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Abstract

The difficulties in measuring total fitness of individuals necessitate the use of fitness surrogates in ecological and
evolutionary studies. These surrogates can be different components of fitness (e.g. survival or fecundity), or proxies more
uncertainly related to fitness (e.g. body size or growth rate). Ideally, fitness would be measured over the lifetime of
individuals; however, more convenient short-time measures are often used. Adult lifetime reproductive success (adult LRS)
is closely related to the total fitness of individuals, but it is difficult to measure and rarely included in fitness estimation in
experimental studies. We explored phenotypic correlations between female adult LRS and various commonly used fitness
components and proxies in a recently founded laboratory population of Drosophila littoralis. Noting that survival is usually
higher in laboratory conditions than in nature, we also calculated adjusted adult LRS measures that give more weight to
early reproduction. The lifetime measures of fecundity, longevity, and offspring viability were all relatively highly correlated
with adult LRS. However, correlations with short-time measures of fecundity and offspring production varied greatly
depending on the time of measurement, and the optimal time for measurement was different for unadjusted compared to
adjusted adult LRS measures. Correlations between size measures and adult LRS varied from weak to modest, leg size and
female weight having the highest correlations. Our results stress the importance of well-founded choice of fitness
surrogates in empirical research.
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Introduction

Fitness can be defined as a property of a phenotype (or

genotype) that predicts its representation in future generations

[1–6]. Evolutionary biologists often seek to measure the fitness of

particular phenotypes (or genotypes) in order to understand and

predict changes in the constitution of populations. Measuring

fitness is not a simple task, and the best measure of fitness can

differ depending on the biology of the study system. Particularly,

the strength of genotype-by-environment interactions on fitness

[3,4] and, in species with overlapping generations, the rate of

reproduction [3,7–9], need to be considered when measuring

fitness. For species with non-overlapping generations, and for

populations at constant population size, the best measure of

individual fitness is the lifetime reproductive success, i.e. the

number of viable zygotes produced over the whole life-cycle of the

individual [3,6].

Measuring the total fitness of individuals is often unfeasibly

demanding. Instead, researchers use various fitness surrogates,

traits that are thought to reflect fitness and are relatively easy to

measure. Fitness components, such as fecundity and survival, are

by necessity related to fitness [6], and are thus often preferred as

fitness surrogates in empirical studies [10–13]. However, these

traits are seldom measured over the whole lifetime of individuals,

but only over a restricted time frame that is most feasible for the

study system. Besides different components of fitness, morpholog-

ical and behavioral traits such as body size, growth rate,

dominance, and mating success, are often used as surrogates of

fitness [12,14,15]. The association between these so called fitness

proxies and total fitness of individuals is more uncertain than that

between fitness components and total fitness, but they are often

measured due to their convenience [6]. Using any fitness surrogate

without empirical knowledge about the true relationship of the

surrogate and total fitness may lead to erroneous conclusions.

Adult lifetime reproductive success (adult LRS) is likely to be

closely related to total fitness of individuals, as it combines several

components and proxies of fitness (longevity, fecundity, offspring

viability, mating success, etc.). Brommer et al. [16] have shown

adult LRS to be a good predictor of long-term genetic

contribution to the population in natural populations of two bird

species. Adult LRS is, however, difficult to measure and therefore

rarely included in fitness estimation in experimental studies.

To evaluate the reliability of various commonly used fitness

surrogates, we explored phenotypic correlations between adult

LRS, measured as the total number of offspring produced over the

adult lifetime of individual females, and various morphological and

life history traits, in a recently founded Drosophila littoralis

laboratory population. D. littoralis is a boreal drosophilid belonging
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to the D. virilis species group. In northern Fennoscandia D. littoralis

