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Abstract26

27

Kinematic analysis is often performed with a camera system combined with reflective markers28

placed over bony landmarks. This method is restrictive (and often expensive), and limits the ability29

to perform analyses outside of the lab. In the present study, we used a markerless deep learning-30

based method to perform 2D kinematic analysis of deepwater running, a task that poses several31

challenges to image processing methods. A single GoPro camera recorded sagittal plane lower limb32

motion. A deep neural network was trained using data from 17 individuals, and then used to predict33

the locations of markers that approximated joint centres. We found that 300-400 labelled images34

were sufficient to train the network to be able to position joint markers with an accuracy similar to35

that of a human labeler (mean difference <3 pixels, around 1cm). This level of accuracy is sufficient36

for many 2D applications, such as sports biomechanics, coaching/training, and rehabilitation. The37

method was sensitive enough to differentiate between closely-spaced running cadences (45-8538

strides per minute in increments of 5). We also found high test-retest reliability of mean stride data,39

with between-session correlation coefficients of 0.90-0.97. Our approach represents a low-cost,40

adaptable solution for kinematic analysis, and could easily be modified for use in other movements41

and settings. Using additional cameras, this approach could also be used to perform 3D analyses.42

The method presented here may have broad applications in different fields, for example by enabling43

markerless motion analysis to be performed during rehabilitation, training or even competition44

environments.45

46

Introduction47

48

Kinematic analysis is used to characterise changes in joint angles during human movement. This49

information can be combined with other sources, e.g. force data, to build a more complete picture of50
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how a movement is performed (Winter, 1991), and thus has important implications for various51

fields such as sports biomechanics, injury risk assessment and rehabilitation (see Colyer et al. 201852

for a review). Kinematic analysis is often performed with a camera system combined with a set of53

reflective markers placed over bony landmarks, allowing a digital model of the moving person to be54

reconstructed (van der Kruk and Reijne, 2018). However, the use of reflective markers can restrict55

the settings in which data can realistically be collected, and many existing camera-based methods56

still rely on expensive hardware and software. Moreover, in an aquatic environment, the use of57

markers is impractical because they impede normal movement and are prone to significant motion58

artifact.59

60

Recently, several attempts have been made to develop markerless methods, which in theory could61

be used outside of the laboratory and allow movement to be analysed in more natural, unconstrained62

conditions (see Drory, Li, and Hartley 2017 for a comprehensive overview). In particular, methods63

that rely on artificial intelligence have demonstrated promising results (see Colyer et al., 2018 for64

review), and have the potential to revolutionise the way movement analysis is performed due to65

their powerful ability to ‘learn’ patterns in data. In the present study, we used DeepLabCut66

(Insafutdinov et al., 2016; Mathis et al., 2018; Pishchulin et al., 2015) to track the locations of67

(approximated) lower limb joint centres and used this information to perform 2D kinematic analysis68

of deepwater running, a task that poses several challenges to image processing methods, such as69

poor contrast and changes in light intensity. DeepLabCut is an open-source method that combines a70

residual neural network (ResNet-50) pretrained on ImageNet with deep convolutional and71

deconvolutional neural network layers (Insafutdinov et al., 2016) to predict the ‘learned’ locations72

of individual points in an image using feature detectors (He et al. 2015). The network ‘learns’73

marker locations by being trained on labeled data, which consists of individual images accompanied74

by a human-defined label of the ‘correct’ marker location. During training, the weights are adjusted75
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iteratively so that for each image, the network assigns high probabilities to target marker locations76

and low probabilities to all other regions. Training thus allows the network to ‘learn’ feature77

detectors for each user-defined marker, rather than relying on hard-coded, pre-defined features.78

79

In this study we demonstrate that a modified version of the DeepLabCut method can be used for80

accurate 2D kinematic analysis of deepwater running filmed using a single GoPro camera. We used81

this method to determine lower limb segment lengths and joint angles, and we present various other82

parameters that could be useful in motion analysis applications.83

84

Methods85

86

Participants. A total of 21 individuals (age: 24±4 years, height: 177±10cm, mass 67±9; 13 males87

and 8 females) volunteered to participate and provided written informed consent. The study was88

approved by the University’s ethics committee, and testing was conducted in accordance with the89

most recent Helsinki declaration.90

91

Experimental protocol. Participants performed bouts of deepwater running whilst immersed to92

