Stimulation of the signaling pathways depends on the resistance exercise program
variables used 155-158, 188-190. 4E-BP1, eukaryotic initiation factor 4E-binding protein 1; Akt, protein
kinase B; AMPK, AMP-activated protein kinase; AS160, Akt substrate of 160 kDa; CaMK, calmodulin-
dependent protein kinase; eIF2B, eukaryotic initiation factor 2B; FAK, focal adhesion kinase; FoxO,
forkhead box protein; GSK3, glycogen synthase kinase 3; mTORC1, mammalian/mechanistic target of
rapamycin complex 1; p38 MAPK, p38 mitogen-activated protein kinase; p70S6K, ribosomal S6 kinase
1; PA, phosphatidic acid; PGC-1α, peroxisome-proliferator-activated receptor gamma, coactivator 1;
Rag, Ras-related small GTPase; RONS, reactive oxygen and nitrogen species; ULK1, Unc-51-like kinase
1. Arrows denote activation, oval arrows denote inhibition.

Summary

The aim of RT is to provide an overload stimulus across the muscle to generate specific molecular
responses, promoting adaptive changes in skeletal muscle mass and metabolic function. The
conversion of intra- and extracellular signals generated during muscle contractions to subsequent
physiological adaptations involves a cascade of stimuli that affect specific signaling pathways
regulating exercise-induced satellite cell activation, gene expression and/or protein turnover rate by
proteosynthesis and proteolysis 24, 110, 126.

RT-induced skeletal muscle hypertrophy appears to be significantly controlled by the activity of the
translational machinery, where mTORC1 acts as the master regulator. Several signaling pathways
have an integrated effect on mTORC1 activity, of which autocrine/paracrine growth factors,
mechanical and metabolic stress and amino acid availability appears to be the most prominent 2, 74,

76. However, RT-induced skeletal muscle adaptation is a complex process involving various cellular
responses and many signal transduction pathways. Cellular signaling pathways comprise complex
networks that are operative in constantly altering cellular milieu, making it difficult to connect
specific signaling responses and changes in gene and protein expression to certain metabolic
responses after a resistance exercise bout, let alone to long-term adaptations to RT 191, 192. In
addition to the transcriptional and translational signaling networks involved with skeletal muscle
plasticity, epigenetic modifications of DNA that may affect exercise-induced gene expression, or
post-transcriptional silencing of genes by miRNAs, comprise additional levels of control on
adaptations to RT 193-197.



To entirely understand the adaptive changes that myofibers undergo in response to RT in humans,
aspects of the neuromuscular system (e.g. neural drive to muscles), musculoskeletal system (e.g.
force transmission from muscles to tendons and bones), and cardiovascular system (e.g. muscle
capillary network) should be taken into consideration. Furthermore, RT-induced adaptations
generally affect the entire body, thus, adaptations in musculature should be viewed in the context of
the crosstalk between tissues and organs in a whole body 198-201.
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