overwinters as adult, reproduces in the spring, and the next

generation (summer generation) emerges before autumn [17]. The

overwintered and summer generations overlap only slightly and

only a small proportion of the summer generation reproduces

during the ongoing summer [17]. The species is thus practically

univoltine, with only slightly overlapping generations. However,

noting that survival is usually higher in laboratory conditions than

in nature where individuals are subject to predation and other

hazards, we also calculated adjusted adult LRS measures that give

more weight to early reproduction. Comparing the correlations of

other fitness surrogates to adjusted and unadjusted adult LRS

measures provides insight about the sensitivity of laboratory-

derived fitness correlations to the higher mortality rates likely to

exist in natural conditions. We explored phenotypic correlations

between the adult LRS measures and fitness components

measured over the lifetime of the females (longevity, lifetime

fecundity, and lifetime egg-to-adult viability of offspring), fitness

components measured over shorter periods throughout female life

(short-time fecundity and short-time offspring production), and

size measures often used as proxies of individual fitness (weight and

several morphological measures of the females).

Methods

Ethics Statement
No permits are required for collecting flies by the Tourujoki

River in Jyväskylä, Finland.

A laboratory population of D. littoralis was founded in spring

2006 from 157 males and 99 females collected from a natural

population by the Tourujoki River in Jyväskylä, Finland. Thirty-

four of the 99 females had been inseminated in the wild and

produced fertile eggs after transfer to the lab. The rest of the

females were mated randomly in the lab with the wild-caught

males. Population size was increased to 419 breeding couples in

F2. The parental flies were assigned randomly each generation,

but inbreeding was reduced by preventing full-sib matings. In a

sample of 20 individuals from F4, 11 out of 14 nuclear

microsatellite loci were polymorphic [18]. In the polymorphic

loci, the mean number of alleles was 6.8 and the mean observed

heterozygosity was 0.55. The flies were kept in plastic vials

(diameter 23.5 mm, height 75.0 mm) with malt-yeast medium

[19], at 19uC and relative humidity of 60% with constant light.

Generation length of the flies under these conditions is appro-

ximately 35 days.

In F3, we measured egg and offspring production for 84 females

from 5 days after eclosion until death. Based on a pilot experiment,

females don’t produce eggs before this age (data not shown). All

females were from different families. One female and one non-sib

male (age 13–22 days from eclosion) were placed into a plastic vial

with 8 ml of malt-yeast medium to mate and lay eggs. The couples

were placed into a new vial every second day, which is sufficient to

prevent crowding of the larvae (see Results). To make sure that

female reproduction was not limited by male quality, the male was

replaced with a new one (age 13–22 days) every second week, or

immediately if it was found dead or if it escaped during handling.

The number of eggs laid and the number of eclosing flies were

counted from each vial. Mould or bacterial growth in vials was

rare, and was not observed more often in vials with small number

of eggs compared to vials with more eggs (personal observation).

We measured adult LRS as the number of eclosing offspring

produced by an adult female over its lifetime. In optimal

laboratory conditions with continuous availability of food and no

predators the lifetime of Drosophila is much longer than in natural

populations [20]. Thus, the lifetime reproductive success reached

in laboratory conditions is rarely realized in nature. To further

explore the possible consequences of higher mortality on the

Figure 2. Female survival. Proportion of females surviving in the
experiment (solid line), and expected survival probability with
additional daily mortality risk of 2, 4, 6, 8, 10, and 12% (dashed lines)
for different female ages (the dashed lines combine natural deaths with
the additional mortality risk). Female age (in days) is scored according
to the last day in a vial.
doi:10.1371/journal.pone.0024560.g002

Figure 1. Landmarks for measurement of wing size (C1–C9).
doi:10.1371/journal.pone.0024560.g001

Fitness Surrogates in Drosophila littoralis
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Figure 3. Effect of age on female reproduction. A) mean egg production, B) mean egg-to-adult viability of offspring, and C) mean offspring
production, in relation to female age. Error bars indicate 95% confidence interval. Female age (in days) is scored according to the last day in a vial.
doi:10.1371/journal.pone.0024560.g003