shoulder level, and were tethered to the edge of the pool by a non-elastic cable attached to a93

buoyancy aid (Aquawallgym©, Hungary). A single GoPro camera (Hero 3 model) was enclosed in94

a waterproof case and positioned underwater in the sagittal plane to the participants’ left side at a95

distance of approximately 5 m. A custom-made calibration frame (2m x 2m) was used to calibrate96

the field of view for each participant and test. The camera was then set to record at 60Hz whilst97

participants ‘ran’ at different cadences controlled by a metronome (increased by 5 strides per98

minutes (spm) from 45 to 90 spm). A subset of participants were tested a second time99

approximately 1 week after the first test, to enable test-retest comparisons to be performed. A deep100
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neural network was trained and then used to predict the locations of several markers that101

approximated joint centres. Predicted joint coordinates were used to determine lower limb segment102

lengths and joint angles from the left leg, which was closest to the camera.103

104

Deep Neural Network. The method used here largely followed the method described by Mathis et105

al. (Mathis et al., 2018; v1). We first trained the network using 500 images from 17 randomly106

chosen participants (i.e. 28-30 images per participant), leaving aside data from the remaining 4107

participants (see below). The training images were randomly selected using a custom-written script108

in Matlab (Mathworks, v2016b). These images were cropped (dimensions: 580 x 480 pixels) and109

then manually labelled, with markers placed on the lateral side of the trunk (approximately mid-way110

between the shoulder and hip), greater trochanter, lateral femoral condyle, lateral malleolus, and 5th111

meta-tarsal head. The labelled images were used to train a deep neural network with a 90% training,112

10% test split. The ResNet model was initialised with weights trained on ImageNet (He et al.,113

2015), and the cross-entropy loss between the predicted score-map and the ground truth score-map114

was minimised using stochastic gradient descent (Insafutdinov et al., 2016). The network was115

trained for 200,000 iterations using a single Tesla K80 GPU via Microsoft Azure’s cloud platform116

running Python (Python Software Foundation; v.3.5) and Tensorflow (Abadi et al. 2018; v.1.2.1).117

The training process was repeated with smaller training sets (400, 300, 200 and 100 images118

respectively), to determine the minimum number of images required to reach satisfactory predictive119

performance for this task. The number of frames used for training was selected based on previous120

work using a similar method (Mathis et al., 2018), and for each trained model, frames were121

randomly assigned to the test or training set.122

123

Evaluation of deep neural network performance. To compare between joint coordinates labelled124

by a human and those labelled by the network, pairwise Euclidean distances were computed for125
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each marker location (root mean square error: RMSE). In the results section the RMSE values are126

shown for individual joints or as the average across all joints, as appropriate. To quantify the127

evolution of the training error, and to enable training to be resumed later if needed, the Tensorflow128

weights were stored every 10,000 iterations. As noted above, data from 4 randomly chosen129

participants were excluded completely from the training set. After training of the neural networks130

was complete, videos from these 4 participants were evaluated by each neural network model,131

thereby serving as additional test data. This approach was chosen to enable out of sample132

predictions that were completely independent of the training process, thus giving some indication of133

the generalisability of our trained models.134

135

Determining joint angles and segment lengths. Segment lengths were initially computed in terms136

of pixels, using the coordinate data of each point exported during the analysis of each video.137

Segment lengths were calculated based on the distance formula: ݀ = ඥ(ݔଶ − ଵ)ଶݔ + ଶݕ)  − ଵ)ଶ,138ݕ

where d = segment length in pixels, and x and y values denote the coordinates of the two points that139

make up a segment. A scaling factor was calculated for each participant and trial based on the140

corresponding calibration frame video, and used to scale segment lengths. Joint angles at the hip,141

knee and ankle were determined using the atan2 function in Matlab. In several cases, the neural142

network did not attempt to place a marker because the target joint location was blocked by the hand143

or moved beyond the image field of view. To overcome the effect of missed (and misplaced)144

markers on the resulting kinematic and segment length data, raw data were first filtered with a145

median filter (10-20 data points generally yielded good results) followed by a Butterworth 4th order146

low-pass filter (Figure 3). In some cases, e.g. when a marker was missing for several consecutive147

frames, it was necessary to experiment with different filtering procedures.148

149

Results150
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151

Deep Neural Network Performance152

153

Using the full training set of 500 labelled images, the mean training error across all images was 1.4154