Fitness Surrogates in Drosophila littoralis
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fitness surrogates, we calculated adjusted adult LRS measures by

assuming additional values of daily mortality risk of 2, 4, 6, 8, 10,

and 12% for the females. The offspring number in each vial was

multiplied by the calculated survival probability to the specified

age, and the adjusted offspring numbers of all the vials for each

female were then summed together. The adjusted adult LRS thus

equals the expected number of offspring a female with a certain

reproductive history in laboratory would produce if there was

some external factor, e.g. predation, inflicting a constant daily risk

of mortality. Lifetime fecundity was measured as the number of

eggs produced by an adult female over its lifetime. Offspring

viability was measured for each female by dividing the total

number of offspring produced (i.e. adult LRS) by the total number

of eggs produced (i.e. lifetime fecundity; note that the fertilization

rate of the eggs is not known).

The short-time estimates of offspring production and fecundity

were calculated as sliding windows throughout female life. To be

able to compare estimates based on time frames of different length,

we used three different time frames: 2, 4 and 10 days. We also

present the correlations of cumulative offspring production and

cumulative fecundity with adult LRS. Comparing the correlations

of the cumulative measures and the short-time measures may

reveal the possible benefit of measuring offspring production or

fecundity of individuals from sexual maturity to some specific age

(i.e. cumulative measurement), versus measuring these traits only

for a short period at a specific age.

The females were weighed in the beginning of the experiment (5

days after eclosion). After death, females were preserved in 70%

ethanol. Several morphological measurements were taken from

the preserved samples. The wings and hind legs of the flies were

fixed on microscope slides and digitally photographed. Distance

between nine cross points of the wing veins (Fig. 1) and length of

femur, tibia, and the five segments of tarsus of hind legs were

measured from the images. When measurements could be taken

from both left and right wings or legs, we averaged the left and

right measurements to get one estimate for each measurement for

each fly. When only one measurement was possible due to

damaged wings or legs (note that the flies had died of old age and

were thus rather worn), the single available measurement was

used. To obtain a single size component for wings and legs, we

extracted the first principal component from the correlation

matrix of the measurements. The size component for wing

explained 78.5% of total variance with initial eigenvalue of 28.3.

The size component for leg explained 50.3% of total variance with

initial eigenvalue of 3.5. Length of thorax (longest distance

between neck and the tip of scutellum measured from the side of

the fly), length of scutellum (longest dorsoventral distance), and

width of head (distance between eyes through ocelli) were

measured using light microscope. Each fly was measured twice,

and the mean of the two measurements was used in the analyses to

reduce the measurement error.

Measurements done with light microscope had fairly low

repeatabilities (thorax 0.85, scutellum 0.58 and head width 0.54).

Using the average of two measurements of the same trait however

reduces the measurement error. Measurements from wings and

legs were taken from digital photographs and are less affected by

measurement error. Calculating the repeatability from left and

right measurements includes variance due to asymmetry, in

addition to variance due to measurement error. Excluding the two

most asymmetric individuals from analysis, distance measurements

from left and right wings had average repeatability of 0.93,

distance measurements from left and right legs had average

repeatability of 0.60, and left and right measurements of tibia had

repeatability 0.86. As pointed out above, these repeatabilities are

affected by real within-individual asymmetry. As we used the

average of the left and right-side measurements in all analysis, we

were able to obtain individual estimates that were less affected by

both asymmetry and measurement error.

Except for female longevity, all the variables were normally

distributed (one-sample Kolmogorov-Smirnov test). Thus, we

analyzed the parametric correlation coefficients between variables

other than longevity, and both parametric and non-parametric

correlation coefficients between longevity and the other variables.

We corrected for multiple testing using the Benjamini & Hochberg

correction for false discovery rate at 0.01 and 0.05 significance

levels [21]. To examine the possible effect of crowding on offspring

emergence, we tested the effect of number of eggs in a vial on egg-

to-adult offspring viability with linear regression. All the analyses

were performed with PASW Statistics 18.

Results

After removing females that accidentally escaped or died during

handling, a total of 77 females remained in the analyses. The last

female in the experiment was found dead at the age of 125 days

(Fig. 2). Offspring production of the females decreased with aging,

and this was due to combined effects of senescence on both female

fecundity and on egg-to-adult viability of offspring (Fig. 3). Mean

number of eggs laid by the females began to decrease

approximately from the age of 45 days onwards. Mean egg-to-

adult offspring viability showed a continuous decrease as the

females aged. The peak in mean number of offspring produced

was at the age of 21 to 25 days. Negative effect of senescence on

female fecundity and offspring viability have been reported before

e.g. in D. melanogaster [22,23].

The possible effect of crowding on egg-to-adult viability of the

offspring was tested for vials collected from the beginning of the

experiment until the females were 35 days old, so that the effect of

female aging on offspring viability could be minimized. Number of

eggs in a vial did not affect egg-to-adult viability of the offspring

(Fig. 4).

Phenotypic correlations between the adult LRS measures,

fitness components measured over the lifetime of the females, and

size measures, together with means and standard deviations of the

variables, are shown in Table 1. Figure 5 displays correlations of

the variables graphically (not shown for the adjusted LRS

measures). From the fitness components measured over the

Figure 4. Egg-to-adult viability of offspring plotted against
number of eggs in a vial. Number of eggs in a vial did not affect egg-
to-adult viability of the offspring (linear regression of egg-to-adult
viability on egg number: F1,966 = 2.997, R2 = 0.003, p = 0.084).
doi:10.1371/journal.pone.0024560.g004

Fitness Surrogates in Drosophila littoralis
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lifetime of the females, fecundity had the highest correlation with

adult LRS (r = 0.81). Female longevity and offspring viability were

also relatively highly correlated with adult LRS (r = 0.63, and

r = 0.51, respectively). Longevity and fecundity correlated posi-

tively with each other, but offspring viability correlated with

neither longevity nor fecundity. Size measures had modest to weak

correlations with adult LRS. Leg size, based on measurements of

all segments of the hind legs, had the highest correlation (r = 0.38),

followed by female weight (r = 0.32).

Correlations between adult LRS and cumulative and short-time

measures of fecundity and offspring production are shown in

Figure 6. Correlations of the short-time measures of fecundity and

offspring production with adult LRS were highly dependent on the

time of measurement: for young females the correlations were low,

but when measured from older females, the correlations were

much higher (up to 0.67 for short-time fecundity and 0.83 for

short-time offspring production). For both short-time fecundity

and short-time offspring production the highest correlations with

adult LRS were reached when the female age was about 50 to 80

days. The length of the time frame had only a minor effect: the

correlation of the 10-day measure with adult LRS was generally

only slightly higher than that of the 2-day measure. The short-time

measures performed well in comparison to the cumulative

measures of fecundity and offspring production.

Correlations between the adjusted adult LRS measures and 10-

day measures of fecundity and offspring production are shown in

Figure 7. As expected, correlations between the short-time

measures of fecundity and offspring production with adjusted

Figure 5. Scatterplots of adult LRS, lifetime fitness components, and size measures. Data is shown only for individuals to whom
measurements for all the variables were available.
doi:10.1371/journal.pone.0024560.g005
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adult LRS were generally higher when measured from younger

than when measured from older flies; the effect was more

pronounced with higher levels of additional mortality risk.

Adjusting adult LRS with additional mortality risk also increased

variation between the different lengths of time frames: the 10-day

measure outperformed the shorter time frames by giving more

consistent correlations (data from shorter windows is not shown).

Mortality-adjustment to adult LRS did not have a strong effect

on the correlations with size measures (Table 1). If anything, the

correlations of size measures were stronger with the adjusted adult

LRS measures than with unadjusted adult LRS. This effect was

due to generally higher correlation of size measures with early

fecundity and offspring production than with late fecundity and

offspring production (analysis not shown).