pixels. The mean test error was 2.92 pixels (approximately 1cm). This model represents the best155

performance achieved out of all of the tested models. As seen in Figure 1A, training performance156

was similar between all of the tested models after 200,000 iterations. Test performance, i.e. how157

well the network predicts marker locations on images it has not ‘seen’ during training, was similar158

between models trained on 300-500 images, suggesting that 300 training images was sufficient for159

this task. However, test performance clearly decreased with training datasets of 100-200 images,160

indicating overfitting of these models during the training stage. For all models, training time varied161

between approximately 9-12 hours.162

163

*** FIGURE 1 HERE ***164

165

For the better performing models, both training and test errors were largely independent of which166

marker was being tracked, whereas for the poorer performing models, the disparity between167

different markers was much larger (Figure 1B and C). It should be noted that the trunk marker was168

not placed by the network in around 20% of frames due to the hand blocking the target area. In169

some images, the 5th metatarsal marker also was not placed because the foot moved beyond the170

camera field of view. However, these issues did not substantially affect kinematic tracking (Figures171

3 and 4).172

173

*** FIGURE 2 HERE ***174

175
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Figure 2 shows some examples of the same images labelled by the 100 and 500 models. In some176

cases, the models make similar predictions, compared to each other and to a human labeller (e.g.177

middle image in Figure 2). In other images, the 100 model consistently makes larger errors, and in178

the most extreme cases, identifies an ostensibly correct location but on the wrong limb (left image179

in Figure 2), which largely accounts for the bigger test errors of the poorer performing models (for180

further model comparisons see Supplementary Video 1). Segment length calculations yielded181

consistent traces across consecutive stride cycles, particularly for models trained on more images.182

Segment lengths varied somewhat throughout a stride (see Figure S1), due to minor fluctuations in183

marker locations, as well as the inevitable 3D rotation of the lower limb that cannot be quantified184

with this method.185

186

Kinematics of deepwater running187

188

Using this method we obtained consistent joint angle traces over several consecutive stride cycles.189

Figure 3 shows examples of data computed from three different 10s videos obtained from different190

individuals whose data were not seen by the neural network during training. These videos were191

processed entirely by a trained neural network, and did not require a human labeler at any stage (see192

also Supplementary Videos 2-4).193

194

*** FIGURE 3 HERE ***195

196

Based on visual identification from the videos, it was possible to approximate the start of individual197

stride cycles. Figure 4 shows the results of this segmentation for a single 20s trial from a participant198

whose data were not seen by the neural network during training.199

200

*** FIGURE 4 HERE ***201
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202

For the data shown in Figure 4, the mean range of motion at the hip joint was 96.7±5.4°.203

Corresponding values for the knee and ankle joint were 124.0±8.2° and 59.0±6.3° respectively.204

Similar range of motion values were also obtained for the 3 participants’ data in Figure 3 (hip:205

102.2-121.7°; knee: 102.0-133.0°; ankle: 67.2-78.2°). To demonstrate some additional applications206

of our method, we used it to examine kinematics at a range of different cadences, to ensure that the207

method was sufficiently robust to small changes in movement velocity and the resulting kinematics.208

These results are shown in Figure 5, demonstrating that small changes in cadence of 5 spm can be209

distinguished reliably based on the kinematic traces.210

211

*** FIGURE 5 HERE ***212

213

We also performed test-retest comparisons on data collected from the same individual one week214

apart (Figure 6). Figure 6 shows a segment of data (~30s), as well as individual strides from each215

session. Based on the mean strides, the range of motion values for tests 1 and 2 were 107.9º and216

102.1º (hip), 115.2 º and 121.9º (knee), and 35.5º and 33.8º (ankle) respectively. Corresponding217

mean differentials of these traces were 0.004 and 0.011 (hip), -0.014 and -0.011 (knee), and -0.062218

and 0.003 (ankle). Correlation coefficients computed on the pairwise mean stride data showed219

values of 0.97, 0.90 and 0.93 using the raw data, and 0.93, 0.78 and 0.79 when computed on the220

differential of the mean stride data, for the hip, knee and ankle respectively.221