Discussion

We explored phenotypic correlations between adult LRS,

measured as the total number of offspring produced over the adult

lifetime of individual D. littoralis females in laboratory, and various

morphological and life history traits commonly used as fitness

surrogates. As could be expected, the lifetime measures of fecundity,

longevity, and offspring viability were all relatively highly correlated

with adult LRS. Previous research on correlations between adult

LRS and other fitness surrogates is rather scarce. However, strong

positive correlation between longevity and adult LRS has been

documented also in D. melanogaster [24] and in the house fly (Musca

domestica) [25] in laboratory and in some bird [26–28] and mammal

species [29,30] in the field. In the housefly [25], the song sparrow

(Melospiza melodia) [26], and the house martin (Delichon urbica) [27],

strong correlation was also found between lifetime fecundity and

total number of offspring produced.

Correlation of the short-time measures of fecundity and

offspring production with adult LRS depended greatly on the

time of measurement: when measurements were from older rather

than from younger females correlations were surprisingly high.

The short-time measures performed well also in comparison to the

cumulative measures of fecundity and offspring production. It

seems that, if timed correctly, the more practical short-time

measures could give as good estimates of adult LRS as can more

laborious and time-consuming cumulative measurements. In

contrast to our findings, Reed and Bryant [25], exploring the

relationship between adult LRS and seven other fitness surrogates

in pairs of the housefly, ended up recommending only fitness

surrogates covering the entire lifetime of the organism. However,

the argument of Reed and Bryant [25] is based on the weak

performance of three fitness surrogates measured at the very

beginning of the reproductive lifetime of the housefly pairs (age at

Figure 6. Correlations between adult LRS and cumulative and short-time fecundity and offspring production. Pearson’s correlation
coefficients (r) between adult LRS and A) cumulative fecundity, and fecundity in sliding windows of 2 days, 4 days, and 10 days, and B) cumulative
offspring production, and offspring production in sliding windows of 2 days, 4 days, and 10 days. Above critical r (dashed line) correlations are
significant at a= 0.05 level (two-tailed; note that the critical effect size for significance increases with increasing female age because of decreasing
sample size). Female age is scored according to the midpoint of the time frame in question.
doi:10.1371/journal.pone.0024560.g006
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first reproduction, the size of the first egg clutch, and egg-to-adult

viability of the first clutch). We measured short-time fecundity and

offspring production of individual females throughout the female

lifetime and, as said, discovered that when measured from

individuals well into their reproductive life, short-time measures

predicted adult LRS surprisingly well. Measuring fitness surrogates

from older individuals is of course justifiable only when mortality is

negligible; if mortality is high, the older age-classes comprise only a

selected subset of the population.

Correlation between adult LRS and short-time components of

fitness may depend greatly on the short-time measure used. In the

song sparrow, a strong correlation was found between the number

of young raised in the first breeding year and total number of

young reared by females in their lifetime (r = 0.82) [26]. However,

correlation between the number of eggs laid in the first breeding

year and the total number of young reared was relatively poor

(r = 0.32) [26].

Correlations between adult LRS and size measures were

generally weaker than those between adult LRS and measures of

life history traits (longevity, lifetime or short-time fecundity, short-

time offspring production, and lifetime egg-to-adult viability of

offspring). However, two of the size measures correlated

reasonably well with adult LRS: leg size and female weight. In

fact, by simply weighing the female one can get a better estimate

for adult LRS than with an unfavorably timed measurement of

fecundity. Tibia length, a commonly used size measure [14,31,32],

had a lower correlation with adult LRS than the size measure

combining all leg segments.

There seems to be a lot of variation in how size measures relate

to offspring production between different species studied. Partridge

et al. [23] documented a strong positive correlation between thorax

length and adult LRS in D. melanogaster (r = 0.67). This correlation

is much stronger than what was found in our study (r = 0.22), in

spite of the similar study systems. Strong correlations between

offspring production and weight have been documented e.g. in red

squirrels (Sciurus vulgaris) [33] and in a monogamous rodent

(Peromyscus californicus) [34]. Scott [35] studied these relationships in

Bewick’s swans (Cygnus columbianus bewickii), and found only

moderate to weak correlations between total number of young

and female weight and morphological measures. In the house

martin, body mass, keel length, and wing length were all very poor

indicators of total young reared [27].

In addition to the adult LRS realized in laboratory conditions,

we used adjusted measures with additional daily mortality risk of

the females. Thus, the adult LRS measures adjusted for mortality

weight early reproduction more than later reproduction, and

therefore more closely reflect fitness in natural conditions where

the flies have evolved. It is well known that predation and other

hazards in nature result in shorter lifespan in nature than in

laboratory [20], and that mortality caused by predation affects the

evolution of life-histories [36,37]. Estimates of daily mortality risk

in natural populations of various Drosophila species range from 15%

to 55% [20]. Thus, although a lifetime in D. littoralis is somewhat

longer than in the species used in these studies, the daily mortality

estimates used here (2, 4, 6, 8, 10, and 12%, in addition to natural

death of the females in the experiment) can be considered

Figure 7. Effect of additional mortality on correlations between adult LRS and 10-day measures of fecundity and offspring
production. Pearson’s correlation coefficients (r) between adult LRS measures (unadjusted adult LRS, and adult LRS adjusted for additional daily
mortality risk of 2, 4, 6, 8, 10, and 12%) and A) fecundity in sliding windows of 10 days, and B) offspring production in sliding windows of 10 days.
Above critical r (dashed line) correlations are significant at a= 0.05 level (two-tailed; note that the critical effect size for significance increases with
increasing female age because of decreasing sample size). Female age is scored according to the midpoint of the time frame in question.
doi:10.1371/journal.pone.0024560.g007
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conservative. Predictably, and in contrast to what was found for

unadjusted adult LRS, the short-time measures of fecundity and

offspring production correlated better with mortality-adjusted adult

LRS if measured from younger flies than if measured from older

flies. Thus, assuming additional mortality risk in nature changes the

optimal time frame for short-time measurements of fecundity and

offspring production. Interestingly, size measures tended to

correlate more strongly with adjusted adult LRS than with

unadjusted adult LRS, suggesting that size might predict fitness

better in environments where mortality rates are higher.

Because adult LRS combines several fitness components, it is

likely to be closely related to the total fitness of individuals. Using

adult LRS as a surrogate for total fitness is not, however, totally

unambiguous. The number of adult offspring eclosing from the

eggs laid by a female is not solely the property of the female, but

also that of the offspring themselves, as the offspring have unique

genotypes different from their mother. Assigning offspring fitness

to the mother may thus lead to erroneous conclusions, especially if

the impact of offspring genotype on offspring viability is large in

comparison to maternal effects [38]. In this light, lifetime fecundity

might be considered a better estimate of female fitness than

lifetime offspring production, as fecundity can more clearly be

considered a property of the female itself. While achieving

consensus on the best fitness measure (total number of eggs vs.

total number of adult offspring) is beyond the scope of the current

paper, we argue that researchers should always carefully consider

how they define individual fitness.

The possible effects of competition are excluded in our study, as

the availability of food was not a limiting factor, and only one male

and one female fly were introduced to each other. Competition

over resources such as food and shelter may not be strong in the

natural habitat of the flies, as the population density seemed low at

the Tourujoki River area (personal observation). However, other

evolutionary processes such as sexual selection might potentially

contribute to the reproductive success of the flies [39]. A recent

study showed that increased exposure to males changes rate-

sensitive fitness estimates of females in D. melanogaster, and the

direction of the change depends on whether the population is

expanding or declining [7]. The effects of competition can thus be

complex and dependent on population dynamics.

In summary, the best surrogates for adult LRS of D. littoralis

females in this study were lifetime fecundity and well-timed short-

time measures of fecundity and offspring production. The great

variation found in the strength of the relationship between adult

LRS and the other surrogates of fitness shows the importance of

careful choice of fitness surrogates in empirical research. With

short-time measures, it is crucial to pay attention to the timing of

the measurements.
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