222

*** FIGURE 6 HERE ***223

224

Discussion225

226
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In this paper we demonstrate the ability to perform markerless 2D kinematic tracking using a deep227

residual neural network trained on human-labelled data. Our results show that 300-400 labelled228

images were sufficient to train the network to be able to position joint markers with an accuracy229

similar to that of a human labeler (with a mean difference of around 1cm). This level of accuracy is230

sufficient for many 2D applications, such as sports biomechanics and coaching, and231

rehabilitation/training scenarios. Moreover, it is likely that network performance could be further232

improved, for example by using a deeper pre-trained network or by modifying model233

hyperparameters (Mathis et al., 2018). In addition to assessing joint kinematics, we also234

demonstrate the ability to compute relevant parameters such as joint range of motion and cadence235

on a stride by stride basis, and show strong test-retest reliability of kinematics measured with this236

method.237

238

The kinematic results obtained in this study are largely comparable to those of the few previous239

studies conducted in this area. For example, our joint range of motion results (Figures 3 and 4) are240

similar to values reported by Kato et al. (2001) and Kilding et al. (2007). For some participants we241

observed larger hip range of motion than in the Kato study, but this is likely due to the242

unconstrained nature of deepwater running, compared to running on a treadmill in Kato’s study.243

Similarly, we observed less peak knee flexion than Kilding et al., likely due to differences in244

deepwater running technique (high knees versus cross-country technique). At all joints, the245

kinematic traces in our study were qualitatively similar to those observed in overground running246

(e.g. Voloshina and Ferris 2015).247

248

We applied Deep Learning to a task that is very challenging from an image processing perspective.249

For example, the light intensity of the image background varied between (and even within) tests due250

to the fact that data were collected in a public swimming pool. The camera used in the present study251
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had automatic shutter speed, and due to the low amount of light, motion blur was evident in the252

videos, particularly in the distal portion of the image, which may have contributed to the larger253

RMSE at the ankle than at other joints for some models (Figure 1). This could conceivably have254

increased errors in marker placement by both the human and the neural networks. As light is filtered255

by the water, the contrast of the videos also seemed to be low. With these constraints, image quality256

was arguably quite low, further exacerbated by isolating and cropping individual video frames257

during training. It seems likely that using a more advanced camera could have improved overall258

image quality and thereby minimised tracking errors (for human and neural network labelling).259

However, we see this as a strength of the present approach, since it highlights the robustness of the260

method in spite of the factors mentioned above.261

262

Aside from issues related to filming underwater, we also encountered difficulties common to gait263

analysis such as an arm blocking a marker’s position. Additional cameras were not necessary to264

overcome this issue, and a simple filtering procedure combined with a robust deep neural network265

was sufficient to produce consistent kinematic results. Nonetheless, implementing this method in266

3D may help to reduce the effect of marker occlusion, due to the redundancy provided by additional267

cameras (see Drory et al., 2017 for a similar approach based on single images). Other difficulties268

included the occasional placement of a marker on the wrong limb by the neural network. To269

overcome this issue, other studies have used information about spatial relations between markers270

(e.g. the hip is always an approximately constant distance from the knee) to better inform271

predictions (Drory et al., 2017), and these techniques could have helped to improve accuracy in the272

present study. It should also be noted that camera-based methods are not the only possible solution273

for kinematic analysis. Some studies have used inertial measurement units(Dadashi et al., 2012),274

with the advantage that cameras are not needed, and so the issue of placing markers is avoided275

completely. Finally, we only compared neural network performance to that of a human labeler, and276
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could not evaluate our method against traditional systems that use reflective markers. However,277

reflective markers in the image would influence neural network performance during training, with a278

high risk that the network would simply learn to identify the reflective markers, and subsequently279

fail when used to predict marker positions in images where reflective markers are not present.280

Overcoming this issue thus requires an alternative approach.281

282

The approach used here offers a very low-cost, adaptable solution for simple kinematic analysis.283

The method only requires a small amount of manual labelling of image frames, and in the best case,284

this training process only needs to be performed once. The successfully trained network can then be285

used to label new videos quickly (45s for a 10s video on a standard CPU), and near real-time286

tracking is also possible with GPU support (Nath et al., 2018). Given the challenges associated with287

imaging deepwater running, it is likely that this approach could easily be modified to analyse288

kinematics in other human movements and measurement settings, simply by re-training the network289

using a suitable dataset. Moreover, using additional cameras, this approach could be used to290

perform 3D analyses (Nath et al., 2018). As stated by Coyler et al. (2018), the development of291

methods aided by artificial intelligence could revolutionise sports biomechanics and rehabilitation292

by broadening the applications of motion analysis to training or even competition environments.293
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